WO2019066069A1 - 成形品 - Google Patents

成形品 Download PDF

Info

Publication number
WO2019066069A1
WO2019066069A1 PCT/JP2018/036582 JP2018036582W WO2019066069A1 WO 2019066069 A1 WO2019066069 A1 WO 2019066069A1 JP 2018036582 W JP2018036582 W JP 2018036582W WO 2019066069 A1 WO2019066069 A1 WO 2019066069A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
thermoplastic resin
group
ring
anion
Prior art date
Application number
PCT/JP2018/036582
Other languages
English (en)
French (fr)
Inventor
宰慶 金
健一 須山
中島 康雄
英史 小澤
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201880063823.5A priority Critical patent/CN111183187A/zh
Priority to JP2019545198A priority patent/JP7252128B2/ja
Priority to EP18860137.1A priority patent/EP3689972A4/en
Publication of WO2019066069A1 publication Critical patent/WO2019066069A1/ja
Priority to US16/832,986 priority patent/US11578192B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/017Antistatic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/025Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • F16H55/18Special devices for taking up backlash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V15/00Protecting lighting devices from damage
    • F21V15/01Housings, e.g. material or assembling of housing parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/502Bases; Cases composed of different pieces
    • H01R13/504Bases; Cases composed of different pieces different pieces being moulded, cemented, welded, e.g. ultrasonic, or swaged together

Definitions

  • the present invention relates to a molded article provided with a resin body such as a lamp body of a lamp, a speaker unit, a junction box, a connector, a pulley, and a house film, and more particularly to a molded article provided with a resin part produced by injection molding, T-die molding or the like. More specifically, the lamp body, the speaker unit, the connection box, the connector, the pulley, and the house of a lamp provided with a resin portion formed of a thermoplastic resin composition containing cellulose, particularly fibrous cellulose of plant origin and an ionic compound. It relates to molded articles such as films.
  • a vehicle lamp generally includes a lamp body having an opening, a front cover covering the opening, an extension, a reflector, a light source, an electric component, and the like.
  • a lamp body having an opening, a front cover covering the opening, an extension, a reflector, a light source, an electric component, and the like.
  • it is effective to form a lamp body having a relatively high ratio with respect to the total weight of the vehicle lamp among the component parts of the vehicle lamp from a resin material.
  • the in-vehicle speaker unit is also required to improve strength characteristics against vibration and acoustic characteristics as a speaker unit.
  • junction boxes and connectors for automobiles are generally manufactured by injection molding using a glass fiber reinforced thermoplastic resin in which glass fibers are dispersed as a reinforcing material.
  • a glass fiber reinforced thermoplastic resin in which glass fibers are dispersed as a reinforcing material.
  • high-strength resin it is possible to reduce the thickness and weight of the connection box and the connector.
  • a connection box, a connector, etc. by injection molding, a runner end material, a misshot goods generate
  • the connection box and connector etc. which were formed using the glass fiber reinforced thermoplastic resin may be collect
  • the glass fiber reinforced thermoplastic resin is greatly reduced in strength due to recycling.
  • a resin portion is integrally molded on the outer periphery of a rolling bearing, and the resin portion is formed by injection molding using a resin containing a reinforcing fiber or the like from the viewpoint of productivity.
  • a gate for adjusting the inflow speed of the resin material is essential to the injection molding machine.
  • welds occur at portions where the resin materials flowing into the mold from the gate join together, which causes non-uniformity of reinforcing fibers in the circumferential direction, which may cause unevenness in strength and dimensional accuracy.
  • strength characteristic which endures the tension of a belt, etc. are required.
  • the lamp body is also required to have excellent dimensional accuracy.
  • Such weight reduction and improvement in strength characteristics of various molded members are not limited to members for vehicles such as automobiles, but are also required for molded members such as, for example, agricultural houses.
  • Agricultural houses are widely used to protect the products in the house from the outside and maintain a certain environment.
  • films of agricultural houses mainly consist of vinyl chloride, polyethylene, polyethylene-vinyl acetate copolymer, polyethylene terephthalate (PET), polyethylene-tetrafluoroethylene copolymer, etc.
  • PET polyethylene terephthalate
  • the transparent film used as a raw material is mainly used.
  • the scale of agricultural houses may be increased from the viewpoint of improving productivity and the like.
  • cellulose is considered promising as a compounding material of resin portions provided in various members.
  • Cellulose is a natural resource that is abundant and renewable on earth, and thus is suitable as a highly recyclable material.
  • Cellulose is also known to be lightweight, and its mechanical properties are increased by refining it to a minute size, and when it is refined to nano size, it becomes a material with extremely high elastic modulus and high strength.
  • the resin blended with the finely divided cellulose has better surface smoothness as compared to the resin blended with glass fiber or carbon fiber.
  • the research which utilizes the cellulose which has such a characteristic as a reinforcing material of a thermoplastic resin is also done, and the possibility is noted.
  • a method for producing a composite resin comprising such cellulose fine fibers and a thermoplastic resin
  • plant fibers are fibrillated (microfibrillated), and the microfibrillated plant fibers (cellulose fine fibers) are obtained.
  • at least the step of disaggregating (microfibrillating) plant fibers and the step of mixing and combining the microfibrillated plant fibers (cellulose-based fine fibers) with a thermoplastic resin including.
  • Patent Document 2 a method has been proposed in which plant fibers are chemically treated to modify the surface, and then the modified plant fibers and the thermoplastic resin are kneaded with a processing machine.
  • This method is a method of promoting refinement of plant fibers while kneading denatured plant fibers together with a thermoplastic resin in a processing machine.
  • plant fibers are once swollen, treated with chemicals, dried and then introduced into a processing machine. Therefore, although the method described in Patent Document 2 is an improvement over the conventional method, the procedure is complicated and there is a limit to cost reduction.
  • a molded article as described above for example, a lamp body is formed by injection molding using a composite resin containing polypropylene and a vegetable fiber as described in Patent Document 1, a mold used for the molding Is easily corroded. Therefore, it is desirable that injection molding be performed while preventing corrosion to the mold as much as possible.
  • An object of the present invention is to provide a molded article comprising a resin portion formed of a thermoplastic resin composition in which cellulose can be finely divided and the finely divided cellulose is uniformly dispersed in a thermoplastic resin.
  • the inventors of the present invention have been able to make the finely divided plant fiber uniform in the thermoplastic resin by coexisting an ionic substance in addition to the plant fiber and the thermoplastic resin. It has been found that a cellulose-reinforced thermoplastic resin which is a dispersed composite resin is obtained, and a molded article provided with a resin portion formed of the cellulose-reinforced thermoplastic resin is obtained.
  • thermoplastic resin cellulose and an ionic compound are contained, the content of the cellulose is 1 to 100 parts by mass, and the content of the ionic compound is 100% by mass of the thermoplastic resin.
  • a molded article comprising a resin portion formed of a thermoplastic resin composition which is 0.001 or more and less than 1.000.
  • Ra represents a hydrogen atom or a substituent.
  • L 1 represents a divalent linking group.
  • R 1 to R 5 independently represents an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group or a heterocyclic group. At least two of R 2 to R 5 may bond to each other to form a ring.
  • X - represents an anion.
  • the compound represented by the general formula (1) or (2) is described in [2] represented by any of the following general formulas (1a), (1b), (2a) to (2c) Molded articles.
  • R 1, R 2 and X - is, R 1 in the general formula (1) or (2), R 2 and X - synonymous It is.
  • R 11 and R 12 each independently represent a substituent.
  • n 11 is an integer of 0 to 3
  • n 12 is an integer of 0 to 5.
  • R 11 is 2 or more
  • plural R 11 s may be the same as or different from each other.
  • at least two R 11 may be bonded to each other to form a ring.
  • Each of R 13 to R 15 independently represents an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group or a heterocyclic group.
  • R 21 has the same meaning as R 2 .
  • R ⁇ 1 and R ⁇ 2 may be bonded to each other to form a ring.
  • the present invention it has become possible to provide a molded article provided with a resin portion in which finely divided cellulose is uniformly dispersed and contained in a thermoplastic resin without aggregation or reaggregation. That is, by kneading the fibrous cellulose (pulp) of plant origin containing an ionic compound with the thermoplastic resin, it is possible to advance the refining of the pulp in the process. For this reason, the process which refine
  • a pulley which is reduced in weight and strength and has excellent dimensional accuracy, a lamp body of a lamp, a speaker unit excellent in acoustic characteristics, a connection box excellent in recyclability, a connector, a film for house, etc. Can be obtained.
  • FIG. 4 is a cross-sectional view of the in-vehicle speaker device shown in FIG. It is a perspective view which shows an example of the connection box which concerns on one Embodiment of the molded article of this invention. It is a disassembled perspective view of the connection box shown in FIG.
  • FIG. 8 is a cross-sectional view of the pulley shown in FIG. 7 taken along the line BB. It is a perspective view which shows an example of the house for agriculture which used the film for houses which concerns on one Embodiment of the molded article of this invention.
  • the molded article of the present invention contains a thermoplastic resin, cellulose and an ionic compound, and the content of the cellulose is 1 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and the content of the ionic compound is And a resin portion formed of the thermoplastic resin composition which is 0.001 times or more and less than 1.000 times the cellulose.
  • thermoplastic resin composition used for formation of the resin part with which the molded article of this invention is equipped contains a thermoplastic resin, a cellulose, and an ionic compound at least.
  • thermoplastic resin used in the present invention is not particularly limited, and any resin may be used as long as it is generally used as a thermoplastic resin. This is due to the reason described below.
  • the refining of cellulose is realized by kneading the cellulose and the ionic compound in the thermoplastic resin.
  • the viscosity of the thermoplastic resin at the time of mixing with cellulose becomes an important characteristic. That is, the stress (Fh) felt by the shear field of the dispersion of cellulose (including the ionic compound) present in the thermoplastic resin is simply expressed by the following formula (1.1).
  • the stress (Fh) felt by the dispersion in the shear field represents the force felt by the spherical filler of radius R within the thermoplastic resin of viscosity ⁇ having a shear rate of ⁇ .
  • the formula as it is can not be applied, but in principle it is the same and the stress (Fh) felt by the dispersion in the shear field
  • the affecting parameters ( ⁇ , ⁇ , R) are also considered to be the same. Therefore, in order to refine cellulose, it is important how large force can be applied in the shear field in the thermoplastic resin, so it is considered that the larger ⁇ or ⁇ , the more advantageous.
  • to increase the shear rate ( ⁇ ) means to increase the shear rate mechanically applied to the thermoplastic resin. Therefore, when the shear rate ( ⁇ ) is increased, the force felt by the cellulose in the thermoplastic resin is increased, but the friction force due to the kneading is simultaneously increased, and the temperature of the thermoplastic resin is increased. However, since cellulose generally discolors when it exceeds 200 ° C. and it is thermally decomposed from near 300 ° C., a method of exposing to a shear field that extremely raises the temperature is characteristic of the material. It is not appropriate from the viewpoint of maintaining.
  • the viscosity ( ⁇ ) of the thermoplastic resin is important to increase the viscosity ( ⁇ ) of the thermoplastic resin in order to make the cellulose finer.
  • the viscosity ( ⁇ ) of a thermoplastic resin satisfies the following relationship (Andredo's equation).
  • A is a constant of proportionality
  • Ev is a fluid activation energy
  • R is a gas constant
  • T is a temperature (K).
  • the flow activation energy corresponds to the activation energy in Arrhenius's chemical reaction, and is understood by regarding flow as a velocity process.
  • an important parameter to control viscosity ( ⁇ ) is temperature.
  • the temperature can be manipulated and adjusted as the processing temperature regardless of the type of thermoplastic resin. Therefore, the thermoplastic resin as a medium which gives the force necessary to miniaturize cellulose is widely applicable without any particular limitation.
  • thermoplastic resin examples include polyolefin resin, polyester resin, polycarbonate resin, polyamide resin, polyimide resin, polyurethane resin, polyphenylene sulfide resin, polyphenylene oxide resin, cellulose acylate resin, phenoxy resin and the like.
  • a polyolefin resin is preferred.
  • the polyolefin resin is a polyolefin resin formed by polymerizing at least one olefin, and may be a homopolymer or a copolymer.
  • olefins include, for example, ethylene, propylene, isobutylene, isobutene (1-butene), ⁇ -olefins of 4 to 12 carbon atoms, butadiene, isoprene, (meth) acrylic acid ester, (meth) acrylic acid And (meth) acrylamide, vinyl alcohol, vinyl acetate, vinyl chloride, styrene, acrylonitrile and the like.
  • Examples of the ⁇ -olefin having 4 to 12 carbon atoms include 1-butene, 2-methyl-1-propene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene and 2-ethyl -1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl-1-butene, 1 -Heptene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1-butene, methylethyl-1-butene, 1-octene, methyl-1-pentene, ethyl-1-hexene, Dimethyl-1-hexene, propyl-1-heptene, methylethyl-1-heptene, trimethyl-1-pentene, propyl-1-pentene, diethyl-1-butene
  • polyolefin resins examples include polyethylene resins, polypropylene resins, polyisobutylene resins, polyisobutene resins, polyisoprene resins, polybutadiene resins, (meth) acrylic resins (so-called acrylic resins), vinyl resins such as polyvinyl chloride resins, and poly (meth) resins.
  • acrylic resins acrylic resins
  • vinyl resins such as polyvinyl chloride resins
  • (meth) resins 2.
  • Acrylamide resin polystyrene resin, acrylonitrile / butadiene / styrene copolymer resin (ABS resin), ethylene / (meth) acrylate copolymer, ethylene / vinyl acetate copolymer, etc. may be mentioned.
  • polyethylene resin, polypropylene resin and acrylonitrile / butadiene / styrene copolymer resin are preferable, and polyethylene resin and polypropylene resin are more preferable.
  • polyethylene resin examples include ethylene homopolymers and ethylene- ⁇ -olefin copolymers.
  • ⁇ -olefin 1-butene, 1-pentene, 1-hexene and 1-octene are preferable.
  • ethylene- ⁇ -olefin copolymer examples include ethylene-1-butene copolymer, ethylene-1-pentene copolymer, ethylene-1-hexene copolymer, ethylene-1-octene copolymer and the like. It can be mentioned.
  • polyethylene is high density polyethylene (HDPE), low density polyethylene (LDPE), ultra low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), ultra high Any of molecular weight polyethylene (UHMW-PE) may be used.
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • VLDPE ultra low density polyethylene
  • LLDPE linear low density polyethylene
  • UHMW-PE ultra high Any of molecular weight polyethylene
  • polypropylene resin propylene homopolymer, propylene-ethylene random copolymer, propylene- ⁇ -olefin random copolymer, propylene-ethylene- ⁇ -olefin copolymer, propylene block copolymer (propylene homopolymer component Or a copolymer component obtained by copolymerizing propylene with a copolymer component mainly having a constitutional unit of propylene, and at least one of monomers selected from ethylene and ⁇ -olefin.
  • polypropylene resins may be used alone or in combination of two or more.
  • the ⁇ -olefin used for the polypropylene resin is preferably 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-butene, 1-hexene, 1- Octene is more preferred.
  • propylene- ⁇ -olefin random copolymer examples include a propylene-1-butene random copolymer, a propylene-1-hexene random copolymer, and a propylene-1-octene random copolymer.
  • propylene-ethylene- ⁇ -olefin copolymer examples include propylene-ethylene-1-butene copolymer, propylene-ethylene-1-hexene copolymer, and propylene-ethylene-1-octene copolymer.
  • propylene block copolymer for example, (propylene)-(propylene-ethylene) copolymer, (propylene)-(propylene-ethylene-1-butene) copolymer, (propylene)-(propylene-ethylene-1) -Hexene) copolymer, (propylene)-(propylene-1-butene) copolymer, (propylene)-(propylene-1-hexene) copolymer, (propylene-ethylene)-(propylene-ethylene) copolymer United, (propylene-ethylene)-(propylene-ethylene-1-butene) copolymer, (propylene-ethylene)-(propylene-ethylene-1-hexene) copolymer, (propylene-ethylene)-(propylene-1) -Butene) copolymer, (propylene-ethylene)-(propylene-1-hexene) copolymer, (pro Lene-1-buten
  • a propylene homopolymer a propylene-ethylene random copolymer, a propylene-1-butene random copolymer, a propylene-ethylene-1-butene copolymer, and a propylene block copolymer are preferable.
  • the crystallinity of the polypropylene resin is determined by the melting temperature (melting point) or stereoregularity, and is adjusted according to the quality required of the polyolefin resin composition and the quality required of a molded product obtained by molding it.
  • the stereoregularity is referred to as isotactic index or syndiotactic index.
  • the isotactic index is determined by the 13 C-NMR method described in Macromolecules, Vol. 8, p. 687 (1975). Specifically, the isotactic index of the polypropylene resin is determined as the area fraction of the mmmm peak in the entire absorption peak of the carbon region of the methyl group in the 13 C-NMR spectrum.
  • the compound having high isotactic index is high in crystallinity, preferably 0.96 or more, more preferably 0.97 or more, and still more preferably 0.98 or more.
  • the polyolefin resin may be a modified polyolefin resin or may include a polyolefin resin modified to a non-modified polyolefin resin.
  • modified polyolefin resin what was graft-modified with unsaturated carboxylic acid or its derivative is mentioned, for example.
  • unsaturated carboxylic acids include maleic acid, fumaric acid, itaconic acid, acrylic acid and methacrylic acid.
  • unsaturated carboxylic acid derivatives include maleic anhydride, itaconic acid anhydride, methyl acrylate, and the like.
  • unsaturated carboxylic acids and / or their derivatives preferred are acrylic acid, glycidyl ester of methacrylic acid, and maleic anhydride.
  • acrylic resin for example, homopolymers or copolymers of acrylic monomers such as (meth) acrylic acid, (meth) acrylic acid esters, acrylonitrile and the like, and copolymer of acrylic monomers and other monomers A combination etc. are mentioned.
  • (meth) acrylic acid ester is methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc.
  • (meth) acrylic acid alkyl ester having an alkyl group having 1 to 10 carbon atoms hydroxyalkyl (meth) acrylate such as hydroxyethyl (meth) acrylate, and glycidyl ester of (meth) acrylic acid.
  • the homopolymer or copolymer of an acrylic monomer include, for example, poly (meth) acrylic acid ester, acrylic acid ester-methacrylic acid ester copolymer, polyacrylonitrile and the like.
  • the copolymer of an acrylic monomer and another monomer include, for example, (meth) acrylic acid ester-styrene copolymer, (meth) acrylic acid-styrene copolymer, acrylonitrile-butadiene- Examples thereof include styrene copolymers, acrylonitrile-styrene copolymers, acrylonitrile-styrene- (meth) acrylate copolymers, and the like.
  • vinyl resin for example, vinyl chloride resin [homopolymer of vinyl chloride monomer (polyvinyl chloride resin etc.), copolymer of vinyl chloride monomer and other monomer (vinyl chloride-vinyl acetate copolymer] Coalesced, vinyl chloride- (meth) acrylic acid ester copolymer etc), vinyl alcohol resin (homopolymer such as polyvinyl alcohol, copolymer such as ethylene-vinyl alcohol copolymer), polyvinyl formal etc. Polyvinyl acetal resin etc. are mentioned. These vinyl resins can be used alone or in combination of two or more.
  • the melt flow rate (MFR) of the polyolefin resin is usually 0.01 to 400 g / 10 min, preferably 0.1 to 400 g / 10 min from the viewpoint of enhancing the mechanical strength and production stability. More preferably, it is 0.5 to 200 g / 10 min.
  • MFR is mass (g / 10 minutes) of the polymer which flows out out per 10 minutes under 190 degreeC and a 2.16-kg load based on JISK7210 unless there is particular notice.
  • the cellulose used in the present invention is preferably fibrous cellulose of plant origin, and in particular, fibrous cellulose of fine plant origin is preferred.
  • cellulose is used as the compounding material of the resin part.
  • the recyclability of a molded article can also be improved.
  • Pulp is also a raw material of paper and is mainly composed of a tracheid extracted from plants.
  • the main component of pulp is polysaccharides, and the main component is cellulose.
  • the fibrous cellulose of plant origin is not particularly limited, but for example, wood, bamboo, hemp, jute, kenaf, agricultural waste (eg, straw of wheat or rice, stem of corn, cotton etc., although those derived from plants such as sugar cane), cloth, recycled pulp, waste paper, wood flour and the like can be mentioned, in the present invention, those derived from wood or wood are preferable, wood flour is more preferable, and kraft pulp is particularly preferable.
  • Kraft pulp is a general term for pulp from which lignin and hemicellulose are removed from wood or plant material by chemical treatment with caustic soda or the like, and almost pure cellulose is taken out.
  • an ionic compound is blended to such a cellulose, and kneading in a thermoplastic resin is performed to realize refinement of the cellulose.
  • Plant-derived fibrous cellulose forms a bundle of 30 to 40 molecules and forms ultrafine-thin, highly crystalline microfibrils with a diameter of about 3 nm and a length of several hundred nm to several tens of ⁇ m, and these are soft.
  • a bunched structure is formed through the non-crystal part.
  • Powdered cellulose used as a raw material of the present invention is this bundle-like aggregate.
  • the microfibrils are said to have an extremely high elastic modulus, and ideally have an elastic modulus of about 140 GPa, because the cellulose molecular chains that constitute them are extended chain crystals.
  • the elastic modulus of cellulose increases as the wire diameter decreases. Therefore, in order to improve the performance as a reinforced resin, it is more effective as the diameter of the cellulose dispersed in the thermoplastic resin is reduced and finer.
  • the finely divided cellulose is preferably a rod-like fiber cellulose.
  • the form of rod-like fibers is not particularly limited, and straight fibers and bent fibers can be mentioned.
  • the short side length (diameter) is preferably 2 ⁇ m or less, more preferably 3 nm to 2 ⁇ m, still more preferably 3 nm to 1 ⁇ m, still more preferably 3 nm to 0.5 ⁇ m, and particularly preferably 4 to 300 nm.
  • the long side length (length) is preferably 0.03 to 500 ⁇ m, and more preferably 0.05 to 200 ⁇ m.
  • the aspect ratio is preferably 5 or more, and more preferably 10 to 1,000. The aspect ratio is a value obtained by dividing the average length by the average fiber diameter.
  • the finely divided cellulose 15% or more of the contained cellulose has a short side length of 2 ⁇ m or less. 20% or more is more preferable, and, as for content of the cellulose fiber of short side length 2 micrometers or less, 25% or more is more preferable.
  • the finely divided cellulose is uniformly dispersed in the thermoplastic resin composition without aggregation or reaggregation. Therefore, even if cellulose aggregates are present, the area of the cellulose aggregates present is preferably less than 20000 ⁇ m 2 . That is, even if the cellulose aggregate is present, it is preferable that the area of the largest aggregate among the existing aggregates is less than 20000 ⁇ m 2 .
  • the short side length and the area of the cellulose aggregate can be measured by an electron microscope or an industrial microscope. Specifically, it is as described in the examples.
  • the content of cellulose is 1 to 100 parts by mass, preferably 5 to 70 parts by mass, and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the thermoplastic resin. If the content of cellulose is less than 1 part by mass, transmission of force to cellulose does not effectively occur during kneading, and it is difficult to obtain substantially refined cellulose. On the other hand, when the content of cellulose exceeds 100 parts by mass, good dispersion of the cellulose in the thermoplastic resin becomes difficult, and good properties for use as a material can not be obtained.
  • the thermoplastic resin composition used in the present invention contains an ionic compound together with cellulose.
  • the ionic compound used in the present invention is preferably one generally referred to as an ionic liquid.
  • An ionic liquid is a salt which exists as a liquid in a wide temperature range, and is a liquid composed only of ions.
  • a salt having a melting point of 100 ° C. or less is defined as an ionic liquid (IL), and an ionic liquid having a melting point near room temperature is referred to as “RTIL (room temperature IL)”.
  • the ionic compound used in the present invention is generally preferably referred to as an ionic liquid, but the melting point may be over 100 ° C., for example, 150 ° C. or more. That is, in the present invention, at the stage of extruding cellulose reinforced resin or cellulose reinforced resin composition, and processing and molding by injection etc, in order to refine cellulose by kneading in processing machine, temperature in processing process and processing machine Can be set to the melting point or more of the ionic compound. Therefore, for example, even if the melting point of the ionic compound is 180 ° C., the same action as a so-called ionic liquid can be expected by processing at a temperature higher than 180 ° C., for example, 190 ° C.
  • the ionic compound is preferably an organic ionic compound, and is preferably an onium salt such as quaternary phosphonium salt or quaternary ammonium salt, and among these, it is represented by the following general formula (1) or (2) Compounds are preferred.
  • Ra represents a hydrogen atom or a substituent.
  • L 1 represents a divalent linking group.
  • R 1 to R 5 independently represents an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group or a heterocyclic group. At least two of R 2 to R 5 may bond to each other to form a ring.
  • X - represents an anion.
  • Z 1 is CC (Ra) — or NN—, preferably CC (Ra) —.
  • the substituent in Ra is an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, a heterocyclic group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an amino group, an acyl group, an acylamino group, a sulfonamide group, carbamoyl Groups, sulfamoyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, sulfonyl group, halogen atom, hydroxy group, carboxy group, sulfo group.
  • the carbon number of the alkyl group is preferably 1 to 20, more preferably 1 to 12, and still more preferably 1 to 8.
  • Examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, t-pentyl, n-hexyl, n-pentyl, n-octyl and 2-ethylhexyl , N-octyl, n-decyl, n-dodecyl, n-hexadecyl, n-octadecyl.
  • the alkyl group may have a substituent, and the substituent includes the substituents listed for Ra.
  • the carbon number of the alkenyl group is preferably 2 to 20, more preferably 2 to 12, and still more preferably 2 to 8.
  • Examples of the alkenyl group include vinyl, allyl and oleyl.
  • the alkenyl group may have a substituent, and the substituent includes the substituents mentioned for Ra.
  • the cycloalkyl group is preferably a 3- to 7-membered ring cycloalkyl group, more preferably a 3, 5, 6 or 7-membered ring cycloalkyl group, and still more preferably a 5- or 6-membered ring cycloalkyl group.
  • the carbon number of the cycloalkyl group is preferably 3 to 20, more preferably 3 to 12, still more preferably 5 to 12, and particularly preferably 5 to 8.
  • Examples of the cycloalkyl group include cyclopropyl, cyclopentyl and cyclohexyl.
  • the cycloalkyl group may have a substituent, and examples of the substituent include the substituents listed for Ra.
  • the carbon number of the aryl group is preferably 6 to 20, more preferably 6 to 12, and still more preferably 6 to 8.
  • Examples of the aryl group include phenyl and naphthyl.
  • the aryl group may have a substituent, and the substituent includes the substituents listed for Ra.
  • the hetero ring constituting the hetero ring of the hetero ring group is selected from an oxygen atom, a sulfur atom and a nitrogen atom, and a 5- or 7-membered hetero ring is preferable. Further, the hetero ring may be an aromatic ring, an unsaturated ring or a saturated ring.
  • the carbon number of the heterocyclic group is preferably 0 to 20, more preferably 1 to 12, and still more preferably 1 to 8.
  • the heterocycle of the heterocycle group is, for example, furan ring, thiophene ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, tetrazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, Triazine ring, indoline ring, tetrahydrofuran ring, tetrahydrothiophene ring, pyrrolidine ring, mepyrrolidine ring, imidazolidine ring, imidazoline ring, pyrazodine ring, piperidine ring, piperazine ring, morpholine ring, thiomorpholine ring, 1,1-dioxothiomorpholine And rings, 1-oxomorpholine ring, quinuclidine ring, 1,4-diazabicy
  • the benzofuran ring the benzothiophene ring, the benzoimidazole ring, the benzopyrazole ring, the benzotriazole ring, the benzoxazole ring, and the benzothiazole ring, those condensed with a benzene ring or another ring are also included.
  • the heterocyclic group may have a substituent, and the substituent includes the substituents listed for Ra.
  • the carbon number of the alkoxy group is preferably 1 to 20, more preferably 1 to 12, and still more preferably 1 to 8.
  • the alkoxy group for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, t-butoxy, n-pentyloxy, t-pentyloxy, n-hexyloxy, n-pentyloxy, n- Examples include octyloxy, 2-ethylhexyloxy, n-octyloxy, n-decyloxy, n-dodecyloxy, n-hexadecyloxy and n-octadecyloxy.
  • the alkoxy group may have a substituent, and examples of the substituent include the substituents listed for Ra.
  • the carbon number of the aryloxy group is preferably 6 to 20, more preferably 6 to 12, and still more preferably 6 to 8.
  • Examples of the aryloxy group include phenoxy and naphthoxy.
  • the aryloxy group may have a substituent, and the substituent includes the substituents listed for Ra.
  • the carbon number of the alkylthio group is preferably 1 to 20, more preferably 1 to 12, and still more preferably 1 to 8.
  • Examples of the alkylthio group include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, t-butylthio, n-pentylthio, t-pentylthio, n-hexylthio, n-pentylthio, n-octylthio, 2 -Ethylhexylthio, n-octylthio, n-decylthio, n-dodecylthio, n-hexadecylthio, n-octadecylthio.
  • the alkylthio group may have a substituent, and examples of the substituent include the substituents listed for Ra
  • the carbon number of the arylthio group is preferably 6 to 20, more preferably 6 to 12, and still more preferably 6 to 8.
  • Examples of the arylthio group include phenylthio and naphthylthio.
  • the arylthio group may have a substituent, and the substituent includes the substituents mentioned for Ra.
  • the amino group includes an amino group, an alkylamino group, an arylamino group, and a heterocyclic amino group, and the carbon number of the amino group is preferably 0 to 20, more preferably 0 to 12, and still more preferably 1 to 12 -8 are particularly preferred.
  • the amino group include amino, methylamino, dimethylamino, ethylamino, diethylamino, isopropylamino, di-n-propylamino, 2-ethylhexylamino, n-octylamino, dodecylamino, phenylamino, diphenylamino, phenylmethyl Amino is mentioned.
  • the amino group may have a substituent, and the substituent includes the substituents listed for Ra.
  • the acyl group includes formyl group, alkanoyl group, acycloalkanoyl group, alkenoyl group, aryloyl group and heterocyclic carbonyl group.
  • the carbon number of the acyl group is preferably 1 to 20, more preferably 2 to 12, and still more preferably 2 to 8.
  • acyl group examples include formyl, acetyl, propionyl, butyryl, valeryl, pivaloyl, lauroyl, palmitoyl, stearoyl, cyclopropylcarbonyl, cyclopentylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, acryloyl, methacryloyl, oleyl, benzoyl, naphthoyl, nicotinoyl and isonicotininoyl.
  • Be The acyl group may have a substituent, and examples of the substituent include the substituents listed for Ra.
  • the acylamino group includes an amino group in which the above-mentioned acyl group is substituted to a nitrogen atom.
  • the carbon number of the acylamino group is preferably 1 to 20, more preferably 2 to 12, and still more preferably 2 to 8.
  • acylamino group examples include formylamino, acetylamino, propionylamino, butyrylamino, valerylamino, pivaloylamino, lauroylamino, palmitoylamino, stearoylamino, cyclopropylcarbonylamino, cyclopentylcarbonylamino, cyclohexylcarbonylamino, acryloylamino, methacryloylamino, And oleylamino, benzoylamino, naphthoylamino, nicotinoylamino and isonicotinoylamino.
  • the acylamino group may have a substituent, and examples of the substituent include the substituents listed for Ra.
  • the sulfonamide group includes an alkyl sulfonamide group, a cycloalkyl sulfonamide group, an aryl sulfonamide group, and a heterocyclic sulfonamide group.
  • the carbon number of the sulfonamide group is preferably 1 to 20, more preferably 2 to 12, and still more preferably 2 to 8.
  • sulfonamide group examples include methane sulfonamide, ethane sulfonamide, propane sulfonamide, octane sulfonamide, cyclopentane sulfonamide, cyclohexane sulfonamide, benzene sulfonamide, and naphthalene sulfonamide.
  • the sulfonamide group may have a substituent, and examples of the substituent include the substituents listed for Ra.
  • the carbamoyl group includes a carbamoyl group, an alkylcarbamoyl group, a cycloalkylcarbamoyl group, an arylcarbamoyl group and a heterocyclic carbamoyl group.
  • the carbon number of the carbamoyl group is preferably 1 to 20, more preferably 2 to 12, and still more preferably 2 to 8.
  • carbamoyl group examples include N-methylcarbamoyl, N, N-dimethylcarbamoyl, N-phenylcarbamoyl, N-phenyl-N-methylcarbamoyl, N-cyclohexylcarbamoyl, N-imidazolylcarbamoyl, pyrrolidine carbonyl and piperidine carbonyl.
  • the carbamoyl group may have a substituent, and examples of the substituent include the substituents listed for Ra.
  • the sulfamoyl group includes a sulfamoyl group, an alkylsulfamoyl group, a cycloalkylsulfamoyl group, an arylsulfamoyl group and a heterocyclic sulfamoyl group.
  • the carbon number of the sulfamoyl group is preferably 0 to 20, more preferably 1 to 12, and still more preferably 1 to 8.
  • sulfamoyl group for example, N-methylsulfamoyl, N, N-dimethylsulfamoyl, N-phenylsulfamoyl, N-phenyl-N-methylsulfamoyl, N-cyclohexylsulfamoyl, N- Imidazolyl sulfamoyl, pyrrolidine sulfamoyl, piperidine sulfamoyl is mentioned.
  • the sulfamoyl group may have a substituent, and examples of the substituent include the substituents listed for Ra.
  • the carbon number of the alkoxycarbonyl group is preferably 2 to 20, more preferably 2 to 12, and still more preferably 2 to 8.
  • the alkoxycarbonyl group for example, methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, t-butoxycarbonyl, n-pentyloxycarbonyl, t-pentyloxycarbonyl, n -Hexyloxycarbonyl, n-pentyloxycarbonyl, n-octyloxycarbonyl, 2-ethylhexyloxycarbonyl, n-octyloxycarbonyl, n-decyloxycarbonyl, n-dodecyloxycarbonyl, n-hexadecyloxycarbonyl, n- And octadecyloxycarbonyl.
  • the number of carbon atoms in the aryloxycarbonyl group is preferably 7 to 20, and more preferably 7 to 12.
  • Examples of the aryloxycarbonyl group include phenoxycarbonyl and naphthoxycarbonyl.
  • the aryloxycarbonyl group may have a substituent, and examples of the substituent include the substituents mentioned for Ra.
  • the acyloxy group includes a formyloxy group, an alkanoyloxy group, an acycloalkanoyloxy group, an alkenoyl oxyl group, an aryloyloxy group, and a heterocyclic carbonyloxy group.
  • the carbon number of the acyloxy group is preferably 1 to 20, more preferably 2 to 12, and still more preferably 2 to 8.
  • acyloxy group for example, formyloxy, acetyloxy, propionyloxy, butyryloxy, valeryloxy, pivaloyloxy, lauroyloxy, palmitoyloxy, stearoyloxy, cyclopropylcarbonyloxy, cyclopentylcarbonyloxy, cyclohexylcarbonyloxy, acryloyloxy, methacryloyloxy, And oleyloxy, benzoyloxy, naphthoyloxy, nicotinoyloxy, isonicotinoyloxy.
  • the acyloxy group may have a substituent, and examples of the substituent include the substituents listed for Ra.
  • the sulfonyl group includes an alkylsulfonyl group, a cycloalkyl sulfonyl group, an aryl sulfonyl group, and a heterocyclic sulfonyl group.
  • the carbon number of the sulfonyl group is preferably 1 to 20, more preferably 2 to 12, and still more preferably 2 to 8.
  • sulfonyl group examples include methanesulfonyl, ethanesulfonyl, propanesulfonyl, octanesulfonyl, cyclopentanesulfonyl, cyclohexanesulfonyl, benzenesulfonyl and naphthalenesulfonyl.
  • the sulfonyl group may have a substituent, and examples of the substituent include the substituents listed for Ra.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Ra is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heterocyclic group, an alkoxy group, an alkylthio group or an amino group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, a hydrogen atom, An alkyl group is more preferred, and a hydrogen atom is particularly preferred.
  • a linking group that forms a heteroaromatic ring is more preferable, and a 5-membered nitrogen-containing heteroaromatic ring is particularly preferable.
  • the formed nitrogen-containing heterocycle may be fused with a benzene ring or another ring, or may be substituted with a substituent. As such a substituent, a substituent at Ra can be mentioned.
  • the divalent linking group in L 1 is preferably a linking group in which a linking atom is selected from a carbon atom, an oxygen atom, a sulfur atom, and a nitrogen atom.
  • the alkyl group, the alkenyl group, the cycloalkyl group, the aryl group and the heterocyclic group in R 1 to R 5 are the same as the alkyl group, alkenyl group, cycloalkyl group, aryl group and heterocyclic group in Ra, and the preferable range is also It is the same.
  • the ring formed by bonding of at least two of R 2 to R 5 to each other is preferably a 5- to 7-membered ring, and more preferably a 5- or 6-membered ring.
  • the ring to be formed may be an aromatic ring, an unsaturated ring or a saturated ring, but a saturated ring is preferred.
  • Examples of the ring formed by bonding two of R 2 to R 5 to each other include a pyrrolidine ring, a pyrroline ring, a pyrazolidine ring, a pyrazoline ring, a pyrrole ring, a piperidine ring, a piperazine ring, a morpholine ring, a thiomorpholine ring, Examples include 1-dioxothiomorpholine ring and 1-oxomorpholine ring.
  • Examples of the ring formed by bonding three of R 2 to R 5 to each other include a quinuclidine ring and a 1,4-diazabicyclo [2.2.2] octane ring.
  • 1-alkyl-3-methylimidazolium such as 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium 1,3-Dimethylimidazolium, 1,3-Diethylimidazolium, 1,2,3-Trimethylimidazolium, 1,2,3,4-Tetramethylimidazolium, 1,3,4-Trimethyl-2- Ethylimidazolium, 1,3-Dimethyl-2,4-diethylimidazolium, 1,2-Dimethyl-3,4-diethylimidazolium, 1-Methyl-2,3,4-triethylimidazolium, 1,2, 3,4-tetraethylimidazolium, 1,3-dimethyl-2-ethylimidazolium, 1-ethyl-2,3-dimethyli Dazolium, 1,2,
  • X - in the anion may inorganic anion, either an organic anion.
  • organic anions organic carboxylic acid anions, organic sulfonic acid anion, an organic phosphate anions, organic phosphonic acid anion, dicyanamide ion [N - (CN) 2], organic imide ion, organic methide anion, organic And phosphorus anions and organic boron anions.
  • the organic carboxylic acid or sulfonic acid anion may be any of an aliphatic carboxylic acid or sulfonic acid anion, an aromatic carboxylic acid or sulfonic acid anion, and a heterocyclic carboxylic acid or sulfonic acid anion. Further, it may be an anion (polyvalent anion) of polyvalent carboxylic acid or sulfonic acid such as dicarboxylic acid or disulfonic acid.
  • a preferred anion of the organic carboxylic acid anion is represented by the following general formula (A1). Moreover, the preferable anion of the organic sulfonate anion is represented by the following general formula (A2).
  • Rb represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group or a heterocyclic group
  • Rc represents an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group or Indicates a heterocyclic group.
  • the alkyl group, cycloalkyl group, alkenyl group, aryl group and heterocyclic group in Rb and Rc are the same as the alkyl group, cycloalkyl group, alkenyl group, aryl group and heterocyclic group in Ra.
  • these alkyl group, cycloalkyl group, alkenyl group, aryl group and heterocyclic group may have a substituent, and examples of such a substituent include the substituents mentioned for Ra.
  • organic carboxylate anion examples include formate anion, acetate anion, propionate anion, butyrate anion, isobutyrate anion, valerate anion, isovalerate anion, pivalate anion, laurate anion, myristate anion, palmitic acid.
  • Anion, stearate, trifluoroacetate, trichloroacetate, anion of amino acid eg, glycine, glutamine, glutamic acid, arginine, arginine, arginine, asparagine, aspartic acid, cysteine, proline, serine, tyrosine, valine, leucine, isoleucine ,
  • acrylic acid anion, methacrylic acid anion, crotonic acid anion iso Rotonic acid anion, oleic acid anion, cinnamate anion, cyclopropane carboxylic acid anion, cyclopentane carboxylic acid anion, cyclohexane carboxylic acid anion, benzoic acid anion, toluic acid anion, naphthalene carboxylic acid anion, nico
  • organic sulfonate anion examples include methanesulfonic acid anion, ethanesulfonic acid anion, propanesulfonic acid anion, octanesulfonic acid anion, 2-ethylhexanesulfonic acid anion, cyclohexanesulfonic acid anion, benzenesulfonic acid anion, toluene sulfone
  • organic sulfonate anion examples include methanesulfonic acid anion, ethanesulfonic acid anion, propanesulfonic acid anion, octanesulfonic acid anion, 2-ethylhexanesulfonic acid anion, cyclohexanesulfonic acid anion, benzenesulfonic acid anion, toluene sulfone
  • examples of such anions include acid anions, naphthalenesulfonic acid anions, 4,6-disulfo-1-
  • the organic phosphoric acid or phosphonic acid anion is preferably an anion represented by the following general formula (A3).
  • Rd represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group, an alkoxy group or an aryloxy group
  • Y 1 represents -O 2 - or -ORe
  • Re represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group or a heterocyclic group.
  • the alkyl group, cycloalkyl group, alkenyl group, aryl group, heterocyclic group, alkoxy group and aryloxy group in Rd are each an alkyl group, cycloalkyl group, alkenyl group, aryl group, heterocyclic group, alkoxy group and aryl in Ra. It is synonymous with an oxy group, and the alkyl group, cycloalkyl group, an alkenyl group, an aryl group, and a heterocyclic group in Re are synonymous with the alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, and a heterocyclic group in Ra.
  • Organic phosphoric acid or phosphonic acid anions are methylphosphonic acid mono- or dianion, ethylphosphonic acid mono- or dianion, propylphosphonic acid mono- or dianion, heptylphosphonic acid mono- or dianion, hexylphosphonic acid mono- or dianion, decylphosphonic acid mono- or dianion Octylphosphonic acid mono- or dianion, vinylphosphonic acid mono- or dianion, aminomethylphosphonic acid mono- or dianion, phenylphosphonic acid mono- or dianion, methylenediphosphonic acid mono- to tetraanion, nitrilotris (methylenephosphonic acid mono- to hexaanion), 1,4-phenylenediphosphonic acid mono-tetraanion, 4-phosphonobutyric acid mono-, di- or trianion, p-xy Njihosuhon acid mono- to tetra-
  • the organic imide ion, the organic methide anion, the organic phosphorus anion and the organic boron anion are preferably anions represented by the following general formulas (A4) to (A7).
  • Rf 1 to Rf 3 each represent an alkyl group substituted with a fluorine atom or an aryl group substituted with a fluorine atom
  • two Rf 1 , three Rf 2 and three Rf 3 are And each may be the same or different.
  • Rg 1 to Rg 4 each independently represent an alkyl group, a cycloalkyl group or an aryl group.
  • the carbon number of the alkyl group substituted with a fluorine atom in Rf 1 to Rf 3 is preferably 1 to 20, more preferably 1 to 12, still more preferably 1 to 8, and particularly preferably 1 or 2.
  • the alkyl group substituted with a fluorine atom is an alkyl group substituted with at least one fluorine atom, preferably a perfluoroalkyl group.
  • alkyl group substituted with a fluorine atom for example, perfluoromethyl, perfluoroethyl, perfluoropropyl, perfluorobutyl, perfluoropentyl, perfluorohexyl, perfluorooctyl, perfluoro 2-ethylhexyl, difluoromethyl, 2 2,2,2-trifluoroethyl, 1,1-difluoroethyl, 1,1,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl, perfluorobenzyl.
  • the carbon number of the aryl group substituted with a fluorine atom in Rf 1 to Rf 3 is preferably 6 to 20, more preferably 6 to 12, still more preferably 6 to 10, and particularly preferably 6 to 8.
  • the aryl group substituted with a fluorine atom is an aryl group substituted with at least one fluorine atom, preferably a perfluoroaryl group. Examples of the aryl group substituted with a fluorine atom include perfluorophenyl, perfluorotolyl and 2,6-dichloro-3,4,5-trifluorophenyl.
  • the alkyl group, cycloalkyl group and aryl group in Rg 1 to Rg 4 are the same as the alkyl group, cycloalkyl group and aryl group in Ra.
  • Each of Rg 1 to Rg 4 is preferably an alkyl group or an aryl group, and more preferably an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 16 carbon atoms.
  • the aryl group is preferably a phenyl group or a naphthyl group.
  • examples of the organic boron anion include the following anions.
  • X - is preferably a halide ion, a carboxylate anion, a sulfonate anion, a phosphate anion, a phosphonate anion, a dicyanamide ion, an anion represented by the general formula (A4), and a halogen ion, a carboxylate anion, a sulfonate anion
  • the phosphate anion, the phosphonate anion, the dicyanamide ion or the bis (trifluoromethanesulfonyl) imide ion is more preferable, the halogen ion and the carboxylate anion are particularly preferable, and the carboxylate anion is most preferable.
  • quaternary phosphonium salts can be mentioned in addition to the compounds represented by the above general formula (1) or (2), and the present invention is also preferable.
  • quaternary phosphonium of the quaternary phosphonium salt include tetramethyl phosphonium, tetraethyl phosphonium, tetrabutyl phosphonium, triethyl methyl phosphonium, methyl tributyl phosphonium and dimethyl diethyl phosphonium.
  • Anion is the X - is preferable.
  • the compound represented by the general formula (1) or (2) is preferably a compound represented by any one of the following general formulas (1a), (1b) and (2a) to (2c).
  • R 1 in (1b), (2a) ⁇ (2c), R 1, R 2 and X - is, R 1 in the general formula (1) or (2), R 2 and X - synonymous And the preferred range is also the same.
  • R 11 and R 12 each independently represent a substituent.
  • n 11 is an integer of 0 to 3
  • n 12 is an integer of 0 to 5.
  • R 11 is 2 or more, plural R 11 s may be the same as or different from each other.
  • at least two R 11 may be bonded to each other to form a ring.
  • Each of R 13 to R 15 independently represents an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group or a heterocyclic group.
  • R 21 has the same meaning as R 2 , and the preferred range is also the same.
  • R ⁇ 1 and R ⁇ 2 may be bonded to each other to form a ring.
  • R 11 and R 12 has the same meaning as Ra.
  • R 1 has the same meaning as R 1 in the general formula (1), and the preferred range is also the same.
  • R 2 has the same meaning as R 2 in the general formula (2), and the preferred range is also the same.
  • R 13 to R 15 are the same as R 3 to R 5 in General Formula (2) except that two or more of R 13 to R 15 do not combine with each other to form a ring, and a preferred range is Is also the same.
  • Examples of the substituent for R ⁇ 1 include the substituents mentioned for Ra, and an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, a heterocyclic group, an acyl group and a sulfonyl group are preferable, and an alkyl group, an alkenyl group and a cycloalkyl group are preferable.
  • An aryl group and a heterocyclic group are more preferable, and an alkyl group, an alkenyl group, a cycloalkyl group and an aryl group are more preferable.
  • the substituent in R ⁇ 2 has the same meaning as the substituent in R ⁇ 1, and the preferred range is also the same.
  • the ring formed by bonding of at least two R 11 to each other is preferably a 5- or 6-membered ring, more preferably a benzene ring or a heterocycle, still more preferably a benzene ring or a heteroaromatic ring, and particularly preferably a benzene ring.
  • the ring formed by combining R ⁇ 1 and R ⁇ 2 is preferably a 5- or 6-membered ring, more preferably a nitrogen-containing saturated ring, and still more preferably a pyrrolidine ring, piperidine ring, piperazine ring, morpholine ring or thiomorpholine ring.
  • R 11 and R 12 are preferably alkyl groups, and R 13 to R 15 , R 2 and R 21 are preferably alkyl groups and aryl groups, and more preferably alkyl groups. Further, R 1 and R 12 are preferably alkyl groups having different carbon numbers from each other.
  • the compounds represented by the general formulas (1a), (1b) and (2a) to (2c) are preferable,
  • the compound represented by General Formula (1a) or (2a) is more preferable, and the compound represented by General Formula (1a) is more preferable.
  • ionic liquids are mentioned as an ionic compound used by this invention.
  • the ion compound containing an ionic liquid can also use what is marketed.
  • the following ionic liquids are mentioned as such a compound.
  • Non-water-miscible ionic liquid 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, 1-propyl-2,3-dimethylimidazolium bis (trifluoromethylsulfonyl) imide, 1-butyl -3-Methylimidazolium bis (trifluoromethylsulfonyl) imide, 1-propyl-2,3-dimethylimidazolium tris (trifluoromethylsulfonyl) methide [all available from Covalent Associates Inc], N, N-diethyl- N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethylsulfonyl) imide, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, 1-octyl-3-methylimidazolium bis (Trifluoromethylsulfonyl)
  • the ionic compounds may be used alone or in combination of two or more.
  • the content of the ionic compound is 0.001 times or more and less than 1.000 times by mass ratio to cellulose, preferably 0.01 times or more and less than 1.000 times, and preferably 0.01 to 0.
  • the ratio is preferably 8 times, more preferably 0.01 to 0.8 times, and particularly preferably 0.05 to 0.7 times.
  • An ionic compound is a salt of an anionic component and a cationic component, and because of its high affinity to cellulose molecules, it exhibits a solution property enough to completely dissolve cellulose when the ionic substance is in a liquid state.
  • the interaction between ionic compounds and cellulose molecules is described, for example, in Green Chem. As reported in J., 2015, 17, 694-714, an ionic compound acts on a hydroxyl group (hydroxy group) possessed by a cellulose molecule to break the hydrogen bond formed by the hydroxyl groups of the cellulose molecule and thereby intermolecularize the cellulose It is proposed that dissolution in ionic compounds occurs by
  • thermoplastic resin composition of the present invention in addition to the above, antioxidants, light stabilizers, radical scavengers, UV absorbers, colorants (dyes, organic pigments, inorganic pigments), fillers, lubricants, plasticizers , Processing aids such as acrylic processing aids, foaming agents, lubricants such as paraffin wax, surface treatment agents, crystal nucleating agents, mold release agents, hydrolysis inhibitors, antiblocking agents, antistatic agents, antifogging agents, Other additive components such as a mildew proofing agent, an ion trap agent, a flame retardant, a flame retardant auxiliary and the like can be suitably contained within the range not impairing the object.
  • antioxidants light stabilizers, radical scavengers, UV absorbers, colorants (dyes, organic pigments, inorganic pigments), fillers, lubricants, plasticizers , Processing aids such as acrylic processing aids, foaming agents, lubricants such as paraffin wax, surface treatment agents, crystal nu
  • antioxidants and deterioration inhibitors examples include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, hydroxylamine antioxidants, and amine antioxidants. Hindered phenolic compounds having a t-alkyl group are preferred.
  • phenolic antioxidant examples include tetrakis [methylene-3 (3 ′, 5′-di-t-butyl-4-hydroxyphenyl) propionate] methane, octadecyl-3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate, 3,9-bis [2- ⁇ 3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ -1,1-dimethylethyl] -2, 4,8,10-Tetraoxaspiro [5-5] undecane, Triethylene glycol N-bis-3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate, 1,6-hexanediol Bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thiobis-diethylenebis [3- (3, -Di-t-butyl-4-hydroxyphenyl) propionate
  • a phosphorus antioxidant for example, tris (nonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, bis (2,4-di-) t-Butylphenyl) pentaerythritol diphosphite, bis (2,4-di-t-butyl-6-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-methylphenyl 2.) pentaerythritol diphosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) -4,4'-diphenylene diphosphonite, 2, 2'-Methylenebis (4,6-di-
  • sulfur-based antioxidants examples include dilauryl 3,3'-thiodipropionate, tridecyl 3,3'-thiodipropionate, dimyristyl 3,3'-thiodipropionate, distearyl 3,3'- Thiodipropionate, lauryl stearyl 3,3'-thiodipropionate, neopentanetetrayl tetrakis (3-lauryl thiopropionate), bis [2-methyl-4- (3-n-alkyl (carbon atom number) 12-14 alkyl) thiopropionyloxy) -5-t-butylphenyl] sulfide and the like.
  • light stabilizers include hindered amine light stabilizers having a molecular weight of 1000 or more (light stabilizers having a 2,2,6,6-tetramethylpiperidine skeleton in the molecule).
  • ultraviolet absorber examples include benzotriazole compounds, triazine compounds, benzophenone compounds, salicylate compounds, cyanoacrylate compounds, and nickel compounds.
  • carbon black As a coloring agent, carbon black, an inorganic pigment, and an organic pigment are mentioned, for example.
  • carbon black furnace black, channel black, acetylene black, lamp black and the like can be mentioned.
  • the inorganic pigment include iron black, red iron oxide, titanium oxide, cadmium red, cadmium yellow, ultramarine blue, cobalt blue, titanium yellow, red lead, lead yellow, bitumen and the like.
  • the organic pigment include quinacridone, polyazo yellow, anthraquinone yellow, polyazo red, azo lake yellow, perylene, phthalocyanine green, phthalocyanine blue, isoindolinone yellow and the like. These colorants may be used alone or in combination of two or more.
  • Preferred examples of the filler include silica, hydroxyapatite, alumina, titania, boehmite, talc, and metal compounds such as calcium carbonate.
  • thermoplastic resin composition ⁇ Method for producing thermoplastic resin composition
  • the thermoplastic resin composition When producing the thermoplastic resin composition, the thermoplastic resin, the cellulose and the ionic compound are respectively blended, and the content of the cellulose is 1 to 100 parts by mass, and the content of the ionic compound is 100 parts by mass of the thermoplastic resin. And 0.001 times or more and less than 1.000 times of cellulose.
  • the method of adding the ionic compound for refining the cellulose is not particularly limited. For example, a method of impregnating the ionic liquid with cellulose in advance, or adding the ionic compound when kneading the thermoplastic resin and the cellulose The method is mentioned. It is preferable to prepare a mixture of cellulose and an ionic compound, that is, a cellulose composition, and blend the cellulose composition with a thermoplastic resin.
  • the process of preparing the cellulose composition whose content of an ionic compound is 0.1 mass% or more and less than 50 mass% is performed.
  • the blending amount of the cellulose composition or the total blending amount of the cellulose and the ionic compound is such that the content of cellulose is 1 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • an ionic compound for example, a halogen anion (in particular, a chlorine anion), depending on storage conditions, it may be hygroscopic to be liquid. In such a case, it is preferable to use water dried by vacuum drying and made solid at normal temperature.
  • a halogen anion in particular, a chlorine anion
  • Cellulose is a hydrogen bond due to a hydroxyl group in the molecule, and the intermolecular bonding force is strong.
  • the ionic compounds are believed to break hydrogen bonds between the cellulose molecules.
  • the anion component in the constituent of the ionic compound directly acts on the hydrogen atom of the hydroxyl group possessed by the cellulose molecule, so the structure of the anion component exerts a great influence on the solubility of cellulose. It is guessed that.
  • Cellulose itself, as described above, has strong intermolecular bonding force, and therefore, it is impossible to promote miniaturization only by shear stress in a processing machine. For this reason, it becomes possible to advance refinement
  • a step of blending the thermoplastic resin and the cellulose composition or the cellulose and the ionic compound, respectively, and kneading and processing is performed, and in this step, the cellulose is refined.
  • this kneading and processing step it is preferable to knead in a processing machine at the stage of processing and molding by extrusion, injection and the like.
  • the kneading temperature is preferably at least the melting point of the ionic compound, and the upper limit is preferably a temperature at which the thermal decomposition of cellulose is small. Therefore, although the lower limit temperature changes depending on the kind of ionic compound, the upper limit temperature is preferably 300 ° C. or less, more preferably 250 ° C. or less, and still more preferably 230 ° C. or less.
  • Stirring in kneading is carried out by appropriately arranging a kneading disc in the screw axial direction, etc., to form a screw configuration capable of securing sufficient kneadability, and a screw rotation number capable of obtaining a required production amount (usually It is preferable to knead at about 100 to 300 rpm.
  • an apparatus for kneading and processing an apparatus of a co-directional twin screw system is preferable, and for example, a twin-screw extruder (KZW15TW-45MGNH manufactured by Technobel Co., Ltd.) can be mentioned.
  • the present invention is not limited to the co-directional twin-screw extruder, and may be a single-screw extruder, a counter-rotating twin-screw extruder, a multi-screw extruder having three or more shafts, a batch kneader (kneader, Banbury, etc.), etc. Any system may be used as long as such kneadability can be obtained and the same effect as that of the present invention can be obtained.
  • the resin part of the molded article of the present invention contains a thermoplastic resin, cellulose and an ionic compound, and the content of cellulose is 1 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and the content of the ionic compound Is 0.001 times or more and less than 1.000 times of the cellulose.
  • the molded article of the present invention is, for example, a lamp body of a lamp, a speaker unit, a junction box, a connector, a pulley, or a film for a house.
  • Such a molded article is provided with a thermoplastic resin composition, in particular, a resin part molded using the thermoplastic resin composition produced by the method for producing a thermoplastic resin composition described above, and the molded article is When it is a house film, the house film contains a layer formed of the thermoplastic resin composition.
  • FIG. 1 is a schematic cross-sectional view showing an example of a lamp body of a lamp according to an embodiment of a molded article.
  • FIG. 1 shows a configuration of a headlight (head lamp) as a vehicle lamp as an example of the lamp 100.
  • the lamp 100 includes a lamp body 101, a front cover 102, a light source 103, a reflector 104, and a socket portion 105.
  • the lamp body 101 has an opening 111 at the front.
  • the front cover 102 is attached to the lamp body 101 so as to cover the opening 111 of the lamp body 101.
  • a space 110 sealed by the lamp body 101 and the front cover 102 is formed.
  • a light source 103 and a reflecting mirror 104 are disposed in the space 110.
  • the light source 103 is, for example, an LED bulb or a halogen bulb.
  • the light source 103 is connected to the socket portion 105 fixed to the through hole 112 formed in the lamp body 101, and emits light by the power supplied from the socket portion 105.
  • the reflecting mirror 104 has a concave surface 140 recessed toward the front cover 102.
  • a hole is formed in the central portion of the reflecting mirror 104, and the light source 103 is inserted and fixed in the hole.
  • the reflecting mirror 104 reflects the light emitted from the light source 103 by the concave surface 140 and guides it to the front cover 102 side.
  • the front cover 102 is made of a resin material that can transmit light (visible light).
  • the front cover 102 also functions as a lens that condenses or diffuses the light from the light source 103.
  • the lamp body 101 includes a resin portion formed of the above-described thermoplastic resin composition. Thereby, the weight reduction and the high strength of the lamp body 101 can be achieved.
  • the manufacturing method of the lamp body 101 is not particularly limited, it can be molded by injection molding in which the thermoplastic resin composition is injected into a mold. As a result, the mold wear resistance is improved and the mold is less likely to be corroded.
  • the lamp body 101 is the said resin part, and the part formed with materials other than resin May be included.
  • the lamp 100 is a headlamp was illustrated in FIG. 1, it is not limited to this, It is applicable to the lamp body of vehicle lamps, such as a brake lamp, a fog lamp, and a reversing light.
  • vehicle lamp it is not restricted to the body part (housing) of various lamps.
  • FIG. 2 is a perspective view showing an example of a speaker unit according to an embodiment of a molded article.
  • the speaker unit 210 has a substantially enclosed housing (enclosure) 213 formed of a plate-like baffle 211 and a box-like storage unit 212 coupled to the back of the baffle 211, and is released on the surface of the baffle 211. And a speaker 214 held by the housing 213 so as to expose a sound surface.
  • the housing (enclosure) 213 is generally referred to as a speaker box or a cabinet, and has various shapes such as a box shape, a cylindrical shape, and a conical shape depending on an applied device or the like.
  • the speaker 214 has an exciter 215 as a vibration source of the magnetic circuit, and a cone paper 216 for emitting a sound wave generated by the vibration of the exciter 215 to the outside of the housing 213.
  • FIG. 3 is a perspective view showing an on-vehicle speaker device 200 in which the speaker unit is applied to the on-vehicle speaker device.
  • FIG. 4 is a cross-sectional view of the on-vehicle speaker device 200 shown in FIG.
  • the speaker unit 210 used for the in-vehicle speaker device 200 is provided between the outer panel 201 on the outside of the vehicle and the inner panel 202 on the inner side of the vehicle.
  • the speaker unit 210 is attached from the opening of the inner panel 202 in an exposed state.
  • the inner trim 220 which covers the surface is attached to the inner panel 202 in the state which exposed the speaker unit 210.
  • FIG. 1 is a perspective view showing an on-vehicle speaker device 200 in which the speaker unit is applied to the on-vehicle speaker device.
  • FIG. 4 is a cross-sectional view of the on-vehicle speaker device 200 shown in FIG.
  • the speaker unit 210 used for the in-vehicle speaker device 200 is provided between
  • the above-described thermoplastic resin composition is used for the baffle 211, the storage portion 212, and the cone paper 216 of the housing 213. ing.
  • the speaker unit 210 can contribute to reduction in fuel consumption of the vehicle by reducing its weight and has high strength, vibration of the housing 213 due to vibration of the vehicle can be suppressed. As a result, noise due to the vibration of the housing 213 can be reduced, and acoustic characteristics can be improved.
  • the speaker unit 210 since the above-described thermoplastic resin composition is used for the speaker unit 210, the speaker unit 210 exhibits excellent whitening resistance. Furthermore, since the speaker unit 210 includes the high-strength housing 213 formed of the thermoplastic resin composition, the speaker unit 210 is highly recyclable.
  • the application target of the speaker unit is not limited to a car, and includes, for example, a mobile body such as a two-wheeled vehicle, a railway vehicle, an airplane, a ship, a computer device, headphones, or any speaker device installed for home use.
  • a mobile body such as a two-wheeled vehicle, a railway vehicle, an airplane, a ship, a computer device, headphones, or any speaker device installed for home use.
  • FIG. 5 is a perspective view showing a connection box according to an embodiment of a molded product
  • FIG. 6 is an exploded perspective view of the connection box of FIG.
  • the junction box 300 is configured, for example, as a junction box installed on the indoor side of a car.
  • the connection box 300 includes a case 320 having a first case 320a and a second case 320b.
  • the connection box 300 includes a first substrate 340a, a second substrate 340b, and a third substrate 340c in an internal storage space.
  • the first substrate 340a and the second substrate 340b are disposed in parallel with each other, and the third substrate 340c is disposed to be vertically connected to the end of the first substrate 340a and the second substrate 340b.
  • An electronic control unit (ECU: Electronic Control Unit) (not shown) is installed on the mounting surface 321 of the first case 320a.
  • the ECU connector 341 of the first substrate 340a is disposed to protrude from the mount surface 321, and can electrically connect the circuit of the first substrate 340a to the ECU.
  • a relay attachment connector 322 integrated with the case 320 of the connection box 300 is protruded.
  • a relay not shown can be attached to the relay attachment connector 322.
  • the indoor connector 342a is disposed on the first substrate 340a, and the indoor connector 342b is disposed on the second substrate 340b.
  • the indoor connectors 342a and 342b are electrically connected to a circuit on the indoor side of the vehicle via a wire harness (not shown).
  • a relay mounting connector 343 is disposed on the second substrate 340b. In the illustrated example, three relays can be mounted on the relay mounting connector 343.
  • An engine room side connector 344 is disposed on the third substrate 340c. The engine room side connector 344 is electrically connected to a circuit on the engine room side via a wire harness (not shown).
  • connection box 300 and the connectors 322 and 341 to 344 are formed using the above-described thermoplastic resin composition, it is possible to achieve weight reduction and high strength, and to improve recyclability. Can.
  • connection box and the connector is not particularly limited, and the connection box and the connector can be molded by injection molding in which the above-mentioned thermoplastic resin composition is injected into a mold.
  • the connector includes the connector housing, the connector itself, the one integrated with the connection box case, and the like.
  • connection box and connector includes, for example, materials for transportation equipment such as automobiles, motorcycles, trains, and aircrafts, structural members of robot arms, robot parts for amusement, household electric appliance materials, OA equipment housings, information processing equipment, portable terminals Etc.
  • FIG. 7 is a front view of a pulley according to an embodiment of a molded product
  • FIG. 8 is a cross-sectional view taken along the line BB in FIG.
  • the pulley 400 is configured by a rolling bearing 410 and a resin portion 420 integrally molded around the rolling bearing 410.
  • the rolling bearing 410 has an inner ring 411, an outer ring 412, and rolling elements 413 provided between the inner and outer rings.
  • the resin part 420 is formed using the said thermoplastic resin composition.
  • the resin portion 420 includes a cylindrical boss 421, a cylindrical rim 422, and an annular portion 423 connecting the boss 421 and the rim 422.
  • the outer circumferential surface 424 of the rim 422 is a guiding surface of a belt (not shown).
  • the whole pulley may be formed using the said thermoplastic resin composition.
  • This can contribute to weight reduction and high strength of the pulley 400.
  • the manufacturing method of the pulley 400 is not particularly limited, it can be molded by injection molding in which the rolling bearing 410 is disposed in a mold and the thermoplastic resin composition is injected into the mold. Thereby, it is possible to improve the mold wear resistance and the smoothness (sharp edge property) of the end face of the resin portion 420.
  • the pulley 400 excellent in dimensional accuracy can be shape
  • the application of the pulley includes, for example, materials for transportation equipment such as automobiles, motorcycles, trains, and aircrafts, structural members of robot arms, robot parts for amusement, household electric appliance materials, OA equipment casings, information processing equipment, portable terminals, etc.
  • FIG. 9 is a schematic perspective view showing an example of the appearance of an agricultural house to which the house film according to an embodiment of the molded article is applied.
  • an agricultural house 510 includes a film 501 stretched on a housing 502.
  • the agricultural house 510 is entirely covered with a film 501 stretched on a frame 502. It can be set as the agricultural house in which the space partitioned from the outside is formed by extending
  • the material which comprises the housing 502 can be used.
  • the film 501 is a film stretched on the casing 502, and applies the above-mentioned house film.
  • the agricultural house 510 may be provided with ventilation means (not shown) such as a ventilation fan provided on a ceiling or a side of the house.
  • ventilation means such as a ventilation fan provided on a ceiling or a side of the house.
  • an entrance (not shown) for a worker engaged in work in the agricultural house 510 is, for example, a double door so that external air does not directly enter the space in the house. Is preferred.
  • the film 501 in the agricultural house 510 has a layer formed using the above-mentioned thermoplastic resin composition.
  • the film 501 can be recyclable as well as reduced in weight and strength, and can further improve surface smoothness and adhesion performance as compared with the conventional film.
  • the film 501 (house film) only needs to contain a layer formed from the above-mentioned thermoplastic resin composition, and is produced by a known method such as inflation molding method, T-die molding method, laminating method, calendar method, etc. can do.
  • the film 501 (house film) may be a single layer or multilayer film including one or more layers formed using the above-mentioned thermoplastic resin composition, and is formed from the above-mentioned thermoplastic resin composition It may be a laminated film in which a resin layer formed of another resin composition is laminated on the layer.
  • resin which can form the other resin layer which can be laminated on the layer formed from the above-mentioned thermoplastic resin composition polyolefin resin etc. which are usually used for an application of a house film can be mentioned, for example.
  • the thickness of the layer formed of the thermoplastic resin composition contained in the film 501 is, for example, 50 ⁇ m to 200 ⁇ m, preferably the lower limit value is 75 ⁇ m or more, and the upper limit value is 150 ⁇ m or less Is preferred.
  • the film for house is a multilayer film, the thickness of the film for house can be suitably set according to a use etc.
  • the film for house is used for a part of surfaces of the house 510 for agriculture It may be Moreover, the house 510 for agriculture builds a framework by desired width, depth, and height, and produces it by extending
  • the film for houses not only the house for agriculture for growing plants, such as vegetables, for example, the house for gardening, the house for biological breeding, the house for terraces, a simple warehouse, etc. are mentioned.
  • Ion compound / ion compound A 1-butyl-3-methylimidazolium acetate (melting point: -20 ° C or less)
  • Ion compound B 1-butyl-3-methylimidazolium chloride (melting point: -70 ° C)
  • Ion compound C 1-butyl-3-methylimidazolium dicyanamide (melting point: -6 ° C)
  • Example 1 In the following steps, a cellulose reinforced thermoplastic resin was produced.
  • thermoplastic resin B was fed at a rate of 300 g / hour at an outlet temperature of 150 ° C. to a twin-screw extruder (KZW15TW-45MG-NH manufactured by Technobel Co., Ltd.), and the above was prepared by the second feeder.
  • the cellulose composition was fed at a rate of 300 g / hour and extruded to produce a cellulose reinforced thermoplastic resin composition.
  • the screw rotation speed was 100 rpm.
  • the thermoplastic resin B and the cellulose A are kneaded, and the cellulose is dispersed, whereby the cellulose fiber is refined.
  • miniaturization will advance further also in the preparation process of following 3).
  • miniaturization is inadequate at the kneading
  • thermoplastic resin A the thermoplastic resin B is 78: 22 in mass ratio, and two types are used in a twin-screw extruder (manufactured by Technobel Co., Ltd. KZW15 TW-45 MG-NH).
  • a cellulose reinforced thermoplastic resin composition containing the thermoplastic resin of the present invention was prepared and manufactured.
  • the outlet temperature of the twin screw extruder was set to 190 ° C., and the cellulose reinforced thermoplastic resin composition was prepared while feeding at a rate of 1000 g / hour. At this time, the screw rotation speed was 100 rpm. Also in this preparation process, it is considered that the refinement of the cellulose fiber is in progress.
  • Example 2 A cellulose reinforced thermoplastic resin composition containing one kind of thermoplastic resin obtained in 2) was manufactured without performing the step 3) of Example 1. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Example 3 In the step 1) of Example 1, 0.1 parts by mass of the ionic compound A was blended with 99.9 parts by mass of cellulose A, and in the step 2), a thermoplastic resin instead of the thermoplastic resin B A cellulose reinforced thermoplastic resin composition containing two types of thermoplastic resins is prepared in the same manner as in Example 2 except that a resin in which A and B are mixed so as to have a mass ratio of 499: 1 is used. Manufactured. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Example 4 Cellulose reinforcement containing one type of thermoplastic resin in the same manner as in Example 2 except that in the step 1) of Example 1, 49.9 parts by mass of the ionic compound A was blended with 50.1 parts by mass of cellulose A. A thermoplastic resin composition was produced. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Example 5 In the process of 2) of Example 1, the mass ratio of the thermoplastic resin A in the process of 3) of Example 1 is such that the mass ratio of the thermoplastic resin B: cellulose composition is 100: 60. In the same manner as in Example 1 except that the thermoplastic resin A: the thermoplastic resin B was dry blended so as to be 98: 2, a cellulose reinforced thermoplastic resin composition containing two types of thermoplastic resins was produced. did. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Example 6 A cellulose reinforced thermoplastic resin composition containing two types of thermoplastic resins was produced in the same manner as in Example 1 except that in the step 1) of Example 1, the type of ionic compound was changed to ionic compound B. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Example 7 A cellulose reinforced thermoplastic resin composition containing two types of thermoplastic resins was produced in the same manner as in Example 1 except that in the step 1) of Example 1, the type of ionic compound was changed to ionic compound C. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Example 8 The process of Example 1 was repeated except that 11 parts by mass of the cellulose composition was blended with 100 parts by mass of the thermoplastic resin A and the process 3) was not performed. A cellulose reinforced thermoplastic resin composition containing one kind of thermoplastic resin was produced. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Example 9 A cellulose reinforced thermoplastic resin composition containing one kind of thermoplastic resin was produced in the same manner as in Example 8 except that the type of cellulose was changed to cellulose B in the step 1) of Example 1. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Example 10 In step 2) of Example 1, thermoplastic resin C was used instead of thermoplastic resin B, the mass ratio of thermoplastic resin C: cellulose composition was 90: 100, and Example Cellulose reinforced thermoplastic resin composition dispersed in thermoplastic resin C and thermoplastic resin A in mass ratio, thermoplastic resin A: cellulose dispersed in thermoplastic resin C in step 3) A cellulose reinforced thermoplastic resin composition containing two types of thermoplastic resins was produced in the same manner as in Example 1 except that the reinforced thermoplastic resin composition was dry blended so as to be 260: 190. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Example 11 In the process of 1) of Example 1, 30 parts by mass of the ionic compound A is blended with 70 parts by mass of cellulose A, and in the process of 2) of Example 1, the mass ratio of the thermoplastic resin C: cellulose composition is 70 : 100, and in the step 3) of Example 1, the thermoplastic resin A, in a mass ratio, of the cellulose reinforced thermoplastic resin composition dispersed in the thermoplastic resin C and the thermoplastic resin A Cellulose reinforced thermoplastic resin containing two kinds of thermoplastic resins in the same manner as in Example 10 except that the cellulose reinforced thermoplastic resin composition dispersed in the thermoplastic resin C is dry blended so as to be 180: 170. The composition was manufactured. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Example 12 In the step 1) of Example 1, 49.9 parts by mass of the ionic compound A was blended with 50.1 parts by mass of cellulose A, and in the step 2) of Example 1, thermoplastic resin C: cellulose composition The mass ratio was 50: 100, and in the step 3) of Example 1, the mass ratio of the cellulose-reinforced thermoplastic resin composition dispersed in the thermoplastic resin C to the thermoplastic resin A in thermal ratio Plasticity resin A: Cellulose reinforcement including two kinds of thermoplastic resins in the same manner as in Example 10 except that dry blending was carried out so that the cellulose reinforced thermoplastic resin composition dispersed in the thermoplastic resin C would be 100: 150. A thermoplastic resin composition was produced. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body was produced in the same manner as the step 4) of Example 1.
  • Comparative Example 1 In the process of 1) of Example 1, 70 parts by mass of the ionic compound A was blended with 30 parts by mass of cellulose A. In this case, the powdered cellulose is dissolved, the cellulose is partially recrystallized in the acetone solvent, and the cellulose melt which has become a liquid having a high viscosity after drying is clogged up, and the handling property is impaired.
  • the thermoplastic resin composition is pelletized by using the Labo Plastomill [Labor Plastomill ⁇ Micro manufactured by Toyo Seiki Seisakusho Co., Ltd.] instead of a twin-screw extruder and pelletizing the obtained composition. Prepared and manufactured.
  • thermoplastic resin A was dry blended so that the mass ratio of the thermoplastic resin A to the thermoplastic resin B was 50: 50, except that 3) of Example 1 was used.
  • a cellulose reinforced thermoplastic resin composition containing two types of thermoplastic resins was produced in the same manner as in the process.
  • a lamp body provided with a resin portion was produced in the same manner as the step 4) of Example 1.
  • Comparative Example 2 In the process of 2) of Example 1, instead of the thermoplastic resin B, a thermoplastic resin A was used, and it was carried out except that it was blended at a ratio of 112 parts by mass of the cellulose composition to 100 parts by mass of the thermoplastic resin A As in Example 2, a cellulose reinforced thermoplastic resin composition containing one type of thermoplastic resin was prepared and manufactured. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body provided with a resin portion was produced in the same manner as in Example 1.
  • Comparative Example 3 Cellulose A 11.1 parts by weight based on 100 parts by mass of thermoplastic resin A in step 2) of Example 1 except that cellulose A itself is used instead of the cellulose composition without performing step 1) of Example 1. Parts were compounded and extruded with a twin-screw extruder (KZW15TW-45MG-NH, manufactured by Technobel Co., Ltd.) to prepare and manufacture a cellulose-reinforced thermoplastic resin composition containing one kind of thermoplastic resin. Next, using this cellulose reinforced thermoplastic resin composition, a lamp body provided with a resin portion was produced in the same manner as the step 4) of Example 1.
  • KZW15TW-45MG-NH twin-screw extruder
  • Example 13 The steps 1) to 3) in Example 1 were similarly carried out to prepare a cellulose reinforced thermoplastic resin composition.
  • Examples 14 to 24 Using the cellulose-reinforced thermoplastic resin compositions produced in Examples 2 to 12, respectively, speaker units provided with a resin portion were produced in the same manner as in step 5) of Example 13.
  • Comparative Example 4 Using the cellulose-reinforced thermoplastic resin composition produced in Comparative Example 1, a speaker unit provided with a resin portion was produced in the same manner as the step 5) of Example 13.
  • Comparative Example 5 Using the cellulose-reinforced thermoplastic resin composition produced in Comparative Example 2, a speaker unit provided with a resin portion was produced in the same manner as in the step 5) of Example 13.
  • Comparative Example 6 Using the cellulose-reinforced thermoplastic resin composition produced in Comparative Example 3, a speaker unit provided with a resin portion was produced in the same manner as in the step 5) of Example 13.
  • Example 25 The steps 1) to 3) in Example 1 were similarly carried out to prepare a cellulose reinforced thermoplastic resin composition.
  • connection box and connector It injection-molded using the cellulose reinforcement thermoplastic resin composition prepared above, and the connection box and connector provided with the resin part were produced. In addition, injection conditions were implemented on the conditions made generally appropriate in injection molding of a junction box and a connector.
  • Examples 26 to 36 Using the cellulose reinforced thermoplastic resin compositions produced in Examples 2 to 12, connection boxes and connectors provided with a resin part were produced in the same manner as in the step 6) of Example 25.
  • Comparative Example 7 Using the cellulose reinforced thermoplastic resin composition produced in Comparative Example 1, a connection box and a connector provided with a resin portion were produced in the same manner as in the step 6) of Example 25.
  • Comparative Example 8 Using the cellulose reinforced thermoplastic resin composition produced in Comparative Example 2, a connection box and a connector provided with a resin portion were produced in the same manner as in the step 6) of Example 25.
  • Comparative Example 9 Using the cellulose reinforced thermoplastic resin composition produced in Comparative Example 3, a junction box and a connector provided with a resin portion were produced in the same manner as in the step 6) of Example 25.
  • Example 37 The steps 1) to 3) in Example 1 were similarly carried out to prepare a cellulose reinforced thermoplastic resin composition.
  • Examples 38 to 48 The cellulose reinforced thermoplastic resin compositions produced in Examples 2 to 12 were respectively used, and pulleys provided with a resin portion were respectively produced in the same manner as in the process 7) of Example 37.
  • Comparative Example 10 Using the cellulose reinforced thermoplastic resin composition produced in Comparative Example 1, a pulley provided with a resin portion was produced in the same manner as in the process 7) of Example 37.
  • Comparative Example 11 Using the cellulose reinforced thermoplastic resin composition produced in Comparative Example 2, a pulley provided with a resin portion was produced in the same manner as in the step 7) of Example 37.
  • Comparative Example 12 Using the cellulose reinforced thermoplastic resin composition produced in Comparative Example 3, a pulley provided with a resin portion was produced in the same manner as the step 7) of Example 37.
  • Example 49 The steps 1) to 3) in Example 1 were similarly carried out to prepare a cellulose reinforced thermoplastic resin composition.
  • a 100 ⁇ m-thick single layer is formed by film-forming the cellulose-reinforced thermoplastic resin composition prepared above at an extrusion temperature of 200 ° C. using a T-die cast film production apparatus. Film was produced to obtain a film for house.
  • Examples 50 to 60 Using the cellulose reinforced thermoplastic resin compositions produced in Examples 2 to 12, respectively, films for house were produced in the same manner as in the step 8) of Example 49.
  • Comparative Example 13 Using the cellulose-reinforced thermoplastic resin composition produced in Comparative Example 1, a house film was produced in the same manner as in the step 8) of Example 49.
  • Comparative Example 14 Using the cellulose reinforced thermoplastic resin composition produced in Comparative Example 2, a house film was produced in the same manner as in the step 8) of Example 49.
  • Comparative Example 15 Using the cellulose-reinforced thermoplastic resin composition produced in Comparative Example 3, a house film was produced in the same manner as in the step 8) of Example 49.
  • the area of the cellulose aggregate was calculated by image-analyzing the obtained part counted at a luminance of 0 to 80 using "NIS-Elements D" manufactured by Nikon Corporation.
  • the target pass level is obtained when the area of each of the nine cellulose aggregates calculated is less than 20000 ⁇ m 2 , and the rejection level is obtained when any of the areas is 20000 ⁇ m 2 or more.
  • Tables 1 to 10 among the nine cellulose aggregates, the maximum area and the minimum area are respectively described as “maximum value” and “minimum value”.
  • the area of any of the cellulose aggregates is less than 20000 ⁇ m 2 indicates that the cellulose fibers are refined without aggregation even if they are refined, and the elastic modulus is further added to the short side length of the cellulose fibers It means that it is improved and the reinforcement efficiency of the thermoplastic resin is high.
  • ⁇ Appearance of molded article> The molded articles produced in each of the Examples and Comparative Examples were visually observed, and the uniformity of the cellulose dispersion was evaluated by the presence or absence of the cellulose fiber aggregates. In the absence of cellulose fiber aggregates, it is lightweight and strong, and it is a molded product with excellent dimensional accuracy for the lamp body and pulley, a molded product with excellent acoustic characteristics for the speaker unit, connection box and It can be judged that a molded article excellent in recyclability for the connector, and a molded article excellent in recyclability, surface smoothness and adhesion performance for the house film are obtained.
  • Ec is a Young's modulus (elastic modulus) of a bending test piece which is a composite material
  • Em is a Young's modulus (elastic modulus) of a thermoplastic resin which is a base material
  • Ef is a Young's modulus of cellulose which is a fiber
  • Vm is a volume fraction of the thermoplastic resin which is a base material
  • Vf is a volume fraction of cellulose which is a fiber.
  • thermoplastic resin and the cellulose composition in each table are parts by mass, and "-" indicates that it is unused, that is, 0 parts by mass.
  • cellulose and the ionic compound which are breakdown of a cellulose composition show the ratio of these mass parts.
  • “-” Indicates unused as in the above, that is, 0 parts by mass.
  • a and B in a cellulose composition show that the used cellulose is A or B.
  • thermoplastic resin compositions of Examples 1 to 60 all have an abundance ratio of cellulose fibers with a short side length of 2 ⁇ m or less of 15% or more, and an area of aggregates of cellulose of less than 20000 ⁇ m 2 Met.
  • thermoplastic resin compositions of Comparative Examples 1, 4, 7, 10, and 13 the blending amount of the ionic compound blended in the cellulose was too large, and the cellulose fiber was dissolved. Therefore, it was impossible to observe the morphology as a dispersion.
  • thermoplastic resin compositions of Comparative Examples 2, 5, 8, 11, and 14 although it is possible to confirm that the blending amount of cellulose is too large and partial refinement proceeds partially, the area of the cellulose aggregate is at the same time Cellulose aggregates of 20000 ⁇ m 2 or more were present. Therefore, the abundance ratio of cellulose fibers having a short side length of 2 ⁇ m or less fell below 15%.
  • thermoplastic resin compositions of Comparative Examples 3, 6, 9, 12, and 15 the proportion of cellulose fibers having a short side length of 2 ⁇ m or less was less than 15%, and the area of cellulose aggregates was 20000 ⁇ m 2 or more. .
  • the reinforcing effect of the resin can be seen more strongly. This phenomenon is considered to be due to the improvement of the elastic modulus of cellulose due to the refinement of cellulose.
  • thermoplastic resin compositions of Examples 1 to 60 the elastic modulus is improved, the reinforcing efficiency of the thermoplastic resin is high, and no aggregates of cellulose fibers are present even in a molded product. Therefore, the thermoplastic resin compositions of Examples 1 to 60 are useful as a cellulose reinforced resin, in particular, for use in molded articles such as lamp bodies, speaker units, connection boxes, connectors, pulleys and films for house. I understand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、微細化されたセルロースが熱可塑性樹脂中に均一分散された熱可塑性樹脂組成物で形成された樹脂部を備える成形品に関する。該成形品は、熱可塑性樹脂、セルロースおよびイオン化合物を含有し、熱可塑性樹脂100質量部に対し、セルロースの含有量が1~100質量部であり、イオン化合物の含有量が、セルロースの0.001倍以上1.000倍未満である熱可塑性樹脂組成物で形成された樹脂部を備える。

Description

成形品
 本発明は、灯具のランプボディ、スピーカユニット、接続箱、コネクタ、プーリおよびハウス用フィルムなどの樹脂部を備える成形品、特に射出成形、Tダイ成形等により作製した樹脂部を備える成形品に関する。さらに詳しくは、セルロース、特に植物由来の繊維状のセルロースとイオン化合物を含有する熱可塑性樹脂組成物で形成された樹脂部を備える灯具のランプボディ、スピーカユニット、接続箱、コネクタ、プーリおよびハウス用フィルムなどの成形品に関する。
 近年、自動車等の車両に対する低燃費化のため、車両の更なる軽量化が要求されている。車両の軽量化のためには、車両を構成するボディなどの大きなパーツのみならず、ヘッドライト等の灯具、車両に搭載されるオーディオシステムの一構成要素としての車載用スピーカユニット、自動車用の接続箱およびコネクタ、自動車のエンジン補機類等を駆動するベルトの案内用プーリ等の各種部材の軽量化も必要である。
 車両用灯具は、一般的に、開口部を有するランプボディ、その開口部を覆う前面カバー、エクステンション、反射鏡(リフレクタ)、光源および電装部品等を備えている。車両用灯具の軽量化のためには、車両用灯具の構成部品のうち車両用灯具の総重量に対して比較的高い比率を有するランプボディを樹脂材料によって形成することが有効である。
 車載用スピーカユニットは、さらなる軽量化に加え、振動に対する強度特性およびスピーカユニットとしての音響特性の向上も要求されている。このような要求に応えるため、例えばスピーカユニットの筐体(エンクロージャーまたはキャビネット)、フレーム等を適切な配合材料で形成することが望ましい。
 自動車用の接続箱およびコネクタは、一般的に、ガラス繊維を強化材として分散させたガラス繊維強化熱可塑性樹脂を用いて射出成形することにより製造される。このような高強度な樹脂を用いることにより接続箱およびコネクタの薄肉化、軽量化が可能である。一方で、接続箱およびコネクタ等を射出成形により製造する際、ランナー端材、ミスショット品が発生する。また、ガラス繊維強化熱可塑性樹脂を用いて形成された接続箱およびコネクタ等は、廃車から回収される場合もある。しかしながら、ガラス繊維強化熱可塑性樹脂は、リサイクルによる強度低下が大きい。そのため、リサイクルされたガラス繊維強化熱可塑性樹脂を使用する場合、強度保持の観点から接続箱およびコネクタ等の薄肉化、軽量化が困難である。そこで、リサイクルされても薄肉化、軽量化の効果が失われず、リサイクル性に優れた繊維強化材料が求められている。
 車両用プーリは、一般的に、転がり軸受の外周に樹脂部が一体成形されており、生産性の観点から、強化繊維を含む樹脂等を用いた射出成形により樹脂部が形成される。しかしながら、射出成形の場合、射出成形機には、樹脂材料の流入速度を調整するゲートが必須である。またゲートから金型内に流入した樹脂材料が合流する部分にはウェルドが生じ、円周方向にて強化繊維の不均一が発生し、強度、寸法精度のムラを生じるおそれがある。そのため、プーリを射出成形により製造する場合、ベルトを案内する樹脂部の外周部の寸法精度、ベルトの張力に耐える強度特性等が要求される。ランプボディも同様、寸法精度に優れていることが求められる。
 このような各種成形部材の軽量化、強度特性の向上は、自動車等の車両用部材に限られず、例えば、農業用ハウス等の成形部材にも要求されている。農業用ハウスは、ハウス内の生産品を外部から保護し、一定の環境を保持するために広く用いられている。外部から内部の様子をある程度把握できるように、農業用ハウスのフィルムには、塩化ビニル、ポリエチレン、ポリエチレン-酢酸ビニル共重合体、ポリエチレンテレフタレート(PET)、ポリエチレン-テトラフルオロエチレン共重合体などを主原料とする透明フィルムが主に用いられている。また、生産性の向上などの観点から、近年、農業ハウスの規模を大きくすることがある。規模の大きな農業用ハウスでは、ハウスに用いられるフィルムの重量が増すため、ハウス全体を支える駆体への影響が大きくなる。また、外部からの飛来物と接触する面積も増大する。そのため、ハウス用フィルムには、軽量化、高弾性率及び高強度が求められる。また、近年の資源の有効活用の観点から、材料のリサイクル性についても要求される場合がある。
 上記のような要求に応えるため、各種部材が備える樹脂部の配合材料として、セルロースが有望視されている。セルロースは、地球上に多く存在し再生可能な天然資源であるため、高いリサイクル性を有する材料として好適である。また、セルロースは軽量であると共に、微小なサイズにまで微細化することで機械特性が上昇し、ナノサイズまで微細化を進めると、極めて高弾性率かつ高強度な材料となることが知られている。さらに、微細化したセルロースを配合した樹脂は、ガラス繊維または炭素繊維を配合した樹脂と比べて表面平滑性が良好である。このような特性を有するセルロースを、熱可塑性樹脂の強化材として利用する研究も行われており、その可能性が注目されている。
 このようなセルロース系微細繊維と熱可塑性樹脂からなる複合樹脂の製造方法としては、最初に植物繊維を解繊(ミクロフィブリル化)し、このミクロフィブリル化された植物繊維(セルロース系微細繊維)を、分散性と繊維-樹脂間の界面制御を行うために相容化剤や界面補強材を使用して、ポリプロピレンのような熱可塑性樹脂と混合して混練する方法が知られている(例えば、特許文献1参照)。しかしながら、このような方法では、少なくとも、植物繊維を解繊(ミクロフィブリル化)する工程と、このミクロフィブリル化された植物繊維(セルロース系微細繊維)を熱可塑性樹脂に混合して複合化する工程を含む。このため、手順が煩雑になり、製造コストが高くなることに加え、熱可塑性樹脂に混練する際に再凝集しやすく、そのコントロールが難しいのが実態である。
 また近年、植物繊維を化学処理して表面を変性した後、この変性植物繊維と熱可塑性樹脂を加工機で混練するという方法が提案されている(例えば、特許文献2参照)。この方法は、加工機内で、変性植物繊維を熱可塑性樹脂と一緒に混練しながら、植物繊維の微細化を促す方法である。しかしながら、このような方法も、化学処理の工程において、植物繊維を一度膨潤させてから化学物質を作用させ、乾燥させた後に加工機内に投入する。そのため、特許文献2に記載されている方法は、従来の方法よりも改善されてはいるものの、手順が煩雑であり、コスト低減にも限界があった。
 また、上記のような成形品、例えばランプボディを、特許文献1に記載されているようなポリプロピレンと植物繊維とを含有する複合樹脂を用いて射出成形により成形する場合、その成形に用いる金型が腐食し易いという問題がある。そのため、射出成形は、金型への腐食をできるだけ防止して行われることが望ましい。
米国特許出願公開第2008/0146701号明細書 国際公開第2013/133093号
 本発明は、セルロースの微細化を可能とし、微細化されたセルロースが熱可塑性樹脂中に均一分散された熱可塑性樹脂組成物で形成された樹脂部を備える成形品の提供を目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、植物繊維と熱可塑性樹脂に加えてイオン物質を共存させることで、微細化された植物繊維が熱可塑性樹脂中に均一分散した複合樹脂であるセルロース強化熱可塑性樹脂が得られ、該セルロース強化熱可塑性樹脂で形成された樹脂部を備えた成形品が得られることを見出した。
 本発明の要旨構成は、以下のとおりである。
[1]熱可塑性樹脂、セルロースおよびイオン化合物を含有し、該熱可塑性樹脂100質量部に対し、該セルロースの含有量が1~100質量部であり、該イオン化合物の含有量が、該セルロースの0.001倍以上1.000倍未満である熱可塑性樹脂組成物で形成された樹脂部を備えることを特徴とする成形品。
[2]前記イオン化合物が、下記一般式(1)または(2)で表される[1]に記載の成形品。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)および(2)において、Zは=C(Ra)-または=N-を示す。ここで、Raは水素原子または置換基を示す。Lは2価の連結基を示す。R~Rは各々独立に、アルキル基、アルケニル基、シクロアルキル基、アリール基またはヘテロ環基を示す。R~Rの少なくとも2つが互いに結合して環を形成してもよい。Xはアニオンを示す。
[3]前記一般式(1)または(2)で表される化合物が、下記一般式(1a)、(1b)、(2a)~(2c)のいずれかで表される[2]に記載の成形品。
Figure JPOXMLDOC01-appb-C000004
 一般式(1a)、(1b)、(2a)~(2c)において、R、RおよびXは、前記一般式(1)または(2)におけるR、RおよびXと同義である。R11およびR12は各々独立に置換基を示す。n11は0~3の整数であり、n12は0~5の整数である。ここで、R11が2以上のとき、複数のR11は互いに同一でも異なってもよい。また、少なくとも2つのR11が互いに結合して環を形成してもよい。
 R13~R15は各々独立に、アルキル基、アルケニル基、シクロアルキル基、アリール基またはヘテロ環基を示す。ただし、R、R13~R15の少なくとも2つが互いに結合して環を形成することはない。R21はRと同義である。
 Zは単結合、メチレン基、-C(=O)-、-O-、-S-、-S(=O)-、-SO-、-N(Rα1)-または-N(Rα1)(Rα2)-を示し、Rα1は水素原子または置換基を示し、Rα2は置換基を示す。ここで、Rα1とRα2が互いに結合して環を形成してもよい。
[4]前記Xが、ハロゲンイオン、カルボン酸アニオン、スルホン酸アニオン、リン酸アニオン、ホスホン酸アニオン、ジシアナミドイオンまたはビス(トリフルオロメタンスルホニル)イミドイオンである[2]または[3]に記載の成形品。
[5]前記セルロースが、植物由来の繊維状のセルロースである[1]~[4]のいずれか1つに記載の成形品。
[6]前記セルロースの15%以上が短辺長2μm以下である[1]~[5]のいずれか1つに記載の成形品。
[7]前記熱可塑性樹脂組成物のセルロース凝集体の面積が20000μm未満である[1]~[6]のいずれか1つに記載の成形品。
[8]前記成形品が、灯具のランプボディ、スピーカユニット、接続箱、コネクタ、プーリまたはハウス用フィルムである[1]~[7]のいずれか1つに記載の成形品。
 本発明では、微細化したセルロースを熱可塑性樹脂中に凝集や再凝集することなく均一に分散されて含有する樹脂部を備える成形品を提供することが可能となった。すなわち、イオン化合物を含有した植物由来の繊維状のセルロース(パルプ)を熱可塑性樹脂と混練することで、その工程内においてパルプの微細化を進行させることができる。このため、予め植物由来の繊維状のセルロースを微細化する工程が不要となり、製造コストの大幅な低減が期待できる。さらに、微細化されたセルロースにより弾性率が上昇するため、例えば、灯具のランプボディ、スピーカユニット、接続箱、コネクタ、プーリ、ハウス用フィルムなどの成形品の強化効率を高めることができる。
 このように、本発明によって、微細化したセルロース繊維を用いた樹脂部を備える成形品をより効率的に提供することが可能になる。また、本発明では、軽量化、高強度化されると共に、寸法精度に優れたプーリ、灯具のランプボディ、音響特性に優れたスピーカユニット、リサイクル性に優れた接続箱、コネクタ、ハウス用フィルムなどの成形品を得ることができる。
本発明の成形品の一実施形態に係る灯具のランプボディの一例を示す模式断面図である。 本発明の成形品の一実施形態に係るスピーカユニットの一例を示す斜視図である。 本発明の成形品の一実施形態に係るスピーカユニットを車載用スピーカ装置に応用した形態を示す斜視図である。 図3に示した車載用スピーカ装置のA-A矢視断面図である。 本発明の成形品の一実施形態に係る接続箱の一例を示す斜視図である。 図5に示した接続箱の分解斜視図である。 本発明の成形品の一実施形態に係るプーリの一例を示す正面図である。 図7に示したプーリのB-B断面図である。 本発明の成形品の一実施形態に係るハウス用フィルムを用いた農業用ハウスの一例を示す斜視図である。
 本発明の成形品は、熱可塑性樹脂、セルロースおよびイオン化合物を含有し、該熱可塑性樹脂100質量部に対し、該セルロースの含有量が1~100質量部であり、該イオン化合物の含有量が、該セルロースの0.001倍以上1.000倍未満である熱可塑性樹脂組成物で形成された樹脂部を備える。
<<熱可塑性樹脂組成物>>
 本発明の成形品が備える樹脂部の形成に使用される熱可塑性樹脂組成物は、少なくとも、熱可塑性樹脂、セルロースおよびイオン化合物を含有する。
<熱可塑性樹脂>
 本発明で使用する熱可塑性樹脂は、特に限定されるものではなく、一般的に熱可塑性樹脂として使用されているものであればどのような樹脂でも構わない。これは、以下に説明する理由による。
 本発明では、以後に説明するように、セルロースとイオン化合物を熱可塑性樹脂中で混練することで、セルロースの微細化を実現するものである。このため、セルロースと混合する際の熱可塑性樹脂の粘度が重要な特性となる。すなわち、熱可塑性樹脂中に存在するセルロース(イオン化合物を含む)の分散体がせん断場で感じる応力(Fh)は、簡易的に下記式(1.1)で表現される。
Figure JPOXMLDOC01-appb-M000005
 なお、上記式(1.1)において・付きγを、以下では、単にγとして説明する。上記分散体がせん断場で感じる応力(Fh)は、γのせん断速度を持つ粘度ηの熱可塑性樹脂内で、半径Rの球形フィラーが感じる力を表している。ただし、熱可塑性樹脂中に存在するセルロースは球状ではなく繊維状であるため、このままの式を適用できないが、原理的には同じことであり、上記分散体がせん断場で感じる応力(Fh)に影響するパラメーター(η、γ、R)も同じであると考えられる。従って、セルロースを微細化するためには、熱可塑性樹脂内のせん断場で、いかに大きな力をかけられるかが重要であるため、ηもしくはγが大きいほど有利になると考えられる。
 ここで、せん断速度(γ)を速くするということは、機械的に熱可塑性樹脂にかけるせん断速度を速くするということを意味する。従って、せん断速度(γ)を速くすると、セルロースが熱可塑性樹脂内で感じる力は大きくなるが、混練による摩擦力も同時に大きくなり、熱可塑性樹脂の温度が上昇することになる。しかしながら、一般的にセルロースは200℃を超えると変色し、300℃近くから熱分解してしまう性質を持つため、温度を極端に上げてしまうようなせん断場に晒す方法は、材料としての特性を維持する観点から適切ではない。
 このことから、セルロースの微細化のためには、熱可塑性樹脂の粘度(η)を高めることが重要となる。一般的に熱可塑性樹脂の粘度(η)は、次のような関係(アンドレードの式)を満たす。
Figure JPOXMLDOC01-appb-M000006
 ここで、Aは比例定数であり、Evは流動活性化エネルギーであり、Rは気体定数であり、Tは温度(K)である。流動活性化エネルギーは、アレニウスの化学反応における活性化エネルギーに相当するもので、流動を速度過程と見なすことで理解される。従って、粘度(η)を制御するために重要なパラメーターは、温度である。温度は、熱可塑性樹脂の種類に関わらず、加工温度として操作、調整することが可能である。従って、セルロースを微細化するのに必要な力を与える媒体としての熱可塑性樹脂は、特に種類の制約を受けることなく、広く適用可能なものである。
 熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンオキシド樹脂、セルロースアシレート樹脂、フェノキシ樹脂などが挙げられる。このうち、本発明では、ポリオレフィン樹脂が好ましい。
<ポリオレフィン樹脂>
 ポリオレフィン樹脂は、少なくとも1種のオレフィンを重合してなるポリオレフィン樹脂であり、単独重合体であっても共重合体であっても構わない。このようなオレフィンとしては、例えば、エチレン、プロピレン、イソブチレン、イソブテン(1-ブテン)を含む炭素原子数4~12のα-オレフィン、ブタジエン、イソプレン、(メタ)アクリル酸エステル、(メタ)アクリル酸、(メタ)アクリルアミド、ビニルアルコール、酢酸ビニル、塩化ビニル、スチレン、アクリロニトリルなどが挙げられる。
 炭素原子数4~12のα-オレフィンとしては、例えば、1-ブテン、2-メチル-1-プロペン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ブテン、1-ヘプテン、メチル-1-ヘキセン、ジメチル-1-ペンテン、エチル-1-ペンテン、トリメチル-1-ブテン、メチルエチル-1-ブテン、1-オクテン、メチル-1-ペンテン、エチル-1-ヘキセン、ジメチル-1-ヘキセン、プロピル-1-ヘプテン、メチルエチル-1-ヘプテン、トリメチル-1-ペンテン、プロピル-1-ペンテン、ジエチル-1-ブテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンなどが挙げられる。
 ポリオレフィン樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイソブチレン樹脂、ポリイソブテン樹脂、ポリイソプレン樹脂、ポリブタジエン樹脂、(メタ)アクリル樹脂(いわゆるアクリル樹脂)、ポリ塩化ビニル樹脂などのビニル樹脂、ポリ(メタ)アクリルアミド樹脂、ポリスチレン樹脂、アクリロニトリル/ブタジエン/スチレン共重合樹脂(ABS樹脂)、エチレン/(メタ)アクリル酸エステル共重合体、エチレン/酢酸ビニル共重合体などが挙げられる。
 これらの樹脂のうち、ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル/ブタジエン/スチレン共重合樹脂(ABS樹脂)が好ましく、ポリエチレン樹脂、ポリプロピレン樹脂がより好ましい。
 ポリエチレン樹脂としては、エチレン単独重合体、エチレン-α-オレフィン共重合体などが挙げられる。α-オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンが好ましい。
 エチレン-α-オレフィン共重合体としては、例えば、エチレン-1-ブテン共重合体、エチレン-1-ペンテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体などが挙げられる。
 なお、ポリエチレン樹脂を密度もしくは形状で分類した場合、ポリエチレンは、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、超低密度ポリエチレン(VLDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMW-PE)のいずれでも構わない。
 ポリプロピレン樹脂としては、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-エチレン-α-オレフィン共重合体、プロピレンブロック共重合体(プロピレン単独重合体成分または主にプロピレンの構成単位を有する共重合体成分と、エチレンおよびα-オレフィンから選択されるモノマーの少なくとも1種とプロピレンとを共重合して得られる共重合体)などが挙げられる。これらのポリプロピレン樹脂は単独で使用しても、2種以上を併用してもよい。
 ポリプロピレン樹脂に用いられるα-オレフィンは、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセンが好ましく、1-ブテン、1-ヘキセン、1-オクテンがより好ましい。
 プロピレン-α-オレフィンランダム共重合体としては、例えば、プロピレン-1-ブテンランダム共重合体、プロピレン-1-ヘキセンランダム共重合体、プロピレン-1-オクテンランダム共重合体などが挙げられる。
 プロピレン-エチレン-α-オレフィン共重合体としては、例えば、プロピレン-エチレン-1-ブテン共重合体、プロピレン-エチレン-1-ヘキセン共重合体、プロピレン-エチレン-1-オクテン共重合体などが挙げられる。
 プロピレンブロック共重合体としては、例えば、(プロピレン)-(プロピレン-エチレン)共重合体、(プロピレン)-(プロピレン-エチレン-1-ブテン)共重合体、(プロピレン)-(プロピレン-エチレン-1-ヘキセン)共重合体、(プロピレン)-(プロピレン-1-ブテン)共重合体、(プロピレン)-(プロピレン-1-ヘキセン)共重合体、(プロピレン-エチレン)-(プロピレン-エチレン)共重合体、(プロピレン-エチレン)-(プロピレン-エチレン-1-ブテン)共重合体、(プロピレン-エチレン)-(プロピレン-エチレン-1-ヘキセン)共重合体、(プロピレン-エチレン)-(プロピレン-1-ブテン)共重合体、(プロピレン-エチレン)-(プロピレン-1-ヘキセン)共重合体、(プロピレン-1-ブテン)-(プロピレン-エチレン)共重合体、(プロピレン-1-ブテン)-(プロピレン-エチレン-1-ブテン)共重合体、(プロピレン-1-ブテン)-(プロピレン-エチレン-1-ヘキセン)共重合体、(プロピレン-1-ブテン)-(プロピレン-1-ブテン)共重合体、(プロピレン-1-ブテン)-(プロピレン-1-ヘキセン)共重合体などが挙げられる。
 これらのポリプロピレン樹脂のうち、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-1-ブテンランダム共重合体、プロピレン-エチレン-1-ブテン共重合体、プロピレンブロック共重合体が好ましい。
 ポリプロピレン樹脂の結晶性は、融解温度(融点)や立体規則性で求められ、ポリオレフィン樹脂組成物に求められる品質や、それを成形して得られる成形品に求められる品質に応じて、調整する。なお、立体規則性はアイソタクチックインデックス、シンジオタクチックインデックスと称される。
 アイソタクチックインデックスは、Macromolecules,第8巻,687頁(1975年)に記載の13C-NMR法で求められる。具体的には13C-NMRスペクトルのメチル基の炭素領域の全吸収ピーク中のmmmmピークの面積分率として、ポリプロピレン樹脂のアイソタクチックインデックスを求める。アイソタクチックインデックスが高いものは、結晶性が高く、0.96以上が好ましく、0.97以上がより好ましく、0.98以上がさらに好ましい。
 一方、シンジオタクチックインデックスは、J.Am.Chem.Soc.,110,6255(1988)やAngew.Chem.Int.Ed.Engl.,1955,34,1143-1170に記載の方法で求められ、シンジオタクチックインデックスが高いものが、結晶性が高い。
 ポリオレフィン樹脂は、変性されたポリオレフィン樹脂でもよく、また、変性されていないポリオレフィン樹脂に変性されたポリオレフィン樹脂を含んでもよい。変性されたポリオレフィン樹脂としては、例えば、不飽和カルボン酸もしくはその誘導体によりグラフト変性したものが挙げられる。不飽和カルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、アクリル酸、メタクリル酸等が挙げられ、不飽和カルボン酸誘導体としては、例えば、無水マレイン酸、無水イタコン酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸グリシジル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸グリシジル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル、フマル酸ジメチルエステル等が挙げられる。これらの不飽和カルボン酸および/またはその誘導体のうち、好ましくはアクリル酸、メタクリル酸のグリシジルエステル、無水マレイン酸である。
 アクリル樹脂としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、アクリロニトリルなどのアクリル単量体の単独重合体または共重合体、アクリル単量体と他の単量体との共重合体などが挙げられる。このうち、(メタ)アクリル酸エステルは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルへキシルなどの炭素数1~10のアルキル基を有する(メタ)アクリル酸アルキルエステルや、(メタ)アクリル酸ヒドロキシエチルなどの(メタ)アクリル酸ヒドロキシアルキル、(メタ)アクリル酸グリシジルエステルなどが挙げられる。
 アクリル単量体の単独重合体または共重合体の具体例としては、例えば、ポリ(メタ)アクリル酸エステル、アクリル酸エステル-メタクリル酸エステル共重合体、ポリアクリロニトリルなどが挙げられる。アクリル単量体と他の単量体との共重合体の具体例としては、例えば、(メタ)アクリル酸エステル-スチレン共重合体、(メタ)アクリル酸-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、アクリロニトリル-スチレン-(メタ)アクリル酸エステル共重合体などが挙げられる。
 ビニル樹脂としては、例えば、塩化ビニル樹脂[塩化ビニルモノマーの単独重合体(ポリ塩化ビニル樹脂など)、塩化ビニル単量体と他の単量体との共重合体(塩化ビニル-酢酸ビニル共重合体、塩化ビニル-(メタ)アクリル酸エステル共重合体など)など]、ビニルアルコール樹脂(ポリビニルアルコールなどの単独重合体、エチレン-ビニルアルコール共重合体などの共重合体など)、ポリビニルホルマールなどのポリビニルアセタール樹脂などが挙げられる。これらのビニル樹脂は、単独でもまたは2種以上組み合わせても使用することができる。
 ポリオレフィン樹脂のメルトフローレート(MFR)は、通常、0.01~400g/10分であり、機械的強度や生産安定性を高めるという観点から、好ましくは0.1~400g/10分であり、より好ましくは0.5~200g/10分である。なお、MFRは、特段の断りがない限り、JIS K7210に準拠し、190℃、2.16kg荷重下で10分間あたりに流出するポリマーの質量(g/10分)である。
<セルロース>
 本発明で使用するセルロースは、植物由来の繊維状のセルロースが好ましく、特に、微細な植物由来の繊維状のセルロースが好ましい。本発明の成形品、例えば、灯具のランプボディ、スピーカユニット、接続箱、コネクタ、プーリ、ハウス用フィルム等には、樹脂部の配合材料としてセルロースが用いられているため、軽量化、高強度化を図ることができる。また、成形品のリサイクル性を向上させることもできる。さらに、例えば、成形品がフィルムのような形態である場合、成形品としてのハウス用フィルムがこのような繊維状のセルロースが複合された上記熱可塑性樹脂の層を含むことによって、向上した表面平滑性を備えることができ、これにより、優れた光線透過性を備えたハウス用フィルムを得ることができる。また、セルロースは-OH基を有する極性分子であるため、分子間の親和性が高い。そのため、ハウス用フィルムの界面接着力が向上しており、接着性能に優れたハウス用フィルムを得ることができる。これにより、例えば、ハウス用フィルムが破れた場合に、接着テープ等で簡便に補修することができるなどの利点が得られる。
 パルプは、紙の原料ともなるもので、植物から抽出される仮道管を主成分とする。化学的に見ると、パルプの主成分は多糖類であり、その主成分はセルロースである。植物由来の繊維状のセルロースは、特に限定されるものではないが、例えば、木材、竹、麻、ジュート、ケナフ、農作物残廃物(例えば、麦や稲などの藁、とうもろこし、綿花などの茎、サトウキビ)、布、再生パルプ、古紙、木粉などの植物に由来のものが挙げられるが、本発明では、木材もしくは木材由来のものが好ましく、木粉がより好ましく、クラフトパルプが特に好ましい。なお、クラフトパルプは、木材もしくは植物原料から、苛性ソーダなどの化学処理によって、リグニン・ヘミセルロースを除去し、純粋に近いセルロースを取り出したパルプの総称である。
 本発明では、このようなセルロースに対し、イオン化合物を配合し、熱可塑性樹脂中で混練することで、セルロースの微細化を実現するものである。
 植物由来の繊維状のセルロースは、30~40分子が束となり、直径約3nm、長さは数百nmから数十μmの超極細幅で高結晶性のミクロフィブリルを形成し、これらが軟質な非結晶部を介しながら束となった構造を形成している。本発明の原料として使用する粉末セルロースは、この束状の集合体である。なお、ミクロフィブリルは、構成するセルロース分子鎖が伸びきり鎖結晶となっていることにより、極めて弾性率が高く、理想的には140GPa程度の弾性率を有すると言われている。また、セルロースの弾性率は、線径が小さくなるに従い上昇していくことが知られている。従って、強化樹脂としての性能を向上するためには、熱可塑性樹脂中に分散しているセルロースが細径化・微細化しているほど効果的である。
 本発明では、微細化されたセルロースは、棒状繊維のセルロースが好ましい。棒状繊維の形態は特に限定されず、真っ直ぐな繊維や折れ曲がった繊維を挙げることができる。短辺長(直径)は2μm以下が好ましく、3nm~2μmがより好ましく、3nm~1μmがより一層好ましく、3nm~0.5μmがさらに好ましく、4~300nmが特に好ましい。一方、長辺長(長さ)は、0.03~500μmが好ましく、0.05~200μmがより好ましい。アスペクト比は5以上が好ましく、10~1000がより好ましい。なお、アスペクト比は平均長さを平均繊維径で割った値である。
 また、本発明では、微細化されたセルロースは、含有するセルロースの15%以上が短辺長2μm以下であることが好ましい。短辺長2μm以下のセルロース繊維の含有量は20%以上がより好ましく、25%以上がさらに好ましい。
 本発明では、さらに、微細化されたセルロースが凝集、再凝集することなく、熱可塑性樹脂組成物に均一に分散されていることが好ましい。このため、セルロース凝集体が存在しても、その存在するセルロース凝集体の面積は20000μm未満であることが好ましい。すなわち、セルロース凝集体が存在しても、存在する凝集体のうち、最大の凝集体の面積は20000μm未満であることが好ましい。なお、短辺長やセルロース凝集体の面積は、電子顕微鏡や工業用顕微鏡で測定することができる。具体的には、実施例に記載の通りである。
 本発明では、セルロースの含有量は、熱可塑性樹脂100質量部に対し、1~100質量部であり、5~70質量部が好ましく、10~50質量部がより好ましい。セルロースの含有量が1質量部未満であると、混練中にセルロースに対する力の伝達が効果的に起こらず、実質的に微細化したセルロースを得ることが難しい。逆に、セルロースの含有量が100質量部を超えると、熱可塑性樹脂中でのセルロースの良分散化が困難になり、材料として使用するのに良好な特性を得ることができない。
 <イオン化合物>
 本発明で使用する熱可塑性樹脂組成物は、セルロースとともに、イオン化合物を含有する。本発明で使用するイオン化合物は、一般に、イオン液体と称されるものが好ましい。イオン液体は、幅広い温度範囲で液体として存在する塩であり、イオンのみで構成される液体である。一般に100℃以下の融点を有する塩がイオン液体(IL)と定義され、室温付近に融点を有するイオン液体を、「RTIL(room temperature IL)」と称す。
 本発明で使用するイオン化合物は、一般に、イオン液体と称されるものが好ましいが、融点は100℃を超えても、例えば、150℃以上でも構わない。すなわち、本発明では、セルロース強化樹脂もしくはセルロース強化樹脂組成物を押出し、射出などにより加工、成形する段階で、加工機内で混練することで、セルロースを微細化するため、加工工程、加工機内の温度をイオン化合物の融点以上に設定することができる。従って、例えば、イオン化合物の融点が180℃であったとしても、180℃より高い温度、例えば、190℃で加工することで、いわゆるイオン液体と同じ作用が期待できる。
 本発明では、イオン化合物は、有機のイオン化合物が好ましく、第四級ホスホニウム塩、第四級アンモニウム塩などのオニウム塩が好ましく、この中でも、下記一般式(1)または(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)および(2)において、Zは=C(Ra)-または=N-を示す。ここで、Raは水素原子または置換基を示す。Lは2価の連結基を示す。R~Rは各々独立に、アルキル基、アルケニル基、シクロアルキル基、アリール基またはヘテロ環基を示す。R~Rの少なくとも2つが互いに結合して環を形成してもよい。Xはアニオンを示す。
 Zは=C(Ra)-または=N-であるが、=C(Ra)-が好ましい。
 Raにおける置換基は、アルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アミノ基、アシル基、アシルアミノ基、スルホンアミド基、カルバモイル基、スルファモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニル基、ハロゲン原子、ヒドロキシ基、カルボキシ基、スルホ基が挙げられる。
 アルキル基の炭素数は、1~20が好ましく、1~12がより好ましく、1~8がさらに好ましい。アルキル基としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、n-ペンチル、t-ペンチル、n-ヘキシル、n-ペンチル、n-オクチル、2-エチルヘキシル、n-オクチル、n-デシル、n-ドデシル、n-ヘキサデシル、n-オクタデシルが挙げられる。アルキル基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アルケニル基の炭素数は、2~20が好ましく、2~12がより好ましく、2~8がさらに好ましい。アルケニル基としては、例えば、ビニル、アリル、オレイルが挙げられる。アルケニル基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 シクロアルキル基は、3~7員環のシクロアルキル基が好ましく、3、5、6または7員環のシクロアルキル基がより好ましく、5または6員環のシクロアルキル基がさらに好ましい。シクロアルキル基の炭素数は、3~20が好ましく、3~12がより好ましく、5~12がさらに好ましく、5~8が特に好ましい。シクロアルキル基としては、例えば、シクロプロピル、シクロペンチル、シクロヘキシルが挙げられる。シクロアルキル基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アリール基の炭素数は、6~20が好ましく、6~12がより好ましく、6~8がさらに好ましい。アリール基としては、例えば、フェニル、ナフチルが挙げられる。アリール基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 ヘテロ環基のヘテロ環は、該ヘテロ環を構成するヘテロ原子が、酸素原子、硫黄原子、窒素原子から選択され、5または7員環のヘテロ環が好ましい。また、該ヘテロ環は、芳香環であっても、不飽和環であっても、飽和環であっても構わない。ヘテロ環基の炭素数は、0~20が好ましく、1~12がより好ましく、1~8がさらに好ましい。ヘテロ環基のヘテロ環としては、例えば、フラン環、チオフェン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、インドリン環、テトラヒドロフラン環、テトラヒドロチオフェン環、ピロリジン環、メピロリジン環、イミダゾリジン環、イミダゾリン環、ピラゾジン環、ピペリジン環、ピペラジン環、モルホリン環、チオモルホリン環、1,1-ジオキソチオモルホリン環、1-オキソモルホリン環、キヌクリジン環、1,4-ジアザビシクロ[2.2.2]オクタン環、シアヌル酸環などが挙げられる。また、ベンゾフラン環、ベンゾチオフェン環、ベンゾイミダゾール環、ベンゾピラゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環のように、ベンゼン環や他の環で縮環したものも挙げられる。ヘテロ環基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アルコキシ基の炭素数は、1~20が好ましく、1~12がより好ましく、1~8がさらに好ましい。アルコキシ基としては、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、t-ブトキシ、n-ペンチルオキシ、t-ペンチルオキシ、n-ヘキシルオキシ、n-ペンチルオキシ、n-オクチルオキシ、2-エチルヘキシルオキシ、n-オクチルオキシ、n-デシルオキシ、n-ドデシルオキシ、n-ヘキサデシルオキシ、n-オクタデシルオキシが挙げられる。アルコキシ基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アリールオキシ基の炭素数は、6~20が好ましく、6~12がより好ましく、6~8がさらに好ましい。アリールオキシ基としては、例えば、フェノキシ、ナフトキシが挙げられる。アリールオキシ基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アルキルチオ基の炭素数は、1~20が好ましく、1~12がより好ましく、1~8がさらに好ましい。アルキルチオ基としては、例えば、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピルチオ、n-ブチルチオ、イソブチルチオ、t-ブチルチオ、n-ペンチルオチオ、t-ペンチルチオ、n-ヘキシルチオ、n-ペンチルチオ、n-オクチルチオ、2-エチルヘキシルチオ、n-オクチルチオ、n-デシルチオ、n-ドデシルチオ、n-ヘキサデシルチオ、n-オクタデシルチオが挙げられる。アルキルチオ基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アリールチオ基の炭素数は、6~20が好ましく、6~12がより好ましく、6~8がさらに好ましい。アリールチオ基としては、例えば、フェニルチオ、ナフチルチオが挙げられる。アリールチオ基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アミノ基は、アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、アミノ基の炭素数は、0~20が好ましく、0~12がより好ましく、1~12がさらに好ましく、1~8が特に好ましい。アミノ基としては、例えば、アミノ、メチルアミノ、ジメチルアミノ、エチルアミノ、ジエチルアミノ、イソプロピルアミノ、ジn-プロピルアミノ、2-エチルヘキシルアミノ、n-オクチルアミノ、ドデシルアミノ、フェニルアミノ、ジフェニルアミノ、フェニルメチルアミノが挙げられる。アミノ基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アシル基は、ホルミル基、アルカノイル基、アシクロアルカノイル基、アルケノイル基、アリーロイル基、ヘテロ環カルボニル基を含む。アシル基の炭素数は、1~20が好ましく、2~12がより好ましく、2~8がさらに好ましい。アシル基としては、例えば、ホルミル、アセチル、プロピオニル、ブチリル、バレリル、ピバロイル、ラウロイル、パルミトイル、ステアロイル、シクロプロピルカルボニル、シクロペンチルカルボニル、シクロヘキシルカルボニル、アクリロイル、メタクリロイル、オレイル、ベンゾイル、ナフトイル、ニコチノイル、イソニコチノイルが挙げられる。アシル基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アシルアミノ基は、上記アシル基が窒素原子に置換したアミノ基が挙げられる。アシルアミノ基の炭素数は、1~20が好ましく、2~12がより好ましく、2~8がさらに好ましい。アシルアミノ基としては、例えば、ホルミルアミノ、アセチルアミノ、プロピオニルアミノ、ブチリルアミノ、バレリルアミノ、ピバロイルアミノ、ラウロイルアミノ、パルミトイルアミノ、ステアロイルアミノ、シクロプロピルカルボニルアミノ、シクロペンチルカルボニルアミノ、シクロヘキシルカルボニルアミノ、アクリロイルアミノ、メタクリロイルアミノ、オレイルアミノ、ベンゾイルアミノ、ナフトイルアミノ、ニコチノイルアミノ、イソニコチノイルアミノが挙げられる。アシルアミノ基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 スルホンアミド基は、アルキルスルホンアミド基、シクロアルキルスルホンミド基、アリールスルホンアミド基、ヘテロ環スルホンアミド基を含む。スルホンアミド基の炭素数は、1~20が好ましく、2~12がより好ましく、2~8がさらに好ましい。スルホンアミド基としては、例えば、メタンスルホンアミド、エタンスルホンアミド、プロパンスルホンアミド、オクタンスルホンアミド、シクロペンタンスルホンミド、シクロヘキサンスルホンアミド、ベンゼンスルホンアミド、ナフタレンスルホンアミドが挙げられる。スルホンアミド基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 カルバモイル基は、カルバモイル基、アルキルカルバモイル基、シクロアルキルカルバモイル基、アリールカルバモイル基、ヘテロ環カルバモイル基を含む。カルバモイル基の炭素数は、1~20が好ましく、2~12がより好ましく、2~8がさらに好ましい。カルバモイル基としては、例えば、N-メチルカルバモイル、N,N-ジメチルカルバモイル、N-フェニルカルバモイル、N-フェニル-N-メチルカルバモイル、N-シクロヘキシルカルバモイル、N-イミダゾリルカルバモイル、ピロリジンカルボニル、ピペリジンカルボニルが挙げられる。カルバモイル基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 スルファモイル基は、スルファモイル基、アルキルスルファモイル基、シクロアルキルスルファモイル基、アリールスルファモイル基、ヘテロ環スルファモイル基を含む。
 スルファモイル基の炭素数は、0~20が好ましく、1~12がより好ましく、1~8がさらに好ましい。スルファモイル基としては、例えば、N-メチルスルファモイル、N,N-ジメチルスルファモイル、N-フェニルスルファモイル、N-フェニル-N-メチルスルファモイル、N-シクロヘキシルスルファモイル、N-イミダゾリルスルファモイル、ピロリジンスルファモイル、ピペリジンスルファモイルが挙げられる。スルファモイル基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アルコキシカルボニル基の炭素数は、2~20が好ましく、2~12がより好ましく、2~8がさらに好ましい。アルコキシカルボニル基としては、例えば、メトキシカルボニル、エトキシカルボニル、n-プロポキシカルボニル、イソプロポキシカルボニル、n-ブトキシカルボニル、イソブトキシカルボニル、t-ブトキシカルボニル、n-ペンチルオキシカルボニル、t-ペンチルオキシカルボニル、n-ヘキシルオキシカルボニル、n-ペンチルオキシカルボニル、n-オクチルオキシカルボニル、2-エチルヘキシルオキシカルボニル、n-オクチルオキシカルボニル、n-デシルオキシカルボニル、n-ドデシルオキシカルボニル、n-ヘキサデシルオキシカルボニル、n-オクタデシルオキシカルボニルが挙げられる。アルコキシカルボニル基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アリールオキシカルボニル基の炭素数は、7~20が好ましく、7~12がより好ましい。アリールオキシカルボニル基としては、例えば、フェノキシカルボニル、ナフトキシカルボニルが挙げられる。アリールオキシカルボニル基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 アシルオキシ基は、ホルミルオキシ基、アルカノイルオキシ基、アシクロアルカノイルオキシ基、アルケノイルオキシル基、アリーロイルオキシ基、ヘテロ環カルボニルオキシ基を含む。アシルオキシ基の炭素数は、1~20が好ましく、2~12がより好ましく、2~8がさらに好ましい。アシルオキシ基としては、例えば、ホルミルオキシ、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、バレリルオキシ、ピバロイルオキシ、ラウロイルオキシ、パルミトイルオキシ、ステアロイルオキシ、シクロプロピルカルボニルオキシ、シクロペンチルカルボニルオキシ、シクロヘキシルカルボニルオキシ、アクリロイルオキシ、メタクリロイルオキシ、オレイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ、イソニコチノイルオキシが挙げられる。アシルオキシ基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 スルホニル基は、アルキルスルホニル基、シクロアルキルスルホニル基、アリールスルホニル基、ヘテロ環スルホニル基を含む。スルホニル基の炭素数は、1~20が好ましく、2~12がより好ましく、2~8がさらに好ましい。スルホニル基としては、例えば、メタンスルホニル、エタンスルホニル、プロパンスルホニル、オクタンスルホニル、シクロペンタンスルホニル、シクロヘキサンスルホニル、ベンゼンスルホニル、ナフタレンスルホニルが挙げられる。スルホニル基は、置換基を有してもよく、該置換基としては、Raで挙げた置換基が挙げられる。
 ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Raは、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロ環基、アルコキシ基、アルキルチオ基、アミノ基が好ましく、水素原子、アルキル基、シクロアルキル基、アリール基がより好ましく、水素原子、アルキル基がさらに好ましく、水素原子が特に好ましい。
 Lは2価の連結基であり、-N(R)=Z-とともに、5または6員環の含窒素ヘテロ環を形成する連結基が好ましく、5または6員環の含窒素ヘテロ芳香環を形成する連結基がより好ましく、5員環の含窒素ヘテロ芳香環が特に好ましい。ここで、形成された上記の含窒素ヘテロ環は、ベンゼン環や他の環で縮環されていてもよく、また、置換基で置換されていてもよい。このような置換基としては、Raにおける置換基が挙げられる。
 Lにおける2価の連結基は、連結原子が、炭素原子、酸素原子、硫黄原子、窒素原子から選択される連結基が好ましい。Lにおける2価の連結基と-N(R)=Z-で形成される環は、例えば、イミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、1-ピロリジン環、イミダゾリン環、およびこれらのベンゼン縮合体が挙げられる。
 R~Rにおけるアルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基は、Raにおけるアルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基と同義であり、好ましい範囲も同じである。
 R~Rの少なくとも2つが互いに結合して形成する環は、5~7員環が好ましく、5または6員環が好ましい。また、形成される環は、芳香環でも、不飽和環でも、飽和環でもよいが、飽和環が好ましい。
 R~Rの2つが互いに結合して形成する環としては、例えば、ピロリジン環、ピロリン環、ピラゾリジン環、ピラゾリン環、ピロール環、ピペリジン環、ピペラジン環、モルホリン環、チオモルホリン環、1,1-ジオキソチオモルホリン環、1-オキソモルホリン環が挙げられる。
 R~Rの3つが互いに結合して形成する環としては、例えば、キヌクリジン環、1,4-ジアザビシクロ[2.2.2]オクタン環が挙げられる。
 一般式(1)または(2)で表される化合物のうち、カチオン(X以外の部分)は、具体的には以下のカチオンが挙げられる。
 1-エチル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-ヘキシル-3-メチルイミダゾリウム、1-オクチル-3-メチルイミダゾリウムなどの1-アルキル-3-メチルイミダゾリウム、1,3-ジメチルイミダゾリウム、1,3-ジエチルイミダゾリウム、1,2,3-トリメチルイミダゾリウム、1,2,3,4-テトラメチルイミダゾリウム、1,3,4-トリメチル-2-エチルイミダゾリウム、1,3-ジメチル-2,4-ジエチルイミダゾリウム、1,2-ジメチル-3,4-ジエチルイミダゾリウム、1-メチル-2,3,4-トリエチルイミダゾリウム、1,2,3,4-テトラエチルイミダゾリウム、1,3-ジメチル-2-エチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1,2,3-トリエチルイミダゾリウム1-エチル-2,3-ジメチルイミダゾリウム、1-プロピル-2,3-ジメチルイミダゾリウム、1-ブチル-2,3-ジメチルイミダゾリウム、1-ペンチル-2,3-ジメチルイミダゾリウム、1-ヘキシル-2,3-ジメチルイミダゾリウム、1-ヘプチル-2,3-ジメチルイミダゾリウム、1-オクチル-2,3-ジメチルイミダゾリウム1-シアノメチル-3-メチルイミダゾリウム、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウム、1-アリル-3-メチルイミダゾリウム、1-ブチルピリジニウム、1-ヘキシルピリジニウム、N-(3-ヒドロキシプロピル)ピリジニウム、N-ヘキシル-4-ジメチルアミノピリジニウム、N-(メトキシエチル)-N-メチルモルフォリウム、1-(2-メトキシエチル)-1-メチルピロリジニウム、1-(メトキシエチル)-1-メチルピペリジニウム、N-(メトキシエチル)-1-メチルピロリジニウム、1,2-ジメチルピラゾリウム、N-(メトキシエチル)-2-メチルオキサゾリウム、N-(メトキシエチル)-2-メチルチアゾリウム、1,2,3-トリメチルイミダゾリニウム、1,2,3,4-テトラメチルイミダゾリニウム、1,3,4-トリメチル-2-エチルイミダゾリニウム、1,3-ジメチル-2,4-ジエチルイミダゾリニウム、1,2-ジメチル-3,4-ジエチルイミダゾリニウム、1-メチル-2,3,4-トリエチルイミダゾリニウム、1,2,3,4-テトラエチルイミダゾリニウム、1,3-ジメチル-2-エチルイミダゾリニウム、1-エチル-2,3-ジメチルイミダゾリニウム、1,2,3-トリエチルイミダゾリニウム、1,1-ジメチル-2-ヘプチルイミダゾリニウム、1,1-ジメチル-2-(2-ヘプチル)イミダゾリニウム、1,1-ジメチル-2-(3-ヘプチル)イミダゾリニウム、1,1-ジメチル-2-(4-ヘプチル)イミダゾリニウム、1,1-ジメチル-2-ドデシルイミダゾリニウム、1,1-ジメチルイミダゾリニウム、1,1,2-トリメチルイミダゾリニウム、1,1,2,4-テトラメチルイミダゾリニウム、1,1,2,5-テトラメチルイミダゾリニウム、1,1,2,4,5-ペンタメチルイミダゾリニウム、テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム、トリメチルプロピルアンモニウム、ジエチルメチル(2-メトキシエチル)アンモニウム、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム、N-エチル-N,N-ジメチル-2-メトキシエチルアンモニウム、トリメチルベンジルアンモニウム、N,N-ビス(2-メトキシエチル)ピロリジニウム、N,N-ビス(2-ヒドロキシエチル)ピロリジニウム、N-メチル-N-2-メトキシエチルピロリジニウム、N,N-ビス(2-エチルヘキシル)モルホリニウム、N,N-ビス(2-エチルヘキシル)チオモルホリニウム、N,N-ビス(2-ヒドロキシエチル)ピペリジニウム、N,N,N’,N’-テトラ(2-ヒドロキシエチル)ピペラジニウム、N,N-ビス(2-エトキシエチル-1,1-ジオキソチオモルホリニウム、N,N-ビス(2-エトキシエチル-1-オキソチオモルホリニウム、1,3-ジメチル-1,4,5,6-テトラヒドロピリミジニウム、1,2,3-トリメチル-1,4,5,6-テトラヒドロピリミジニウム、1,2,3,4-テトラメチル-1,4,5,6-テトラヒドロピリミジニウム、1,2,3,5-テトラメチル-1,4,5,6-テトラヒドロピリミジニウム、1-メチルキヌクリジン、1-エチルキヌクリジン、1-(2-ヒドロキシエチル)キヌクリジン、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウム、5-メチル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウム、8-エチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウム、5-エチル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウム。
 Xにおけるアニオンは、無機アニオン、有機アニオンのいずれでも構わない。無機アニオンとしては、ハロゲンイオン(F、Cl、Br、I)、スルホン酸アニオン(HSO 、SO 2-)、リン酸アニオン〔P(=O)(OH)(O)、P(=O)(OH)(O、P(=O)(O〕、ホスホン酸アニオン〔HP(=O)(OH)(O)、HP(=O)(O〕、PF 、BF 、AsF 、SbF 、ClO 、AlF 、AlCl 、TaF 、NbF 、SiF 、CN、F(HF)n(nは1~4の整数)が挙げられる。
 有機アニオンとしては、有機のカルボン酸アニオン、有機のスルホン酸アニオン、有機のリン酸アニオン、有機のホスホン酸アニオン、ジシアナミドイオン〔N(CN)〕、有機のイミドイオン、有機のメチドアニオン、有機のリンアニオン、有機ホウ素アニオンが挙げられる。
 有機のカルボン酸もしくはスルホン酸アニオンは、脂肪族のカルボン酸もしくはスルホン酸アニオン、芳香族のカルボン酸もしくはスルホン酸アニオン、ヘテロ環のカルボン酸もしくはスルホン酸アニオンのいずれでも構わない。また、ジカルボン酸もしくはジスルホン酸などの多価カルボン酸もしくはスルホン酸のアニオン(多価アニオン)でも構わない。有機のカルボン酸アニオンの好ましいアニオンは、下記一般式(A1)で表される。また、有機のスルホン酸アニオンの好ましいアニオンは、下記一般式(A2)で表される。
Figure JPOXMLDOC01-appb-C000008
 一般式(A1)、(A2)において、Rbは水素原子、アルキル基、シクロアルキル基、アルケニル基、アリール基またはヘテロ環基を示し、Rcはアルキル基、シクロアルキル基、アルケニル基、アリール基またはヘテロ環基を示す。
 RbおよびRcにおけるアルキル基、シクロアルキル基、アルケニル基、アリール基およびヘテロ環基は、Raにおけるアルキル基、シクロアルキル基、アルケニル基、アリール基およびヘテロ環基と同義である。また、これらのアルキル基、シクロアルキル基、アルケニル基、アリール基およびヘテロ環基は置換基を有してもよく、このような置換基としては、Raで挙げた置換基が挙げられる。
 有機のカルボン酸アニオンとしては、例えば、ギ酸アニオン、酢酸アニオン、プロピオン酸アニオン、酪酸アニオン、イソ酪酸アニオン、吉草酸アニオン、イソ吉草酸アニオン、ピバル酸アニオン、ラウリン酸アニオン、ミリスチン酸アニオン、パルミチン酸アニオン、ステアリン酸アニオン、トリフルオロ酢酸アニオン、トリクロロ酢酸アニオン、アミノ酸のアニオン(例えば、グリシン、グルタミン、グルタミン酸、アルギニン、アルギニン酸、アスパラギン、アスパラギン酸、システイン、プロリン、セリン、チロシン、バリン、ロイシン、イソロイシン、メチオニン、フェニルアラニン、トリプトファン、ヒスチジン、スレオニン、リジンの各アニオン)、アクリル酸アニオン、メタクリル酸アニオン、クロトン酸アニオン、イソクロトン酸アニオン、オレイン酸アニオン、桂皮酸アニオン、シクロプロパンカルボン酸アニオン、シクロペンタンカルボン酸アニオン、シクロヘキサンカルボン酸アニオン、安息香酸アニオン、トルイル酸アニオン、ナフタレンカルボン酸アニオン、ニコチン酸アニオン、イソニコチン酸アニオン、フル酸アニオン、テン酸アニオン、シュウ酸モノもしくはジアニオン、マロン酸モノもしくはジアニオン、コハク酸モノもしくはジアニオン、グルタル酸モノもしくはジアニオン、アジピン酸モノもしくはジアニオン、ピメリン酸モノもしくはジアニオン、スベリン酸モノもしくはジアニオン、アゼライン酸モノもしくはジアニオン、セバシン酸モノもしくはジアニオン、マレイン酸モノもしくはジアニオン、フマル酸モノもしくはジアニオン、シトラコン酸モノもしくはジアニオン、メサコン酸モノもしくはジアニオン、フタル酸モノもしくはジアニオン、テレフタル酸モノもしくはジアニオン、イソフタル酸モノもしくはジアニオン、カンファー酸モノもしくはジアニオン、1,4-ナフタレンジカルボン酸モノもしくはジアニオン、トリメリット酸モノ、ジもしくはトリアニオン、ピロメリット酸モノ~テトラアニオン、メリット酸モノ~ヘキサアニオンが挙げられる。
 有機のスルホン酸アニオンとしては、例えば、メタンスルホン酸アニオン、エタンスルホン酸アニオン、プロパンスルホン酸アニオン、オクタンスルホン酸アニオン、2-エチルヘキサンスルホン酸アニオン、シクロヘキサンスルホン酸アニオン、ベンゼンスルホン酸アニオン、トルエンスルホン酸アニオン、ナフタレンスルホン酸アニオン、4,6-ジスルホ-1-ナフタレンスルホン酸モノ、ジもしくはトリアニオン、o-スルホベンゼンカルボン酸モノもしくはジアニオンが挙げられる。
 有機のリン酸もしくはホスホン酸アニオンは、下記一般式(A3)で表されるアニオンが好ましい。
 一般式(A3)において、Rdは水素原子、アルキル基、シクロアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基またはアリールオキシ基を示し、Yは、-Oまたは-OReを示す。ここで、Reは、水素原子、アルキル基、シクロアルキル基、アルケニル基、アリール基またはヘテロ環基を示す。
 Rdにおけるアルキル基、シクロアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基およびアリールオキシ基は、Raにおけるアルキル基、シクロアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基およびアリールオキシ基と同義であり、Reにおけるアルキル基、シクロアルキル基、アルケニル基、アリール基およびヘテロ環基は、Raにおけるアルキル基、シクロアルキル基、アルケニル基、アリール基およびヘテロ環基と同義である。
 有機のリン酸もしくはホスホン酸アニオンは、メチルホスホン酸モノもしくはジアニオン、エチルホスホン酸モノもしくはジアニオン、プロピルホスホン酸モノもしくはジアニオン、ヘプチルホスホン酸モノもしくはジアニオン、ヘキシルホスホン酸モノもしくはジアニオン、デシルホスホン酸モノもしくはジアニオン、オクチルホスホン酸モノもしくはジアニオン、ビニルホスホン酸モノもしくはジアニオン、アミノメチルホスホン酸モノもしくはジアニオン、フェニルホスホン酸モノもしくはジアニオン、メチレンジホスホン酸モノ~テトラアニオン、ニトリロトリス(メチレンホスホン酸モノ~ヘキサアニオン)、1,4-フェニレンジホスホン酸モノ~テトラアニオン、4-ホスホノ酪酸モノ、ジもしくはトリアニオン、p-キシレンジホスホン酸モノ~テトラアニオン、モノエチルホスフェートモノもしくはジアニオン、ジエチルホスフェートアニオン、ジブチルホスフェートアニオン、ジデシルホスフェートアニオン、ジフェニルホスフェートアニオン、フェニルホスフェートモノもしくはジアニオンが挙げられる。
 有機のイミドイオン、有機のメチドアニオン、有機のリンアニオンおよび有機ホウ素アニオンは、それぞれ下記一般式(A4)~(A7)で表されるアニオンが好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(A4)~(A7)において、Rf~Rfはフッ素原子が置換したアルキル基またはフッ素原子が置換したアリール基を示し、2つのRf、3つのRfおよび3つのRfは、それぞれにおいて、同一でも異なってもよい。Rg~Rgは各々独立に、アルキル基、シクロアルキル基またはアリール基を示す。
 Rf~Rfにおけるフッ素原子が置換したアルキル基の炭素数は、1~20が好ましく、1~12がより好ましく、1~8がさらに好ましく、1または2が特に好ましい。フッ素原子が置換したアルキル基は、フッ素原子が少なくとも1つ置換したアルキル基であるが、パーフルオロアルキル基が好ましい。フッ素原子が置換したアルキル基としては、例えば、パーフルオロメチル、パーフルオロエチル、パーフルオロプロピル、パーフルオロブチル、パーフルオロペンチル、パーフルオロヘキシル、パーフルオロオクチル、パーフルオロ2-エチルヘキシル、ジフルオロメチル、2,2,2-トリフルオロエチル、1,1-ジフルオロエチル、1,1,2-トリフルオロエチル、1,1,2,2-テトラフルオロエチル、パーフルオロベンジルが挙げられる。
 Rf~Rfにおけるフッ素原子が置換したアリール基の炭素数は、6~20が好ましく、6~12がより好ましく、6~10がさらに好ましく、6~8が特に好ましい。フッ素原子が置換したアリール基は、フッ素原子が少なくとも1つ置換したアリール基であるが、パーフルオロアリール基が好ましい。フッ素原子が置換したアリール基としては、例えば、パーフルオロフェニル、パーフルオロトリル、2,6-ジクロロ-3,4,5-トリフルオロフェニルが挙げられる。
 Rg~Rgにおけるアルキル基、シクロアルキル基およびアリール基は、Raにおけるアルキル基、シクロアルキル基およびアリール基と同義である。Rg~Rgは、アルキル基またはアリール基が好ましく、炭素数1~8のアルキル基、炭素数6~16のアリール基がより好ましい。なお、アリール基は、フェニル基、ナフチル基が好ましい。
 ここで、上記の有機ホウ素アニオンとしては、例えば、以下のアニオンが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 Xは、ハロゲンイオン、カルボン酸アニオン、スルホン酸アニオン、リン酸アニオン、ホスホン酸アニオン、ジシアナミドイオン、一般式(A4)で表されるアニオンが好ましく、ハロゲンイオン、カルボン酸アニオン、スルホン酸アニオン、リン酸アニオン、ホスホン酸アニオン、ジシアナミドイオンまたはビス(トリフルオロメタンスルホニル)イミドイオンがより好ましく、ハロゲンイオン、カルボン酸アニオンが特に好ましく、カルボン酸アニオンが最も好ましい。
 イオン化合物は、上記一般式(1)または(2)で表される化合物以外に、第四級ホスホニウム塩が挙げられ、本発明でも好ましい。第四級ホスホニウム塩の第四級ホスホニウムとしては、テトラメチルホスホニウム、テトラエチルホスホニウム、テトラブチルホスホニウム、トリエチルメチルホスホニウム、メチルトリブチルホスホニウム、ジメチルジエチルホスホニウムが挙げられる。アニオンは上記Xが好ましい。
 一般式(1)または(2)で表される化合物は、下記一般式(1a)、(1b)、(2a)~(2c)のいずれかで表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(1a)、(1b)、(2a)~(2c)において、R、RおよびXは、前記一般式(1)または(2)におけるR、RおよびXと同義であり、好ましい範囲も同じである。R11およびR12は各々独立に置換基を示す。n11は0~3の整数であり、n12は0~5の整数である。ここで、R11が2以上のとき、複数のR11は互いに同一でも異なってもよい。また、少なくとも2つのR11が互いに結合して環を形成してもよい。R13~R15は各々独立に、アルキル基、アルケニル基、シクロアルキル基、アリール基またはヘテロ環基を示す。ただし、R、R13~R15の少なくとも2つが互いに結合して環を形成することはない。R21はRと同義であり、好ましい範囲も同じである。Zは単結合、メチレン基、-C(=O)-、-O-、-S-、-S(=O)-、-SO-、-N(Rα1)-または-N(Rα1)(Rα2)-を示し、Rα1は水素原子または置換基を示し、Rα2は置換基を示す。ここで、Rα1とRα2が互いに結合して環を形成してもよい。
 R11およびR12における置換基はRaと同義である。Rは一般式(1)におけるRと同義であり、好ましい範囲も同じである。Rは一般式(2)におけるRと同義であり、好ましい範囲も同じである。R13~R15は、一般式(2)において、2つ以上が互いに結合して環を形成することがない以外は、一般式(2)におけるR~Rと同義であり、好ましい範囲も同じである。
 Rα1における置換基は、Raで挙げた置換基が挙げられ、アルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基、アシル基、スルホニル基が好ましく、アルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基がより好ましく、アルキル基、アルケニル基、シクロアルキル基、アリール基がさらに好ましい。Rα2における置換基は、Rα1における置換基と同義であり、好ましい範囲も同じである。
 少なくとも2つのR11が互いに結合して形成する環は、5または6員環が好ましく、ベンゼン環、ヘテロ環がより好ましく、ベンゼン環、ヘテロ芳香環がさらに好ましく、ベンゼン環が特に好ましい。
 Rα1とRα2が互いに結合して形成する環は、5または6員環が好ましく、含窒素飽和環がより好ましく、ピロリジン環、ピペリジン環、ピペラジン環、モルホリン環、チオモルホリン環がさらに好ましい。
 R11およびR12はアルキル基が好ましく、R13~R15、RおよびR21は、アルキル基、アリール基が好ましく、アルキル基がより好ましい。また、RとR12は互いに、炭素数が異なるアルキル基が好ましい。
 本発明では、一般式(1a)、(1b)、(2a)~(2c)で表される化合物のうち、一般式(1a)、(1b)または(2a)で表される化合物が好ましく、一般式(1a)または(2a)で表される化合物がより好ましく、一般式(1a)で表される化合物がさらに好ましい。
 本発明で使用するイオン化合物としては、以下のイオン液体が挙げられる。例えば、1-ブチル-3-メチルイミダゾリウムアセテート、1-ブチル-3-メチルイミダゾリウムクロリド、1-ブチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムジシアンアミド、1-エチル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-ブチル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-ヘキシル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-オクチル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-プロピル-2,3-ジメチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-ブチル-2,3-ジメチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム ビス(トリフルオロメチルスルホニル)イミド、1-エチル-3-メチルイミダゾリウム トリス(トリフルオロメチルスルホニル)メチド、1-ブチル-3-メチルイミダゾリウム トリス(トリフルオロメチルスルホニル)メチド、1-ヘキシル-3-メチルイミダゾリウム トリス(トリフルオロメチルスルホニル)メチド、1-オクチル-3-メチルイミダゾリウム トリス(トリフルオロメチルスルホニル)メチド、1-プロピル-2,3-ジメチルイミダゾリウム トリス(トリフルオロメチルスルホニル)メチド、1-ブチル-2,3-ジメチルイミダゾリウム トリス(トリフルオロメチルスルホニル)メチド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム トリス(トリフルオロメチルスルホニル)メチド、1-エチル-3-メチルイミダゾリウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-ブチル-3-メチルイミダゾリウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-ヘキシル-3-メチルイミダゾリウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-オクチル-3-メチルイミダゾリウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-プロピル-2,3-ジメチルイミダゾリウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-ブチル-2,3-ジメチルイミダゾリウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-エチル-3-メチルイミダゾリウム ヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウム ヘキサフルオロホスフェート、1-ヘキシル-3-メチルイミダゾリウム ヘキサフルオロホスフェート、1-オクチル-3-メチルイミダゾリウム ヘキサフルオロホスフェート、1-プロピル-2,3-ジメチルイミダゾリウム ヘキサフルオロホスフェート、1-ブチル-2,3-ジメチルイミダゾリウム ヘキサフルオロホスフェート、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム ヘキサフルオロホスフェート、1-エチル-3-メチルイミダゾリウム ブチルトリフェニルボレート、1-ブチル-3-メチルイミダゾリウム ブチルトリス(4-t-ブチルフェニル)ボレート、1-ヘキシル-3-メチルイミダゾリウム ブチルトリス(1-ナフチル)ボレート、1-オクチル-3-メチルイミダゾリウム ブチルトリス(4-メチルナフタレン-1-イル)ボレート、1-プロピル-2,3-ジメチルイミダゾリウム ブチルトリフェニルボレート、1-ブチル-2,3-ジメチルイミダゾリウム ヘキシルトリス(4-t-ブチルフェニル)ボレート、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム 2-エチルヘキシルトリフェニルボレート、1-ブチルピリジニウム ヘキサフルオロホスフェート、1-ヘキシルピリジニウム ヘキサフルオロホスフェート、1-エチル-3-メチルイミダゾリウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-シアノメチル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、N-ヘキシル-4-ジメチルアミノピリジニウム ビス(トリフルオロメチルスルホニル)イミド、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、N-(3-ヒドロキシプロピル)ピリジニウム ビス(トリフルオロメチルスルホニル)イミド、N-エチル-N,N-ジメチル-2-メトキシエチルアンモニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、N-(3-ヒドロキシプロピル)ピリジニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、N-(メトキシエチル)-N-メチルモルフォリウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-(2-メトキシエチル)-1-メチルーピロリジニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-(メトキシエチル)-1-メチルピペリジニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、1-(メトキシエチル)-1-メチルピペリジニウム ビス(トリフルオロメチルスルホニル)イミド、N-(メトキシエチル)-1-メチルピロリジニウム ビス(トリフルオロメチルスルホニル)イミド、N-(メトキシエチル)-N-メチルモルフォリウム ビス(トリフルオロメチルスルホニル)イミドが挙げられる。
 なお、イオン液体を含むイオン化合物は市販されているものを使用することもできる。このような化合物としては、以下のイオン液体が挙げられる。
 1)非水混和性のイオン液体
 1-エチル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-プロピル-2,3-ジメチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-ブチル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-プロピル-2,3-ジメチルイミダゾリウム トリス(トリフルオロメチルスルホニル)メチド〔以上、Covalent Associates Incより市販〕、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム ビス(トリフルオロメチルスルホニル)イミド、1-ヘキシル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-オクチル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-エチル-2,3-ジメチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-ブチル-2,3-ジメチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド〔以上、関東化学(株)より市販〕。
 2)水混和性のイオン液体
 N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート、1-エチル-3-メチルイミダゾリウムアセテート〔以上、関東化学(株)より市販〕、沃化1-メチル-3-プロピルイミダゾリウム〔東京化成工業(株)より市販〕、1-エチル-3-メチルイミダゾリウム トリフルオロアセテート〔メルク(株)より市販〕。
 イオン化合物は、1種類でも、2種以上併用してもよい。本発明では、イオン化合物の含有量は、セルロースに対して、質量比で0.001倍以上1.000倍未満であり、0.01倍以上1.000倍未満が好ましく、0.01~0.8倍がより好ましく、0.01~0.8倍がさらに好ましく、0.05~0.7倍が特に好ましい。
 イオン化合物は、アニオン成分とカチオン成分との塩であり、セルロース分子との高い親和性から、イオン物質が液体の状態である場合には、セルロースを完全に溶解するほどの溶液特性を示すものも存在する。イオン化合物とセルロース分子との相互作用は、例えば、Green Chem.,2015,17,694-714で報告されているように、セルロース分子が有する水酸基(ヒドロキシ基)にイオン化合物が作用し、セルロース分子の水酸基同士によって形成される水素結合を切って、セルロース分子間に入り込むという機構により、イオン化合物への溶解が起こるものと提唱されている。
 このため、イオン化合物の含有量は、セルロースに対して1.000倍以上の場合、セルロース内の結晶が溶解し、結果的に弾性率の低下を引き起こす。逆に、イオン化合物の含有量がセルロースに対して0.001倍未満の場合、強固なセルロース分子間の水素結合の大部分が残ったままとなるので弾性率の低下は起きないが、加工機内のせん断応力だけではセルロースの微細化を起こすことができない。このように、加工機内でセルロースを微細化することと、微細化されたセルロースにおいては、セルロース分子間の強固な水素結合を形成していることで得られる機械特性の向上とを両立させることが重要となる。
<その他の添加物>
 本発明の熱可塑性樹脂組成物には、上記以外に、酸化防止剤、光安定剤、ラジカル捕捉剤、紫外線吸収剤、着色剤(染料、有機顔料、無機顔料)、充填剤、滑剤、可塑剤、アクリル加工助剤等の加工助剤、発泡剤、パラフィンワックス等の潤滑剤、表面処理剤、結晶核剤、離型剤、加水分解防止剤、アンチブロッキング剤、帯電防止剤、防曇剤、防徽剤、イオントラップ剤、難燃剤、難燃助剤等の他の添加成分を、上記目的を損なわない範囲で適宜含有することができる。
 酸化防止剤、劣化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、ヒドロキシルアミン系酸化防止剤、アミン系酸化防止剤が挙げられ、フェノール系ではオルト位にt-アルキル基を有するヒンダードフェノール系化合物が好ましい。
 フェノール系酸化防止剤としては、例えば、テトラキス[メチレン-3(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5・5]ウンデカン、トリエチレングリコール-N-ビス-3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオールビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオビス-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]であり、さらに好ましくは、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5・5]ウンデカン、ラウリル-3,5-t-ブチル-4-ヒドロキシベンゾエート、パルミチル-3,5-t-ブチル-4-ヒドロキシベンゾエート、ステアリル-3,5-t-ブチル-4-ヒドロキシベンゾエート、ベヘニル-3,5-t-ブチル-4-ヒドロキシベンゾエート、2,4-ジ-t-ブチル-フェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、トコフェロール類等が挙げられる。
 リン系酸化防止剤としては、例えば、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ジフェニレンジホスホナイト、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルホスファイト、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェニル)フルオロホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル) エチルホスファイト、2-(2,4,6-トリ-t-ブチルフェニル)-5-エチル-5-ブチル-1,3,2-オキサホスホリナン、2,2’,2’-ニトリロ[トリエチル-トリス(3,3’,5,5’-テトラ-t-ブチル-1,1’-ビフェニル-2,2’-ジイル) ホスファイト、2,4,8,10-テトラ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン等が挙げられる。
 イオウ系酸化防止剤としては、例えば、ジラウリル3,3’-チオジプロピオネート、トリデシル3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ラウリルステアリル3,3’-チオジプロピオネート、ネオペンタンテトライルテトラキス(3-ラウリルチオプロピオネート)、ビス[2-メチル-4-(3-n-アルキル(炭素原子数12~14のアルキル)チオプロピオニルオキシ)-5-t-ブチルフェニル]スルフィド等が挙げられる。
 光安定剤としては、分子量が1000以上のヒンダードアミン光安定剤(2,2,6,6-テトラメチルピペリジン骨格を分子内に有する光安定剤)が挙げられる。
 紫外線吸収剤としては、ベンゾトリアゾール系化合物、トリアジン系化合物、ベンゾフェノン系化合物、サリチレート系化合物、シアノアクリルレート系化合物、ニッケル系化合物が挙げられる。
 着色剤としては、例えば、カーボンブラック、無機顔料、有機顔料が挙げられる。例えば、カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック、ランプブラック等が挙げられる。無機顔料としては、例えば、鉄黒、弁柄、酸化チタン、カドミウムレッド、カドミウムイエロー、群青、コバルトブルー、チタンイエロー、鉛丹、鉛黄、紺青等が挙げられる。有機顔料としては、例えば、キナクリドン、ポリアゾイエロー、アンスラキノンイエロー、ポリアゾレッド、アゾレーキイエロー、ペリレン、フタロシアニングリーン、フタロシアニンブルー、イソインドリノンイエロー等が挙げられる。これらの着色剤は単独でも、2種類以上を併用してもよい。
 充填剤としては、シリカ、ヒドロキシアパタイト、アルミナ、チタニア、ベーマイト、タルク、または炭酸カルシウムなどの金属化合物などが好ましく挙げられる。
<<熱可塑性樹脂組成物の製造方法>>
 最初に、セルロースとイオン化合物を含む熱可塑性樹脂中で、セルロースの微細化を行う。
 熱可塑性樹脂組成物を製造するに際し、熱可塑性樹脂、セルロースおよびイオン化合物をそれぞれ配合して、熱可塑性樹脂100質量部に対し、セルロースの含有量を1~100質量部、イオン化合物の含有量を、セルロースの0.001倍以上1.000倍未満としてもよい。セルロースの微細化を行うためのイオン化合物の添加方法は特に限定されるものではないが、例えば、イオン液体を予めセルロースに含浸させる方法、または熱可塑性樹脂とセルロースと混練する時にイオン化合物を添加する方法が挙げられる。セルロースおよびイオン化合物の混合物、すなわち、セルロース組成物を調製し、このセルロース組成物と熱可塑性樹脂を配合することが好ましい。このため、イオン化合物の含有量が、0.1質量%以上50質量%未満であるセルロース組成物を調製する工程を行う。セルロース組成物の配合量、または、セルロースとイオン化合物の合計配合量は、熱可塑性樹脂100質量部に対し、セルロースの含有量が1~100質量部となるように行う。
 ここで、イオン化合物、例えば、ハロゲンアニオン(特に塩素アニオン)の場合は、保管状態によっては吸湿して液状になることがある。このような場合は、真空乾燥によって水を飛ばし、常温で固体状になったものを使用することが好ましい。
 セルロースは、分子内の水酸基による水素結合で、分子間結合力が強固である。イオン化合物は、セルロース分子間の水素結合を切断すると考えられる。しかも、イオン化合物の構成要素の中のアニオン成分が直接的に、セルロース分子が有する水酸基の水素原子に作用すると考えられているため、セルロースの溶解能に対してアニオン成分の構造が大きな影響を及ぼすものと推測される。セルロース自体は、上記のように、分子間結合力が強固であるため、加工機でのせん断応力だけでは微細化を進めることができない。このため、イオン化合物が部分的にセルロース分子間結合力を弱めることで、微細化を進めることが可能となる。
 熱可塑性樹脂とセルロース組成物またはセルロースおよびイオン化合物をそれぞれ配合し、混練加工する工程を行い、この工程で、セルロースを微細化する。この混練加工工程は、押出し、射出などにより加工、成形する段階で、加工機内で混練することが好ましい。
 混練温度は、少なくともイオン化合物の融点以上であり、セルロースの熱分解が少ない温度を上限とすることが望ましい。従って、イオン化合物の種類により下限温度は変化するが、上限温度は300℃以下が好ましく、250℃以下がより好ましく、230℃以下がさらに好ましい。混練における撹拌は、スクリュー軸方向に適宜ニーディングディスクを配置するなどして、十分な混練性を確保可能なスクリュー構成を組み、かつ必要な生産量を得ることが可能なスクリュー回転数(通常は100~300rpm程度の範囲)で混練することが好ましい。混練加工する装置としては、同方向二軸スクリュー方式の装置が好ましく、例えば、二軸押出機〔(株)テクノベル製 KZW15TW-45MGNH〕が挙げられる。ただし、同方向二軸押出機に限られることはなく、単軸押出機や、異方向二軸押出機、3軸以上の多軸押出機、バッチ式混練機(ニーダー、バンバリー等)など、充分な混練性が得られ、本発明と同様の効果が得られるのであれば、どのような方式でも構わない。
<<成形品およびその製造方法>>
 本発明の成形品の樹脂部は、熱可塑性樹脂、セルロースおよびイオン化合物を含有し、該熱可塑性樹脂100質量部に対し、セルロースの含有量が1~100質量部であり、イオン化合物の含有量は、該セルロースの0.001倍以上1.000倍未満である。本発明の成形品は、例えば、灯具のランプボディ、スピーカユニット、接続箱、コネクタ、プーリまたはハウス用フィルムである。このような成形品は、熱可塑性樹脂組成物、特に、上記熱可塑性樹脂組成物の製造方法で製造された熱可塑性樹脂組成物を使用して成形された樹脂部を備えており、成形品がハウス用フィルムである場合、ハウス用フィルムは、当該熱可塑性樹脂組成物で形成された層を含んでいる。
<灯具のランプボディ>
 図1は、成形品の一実施形態に係る灯具のランプボディの一例を示す模式断面図である。図1には、灯具100の一例として、車両用灯具としての前照灯(ヘッドランプ)の構成が示されている。灯具100は、ランプボディ101、前面カバー102、光源103、反射鏡(リフレクタ)104、およびソケット部105を含む。ランプボディ101は、前面に開口部111を有している。前面カバー102は、ランプボディ101の開口部111を覆うようにランプボディ101に取り付けられている。これにより、ランプボディ101と前面カバー102によって密閉された空間110が形成される。
 空間110には、光源103と反射鏡104が配置されている。光源103は、例えば、LED電球またはハロゲン電球である。光源103は、ランプボディ101に形成された貫通孔112に固定されているソケット部105と接続され、ソケット部105から供給された電力によって発光する。
 反射鏡104は、前面カバー102に向かって凹んだ凹面140を有する。反射鏡104の中央部には孔が形成されており、その孔に光源103が挿入されて固定されている。反射鏡104は、光源103から発せられた光を凹面140によって反射し、前面カバー102側へ導く。
 前面カバー102は、光(可視光)が透過可能な樹脂材料から構成されている。前面カバー102は、光源103からの光を集光または拡散するレンズとしても機能する。
 ここで、ランプボディ101は、上述した熱可塑性樹脂組成物で形成された樹脂部を備えている。これにより、ランプボディ101の軽量化、高強度化を図ることができる。
 ランプボディ101の製造方法は特に限定されないが、金型内に上記熱可塑性樹脂組成物を射出する、射出成形によって成形することができる。これにより、耐金型摩耗性が向上するとともに、金型が腐食し難くなる。
 図1では、ランプボディ101の全体が上記樹脂部から構成される場合を例示しているが、これに限られず、ランプボディ101は、上記樹脂部と、樹脂以外の材料で形成された部分とを含んでいてもよい。また、図1では、灯具100が前照灯である場合を例示したが、これに限定されず、ブレーキランプ、フォグランプ、および後退灯等の車両用灯具のランプボディに適用することができる。また、車両用灯具に限られず、種々の灯具のボディ部分(ハウジング)に適用することができる。
<スピーカユニット>
 図2は、成形品の一実施形態に係るスピーカユニットの一例を示す斜視図である。スピーカユニット210は、板状のバッフル211と、当該バッフル211の背面に結合された箱状の格納部212とによって構成された略密閉状態の筐体(エンクロージャー)213と、バッフル211の表面に放音面を露出するように筐体213に保持されたスピーカ214とを備えている。なお、筐体(エンクロージャー)213は、一般的に、スピーカボックスまたはキャビネットとも称され、応用する装置等によって、箱型や円筒型、円錐型等、さまざまな形状を有する。スピーカ214は、磁気回路の振動源としてのエキサイター215と、エキサイター215の振動により発生した音波を筐体213の外部へ放出するコーン紙216とを有する。
 図3は、スピーカユニットを車載用スピーカ装置に応用した形態である車載用スピーカ装置200を示す斜視図である。図4は、図3に示した車載用スピーカ装置200のA-A矢視断面図である。図3及び4に示されるように、車載用スピーカ装置200に用いられるスピーカユニット210は、自動車等の車両におけるドアを構成する車外側のアウタパネル201と、車内側のインナパネル202との間に設けられ、インナパネル202の開口からスピーカユニット210が露出した状態で取り付けられている。なお、インナパネル202には、その表面を覆うインナトリム220がスピーカユニット210を露出した状態で取り付けられている。
 図2乃至図4に示した車載用スピーカ装置200に用いられたスピーカユニット210では、筐体213のバッフル211、格納部212、コーン紙216に対して、上述した熱可塑性樹脂組成物が使用されている。これにより、車載用スピーカ装置200では、軽量化とともに強度特性および音響特性の向上を図ることができる。特に、スピーカユニット210は、軽量化により車両の低燃費化に貢献できると共に高強度となるため、車両の振動により筐体213が振動することを抑制できる。その結果、筐体213の振動に起因する雑音を低減し、音響特性を向上させることができる。また、スピーカユニット210には、上述した熱可塑性樹脂組成物が使用されているため、優れた耐白化性を示す。さらに、スピーカユニット210は、当該熱可塑性樹脂組成物で形成された高強度な筐体213を有しているのでリサイクル性に富んでいる。
 スピーカユニットの適用対象としては、自動車に限らず、例えば、二輪車、鉄道車両、飛行機、船舶などの移動体、コンピュータ装置、ヘッドホン、あるいは、家庭用に設置されるあらゆるスピーカ装置が挙げられる。
<接続箱およびコネクタ>
 図5は、成形品の一実施形態に係る接続箱を示す斜視図であり、図6は、図5の接続箱の分解斜視図である。接続箱300は、例えば自動車の室内側に設置されるジャンクションボックスとして構成されている。この接続箱300は、第1ケース320aと第2ケース320bとを有するケース320を備えている。
 接続箱300は、内部の収容空間に、第1基板340aと、第2基板340bと、第3基板340cと、を備えている。第1基板340aと第2基板340bとは、互いに平行に配置され、第3基板340cは、第1基板340aおよび第2基板340bの端部に垂直に接続するように配置されている。
 第1ケース320aのマウント面321には、図示しない電子制御ユニット(ECU:Electronic Control Unit)が設置される。第1基板340aのECU用コネクタ341は、マウント面321から突出するように配置され、第1基板340aの回路をECUに電気的に接続することができる。
 第2ケース320bの端部からは、接続箱300のケース320と一体となっているリレー装着用コネクタ322が突出している。リレー装着用コネクタ322には、図示しないリレーを装着することができる。
 第1基板340aには室内側コネクタ342aが配置され、第2基板340bには室内側コネクタ342bが配置されている。この室内側コネクタ342a、342bは、自動車の室内側の回路に図示しないワイヤハーネスを介して電気的に接続される。第2基板340bには、リレー装着用コネクタ343が配置されている。図示例では、リレー装着用コネクタ343には3つのリレーを搭載することができる。第3基板340cには、エンジンルーム側コネクタ344が配置されている。このエンジンルーム側コネクタ344は、エンジンルーム側の回路に図示しないワイヤハーネスを介して電気的に接続される。
 このように、接続箱300のケース320およびコネクタ322、341~344は、上記熱可塑性樹脂組成物を用いて形成されているため、軽量化、高強度化を図れると共に、リサイクル性を向上させることができる。
 接続箱およびコネクタの製造方法は特に限定されないが、金型内に上記熱可塑性樹脂組成物を射出する、射出成形によって成形することができる。なお、本発明におけるコネクタは、コネクタハウジング、コネクタ自体、接続箱ケースと一体となっているものなどを含む。
 接続箱およびコネクタの用途としては、例えば、自動車、二輪車、列車、航空機などの輸送機器用材料、ロボットアームの構造部材、アミューズメント用ロボット部品、家電材料、OA機器筐体、情報処理機器、携帯端末等が挙げられる。
<プーリ>
 図7は、成形品の一実施形態に係るプーリの正面図、図8は図7のB-B断面図を表す。図7及び8に示されるように、プーリ400は、転がり軸受410と、転がり軸受410の周囲に一体成形された樹脂部420とによって構成されている。転がり軸受410は、内輪411と、外輪412と、内外輪間に設けられた転動体413とを有する。樹脂部420は、上記熱可塑性樹脂組成物を使用して形成されている。樹脂部420は、円筒状のボス421と、円筒状のリム422と、ボス421とリム422とを連結する円環部423と、を備えている。リム422の外周面424が図示しないベルトの案内面となっている。
 図7では樹脂部420に上記熱可塑性樹脂組成物を使用して形成した例を示したが、プーリ全体が上記熱可塑性樹脂組成物を使用して形成されていてもよい。これにより、プーリ400の軽量化、高強度化に貢献することができる。プーリ400の製造方法は特に限定されないが、金型内に転がり軸受410を配置し金型内に上記熱可塑性樹脂組成物を射出する、射出成形によって成形することができる。これにより、耐金型摩耗性及び樹脂部420の端面の平滑性(シャープエッジ性)を向上させることができる。また、上記熱可塑性樹脂組成物を用いて射出成形を行うことにより、寸法精度に優れたプーリ400を成形することができる。
 プーリの用途としては、例えば、自動車、二輪車、列車、航空機などの輸送機器用材料、ロボットアームの構造部材、アミューズメント用ロボット部品、家電材料、OA機器筐体、情報処理機器、携帯端末等が挙げられる。
<ハウス用フィルム>
 図9は、成形品の一実施態様に係るハウス用フィルムを適用した農業ハウスの外観の一例を示す模式的な斜視図である。図9に示すように、農業用ハウス510は、躯体502に展張されたフィルム501を備える。
 図9に示すように、農業用ハウス510は、躯体502に展張されたフィルム501によって全面が覆われている。フィルム501が躯体に展張されることにより外部から仕切られた空間が形成される農業用ハウスとすることができる。
 躯体502を構成する材料については、特に限定されず、従来公知のビニールハウスなどで用いられる骨材(例えば、鋼材、鋼管など)を用いることができる。フィルム501は、躯体502に展張されるフィルムであり、上述したハウス用フィルムを適用している。
 農業用ハウス510は、例えば、ハウスの天井や側面に設けられる換気ファンなど換気手段(図示せず)を設けていてもよい。また、農業用ハウス510内で作業に従事する作業員のための出入口(図示せず)は、例えば、二重扉などにして、外部の空気がハウス内の空間に直接入り込まないようにするのが好ましい。
 農業用ハウス510におけるフィルム501は、上記熱可塑性樹脂組成物を用いて形成される層を有している。これにより、フィルム501では、軽量化、高強度化と共に、リサイクル性を備え、更には、従来のフィルムよりも、表面平滑性及び接着性能の向上を図ることができる。
 フィルム501(ハウス用フィルム)は、上記熱可塑性樹脂組成物から形成される層を含んでいればよく、公知の方法、例えば、インフレーション成形法、Tダイ成形法、ラミネート法、カレンダー法等によって製造することができる。
 フィルム501(ハウス用フィルム)は、上記熱可塑性樹脂組成物を用いて形成される層を1つ又は複数含む単層又は多層のフィルムであってもよく、上記熱可塑性樹脂組成物から形成される層に他の樹脂組成物から形成された樹脂層が積層された積層フィルムであってもよい。上記熱可塑性樹脂組成物から形成された層に積層可能な他の樹脂層を形成可能な樹脂としては、例えば、ハウス用フィルムの用途に通常用いられるポリオレフィン樹脂などを挙げることができる。
 フィルム501(ハウス用フィルム)に含まれる上記熱可塑性樹脂組成物から形成される層の厚さは、例えば、50μm以上200μm以下であり、好ましくは下限値が75μm以上であり、上限値が150μm以下であることが好ましい。ハウス用フィルムが多層フィルムである場合には、用途等に応じて、ハウス用フィルムの厚みを適宜設定することができる。
 図9では、農業用ハウス510の全面にフィルム501(ハウス用フィルム)を適用した場合を例示したが、これに限定されず、農業用ハウス510の一部の面にハウス用フィルムを用いたものであってもよい。また、農業用ハウス510は、所望の幅、奥行き及び高さで骨組みを建て、上述の熱可塑性樹脂組成物を用いて得られたフィルム501(ハウス用フィルム)を躯体502に展張することにより作製できる。これにより、軽量化、高強度化されると共にリサイクル性などに優れた農業用ハウス510を得ることができる。
 ハウス用フィルムの用途としては、例えば、野菜などの植物を栽培するための農業用ハウスに限らず、ガーデニング用ハウス、生物飼育用ハウス、テラス用ハウス、簡易倉庫等が挙げられる。
 以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれらに限定されるものではない。使用した素材を以下に示す。
<使用素材>
(1)熱可塑性樹脂
・熱可塑性樹脂A:高密度ポリエチレン〔MFR=5g/10分(190℃/2.16kg)、密度=0.953g/cm
・熱可塑性樹脂B:エチレン-プロピレン共重合体〔エチレン含有率16質量%、MFR(190℃/2.16kg)=1.4g/10分、密度=0.862g/cm
・熱可塑性樹脂C:エチレン-オクテン共重合体〔MFR=1.0g/10分(190℃/2.16kg)、密度=0.870g/cm
(2)セルロース
・セルロースA:KCフロックW-200〔商品名 日本製紙(株)製、平均粒径約32μmの粉末セルロース〕
・セルロースB:LIGNOCEL C-120〔商品名 J・レッテンマイヤー・アンド・サンズ社製、粒径70~150μm〕
(3)イオン化合物
・イオン化合物A:1-ブチル-3-メチルイミダゾリウムアセテート(融点:-20℃以下)
・イオン化合物B:1-ブチル-3-メチルイミダゾリウムクロリド(融点:-70℃)・イオン化合物C:1-ブチル-3-メチルイミダゾリウムジシアンアミド(融点:-6℃)
<実施例1>
 以下の工程で、セルロース強化熱可塑性樹脂を作製した。
1)セルロース組成物の調製工程
 アセトン溶媒に90質量部のセルロースAを分散し、10質量部のイオン化合物Aを混合した後、数時間ごとにかき混ぜつつ、蓋をした容器内に12時間以上放置した。その後、容器の蓋を開け、アセトン溶媒を乾燥させ、アセトン溶媒がほぼ飛びきった後、水分乾燥のため、さらに80℃の恒温槽内に12時間以上保存した。
2)セルロース組成物と熱可塑性樹脂との混練工程(セルロース強化熱可塑性樹脂組成物の製造)
 二軸押出機〔(株)テクノベル製 KZW15TW-45MG-NH〕に、熱可塑性樹脂Bを、出口温度150℃、300g/時間の速度でフィードしつつ、2台目のフィーダーにより、上記で調製したセルロース組成物を300g/時間の速度でフィードし、押出しを行い、セルロース強化熱可塑性樹脂組成物を製造した。この時、スクリュー回転数は100rpmとした。この押出しの過程で、熱可塑性樹脂BとセルロースAが混練され、セルロースが分散されることで、セルロース繊維が微細化される。また、下記3)の調製工程でもその微細化がさらに進行するものと思われる。なお、仮に、この2)の混練工程で、微細化が不十分であっても下記3)の調製工程を行うことで微細化できる。
3)熱可塑性樹脂Aを含むセルロース強化熱可塑性樹脂組成物の調製工程
 上記の押出しで微細化されたセルロース繊維が熱可塑性樹脂Bに分散されたセルロース強化熱可塑性樹脂組成物と、熱可塑性樹脂Aとを、質量比で、熱可塑性樹脂A:熱可塑性樹脂Bが、78:22となるようにドライブレンドし、二軸押出機〔(株)テクノベル製 KZW15TW-45MG-NH〕にて、2種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を調製し、製造した。この時、二軸押出機の出口温度を190℃とし、1000g/時間の速度でフィードしつつ、セルロース強化熱可塑性樹脂組成物を調整した。このとき、スクリュー回転数は100rpmとした。この調製工程でも、セルロース繊維の微細化が、さらに進行しているものと思われる。
4)ランプボディの製造工程
 上記3)で調製したセルロース強化熱可塑性樹脂組成物を用いて射出成形し、ランプボディを作製した。なお、射出条件は、ランプボディの射出成形において一般的に適切とされる条件で実施した。
<実施例2>
 実施例1の3)の工程を行わないで、2)で得られた1種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<実施例3>
 実施例1の1)の工程において、セルロースA99.9質量部に対しイオン化合物Aを0.1質量部配合したこと、および、2)の工程において、熱可塑性樹脂Bの代わりに、熱可塑性樹脂AとBを質量比で499:1となるように混合した樹脂を使用した以外は、実施例2と同様にして、2種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を調製し、製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<実施例4>
 実施例1の1)の工程において、セルロースA50.1質量部に対しイオン化合物Aを49.9質量部配合したこと以外は実施例2と同様にして、1種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<実施例5>
 実施例1の2)の工程において、熱可塑性樹脂B:セルロース組成物の質量比が100:60となるように、かつ、実施例1の3)の工程において、熱可塑性樹脂Aを、質量比で、熱可塑性樹脂A:熱可塑性樹脂Bが、98:2となるようにドライブレンドした以外は実施例1と同様にして、2種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<実施例6>
 実施例1の1)の工程において、イオン化合物の種類をイオン化合物Bに変更した以外は実施例1と同様にして、2種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<実施例7>
 実施例1の1)の工程において、イオン化合物の種類をイオン化合物Cに変更した以外は実施例1と同様にして、2種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<実施例8>
 実施例1の2)の工程において、熱可塑性樹脂A100質量部に対してセルロース組成物を11質量部配合したこと、および、3)の工程を行わなかったこと以外は、実施例1と同様にして、1種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<実施例9>
 実施例1の1)の工程において、セルロースの種類をセルロースBに変更した以外は実施例8と同様にして、1種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<実施例10>
 実施例1の2)の工程において、熱可塑性樹脂Bの代わりに、熱可塑性樹脂Cを使用したこと、熱可塑性樹脂C:セルロース組成物の質量比が90:100であったこと、および実施例1の3)の工程において、熱可塑性樹脂Cに分散されたセルロース強化熱可塑性樹脂組成物と、熱可塑性樹脂Aとを、質量比で、熱可塑性樹脂A:熱可塑性樹脂Cに分散されたセルロース強化熱可塑性樹脂組成物が260:190となるようにドライブレンドした以外は実施例1と同様にして、2種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<実施例11>
 実施例1の1)の工程において、セルロースA70質量部に対しイオン化合物Aを30質量部配合したこと、実施例1の2)の工程において、熱可塑性樹脂C:セルロース組成物の質量比が70:100であったこと、および実施例1の3)の工程において、熱可塑性樹脂Cに分散されたセルロース強化熱可塑性樹脂組成物と、熱可塑性樹脂Aとを、質量比で、熱可塑性樹脂A:熱可塑性樹脂Cに分散されたセルロース強化熱可塑性樹脂組成物が180:170となるようにドライブレンドした以外は実施例10と同様にして、2種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<実施例12>
 実施例1の1)の工程において、セルロースA50.1質量部に対しイオン化合物Aを49.9質量部配合したこと、実施例1の2)の工程において、熱可塑性樹脂C:セルロース組成物の質量比が50:100であったこと、および実施例1の3)の工程において、熱可塑性樹脂Cに分散されたセルロース強化熱可塑性樹脂組成物と、熱可塑性樹脂Aを、質量比で、熱可塑性樹脂A:熱可塑性樹脂Cに分散されたセルロース強化熱可塑性樹脂組成物が100:150となるようにドライブレンドした以外は実施例10と同様にして、2種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法でランプボディを作製した。
<比較例1>
 実施例1の1)の工程において、セルロースA30質量部に対して、イオン化合物Aを70質量部配合した。この場合、粉末セルロースが溶解し、部分的にアセトン溶媒内にセルロースが再結晶化し、乾燥後に高粘度の液状になったセルロース溶解物がまとわりつくなどハンドリング性に支障をきたしたため、2)の工程では二軸押出機ではなく、ラボプラストミル〔(株)東洋精機製作所製 混練・押出成形評価試験装置 ラボプラストミル・マイクロ〕を使用し、得られた組成物をペレタイズして熱可塑性樹脂組成物を調製し、製造した。また、3)の工程では、熱可塑性樹脂Aを、質量比で、熱可塑性樹脂A:熱可塑性樹脂Bが、50:50となるようにドライブレンドしたこと以外は、実施例1の3)の工程と同様にして2種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法で樹脂部を備えるランプボディを作製した。
<比較例2>
 実施例1の2)の工程において、熱可塑性樹脂Bに代えて熱可塑性樹脂Aを使用し、熱可塑性樹脂A100質量部に対して、セルロース組成物112質量部の割合で配合したこと以外は実施例2と同様にして、1種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を調製し、製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1と同様の方法で樹脂部を備えるランプボディを作製した。
<比較例3>
 実施例1の1)の工程を行わず、セルロース組成物の代わりにセルロースAそのものを使用し、実施例1の2)の工程で、熱可塑性樹脂A100質量部に対して、セルロースA11.1質量部を配合し、二軸押出機〔(株)テクノベル製 KZW15TW-45MG-NH〕で押出しすることで、1種類の熱可塑性樹脂を含むセルロース強化熱可塑性樹脂組成物を調製し、製造した。次に、このセルロース強化熱可塑性樹脂組成物を使用して、実施例1の4)の工程と同様の方法で樹脂部を備えるランプボディを作製した。
<実施例13>
 実施例1における上記1~3)の工程を同様に行い、セルロース強化熱可塑性樹脂組成物を調整した。
 5)スピーカユニットの製造工程
 上記で調製したセルロース強化熱可塑性樹脂組成物を用いて射出成形し、樹脂部を備えるスピーカユニットを作製した。なお、射出条件は、スピーカユニットの射出成形において一般的に適切とされる条件で実施した。
<実施例14~24>
 実施例2~12で製造したセルロース強化熱可塑性樹脂組成物をそれぞれ使用して、実施例13の5)の工程と同様の方法で樹脂部を備えるスピーカユニットをそれぞれ作製した。
<比較例4>
 比較例1で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例13の5)の工程と同様の方法で樹脂部を備えるスピーカユニットを作製した。
<比較例5>
 比較例2で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例13の5)の工程と同様の方法で樹脂部を備えるスピーカユニットを作製した。
<比較例6>
 比較例3で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例13の5)の工程と同様の方法で樹脂部を備えるスピーカユニットを作製した。
<実施例25>
 実施例1における上記1~3)の工程を同様に行い、セルロース強化熱可塑性樹脂組成物を調整した。
6)接続箱およびコネクタの製造工程
 上記で調製したセルロース強化熱可塑性樹脂組成物を用いて射出成形し、樹脂部を備える接続箱およびコネクタを作製した。なお、射出条件は、接続箱およびコネクタの射出成形において一般的に適切とされる条件で実施した。
<実施例26~36>
 実施例2~12で製造したセルロース強化熱可塑性樹脂組成物をそれぞれ使用して、実施例25の6)の工程と同様の方法で樹脂部を備える接続箱およびコネクタをそれぞれ作製した。
<比較例7>
 比較例1で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例25の6)の工程と同様の方法で樹脂部を備える接続箱およびコネクタを作製した。
<比較例8>
 比較例2で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例25の6)の工程と同様の方法で樹脂部を備える接続箱およびコネクタを作製した。
<比較例9>
 比較例3で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例25の6)の工程と同様の方法で樹脂部を備える接続箱およびコネクタを作製した。
<実施例37>
 実施例1における上記1~3)の工程を同様に行い、セルロース強化熱可塑性樹脂組成物を調整した。
7)プーリの製造工程
 上記で調製したセルロース強化熱可塑性樹脂組成物を用いて射出成形し、樹脂部を備えるプーリを作製した。なお、射出条件は、プーリの射出成形において一般的に適切とされる条件で実施した。
<実施例38~48>
 実施例2~12で製造したセルロース強化熱可塑性樹脂組成物をそれぞれ使用して、実施例37の7)の工程と同様の方法で樹脂部を備えるプーリをそれぞれ作製した。
<比較例10>
 比較例1で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例37の7)の工程と同様の方法で樹脂部を備えるプーリを作製した。
<比較例11>
 比較例2で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例37の7)の工程と同様の方法で樹脂部を備えるプーリを作製した。
<比較例12>
 比較例3で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例37の7)の工程と同様の方法で樹脂部を備えるプーリを作製した。
<実施例49>
 実施例1における上記1~3)の工程を同様に行い、セルロース強化熱可塑性樹脂組成物を調整した。
8)ハウス用フィルムの製造工程
 上記で調製したセルロース強化熱可塑性樹脂組成物を、Tダイキャストフィルム製造装置を用いて、押出温度200℃にて、フィルム成形することにより、厚さ100μmの単層のフィルムを作製し、ハウス用フィルムを得た。
<実施例50~60>
 実施例2~12で製造したセルロース強化熱可塑性樹脂組成物をそれぞれ使用して、実施例49の8)の工程と同様の方法でハウス用フィルムをそれぞれ作製した。
<比較例13>
 比較例1で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例49の8)の工程と同様の方法でハウス用フィルムを作製した。
<比較例14>
 比較例2で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例49の8)の工程と同様の方法でハウス用フィルムを作製した。
<比較例15>
 比較例3で製造したセルロース強化熱可塑性樹脂組成物を使用して、実施例49の8)の工程と同様の方法でハウス用フィルムを作製した。
 上記のようにして調製、製造された各実施例、比較例において、セルロース強化熱可塑性樹脂組成物に存在するセルロース繊維の短辺長および凝集体の面積を以下のようにして測定した。
(セルロース繊維の短辺長の測定)
 各セルロース強化熱可塑性樹脂組成物について、液体窒素の中に浸漬し、脆化温度以下の状態で外力を加えて破壊し、破断面を露出させた。この破断面に対し、電子顕微鏡による反射電子像を観察し、セルロース繊維の短辺長を測定した。セルロース繊維200個をランダムに数えた中で、2μm以下の個数の存在比率も求めた。この比率が15%以上である場合、セルロース繊維が微細化されたことを示し、これにより、弾性率が向上し、熱可塑性樹脂の強化効率が高いことを意味する。
(セルロース凝集体の面積測定)
 各セルロース強化熱可塑性樹脂組成物を、160℃で5分間予熱、20MPaの圧力下で、5分間加圧の条件でプレス成形し、厚み約0.1mmのシートを作製した。こうして作製したシートを、(株)ニコン製 工業用顕微鏡「ECLIPSE LV100ND」により倍率50倍で撮影を行った。撮影した画像中に、0~80の輝度でカウントされた部分をセルロースの凝集体とした。視野の面積が1.3mm×1.7mmであり、その視野をn1とし、ランダムに9ヶ所を観察した。得られた0~80の輝度でカウントされた部分を(株)ニコン製「NIS-Elements D」で画像解析することでセルロース凝集体の面積を算出した。算出した9ヶ所のセルロース凝集体の面積がいずれも20000μm未満の場合が目標の合格レベルであり、いずれかが20000μm以上の場合が不合格レベルである。表1~10には、9ヶ所のセルロース凝集体のうち、最大面積と最小面積を、それぞれ「最大値」、「最小値」として記載した。セルロース凝集体の面積がいずれも20000μm未満であることは、セルロース繊維が微細化されても凝集することなく微細化されていることを示し、セルロース繊維の短辺長に加えて弾性率がさらに向上し、熱可塑性樹脂の強化効率が高いことを意味する。
 <成形品の外観>
 各実施例、比較例において作製した成形品を目視にて観察し、セルロース繊維の凝集体の有無によりセルロース分散の均一性を評価した。セルロース繊維の凝集体が存在しない場合、軽量化、高強度化されていると共に、ランプボディおよびプーリについては寸法精度に優れた成形品、スピーカユニットについては音響特性に優れた成形品、接続箱およびコネクタについてはリサイクル性に優れた成形品、ハウス用フィルムについてはリサイクル性、さらには表面平滑性および接着性能に優れた成形品が得られたものと判断できる。
 (熱可塑性樹脂組成物に含まれるセルロースの見かけの弾性率の測定)
 製造された各セルロース強化熱可塑性樹脂組成物において、各セルロース強化熱可塑性樹脂組成物に含まれるセルロースの見かけの弾性率を以下のようにして測定した。
 製造した各セルロース強化熱可塑性樹脂組成物を用いて、射出成形し、曲げ試験片(厚み4mm×長さ80mm)を作製した。なお、射出条件は、一般的に適切とされる成形条件で実施した。曲げ弾性率は、JIS K 7171に従い算出した。密度は、JIS K 7112に準拠した。ただし、測定溶媒は水ではなくエタノールを使用した。得られた密度から、樹脂およびセルロースの各成分について体積分率を算出した。なお、樹脂のみの密度および弾性率は、別途JIS K 7112およびJIS K 7171にて算出した。セルロースの見かけの弾性率Efは、下記式(2.1)を変形した式(2.2)から求めた。なお、Emは、複合則に基づく下記式(4.1)から式(4.2)であるとして求めた。得られた結果のうち、代表して実施例8および比較例3での結果を、下記表11に示す。
Figure JPOXMLDOC01-appb-M000013
 ここで、Ecは複合材料である曲げ試験片のヤング率(弾性率)であり、Emは母材である熱可塑性樹脂のヤング率(弾性率)であり、Efは繊維であるセルロースのヤング率(弾性率)である。Vmは母材である熱可塑性樹脂の体積率であり、Vfは繊維であるセルロースの体積率である。これらの体積率は、密度から求められる。Epは成分pのヤング率(弾性率)であり、Vpは成分pの体積率であり、密度から求める。なお、成分は1~n存在し、nは存在する成分数の最大値である。
 得られた結果を、まとめて下記表1~11に示す。ここで、各表中の熱可塑性樹脂とセルロース組成物は質量部であり、「-」は未使用、すなわち0質量部であることを示す。また、セルロース組成物の内訳である、セルロースとイオン化合物は、これらの質量部の割合を示す。「-」は上記と同様に未使用、すなわち0質量部であることを示す。一方、測定結果で、「-」は測定できず、未評価であることを示す。なお、セルロース組成物におけるA、Bは、使用したセルロースがAかBであることを示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 上記表1~10から、実施例1~60の熱可塑性樹脂組成物は、いずれも短辺長2μm以下のセルロース繊維の存在比率が15%以上で、かつセルロースの凝集体の面積が20000μm未満であった。
 これに対して、比較例1、4、7、10、13の熱可塑性樹脂組成物では、セルロースに配合するイオン化合物の配合量が多すぎ、セルロース繊維が溶解してしまった。そのため、分散体としての形態観察が不可能となった。
 比較例2、5、8、11、14の熱可塑性樹脂組成物では、セルロースの配合量が多すぎ、部分的には微細化が進んでいる様子が確認できるものの、同時にセルロース凝集体の面積が20000μm以上のセルロース凝集体が存在した。そのため、短辺長2μm以下のセルロース繊維の存在比率が15%を下回った。
 比較例3、6、9、12、15の熱可塑性樹脂組成物では、短辺長2μm以下のセルロース繊維の存在比率が15%未満で、かつセルロースの凝集体の面積が20000μm以上であった。上記表11において代表して示した実施例8のように、セルロースの15%以上が2μm以下に微細化した組成物においては、樹脂の強化効果がより強く見られるようになる。この現象は、セルロースが微細化したことによるセルロースの弾性率の向上に起因すると考えられる。
 実施例1~60の熱可塑性樹脂組成物は、弾性率が向上し、熱可塑性樹脂の強化効率が高く、かつ、成形品においてもセルロース繊維の凝集体が存在していない。そのため、実施例1~60の熱可塑性樹脂組成物は、セルロース強化樹脂として、特に、ランプボディ、スピーカユニット、接続箱、コネクタ、プーリおよびハウス用フィルム等の成形品への使用に有用であることがわかる。
 本発明を上述の実施態様とともに説明したが、特に指定しない限り、これらは発明を限定するものではなく、請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきである。
100 灯具
101 ランプボディ
102 前面カバー
103 光源
104 反射鏡(リフレクタ)
105 ソケット部
110 空間
111 開口部
112 貫通孔
140 凹面
200 車載用スピーカ装置
201 アウタパネル
202 インナパネル
210 スピーカユニット
211 バッフル
212 格納部
213 筐体
214 スピーカ
215 エキサイター
216 コーン紙
220 インナトリム
300 接続箱
320  ケース
320a 第1ケース
320b 第2ケース
321  マウント面
322  リレー装着用コネクタ
340a 第1基板
340b 第2基板
340c 第3基板
341  ECU用コネクタ
342a 室内側コネクタ
342b 室内側コネクタ
343  リレー装着用コネクタ
344  エンジンルーム側コネクタ
400  プーリ
410 転がり軸受
411 内輪
412 外輪
413 転動体
420 樹脂部
421 ボス
422 リム
423 円環部
424 外周面
501 フィルム
502 駆体
510 農業用ハウス

Claims (8)

  1.  熱可塑性樹脂、セルロースおよびイオン化合物を含有し、該熱可塑性樹脂100質量部に対し、該セルロースの含有量が1~100質量部であり、該イオン化合物の含有量が、該セルロースの0.001倍以上1.000倍未満である熱可塑性樹脂組成物で形成された樹脂部を備えることを特徴とする成形品。
  2.  前記イオン化合物が、下記一般式(1)または(2)で表される請求項1に記載の成形品。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)および(2)において、Zは=C(Ra)-または=N-を示す。ここで、Raは水素原子または置換基を示す。Lは2価の連結基を示す。R~Rは各々独立に、アルキル基、アルケニル基、シクロアルキル基、アリール基またはヘテロ環基を示す。R~Rの少なくとも2つが互いに結合して環を形成してもよい。Xはアニオンを示す。
  3.  前記一般式(1)または(2)で表される化合物が、下記一般式(1a)、(1b)、(2a)~(2c)のいずれかで表される請求項2に記載の成形品。
    Figure JPOXMLDOC01-appb-C000002
     一般式(1a)、(1b)、(2a)~(2c)において、R、RおよびXは、前記一般式(1)または(2)におけるR、RおよびXと同義である。R11およびR12は各々独立に置換基を示す。n11は0~3の整数であり、n12は0~5の整数である。ここで、R11が2以上のとき、複数のR11は互いに同一でも異なってもよい。また、少なくとも2つのR11が互いに結合して環を形成してもよい。
     R13~R15は各々独立に、アルキル基、アルケニル基、シクロアルキル基、アリール基またはヘテロ環基を示す。ただし、R、R13~R15の少なくとも2つが互いに結合して環を形成することはない。R21はRと同義である。Zは単結合、メチレン基、-C(=O)-、-O-、-S-、-S(=O)-、-SO-、-N(Rα1)-または-N(Rα1)(Rα2)-を示し、Rα1は水素原子または置換基を示し、Rα2は置換基を示す。ここで、Rα1とRα2が互いに結合して環を形成してもよい。
  4.  前記Xが、ハロゲンイオン、カルボン酸アニオン、スルホン酸アニオン、リン酸アニオン、ホスホン酸アニオン、ジシアナミドイオンまたはビス(トリフルオロメタンスルホニル)イミドイオンであることを特徴とする請求項2または3に記載の成形品。
  5.  前記セルロースが、植物由来の繊維状のセルロースである請求項1~4のいずれか1項に記載の成形品。
  6.  前記セルロースの15%以上が短辺長2μm以下である請求項1~5のいずれか1項に記載の成形品。
  7.  前記熱可塑性樹脂組成物のセルロース凝集体の面積が20000μm未満である請求項1~6のいずれか1項に記載の成形品。
  8.  前記成形品が、灯具のランプボディ、スピーカユニット、接続箱、コネクタ、プーリまたはハウス用フィルムである請求項1~7のいずれか1項に記載の成形品。
PCT/JP2018/036582 2017-09-29 2018-09-28 成形品 WO2019066069A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880063823.5A CN111183187A (zh) 2017-09-29 2018-09-28 成型品
JP2019545198A JP7252128B2 (ja) 2017-09-29 2018-09-28 成形品
EP18860137.1A EP3689972A4 (en) 2017-09-29 2018-09-28 MOLDED ARTICLE
US16/832,986 US11578192B2 (en) 2017-09-29 2020-03-27 Molded article

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2017-190816 2017-09-29
JP2017190815 2017-09-29
JP2017-190815 2017-09-29
JP2017190813 2017-09-29
JP2017190812 2017-09-29
JP2017-190813 2017-09-29
JP2017-190812 2017-09-29
JP2017190816 2017-09-29
JP2017-210340 2017-10-31
JP2017210340 2017-10-31
JP2018-098147 2018-05-22
JP2018098147 2018-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/832,986 Continuation US11578192B2 (en) 2017-09-29 2020-03-27 Molded article

Publications (1)

Publication Number Publication Date
WO2019066069A1 true WO2019066069A1 (ja) 2019-04-04

Family

ID=65902317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036582 WO2019066069A1 (ja) 2017-09-29 2018-09-28 成形品

Country Status (5)

Country Link
US (1) US11578192B2 (ja)
EP (1) EP3689972A4 (ja)
JP (1) JP7252128B2 (ja)
CN (1) CN111183187A (ja)
WO (1) WO2019066069A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241539A1 (ja) 2020-05-28 2021-12-02 三菱瓦斯化学株式会社 セルロース繊維、繊維強化樹脂組成物、セルロース繊維の製造方法、および、繊維強化樹脂組成物の製造方法
US11878958B2 (en) 2022-05-25 2024-01-23 Ikena Oncology, Inc. MEK inhibitors and uses thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248993B (zh) 2017-03-29 2022-12-30 古河电气工业株式会社 聚烯烃树脂复合材料及其制造方法
WO2019066071A1 (ja) 2017-09-29 2019-04-04 古河電気工業株式会社 成形品
EP3689974A4 (en) 2017-09-29 2021-07-07 Furukawa Electric Co., Ltd. MOLDED ARTICLE
EP3689972A4 (en) 2017-09-29 2021-07-07 Furukawa Electric Co., Ltd. MOLDED ARTICLE
EP3705520A4 (en) * 2017-10-31 2021-07-21 Furukawa Electric Co., Ltd. MOLDED ARTICLE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080146701A1 (en) 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
JP2012207063A (ja) * 2011-03-29 2012-10-25 Fuji Xerox Co Ltd 複合高分子組成物、樹脂組成物、および樹脂成形体
WO2013133093A1 (ja) 2012-03-09 2013-09-12 国立大学法人京都大学 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
JP2013248824A (ja) * 2012-06-01 2013-12-12 Olympus Corp 成形体およびその製造方法
JP2016017096A (ja) * 2014-07-04 2016-02-01 王子ホールディングス株式会社 繊維含有樹脂組成物の製造方法
JP2017171698A (ja) * 2016-03-18 2017-09-28 スターライト工業株式会社 摺動性樹脂組成物
WO2017170745A1 (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、セルロース強化樹脂成形品およびセルロース強化樹脂成形品の製造方法

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3464952A (en) 1967-01-23 1969-09-02 Grace W R & Co Polyethylene stabilized by treatment with sulfur dioxide in the presence of free radicals
US3645939A (en) 1968-02-01 1972-02-29 Us Plywood Champ Papers Inc Compatibilization of hydroxyl containing materials and thermoplastic polymers
US3856724A (en) 1971-01-29 1974-12-24 Texaco Inc Reinforced thermoplastic compositions
JPS5052156A (ja) 1973-08-31 1975-05-09
FR2433031A1 (fr) 1978-08-11 1980-03-07 Solvay Procede pour la fabrication d'objets a partir de compositions comprenant des polyolefines modifiees et des fibres cellulosiques
JPS55131031A (en) 1979-03-31 1980-10-11 Idemitsu Petrochem Co Ltd Polypropylene resin composition
JPS6239642A (ja) 1985-08-13 1987-02-20 Nobuo Shiraishi 複合樹脂組成物
JPS6333448A (ja) 1986-07-25 1988-02-13 Nippon Denso Co Ltd ポリオレフイン組成物
JPH08267597A (ja) 1995-03-28 1996-10-15 Nippon Zeon Co Ltd 木板様ポリオレフィン系樹脂板およびその製造方法
JP3674150B2 (ja) 1996-05-27 2005-07-20 大倉工業株式会社 ポリオレフィン系樹脂組成物、複合材および製造方法
JP3605946B2 (ja) 1996-06-18 2004-12-22 三井化学株式会社 ポリオレフィン系樹脂組成物、複合材および製造方法
ATE459678T1 (de) 1996-07-31 2010-03-15 Johnson Control S P A Verfahren zur herstellung von verstärkten polyolefinen und zusammensetzungen aus verstärkten polyolefinen
US6124384A (en) 1997-08-19 2000-09-26 Mitsui Chemicals, Inc. Composite resin composition
JPH11217468A (ja) 1997-11-27 1999-08-10 Okura Ind Co Ltd 樹脂組成物の成形方法
JP3419340B2 (ja) 1999-03-18 2003-06-23 株式会社豊田中央研究所 樹脂組成物の製造方法
JP3479661B2 (ja) 2000-09-07 2003-12-15 独立行政法人産業技術総合研究所 高結晶性セルロース−ポリエチレン複合体の製造方法
US6824599B2 (en) 2001-10-03 2004-11-30 The University Of Alabama Dissolution and processing of cellulose using ionic liquids
US7781500B2 (en) 2003-04-14 2010-08-24 Crompton Corporation Coupling agents for natural fiber-filled polyolefins
JP4013870B2 (ja) 2003-07-08 2007-11-28 関西ティー・エル・オー株式会社 脂肪族ポリエステル組成物の製造方法
JP2005187524A (ja) 2003-12-24 2005-07-14 Idemitsu Kosan Co Ltd ポリオレフィン組成物及びその成形品
US7888412B2 (en) * 2004-03-26 2011-02-15 Board Of Trustees Of The University Of Alabama Polymer dissolution and blend formation in ionic liquids
US7348371B2 (en) 2005-12-20 2008-03-25 Equistar Chemicals, Lp Cellulosic-reinforced composites having increased resistance to water absorption
US20070208110A1 (en) 2006-03-03 2007-09-06 Sigworth William D Coupling agents for natural fiber-filled polyolefins
JP4002942B1 (ja) 2006-12-04 2007-11-07 日棉化学工業株式会社 複合材及びその製造方法
WO2008098037A2 (en) 2007-02-06 2008-08-14 North Carolina State University Polymer derivatives and composites from the dissolution of lignocellulosics in ionic liquids
JP5030667B2 (ja) 2007-05-29 2012-09-19 国立大学法人京都大学 ミクロフィブリル化セルロース複合樹脂及びその製造方法
WO2009081558A1 (ja) 2007-12-20 2009-07-02 Unitika Ltd. 熱可塑性樹脂組成物、および、それを成形してなる成形体
JP5433949B2 (ja) 2008-01-11 2014-03-05 三菱化学株式会社 セルロース繊維含有ポリオレフィン系樹脂組成物
PL2268857T3 (pl) 2008-03-27 2013-01-31 Cordenka Gmbh & Co Kg Celulozowe wyroby kształtowe
JP5395496B2 (ja) 2008-09-12 2014-01-22 ダイセルポリマー株式会社 セルロース繊維含有熱可塑性樹脂組成物の製造方法
US8524887B2 (en) 2009-04-15 2013-09-03 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a tetraalkylammonium alkylphosphate ionic liquid process and products produced therefrom
KR101063227B1 (ko) 2009-10-12 2011-09-07 현대자동차주식회사 나일론-4 복합재료 조성물
CA2778560C (en) 2009-10-23 2015-02-03 Kyoto University Composition containing microfibrillated plant fibers
JP2011093990A (ja) 2009-10-28 2011-05-12 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂およびその成形体
JP2011116838A (ja) 2009-12-02 2011-06-16 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂およびその成形体
JP4594445B1 (ja) 2010-04-02 2010-12-08 株式会社環境経営総合研究所 発泡体及びその製造方法
JP2011219571A (ja) 2010-04-07 2011-11-04 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂及びその成形体
JP2012102324A (ja) 2010-10-14 2012-05-31 Riken Technos Corp 樹脂組成物
JP2012087199A (ja) 2010-10-19 2012-05-10 Hayashi Telempu Co Ltd 複合フィラー及びその製造方法、並びに複合フィラーを配合した樹脂組成物
BRPI1101225A2 (pt) 2011-03-04 2013-06-04 Madeplast Ind E Com De Madeira Plastica Ltda Me composiÇço de material compàsito termoplÁstico, produto compàsito termoplÁstico e mÉtodo para sua produÇço
JP5757765B2 (ja) 2011-03-31 2015-07-29 国立大学法人京都大学 変性ミクロフィブリル化植物繊維を含む樹脂組成物
JP2012236906A (ja) 2011-05-11 2012-12-06 Nissan Motor Co Ltd 樹脂組成物
JP2013043984A (ja) 2011-08-26 2013-03-04 Olympus Corp セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体
JP5462227B2 (ja) 2011-09-07 2014-04-02 株式会社日本製鋼所 セルロースナノファイバー入りポリオレフィン微多孔延伸フィルムの製造方法及びセルロースナノファイバー入りポリオレフィン微多孔延伸フィルム及び非水二次電池用セパレータ
US9751969B2 (en) * 2011-09-13 2017-09-05 Celluforce Inc. NCC-based supramolecular materials for thermoplastic and thermoset polymer composites
JP2013107987A (ja) 2011-11-21 2013-06-06 Mitsubishi Paper Mills Ltd セルロース複合熱可塑性樹脂及びその成形体
WO2013099530A1 (ja) * 2011-12-28 2013-07-04 東洋紡株式会社 樹脂組成物
JP5935414B2 (ja) 2012-03-14 2016-06-15 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
JP5851336B2 (ja) 2012-05-09 2016-02-03 オリンパス株式会社 複合ゴム材料、成形体、複合ゴム材料の製造方法
JP6150569B2 (ja) 2012-05-25 2017-06-21 オリンパス株式会社 修飾セルロースナノファイバーとその製造方法、樹脂組成物、成形体
US20140121307A1 (en) 2012-10-30 2014-05-01 Cyclewood Solutions, Inc. Blending lignin with thermoplastics and a coupling agent or compatibilizer
JP6425260B2 (ja) 2012-11-29 2018-11-21 西川ゴム工業株式会社 エラストマー組成物の製造方法
JP6234037B2 (ja) 2013-02-26 2017-11-22 国立大学法人京都大学 セルロース及び分散剤を含む組成物
BR112015024274A2 (pt) * 2013-03-21 2017-07-18 Adeka Corp agente antiestático, composição de agente antiestático, composição de resina antiestática e artigo moldado
JP2014193959A (ja) 2013-03-28 2014-10-09 Oji Holdings Corp 植物繊維含有樹脂組成物及びその製造方法
EP2859050B1 (de) 2013-04-22 2016-06-08 DENSO-Holding GmbH & Co. Masse zum befüllen von fugen und/oder rissen
JP6334870B2 (ja) 2013-09-02 2018-05-30 興国インテック株式会社 燃料電池用シール組成物
WO2015039237A1 (en) 2013-09-17 2015-03-26 University Of Guelph Hybrid sustainable composites and methods of making and using thereof
WO2015053226A1 (ja) 2013-10-07 2015-04-16 日東紡績株式会社 高強度かつ高弾性セルロース長繊維
JP6198005B2 (ja) 2014-03-26 2017-09-20 荒川化学工業株式会社 セルロース繊維/樹脂複合組成物の製造方法、該複合組成物、成形用樹脂組成物及び樹脂成形物
MY171305A (en) 2014-03-31 2019-10-08 Dainichiseika Color Chem Production method for readily dispersible cellulose composition, readily dispersible cellulose composition, cellulose dispersion resin composition, and production method for water-based dispersant for cellulose
JP2015203093A (ja) 2014-04-16 2015-11-16 三菱レイヨン株式会社 架橋アクリル樹脂、艶消し樹脂組成物、フッ素樹脂成形体、フィルム、積層フィルム及び積層成形品
JP6215127B2 (ja) 2014-04-23 2017-10-18 王子ホールディングス株式会社 繊維含有樹脂組成物の製造方法
CN104292412B (zh) 2014-10-10 2017-07-14 铁科腾跃科技有限公司 一种纤维素基聚氨酯预聚体及使用其的密封材料、制备方法和应用
JP6815867B2 (ja) * 2014-10-21 2021-01-20 古河電気工業株式会社 ポリオレフィン樹脂組成物、成形品および車両用外板
JP6570103B2 (ja) 2014-11-13 2019-09-04 中越パルプ工業株式会社 複合樹脂組成物及び複合樹脂組成物の製造方法。
JP6787137B2 (ja) 2016-01-14 2020-11-18 王子ホールディングス株式会社 微細セルロース繊維含有樹脂組成物及びその製造方法
CN108779256B (zh) 2016-02-18 2021-12-14 日本星光工业株式会社 纳米纤维分散体及其粉体以及3d打印机用造型材料
CN108779310A (zh) 2016-03-31 2018-11-09 古河电气工业株式会社 热塑性树脂组合物、热塑性树脂组合物的制造方法、纤维素增强树脂成型品和纤维素增强树脂成型品的制造方法
US20200199330A1 (en) 2016-03-31 2020-06-25 West Fraser Mills Ltd. Cellulosic Composites Comprising Cellulose Filaments
EP3730555A1 (en) 2016-03-31 2020-10-28 Furukawa Electric Co., Ltd. Thermoplastic resin composition, cellulose-reinforced thermoplastic resin composition, method of producing cellulose-reinforced thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
JP6210583B2 (ja) 2017-01-13 2017-10-11 古河電気工業株式会社 セルロース繊維分散ポリエチレン樹脂複合材、それを用いた成形体及びペレット、並びに、セルロース繊維分散ポリエチレン樹脂複合材の製造方法
JP6210582B2 (ja) 2017-01-13 2017-10-11 古河電気工業株式会社 セルロース繊維分散ポリエチレン樹脂複合材、それを用いた成形体及びペレット、並びに、セルロース繊維付着ポリエチレン薄膜片のリサイクル方法
CN110248993B (zh) 2017-03-29 2022-12-30 古河电气工业株式会社 聚烯烃树脂复合材料及其制造方法
JP6284672B2 (ja) 2017-06-14 2018-02-28 古河電気工業株式会社 セルロース繊維分散ポリエチレン樹脂複合材の製造方法、及びセルロース繊維付着ポリエチレン薄膜片のリサイクル方法
EP3689974A4 (en) * 2017-09-29 2021-07-07 Furukawa Electric Co., Ltd. MOLDED ARTICLE
EP3689972A4 (en) 2017-09-29 2021-07-07 Furukawa Electric Co., Ltd. MOLDED ARTICLE
WO2019066071A1 (ja) 2017-09-29 2019-04-04 古河電気工業株式会社 成形品
EP3705520A4 (en) 2017-10-31 2021-07-21 Furukawa Electric Co., Ltd. MOLDED ARTICLE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080146701A1 (en) 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
JP2012207063A (ja) * 2011-03-29 2012-10-25 Fuji Xerox Co Ltd 複合高分子組成物、樹脂組成物、および樹脂成形体
WO2013133093A1 (ja) 2012-03-09 2013-09-12 国立大学法人京都大学 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
JP2013248824A (ja) * 2012-06-01 2013-12-12 Olympus Corp 成形体およびその製造方法
JP2016017096A (ja) * 2014-07-04 2016-02-01 王子ホールディングス株式会社 繊維含有樹脂組成物の製造方法
JP2017171698A (ja) * 2016-03-18 2017-09-28 スターライト工業株式会社 摺動性樹脂組成物
WO2017170745A1 (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、セルロース強化樹脂成形品およびセルロース強化樹脂成形品の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Angew. Chem. Int. Ed. Engl.", vol. 34, 1955, pages: 1143 - 1170
GREEN CHEM., vol. 17, 2015, pages 694 - 714
J. AM. CHEM. SOC., vol. 110, 1988, pages 6255
MACROMOLECULES, vol. 8, 1975, pages 687
See also references of EP3689972A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241539A1 (ja) 2020-05-28 2021-12-02 三菱瓦斯化学株式会社 セルロース繊維、繊維強化樹脂組成物、セルロース繊維の製造方法、および、繊維強化樹脂組成物の製造方法
KR20230017233A (ko) 2020-05-28 2023-02-03 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 셀룰로스 섬유, 섬유 강화 수지 조성물, 셀룰로스 섬유의 제조 방법, 및, 섬유 강화 수지 조성물의 제조 방법
US11878958B2 (en) 2022-05-25 2024-01-23 Ikena Oncology, Inc. MEK inhibitors and uses thereof

Also Published As

Publication number Publication date
EP3689972A4 (en) 2021-07-07
JPWO2019066069A1 (ja) 2020-09-10
CN111183187A (zh) 2020-05-19
US20200224007A1 (en) 2020-07-16
JP7252128B2 (ja) 2023-04-04
US11578192B2 (en) 2023-02-14
EP3689972A1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
US11597817B2 (en) Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
JP7252128B2 (ja) 成形品
JP6998859B2 (ja) 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、セルロース強化樹脂成形品およびセルロース強化樹脂成形品の製造方法
JP7203742B2 (ja) 成形品
US11891498B2 (en) Molded article provided with a resin part
JP6728506B1 (ja) ポリオレフィン系樹脂用核剤、これを含有するポリオレフィン系樹脂用核剤組成物、ポリオレフィン系樹脂用マスターバッチ、ポリオレフィン系樹脂組成物、その成形品、そのフィルム、多孔質フィルムの製造方法および包装体
JP7203743B2 (ja) 成形品
JP2019065135A (ja) 車両用外装部品
JP2019065136A (ja) ドアトリム
JP2019064403A (ja) 車両用外装部品
JP2019064404A (ja) バンパー
JP2019065137A (ja) バンパー
JP2019065138A (ja) ドアトリム
JP2019081860A (ja) バンパー
JP2019081858A (ja) 車両用外装部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018860137

Country of ref document: EP

Effective date: 20200429