WO2021172407A1 - 解繊性が改良された繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤 - Google Patents

解繊性が改良された繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤 Download PDF

Info

Publication number
WO2021172407A1
WO2021172407A1 PCT/JP2021/007031 JP2021007031W WO2021172407A1 WO 2021172407 A1 WO2021172407 A1 WO 2021172407A1 JP 2021007031 W JP2021007031 W JP 2021007031W WO 2021172407 A1 WO2021172407 A1 WO 2021172407A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
resin composition
defibrating
agent
group
Prior art date
Application number
PCT/JP2021/007031
Other languages
English (en)
French (fr)
Inventor
矢野 浩之
健 仙波
Original Assignee
国立大学法人京都大学
地方独立行政法人京都市産業技術研究所
王子ホールディングス株式会社
日本製紙株式会社
星光Pmc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 地方独立行政法人京都市産業技術研究所, 王子ホールディングス株式会社, 日本製紙株式会社, 星光Pmc株式会社 filed Critical 国立大学法人京都大学
Priority to JP2022503676A priority Critical patent/JPWO2021172407A1/ja
Publication of WO2021172407A1 publication Critical patent/WO2021172407A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a fiber-reinforced resin composition, a method for producing the same, a molded product, and a defibrating agent.
  • Microfibrillated cellulosic fibers (sometimes referred to herein as MFCs, cellulose nanofibers or CNFs) are plant fibers or paper pulp defibrated to micro or nano level thickness. Lightweight and high strength.
  • the strength properties of the composite containing the fibers and the resin are based on the thickness of the fibers contained in the resin, or the affinity between the fibers and the resin and the dispersibility of the fibers in the resin. Due to its high dependence, the method of defibrating the cellulosic fiber aggregate to make it microfibrillated, and chemically modifying the MFC to make it hydrophobic in order to improve the affinity and dispersibility with the resin to be composited. The following methods are disclosed.
  • Patent Document 1 and Patent Document 2 a resin component composed of an aliphatic polyester and polylactic acid, and a fiber component composed of a pretreated pulp and / or a cellulosic fiber in which the primary wall and the outer layer of the secondary wall are damaged are described.
  • a method for producing an aliphatic polyester composition by melt-kneading in the presence of a cellulose amorphous region swelling agent such as water, ethylene glycol, butylene glycol is disclosed, and the fiber component is defibrated during melt-kneading to form microfibrils. It is stated that.
  • Patent Document 3 discloses a method for producing cellulose nanofibers by stirring a mixture of a plant-derived fiber aggregate having a lignin content of 0 to 5% by weight and a wide variety of liquid substances at high speed.
  • hydrocarbons having 3 to 20 carbon atoms which may contain a hetero atom are disclosed, and ethylene glycol and diethylene glycol are described therein.
  • Patent Document 4 describes cellulose fibers, at least one of a resin and a resin precursor, and a wide variety of organic solvents (aromatic hydrocarbons, aprotonic polar solvents, alcohol solvents, ketone solvents, glycol ether solvents).
  • organic solvents aromatic hydrocarbons, aprotonic polar solvents, alcohol solvents, ketone solvents, glycol ether solvents.
  • the cellulose fibers are defibrated with a bead mill, a high-pressure homogenizer, or the like to obtain fine cellulose fibers, at least one of a resin and a resin precursor, and an organic solvent.
  • a method for producing a fine cellulose fiber dispersion liquid contained therein is disclosed.
  • the glycol ether solvent include ethylene glycol monomethyl ether and propylene glycol monomethyl ether.
  • Patent Document 5 describes a wide variety of organic solvents (aromatic hydrocarbons, aprotonic polar solvents, alcohol solvents, ketone solvents) having a specific viscosity (1.0 mPa ⁇ S or more) and a refractive index (1.40 or more). Fine particles are obtained by defibrating the cellulose fibers with a bead mill, a high-pressure homogenizer, or the like in a dispersion containing the cellulose fibers dispersed in a solvent, an ether solvent, a glycol ether solvent, or the like alone or in a mixed solvent.
  • a method for producing a fine cellulose fiber dispersion liquid containing at least one of a cellulose fiber, a resin and a resin precursor, and an organic solvent is disclosed.
  • Patent Document 6 describes a composition containing a chemically modified CNF and a thermoplastic resin by defibrating the chemically modified cellulose fibers in a melt-kneaded product while melt-kneading a specific chemically modified cellulose fiber and a thermoplastic resin. The method of manufacture is disclosed.
  • Patent Document 7 discloses a defibration aid for hydrophobic cellulosic fibers composed of specific amides, a method for producing a resin composition containing a hydrophobic MFC using the defibrating agent, and a molded product.
  • An object of the present invention is a fiber-reinforced resin composition containing microfibrillated hydrophobic cellulosic fibers (A), a defibrating agent (B1) and a thermoplastic resin (C), and optionally a defibrating agent (B2).
  • Excellent mechanical properties consisting of the product (D), its efficient production method, a defibrating agent having excellent defibration properties of the hydrophobic cellulosic fiber aggregate (AP), and its resin composition. It is to provide a fiber-reinforced molded product having (toughness).
  • the present inventors have prepared a mixture of a cellulosic fiber aggregate (hereinafter, also referred to as a hydrophobic cellulosic fiber aggregate or a defibration raw material) modified with a specific chemically modifying group and hydrophobized with a specific molecular weight.
  • a cellulosic fiber aggregate hereinafter, also referred to as a hydrophobic cellulosic fiber aggregate or a defibration raw material
  • a specific chemically modifying group hydrophobized with a specific molecular weight.
  • the present invention relates to the fiber-reinforced resin composition, the molded product, and the method for producing the fiber-reinforced resin composition described in each of the following items.
  • the microfibrillated hydrophobic cellulosic fiber (A) is modified with an acyl group having 2 to 5 carbon atoms.
  • the defibrating agent (B1) is at least one compound selected from the group consisting of a polyhydric alcohol having a molecular weight of 130 to 400 and a lactone having a molecular weight of 86 to 115.
  • Resin composition (D) Item 2.
  • the fiber reinforced resin composition (D) further contains a defibrating agent (B2), and the fiber reinforced resin composition (D) further contains a defibrating agent (B2).
  • Item 2 The fiber-reinforced resin composition according to Item 1, wherein the defibrating agent (B2) is at least one selected from the group consisting of talc, clay, zeolite, aluminum oxide, calcium carbonate, titanium oxide, silica, magnesium oxide and mica. .. Item 3.
  • the defibrating agent (B1) is dipropylene glycol, triethylene glycol, diglycerol, tripropylene glycol, tetraethylene glycol, polyethylene glycol (number average molecular weight 200 to 400), polyoxypropylene glycol (number average molecular weight 200 to 400). ), Polyoxypropylene glyceryl ether (number average molecular weight 200 to 400), ⁇ -valerolactone and ⁇ -caprolactone, which is at least one selected from the group, according to Item 1 or 2.
  • the microfibrillated hydrophobic cellulosic fiber (A) is modified with an acetyl group, and the defibrating agent (B1) contains dipropylene glycol, tripropylene glycol, polyoxypropylene glycol (average molecular weight 200), and polyoxy.
  • thermoplastic resin (C) is polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), styrene-butadiene block co-weight.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • styrene-butadiene block co-weight styrene-butadiene block co-weight.
  • the fiber-reinforced resin composition according to any one of Items 1 to 4, which is at least one selected from the group consisting of coalesced polycarbonate-ABS alloy (PC-ABS alloy) and modified polyphenylene ether (m-PPE).
  • the fiber-reinforced resin composition according to Item 5 wherein the polyolefin is at least one selected from the group consisting of polypropylene, polyethylene, polypropylene copolymers and polyethylene copolymers.
  • Item 7. Item 2. The fiber-reinforced resin composition according to any one of Items 1 to 6, wherein the microfibrillated hydrophobic cellulose-based fiber (A) is a microfibrillated hydrophobic lignocellulosic fiber (MFLC).
  • Item 9. A molded product made of the fiber-reinforced resin composition according to Item 8.
  • Item 10. A hydrophobized cellulosic fiber aggregate (AP) modified with an acyl group having 2 to 5 carbon atoms, a defibrating agent (B1) and a thermoplastic resin (C) are mixed, and the hydrophobized cellulosic fiber aggregate (C) is mixed during this mixing operation. Including the step of defibrating the fiber aggregate (AP) into microfibrils, A method for producing a fiber-reinforced resin composition (D) containing a microfibrillated hydrophobic cellulose-based fiber (A) and a thermoplastic resin (C).
  • the microfibrillated hydrophobic cellulosic fiber (A) is modified with an acyl group having 2 to 5 carbon atoms.
  • the defibrating agent (B1) is at least one compound selected from the group consisting of a polyhydric alcohol having a molecular weight of 130 to 400 and a lactone having a molecular weight of 86 to 115.
  • the defibrating agent (B2) is at least one selected from the group consisting of talc, clay, zeolite, aluminum oxide, calcium carbonate, titanium oxide, silica, magnesium oxide and mica.
  • Item 12. A hydrophobized cellulosic fiber aggregate (AP) modified with an acyl group having 2 to 5 carbon atoms, a defibrating agent (B1) and a thermoplastic resin (C) are mixed, and the hydrophobicity is described during this mixing operation.
  • the defibrating agent (B1) is removed from the mixture containing the microfibrillated hydrophobic cellulosic fiber (A), the defibrating agent (B1) and the thermoplastic resin (C) obtained in the first step.
  • the microfibrillated hydrophobic cellulosic fiber (A) is modified with an acyl group having 2 to 5 carbon atoms.
  • the defibrating agent (B1) is at least one compound selected from the group consisting of a polyhydric alcohol having a molecular weight of 130 to 400 and a lactone having a molecular weight of 86 to 115.
  • a method for producing a fiber-reinforced resin composition (D). Item 13. Item 2. The production method according to Item 12, wherein the fiber-reinforced resin composition (D) further containing the defibrating agent (B2) is produced by further mixing the defibrating agent (B2) in the first step.
  • the method, wherein the defibrating agent (B2) is at least one selected from the group consisting of talc, clay, zeolite, aluminum oxide, calcium carbonate, titanium oxide, silica, magnesium oxide and mica.
  • thermoplastic resin is polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate-ABS alloy (PC-ABS alloy) and modified polyphenylene.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • PC-ABS alloy polycarbonate-ABS alloy
  • modified polyphenylene modified polyphenylene.
  • the compounds are dipropylene glycol, triethylene glycol, diglycerol, tripropylene glycol, tetraethylene glycol, polyethylene glycol (number average molecular weight 200 to 400), polyoxypropylene glycol (number average molecular weight 200 to 400), polyoxypropylene.
  • the defibrating agent according to Item 16 which is at least one selected from the group consisting of glyceryl ether (number average molecular weight 200 to 400), ⁇ -valerolactone and ⁇ -caprolactone.
  • the defibrating agent (B1) used in the present invention can promote the defibration of cellulosic fiber aggregates hydrophobized by chemical modification, the defibrating agent (B1) is used as a defibrating raw material. Microfibrillated hydrophobic cellulosic fibers (A) can be easily obtained from the above.
  • microfibrillated hydrophobic cellulosic fiber (A) is also referred to as a hydrophobic MFC.
  • the hydrophobized MFC is hydrophobized by a specific hydrophobic chemical modification group, it has a high affinity with the thermoplastic resin. Therefore, the hydrophobized MFC can be easily mixed with the thermoplastic resin and dispersed in the melt-kneaded composition (eg, the fiber-reinforced resin composition) in a fine state and in a uniform or near-uniform state. As a result, the molded product made of the fiber-reinforced resin composition of the present invention has excellent mechanical properties (strength properties and toughness).
  • the hydrophobized cellulosic fiber aggregate and the thermoplastic resin are melt-kneaded by the presence of the defibrating agent (B1) during the melt-kneading. Since it is easily microfibrillated, a melt-kneaded product containing a hydrophobic MFC (that is, the fiber-reinforced resin composition of the present invention) can be efficiently produced.
  • Cellulose-based fiber means a fiber containing cellulosic and / or lignocellulosic derived from a plant, a microorganism, an algae, or a tunicate subphylum (squirt).
  • Lignocellulosic is a complex hydrocarbon polymer (natural polymer mixture) that constitutes a tree cell wall, and is known to be mainly composed of polysaccharide cellulose, hemicellulose, and lignin, which is an aromatic polymer. ..
  • lignocellulosic means a substance composed of cellulose, hemicellulose and lignin regardless of the amount of lignin content and regardless of the presence or absence of chemical bonds between cellulose, hemicellulose and / or lignin. ..
  • Cellulose-based pulp means a fiber aggregate composed of a cellulosic polymer.
  • Cellulose-based pulp includes pulp containing no lignin (pulp made of cellulose, pulp made of holocellulose, etc.) and pulp containing lignin (ligno pulp).
  • Cellulose-based pulp is also classified as follows according to its origin. That is, it is separated from the cellulosic fiber aggregate (plant-derived pulp) separated from the whole plant or part of the plant such as wood, bamboo, rice straw, and cotton, and the mixture of cellulosic produced by the microorganism and the bacterial cell of the microorganism.
  • Cellulose-based fiber aggregate (pulp derived from microorganisms), cellulosic fiber aggregate separated from algae (pulp derived from algae), and cellulosic fiber aggregate separated from caudate subphylum (hoya) (pulp derived from squirrel) ).
  • pulp cellulosic pulp
  • Ligno pulp means pulp containing lignocellulosic.
  • Hydrophobicized cellulosic fiber aggregate means pulp chemically modified with a hydrophobic group (for example, an acyl group).
  • chemical modification means that a substituent (chemical modification group) is introduced instead of the hydrogen atom of the hydroxyl group of the sugar chain constituting the cellulosic fiber (the hydroxyl group is chemically modified).
  • the hydrophobic cellulosic fiber aggregate is one aspect of chemically modified pulp (chemically modified cellulosic fiber aggregate).
  • the substituent include a hydrophobic group, for example, an acyl group, and an acyl group having 2 to 5 carbon atoms is preferable.
  • a preferred embodiment of the chemical modification is acylation, and a more preferred embodiment is acylation with an acyl group having 2 to 5 carbon atoms.
  • Chemically modified microfibrillated cellulosic fiber means a chemically modified and microfibrillated cellulosic fiber.
  • a preferred chemically modified MFC is a hydrophobized MFC (microfibrillated hydrophobic cellulosic fiber (A)), that is, a microfibrillated cellulose fiber into which an acyl group having 2 to 5 carbon atoms has been introduced.
  • microfibrillation means that the diameter of the fiber is on the nano-order, or the fiber existing inside or on the surface of the fiber is on the nano-order. Therefore, a fiber whose fiber diameter is defibrated to the nano-order, a fiber whose inside or surface is defibrated to the nano-order even if the diameter of the thickest part of the fiber is nano-order or more (for example, several ⁇ m).
  • fibers in which these fibers are mixed are also interpreted as microfibrillated fibers.
  • Complex means a composition containing a matrix and a non-matrix.
  • a resin-fiber composite or fiber-resin composite
  • a specific fiber name may be used for the fiber
  • a specific polymer name unique name of the resin or a generic name of the resin such as a thermoplastic resin
  • a composition containing a thermoplastic resin as a matrix and a chemically modified MFC is referred to as a thermoplastic resin-chemically modified MFC composite, a chemically modified MFC-thermoplastic resin composite, or a chemically modified MFC-containing thermoplastic resin composition.
  • thermoplastic resin composite a chemically modified MFC composite, or a composite.
  • kneading or mixing the resin with the chemically modified MFC, the chemically modified cellulosic fiber or the chemically modified cellulosic fiber aggregate (chemically modified pulp) is "composite”. Also called.
  • Acyl Acyl group
  • Ac Acetyl group
  • LP Ligno pulp CP: Cellulose fiber aggregate (cellulosic pulp)
  • AcCP Cellulose chains that make up cellulosic fibers of cellulosic fiber aggregates (cellulosic pulps), or pulps in which the hydrogen atoms of some hydroxyl groups of sugar chains and lignin are replaced with acetyl groups
  • AcLP Cellulose in ligno pulp
  • Ligno pulp MFC microfibrillated cellulosic fiber
  • Aquil MFC sugar chain constituting cellulosic fiber, in which the hydrogen atom of a part of the hydroxyl group of the sugar chain or lignin is replaced with an acetyl group.
  • a fiber in which the hydrogen atom of a part of the hydroxyl group of the sugar chain and lignin is substituted with an acyl group and microfibrillated is substituted with an acyl group and microfibrillated.
  • AcMFC A sugar chain constituting a cellulosic fiber, or a sugar chain and lignin. Fibers in which the hydrogen atom of the hydroxyl group in the part is substituted with an acetyl group and microfibrillated MFLC: Microfibrillated lignocellulosic fibers
  • AcMFLC Sugar chains constituting the lignocellulose fibers, or a part of sugar chains and lignin. A fiber in which the hydrogen atom of the hydroxyl group of the above is substituted with an acetyl group and is microfibrillated.
  • the defibrator (B1) used in the present invention is at least one compound selected from a polyhydric alcohol having a molecular weight of 130 to 400 and a lactone having a molecular weight of 86 to 115.
  • the molecular weight of the defibrating agent (B1) as used herein means the molecular weight of the compound in the case of a single compound, and the number average molecular weight of the mixture in the case of a mixture of polymers or oligomers.
  • the above polyhydric alcohol can be used alone or in combination of two or more.
  • a polypropylene glycol-based diol (hereinafter, also referred to as "PPG-based diol”) is preferable.
  • PPG-based diol examples include dipropylene glycol, tripropylene glycol, polyoxypropylene glycol having a number average molecular weight of 200, polyoxypropylene glycol having a number average molecular weight of 400, divalent alcohol and propylene oxide (hereinafter, also referred to as “PO”).
  • Is addition-polymerized examples thereof include PO and a polyether polyol obtained by addition-polymerizing PO and an alkylene oxide other than PO (ethylene oxide (hereinafter, also referred to as “EO”), etc.).
  • the addition polymerization of PO and other alkylene oxides may be random addition polymerization or block addition polymerization.
  • divalent alcohols examples include divalent alcohols having 2 to 4 carbon atoms such as ethylene glycol, propylene glycol, 1,3-butanediol, and 1,4-butanediol.
  • Structural isomers are present in PPG-based diols depending on the addition polymerization mode of PO, but the PPG-based diols referred to herein also include the respective isomers and mixtures thereof.
  • the molecular weight of the PPG-based diol is preferably 130 to 400, more preferably 130 to 350, further preferably 130 to 300, and particularly preferably 150 to 250.
  • an ethylene oxide (EO) addition polymer having a molecular weight of 130 to 400 (EO 3 to 8 addition polymers) is also preferable.
  • the EO addition polymer include triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, octaethylene glycol, and mixtures thereof.
  • a mixture of EO addition polymers having a number average molecular weight of 200 is also referred to as PEG200
  • a mixture having a number average molecular weight of 400 is also referred to as PEG400.
  • a mixture of a glycerin derivative having a molecular weight of 130 to 400 and a glycerin derivative can also be used.
  • these glycerin derivatives include a dimer of glycerin (diglycerol) and an addition polymerization of PO to glycerin (polyoxypropylene glyceryl ether).
  • the polyoxypropylene glyceryl ether has a structural isomer depending on the addition polymerization mode of PO, and the polyoxypropylene glyceryl ether referred to in the present specification also includes the structural isomer and a mixture thereof.
  • a preferred polyoxypropylene glyceryl ether is polyoxypropylene glyceryl ether (number average molecular weight 250).
  • polyhydric alcohols of the defibrating agent (B1) dipropylene glycol, triethylene glycol, diglycerol, tripropylene glycol, tetraethylene glycol, and polyethylene are used in terms of defibability and mechanical strength when formed into a molded product.
  • At least one polyhydric alcohol selected from the group consisting of glycol (number average molecular weight 200 to 400), polyoxypropylene glycol (number average molecular weight 200 to 400) and polyoxypropylene glyceryl ether (number average molecular weight 200 to 400) is preferable.
  • Dipropylene glycol triethylene glycol, diglycerol, tripropylene glycol, tetraethylene glycol, polyoxypropylene glycol (number average molecular weight 200), polyoxypropylene glycol (number average molecular weight 400), polyoxypropylene glyceryl ether (number average)
  • polyoxypropylene glycol number average molecular weight 200
  • polyoxypropylene glycol number average molecular weight 400
  • polyoxypropylene glyceryl ether number average
  • At least one polyhydric alcohol selected from the group consisting of molecular weight 250) and polyoxypropylene glycol (number average molecular weight 400) is more preferable.
  • At least one polyhydric alcohol selected from the group consisting of dipropylene glycol, tripropylene glycol, polyoxypropylene glycol (average molecular weight 200) and polyoxypropylene glyceryl ether (average molecular weight 250) has a defibrating ability. It is preferable from the point of view.
  • the polyhydric alcohol used as the defibrating agent (B1) has a flash point of 100 ° C. or higher, and is therefore preferable from the viewpoint of disaster prevention and safety during the production of the composition of the present invention.
  • a lactone having a molecular weight of 86 to 115 can be used as the defibrating agent (B1).
  • ⁇ -valerolactone and ⁇ -caprolactone are preferable from the viewpoint of defibration ability and safety in use.
  • the resin composition The defibrating agent (B1) remaining therein is preferably removed from the molded product material or the molded product.
  • Removal of the defibrating agent (B1) (polyhydric alcohol having a molecular weight of 130 to 400 and lactone having a molecular weight of 86 to 115) is such that the boiling point of the defibrating agent (B1) at room temperature and atmospheric pressure is about 290 ° C. or lower. Therefore, a method of vaporizing and separating the molded body material or the molded body by heating under reduced pressure (for example, 125 to 280 ° C.) is easy and preferable.
  • dipropylene glycol, tripropylene glycol, polyoxypropylene glycol (average molecular weight 200), polyoxypropylene glyceryl ether (average molecular weight 250) and polyoxypropylene glycol (average molecular weight 400) each have structural isomers. Although present, these isomers or mixtures thereof are also included in the defibrating agent (B1) of the present invention.
  • the defibrating agent (B1) has a defibrating ability in a smaller amount than existing defibrating agents, for example, ⁇ -caprolactam (by mass, about one-third of the amount used by ⁇ -caprolactam).
  • existing defibrating agents for example, ⁇ -caprolactam
  • an existing defibrating agent for example, ⁇ -caprolactam
  • an existing defibrating agent for example, ⁇ -caprolactam
  • an existing defibrating agent for example, ⁇ -caprolactam
  • the defibrating agent (B2) is used in combination with the defibrating agent (B1) to improve the defibrating property.
  • the defibrating agent (B2) may be at least one filler selected from the group consisting of talc, clay, zeolite, aluminum oxide, calcium carbonate, titanium oxide, silica, magnesium oxide and mica.
  • the defibrating agent (B2) may be used at the same time as the defibrating agent (B1) or by adding it to the defibrating raw material before or after the defibrating agent (B1).
  • the blending ratio of the defibrating agent (B2) is 0.01 to 1.0 parts by mass, preferably 0, with respect to 1 part by mass of the defibrating agent (B1). It is 0.01 to 0.6 parts by mass.
  • talc and clay are preferable from the viewpoint of ease of handling and effect.
  • Talc having an average particle size of 1 to 13 ⁇ m can be preferably used. When the average particle size is within this range, the strength characteristics of the molded product are further improved.
  • surface-treated and non-surface-treated talc are commercially available, surface-treated talc, particularly aminosilane-treated talc, is preferable.
  • talc and the defibrating agent (B1) are mixed in advance and then added to the defibrating raw material, the impact resistance of the obtained molded product is improved.
  • the fiber-reinforced resin composition of the present invention includes microfibrillated hydrophobic cellulose-based fibers (A), defibrating agent (B1), thermoplastic resin (C), and optionally defibrating agent (B2). ) Is contained in the resin composition (D).
  • the defibrating agent (B1) and the defibrating agent (B2) are as described above.
  • the microfibrillated cellulosic fiber contained in the resin composition of the present invention is a microfibrillated hydrophobic cellulosic fiber (hydrophobicized MFC) from the viewpoint of dispersibility and defibration in the resin.
  • the hydrophobized MFC has a resin composition in which the hydrogen atom of a part of the hydroxyl group of the sugar chain constituting the cellulosic fiber of the MFC is modified with an acyl group having 2 to 5 carbon atoms. It is preferable from the viewpoint of dispersibility in. Specific examples of such an acyl group include an acetyl group, an ethylcarbonyl group, an n-propylcarbonyl group and a pivaloyl group.
  • MFC modified with an acyl group selected from the group consisting of an acetyl group, an ethylcarbonyl group and a pivaloyl group has particularly good thermal stability and dispersibility in a fiber-reinforced resin composition. Is good and preferable.
  • the acetyl group is most preferable from the viewpoint of ease of production and production cost.
  • the content of the defibrating agent (B2) is, for example, 0.1 to 10% by mass with respect to the total mass of the thermoplastic resin. It can be preferably 1 to 7% by mass, more preferably 2 to 6% by mass.
  • the fiber-reinforced resin composition (D) contains components other than the hydrophobic MFC (A), the defibrating agent (B1), the defibrating agent (B2), the thermoplastic resin (C) and the compatibilizer (E).
  • the content of the other components can be, for example, 0.0001 to 20% by mass, preferably 0.01 to 10% by mass, based on the total mass of the composition.
  • Fiber raw material (defibration raw material) used in the composition of the present invention is a hydrophobized cellulose-based fiber in which the hydrogen atoms of some hydroxyl groups of the sugar chains or sugar chains and lignin constituting the cellulosic fibers are substituted with specific acyl groups. It is a fiber aggregate (AcylCP).
  • Cellulose-based fiber aggregates derived from plants, microorganisms, algae, or tunicates can be used for the preparation of AcylCP.
  • plant-derived cellulosic fiber aggregates are preferable because they are available in large quantities and are easily available.
  • raw materials for plant-derived cellulosic fiber aggregates include wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural waste, used paper, and knitted fabric.
  • a cellulosic fiber aggregate derived from wood also referred to as wood pulp
  • wood pulp also referred to as wood pulp
  • Wood pulp includes those that do not contain lignin and those that contain lignin (called ligno pulp). All of these can be used for the production of defibrating raw materials. From the viewpoint of manufacturing cost, ligno pulp is preferable.
  • wood used as a raw material for wood pulp examples include wood derived from coniferous trees such as sitka spruce, pine (todomatsu, red pine, etc.), sugi, cypress, and broad-leaved trees such as eucalyptus and acacia.
  • the plant-derived pulp obtained from these is preferably used for producing a defibration raw material.
  • the ligno pulp obtained from Abies sachalinensis, Japanese red pine, or cedar contains a chemically modified MFC prepared using the pulp, whereby a fiber-reinforced resin composition having excellent strength characteristics can be obtained. Therefore, it is preferable.
  • Wood pulp can be obtained by treating a vegetable raw material by a method such as a mechanical pulping method, a chemical pulping method, or a combination of a mechanical pulping method and a chemical pulping method.
  • a mechanical pulping method such as kraft pulp and mechanical pulp (MP).
  • the kraft pulp include softwood unbleached kraft pulp (NUKP), softwood oxygen-exposed unbleached kraft pulp (NOKP), and softwood bleached kraft pulp (NBKP).
  • mechanical pulp include crushed wood pulp (GP), refiner GP (RGP), thermomechanical pulp (TMP), and chemithermomechanical pulp (CTMP). Further, as the pulp, it is also possible to use deinked waste paper, corrugated cardboard waste paper, magazines, copy paper and the like.
  • Wood pulp contains lignocellulosic and is mainly composed of cellulose, hemicellulose, and lignin.
  • pulp in which lignin is not completely removed and lignin is present in the pulp even in a small amount is referred to as ligno pulp.
  • ligno pulp pulp in which lignin is not completely removed and lignin is present in the pulp even in a small amount.
  • ligno pulp pulp in which lignin is not completely removed and lignin is present in the pulp even in a small amount.
  • ligno pulp pulp in which lignin is not completely removed and lignin is present in the pulp even in a small amount.
  • ligno pulp pulp in which lignin is not completely removed and lignin is present in the pulp even in a small amount.
  • Those containing possible lignin are contained in ligno pulp.
  • ligno pulp Compared to cellulose fibers or pulps that do not contain lignin, ligno pulp has a smaller number of manufacturing steps, a better yield from its raw material (for example, wood), less chemical agents required for its production, and Since it can be manufactured with less energy, it is advantageous in terms of manufacturing cost. Therefore, ligno pulp can be used advantageously in the present invention.
  • the amount of lignin contained can be quantified by the Clarson method.
  • wood pulp is subjected to treatments such as decoupling, beating, and defibration using a refiner or beater or a combination thereof in advance, and the treated Canadian standard freeness (CSF) value (water drainage degree) is obtained.
  • CSF Canadian standard freeness
  • the cellulosic fiber derived from a microorganism can be obtained from, for example, pulp derived from a microorganism obtained by removing proteins and other impurities from a mixture of cellulosic fibers and cells recovered from a culture solution in which acetobacter is cultured. ..
  • Microorganism-derived cellulosic fibers are usually entangled with nano-level cellulosic fibers in a mesh pattern, which can be used as a raw material for hydrophobic cellulose fiber aggregates.
  • the hydrogen atom of a part of the hydroxyl group of the sugar chain or the sugar chain and lignin constituting the cellulosic fiber is a specific acyl group A (that is, the number of carbon atoms is 2). It is characterized in that it is substituted with ( ⁇ 5 acyl groups) and is more hydrophobic than before the substitution.
  • substituting the hydrogen atom of a part of the hydroxyl group of the sugar chain or the sugar chain and the lignin constituting the cellulosic fiber is also referred to as "chemical modification" and is introduced instead of the hydrogen atom of the hydroxyl group.
  • the substituent to be used may be referred to as a "chemically modifying group".
  • the details of the acyl group A are the same as the details of the acyl group described in the microfibrillated hydrophobic cellulosic fiber contained in the composition of the present invention.
  • the defibration raw material chemically modified with such a substituent not only improves the thermal stability, but also improves the thermal stability.
  • the defibrating agent used in the present invention facilitates microfibrillation during the defibration treatment and is easily defibrated into a chemically modified MFC. This is because in the defibration raw material, the hydrogen bonds between the hydroxyl groups originally existing on the surface of the cellulosic fiber are partially lost by acylation, and the action of the defibrator causes microfibrils during the defibration treatment. It is thought that this is because it is easy to be transformed.
  • this chemically modified MFC is also made hydrophobic by being chemically modified with a specific acyl group A, it has a higher affinity with the thermoplastic resin because it is more hydrophobic than the original cellulosic fiber, and the resin. It becomes easy to be evenly dispersed in. Therefore, the molded article of the present invention produced from a composition containing a chemically modified MFC produced by using a defibrating agent (B1) and a thermoplastic fiber has excellent strength properties.
  • the acyl group A is preferable as the substituent in the defibrating raw material.
  • Cellulose-based fibers modified with an acyl group A and microfibrillated, which are produced by defibrating the defibration raw material using a defibrating agent (B1) (this cellulosic fiber is referred to as "Acyl (A)).
  • Mcyl (A) this cellulosic fiber is referred to as "MFC”
  • MFC has a high affinity with the thermoplastic resin and can be uniformly dispersed in the thermoplastic resin.
  • the heat resistance of the defibration raw material can be improved.
  • acyl group A having 2 to 5 carbon atoms include an acetyl group, an ethylcarbonyl group, an n-propylcarbonyl group and a pivaloyl group. These are preferable in that the acylating agent used for acylation is cheaper than other acylating agents. Of these, the acetyl group is more preferable.
  • Substitution degree of hydrophobic cellulosic fiber aggregate (hydrophobicized CP) used in the present invention is ,
  • the degree of modification by an acyl group (also referred to as substitution degree or DS) in the hydrophobic cellulosic fiber aggregate used in the present invention is ,
  • the hydrogen atom of the hydroxyl group existing in one unit (repeating unit) of the cellulosic polymer constituting the cellulosic fiber aggregate is represented by the degree of substitution with the substituent.
  • the degree of substitution is, for example, based on the description in paragraphs 0253 to 0261 of JP-A-2018-150414 to acyl "ASA”. It can be calculated by reading the group (eg, acetyl group) and "apparent mass” as "formula amount of unmodified lignocellulosic (formula amount in repeating unit)".
  • the cellulose fiber aggregate is entirely composed of cellulose (in the case of cellulose), this repeating unit is a glucopyranose residue, and the number of hydroxyl groups per unit is 3, so the upper limit of the degree of substitution is 3. Is.
  • lignocellulosic when the cellulosic polymer is lignocellulosic, lignocellulosic contains hemicellulose and lignin together with cellulose.
  • the number of hydroxyl groups of the xylose residue in xylan and the galactose residue in arabinogalactan contained in hemicellulose is 2, and the number of hydroxyl groups of the standard lignin residue is also 2. Smaller.
  • the upper limit of the degree of substitution in the lignocellulosic fiber aggregate (ligno pulp) is less than 3.
  • the upper limit of this degree of substitution is about 2.7 to 2.8 depending on the contents of hemicellulose and lignin contained in the lignocellulosic fiber (lignopulp).
  • the hydrophobized cellulosic aggregate (hydrophobicized CP) used in the present invention is also chemically modified by defibrating it.
  • the degree of substitution (DS) by the acyl group of the microfibrillated cellulosic fiber (chemically modified MFC) is preferably about 0.2 to 2.0.
  • the degree of substitution (DS) is more preferably about 0.3 to 1.5, and even more preferably about 0.3 to 1.4.
  • the degree of substitution (DS) when the acyl group is an acetyl group is more preferably about 0.4 to 1.3.
  • a chemically modified MFC having a DS in the above range has an appropriate degree of crystallization and SP (solubility parameter), and therefore is uniformly dispersed in a matrix (thermoplastic resin) and melted containing such a chemically modified MFC.
  • the kneading composition has excellent physical properties.
  • the degree of substitution (DS) can be analyzed by various analytical methods such as neutralization titration, FTIR, and two-dimensional NMR (1H and 13C-NMR).
  • the microfibrillated cellulosic fiber is a fiber in which the diameters of the respective fibers constituting the above-mentioned cellulosic fiber aggregate are all microfibrillated to the nano order. Not only that, it also means a cellulosic fiber containing at least a microfibrillated portion, and the diameter of the above-mentioned cellulosic fiber is nano-order, or the diameter of the fiber inside or on the surface of the fiber is nano-order. It means what is. This also applies to chemically modified MFCs.
  • the fiber diameter of the microfibrillated cellulosic fiber (MFC) and the chemically modified microfibrillated cellulosic fiber (chemically modified MFC) referred to in the present specification is about several tens of nm to several ⁇ m, respectively.
  • the fiber diameter and fiber length of MFC and chemically modified MFC can be measured by taking a scanning electron microscope (SEM) photograph of 500 to 10000 times.
  • the average value of the fiber diameter (average fiber diameter) and the average value of the fiber length (average fiber length) can be obtained as an average value when measuring at least 50 or more MFCs or chemically modified MFCs in the field of view of the SEM. ..
  • a solvent in which the thermoplastic resin is soluble and the chemically modified MFC is insoluble Is a non-polar, high-boiling hydrocarbon such as hexafluoroisopropanol, dichloromethane for the polycarbonate composite, decalin, xylene for the polyethylene composite and the polypropylene composite) to elute the thermoplastic resin in the thermoplastic resin composite. It is preferable to take an SEM photograph of the remaining chemically modified MFC.
  • a method for producing a hydrophobic cellulosic fiber aggregate (defibration raw material) used in the present invention A method for preparing a defibration raw material (acyllation reaction) will be described.
  • Modification of the raw material pulp with an acyl group can be performed by a known method, for example, by reacting an acylating agent having an acyl group with the raw material pulp in a solvent with stirring or in a stationary state.
  • the acylating agent include carboxylic acid anhydrides, carboxylic acid halides such as carboxylic acid chloride, and carboxylic acid vinyl esters.
  • vinyl carboxylic acid ester is preferable because it is easy to remove by-products from the reaction system.
  • the chemically modified cellulosic fiber obtained by acylation is less colored, and this is combined. It is possible to reduce the coloring of the melt-kneaded composition (composite) produced by chemistry.
  • acylating agents other than carboxylic acid vinyl esters for example, carboxylic acid chlorides and carboxylic acid anhydrides
  • carboxylic acid chlorides and carboxylic acid anhydrides it is preferable to add an organic base or an inorganic base in order to capture the acid (hydrochloride, carboxylic acid, etc.) produced by the acylation reaction during the reaction.
  • the produced salt is easily mixed with the acylated cellulosic fiber, and this may cause the target acylated cellulosic fiber to be colored. In this case, it is necessary to carefully purify the fiber.
  • acylated microfibrils having particularly good thermal stability when an acylating agent having an acyl group selected from the group consisting of an acetyl group, a propionyl group, and a pivaloyl group as an acyl group is used. It is preferable because it can produce a cellulose-based fiber.
  • acylating agent having an acyl group examples include vinyl acetate, acetic anhydride, vinyl pivalate, and pivalic anhydride.
  • acylating agents having an acetyl group are preferable from the viewpoint of production cost.
  • the acylation reaction is preferably carried out in a solvent in the presence of a base.
  • a solvent that does not react with the acylating agent, easily swells the acylating raw material, and can be easily removed from the reaction system after the reaction with the acylating raw material is preferable.
  • polar aprotic solvents such as N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), and dioxane.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • dioxane dioxane
  • the acylating agent when the acylating agent is a liquid at the reaction temperature and the substance by-produced by the reaction is also a liquid, the acylating agent and the by-product can be used as a solvent.
  • the amount of the solvent used is about 0 to 3 parts by mass with respect to 1 part by mass of the acylated raw material.
  • the amount of the solvent used when acetic anhydride is used as an acylating agent for acylation (that is, acetylation), the amount of the solvent used is about 0 (solvent-free) to 3 parts by mass with respect to 1 part by mass of the acylating raw material. be.
  • Examples of the base include amines such as pyridine and dimethylaniline; alkali metal salts of acetic acid such as potassium acetate and sodium acetate; and alkali metal carbonates such as lithium carbonate, potassium carbonate and sodium carbonate.
  • the amount of the base used is about 0.1 to 1 mol with respect to 1 mol of the hydroxyl group in the acylation raw material.
  • the amount of the acylating agent used for the raw material pulp can be appropriately adjusted depending on the water content of the raw material pulp, the desired degree of acylation (degree of substitution, DS), and the like.
  • the degree of acylation (substitution degree, DS) during the acylation reaction, the amount required for analysis is collected from the reaction mixture, and then the unreacted acylating agent, acylation by-product, etc. are washed, extracted, etc. After removal, the FTIR spectrum can be measured and quantified using a pre-prepared calibration line. Therefore, by stopping the reaction when the desired DS is reached and performing normal purification operations such as filtration, washing, and extraction on the reaction mixture, an acylated cellulosic fiber aggregate having the desired DS is obtained. (Acylated pulp) can be obtained.
  • the amount of the acylating agent used is about 0.5 to 2 times the number of moles of hydroxyl groups present in the raw material pulp.
  • the reaction temperature is usually about 10 to 130 ° C, preferably about 20 to 125 ° C.
  • the reaction time is usually about 2 to 24 hours when acylating the raw material pulp derived from wood, and usually about 4 to 100 hours when acylating the raw material pulp derived from microorganisms.
  • defibrating raw material is defibrated together with defibrating agent (B1).
  • defibrating agent B1
  • the defibration raw material is added to the defibration medium. It can be carried out by performing defibration treatment such as stirring and kneading in a state where the fibers are dispersed.
  • the amount of the defibrating raw material used can be, for example, 1 to 30% by mass, preferably 3 to 25% by mass, based on the total mass of the thermoplastic resin (C) in the thermoplastic resin composition (D). Can be%.
  • the amount of the defibrating agent (B1) used in the defibration treatment can be, for example, 0.5 to 5 parts by mass, preferably 0.7 to 3 parts by mass, based on 1 part by mass of the chemically modified cellulosic fiber.
  • the amount of the thermoplastic resin (C) used can be, for example, 3 to 100 parts by mass, preferably 4 to 30 parts by mass, and more preferably 10 to 30 parts by mass with respect to 1 part by mass of the chemically modified cellulosic fiber. ..
  • the amount of the defibration medium used can be, for example, 0.5 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 1 part by mass of the chemically modified cellulosic fiber.
  • the amount of the defibrating agent (B2) used can be, for example, 0.01 to 1 part by mass with respect to 1 part by mass of the defibrating agent (B1). It can be preferably 0.01 to 0.6 parts by mass.
  • the amount of the compatibilizer (E) used can be, for example, 0.5 to 5 parts by mass with respect to 1 part by mass of the chemically modified cellulosic fiber, which is preferable. Can be 0.7 to 3 parts by mass.
  • thermoplastic resin It is also possible to defibrate the defibrating raw material in the molten thermoplastic resin at the stage of performing a melt-kneading operation on the mixture of the defibrating raw material, the defibrating agent and the thermoplastic resin to be combined. It is preferable to use a uniaxial or multiaxial kneader for this melt kneading.
  • a defibrating agent (B1) is used as the defibrating agent, but from the viewpoint of strength characteristics, an inorganic filler, that is, a defibrating agent, is used for the defibrating agent (B1) rather than using only the defibrating agent (B1). It is preferable to use a fiber agent (B2) in combination.
  • the defibrating agent (B1) used may be contained in the melt-kneaded resin composition or may be removed from the resin composition. From the viewpoint of the strength characteristics of the formed molded product, it is preferable to remove the defibrating agent (B1) from the resin composition. However, it is not necessary to completely remove the defibrating agent (B1), and the removal may be sufficient so as not to affect the physical properties of the obtained resin composition. Even if the amount of the defibrating agent (B1) remaining in the resin composition is very small, it can be known by analyzing and detecting the amount of the defibrating agent (B1) that the resin composition is produced by the production method of the present invention. It is convenient for product follow-up because it can be done.
  • the amount of the defibrating agent (B1) remaining in the resin composition cannot be unequivocally determined depending on the resin used, but is 0.001 to 2% by mass, preferably 0.01 to 1% by mass, based on the total amount of the resin composition. Is. A molded product made of a resin composition containing a defibrating agent (B1) of this degree has excellent strength characteristics.
  • Examples of the production method of the present invention relating to the resin composition containing the chemically modified microfibrillated cellulosic fiber (chemically modified MFC) include the following methods I to III.
  • the hydrophobic cellulose fiber aggregate (AP), the defibrating agent (B1), and the thermoplastic resin (C) are mixed, and the cellulosic fiber aggregate (AP) is defibrated during this mixing operation.
  • This is a method for producing a resin composition (D) containing microfibrillated hydrophobic cellulosic fibers (A) and a thermoplastic resin resin (C), which comprises a step of microfibrillating.
  • a hydrophobic cellulosic fiber aggregate (AP) modified with an acyl group having 2 to 5 carbon atoms, a defibrating agent (B1) and a thermoplastic resin (C) are mixed, and during this mixing operation, the above-mentioned A fiber-reinforced resin containing microfibrillated hydrophobic cellulose-based fibers (A) and a thermoplastic resin (C), which comprises a step of defibrating and microfibrillating the hydrophobicized cellulosic fiber aggregate (AP).
  • the microfibrillated hydrophobic cellulosic fiber (A) is modified with an acyl group having 2 to 5 carbon atoms, and the defibrating agent (B1) has a molecular weight of 130.
  • a defibrating agent (B1), a hydrophobic cellulosic fiber aggregate (AP), and a thermoplastic resin (C) are mixed, and the hydrophobic cellulosic fiber aggregate is defibrated and composited, and then defibrated and composited.
  • a hydrophobized cellulosic fiber aggregate (AP) modified with an acyl group having 2 to 5 carbon atoms, a defibrating agent (B1) and a thermoplastic resin (C) are mixed, and the hydrophobicity is described during this mixing operation.
  • the first step of defibrating a cellulosic fiber aggregate (AP) into microfibrils (2) The defibrating agent (B1) is removed from the mixture containing the microfibrillated hydrophobic cellulosic fiber (A), the defibrating agent (B1) and the thermoplastic resin (C) obtained in the first step.
  • a fiber-reinforced resin composition (D) containing a microfibrillated hydrophobic cellulose-based fiber (A) and a thermoplastic resin (C).
  • the microfibrillated hydrophobic cellulosic fiber (A) is modified with an acyl group having 2 to 5 carbon atoms, and the defibrating agent (B1) is a polyhydric alcohol having a molecular weight of 130 to 400 and a molecular weight of 86 to 115.
  • This is a method for producing a fiber-reinforced resin composition (D), which is at least one compound selected from the group consisting of lactones.
  • a hydrophobic cellulosic fiber aggregate (AP) modified with an acyl group having 2 to 5 carbon atoms is defibrated and then composited with a thermoplastic resin (C) to make microfibrillated hydrophobic.
  • AP hydrophobic cellulosic fiber aggregate
  • C thermoplastic resin
  • a microfibrillated hydrophobic cellulose-based fiber aggregate (AP) modified with an acyl group having 2 to 5 carbon atoms is defibrated using a defibrating agent (B1).
  • the defibration raw material is used as a suspension or slurry, and a refiner, a high-pressure homogenizer, a grinder, a uniaxial or multiaxial kneader (preferably a multiaxial kneader). ), Mechanical grinding with a bead mill or the like, or by using a known means such as beating.
  • the defibrating raw material, the defibrating agent (B1) and the thermoplastic resin (C) are mixed, and the defibrating raw material is defibrated during this melt kneading. Therefore, it is useful because the resin composition (D) containing the hydrophobized MFC (microfibrillated hydrophobic cellulosic fiber (A)) can be obtained by a simple operation.
  • the resin composition (D) of the present invention is a microfibrillated hydrophobic cellulosic fiber having excellent dispersibility in a resin, which is easily defibrated from a defibrating raw material by a defibrating agent (B1).
  • (A); Hydrophobized MFC) is contained.
  • the hydrophobized MFC has a resin composition in which the hydrogen atom of a part of the hydroxyl group of the sugar chain constituting the cellulosic fiber of the MFC is modified with an acyl group having 2 to 5 carbon atoms. It is preferable from the viewpoint of dispersibility in.
  • an acyl group examples include an acetyl group, an ethylcarbonyl group (also referred to as a propionyl group), an n-propylcarbonyl group (also referred to as a butanoyl group) and a pivaloyl group.
  • the modified MFC modified with an acyl group selected from the group consisting of an acetyl group, an ethylcarbonyl group and a pivaloyl group has particularly good thermal stability and is dispersed in a fiber-reinforced resin composition. The sex is preferable. Of these, the acetyl group is most preferable from the viewpoint of ease of production and production cost.
  • Two or more kinds of chemically modified MFCs can be combined (combined) and contained in the fiber reinforced resin composition of the present invention.
  • these chemically modified MFCs can be satisfactorily dispersed in the fiber reinforced resin composition.
  • the compatibilizer (E) is further added. It is preferable to mix.
  • the compatibilizer By mixing the compatibilizer, the mixed state with the chemically modified MFC and the thermoplastic resin, particularly the highly hydrophobic thermoplastic resin (for example, polypropylene, polyethylene, etc.) is improved, and the present invention containing these thermoplastic resins is provided. The strength characteristics of the molded product are improved.
  • the highly hydrophobic thermoplastic resin for example, polypropylene, polyethylene, etc.
  • a polymer compound having a hydrophobic polymer and a hydrophilic group or a hydrophilic fragment examples include maleic anhydride-modified polypropylene, maleic anhydride-modified polyethylene, and a block polymer composed of a hydrophobic fragment and a hydrophilic fragment.
  • the block polymer composed of the hydrophobic fragment and the hydrophilic fragment include the block polymer composed of the resin affinity segment A and the cellulose affinity segment B disclosed in JP-A-2014-162880.
  • the content ratio of the compatibilizer in the composition is based on 1 part by mass of the chemically modified MFC (A) contained.
  • it can be 0.1 to 5 parts by mass, preferably 0.5 to 5 parts by mass.
  • both the defibration raw material and the chemically modified MFC having a solubility parameter (SP value) of about 9.9 to 15, preferably about 10 to 14.5.
  • SP value solubility parameter
  • thermoplastic resin used in each of the above-mentioned production methods and the resin composition of the present invention is preferably one kind or two or more kinds of thermoplastic resins.
  • a highly hydrophobic thermoplastic resin for example, polypropylene, polyethylene, etc.
  • a thermoplastic resin having an SP value smaller than the SP value of for example, polylactic acid, polyamide 6, etc.
  • a highly hydrophobic thermoplastic resin resin for example, polypropylene, polyethylene, etc.
  • polypropylene (this SP value is 8.1) as a thermoplastic resin and a chemically modified microfibrillated cellulose fiber having an SP value of about 14 (for example, a microfibrillated acetyl ligno having an SP value of about 14).
  • polylactic acid this SP value is 11.4
  • polyamide 6 this SP value is 12.2
  • thermoplastic resin is preferably used as the resin used in the method for producing the composition containing the fiber and the resin of the present invention because it is excellent in productivity and versatility.
  • thermoplastic resin preferably used in each of the above production methods, polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate-ABS alloy (PC-ABS alloy) and modified polyphenylene ether (m-PPE).
  • the resin may be used alone or as a mixed resin of two or more kinds.
  • PA polyamide
  • polyamide 6 polyamide 6
  • polyamide 66 nylon 66, PA66
  • polyamide 610 PA610
  • polyamide 612 PA612
  • polyamide 11 PA11
  • polyamide 12 PA12
  • polyamide 46 Polyamide XD10 (PAXD10)
  • Polyamide MXD6 (PAMXD6) and the like can be preferably used.
  • polypropylene PP
  • polyethylene PE, especially high-density polyethylene HDPE
  • a copolymer of ethylene and propylene a copolymer of ethylene and propylene, and the like can be preferably used.
  • polyisobutylene hereinafter also referred to as "PIB”
  • PIB polyisoprene
  • BR polybutadiene
  • polypropylene isotactic polypropylene (iPP), syndiotactic polypropylene (sPP) and the like can be preferably used.
  • aliphatic polyester a polymer or copolymer of diols and an aliphatic dicarboxylic acid such as succinic acid or valerate (for example, polybutylene succinate (PBS)), or a hydroxycarboxylic acid such as glycolic acid or lactic acid alone.
  • PBS polybutylene succinate
  • hydroxycarboxylic acid such as glycolic acid or lactic acid alone.
  • Polymers or copolymers for example, polylactic acid, poly ⁇ -caprolactone (PCL), etc.
  • PCL poly ⁇ -caprolactone
  • copolymers of diols, aliphatic dicarboxylic acids, and the hydroxycarboxylic acid can be preferably used.
  • aromatic polyester a polymer of diols such as ethylene glycol, propylene glycol and 1,4-butanediol and an aromatic dicarboxylic acid such as terephthalic acid can be preferably used.
  • diols such as ethylene glycol, propylene glycol and 1,4-butanediol
  • aromatic dicarboxylic acid such as terephthalic acid
  • PET polyethylene terephthalate
  • PPT polypropylene terephthalate
  • PBT polybutylene terephthalate
  • polyacetal also referred to as polyoxymethylene, POM
  • a copolymer of paraformaldehyde and oxyethylene can be preferably used in addition to a homogeneous polymer of paraformaldehyde.
  • PC polycarbonate
  • a reaction product of bisphenol A or a derivative thereof, bisphenol, and phosgene or phenyl dicarbonate can be preferably used.
  • PS polystyrene
  • HIPS polystyrene
  • a styrene copolymer acrylonitrile-butadiene-styrene copolymer, ABS resin
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • a blended product of polycarbonate (PC) and ABS (PC-ABS alloy) is excellent in impact resistance, weather resistance and molding processability, and is therefore used as a matrix of resin compositions in each of the above-mentioned production methods of the present invention. Is preferable.
  • a blend of PPE and PS is a type of modified polyphenylene ether (PPE) (m-PPE).
  • PPE-PS blend product is preferably used because it has high heat resistance and is lightweight.
  • thermoplastic resins other than the above include polyvinyl chloride, polyvinylidene chloride, fluororesins, (meth) acrylic resins, (thermoplastic) polyurethanes, vinyl ether resins, polysulfone resins, and cellulose resins (for example, birds). Acetylized cellulose, diacetylated cellulose, acetylbutyl cellulose, etc.) can also be used.
  • the composite of the thermoplastic resin and the chemically modified microfibrillated cellulosic fiber is preferably performed by a melt-kneading method.
  • the defibrated raw material also referred to as chemically modified cellulosic fiber aggregate or chemically modified pulp
  • the thermoplastic resin melt-kneaded, and the defibrated raw material is chemically modified microfibrils in the molten thermoplastic resin.
  • This is a step of defibrating into a cellulosic chemical fiber (chemically modified MFC) to produce a composition containing the chemically modified MFC and a thermoplastic resin.
  • melt-kneading composition contains an additive other than the defibrating agent, it may be added in the mixing step of the raw material to be melt-kneaded or in this melt-kneading step, and the defibrating material and the thermoplastic resin are melt-kneaded together. preferable.
  • the melt-kneaded composition can be produced by melt-kneading a thermoplastic resin, the defibrating raw material, the defibrating agent, and if necessary, an additive.
  • the heating temperature can be adjusted according to the melting point of the thermoplastic resin used.
  • the minimum processing temperature of about ⁇ 10 ° C. recommended by the thermoplastic resin supplier is preferable. By setting the heating temperature in this temperature range, the chemically modified MFC and the thermoplastic resin can be uniformly mixed.
  • the melt-kneading time may be adjusted within the range recommended by the kneader manufacturer in consideration of the production amount and the operating conditions such as the performance and rotation speed of the device. It is preferable that the heating time is short because deterioration of the melt-kneaded product due to heat and oxidation can be prevented.
  • an additive such as an antioxidant and knead in a nitrogen atmosphere.
  • a uniaxial or multiaxial kneader can be preferably used. It is preferable to increase the rotation speed of the uniaxial or multiaxial kneader to be used because the chemically modified pulp is easily microfibrillated during the melt kneading step.
  • the chemically modified pulp is defibrated by the action of the shear stress and the defibrating agent during kneading and microfibrillated, and the generated chemically modified microfibrillated cellulosic fibers suppress the aggregation of the fibers and heat. It is well dispersed in the plastic resin.
  • chemically modified pulp having a fiber diameter of several tens of ⁇ m to several hundred ⁇ m is defibrated into chemically modified microfibrillated cellulosic fibers having a fiber diameter of several tens of nm to several ⁇ m during kneading.
  • the defibrating raw material can be combined with the thermoplastic resin while being defibrated by the shear stress of the melt kneader and the action of the defibrating agent during melt kneading with the thermoplastic resin. Therefore, according to the melt-kneading method, the manufacturing process is simple and the manufacturing cost can be reduced.
  • chemically modified cellulosic fiber aggregate also referred to as chemically modified pulp or defibrated raw material
  • thermoplastic resin in advance prior to melt-kneading.
  • a dry chemically modified MFC or chemically modified pulp can be mixed with a powdery or granular thermoplastic resin, and the obtained mixture can be supplied to a kneader.
  • chemically modified pulp and powdery or granular thermoplastic resin may be dispersed in a dispersion liquid in which they are not dissolved, mixed, and dried, and then supplied to a kneader.
  • a bench roll As a means of mixing, it is preferable to use a bench roll, a Banbury mixer, a kneader, a planetary mixer, a Henschel type mixer, a stirrer with stirring blades, or a revolving or rotating type stirrer.
  • the chemically modified pulp and the powdery or granular thermoplastic resin are dispersed in a dispersion liquid in which they are not dissolved and then mixed, it is preferable to use a wet media-based attritor or a wet pulverizer trigonal. The reason is that the defibration and dispersion of the chemically modified pulp and the mixing of the chemically modified pulp and the thermoplastic resin can be carried out at the same time.
  • the content ratio of the chemically modified microfibrillated cellulosic fiber (chemically modified MFC) (A) in the melt-kneaded composition produced by the production method of the present invention is that of the thermoplastic resin (C) and the chemically modified MFC (A). It is usually about 1 to 40% by mass, preferably 3 to 30% by mass, based on the total mass.
  • the content ratio of the thermoplastic resin (C) in the melt-kneaded composition is usually about 60 to 99% by mass, and 70 to 97% by mass, based on the total mass of the resin (C) and the chemically modified MFC (A). It is preferable to have.
  • the melt-kneaded composition produced by the production method of the present invention can also be used as a masterbatch.
  • the content ratio of the chemically modified MFC (A) is preferably about 10 to 40% by mass with respect to the total mass of the thermoplastic resin (C) and the chemically modified MFC (A). ..
  • the composition produced by the production method of the present invention is preferably a composition in which a thermoplastic resin and a chemically modified MFC are melt-kneaded. Since the melt-kneading method has higher productivity than the method of impregnating the non-woven fabric with the resin or resin precursor solution and the cellulosic fiber to produce a composite, the chemically modified MFC can be produced with high productivity by the production method of the present invention.
  • the resin composition contained therein can be produced.
  • the fiber-reinforced resin composition of the present invention may contain additives as long as the effects of the present invention are not impaired.
  • Additives include, for example, compatibilizers, surfactants, starches, polysaccharides such as alginic acid, natural proteins such as gelatin, glue and casein, inorganic compounds such as tannins, zeolites, ceramics and metal powders, colorants and plastics.
  • Agents, pigments, antioxidants, UV absorbers, antioxidants and the like can be mentioned.
  • the molded article of the present invention can be produced by using the melt-kneaded composition produced by the production method of the present invention.
  • a melt-kneaded composition processed into various shapes such as pellets, powders, sheets, plates, and films can be used as a molding material.
  • Examples of the molding method include injection molding, mold molding, extrusion molding and the like.
  • Examples of the shape of the molded body include a sheet shape, a plate shape, a film shape, and a three-dimensional structure. Molded bodies having various shapes can be manufactured by the above-mentioned molding method according to the intended use. By using the melt-kneaded composition produced by the production method of the present invention, a molded product having excellent strength characteristics and the like can be obtained.
  • the molded product produced from the melt-kneaded composition produced by the production method of the present invention can be used in fields where mechanical strength (tensile strength, etc.) is required.
  • mechanical strength tensile strength, etc.
  • interior materials, exterior materials, structural materials, etc. of transportation equipment such as automobiles, trains, ships, and airplanes
  • housings, structural materials, internal parts, etc. of electrical appliances such as personal computers, televisions, telephones, and watches.
  • Housings, structural materials, internal parts, etc. of mobile communication equipment such as mobile phones
  • Building materials It can be effectively used as a container, container, etc. for office equipment such as stationery.
  • MI Melt Index (also called Melt Flow Rate)
  • DPG Dipropylene Glycol TEG: Triethylene Glycol TPG: Tripropylene Glycol PEG200: Polyethylene Glycol PPG 200 with Number Average Molecular Weight 200: Polyoxypropylene Glycol GP250 with Number Average Molecular Weight 200: Number Average Polyoxypropylene glyceryl ether PPG400 with a molecular weight of 250: Polyoxypropylene glycol with a number average molecular weight of 400
  • PPG1000 Polyoxypropylene glycol with a number average molecular weight of 1000
  • -Pass The number of times the object to be processed (test material) is supplied to the twin-screw kneader and put on the kneader is called "pass". Therefore, for example, "1 pass” means that the test material was kneaded once, and “1st pass” means that the test material was first kneaded (as the 1st pass), and "2nd pass”. Means that the material that had been kneaded once was then kneaded for the second time.
  • -Extrusion It means that the object to be processed (test material) is supplied to a kneader (also called an extruder) and kneaded.
  • test piece (10 mm x 80 mm x 4 mm) was prepared using an injection molding machine.
  • the resin composition was melted at a cylinder temperature of 170 ° C. (supply part) to 190 ° C. (measuring part) of the injection molding machine, and injected into a mold having a temperature of 35 ° C. to prepare a molded product.
  • the obtained test piece was allowed to stand for 2 days in an atmosphere having a temperature of 23 ° C. and a relative humidity of 50%, and then tested.
  • test piece was subjected to a strength test using a universal testing machine (manufactured by Shimadzu Corporation, AG5000E type).
  • the test conditions were a distance between fulcrums of 64 mm and a test speed of 10 mm / min.
  • Izod impact test A strip-shaped test piece (10 mm x 80 mm x 4 mm) was prepared using an injection molding machine, and an Izod impact test was conducted with an Izod impact tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.). .. A notch with a depth of 2 mm was inserted in the center of the test piece. The notch side was hit with a 2.75J hammer to develop a crack from the notch, and the impact strength was calculated.
  • a strip-shaped test piece (10 mm x 80 mm x 4 mm) was prepared using an injection molding machine, and a Charpy impact test was conducted with a Charpy impact tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.). .. A notch with a depth of 2 mm was inserted in the center of the test piece. The impact strength was calculated by hitting the opposite side of the notch with a 2.0J hammer.
  • ⁇ Manufacturing example 1 Manufacture of AcTUKP ( lot number: KA089, DS: 0.63 ) -Pulp used: Unbleached kraft pulp derived from Abies sachalinensis (TUKP) The TUKP was refined to obtain a TUKP having a drainage degree (CSF) of 300 ml, and this was made into a paper to obtain a sheet-shaped TUKP having a thickness of about 0.2 mm. TUKP component (mass%): cellulose (65.4%), hemicellulose (31.6%), lignin (3.0%). Solid content 10.2% by mass.
  • 1.94 in the above (1.94 + 10) means the total mass ratio of the acetyl group (Ac) of AcTUKP (which is calculated from the DS value of AcTUKP) and lignin in the total mass of the mixture.
  • the composition ratio of the melt-kneaded product is that of water and the defibrating agent (B1). The composition ratio is omitted.
  • the melt-kneaded product contains a small amount of water and ⁇ -Valerolactone, which is a defibrating agent (B1), but since the composition ratio is small, the composition ratio is expressed as that of ⁇ -Valerolactone, which is a water and defibrating agent (B1). The composition ratio is omitted).
  • This also applies to the fiber-reinforced resin compositions (melt-kneaded products) of Examples 2 to 11 below.
  • the content of the defibrating agent (B1) in the fiber-reinforced resin compositions of Examples 2 to 11 was also 1% by mass or less.
  • test piece (molded product) was prepared from the obtained composition according to the above conditions, and the test piece was subjected to a three-point bending test, an Izod impact test and a Charpy impact test by the above method. The results are shown in Table 2.
  • Examples 3 to 10 are examples in which a fiber-reinforced resin composition was produced by using a polyhydric alcohol as a defibrating agent B1 and talc as a defibrating agent B2 in combination.
  • the fibers used are as shown in the column of "Numbers of Examples and Comparative Examples Using Chemically Modified Pulp" in Table 1.
  • a test piece (molded product) was prepared from the obtained composition according to the above conditions, and various tests were carried out on the test piece in the same manner as in Example 1. The results are shown in Table 3.
  • Example 11 A fiber-reinforced resin composition was produced, a test piece (molded product) was prepared, and a test was conducted in the same manner as in Example 6 except that talc was not used. The test results are shown in Table 3.
  • Example 6 From the obtained composition of Example 6 (test number PP1482), a sample for microscopic observation was prepared according to the above conditions, and the state of fibers in the sample was observed with an electron microscope.
  • the electron microscope observation image is shown in FIG.
  • only the platinum coat was added to AcTUKP (KA091) used as a raw material for preparing the composition of Example 6, and the composition was observed with an electron microscope.
  • An electron microscope observation image is shown in FIG.
  • Comparative Example 1 PP molded product (non-fiber reinforced PP) Commercially available pelletized PP was processed into a molded product (test piece having a width of 10 mm, a length of 80 mm, and a thickness of 4 mm) at a cylinder temperature of 190 ° C. by an injection molding machine. The obtained test piece was tested by the above method. The results are shown in Table 4.
  • Example 2 Test No. PP1638 (composition similar to that of Example 10 except that the number average molecular weight of PPG as a polyhydric alcohol is 1000)
  • a fiber-reinforced resin composition was produced in the same manner as in Example 10 except that polyoxypropylene glycol (PPG1000) having a number average molecular weight of 1000 was used instead of polyoxypropylene glycol having a number average molecular weight of 400.
  • a test piece (molded product) was prepared from the obtained composition according to the above conditions, and the test piece was tested by the above method. The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、優れた強度と靱性を有する、疎水性セルロース繊維を含有する樹脂組成物、その製造方法、成形体の提供を目的とする。 本発明は、ミクロフィブリル化された疎水化セルロース系繊維(A)、解繊剤(B1)及び熱可塑性樹脂(C)を含有する繊維強化樹脂組成物(D)であって、 前記ミクロフィブリル化された疎水化セルロース系繊維(A)が炭素数2~5のアシル基で修飾され、前記解繊剤(B1)が分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物である、 樹脂組成物(D)に関する。

Description

解繊性が改良された繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤
 本発明は、繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤に関する。
 ミクロフィブリル化セルロース系繊維(本明細書では、MFC、セルロースナノファイバー又はCNFと記載することもある)は、植物繊維又は製紙用パルプをミクロ又はナノレベルの太さまで解繊したものであって、軽量かつ高強度である。
 MFCを樹脂と複合することによって、強度特性等の樹脂本来の特性を向上させる研究が行われている。このような研究においては、繊維と樹脂とを含む複合体の強度特性は、樹脂中に含まれる繊維の太さ、又は、繊維と樹脂との親和性及び繊維の樹脂中での分散性への依存性が大きいことから、セルロース系繊維集合体に解繊処理をしてミクロフィブリル化する方法、複合すべき樹脂との親和性及び分散性を向上させるためにMFCを化学修飾して疎水化する以下のような方法が開示されている。
 特許文献1及び特許文献2には、脂肪族ポリエステルと、ポリ乳酸とからなる樹脂成分と、一次壁及び二次壁外層を傷つけた前処理パルプ及び/又はセルロース系繊維からなる繊維成分とを、水、エチレングリコール、ブチレングリコール等のセルロース非晶領域膨潤剤の存在下で溶融混練して脂肪族ポリエステル組成物を製造する方法が開示され、溶融混練中に繊維成分が解繊してミクロフィブリル化すると記載されている。
 特許文献3には、リグニン含有量が0~5重量%の植物由来繊維集合体と多種多様な液体物質との混合物を高速で攪拌してセルロースナノファイバーを製造する方法が開示されている。使用される多種多様な液体物質の一つとしてヘテロ原子を含んでいてもよい炭素数3~20の炭化水素が開示され、その中にエチレングリコール、ジエチレングリコールが記載されている。
 特許文献4には、セルロース繊維と、樹脂および樹脂前駆体の少なくとも一方と、多種多様な有機溶媒(芳香族系炭化水素、非プロトン性極性溶媒、アルコール系溶媒、ケトン系溶媒、グリコールエーテル系溶媒及びハロゲン系溶媒等)とを含有する分散液中で、セルロース繊維を、ビーズミル、高圧ホモジナイザー等で解繊することによって、微細セルロース繊維と、樹脂及び樹脂前駆体の少なくとも一方と、有機溶媒とを含有する微細セルロース繊維分散液の製造方法が開示されている。グリコールエーテル系溶媒として、例えば、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルが例示されている。
 特許文献5には、特定の粘度(1.0mPa・S以上)と屈折率(1.40以上)とを有する多種多様な有機溶媒(芳香族系炭化水素、非プロトン性極性溶媒、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、グリコールエーテル系溶媒等の単独又は混合溶媒)中に分散されたセルロース繊維とを含有する分散液中で、セルロース繊維を、ビーズミル、高圧ホモジナイザー等で解繊することによって、微細セルロース繊維、樹脂及び樹脂前駆体の少なくとも一方、及び有機溶媒を含有する微細セルロース繊維分散液の製造方法が開示されている。
 特許文献6には、特定の化学修飾セルロース繊維と熱可塑性樹脂とを溶融混練しながら化学修飾セルロース繊維を溶融混練物中で解繊し、化学修飾CNFと熱可塑性樹脂とを含有する組成物を製造する方法が開示されている。
 特許文献7には、特定のアミド類からなる疎水化セルロース系繊維用の解繊助剤、それを使用する疎水化MFCを含有する樹脂組成物の製造方法並びに成形体が開示されている
特開2005-42283号公報 特開2007-262649号公報 特開2010-216021号公報 国際公開第2011/125801号 特開2013-36035号公報 特開2016-176052号公報 国際公開第2019/163873号
 本発明の目的は、ミクロフィブリル化された疎水化セルロース系繊維(A)、解繊剤(B1)及び熱可塑性樹脂(C)、さらに任意に解繊剤(B2)を含有する繊維強化樹脂組成物(D)、その効率的な製造方法、疎水化セルロース系繊維集合体(AP)の解繊性に優れた解繊剤、並びにその樹脂組成物からなる優れた機械特性(特に、強度特性及び靭性)を有する繊維強化成形体を提供することである。
 本発明者らは特定の化学修飾基で修飾されて疎水化されたセルロース系繊維集合体(以下、疎水化セルロース系繊維集合体又は解繊原料ともいう)及び熱可塑性樹脂の混合物を、特定分子量の多価アルコール又はラクトン(以下、解繊剤(B1)ともいう)の存在下に溶融混練すると、溶融混練中に前記セルロース系繊維集合体の解繊が促進されて、ミクロフィブリル化された疎水化セルロース繊維を含有する熱可塑性樹脂組成物が得られることを見出した。
 すなわち、特定分子量の多価アルコール又はラクトンは、疎水化セルロース系繊維集合体の解繊促進剤(解繊剤)として作用することが見いだされた。本発明は、この知見をもとに完成されたものである。
 本発明は、下記の各項に記載の繊維強化樹脂組成物、成形体、及び繊維強化樹脂組成物の製造方法に係る。
 項1.
 ミクロフィブリル化された疎水化セルロース系繊維(A)、解繊剤(B1)及び熱可塑性樹脂(C)を含有する繊維強化樹脂組成物(D)であって、
前記ミクロフィブリル化された疎水化セルロース系繊維(A)が炭素数2~5のアシル基で修飾され、
前記解繊剤(B1)が分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物である、
樹脂組成物(D)。
 項2.
 前記繊維強化樹脂組成物(D)が解繊剤(B2)をさらに含み、
前記解繊剤(B2)がタルク、クレイ、ゼオライト、酸化アルミニウム、炭酸カルシウム、酸化チタン、シリカ、酸化マグネシウム及びマイカからなる群から選ばれる少なくとも一種である、項1に記載の繊維強化樹脂組成物。
 項3.
 前記解繊剤(B1)が、ジプロピレングリコール、トリエチレングリコール、ジグリセロール、トリプロピレングリコール、テトラエチレングリコール、ポリエチレングリコール(数平均分子量200~400)、ポリオキシプロピレングリコール(数平均分子量200~400)、ポリオキシプロピレングリセリルエーテル(数平均分子量200~400)、δ-バレロラクトン及びε-カプロラクトンからなる群から選ばれる少なくとも一種である、項1又は2に記載の繊維強化樹脂組成物。
 項4.
 前記ミクロフィブリル化された疎水化セルロース系繊維(A)がアセチル基で修飾され、前記解繊剤(B1)が、ジプロピレングリコール、トリプロピレングリコール、ポリオキシプロピレングリコール(平均分子量200)、ポリオキシプロピレングリセリルエーテル(平均分子量250)、δ-バレロラクトン及びε-カプロラクトンからなる群から選ばれる少なくとも一種である、項1又は2に記載の繊維強化樹脂組成物
 項5.
 前記熱可塑性樹脂(C)が、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリ塩化ビニール、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、スチレン―ブタジエンブロック共重合体、ポリカーボネート-ABSアロイ(PC-ABSアロイ)及び変性ポリフェニレンエーテル(m-PPE)からなる群から選ばれる少なくとも一種である項1~4のいずれかに記載の繊維強化樹脂組成物
 項6.
 前記ポリオレフィンが、ポリプロピレン、ポリエチレン、ポリプロピレン共重合体及びポリエチレン共重合体からなる群から選ばれる少なくとも一種である項5に記載の繊維強化樹脂組成物。
 項7.
 前記ミクロフィブリル化された疎水化セルロース系繊維(A)がミクロフィブリル化された疎水化リグノセルロース繊維(MFLC)である、項1~6のいずれかに記載の繊維強化樹脂組成物。
 項8.
 前記解繊剤(B1)の含有量が繊維強化樹脂組成物全質量に対して0.001~2質量%である項1~7のいずれかに記載の繊維強化樹脂組成物。
 項9.
 項8に記載の繊維強化樹脂組成物からなる成形体。
 項10.
炭素数2~5のアシル基で修飾された疎水化セルロース系繊維集合体(AP)、解繊剤(B1)及び熱可塑性樹脂(C)を混合し、この混合操作中に前記疎水化セルロース系繊維集合体(AP)を解繊してミクロフィブリル化する工程を含む、
ミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂(C)とを含有する繊維強化樹脂組成物(D)の製造方法であって、
前記ミクロフィブリル化された疎水化セルロース系繊維(A)が炭素数2~5のアシル基で修飾され、
前記解繊剤(B1)が分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物である、
繊維強化樹脂組成物(D)の製造方法。
 項11.
 前記工程において解繊剤(B2)をさらに混合することにより、解繊剤(B2)をさらに含有する繊維強化樹脂組成物(D)を製造する、項10に記載の製造方法であって、前記解繊剤(B2)が、タルク、クレイ、ゼオライト、酸化アルミニウム、炭酸カルシウム、酸化チタン、シリカ、酸化マグネシウム及びマイカからなる群から選ばれる少なくとも一種である、方法。
 項12.
(1)炭素数2~5のアシル基で修飾された疎水化セルロース系繊維集合体(AP)、解繊剤(B1)及び熱可塑性樹脂(C)を混合し、この混合操作中に前記疎水化セルロース系繊維集合体(AP)を解繊してミクロフィブリル化する第一工程と、
(2)第一工程で得られた、ミクロフィブリル化された疎水化セルロース系繊維(A)、解繊剤(B1)及び熱可塑性樹脂(C)を含む混合物から解繊剤(B1)を除去する第二工程を含む、
ミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂(C)とを含有する繊維強化樹脂組成物(D)の製造方法であって、
前記ミクロフィブリル化された疎水化セルロース系繊維(A)が炭素数2~5のアシル基で修飾され、
前記解繊剤(B1)が分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物である、
繊維強化樹脂組成物(D)の製造方法。
 項13.
 前記第一工程において解繊剤(B2)をさらに混合することにより、解繊剤(B2)をさらに含有する繊維強化樹脂組成物(D)を製造する、項12に記載の製造方法であって、前記解繊剤(B2)が、タルク、クレイ、ゼオライト、酸化アルミニウム、炭酸カルシウム、酸化チタン、シリカ、酸化マグネシウム及びマイカからなる群から選ばれる少なくとも一種である、方法。
 項14.
 項10又は11の前記工程又は項12又は13の前記第一工程において、さらに相溶化剤(E)を混合する、ミクロフィブリル化された疎水化セルロース系繊維(A)、熱可塑性樹脂(C)及び相溶化剤(E)、又はミクロフィブリル化された疎水化セルロース系繊維(A)、解繊剤(B2)、熱可塑性樹脂(C)及び相溶化剤(E)を含有する繊維強化樹脂組成物(D)の製造方法。
 項15.
 前記熱可塑性樹脂が、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート-ABSアロイ(PC-ABSアロイ)及び変性ポリフェニレンエーテル(m-PPE)からなる群から選ばれる少なくとも一種である、項10~項14のいずれかに記載の繊維強化樹脂組成物(D)の製造方法。
 項16.
 分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物からなる、炭素数2~5のアシル基で修飾された疎水化セルロース系繊維集合体を解繊するための解繊剤。
 項17.
 前記化合物が、ジプロピレングリコール、トリエチレングリコール、ジグリセロール、トリプロピレングリコール、テトラエチレングリコール、ポリエチレングリコール(数平均分子量200~400)、ポリオキシプロピレングリコール(数平均分子量200~400)、ポリオキシプロピレングリセリルエーテル(数平均分子量200~400)、δ-バレロラクトン及びε-カプロラクトンからなる群から選ばれる少なくとも一種である、項16に記載の解繊剤。
 本発明に使用される解繊剤(B1)は、化学修飾により疎水化されたセルロース系繊維集合体の解繊を促進することができるので、解繊剤(B1)を使用して解繊原料からミクロフィブリル化された疎水化セルロース系繊維(A)を容易に得ることができる。
 以下、このミクロフィブリル化された疎水化セルロース系繊維(A)を、疎水化MFCともいう。
 上記の疎水化MFCは、特定の疎水性化学修飾基によって疎水化されているので、熱可塑性樹脂と親和性が高くなっている。よって、疎水化MFCは容易に熱可塑性樹脂と混和して、溶融混練組成物(例;繊維強化樹脂組成物)中に微細状態で均一又は均一に近い状態で分散することができる。その結果、本発明の繊維強化樹脂組成物からなる成形体は、優れた機械特性(強度特性及び靭性)を有する。
 また、本発明の製造方法では、疎水化セルロース系繊維集合体と熱可塑性樹脂を溶融混練の際に解繊剤(B1)を存在させることにより、疎水化セルロース系繊維集合体は溶融混練中に容易にミクロフィブリル化されるので、疎水化MFCを含む溶融混練物(つまり、本発明の繊維強化樹脂組成物)を効率的に製造することができる。
実施例6の組成物の解繊原料として使用したアセチル化トドマツ由来未漂白パルプの電子顕微鏡写真像である。 実施例6の組成物から調製した試料中のアセチル化トドマツ繊維の電子顕微鏡写真像である。
1.用語及び略語の説明
 本明細書において使用する以下の用語は、それぞれ次の意味を有する。
 セルロース系繊維は、植物由来、微生物由来、藻類由来又は尾索動物亜門動物(ホヤ)由来の、セルロース及び/又はリグノセルロースを含有する繊維を意味する。
 リグノセルロースは、樹木細胞壁を構成する複合炭化水素高分子(天然高分子混合物)であり、主に多糖類のセルロース、ヘミセルロース及び芳香族高分子であるリグニンから構成されていることが知られている。本発明において、リグノセルロースとは、リグニン含有量の多少にかかわらず、また、セルロース、ヘミセルロース及び/又はリグニン間の化学結合の有無に拘わらず、セルロース、ヘミセルロース及びリグニンから構成される物質を意味する。
 セルロース系パルプは、セルロース系高分子からなる繊維集合体を意味する。セルロース系パルプ(CP)には、リグニンを含まないパルプ(セルロースからなるパルプ、ホロセルロースからなるパルプ等)、及びリグニンを含むパルプ(リグノパルプ)が包含される。そしてセルロース系パルプは、その起源によって、次のようにも分類される。すなわち、木材、竹、稲わら、綿花等の植物全体若しくは植物の部分から分離されたセルロース系繊維集合体(植物由来パルプ)、微生物が産生するセルロースと微生物の菌体との混合物中から分離されたセルロース系繊維集合体(微生物由来パルプ)、藻類から分離されるセルロース系繊維集合体(藻類由来パルプ)及び尾索動物亜門動物(ホヤ)から分離されるセルロース系繊維集合体(ホヤ由来パルプ)である。
 本願明細書ではセルロース系パルプを総称して「パルプ」と表示することもある。
 リグノパルプは、リグノセルロースを含むパルプを意味する。
 疎水化セルロース系繊維集合体とは、疎水基(例えばアシル基)で化学修飾されたパルプを意味する。本明細書において、「化学修飾」とは、セルロース系繊維を構成する糖鎖の水酸基の水素原子の代わりに置換基(化学修飾基)が導入されている(水酸基が化学修飾されている)ことを意味する。したがって、疎水化セルロース系繊維集合体は、化学修飾されたパルプ(化学修飾セルロース系繊維集合体)の一態様である。当該置換基としては疎水性基、例えばアシル基が例示され、好ましくは炭素数2~5のアシル基である。化学修飾の好ましい態様はアシル化であり、より好ましい態様は炭素数2~5のアシル基によるアシル化である。
 化学修飾ミクロフィブリル化セルロース系繊維(化学修飾MFC)とは、化学修飾され、かつミクロフィブリル化されたセルロース系繊維を意味する。好ましい化学修飾MFCは、疎水化MFC(ミクロフィブリル化された疎水化セルロース系繊維(A))、つまりミクロフィブリル化され、かつ炭素数2~5のアシル基が導入されたセルロース系繊維である。
 本明細書において、ミクロフィブリル化とは、繊維の直径がナノオーダーになるか、又は、繊維の内部若しくは表面に存在する繊維がナノオーダーになることを意味する。したがって、繊維の直径がナノオーダーに解繊された繊維、繊維の最も太い部分の直径がナノオーダー以上(例えば数μm)であってもその内部若しくは表面がナノオーダーまで解繊されている繊維、及び、これら繊維が混在した繊維もミクロフィブリル化繊維と解釈する。
 複合体は、マトリクスとマトリクス以外のものとを含む組成物を意味する。マトリクスとして樹脂を用い、それ以外のものとして繊維を用いた場合には、樹脂-繊維複合体(又は、繊維-樹脂複合体)といい、樹脂複合体又は繊維複合体ということもある。そして、繊維に具体的な繊維名称を用い、かつ、樹脂に具体的なポリマー名(樹脂の固有名称、又は、熱可塑性樹脂のように樹脂の総称)を用いて表記することもある。したがって、マトリクスとしての熱可塑性樹脂と化学修飾MFCとを含む組成物は、熱可塑性樹脂-化学修飾MFC複合体、化学修飾MFC-熱可塑性樹脂複合体又は化学修飾MFC含有熱可塑性樹脂組成物と表記することがあり、単に熱可塑性樹脂複合体、化学修飾MFC複合体又は複合体と表記することもある。そして、本発明に係る組成物の製造において、樹脂と化学修飾MFC、化学修飾セルロース系繊維又は化学修飾セルロース系繊維集合体(化学修飾パルプ)とを混練処理又は混合処理することを「複合化」ともいう。
 本明細書で使用される下記の略称は、次の意味に用いられる。
Acyl:アシル基
Ac:アセチル基
LP:リグノパルプ
CP:セルロース系繊維集合体(セルロース系パルプ)
AcCP:セルロース系繊維集合体(セルロース系パルプ)のセルロース系繊維を構成する糖鎖、又は、糖鎖並びにリグニンの、一部の水酸基の水素原子がアセチル基で置換されたパルプ
AcLP:リグノパルプにおけるセルロース系繊維を構成する糖鎖、又は、糖鎖並びにリグニンの、一部の水酸基の水素原子がアセチル基で置換されたリグノパルプ
MFC:ミクロフィブリル化セルロース系繊維
AcylMFC:セルロース系繊維を構成する糖鎖、又は、糖鎖並びにリグニンの、一部の水酸基の水素原子がアシル基で置換され、かつ、ミクロフィブリル化された繊維
AcMFC:セルロース系繊維を構成する糖鎖、又は、糖鎖並びにリグニンの、一部の水酸基の水素原子がアセチル基で置換され、かつ、ミクロフィブリル化された繊維
MFLC:ミクロフィブリル化リグノセルロース繊維
AcMFLC:リグノセルロース繊維を構成する糖鎖、又は、糖鎖並びにリグニンの、一部の水酸基の水素原子がアセチル基で置換され、かつ、ミクロフィブリル化された繊維
2.解繊剤
 本発明で使用される解繊剤(B1)は、分子量が130~400の多価アルコール及び分子量が86~115のラクトンから選ばれる少なくとも一種の化合物である。
 本明細書でいう解繊剤(B1)の分子量とは、単一化合物の場合はその化合物の分子量を言い、ポリマー又はオリゴマーの混合物である場合はその混合物の数平均分子量をいう。
 上記多価アルコールは、一種又は二種以上を併用することができる。
 解繊剤(B1)の多価アルコールとしてはポリプロピレングリコール系のジオール(以下「PPG系ジオール」とも称する)が好ましい。PPG系ジオールとしては、例えば、ジプロピレングリコール、トリプロピレングリコール、数平均分子量200のポリオキシプロピレングリコール、数平均分子量400のポリオキシプロピレングリコール、2価のアルコールにプロピレンオキサイド(以下「PO」とも称する)を付加重合させたポリエーテルポリオール、POとPO以外のアルキレンオキサイド(エチレンオキサイド(以下「EO」とも称する)等)を付加重合させたポリエーテルポリオール等が挙げられる。なお、POと他のアルキレンオキサイドの付加重合は、ランダム付加重合でも、ブロック付加重合であってもよい。
 上記2価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール等の炭素数2~4の2価のアルコールが挙げられる。
 PPG系ジオールには、POの付加重合様式により構造異性体が存在するが、本明細書でいうPPG系ジオールは、その各異性体およびそれらの混合物も包含する。
 上記PPG系ジオールの分子量は、130~400が好ましく、130~350がより好ましく、130~300がさらに好ましく、150~250が特に好ましい。
 解繊剤(B1)の多価アルコールとしては分子量が130~400のエチレンオキシド(EO)の付加重合体(EO3~8個の付加重合体)も好ましい。EOの付加重合体としては、例えばトリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、オクタエチレングリコール、及びこれらの混合物が挙げられる。EOの付加重合体の混合物は、数平均分子量が200のものはPEG200と称し、数平均分子量が400のものは、PEG400とも称する。
 解繊剤(B1)の多価アルコールとしては、分子量が130~400のグリセリン誘導体及びグリセリン誘導体の混合物も使用することができる。これらグリセリン誘導体として具体的には、グリセリンの二量体(ジグリセロール)およびグリセリンにPOを付加重合させたもの(ポリオキシプロピレングリセリルエーテル)を挙げることができる。ポリオキシプロピレングリセリルエーテルには、POの付加重合様式により構造異性体が存在するが、本明細書でいうポリオキシプロピレングリセリルエーテルには、その構造異性体およびその混合物も包含される。ポリオキシプロピレングリセリルエーテルとして好ましいものは、ポリオキシプロピレングリセリルエーテル(数平均分子量250)である。
 解繊剤(B1)の多価アルコールのうちでも、解繊性及び成形体とした際の機械的強度の点からジプロピレングリコール、トリエチレングリコール、ジグリセロール、トリプロピレングリコール、テトラエチレングリコール、ポリエチレングリコール(数平均分子量200~400)、ポリオキシプロピレングリコール(数平均分子量200~400)及びポリオキシプロピレングリセリルエーテル(数平均分子量200~400)からなる群から選ばれる少なくとも一種の多価アルコールが好ましく、ジプロピレングリコール、トリエチレングリコール、ジグリセロール、トリプロピレングリコール、テトラエチレングリコール、ポリオキシプロピレングリコール(数平均分子量200)、ポリオキシプロピレングリコール(数平均分子量400)、ポリオキシプロピレングリセリルエーテル(数平均分子量250)及びポリオキシプロピレングリコール(数平均分子量400)からなる群から選ばれる少なくとも一種の多価アルコールがより好ましい。
 この中でも、特に、ジプロピレングリコール、トリプロピレングリコール、ポリオキシプロピレングリコール(平均分子量200)及びポリオキシプロピレングリセリルエーテル(平均分子量250)からなる群から選ばれる少なくとも一種の多価アルコールが解繊能力の点から好ましい。
 解繊剤(B1)として使用される多価アルコールは、その引火点が100℃以上であることから、本発明組成物の製造時の防災及び安全性の点からも好ましい。
 解繊剤(B1)として、分子量が86~115のラクトンを使用することができる。このうち、解繊能力、使用上の安全性から、δ-バレロラクトン及びε-カプロラクトンが好ましい。
 解繊剤(B1)が、繊維強化樹脂組成物中に多く残存する場合には、この樹脂組成物を成形体材料として用いた成形体の強度特性が低下する傾向にあることから、樹脂組成物中に残存する解繊剤(B1)は、成形体材料または成形体から除去することが好ましい。
 解繊剤(B1)(分子量が130~400の多価アルコール及び分子量が86~115のラクトン)の除去は、解繊剤(B1)の常温、常圧化の沸点が約290℃以下であることから、成形体材料又は成形体から減圧下に加熱(例えば125~280℃)することによって気化分離する方法が容易であり、好ましい。
 上記の、ジプロピレングリコール、トリプロピレングリコール、ポリオキシプロピレングリコール(平均分子量200)、ポリオキシプロピレングリセリルエーテル(平均分子量250)及びポリオキシプロピレングリコール(平均分子量400)には、夫々、構造異性体が存在するがこれら異性体又はその混合物も本発明の解繊剤(B1)に包含される。
 解繊剤(B1)は、既存の解繊剤、例えば、ε-カプロラクタムよりも少量で(質量で、ε-カプロラクタムの約三分の一の使用量で)解繊能力がある。また、既存の解繊剤(例えば、ε-カプロラクタム)と併用することによって、既存の解繊剤(例えば、ε-カプロラクタム)よりも優れた効果を発揮し得る。このため、本発明では解繊剤(B1)に既存の解繊剤(例えば、ε-カプロラクタム)を併用できる。
 解繊剤(B2)は、上記解繊剤(B1)に併用されて解繊性を向上させる。解繊剤(B2)は、タルク、クレイ、ゼオライト、酸化アルミニウム、炭酸カルシウム、酸化チタン、シリカ、酸化マグネシウム及びマイカからなる群から選ばれる少なくとも一種のフィラーであってよい。
 繊維強化樹脂組成物の原料に解繊剤(B2)をさらに添加することによって、解繊原料の解繊がさらに容易になる。解繊剤(B2)は、解繊剤(B1)と同時に、又は、解繊剤(B1)の前に若しくは後に解繊原料に加えることによって使用してもよい。
 解繊剤(B2)を添加する場合、解繊剤(B2)の配合割合は、解繊剤(B1)1質量部に対して、0.01~1.0質量部であり、好ましくは0.01~0.6質量部である。
 解繊剤(B2)のうち、取り扱いのしやすさ及び効果の点から、タルク及びクレイが好ましい。タルクの平均粒子径は1~13μmのものを好適に使用することができる。平均粒子径をこの範囲内とすると、成形体の強度特性がより一層向上する。タルクには表面処理したものと表面処理していないものが市販されているが、表面処理されているもの、特にアミノシラン処理されているもの、が好ましい。タルクと解繊剤(B1)を予め混合した後に解繊原料に加えると、得られる成形体の耐衝撃性が改善される。
3.繊維強化樹脂組成物
 本発明の繊維強化樹脂組成物は、ミクロフィブリル化された疎水化セルロース系繊維(A)、解繊剤(B1)、熱可塑性樹脂(C)及び任意に解繊剤(B2)を含有する樹脂組成物(D)である。解繊剤(B1)、解繊剤(B2)については、上記に記載したとおりである。
 本発明の樹脂組成物に含有されるミクロフィブリル化セルロース系繊維は、樹脂中での分散性及び解繊性の点から、ミクロフィブリル化された疎水化セルロース系繊維(疎水化MFC)である。この疎水化MFCは、MFCのセルロース系繊維を構成する糖鎖の一部の水酸基の水素原子が炭素数2~5のアシル基で修飾されていることが、その製造の容易さ及び樹脂組成物中での分散性の点から好ましい。このようなアシル基として、具体的には、アセチル基、エチルカルボニル基、n-プロピルカルボニル基及びピバロイル基が挙げられる。これらのアシル基のうちでも、アセチル基、エチルカルボニル基及びピバロイル基からなる群から選ばれるアシル基で修飾されたMFCは、熱安定性が特に良好でまた繊維強化樹脂組成物中での分散性が良好であり好ましい。中でも、製造の容易さ及び製造コストの点からアセチル基が最も好ましい。
 2種以上の化学修飾MFCを組み合わせて(併用して)、本発明の繊維強化樹脂組成物に含有させることもできる。2種の化学修飾MFCを併用することで、繊維強化樹脂組成物中に、これらの化学修飾MFCを良好に分散させることができる。
 繊維強化樹脂組成物(D)が解繊剤(B2)を含有するときは、解繊剤(B2)の含有量は、熱可塑性樹脂総質量に対して、例えば0.1~10質量%とでき、好ましくは1~7質量%、更に好ましくは2~6質量%とできる。
 繊維強化樹脂組成物(D)が疎水化MFC(A)、解繊剤(B1)、解繊剤(B2)、熱可塑性樹脂(C)及び相溶化剤(E)以外の他の成分を含有するときは、他の成分の含有量は、組成物全質量に対して、例えば0.0001~20質量%とでき、好ましくは0.01~10質量%とできる。
 化学修飾MFCの原料及び製造方法及び本発明の樹脂組成物の詳細(組成比など)については後述する。
4.本発明組成物に使用される繊維原料(解繊原料)
 本発明組成物に使用される繊維原料は、セルロース系繊維を構成する糖鎖、又は、糖鎖並びにリグニンの、一部の水酸基の水素原子が、特定のアシル基で置換された疎水化セルロース系繊維集合体(AcylCP)である。
 AcylCPの調製には、植物由来、微生物由来、藻類由来、又は、尾索動物亜門動物(ホヤ)由来のセルロース系繊維集合体を使用することができる。このうちでも、植物由来セルロース系繊維集合体は、大量にしかも容易に入手可能なことから好ましい。植物由来セルロース系繊維集合体の原料として、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物、古紙、編織布等が挙げられる。これらの中で、容易に入手可能なことから、木材由来のセルロース系繊維集合体(木材パルプともいう)が好ましい。
 木材パルプには、リグニンを含まないもの、及びリグニンを含むもの(リグノパルプという)が含まれる。これらはいずれも解繊原料の製造のために使用することができる。製造コストの点からは、リグノパルプが好ましい。
 木材パルプの原料となる木材としては、例えば、シトカスプルース、マツ(トドマツ、アカマツ等)、スギ、ヒノキ等の針葉樹、ユーカリ、アカシア等の広葉樹由来の木材が挙げられる。これらから得られる植物由来パルプが、解繊原料の製造に好ましく用いられる。
 更には、針葉樹のパルプの中でも、トドマツ、アカマツ、又はスギから得られるリグノパルプは、それを使用して作製した化学修飾MFCを含有させることで、強度特性に優れた繊維強化樹脂組成物が得られることから好ましい。
 木材パルプは、植物性原料を、機械パルプ化法、化学パルプ化法、機械パルプ化法と化学パルプ化法との組み合わせ等の方法により処理することにより得ることができる。このようなパルプとしては、クラフトパルプ、機械パルプ(MP)等が挙げられる。クラフトパルプとして、針葉樹未漂白クラフトパルプ(NUKP)、針葉樹酸素晒し未漂白クラフトパルプ(NOKP)、針葉樹漂白クラフトパルプ(NBKP)等が挙げられる。機械パルプとして、砕木パルプ(GP)、リファイナーGP(RGP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等が挙げられる。また、パルプとして、脱墨古紙、段ボール古紙、雑誌、コピー用紙等を使用することも可能である。パルプは1種単独で用いてもよく、2種以上を混合して用いてもよい。
 木材パルプは、リグノセルロースを含み、主にセルロース、ヘミセルロース、及びリグニンから構成される。本明細書では、リグニンが完全には除去されずにパルプ中にリグニンが少量でも存在するパルプをリグノパルプと称するので、上記の各種パルプ化法で処理して得られ、パルプ中にたとえ少量でも検出し得るリグニンを含むものは、リグノパルプに含まれる。
 リグノパルプは、リグニンを含まないセルロース繊維又はパルプに比べて、その製造工程数が少ないこと、その原料(例えば木材)からの収率が良好であること、その製造に要する化学薬剤が少ないこと、並びに少ないエネルギーで製造できることから、製造コストの点で有利である。よって、リグノパルプを、本発明に有利に使用することができる。含有されるリグニン量は、クラーソン法で定量することができる。
 本発明では、木材パルプに対して、予めリファイナー若しくはビーター又はこれらを組み合わせて使用して離解、叩解、解繊等の処理を施し、処理後のカナディアンスタンダードフリーネス(CSF)値(濾水度)が40mL~500mL、好ましくは40mL~300mL、さらに好ましくは40mL~200mLであるものを使用することができる。
 微生物由来のセルロース系繊維については、例えば、酢酸菌を培養した培養液から回収した菌体とセルロース繊維との混合物からタンパク質その他の夾雑物を除去して得た微生物由来のパルプより得ることができる。微生物由来のセルロース系繊維は通常、ナノレベルのセルロース繊維が網目状に交絡しており、これを、疎水性セルロース系繊維集合体の原料として使用することができる。
 本発明で使用される解繊原料は、そのセルロース系繊維を構成する糖鎖の、又は、糖鎖並びにリグニンの、一部の水酸基の水素原子が、特定のアシル基A(すなわち、炭素数2~5のアシル基)で置換され、置換前に比べて疎水化されていることに特徴がある。本明細書では、セルロース系繊維を構成する糖鎖の、又は、糖鎖並びにリグニンの、一部の水酸基の水素原子を置換することを「化学修飾」ともいい、水酸基の水素原子の代わりに導入される置換基を「化学修飾基」ということもある。このアシル基Aの詳細は、本発明組成物が含有するミクロフィブリル化された疎水化セルロース系繊維において説明したアシル基の詳細と同様である。
 解繊原料の一部の水酸基の水素原子の置換基として、特定のアシル基Aを選定することにより、このような置換基で化学修飾された解繊原料は熱安定性が向上するばかりでなく、本発明で使用する解繊剤によって、解繊処理中にミクロフィブリル化されやすくなり、容易に、化学修飾MFCに解繊される。これは、解繊原料では、セルロース系繊維表面に元来存在する水酸基同士の水素結合がアシル化によって部分的に消失していることと、解繊剤の作用とによって解繊処理中にミクロフィブリル化されやすくなるためと考えられる。
 そしてこの化学修飾MFCも、特定のアシル基Aで化学修飾されることにより疎水化されているので、元来のセルロース系繊維よりも疎水性が高いことから熱可塑性樹脂と親和性が高く、樹脂中に均一に分散されやすくなる。よって、解繊剤(B1)を使用して製造される化学修飾MFCと熱可塑性繊維とを含む組成物から製造される本発明の成形体は、優れた強度特性を有する。
 解繊原料における置換基は、前記アシル基Aが好ましい。解繊原料を、解繊剤(B1)を使用して解繊することによって生成する、アシル基Aで修飾されかつミクロフィブリル化されたセルロース系繊維(このセルロース系繊維を、「Acyl(A)MFC」とも表する)は、熱可塑性樹脂との親和性が高く、熱可塑性樹脂中に均一に分散することができる。
 また、解繊原料における置換基としてアシル基Aを選定することによって、解繊原料の耐熱性を向上させることができる。
 また、アシル基Aで修飾された解繊原料を調製する際に、その原材料となるパルプに元来存在するセルロースの高い結晶性を保持した状態で化学修飾できるばかりか、この高い結晶性は、上記の解繊原料をミクロフィブリル化して生成するAcyl(A)MFCにおいても保持することができる。
 炭素数が2~5のアシル基Aとして、具体的には、アセチル基、エチルカルボニル基、n-プロピルカルボニル基及びピバロイル基が挙げられる。これらは、アシル化に使用されるアシル化剤が他のアシル化剤に比べて安価に入手可能な点で好ましい。これらの中でも、アセチル基がより好ましい。
5.本発明に使用される疎水化セルロース系繊維集合体(疎水化CP)の置換度
 本発明に使用される疎水化セルロース系繊維集合体における、アシル基による修飾程度(置換度又はDSともいう)は、セルロース系繊維集合体を構成するセルロース系高分子の1単位(繰り返し単位)に存在する水酸基の水素原子が、前記置換基で置換された程度で表される。
 置換度は、疎水化セルロース系繊維集合体が疎水化リグノセルロース繊維集合体であるときは、例えば、特開2018-150414の第0253段落~第0261段落の記載に基づいて、「ASA」をアシル基(例;アセチル基)、「見かけの質量」を「未修飾リグノセルロースの式量(繰り返し単位の式量)」と読み替えることにより計算することができる。
 セルロース繊維集合体が全てセルロースで構成されている場合(セルロースの場合)は、この繰り返し単位はグルコピラノース残基であり、この1単位あたりの水酸基数は3であるので、置換度の上限は3である。
 一方、セルロース系高分子がリグノセルロースの場合、リグノセルロースは、セルロースと共にヘミセルロースとリグニンとを含む。へミセルロースに含まれるキシランにおけるキシロース残基、及びアラビノガラクタンにおけるガラクトース残基の水酸基数は2であり、また、標準的なリグニン残基の水酸基数も2であり、これらの水酸基数は3より小さい。
 従って、リグノセルロース繊維集合体(リグノパルプ)における置換度の上限は3より小さい。この置換度の上限は、リグノセルロース繊維(リグノパルプ)が含有するヘミセルロースおよびリグニンの含量に依存して、2.7~2.8程度である。
 上記のように、セルロース系繊維集合中のヘミセルロース又はリグニンの含量に依存するものの、本発明に使用される疎水化セルロース系集合体(疎水化CP)においてもそれを解繊して得られる化学修飾ミクロフィブリル化セルロース系繊維(化学修飾MFC)においても、そのアシル基による置換度(DS)は、0.2~2.0程度が好ましい。置換度(DS)は、より好ましくは0.3~1.5程度であり、さらに好ましくは0.3~1.4程度である。特に、アシル基がアセチル基である場合の置換度(DS)は、より好ましくは0.4~1.3程度である。
 上記範囲のDSを有する化学修飾MFCは、適度の結晶化度とSP(溶解度パラメーター)とを有するので、マトリックス(熱可塑性樹脂)中に均一に分散し、このような化学修飾MFCを含有する溶融混練組成物は、優れた物性を有する。
 置換度(DS)は、中和滴定法、FTIR、二次元NMR(1H及び13C-NMR)等の各種分析方法等により分析することができる。
6.繊維の大きさ及びその観察方法など
 本発明においてミクロフィブリル化セルロース系繊維(MFC)とは、上述したセルロース系繊維集合体を構成するそれぞれの繊維の直径が全てナノオーダーにミクロフィブリル化された繊維という意味ばかりではなく、ミクロフィブリル化された部分を少なくとも含むセルロース系繊維という意味も含み、上述したセルロース系繊維の直径がナノオーダーであるか、又は繊維の内部若しくは表面の繊維の直径がナノオーダーであるものをいう。このことは、化学修飾MFCについても同様である。
 本明細書でいうミクロフィブリル化セルロース系繊維(MFC)及び化学修飾ミクロフィブリル化セルロース系繊維(化学修飾MFC)における繊維径は、夫々、数十nm~数μm程度である。
 MFC及び化学修飾MFCの繊維径及び繊維長は、500~10000倍の走査型電子顕微鏡(SEM)写真を撮影して測定することができる。繊維径の平均値(平均繊維径)及び繊維長の平均値(平均繊維長)は、SEMの視野内のMFC又は化学修飾MFCの少なくとも50本以上について測定したときの平均値として求めることができる。
 なお、熱可塑性樹脂複合体中の化学修飾MFCのSEM写真を撮影する際には、熱可塑性樹脂が可溶で、且つ化学修飾MFCが不溶である溶媒(例えば、ポリアミド複合体及びポリエステル複合体にはヘキサフルオロイソプロパノール、ポリカーボネート複合体にはジクロロメタン、ポリエチレン複合体及びポリプロピレン複合体にはデカリン、キシレン等の非極性で高沸点の炭化水素)で熱可塑性樹脂複合体中の熱可塑性樹脂を溶出させ、残存する化学修飾MFCについてSEM写真を撮影することが好ましい。
7.本発明に使用される疎水化セルロース系繊維集合体(解繊原料)の製造方法
 解繊原料の調製方法(アシル化反応)について説明する。
 原料パルプのアシル基による修飾は、公知の方法、例えば、アシル基を有するアシル化剤と、前記原料パルプとを溶媒中で攪拌しながら又は静置状態で反応させることにより行うことができる。アシル化剤として、無水カルボン酸、カルボン酸クロリド等のカルボン酸ハロゲン化物、カルボン酸ビニルエステル等が挙げられる。これらの中で、反応系から副生成物を除去し易い点で、カルボン酸ビニルエステルが好ましい。
 アシル基による化学修飾においては、アシル化剤として、対応するカルボン酸ビニルエステル(ビニルカルボキシレート)を使用することにより、アシル化して得られる化学修飾セルロース系繊維の着色が少なくなり、ひいてはこれを複合化して作成される溶融混練組成物(複合体)の着色を少なくすることができる。
 もちろん、カルボン酸ビニルエステル以外のアシル化剤(例えば、カルボン酸クロリド、カルボン酸無水物)も使用することが可能である。この場合には、アシル化反応で副生する酸(塩酸、カルボン酸等)を反応中に捕捉するために有機塩基又は無機塩基を加えるのが好ましい。ただし、生成する塩がアシル化セルロース系繊維に混入し易く、これが原因で目的のアシル化セルロース系繊維が着色することもあるので、この場合には丁寧に精製することが必要となる。
 これらのアシル化剤のうちでも、アシル基が、アセチル基、プロピオニル基、ピバロイル基からなる群から選ばれるアシル基を有するアシル化剤を用いると、熱安定性が特に良好な、アシル化ミクロフィブリル化セルロース系繊維を製造できるので好ましい。
 上記アシル基を有するアシル化剤の具体例として、酢酸ビニル、無水酢酸、ピバル酸ビニル、ピバル酸無水物が挙げられる。これらの中で、アセチル基を有するアシル化剤(酢酸ビニル及び無水酢酸)が、製造コストの点から好ましい。
 アシル化反応は、溶媒中で、塩基の存在下に行うのが好ましい。溶媒として、アシル化剤とは反応せず、アシル化原料を膨潤させ易く、かつ、アシル化原料との反応後に反応系から容易に除去できる溶媒が好ましい。このような溶媒として、N-メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジオキサン等の極性非プロトン性溶媒を挙げることができる。溶媒の使用量は、乾燥状態のアシル化原料1質量部に対して、20~200質量部程度である。
 但し、反応温度においてアシル化剤が液体であり、また反応により副生成する物質も液体である場合には、アシル化剤及び副生成物を溶媒として使用することもできる。この場合の溶媒の使用量は、アシル化原料1質量部に対して、0~3質量部程度である。例えば、アシル化剤として無水酢酸を用いてアシル化(すなわちアセチル化)する場合には、溶媒の使用量は、アシル化原料1質量部に対して、0(無溶媒)~3質量部程度である。
 塩基としては、ピリジン、ジメチルアニリン等のアミン類;酢酸カリウム、酢酸ナトリウム等の酢酸のアルカリ金属塩;炭酸リチウム、炭酸カリウム、炭酸ナトリウム等のアルカリ金属の炭酸塩等が挙げられる。塩基の使用量は、アシル化原料中の水酸基1モルに対して、0.1~1モル程度である。
 原料パルプに対するアシル化剤の使用量は、原料パルプの含水量、目的とするアシル化程度(置換度、DS)等により、適宜調整することができる。
 アシル化反応途中におけるアシル化程度(置換度、DS)は、反応混合物から、分析に必要な量を採取し、これから、未反応アシル化剤、アシル化副生成物などを、洗浄、抽出等により除いた後、FTIRスペクトルを測定し、あらかじめ作成しておいた検量線を使用して、定量することができる。したがって、目的とするDSになった時点で反応を止め、反応混合物に対して、ろ過、洗浄、抽出等の通常の精製操作に行うことにより、目的とするDSを有するアシル化セルロース系繊維集合体(アシル化パルプ)を得ることができる。
 アシル化剤の使用量は、原料パルプに存在する水酸基のモル数の0.5~2倍モル程度を使用する。原料パルプが含水状態である場合は、この水によって消費されるアシル化剤の量を勘案して、上記よりも多いアシル化剤を使用するのが好ましい。
 反応温度は、通常、10~130℃程度であり、好ましくは20~125℃程度である。
 反応時間は、木材由来の原料パルプをアシル化する場合は通常2~24時間程度であり、微生物由来の原料パルプをアシル化する場合は通常4~100時間程度である。
8.解繊原料の解繊方法、及び解繊された化学修飾ナノフィブリル化セルロース系繊維を含有する組成物の製造方法
 解繊原料の解繊は、解繊原料を解繊剤(B1)と共に解繊用媒体(水若しくは水と水に可溶な有機溶媒との混合溶媒、又は化学修飾セルロース系繊維及び複合すべき熱可塑性樹脂が不溶な有機溶媒)に加え、解繊用媒体中に解繊原料が分散した状態で攪拌、混練等の解繊処理をすることにより行うことができる。
 解繊処理において解繊原料の使用量は、熱可塑性樹脂組成物(D)中の熱可塑性樹脂(C)の総質量に対して、例えば1~30質量%とでき、好ましくは3~25質量%とできる。
 解繊処理において解繊剤(B1)の使用量は、化学修飾セルロース系繊維1質量部に対して、例えば0.5~5質量部とでき、好ましくは0.7~3質量部とできる。
 熱可塑性樹脂(C)の使用量は、化学修飾セルロース系繊維1質量部に対して、例えば3~100質量部とでき、好ましくは4~30質量部、より好ましくは10~30質量部とできる。
 解繊処理において解繊用媒体の使用量は、化学修飾セルロース系繊維1質量部に対して、例えば0.5~10質量部とでき、好ましくは1~5質量部とできる。
 解繊処理において解繊剤(B2)を使用する場合、解繊剤(B2)の使用量は、解繊剤(B1)1質量部に対して、例えば0.01~1質量部とでき、好ましくは0.01~0.6質量部とできる。
 解繊処理において相溶化剤(E)を使用する場合、相溶化剤(E)の使用量は、化学修飾セルロース系繊維1質量部に対して、例えば0.5~5質量部とでき、好ましくは0.7~3質量部とできる。
 樹脂と化学修飾セルロース系繊維を含む複合体を溶融混練法で製造する場合には、解繊処理を、一軸又は多軸混練機を使用して行うのが効率的である。
 また、解繊原料、解繊剤及び複合すべき熱可塑性樹脂の混合物に対して溶融混練操作を行う段階で、溶融された熱可塑性樹脂内において解繊原料を解繊させることもできる。この溶融混練には一軸又は多軸混練機を使用するのが好ましい。
 解繊剤には、解繊剤(B1)が使用されるが、強度特性の点からは解繊剤(B1)だけを使用するよりも、解繊剤(B1)に無機フィラー、すなわち、解繊剤(B2)を併用することが好ましい。
 使用された解繊剤(B1)は、溶融混練樹脂組成物中に含まれていてもよいし、又は樹脂組成物から除去してもよい。形成される成形体の強度特性の点で、樹脂組成物から解繊剤(B1)を除去することが好ましい。但し、解繊剤(B1)を完全に除去する必要はなく、得られる樹脂組成物の物性に影響を及ぼさない程度の除去でよい。
樹脂組成物に残存する解繊剤(B1)が微量であっても、それを分析し検出することによって、その樹脂組成物が本発明の製造方法で製造されたものであることを知ることができるので製品の追跡調査に便利である。
 樹脂組成物中に残存する解繊剤(B1)は、使用する樹脂によって一概には言えないが、樹脂組成物全量に対して0.001~2質量%、好ましくは0.01~1質量%である。この程度の解繊剤(B1)を含んだ樹脂組成物からなる成形体は優れた強度特性を有する。
 化学修飾ミクロフィブリル化セルロース系繊維(化学修飾MFC)を含む樹脂組成物に係る本発明の製造方法として、以下の第I法~第III法が挙げられる。
 第I法は、疎水化セルロース系繊維集合体(AP)、解繊剤(B1)、及び熱可塑性樹脂(C)を混合し、この混合操作中にセルロース系繊維集合体(AP)を解繊してミクロフィブリル化する工程を含む、ミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂樹脂(C)とを含有する樹脂組成物(D)の製造方法である。
 詳細には、炭素数2~5のアシル基で修飾された疎水化セルロース系繊維集合体(AP)、解繊剤(B1)及び熱可塑性樹脂(C)を混合し、この混合操作中に前記疎水化セルロース系繊維集合体(AP)を解繊してミクロフィブリル化する工程を含む、ミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂(C)とを含有する繊維強化樹脂組成物(D)の製造方法であって、前記ミクロフィブリル化された疎水化セルロース系繊維(A)が炭素数2~5のアシル基で修飾され、前記解繊剤(B1)が分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物である、繊維強化樹脂組成物(D)の製造方法である。
 第II法は、解繊剤(B1)、疎水化セルロース系繊維集合体(AP)、及び熱可塑性樹脂(C)を混合し、疎水化セルロース系繊維集合体を解繊及び複合化した後、解繊剤(B1)を除去して、ミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂樹脂(C)を含有する樹脂組成物(D)を製造する方法である。
 詳細には、
(1)炭素数2~5のアシル基で修飾された疎水化セルロース系繊維集合体(AP)、解繊剤(B1)及び熱可塑性樹脂(C)を混合し、この混合操作中に前記疎水化セルロース系繊維集合体(AP)を解繊してミクロフィブリル化する第一工程と、
(2)第一工程で得られた、ミクロフィブリル化された疎水化セルロース系繊維(A)、解繊剤(B1)及び熱可塑性樹脂(C)を含む混合物から解繊剤(B1)を除去する第二工程を含む、
ミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂(C)とを含有する繊維強化樹脂組成物(D)の製造方法であって、
前記ミクロフィブリル化された疎水化セルロース系繊維(A)が炭素数2~5のアシル基で修飾され、前記解繊剤(B1)が分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物である、繊維強化樹脂組成物(D)の製造方法である。
 第III法は、炭素数2~5のアシル基で修飾された疎水化セルロース系繊維集合体(AP)を解繊してから熱可塑性樹脂(C)と複合化し、ミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂樹脂(C)を含有する樹脂組成物を製造する方法である。
 詳細には、
(1)解繊剤(B1)を使用して炭素数2~5のアシル基で修飾された疎水化セルロース系繊維集合体(AP)を解繊して、ミクロフィブリル化された疎水化セルロース系繊維(A)を製造する第一工程、及び
(2)第一工程で得られたミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂(C)とを混合する第二工程
を含む、ミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂(C)とを含有する繊維強化樹脂組成物(D)の製造方法である。
 上記第III法における解繊原料の解繊及びミクロフィブリル化は、例えば解繊原料をを懸濁液又はスラリーとし、リファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸混練機(好ましくは多軸混練機)、ビーズミル等による機械的な摩砕又は叩解等の公知手段を使用することにより行うことができる。
 上記第III法における第一工程で解繊原料の解繊及びミクロフィブリル化を一軸又は多軸混練機で行い、第二工程における混合を第一工程で使用した一軸又は多軸混練機で実施すると、一種類の機器で繊維強化樹脂組成物(D)を製造することができるので効率的である。
 上記の製造法方法の内で、第I法及び第II法は、解繊原料、解繊剤(B1)及び熱可塑性樹脂(C)を混合しこの溶融混練中に解繊原料を解繊して、疎水化MFC(ミクロフィブリル化された疎水化セルロース系繊維(A))を含有する樹脂組成物(D)を簡単な操作で得ることができるので有用である。
 本発明の樹脂組成物(D)は、解繊剤(B1)によって解繊原料から容易に解繊された、樹脂中での分散性に優れた、ミクロフィブリル化された疎水化セルロース系繊維((A);疎水化MFC)を含有している。
 この疎水化MFCは、MFCのセルロース系繊維を構成する糖鎖の一部の水酸基の水素原子が炭素数2~5のアシル基で修飾されていることが、その製造の容易さ及び樹脂組成物中での分散性の点から好ましい。このようなアシル基として、具体的には、アセチル基、エチルカルボニル基(プロピオニル基ともいう)、n-プロピルカルボニル基(ブタノイル基ともいう)及びピバロイル基が挙げられる。
 これらのアシル基のうちでも、アセチル基、エチルカルボニル基及びピバロイル基からなる群から選ばれるアシル基で修飾された化MFCは、熱安定性が特に良好でまた繊維強化樹脂組成物中での分散性が好ましい。中でも、製造の容易さ及び製造コストの点からアセチル基が最も好ましい。
 2種以上の化学修飾MFCを組み合わせて(併用して)、本発明の繊維強化樹脂組成物に含有させることもできる。2種以上の化学修飾MFCを併用することで、繊維強化樹脂組成物中に、これらの化学修飾MFCを良好に分散させることができる。
 上記第I法から第III法のいずれかに記載の、疎水化セルロース系繊維集合体又はミクロフィブリル化された疎水化セルロース系繊維と樹脂とを混合する工程において、さらに相溶化剤(E)を混合することが好ましい。
 相溶化剤を混合することによって、化学修飾MFC及び熱可塑性樹脂、特に疎水性の高い熱可塑性樹脂(例えばポリプロピレン、ポリエチレン等)との混合状態が改善され、ひいては、これら熱可塑性樹脂を含む本発明の成形体の強度特性が向上する。
 相溶化剤として、疎水性高分子と親水性基又は親水性フラグメントとを有する高分子化合物を使用することが好ましい。このような高分子化合物として、具体的には、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン、又は、疎水性フラグメントと親水性フラグメントからなるブロックポリマーを挙げることができる。疎水性フラグメントと親水性フラグメントからなるブロックポリマーとしては、例えば特開2014-162880に開示された樹脂親和性セグメントAとセルロース親和性セグメントBからなるブロックポリマーが例示される。
 本発明の繊維強化樹脂組成物(D)が相溶化剤(E)を含有する場合、当該組成物における相溶化剤の含有割合は、含有する化学修飾MFC(A)1質量部に対して、例えば0.1~5質量部とでき、好ましくは0.5~5質量部とできる。
 前記解繊原料及び化学修飾MFCの両方において、その溶解度パラメータ(SP値)が9.9~15程度、好ましくは10~14.5程度のものを用いるのが好ましい。
 上記各製造方法及び本発明の樹脂組成物において、使用する熱可塑性樹脂は、1種又は2種以上の熱可塑性樹脂であることが好ましい。特に、疎水性の高い熱可塑性樹脂(例えばポリプロピレン、ポリエチレン等)を含む複合体を製造する際には、この疎水性の高い熱可塑性樹脂のSP値より大きく、且つ、使用する化学修飾セルロース系繊維のSP値よりも小さいSP値を有する熱可塑性樹脂(例えば、ポリ乳酸、ポリアミド6等)を、疎水性の高い熱可塑性樹脂樹脂(例えばポリプロピレン、ポリエチレン等)と併用するのが好ましい。
 詳細には、例えば、熱可塑性樹脂としてポリプロピレン(このSP値は8.1)とSP値14程度の化学修飾ミクロフィブリル化セルロース系繊維(例えば、SP値が約14のミクロフィブリル化されたアセチルリグノセルロース繊維)とを含む複合体を製造する場合には、ポリプロピレンと共に、例えば、ポリ乳酸(このSP値は11.4)及び/又はポリアミド6(このSP値は12.2)を併用することが好ましい。
 本発明の繊維と樹脂とを含む組成物の製造方法に使用される樹脂としては、種々の樹脂の中でも熱可塑性樹脂が、生産性及び汎用性に優れることから好適に使用される。
 上記各製造方法において、好ましく使用される熱可塑性樹脂として、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート-ABSアロイ(PC-ABSアロイ)及び変性ポリフェニレンエーテル(m-PPE)が挙げられる。
 熱可塑性樹脂は、前記樹脂を単独で使用してもよく、2種以上の混合樹脂として用いてもよい。
 ポリアミド(PA)として、ポリアミド6(ナイロン6、PA6)、ポリアミド66(ナイロン66、PA66)、ポリアミド610(PA610)、ポリアミド612(PA612)、ポリアミド11(PA11)、ポリアミド12(PA12)、ポリアミド46、ポリアミドXD10(PAXD10)、ポリアミドMXD6(PAMXD6)等を好ましく用いることができる。
 ポリオレフィンとしては、ポリプロピレン(PP)、ポリエチレン(PE、特に高密度ポリエチレンHDPE)、エチレンとプロピレンとの共重合体、等を好ましく用いることができる。
 また、ポリイソブチレン(以下「PIB」とも記す)、ポリイソプレン(以下「IR」とも記す)、ポリブタジエン(以下「BR」とも記す)等も好ましく使用することができる。
 前記ポリプロピレン(PP)として、イソタクチックポリプロピレン(iPP)、シンジオタクチックポリプロピレン(sPP)等を好ましく用いることができる。
 脂肪族ポリエステルとして、ジオール類とコハク酸、吉草酸等の脂肪族ジカルボン酸との重合体又は共重合体(例えば、ポリブチレンサクシネート(PBS))、グリコール酸又は乳酸等のヒドロキシカルボン酸の単独重合体又は共重合体(例えばポリ乳酸、ポリε-カプロラクトン(PCL)等)、並びにジオール類、脂肪族ジカルボン酸及び前記ヒドロキシカルボン酸の共重合体等を好ましく使用することができる。
 芳香族ポリエステルとして、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等のジオール類とテレフタル酸等の芳香族ジカルボン酸との重合体等を好ましく使用することができる。具体的には、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、ポリブチレンテレフタラート(PBT)等を好ましく用いることができる。
 ポリアセタール(ポリオキシメチレンともいう、POM)としては、パラホルムアルデヒドの均一重合体に加えて、パラホルムアルデヒドとオキシエチレンとの共重合体も好ましく使用することができる。
 ポリカーボネート(PC)には、ビスフェノールA又はその誘導体であるビスフェノール類と、ホスゲン又はフェニルジカーボネートとの反応物を好ましく使用することができる。
 ポリスチレン(PS)として、汎用PS(GPPS)に加えて、PSマトリックスにゴム成分を分散させて耐衝撃性を改良したPS(HIPS)を好適に使用することができる。ポリスチレン(PS)に加えて、スチレンの共重合体(アクリロニトリル-ブタジエン-スチレン共重合体、ABS樹脂)は、本発明の繊維強化樹脂組成物のマトリクスとして好ましい樹脂である。
 ポリカーボネート(PC)とABSとのブレンド品(PC-ABSアロイ)は、耐衝撃性、耐候性及び成形加工性に優れているので、本発明の上記各製造方法において、樹脂組成物のマトリクスとして用いることが好ましい。
 PPEとPSとのブレンド品(PPE-PSブレンド品)は、ポリフェニレンエーテル(PPE)の変性品(m-PPE)の一種である。PPE-PSブレンド品は、耐熱性が高く、また軽量であることから、用いることが好ましい。
 また、上記以外の熱可塑性樹脂として、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、フッ素樹脂、(メタ)アクリル系樹脂、(熱可塑性)ポリウレタン、ビニルエーテル樹脂、ポリスルホン系樹脂、セルロース系樹脂(例えば、トリアセチル化セルロース、ジアセチル化セルロース、アセチルブチルセルロース等)等を使用することもできる。
 熱可塑性樹脂と化学修飾ミクロフィブリル化セルロース系繊維との複合は、溶融混練法で行うのが好ましい。
 混練工程は、解繊原料(化学修飾セルロース系繊維集合体、又は化学修飾パルプともいう)と熱可塑性樹脂とを溶融混練しながら、溶融された熱可塑性樹脂中で解繊原料を化学修飾ミクロフィブリル化セルロース系繊維(化学修飾MFC)に解繊して、化学修飾MFCと熱可塑性樹脂とを含む組成物を製造する工程である。
 溶融混練組成物が解繊剤以外の添加剤を含む場合には、溶融混練すべき原材料の混合工程又はこの溶融混練工程で添加して、解繊材料及び熱可塑性樹脂をともに溶融混練することが好ましい。
 溶融混練組成物は、熱可塑性樹脂と、前記解繊原料と、前記解繊剤と、必要により添加剤とを溶融混練することによって製造することができる。
 加熱温度は、使用する熱可塑性樹脂の融点に合わせて調整することができる。加熱温度として、熱可塑性樹脂供給業者が推奨する、最低加工温度±10℃程度が好ましい。加熱温度をこの温度範囲に設定することにより、化学修飾MFCと熱可塑性樹脂とを均一に混合することができる。
 溶融混練時間は、製造量を勘案し、装置の性能及び回転速度等の運転条件を混練機メーカーの推奨する範囲内で調整すればよい。加熱時間は短いほうが、溶融混練物の熱及び酸化による劣化を防ぐことができるので好ましい。
 溶融混練時の加熱及び酸化による劣化を防ぐために、酸化防止剤等の添加剤を添加し、窒素雰囲気下で混練を行うことが好ましい。
 混練機には、一軸又は多軸混練機が好ましく使用できる。使用する一軸又は多軸混練機の回転数は大きくする方が、化学修飾パルプが溶融混練工程中においてミクロフィブリル化し易くなるので好ましい。
 この溶融混練工程において、化学修飾パルプは混練中のせん断応力及び解繊剤の作用によって解繊され、ミクロフィブリル化し、生成した化学修飾ミクロフィブリル化セルロース系繊維は繊維同士の凝集が抑制されて熱可塑性樹脂中に良好に分散される。
 この混練工程において、繊維径が数十μm~数百μmの化学修飾パルプが混練中に繊維径数十nm~数μmの化学修飾ミクロフィブリル化セルロース系繊維に解繊される。
 解繊原料は、熱可塑性樹脂と溶融混練中に溶融混練機のせん断応力及び解繊剤の作用により解繊しながら熱可塑性樹脂と複合化することができる。このため、溶融混練法によれば、製造工程が簡単であり、製造費用の低コスト化を図ることができる。
 なお、化学修飾セルロース系繊維集合体(化学修飾パルプ又は解繊原料ともいう)と熱可塑性樹脂との溶融混練に先立ち、予め、両者を混合しておくことも可能である。例えば、(i)乾燥状態の化学修飾MFC又は化学修飾パルプと、粉状又は粒状の熱可塑性樹脂とを混合し、得られた混合物を混練機に供給することもできる。あるいは、(ii)化学修飾パルプと、粉状又は粒状の熱可塑性樹脂とを、これらが溶解しない分散液にそれぞれ分散してから混合し、乾燥させたものを混練機に供給することもできる。混合の手段として、ベンチロール、バンバリーミキサー、ニーダー、プラネタリーミキサー、ヘンシェル型ミキサー、攪拌羽付き撹拌機、又は、公転若しくは自転方式の攪拌機を使用することが好ましい。
 化学修飾パルプと、粉状又は粒状の熱可塑性樹脂とを、これらが溶解しない分散液にそれぞれ分散してから混合する場合は、湿式メディア使用型アトライタ又は湿式微粉砕機トリゴナルを使用するが好ましい。その理由は、化学修飾パルプの解繊及び分散、並びに、化学修飾パルプと熱可塑性樹脂との混合を同時に実施することができるからである。
 上記(i)のように、溶融混練の前に、乾燥状態の化学修飾パルプと、粉状又は粒状の熱可塑性樹脂とを予め混合する場合には、この混合時に添加剤を添加することも可能である。
 本発明の製造法で製造される溶融混練組成物における化学修飾ミクロフィブリル化セルロース系繊維(化学修飾MFC)(A)の含有割合は、熱可塑性樹脂(C)と化学修飾MFC(A)との合計質量に対して、通常1~40質量%程度であり、3~30質量%であることが好ましい。溶融混練組成物における熱可塑性樹脂(C)の含有割合は、樹脂(C)と化学修飾MFC(A)との合計質量に対して通常60~99質量%程度であり、70~97質量%であることが好ましい。化学修飾MFCの含有割合を上記範囲にすることにより、強度特性に優れた溶融混練組成物を得ることができる。
 本発明の製造法で製造される溶融混練組成物は、マスターバッチとして使用することもできる。マスターバッチとして使用する場合、化学修飾MFC(A)の含有割合は、熱可塑性樹脂(C)と化学修飾MFC(A)との合計質量に対して、10~40質量%程度であることが好ましい。
 本発明の製造法で製造される組成物は、熱可塑性樹脂と化学修飾MFCとが溶融混練された組成物であることが好ましい。溶融混練法は、樹脂又は樹脂前駆体溶液とセルロース系繊維はその不織布に含浸して複合体を製造する方法よりも生産性が高いので、本発明の製造法によって高い生産性で化学修飾MFCを含有する樹脂組成物を製造することができる。
 本発明の繊維強化樹脂組成物は、本発明の効果が損なわれない範囲で添加剤を含むことができる。添加剤として、例えば、相溶化剤、界面活性剤、でんぷん類、アルギン酸等の多糖類、ゼラチン、ニカワ、カゼイン等の天然たんぱく質、タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物、着色剤、可塑剤、顔料、帯電防止剤、紫外線吸収剤、酸化防止剤等が挙げられる。
9.成形体
 本発明の製造方法で製造した溶融混練組成物を用いて、本発明の成形体を製造することができる。成形体を製造する際には、溶融混練組成物を、例えば、ペレット状、粉末状、シート状、板状、フィルム状等の各種形状に加工したものを成形材料として使用することができる。
 成形方法としては、射出成形、金型成形、押出成形等が挙げられる。成形体の形状としては、シート状、板状、フィルム状、立体構造等が挙げられる。用途に合わせて各種形状の成形体を、上記成形方法により製造することができる。本発明の製造方法で製造した溶融混練組成物を用いることにより、強度特性等に優れる成形体を得ることができる。
 本発明の製造方法で製造した溶融混練組成物から製造される成形体は、機械強度(引張り強度等)が要求される分野に使用することができる。具体的には、例えば、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等の筺体、構造材、内部部品等;建築材;文具等の事務機器等、容器、コンテナー等として有効に使用することができる。
 以下、実施例、比較例及び試験例を挙げて本発明を更に詳細に説明する。本発明はこれらの実施例に限定されるものではない。
 なお、実施例、比較例、及び試験例において使用される略称の意味は、以下の通りである。
Ac:アセチル基
NBKP:針葉樹漂白クラフトパルプ
TUKP:トドマツ由来の未漂白クラフトパルプ
GP:砕木パルプ
AcNBKP:NBKP中の一部の水酸基の水素原子がアセチル基で置換されたNBKPAcTUKP:TUKP中の一部の水酸基の水素原子がアセチル基で置換されたTUKPAcGP:GP中の一部の水酸基の水素原子がアセチル基で置換されたGP
MI:メルトインデックス(メルトフローレートとも称する)DPG:ジプロピレングリコール
TEG:トリエチレングリコール
TPG:トリプロピレングリコール
PEG200:数平均分子量200のポリエチレングリコール
PPG200:数平均分子量200のポリオキシプロピレングリコール
GP250:数平均分子量250のポリオキシプロピレングリセリルエーテル
PPG400:数平均分子量400のポリオキシプロピレングリコール
PPG1000:数平均分子量1000のポリオキシプロピレングリコール
 また、実施例、比較例、図、及び表において使用する以下の用語は、次の意味を有する。
・パス:二軸混練機に被処理物(試験材料)を供給し、混練機にかける回数を「パス」と呼ぶ。したがって、例えば、「1パス」は1回混練機にかけたことを意味し、「1パス目」は、最初に(1回目として)試験材料を混練にかけたことを意味し、「2パス目」は、1回混練機にかけた材料を次いで、2回目として混練機にかけたことを意味する。
・押出:混練機(押し出し機ともいう)に被処理物(試験材料)を供給し、混練処理を行うことを意味する。
(A)使用原材料
 以下の製造例、実施例及び比較例において、原材料として以下のものを使用した。
(1)樹脂
・ポリプロピレン(以下、「PP」とも称する):日本ポリプロ製、ノバテックMA04A、MI=40、ペレット
・ポリプロピレン粉(以下、「PP粉」とも称する):日本ポリプロ製、ノバテックMA04A、MI=40、粉状
(2)相溶化剤
・マレイン酸変性ポリプロピレン(以下、「MAPP」とも称する):東洋紡製、トーヨータックH1000P、MI=110、粉状
(3)フィラー
・タルク:日本タルク製、ミクロエースMSZ-C、平均粒径12.8μm、アミノ系表面処理済(4)添加物
・酸化防止剤(以下「AO」とも称する):BASF製、イルガノックス1010、フェノール系酸化防止剤
(B)使用機器
・二軸混練機:テクノベル製、スクリュ径φ15mm、L/D45(L/Dはスクリュ長さ(L)とスクリュ径(D)との比である)
・射出成形機:日精樹脂工業製、NPX 7型、型締め力7トン
(C)試験方法及び使用機器
(1)セルロース系繊維(以下、単に「繊維」とも称する。)の顕微鏡観察
 繊維の状態、又は組成物中の繊維の解繊若しくは分散状態を、以下の電子顕微鏡で観察した。
(1-1)走査型電子顕微鏡による、繊維強化樹脂組成物中の繊維の解繊状態の観察
 (a)観察用試料の作製
 繊維強化樹脂組成物(繊維、PP及びMAPP含有組成物)の試料作製
 樹脂成分の抽出溶媒としてキシレンを用い、繊維強化樹脂組成物から樹脂成分(PP及びMAPP)を抽出して除去し、試料を作製した。具体的には、繊維強化樹脂組成物(PP/MAPP/AO/繊維複合体)を上記抽出溶媒に投入して140℃で2時間程度加熱し、樹脂成分を抽出して除去し、繊維を主成分とする抽出残渣を得た。これをエタノールで洗浄し、得られた繊維を銅板上に置き、乾燥した後、スパッタリング装置(JEOL SEC-3000FC オートファインコーター)を用いてプラチナコートし、これを観察用試料とした。
 (b)観察
 得られた観察用試料について、電界放射型走査型電子顕微鏡(JSM-7800F:日本電子)を用いて、二次電子像観察を行った。
(2)強度試験(3点曲げ試験)
・試験片(成形体)の製造方法
 射出成形機を用いて短冊形試験片(10mm×80mm×4mm)を作製した。射出成形機のシリンダー温度を、170℃(供給部)~190℃(計量部)として樹脂組成物を融解し、温度35℃の金型に射出して成形体を調製した。得られた試験片を温度23℃、相対湿度50%の雰囲気下に2日間静置した後に試験した。
・試験方法
 試験片について、万能試験機(島津製作所製、AG5000E型)を用いて強度試験を行った。試験条件は支点間距離64mm、試験速度10mm/minとして試験した。
(3)アイゾット(Izod)衝撃試験
 射出成形機を用いて短冊形試験片(10mm×80mm×4mm)を作製し、アイゾット衝撃試験機((株)東洋精機製作所製)でアイゾット衝撃試験を実施した。試験片中央部に深さ2mmの切り欠き(ノッチ)を挿入した。2.75Jのハンマーを用いてノッチ側を打撃し、ノッチから亀裂を進展させ、その衝撃強度を算出した。
(4)シャルピー(Charpy)衝撃試験射出成形機を用いて短冊形試験片(10mm×80mm×4mm)を作製し、シャルピー衝撃試験機((株)安田精機製作所製)でシャルピー衝撃試験を実施した。試験片中央部に深さ2mmの切り欠き(ノッチ)を挿入した。2.0Jのハンマーを用いてノッチと反対側を打撃し,その衝撃強度を算出した。
<製造例1>AcTUKPの製造(ロット番号:KA089、DS:0.63
・使用パルプ:トドマツ由来未漂白クラフトパルプ(TUKP)
 TUKPをリファイナー処理し、濾水度(CSF)が300mlのTUKPとし、これを抄紙して厚さ約0.2mmのシート状TUKPを得た。TUKP成分(質量%):セルロース(65.4%)、ヘミセルロース(31.6%)、リグニン(3.0%)。固形分含有量10.2質量%。
・AcTUKPの製造方法:上記シート状TUKP(固形分含有量2400g)に無水酢酸4800gを加え、125℃で6時間反応させた。反応混合物を50℃まで冷却し、デカンテーションにより液体を取り除いた後、減圧下80℃に加熱、さらに真空乾燥機で50℃に加熱して無水酢酸及び酢酸を留去した。乾燥して乾燥重量で2398gのシート状AcTUKPを得た。このAcTUKPのDSは、0.63であった。このAcTUKPを、後述する解繊試験に使用した。
 以下、上記と同様にして、表1に示すアセチル化パルプを製造した。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
繊維強化樹脂組成物(試験番号PP1480、組成比:AcTUKP/MAPP/タルク/AO/PP=(10/10/5/1/75)の製造)
 PP以外の全ての原材料を、AcTUKP(ロット番号KA091)/MAPP/タルク/δ-バレロラクトン/水/AO=(1.94+10)/10/5/10/20/1の組成比で混合して混合物を調製し、これをスタート材料として使用して、下記の工程(1パス目~3パス目)に従い標記の繊維強化樹脂組成物を製造した。
組成比の表記方法:
 なお、二軸混練機にかけた上記混合物の組成比の表記AcTUKP/MAPP/タルク/δ-バレロラクトン/水/AO=(1.94+10)/10/5/10/20/1における数値は、以下の意味を有する。(1.94+10):混合物の全質量中に占めるAcTUKPの質量割合を表記したものである。ここで、上記(1.94+10)における1.94は、混合物の全質量中に占めるAcTUKPのアセチル基(Ac)(これはAcTUKPのDS値から算出される)とリグニンの合計の質量割合を意味する。また、上記(1.94+10)における10は、混合物の全質量中の繊維成分(すなわち、セルロース+ヘミセルロース)の質量割合を意味する。したがって、(1.94+10)=11.94が、混合物の全質量中に占めるAcTUKPの質量割合である。
10:混合物の全質量中のMAPPの質量割合
5:混合物の全質量中のタルクの質量割合
10:混合物の全質量中のδ-バレロラクトン質量割合
20:混合物の全質量中の水の質量割合
1:混合物の全質量中のAOの質量割合
 特に断りがない限り、混合物及び混練物の組成比の記載はこの表記方法に従うものとする。
 上記の、混合物中の各成分比率の数値の記載方法は、樹脂組成物中の各成分の比率の表記に適用される。
 但し、本明細書の強度試験結果を示す表中に記載された成形体(試験片)の含有成分(組成比:10/10/5/1/75)については、含有する化学修飾された繊維の表示はその略称で記載(例えば、アセチル化されたトドマツ未漂白クラフトパルプはその略称AcTUKPで記載)されているが、その含有質量は未修飾繊維に換算して(すなわちAcTUKPの含有質量はTUKPに換算して)示している。
 また、溶融混練物及び成形体(試験片)中の水及び解繊剤(B1)の含有量がごく少量であるときは、溶融混練物の組成比において、水及び解繊剤(B1)の組成比率は省略する。
 以下、製造方法を詳述する。
(1パス目:脱水押出)
 上記のスタート材料を、混練機シリンダーを80℃(上流部)~130℃(下流部)に傾斜加熱し、ベントを設けた二軸混練機に通すことにより脱水押出を行った。MAPPがδ-バレロラクトン(解繊剤B1)により膨潤され、上記スタート材料の混合物が混練されて一体化した状態で吐出された。
(2パス目:δ-バレロラクトン/MAPP膨潤物の混練)
 混練機シリンダーを130℃に設定した二軸混練機に、上記1パス済の混練物を通して、混練押出を行った。1パス済の混練物から、水及びδ-バレロラクトンが排出された。2パス後の混練物の組成比は、AcTUKP/MAPP/タルク/(δ-バレロラクトン+水)/AO=(1.94+10)/10/5/7.84/1(組成合計質量部は35.78)であった。
(3パス目:PPによる希釈押出)
 上記2パス済の混練物にPPを混合し、(2パス混合物)/PP=35.78/72.06の組成比の混合物とし、これをシリンダー温度180℃の二軸混練機で溶融混練し、水及びδ-バレロラクトンを低減するため、真空ベントにより脱気を行って、製造される繊維強化組成物の強度特性に大きな影響を与えない程度に少量の水分及び1質量%以下のδ-バレロラクトンを含有する溶融混練物を得た。得られた溶融混練物の組成比は、AcTUKP/MAPP/タルク/AO/PP=(1.94+10)/10/5/1/75(AcTUKPをTUKPに換算して表示すると10/10/5/1/75)であった。溶融混練物は水分及び解繊剤(B1)であるδ-バレロラクトンを少量含有するが、組成比率が小さいため、組成比の表記において水分及び解繊剤(B1)であるδ-バレロラクトンの組成比率は省略されている)。これは、以下の実施例2~11の繊維強化樹脂組成物(溶融混練物)についても同様である。また、実施例2~11の繊維強化樹脂組成物における解繊剤(B1)含有量も1質量%以下であった。
 得られた組成物から、前記条件に従って試験片(成形体)を作製し、試験片について、上記の方法で3点曲げ試験、アイゾット衝撃試験及びシャルピー衝撃試験を行った。その結果を表2に示す。
(実施例2)
繊維強化樹脂組成物(試験番号PP1431、組成比:AcTUKP/MAPP/タルク/AO/PP=(10/10/5/1/75)の製造)
 AcTUKP(ロット番号KA091 DS=0.61)の代わりにAcTUKP(ロット番号KA093 DS=0.63))を使用し、解繊剤δ-バレロラクトンの代わりにε-カプロラクトンを使用する以外は、実施例1と同様にしてに、実施例2の繊維強化樹脂組成物を得た。
 得られた組成物から、前記条件に従って試験片(成形体)を作製し、試験片について、実施例1と同様にして各種試験を行った。その結果を表2に示す。
 なお、表2~表4における繊維強化樹脂組成物は、
Figure JPOXMLDOC01-appb-T000002
(実施例3~10)
 実施例3~10は解繊剤B1としての多価アルコールと解繊剤B2としてのタルクを併用して繊維強化樹脂組成物を製造した実施例である。使用した繊維は表1における「化学修飾パルプを使用した実施例及び比較例等の番号」欄に示した通りである。
 得られた組成物から、前記条件に従って試験片(成形体)を作製し、試験片について、実施例1と同様にして各種試験を行った。その結果を表3に示す。
(実施例11)
 タルクを使用しない以外は、実施例6と同様にして、繊維強化樹脂組成物を製造し、試験片(成形体)を作製し、試験を行った。試験結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 得られた実施例6の組成物(試験番号PP1482)から、前記条件に従って顕微鏡観察用試料を作製し、試料中の繊維の状態を電子顕微鏡により観察した。電子顕微鏡観察像を図2に示す。比較のために実施例6の組成物の調製原料として用いたAcTUKP(KA091)にプラチナコートのみを加えて電子顕微鏡で観察した。電子顕微鏡観察像を図1に示す。
 図1と図2の比較より、溶融混練前のAcTUKPの繊維直径は約40μmであったが、混練により数十nm~5μmに解繊されたことが判る。
(比較例1) PP成形体(非繊維強化PP)
 市販ペレット状PPを、射出成形機によりシリンダー温度190℃にて成形体(幅10mm×長さ80mm×厚み4mmの試験片)に加工した。
得られた試験片について、上記の方法で試験を行った。その結果を表4に示す。
(比較例2) 試験番号PP1638(多価アルコールとしてのPPGの数平均分子量が1000であることを除き実施例10と同様の組成)
 数平均分子量400のポリオキシプロピレングリコールの代わりに数平均分子量1000のポリオキシプロピレングリコール(PPG1000)を使用するほかは、実施例10と同様にして繊維強化樹脂組成物を製造した。得られた組成物から、前記条件に従って、試験片(成形体)を作製し、試験片について、前記の方法で試験を行った。その結果を表4に示す。
(比較例3) 解繊剤を使用しないで調製した繊維強化PP組成物
特開2016-176052の表11に記載された、AcNBKP(リグニン0.1%、DS=0.46)含有PP組成物(No.PP-304の組成物)から、前記条件に従って、試験片(成形体)を作製し、試験片について、前記の方法で試験を行った。その結果を表4に示す。なお、この繊維強化樹脂組成物の製造方法は特開2016-176052の0276段落~0280段落に記載のとおりである。
(比較例4) 解繊剤を使用しないで調製した繊維強化PP組成物
特開2016-176052の表11に記載された、AcGP(リグニン10.3%、DS=0.6)含有PP組成物(No.PP-450の組成物)から、前記条件に従って、試験片(成形体)を作製し、試験片について、前記の方法で試験を行った。その結果を表4に示す。なお、この繊維強化樹脂組成物の製造方法は特開2016-176052の0276段落~0280段落に記載のとおりである。
Figure JPOXMLDOC01-appb-T000004

Claims (17)

  1.  ミクロフィブリル化された疎水化セルロース系繊維(A)、解繊剤(B1)及び熱可塑性樹脂(C)を含有する繊維強化樹脂組成物(D)であって、
    前記ミクロフィブリル化された疎水化セルロース系繊維(A)が炭素数2~5のアシル基で修飾され、
    前記解繊剤(B1)が分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物である、
    樹脂組成物(D)。
  2.  前記繊維強化樹脂組成物(D)が解繊剤(B2)をさらに含み、
    前記解繊剤(B2)がタルク、クレイ、ゼオライト、酸化アルミニウム、炭酸カルシウム、酸化チタン、シリカ、酸化マグネシウム及びマイカからなる群から選ばれる少なくとも一種である、請求項1に記載の繊維強化樹脂組成物。
  3.  前記解繊剤(B1)が、ジプロピレングリコール、トリエチレングリコール、ジグリセロール、トリプロピレングリコール、テトラエチレングリコール、ポリエチレングリコール(数平均分子量200~400)、ポリオキシプロピレングリコール(数平均分子量200~400)、ポリオキシプロピレングリセリルエーテル(数平均分子量200~400)、δ-バレロラクトン及びε-カプロラクトンからなる群から選ばれる少なくとも一種である、請求項1又は2に記載の繊維強化樹脂組成物。
  4.  前記ミクロフィブリル化された疎水化セルロース系繊維(A)がアセチル基で修飾され、前記解繊剤(B1)が、ジプロピレングリコール、トリプロピレングリコール、ポリオキシプロピレングリコール(平均分子量200)、ポリオキシプロピレングリセリルエーテル(平均分子量250)、δ-バレロラクトン及びε-カプロラクトンからなる群から選ばれる少なくとも一種である、請求項1又は2に記載の繊維強化樹脂組成物。
  5.  前記熱可塑性樹脂(C)が、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリ塩化ビニール、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、スチレン―ブタジエンブロック共重合体、ポリカーボネート-ABSアロイ(PC-ABSアロイ)及び変性ポリフェニレンエーテル(m-PPE)からなる群から選ばれる少なくとも一種である請求項1~4のいずれかに記載の繊維強化樹脂組成物。
  6.  前記ポリオレフィンが、ポリプロピレン、ポリエチレン、ポリプロピレン共重合体及びポリエチレン共重合体からなる群から選ばれる少なくとも一種である請求項5に記載の繊維強化樹脂組成物。
  7.  前記ミクロフィブリル化された疎水化セルロース系繊維(A)がミクロフィブリル化された疎水化リグノセルロース繊維(MFLC)である、請求項1~6のいずれかに記載の繊維強化樹脂組成物。
  8.  前記解繊剤(B1)の含有量が繊維強化樹脂組成物全質量に対して0.001~2質量%である請求項1~7のいずれかに記載の繊維強化樹脂組成物。
  9.  請求項8に記載の繊維強化樹脂組成物からなる成形体。
  10. 炭素数2~5のアシル基で修飾された疎水化セルロース系繊維集合体(AP)、解繊剤(B1)及び熱可塑性樹脂(C)を混合し、この混合操作中に前記疎水化セルロース系繊維集合体(AP)を解繊してミクロフィブリル化する工程を含む、
    ミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂(C)とを含有する繊維強化樹脂組成物(D)の製造方法であって、
    前記ミクロフィブリル化された疎水化セルロース系繊維(A)が炭素数2~5のアシル基で修飾され、
    前記解繊剤(B1)が分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物である、
    繊維強化樹脂組成物(D)の製造方法。
  11.  前記工程において解繊剤(B2)をさらに混合することにより、解繊剤(B2)をさらに含有する繊維強化樹脂組成物(D)を製造する、請求項10に記載の製造方法であって、前記解繊剤(B2)が、タルク、クレイ、ゼオライト、酸化アルミニウム、炭酸カルシウム、酸化チタン、シリカ、酸化マグネシウム及びマイカからなる群から選ばれる少なくとも一種である、方法。
  12. (1)炭素数2~5のアシル基で修飾された疎水化セルロース系繊維集合体(AP)、解繊剤(B1)及び熱可塑性樹脂(C)を混合し、この混合操作中に前記疎水化セルロース系繊維集合体(AP)を解繊してミクロフィブリル化する第一工程と、
    (2)第一工程で得られた、ミクロフィブリル化された疎水化セルロース系繊維(A)、解繊剤(B1)及び熱可塑性樹脂(C)を含む混合物から解繊剤(B1)を除去する第二工程を含む、
    ミクロフィブリル化された疎水化セルロース系繊維(A)と熱可塑性樹脂(C)とを含有する繊維強化樹脂組成物(D)の製造方法であって、
    前記ミクロフィブリル化された疎水化セルロース系繊維(A)が炭素数2~5のアシル基で修飾され、
    前記解繊剤(B1)が分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物である、
    繊維強化樹脂組成物(D)の製造方法。
  13.  前記第一工程において解繊剤(B2)をさらに混合することにより、解繊剤(B2)をさらに含有する繊維強化樹脂組成物(D)を製造する、請求項12に記載の製造方法であって、前記解繊剤(B2)が、タルク、クレイ、ゼオライト、酸化アルミニウム、炭酸カルシウム、酸化チタン、シリカ、酸化マグネシウム及びマイカからなる群から選ばれる少なくとも一種である、方法。
  14.  請求項10又は11の前記工程又は請求項12又は13の前記第一工程において、さらに相溶化剤(E)を混合する、ミクロフィブリル化された疎水化セルロース系繊維(A)、熱可塑性樹脂(C)及び相溶化剤(E)、又はミクロフィブリル化された疎水化セルロース系繊維(A)、解繊剤(B2)、熱可塑性樹脂(C)及び相溶化剤(E)を含有する繊維強化樹脂組成物(D)の製造方法。
  15.  前記熱可塑性樹脂が、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート-ABSアロイ(PC-ABSアロイ)及び変性ポリフェニレンエーテル(m-PPE)からなる群から選ばれる少なくとも一種である、請求項10~請求項14のいずれかに記載の繊維強化樹脂組成物(D)の製造方法。
  16.  分子量が130~400の多価アルコール及び分子量が86~115のラクトンからなる群から選ばれる少なくとも一種の化合物からなる、炭素数2~5のアシル基で修飾された疎水化セルロース系繊維集合体を解繊するための解繊剤。
  17.  前記化合物が、ジプロピレングリコール、トリエチレングリコール、ジグリセロール、トリプロピレングリコール、テトラエチレングリコール、ポリエチレングリコール(数平均分子量200~400)、ポリオキシプロピレングリコール(数平均分子量200~400)、ポリオキシプロピレングリセリルエーテル(数平均分子量200~400)、δ-バレロラクトン及びε-カプロラクトンからなる群から選ばれる少なくとも一種である、請求項16に記載の解繊剤。
PCT/JP2021/007031 2020-02-26 2021-02-25 解繊性が改良された繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤 WO2021172407A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022503676A JPWO2021172407A1 (ja) 2020-02-26 2021-02-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-030516 2020-02-26
JP2020030516 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021172407A1 true WO2021172407A1 (ja) 2021-09-02

Family

ID=77491896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007031 WO2021172407A1 (ja) 2020-02-26 2021-02-25 解繊性が改良された繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤

Country Status (2)

Country Link
JP (1) JPWO2021172407A1 (ja)
WO (1) WO2021172407A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210395949A1 (en) * 2018-07-17 2021-12-23 Suzano S.A. Process for producing a nanocelullosic material comprising at least two stages of defibrillation of cellulosic feedstock and at least one intermediate fractioning stage
WO2024106173A1 (ja) * 2022-11-15 2024-05-23 日本製紙株式会社 樹脂複合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003450A1 (ja) * 2003-07-08 2005-01-13 Kansai Technology Licensing Organization Co., Ltd. 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
JP2011219571A (ja) * 2010-04-07 2011-11-04 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂及びその成形体
JP2011225847A (ja) * 2010-03-31 2011-11-10 Osaka Gas Co Ltd セルロースの製造方法
WO2017159778A1 (ja) * 2016-03-18 2017-09-21 国立大学法人京都大学 アシル化修飾ミクロフィブリル化植物繊維を含有するマスターバッチ
JP2018141051A (ja) * 2017-02-27 2018-09-13 スターライト工業株式会社 ナノファイバー複合体の製造方法
WO2019163873A1 (ja) * 2018-02-21 2019-08-29 国立大学法人京都大学 疎水化セルロース系繊維用の解繊助剤、それを使用する樹脂組成物の製造方法並びに成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003450A1 (ja) * 2003-07-08 2005-01-13 Kansai Technology Licensing Organization Co., Ltd. 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
JP2011225847A (ja) * 2010-03-31 2011-11-10 Osaka Gas Co Ltd セルロースの製造方法
JP2011219571A (ja) * 2010-04-07 2011-11-04 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂及びその成形体
WO2017159778A1 (ja) * 2016-03-18 2017-09-21 国立大学法人京都大学 アシル化修飾ミクロフィブリル化植物繊維を含有するマスターバッチ
JP2018141051A (ja) * 2017-02-27 2018-09-13 スターライト工業株式会社 ナノファイバー複合体の製造方法
WO2019163873A1 (ja) * 2018-02-21 2019-08-29 国立大学法人京都大学 疎水化セルロース系繊維用の解繊助剤、それを使用する樹脂組成物の製造方法並びに成形体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210395949A1 (en) * 2018-07-17 2021-12-23 Suzano S.A. Process for producing a nanocelullosic material comprising at least two stages of defibrillation of cellulosic feedstock and at least one intermediate fractioning stage
WO2024106173A1 (ja) * 2022-11-15 2024-05-23 日本製紙株式会社 樹脂複合物

Also Published As

Publication number Publication date
JPWO2021172407A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
JP7185215B2 (ja) 繊維強化樹脂組成物、繊維強化成形体及びその製造方法
JP6640623B2 (ja) アシル化修飾ミクロフィブリル化植物繊維を含有するマスターバッチ
JP6775160B2 (ja) 疎水化セルロース系繊維用の解繊助剤、それを使用する樹脂組成物の製造方法並びに成形体
KR102405761B1 (ko) 화학적으로 개질된 셀룰로오스 나노섬유 및 열가소성 수지를 포함하는 섬유 강화 수지 조성물
Igarashi et al. Manufacturing process centered on dry-pulp direct kneading method opens a door for commercialization of cellulose nanofiber reinforced composites
Jamaluddin et al. Surface modification of cellulose nanofiber using acid anhydride for poly (lactic acid) reinforcement
JP5496435B2 (ja) 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
US9809687B2 (en) Process for manufacturing a thermoformable plasticized composite containing cellulose fiber and a moldable polymer
JP6532561B2 (ja) 改質セルロース繊維の製造方法
WO2021172407A1 (ja) 解繊性が改良された繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤
Zarrinbakhsh et al. Biodegradable green composites from distiller's dried grains with solubles (DDGS) and a polyhydroxy (butyrate‐co‐valerate)(PHBV)‐based bioplastic
Li et al. Homogeneous dispersion of chitin nanofibers in polylactic acid with different pretreatment methods
WO2021075224A1 (ja) セルロース複合体の製造方法、セルロース複合体/樹脂組成物の製造方法、セルロース複合体、及びセルロース複合体/樹脂組成物
Oguz et al. High-performance green composites of poly (lactic acid) and waste cellulose fibers prepared by high-shear thermokinetic mixing
Lora Lignin: A platform for renewable aromatic polymeric materials
Sharifi et al. Extruded biocomposite films based on poly (lactic acid)/chemically-modified agricultural waste: Tailoring interface to enhance performance
JP7333510B2 (ja) 繊維強化樹脂組成物及びその製造方法、並びに成形体
JP6792265B2 (ja) エチレングリコール誘導体を含有するアセチル化パルプ組成物、ミクロフィブリル化されたアセチル化パルプを含有する樹脂組成物、及びそれらの製造方法
Wang et al. Biodegradable Poly (Butylene Adipate-Co-Terephthalate) Nanocomposites Reinforced with In Situ Fibrillated Nanocelluloses
Li Properties of agave fiber reinforced thermoplastic composites
JP2021181545A (ja) 塩化ビニル系重合体組成物、その製造方法及びその用途
JP2021020988A (ja) 塩化ビニル系重合体組成物、その製造方法及びその用途
JP7118701B2 (ja) 複合体及びその製造方法
Ghozali et al. Effect of lignin on bio-based/oil-based polymer blends
EP4011955A1 (en) Polymer complex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760836

Country of ref document: EP

Kind code of ref document: A1