WO2013077321A1 - 半導体装置の製造装置、半導体装置の製造方法及び記録媒体 - Google Patents

半導体装置の製造装置、半導体装置の製造方法及び記録媒体 Download PDF

Info

Publication number
WO2013077321A1
WO2013077321A1 PCT/JP2012/080072 JP2012080072W WO2013077321A1 WO 2013077321 A1 WO2013077321 A1 WO 2013077321A1 JP 2012080072 W JP2012080072 W JP 2012080072W WO 2013077321 A1 WO2013077321 A1 WO 2013077321A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
processing liquid
gas
liquid
substrate
Prior art date
Application number
PCT/JP2012/080072
Other languages
English (en)
French (fr)
Inventor
優一 和田
佐久間 春信
芦原 洋司
立野 秀人
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to KR1020147013250A priority Critical patent/KR101615584B1/ko
Priority to JP2013545928A priority patent/JP6038043B2/ja
Publication of WO2013077321A1 publication Critical patent/WO2013077321A1/ja
Priority to US14/283,593 priority patent/US9190299B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a semiconductor device manufacturing apparatus, a semiconductor device manufacturing method, and a recording medium.
  • LSIs Large Scale Integrated Circuits
  • processing technology that controls leakage current interference between transistor elements provided in LSIs is becoming increasingly technically difficult. It is increasing.
  • element separation of LSI for example, a method of forming a gap such as a groove or a hole between elements to be separated of a substrate such as a silicon substrate made of silicon (Si) and depositing an insulator in the gap Is done by.
  • An oxide film is often used as the insulator.
  • the oxide film for example, a silicon oxide film (SiO 2 ) can be used.
  • This silicon oxide film is formed by natural oxidation of the silicon (Si) substrate itself, chemical vapor deposition (hereinafter also referred to as CVD), or the like.
  • CVD chemical vapor deposition
  • Patent Document 1 discloses an example of a method for forming an insulating film by a CVD method.
  • the air gap is formed on the substrate with a fine structure that is deep in the vertical direction or narrow in the horizontal direction.
  • an oxide film is formed on the substrate by, for example, embedding using the CVD method.
  • forming a film in a void having a fine structure using the CVD method is reaching a technical limit.
  • an embedding method using an oxide having fluidity that is, an insulator coating method (Spin On Dielectric, hereinafter also referred to as SOD method) has been attracting attention.
  • SOD method a coating insulating material containing an inorganic or organic component called SOG (Spin on glass) is used.
  • SOG Spin on glass
  • the processing dimension is about 0.35 ⁇ m to 1.0 ⁇ m.
  • semiconductor devices represented by recent LSIs, DRAMs (Dynamic Random Access Memory) and flash memories (Flash Memory) have a minimum processing dimension smaller than 50 nm. For this reason, in the SOD method, it may be difficult to form an oxide film on a substrate having a fine structure while maintaining the quality as an insulating film.
  • An object of the present invention is to provide a semiconductor device manufacturing apparatus, a semiconductor device manufacturing method, and a recording medium that form a high-quality and dense film on a substrate having a fine structure.
  • a processing chamber for accommodating the substrate;
  • a processing liquid supply unit for supplying a processing liquid into the processing chamber;
  • a heating unit for heating the treatment liquid in the treatment chamber;
  • a semiconductor device manufacturing apparatus including a substrate support portion provided in the processing chamber and supporting the substrate.
  • a method for manufacturing a semiconductor device comprising: a treatment liquid heating step of heating the treatment liquid in the treatment chamber by a heating unit.
  • a processing liquid supply procedure for supplying the processing liquid from the processing liquid supply unit to the processing chamber for storing the substrate There is provided a recording medium on which a program for causing a computer to execute a processing liquid heating procedure for heating the processing liquid in the processing chamber by a heating unit is recorded.
  • a high-quality and dense film can be formed on a substrate having a fine structure.
  • FIG. 1 is a schematic configuration diagram of a substrate processing apparatus 10 according to the present embodiment, and shows a processing chamber 30 portion in a longitudinal section.
  • FIG. 2 is a schematic vertical sectional view of the processing chamber 30 provided in the substrate processing apparatus 10 according to the present embodiment.
  • FIG. 3 is a partially enlarged view of a vertical section of the substrate support portion provided in the substrate processing apparatus 10 according to the present embodiment.
  • the processing chamber 30 includes a processing tube (processing container) 360.
  • the processing tube 360 is made of, for example, a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC) that transmits light, or a heat-resistant material that combines SiO 2 and SiC, and is formed in a cylindrical shape with an open lower end. ing.
  • a processing chamber 30 is formed in a cylindrical hollow portion of the processing tube 360 so that the wafers 12 as substrates can be accommodated in a state of being aligned in multiple stages in a vertical posture in a horizontal posture by a boat 14 described later.
  • a substrate having a concavo-convex structure (void) which is a fine structure is preferably used as the wafer 12.
  • a substrate having a fine structure is a substrate having a high aspect ratio, such as a deep groove (concave portion) in a direction perpendicular to a silicon substrate, or a laterally narrow groove (concave portion) having a width of about 10 nm to 50 nm, for example.
  • a seal cap 344 as a furnace port lid capable of hermetically sealing (closing) the lower end opening (furnace port) of the process tube 360 is provided below the process tube 360 via an O-ring.
  • the seal cap 344 is configured to contact the lower end of the processing tube 360 from the lower side in the vertical direction.
  • the seal cap 344 is formed in a disc shape.
  • a processing chamber 30 serving as a processing space for the wafer 12 includes a processing tube 360 and a seal cap 344.
  • a first heating unit 320 for heating the wafer 12 in the processing tube 360 is provided outside the processing tube 360 in a hollow concentric shape surrounding the side wall surface of the processing tube 360.
  • the first heating unit 320 is supported by a heater base.
  • the first heating unit 320 includes first to fourth heater units 320a to 320d.
  • the first to fourth heater units 320a to 320d are provided along the stacking direction of the wafers 12 in the processing tube 360, respectively.
  • each of the first to fourth heater units 320a to 320d emits light from the periphery of the processing tube 360, and the light transmitted through the processing tube 360 is absorbed by the wafer 12 to raise the temperature of the wafer 12 (heating). To be able to).
  • thermocouples for example, first to second thermocouples or the like are used.
  • Four external temperature sensors 322a to 322d are provided.
  • first to fourth internal temperature sensors 324a to 324d such as thermocouples are used as temperature detectors for detecting the wafer 12 or the ambient temperature for each of the first to fourth heater units 320a to 320d. Is provided.
  • the first to fourth internal temperature sensors 324a to 324d are provided between the processing tube 360 and the boat 14, respectively.
  • the first to fourth internal temperature sensors 324a to 324d are respectively the temperatures of the wafer 12 located at the center of the plurality of wafers 12 heated by the first to fourth heater units 320a to 320d. It may be provided to detect.
  • the first heating unit 320 (first to fourth heater units 320a to 320d), the first to fourth external temperature sensors 322a to 322d, and the first to fourth internal temperature sensors 324a to 324d are respectively A controller 500 described later is electrically connected. Based on the temperature information detected by the first to fourth internal temperature sensors 324a to 324d so that the temperature of the wafer 12 in the processing tube 360 becomes a predetermined temperature, the controller 500 first to fourth.
  • the power supplied to the heater units 320a to 320d is controlled at a predetermined timing, and temperature setting and temperature adjustment are individually performed for each of the first to fourth heater units 320a to 320d.
  • the controller 500 determines whether the first to fourth heater units 320a to 320d are heated to predetermined temperatures based on the temperature information detected by the first to fourth external temperature sensors 322a to 322d, respectively. Confirm whether or not.
  • the boat 14 serving as a substrate support unit is configured to support a plurality of wafers 12 in multiple stages. As shown in FIG. 3, the boat 14 includes a plurality of (for example, three) columns 14 a that support the plurality of wafers 12. A plurality of substrate mounting portions 14b are provided on the support column 14a so that a plurality of wafers 12 can be mounted. A plurality of substrate platforms 14 b are provided in the direction of gravity of the boat 14, and each substrate platform 14 b is configured to support the wafer 12. The substrate platform 14b is provided perpendicular to the support column 14a in order to support the wafer 12 horizontally.
  • Each of the plurality of support pillars 14a is installed between the bottom plate 14c and a vaporizing section 342 described later.
  • a plurality of wafers 12 are aligned in a horizontal posture on the support column 14a and aligned in the center, and are held in multiple stages in the axial direction.
  • a material having a low reactivity with a processing liquid described later may be used as a constituent material of the support column 14a, the substrate mounting portion 14b, and the bottom plate 14c.
  • a material having a low reactivity with a processing liquid described later may be used.
  • it may be made of a material containing at least one of ceramics such as Teflon (registered trademark), quartz, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), and silicon carbide (SiC).
  • Teflon registered trademark
  • quartz aluminum oxide
  • AlN aluminum nitride
  • SiC silicon carbide
  • SiN zirconium oxide
  • or the like may be included as a constituent material of the column 14a, the substrate mounting portion 14b, and the bottom plate 14c.
  • a non-metallic material with good thermal conductivity such as silicon carbide (SiC) is used as a constituent material of the column 14a, the substrate mounting portion 14b, and the bottom plate 14c.
  • a nonmetallic material having a thermal conductivity of 10 W / mK or more is preferably used. Thereby, it can suppress that the support
  • the processing liquid when the processing liquid is evaporated and vaporized in the processing tube 360 to generate a vaporized gas, the column 14a, the substrate mounting portion 14b, and the bottom plate 14c are cooled by the latent heat of evaporation of the processing liquid. There was a case. As a result, the vaporized gas of the treatment liquid may be cooled to a temperature lower than the vaporization point of the treatment liquid in the treatment tube 360 and reliquefied. Such re-liquefaction of the processing liquid often occurs at a location where heat generated from the first heating unit 320 in the processing tube 360 is difficult to reach.
  • re-liquefaction of the vaporized gas of the processing liquid often occurs at the contact point between the substrate platform 14b and the wafer 12 or at the lower part of the boat 14.
  • the processing liquid may accumulate on the substrate platform 14b.
  • a so-called watermark may be formed at a contact portion between the substrate platform 14 b and the wafer 12, that is, at the back end portion of the wafer 12.
  • the wafer 12 on which the watermark is formed may cause, for example, a reduction in LSI yield and may be a defective product.
  • the pillars 14a, the substrate mounting portion 14b, and the bottom plate 14c may be formed of quartz (SiO) or the like if thermal conductivity is not a problem, and contamination of the wafer 12 by metal becomes a problem. Otherwise, the support pillars 14a and the like may be formed of a metal material such as stainless steel (SUS). When a metal is used as the constituent material of the column 14a, it is better that a film of ceramic or Teflon (registered trademark) is formed on the metal.
  • a heat insulator 140 made of a heat-resistant material such as quartz or silicon carbide is provided at the lower part of the boat 14, and heat from a first heating unit 320 to be described later is sealed. It is configured to be difficult to be transmitted to the cap 344 side.
  • the heat insulator 140 functions as a heat insulating member and also functions as a holding body that holds the boat 14. Note that the heat insulator 140 is not limited to the one in which a plurality of heat insulating plates formed in a disk shape are provided in a horizontal posture as shown in the figure, and may be a quartz cap formed in a cylindrical shape, for example. good. Further, the heat insulator 140 may be considered as one of the constituent members of the boat 14.
  • a boat elevator is provided as an elevating unit that moves the boat 14 up and down and conveys the processing tube 360 into and out of the processing tube 360.
  • the boat elevator is provided with a seal cap 344 that seals the furnace port when the boat 14 is raised by the boat elevator.
  • a boat rotation mechanism 349 for rotating the boat 14 is provided on the side of the seal cap 344 opposite to the processing chamber 30.
  • a rotation shaft 348 of the boat rotation mechanism 349 is connected to the boat 14 through the seal cap 344, and is configured to rotate the wafer 12 by rotating the boat 14.
  • a processing liquid supply nozzle 339 through which the processing liquid passes is provided between the processing tube 360 and the first heating unit 320.
  • the processing liquid supply nozzle 339 is formed of, for example, quartz having a low thermal conductivity.
  • the treatment liquid supply nozzle 339 may have a double tube structure.
  • the processing liquid supply nozzle 339 is disposed along the side portion of the outer wall of the processing tube 360.
  • the upper end (downstream end) of the processing liquid supply nozzle 339 is airtightly provided at the top (upper end opening) of the processing tube 360.
  • a plurality of supply holes 341 are provided in the processing liquid supply nozzle 339 located at the upper end opening of the processing tube 360 from the upstream side to the downstream side (see FIG. 2).
  • the supply hole 341 is formed so that the processing liquid supplied into the processing tube 360 is jetted toward the vaporizing unit 342 described later.
  • a downstream end of a processing liquid supply pipe 340 a for supplying a processing liquid is connected to an upstream end of the processing liquid supply nozzle 339.
  • a storage tank 201 as a liquid raw material supply tank
  • a liquid mass flow controller (LMFC) 203 as a liquid flow rate controller (liquid flow rate control unit)
  • a valve 204 as an on-off valve
  • a separator 205 and a valve 208 which is an on-off valve are provided.
  • a sub heater 210a such as an inlet tube heater may be provided on the downstream side of at least the valve 208 of the processing liquid supply pipe 340a.
  • the sub-heater 210a is configured to heat the processing liquid supply pipe 340a to a predetermined temperature (for example, 50 ° C. to 300 ° C.) so that the processing liquid flowing inside the processing liquid supply pipe 340a can be preheated.
  • a predetermined temperature for example, 50 ° C. to 300 ° C.
  • the portion of the processing liquid supply pipe 340a that comes into contact with the processing liquid, that is, the inner surface of the processing liquid supply pipe 340a may be made of a material that is less reactive with the processing liquid.
  • the inner surface of the treatment liquid supply pipe 340a is a material containing at least one of ceramics such as Teflon (registered trademark), quartz, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), and silicon carbide (SiC). It is good to be composed of. Further, a film such as Teflon (registered trademark) may be formed on the inner surface of the processing liquid supply pipe 340a. Thereby, corrosion of the processing liquid supply pipe 340a can be suppressed.
  • the processing liquid is supplied into the processing chamber 30 from the processing liquid supply pipe 340 a via the liquid mass flow controller 203, the valve 204, the separator 205, the valve 208, and the processing liquid supply nozzle 339.
  • the treatment liquid for example, a vaporized raw material having a boiling point of 50 ° C. to 200 ° C. may be used. That is, as the treatment liquid, for example, an oxidant solution such as hydrogen peroxide water or water (H 2 O) may be used.
  • the hydrogen peroxide solution is generated by, for example, using hydrogen peroxide (H 2 O 2 ) that is solid or liquid at room temperature, using water (H 2 O) as a solvent, and dissolving hydrogen peroxide in water. .
  • the concentration of hydrogen peroxide in the hydrogen peroxide water is preferably 1% to 40%. In the present embodiment, for example, hydrogen peroxide having a hydrogen peroxide concentration of 15% or 30% is preferably used.
  • the solvent for dissolving hydrogen peroxide is not limited to water.
  • hydrogen peroxide (H 2 O 2 ) water Since hydrogen peroxide (H 2 O 2 ) water has a simple structure in which hydrogen is bonded to oxygen molecules, it has a feature that it easily penetrates into a low-density medium. Further, the hydrogen peroxide solution generates hydroxy radicals (OH *) when decomposed. This hydroxy radical is a kind of active oxygen and is a neutral radical in which oxygen and hydrogen are bonded. Therefore, in the present embodiment, the wafer 12 is oxidized by the hydroxyl radical generated by the decomposition of the hydrogen peroxide solution supplied into the processing chamber 30.
  • hydrogen peroxide water is used as a treatment liquid. It has been confirmed that the film formed at a deeper location in the groove (bottom in the groove) can be oxidized than when water is used as the liquid. That is, it has been confirmed that gaseous hydrogen peroxide has higher oxidizing power than gaseous water. This is probably because the energy of the hydrogen peroxide water in the gaseous state is higher than the energy of the water in the gaseous state, and furthermore, the amount of oxygen in the hydrogen peroxide is larger than that in the water.
  • the film formed at the bottom of the groove of the wafer 12 can be further oxidized to form an oxide film.
  • the oxide film formed in the groove of the wafer 12 can make the amount of oxygen uniform between the surface and the back (bottom), and as a result, the dielectric constant can be made uniform.
  • hydrogen peroxide solution acts more actively in a low temperature use environment that is higher than normal temperature, for example, 40 ° C. or higher and 100 ° C. or lower.
  • normal temperature for example, 40 ° C. or higher and 100 ° C. or lower.
  • more hydrogen peroxide solution can be supplied to the silicon-containing film formed deep in the groove of the wafer 12.
  • the oxidizing power of hydrogen peroxide can be sufficiently exerted. Therefore, the oxidation treatment can be performed at a low temperature and in a short time.
  • the downstream end of the pressurized gas supply pipe 340b for supplying the pressurized gas is connected to the upper part of the storage tank 201.
  • the pressurized gas supply pipe 340b is provided with a pressurized gas supply source 211b, a mass flow controller (MFC) 211b as a flow rate controller (flow rate control unit), and a valve 213b as an on-off valve in order from the upstream direction.
  • MFC mass flow controller
  • the pressurized gas is supplied into the storage tank 201 from the pressurized gas supply pipe 340b via the mass flow controller 212b and the valve 213b.
  • nitrogen (N 2 ) gas or rare gas such as He gas, Ne gas, or Ar gas can be used as the pressure-feed gas.
  • the processing liquid supply unit is mainly configured by the processing liquid supply pipe 340a, the liquid mass flow controller 203, the valve 204, the separator 205, the valve 208, and the processing liquid supply nozzle 339.
  • the storage tank 201, the pressurized gas supply pipe 340b, the pressurized gas supply source 211b, the mass flow controller 212b, and the valve 213b may be included in the processing liquid supply unit.
  • the downstream end of the inert gas supply pipe 340c is connected between the valve 204 of the processing liquid supply pipe 340a and the separator 205.
  • the inert gas supply pipe 340c is provided with an inert gas supply source 211c, a mass flow controller (MFC) 212c that is a flow rate controller (flow rate control unit), and a valve 213c that is an on-off valve in order from the upstream direction.
  • MFC mass flow controller
  • the inert gas is supplied into the processing chamber 30 via the mass flow controller 212c, the valve 213c, the separator 205, the valve 208, the processing liquid supply pipe 340a, and the processing liquid supply nozzle 339.
  • the inert gas for example, nitrogen (N 2 ) gas, or a rare gas such as He gas, Ne gas, or Ar gas can be used.
  • an inert gas supply unit is configured by the inert gas supply pipe 340c, the mass flow controller 212c, and the valve 213c.
  • the inert gas supply source 211c, the processing liquid supply pipe 340a, the separator 205, the valve 208, and the processing liquid supply nozzle 339 may be included in the inert gas supply unit.
  • a downstream end of the first gas supply pipe 340d is connected to the downstream side of the valve 208 of the processing liquid supply pipe 340a.
  • the first gas supply pipe 340d is provided with a raw material gas supply source 211d, a mass flow controller (MFC) 212d as a flow rate controller (flow rate control unit), and a valve 213d as an on-off valve in order from the upstream direction.
  • a sub heater 210d such as an inlet tube heater may be provided at least downstream of the valve 213d of the first gas supply pipe 340d.
  • the sub-heater 210d is configured to heat the first gas supply pipe 340d to a predetermined temperature (for example, 50 ° C. to 300 ° C.) so that the fluid flowing inside the first gas supply pipe 340d can be preheated. Yes.
  • the first processing gas is supplied into the processing chamber 30 via the mass flow controller 212d, the valve 213d, and the processing liquid supply nozzle 339.
  • hydrogen (H 2 ) gas can be used as the first processing gas.
  • the downstream end of the second gas supply pipe 340e is connected to the downstream side of the valve 213d of the first gas supply pipe 340d.
  • the second gas supply pipe 340e is provided with a raw material gas supply source 211e, a mass flow controller (MFC) 212e as a flow rate controller (flow rate control unit), and a valve 213e as an on-off valve in order from the upstream direction.
  • a sub heater 210e such as an inlet tube heater may be provided at least downstream of the valve 213e of the second gas supply pipe 340e.
  • the sub-heater 210e is configured to heat the second gas supply pipe 340e to a predetermined temperature (eg, 50 ° C. to 300 ° C.) so that the fluid flowing inside the second gas supply pipe 340e can be preheated.
  • a predetermined temperature eg, 50 ° C. to 300 ° C.
  • the second processing gas is supplied into the processing chamber 30 via the mass flow controller 212a, the valve 213e, and the processing liquid supply nozzle 339.
  • oxygen (O 2 ) gas can be used as the second processing gas.
  • the first process gas supply unit is configured by the first gas supply pipe 340d, the mass flow controller 212d, and the valve 213d.
  • the source gas supply source 211d, the process liquid supply pipe 340a, and the process liquid supply nozzle 339 may be included in the first process gas supply unit.
  • a second processing gas supply unit is mainly configured by the second gas supply pipe 340e, the mass flow controller 212e, and the valve 213e.
  • the source gas supply source 211e, the processing liquid supply pipe 340a, the first gas supply pipe 340d, and the processing liquid supply nozzle 339 may be included in the second processing gas supply unit.
  • the first process gas supply unit and the second process gas supply unit constitute a water vapor gas supply unit.
  • the treatment liquid supply unit, the inert gas supply unit, and the water vapor gas supply unit constitute a supply unit.
  • a vaporizing unit 342 is provided for evaporating the processing liquid supplied from the processing liquid supply unit into the processing tube 360. That is, the vaporization unit 342 is heated by a second heating unit 345 described later, and heats and evaporates the treatment liquid such as hydrogen peroxide supplied from the supply hole 341 to vaporize the vaporized gas of the treatment liquid. Is configured to generate The vaporization unit 342 is provided to be supported by the support column 14a. The diameter of the vaporizing unit 342 is configured to be larger than the maximum outer diameter of the wafer 12 supported by the boat 14.
  • the vaporization unit 342 is configured such that the wafer 12 is hidden by the vaporization unit 342 when the vaporization unit 342 is viewed from the supply hole 341 side.
  • the vaporizer 342 also functions as a top plate of the boat 14.
  • the vaporization part 342 is good to be comprised with the material with low reactivity with a process liquid.
  • the vaporization unit 342 is made of a material containing at least one of ceramics such as Teflon (registered trademark), quartz, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), and silicon carbide (SiC). It is good to be. Thereby, it can suppress that the vaporization part 342 is corroded by the process liquid.
  • silicon nitride (SiN), zirconium oxide (ZrO), or the like may be included as a constituent material of the vaporization unit 342.
  • a nonmetallic material with good thermal conductivity (high thermal conductivity) such as silicon carbide (SiC).
  • a second heating unit 345 is provided on the outer upper portion of the processing tube 360. That is, the second heating unit 345 is disposed on the vaporization unit 342 through the supply hole 341.
  • the second heating unit 345 is configured to heat the vaporization unit 342 provided so as to be supported by the column 14 a of the boat 14.
  • the second heating unit 345 is configured to heat the vaporization unit 342 to about 200 ° C., for example.
  • the second heating unit 345 is configured to heat the supply hole 341 and its periphery. Thereby, it is possible to prevent the treatment liquid such as hydrogen peroxide solution from being solidified in the supply hole 341.
  • the second heating unit 345 for example, a lamp heater unit such as a carbon lamp, a resistance heater, or the like can be used. At this time, it is desirable that the second heating unit 345 emit light having a wavelength that can easily heat the treatment liquid supply nozzle 339.
  • the vaporizer 342 is made of silicon carbide, the emissivity of the vaporizer 342 approximates to 1. Therefore, the vaporization unit 342 efficiently absorbs far infrared rays and has illuminance in the absorption wavelength band of the supply hole 341 made of, for example, quartz or the like and the surrounding constituent members. For this reason, the supply hole 341 made of quartz or the like and the surrounding constituent members can be efficiently heated.
  • a controller 500 described later is electrically connected to the second heating unit 345.
  • the controller 500 is configured to control the power supplied to the second heating unit 345 at a predetermined timing so that the vaporization unit 342 has a predetermined temperature.
  • the pressurized gas is supplied into the storage tank 201 from the pressurized gas supply pipe 340b via the mass flow controller 212b and the valve 213b.
  • the processing liquid stored in the storage tank 201 is sent out into the processing liquid supply pipe 340a.
  • the processing liquid supplied from the storage tank 201 into the processing liquid supply pipe 340 a is supplied into the processing pipe 360 via the liquid mass controller 203, the valve 204, the separator 205, the valve 208, and the processing liquid supply nozzle 339.
  • the processing liquid supplied into the processing tube 360 is vaporized by coming into contact with the vaporizing unit 342 heated by the second heating unit 345, and a vaporized gas (processing gas) of the processing liquid is generated.
  • This processing gas is supplied to the wafer 12 in the processing tube 360, and a predetermined substrate processing is performed on the wafer 12.
  • the processing liquid flowing in the processing liquid supply pipe 340a may be preheated by the sub heater 210a. Thereby, the processing liquid can be supplied into the processing tube 360 in a state in which the processing liquid is more easily vaporized. Further, the processing liquid flowing in the processing liquid supply nozzle 339 may be preheated by the first heating unit 320 (first to fourth heater units 320a to 320d).
  • a liquefaction prevention heater 280 as a third heating unit is provided below the processing tube 360 and above the seal cap 344 so as to surround the side wall surface of the processing tube 360.
  • the liquefaction prevention heater 280 is composed of, for example, a resistance heater or a lamp heater. Thereby, it can suppress that the vaporization gas of a process liquid reliquefies in the lower area
  • a liquid generated by re-liquefying the vaporized gas of the processing liquid in the processing tube 360 by heating the lower portion of the processing tube 360 with the liquefaction prevention heater 280 (hereinafter, also simply referred to as “liquid”). However, it can suppress that it accumulates in the bottom part in processing pipe 360 (the upper surface of seal cap 344).
  • the liquid generated by re-liquefying the vaporized gas in the processing liquid in the processing pipe 360 is oxidized when being supplied into the processing pipe 360.
  • the concentration of hydrogen peroxide may be higher than that of hydrogen water.
  • the hydrogen peroxide solution repeats liquefaction and evaporation (vaporization) in the processing tube 360 it is considered that hydrogen peroxide solution having a high hydrogen peroxide concentration is generated in the processing tube 360.
  • a hydrogen peroxide solution having a high hydrogen peroxide concentration has high oxidizing properties.
  • the wafer 12 can be uniformly processed by suppressing the re-liquefaction of the vaporized gas of the processing liquid in the processing tube 360.
  • the first exhaust pipe 346 may be made of a material having low reactivity with the processing liquid such as Teflon (registered trademark).
  • Teflon registered trademark
  • a film such as Teflon may be formed on at least the inner surface of the first exhaust pipe 346. Thereby, the corrosion of the 1st exhaust pipe 346 by a process liquid can be suppressed.
  • the first exhaust pipe 346 includes, in order from the upstream direction, a pressure sensor 404 as a pressure detector (pressure detection unit) that detects the pressure in the processing pipe 360, and an APC (Auto adjustment unit) as a pressure regulator (pressure adjustment unit).
  • a pressure controller) valve 403 and a vacuum pump 405 as an evacuation device are provided.
  • the inside of the processing chamber 30 is configured to be evacuated by the negative pressure generated by the vacuum pump 405. That is, the first exhaust pipe 346 is configured so that the inside of the processing pipe 360 can be evacuated by the vacuum pump 405 so that the pressure in the processing pipe 360 becomes a predetermined pressure (degree of vacuum).
  • the APC valve 403 is an open / close valve that can exhaust and stop exhaust in the processing chamber 30 by opening and closing the valve.
  • the APC valve 403 is also a pressure adjustment valve that can adjust the pressure in the processing chamber 30 by adjusting the valve opening.
  • An exhaust tube heater 411 serving as an exhaust heating unit that heats the first exhaust pipe 346 is provided at least upstream of the APC valve 403 in the first exhaust pipe 346.
  • the exhaust tube heater 411 heats the first exhaust pipe 346 so that condensation does not occur inside the first exhaust pipe 346.
  • a controller 500 described later is electrically connected to the exhaust tube heater 411.
  • the controller 500 is configured to control the power supplied to the exhaust tube heater 411 so that the first exhaust pipe 346 has a predetermined temperature (for example, 50 ° C. to 300 ° C.).
  • the upstream end of the second exhaust pipe 347 is connected to the upstream side of the APC valve 403 of the first exhaust pipe 346.
  • the second exhaust pipe 347 includes, in order from the upstream direction, a valve 406 that is an on-off valve, a separator 407 that separates the exhaust gas exhausted from the processing pipe 360 into a liquid and a gas, and a vacuum pump as a vacuum exhaust device 408 is provided.
  • An upstream end of a third exhaust pipe 409 is connected to the separator 407, and a liquid recovery tank 410 is provided in the third exhaust pipe 409.
  • a gas chromatograph or the like can be used as the separator 407.
  • the second exhaust pipe 347 and the third exhaust pipe 409 may be made of a material having low reactivity with the processing liquid such as Teflon (registered trademark), for example. Further, when the second exhaust pipe 347 and the third exhaust pipe 409 are made of metal, at least the inner surfaces of the second exhaust pipe 347 and the third exhaust pipe 409 are coated with a film such as Teflon (registered trademark), for example. May be formed. Thereby, corrosion of the 2nd exhaust pipe 347 and the 3rd exhaust pipe 409 by processing liquid can be controlled.
  • Teflon registered trademark
  • a controller 500 described later is electrically connected to the APC valve 403 and the pressure sensor 404.
  • the controller 500 is configured to control the opening degree of the APC valve 403 based on the pressure information detected by the pressure sensor 404 so that the pressure in the processing chamber 30 becomes a predetermined pressure at a predetermined timing. ing.
  • the exhaust section is constituted by the first exhaust pipe 346.
  • the second exhaust pipe 347, the APC valve 403, the pressure sensor 404, the valve 406, the separator 407, the liquid recovery tank 410, the vacuum pump 406, and the vacuum pump 408 may be included in the exhaust section.
  • a heat insulating member 300 is provided on the outer periphery of the first heating unit 320 so as to cover the processing tube 360 and the first heating unit 320.
  • the heat insulating member 300 includes a side heat insulating member 300a provided so as to surround the side wall of the processing tube 360, and an upper heat insulating member 300b provided so as to cover the upper end of the processing tube 360.
  • the side heat insulating member 300a and the upper heat insulating member 300b are connected in an airtight manner.
  • the side heat insulating member 300a and the upper heat insulating member 300b may be integrally formed.
  • the heat insulating member 300 is made of a heat resistant material such as quartz or silicon carbide.
  • an air inlet 353 for supplying a cooling gas into a space 352 between the processing tube 360 and the heat insulating member 300 is formed.
  • the air inlet 353 is formed by the lower end portion of the side heat insulating member 300a and the heater base 321, but may be formed by providing an opening in the side heat insulating member 300a, for example. .
  • the downstream end of the cooling gas supply pipe 363 is connected to the intake port 353.
  • the cooling gas supply pipe 363 is provided with a cooling gas supply source 364, a mass flow controller (MFC) 365 as a flow rate controller (flow rate control unit), and a shutter 359 as a shut-off valve in order from the upstream direction. Cooling gas is supplied from the cooling gas supply pipe 363 into the space 352 via the mass flow controller 365 and the shutter 359.
  • the cooling gas for example, nitrogen (N 2 ) gas, air, or the like can be used.
  • a cooling gas supply unit is mainly configured by the cooling gas supply pipe 363 and the mass flow controller 365. Note that the cooling gas supply source 364 and the shutter 359 may be included in the cooling gas supply unit.
  • the upper heat insulating member 300b is formed with an exhaust passage 354 for exhausting the atmosphere in the space 352 between the processing tube 360 and the heat insulating member 300.
  • the upstream end of the cooling gas exhaust pipe 355 is connected to the downstream end of the exhaust path 354.
  • a shutter 361 as a cutoff valve
  • a radiator 357 for circulating cooling water or the like to cool the exhaust gas flowing in the cooling gas exhaust pipe 355, a shutter 362 as a cutoff valve
  • a cooling gas exhaust device 356 such as a blower for flowing the exhaust gas from the upstream side to the downstream side of the cooling gas exhaust pipe 355 and an exhaust port 358 for exhausting the exhaust gas to the outside of the processing chamber 30 are provided.
  • an inverter 384 is connected to the cooling gas exhaust device 356, and the inverter 384 operates the cooling gas exhaust device 356.
  • the inverter 384 is configured to control the rotational speed of a blower that is the cooling gas exhaust device 356.
  • a cooling gas exhaust unit that exhausts the atmosphere of the space 352 between the heat insulating member 300 and the processing tube 360 mainly by the exhaust path 354, the cooling gas exhaust pipe 355, the cooling gas exhaust device 356, the radiator 357, and the exhaust port 358. Composed. Note that the shutter 361 and the shutter 361 may be included in the cooling gas exhaust unit.
  • a processing tube cooling unit is mainly configured by the above-described cooling gas supply unit and cooling gas exhaust unit.
  • the controller 500 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 500a, a RAM (Random Access Memory) 500b, a storage device 500c, and an I / O port 500d.
  • the RAM 500b, the storage device 500c, and the I / O port 500d are configured to exchange data with the CPU 500a via the internal bus 500e.
  • an input / output device 501 configured as a touch panel or the like is connected to the controller 500.
  • the storage device 500c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program for controlling the operation of the substrate processing apparatus 10 a process recipe in which a procedure and conditions for substrate processing described later, and the like are stored are readable.
  • the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 500 to execute each procedure in a substrate processing step to be described later, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to as simply a program.
  • program When the term “program” is used in this specification, it may include only a process recipe alone, may include only a control program alone, or may include both.
  • the RAM 500b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 500a are temporarily stored.
  • the I / O port 500d includes the liquid mass flow controller 203, the mass flow controllers 212b, 212c, 212d, 212e, 365, valves 204, 208, 213b, 213c, 213d, 213e, 406, shutters 359, 361, 362, and vacuum.
  • the CPU 500a is configured to read and execute a control program from the storage device 500c, and to read a process recipe from the storage device 500c in response to an operation command input from the input / output device 501. Then, the CPU 500a adjusts the flow rate of the processing liquid by the mass flow controller 203 for liquid, adjusts the flow rate of various gases by the mass flow controllers 212b, 212c, 212d, 212e, and 365 according to the content of the read process recipe, and the valve 204.
  • the controller 500 is not limited to being configured as a dedicated computer, but may be configured as a general-purpose computer.
  • an external storage device for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or a DVD, a magneto-optical disk such as an MO, a USB memory (USB Flash Drive) or a memory card that stores the above-described program.
  • the controller 500 according to the present embodiment can be configured by preparing a semiconductor memory (e.g., semiconductor memory) 502 and installing a program in a general-purpose computer using the external storage device 502.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device 502.
  • the program may be supplied without using the external storage device 502 by using communication means such as the Internet or a dedicated line.
  • the storage device 500c and the external storage device 502 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. Note that when the term “recording medium” is used in this specification, it may include only the storage device 500c alone, may include only the external storage device 502 alone, or may include both.
  • FIG. 5 is a flowchart showing a substrate processing process according to the present embodiment. Such a process is performed by the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 500 shown in FIG.
  • a substrate having a concavo-convex structure which is a fine structure is used as the wafer 12 .
  • a substrate having a fine structure is a structure having a high aspect ratio, such as a deep groove (concave portion) in a direction perpendicular to a silicon substrate, or a laterally narrow groove (concave portion) having a width of about 10 nm to 50 nm, for example. It has a substrate.
  • the recess formed in the wafer 12 is also referred to as a gap.
  • polysilazane SiH 2 NH
  • SiH 2 NH polysilazane
  • Si silicon
  • a process liquid is used.
  • hydrogen oxide water is used to perform a second step of modifying (oxidizing) a silicon-containing film formed on the wafer 12 into a silicon oxide film.
  • the silicon oxide film formed on the wafer 12 is used as an insulating film between the electrodes.
  • the wafer 12 having a fine structure is carried into a spin coater, for example.
  • a solution (silicon-containing material) in which a silicon material such as polysilazane (SiH 2 NH) is dissolved in a solvent such as xylene (C 8 H 10 ) is supplied to the spin coater, and the silicon-containing material is applied to the wafer 12.
  • xylene (C 8 H 10 ), toluene (C 6 H 5 CH 3 ), dibutyl ether (C 8 H 18 O), etc. is used as the solvent.
  • the coating film pressure is, for example, 100 nm to 700 nm.
  • a forming gas (a gas obtained by diluting hydrogen with nitrogen) is supplied into the spin coater. Then, the wafer 12 is heated to a predetermined temperature (for example, 150 ° C.) in a forming gas atmosphere to perform a heat treatment (pre-bake process). By performing the pre-bake treatment, the solvent in the silicon-containing material is evaporated. In this manner, a polysilazane film, which is a silicon-containing film, is formed (deposited) in the voids of the wafer 12. After the silicon-containing film is formed on the wafer 12, the wafer 12 is unloaded from the spin coater.
  • the silicon-containing film formed on the wafer 12 is mainly formed of a silicon material (polysilazane).
  • the solvent component contained in the silicon-containing material may remain in the silicon-containing film.
  • the silicon-containing film contains impurities such as nitrogen (N) and hydrogen (H) derived from a silicon material. That is, the silicon-containing film has at least a silazane bond (Si—N bond).
  • carbon (C) and other impurities may be mixed in the silicon-containing film. That is, in the spin coating method, a liquid obtained by adding an organic solvent as a solvent to a silicon material such as polysilazane is often used as the silicon-containing material.
  • carbon (C) derived from the organic solvent and other impurities that is, elements other than Si and O) are mixed in the silicon-containing film.
  • ⁇ Board carrying-in process (S20)> First, a plurality of wafers 12 on which a silicon-containing film is formed are loaded into the boat 14 (wafer charge). The boat 14 holding a plurality of wafers 12 is lifted by a boat elevator and loaded into the processing tube 360 (processing chamber 30) (boat loading). In this state, the furnace port that is the opening of the processing tube 360 is sealed by the seal cap 344.
  • Vacuum evacuation is performed by at least one of the vacuum pump 405 and the vacuum pump 408 so that the inside of the processing chamber 30 (processing pipe 360) has a predetermined pressure.
  • the pressure in the processing chamber 30 is measured by the pressure sensor 404, and the opening degree of the APC valve 403 is feedback controlled based on the measured pressure information (pressure adjustment).
  • the wafer 12 accommodated in the processing chamber 30 is heated by the first heating unit 320 such that the wafer 12 reaches a predetermined temperature (for example, about 40 ° C. to 300 ° C., preferably about 50 ° C. to 150 ° C.).
  • the first heating unit 320 includes the first heating unit 320 based on temperature information detected by the first to fourth internal temperature sensors 324a to 324d so that the wafer 12 in the processing chamber 30 has a predetermined temperature distribution.
  • ⁇ Feedback control of power supplied to the fourth heater units 320a to 320d (temperature adjustment).
  • the set temperatures of the first to fourth heater units 320a to 320d are all controlled to be the same temperature.
  • the boat rotation mechanism 349 is operated to start the rotation of the boat 14. At this time, the rotation speed of the boat 14 is controlled by the controller 500. The boat 14 is always rotated until at least the reforming process step (S40) described later is completed.
  • the second heating unit 345 power is supplied to the second heating unit 345 so that the vaporization unit 342 has a temperature (for example, 150 ° C. to 170 ° C.) at which the hydrogen peroxide solution as the treatment liquid can be vaporized. Heating of 342 is started. Note that the second heating unit 345 is controlled so that the temperature of the vaporizing unit 342 is maintained at, for example, about 150 ° C. until the later-described reforming process (S40) described below is completed.
  • S40 later-described reforming process
  • the sub heaters 210a, 210d, 210e, the liquefaction prevention heater 280, and the exhaust tube heater 411 have predetermined temperatures (for example, the sub heater is 50 ° C. to 100 ° C., the liquefaction prevention heater 280 and the exhaust tube heater are respectively 100 ° C. to 300 ° C., preferably The electric power supplied to the sub-heaters 210a, 210d, 210e, the liquefaction prevention heater 280, and the exhaust tube heater 411 is controlled so as to be about 200 ° C.).
  • the sub-heaters 210a, 210d, 210e, the liquefaction prevention heater 280, and the exhaust tube heater 411 may all be controlled to have the same temperature, or may be controlled to have different temperatures.
  • valve 204 and the valve 208 are opened, and the hydrogen peroxide solution, which is the processing liquid stored in the storage tank 201, is controlled by the liquid mass flow controller 203, while the separator 205 and the processing liquid are supplied from the processing liquid supply pipe 340 a.
  • the gas is supplied into the processing tube 360 (processing chamber 30) through the supply nozzle 339 and the supply hole 341.
  • an inert gas such as nitrogen (N 2 ) gas or a rare gas such as He gas, Ne gas, or Ar gas can be used.
  • the valve 213c may be opened and an inert gas as a carrier gas may be supplied from the inert gas supply pipe 340c.
  • the hydrogen peroxide solution supplied into the processing tube 360 is brought into contact with the vaporizing unit 342 heated by the second heating unit 345 to be evaporated and vaporized, thereby generating a vaporized gas of hydrogen peroxide water as a processing gas.
  • the vaporized hydrogen peroxide gas as the processing gas is generated in the processing tube 360.
  • the hydrogen peroxide solution in a liquid state is preferably passed through the processing liquid supply nozzle 339.
  • a vaporized gas of hydrogen peroxide solution is supplied to the wafer 12, and the vaporized gas of hydrogen peroxide solution reacts with the surface of the wafer 12 to convert the silicon-containing film formed on the wafer 12 into a silicon oxide film (SiO film). ). That is, when the vaporized hydrogen peroxide solution supplied into the processing tube 360 and vaporized by the vaporization unit 342 is supplied to the wafer 12 and decomposed, hydroxy radicals (OH *) are generated. Due to the oxidizing power of the hydroxyl radical, the silazane bond (Si—N bond) and the Si—H bond of the silicon-containing film on the wafer 12 are broken.
  • the cut nitrogen (N) and hydrogen (H) are replaced with oxygen (O) contained in the hydroxy radical, and a Si—O bond is formed in the silicon-containing film.
  • the silicon-containing film is oxidized and modified into a silicon oxide film.
  • impurities such as nitrogen (N) and hydrogen (H) cleaved by hydroxy radicals are discharged out of the processing tube 360 from, for example, an exhaust section.
  • the vaporized gas of the hydrogen peroxide solution supplied onto the wafer 12 may include a single H 2 O 2 molecule state or a cluster state in which several molecules are bonded.
  • a cluster state in which several molecules are bonded.
  • it may be split into single molecules of H 2 O 2 , or several molecules are bonded. You may make it divide
  • the vacuum pump 408 and the liquid recovery tank 410 are exhausted. That is, the APC valve 403 is closed, the valve 406 is opened, and the exhaust gas exhausted from the processing tube 360 is allowed to pass through the separator 407 from the first exhaust tube 346 through the second exhaust tube 347. Then, after separating the exhaust gas into a liquid containing hydrogen peroxide and a gas not containing hydrogen peroxide by the separator 407, the gas is exhausted from the vacuum pump 408, and the liquid is recovered in the liquid recovery tank 410.
  • valve 406 and the APC valve 403 may be closed to pressurize the processing tube 360. Thereby, the hydrogen peroxide water atmosphere in the processing tube 360 can be made uniform.
  • valves 204a, 213b, and 208 are closed, and the supply of hydrogen peroxide water into the processing tube 360 is stopped.
  • the purge gas for example, nitrogen (N 2 ) gas, or an inert gas such as a rare gas such as He gas, Ne gas, or Ar gas can be used.
  • N 2 nitrogen
  • an inert gas such as a rare gas such as He gas, Ne gas, or Ar gas
  • the purge gas for example, nitrogen (N 2 ) gas, or an inert gas such as a rare gas such as He gas, Ne gas, or Ar gas
  • an inert gas such as N 2 gas
  • the hydrogen peroxide solution remaining in the treatment liquid supply nozzle 339 hydrogen peroxide in a liquid state
  • the opening degree of the APC valve 403 and the opening / closing of the valve 406 may be adjusted, and the vacuum pump 405 may be evacuated.
  • the valve 406 or the APC valve 403 is adjusted, and the temperature of the wafer 12 is lowered to a predetermined temperature (for example, about room temperature) while returning the pressure in the processing tube 360 to atmospheric pressure.
  • the valve 213c is kept open, and the pressure in the processing tube 360 is increased to atmospheric pressure while supplying the inert gas N 2 gas into the processing tube 360.
  • the power supplied to the first heating unit 320 and the second heating unit 345 is controlled to lower the temperature of the wafer 12.
  • the shutters 359, 361, and 362 are opened while the cooling gas exhaust device 356 is operated while the temperature of the wafer 12 is lowered, and the processing gas 360 is insulated from the cooling gas supply pipe 363 while the flow rate of the cooling gas is controlled by the mass flow controller 365.
  • the cooling gas in addition to N 2 gas, for example, rare gas such as He gas, Ne gas, Ar gas, air, or the like can be used alone or in combination.
  • the inside of the space 352 is rapidly cooled, and the processing tube 360 and the first heating unit 320 provided in the space 352 can be cooled in a short time.
  • the wafer 12 accommodated in the processing tube 360 can be cooled from the circumferential direction (outer peripheral side). That is, the temperature of the wafer 12 in the processing tube 360 can be lowered in a shorter time.
  • the N 2 gas is supplied into the space 352 from the cooling gas supply pipe 363, cooled by filling the space 352 with a cooling gas, the cooling gas exhaust device 356 operates In this state, the shutters 361 and 362 may be opened, and the cooling gas in the space 352 may be exhausted from the cooling gas exhaust pipe 355.
  • ⁇ Substrate unloading step (S70)> Thereafter, the seal cap 344 is lowered by the boat elevator to open the lower end of the processing tube 360, and the processing tube 360 (processing chamber 30) is opened from the lower end of the processing tube 360 while the processed wafer 12 is held by the boat 14. Carried out (boat unload). Thereafter, the processed wafer 12 is taken out from the boat 14 (wafer discharge), and the substrate processing step according to the present embodiment is completed.
  • the processing liquid supply unit that supplies the processing liquid into the processing chamber 30 (processing tube 360), and the heating unit that heats the processing liquid in the processing chamber 30 (second heating unit 345).
  • a processing liquid in a liquid state is supplied into the processing tube 360, and the processing liquid is heated and evaporated and vaporized in the processing tube 360 to generate a vaporized gas of the processing liquid. It is supplied to the wafer 12 in 30.
  • the concentration of the vaporized gas of the processing liquid supplied to the wafer 12 can be made uniform. Therefore, uniform processing can be performed on the wafer 12, and a high-quality and dense film can be formed.
  • the vaporized gas of the processing liquid can be supplied and permeated to the film formed on the bottom of the fine groove of the wafer 12 (a deep place in the groove).
  • uniform processing can be performed in the grooves of the wafer 12, and a high-quality and dense film can be formed.
  • even a wafer 12 having a minute concavo-convex structure with a processing dimension of 50 nm or less and an increased surface area can be uniformly processed in the groove.
  • the substrate processing can be performed with good reproducibility.
  • the processing liquid is evaporated and vaporized in the processing tube 360, it is possible to suppress the occurrence of dew condensation in the equipment of the supply section such as the processing liquid supply nozzle 339. Thereby, the foreign material generated on the wafer 12 can be reduced.
  • a treatment liquid in which substances having different boiling points are mixed for example, a treatment liquid in which hydrogen peroxide and water are mixed, is supplied by supplying the treatment liquid to the heating unit and vaporizing instantaneously. Variation in vaporized gas concentration can be suppressed.
  • the processing liquid is vaporized before being supplied into the processing tube 360 and the vaporized gas of the processing liquid is supplied into the processing chamber 30 via the processing liquid supply nozzle 339 or the like, the vaporized gas of the processing liquid is processed.
  • the concentration of the vaporized gas in the processing liquid may vary depending on the thermal conditions of the processing liquid supply nozzle 339 or the like.
  • the treatment liquid contains hydrogen peroxide. That is, a hydrogen peroxide solution in which hydrogen peroxide is dissolved in water as a solvent is used as the treatment liquid.
  • the silicon-containing film on the wafer 12 can be oxidized and modified into a silicon oxide film at a low temperature and in a short time.
  • the oxidation treatment at a low temperature, it can be suppressed that only the surface portion (the upper end of the groove) of the silicon-containing film is oxidized first. Therefore, a uniform oxidation process can be performed on the wafer 12, and the quality of the silicon oxide film can be further improved.
  • the treatment is performed at a high temperature, only the surface portion of the silicon-containing film may be oxidized first.
  • the thermal load on the silicon oxide film can be reduced by performing the treatment at a low temperature. That is, the silicon-containing film can be modified into a silicon oxide film without changing the characteristics of the semiconductor elements such as the gate oxide film and the gate electrode formed on the wafer 12. For example, deterioration of the performance of the circuit itself formed on the wafer 12 can be suppressed. Specifically, excessive diffusion of impurities such as boron, arsenic, and phosphorus implanted for transistor operation can be suppressed. Further, it is possible to suppress the condensation of the metal silicide for the electrode, the performance variation of the work function for the gate, the deterioration of the repeated life of reading or writing of the memory element, and the like.
  • the silicon-containing film contains polysilazane.
  • the silicon-containing film formed on the wafer 12 having a fine concavo-convex structure can be more easily oxidized and modified into a silicon oxide film. That is, silazane bonds (Si—N bonds) and Si—H bonds in polysilazane are cleaved by the oxidizing power of hydroxy radicals (OH *) generated by the decomposition of hydrogen peroxide. Then, the cleaved nitrogen (N) and hydrogen (H) can be replaced with oxygen (O) contained in the hydroxy radical, so that a Si—O bond can be formed in the silicon-containing film.
  • the silicon-containing film can be modified into a silicon oxide film having a Si—O bond not containing much NH— as a main skeleton.
  • This silicon oxide film has high heat resistance, unlike a silicon oxide film formed of conventional organic SOG.
  • the constituent members that come into contact with the processing liquid are made of a material that is less reactive with the processing liquid. That is, for example, the column 14a of the boat 14, the substrate mounting portion 14b, the bottom plate 14c, the processing liquid supply pipe 340a, the first exhaust pipe 346, the second exhaust pipe 347, the third exhaust pipe 409, etc. And a material containing at least one of ceramics such as quartz, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), and silicon carbide (SiC). Thereby, it can suppress that the structural member which contacts a process liquid corrodes by a process liquid.
  • a material that is less reactive with the processing liquid that is, for example, the column 14a of the boat 14, the substrate mounting portion 14b, the bottom plate 14c, the processing liquid supply pipe 340a, the first exhaust pipe 346, the second exhaust pipe 347, the third exhaust pipe 409, etc.
  • a material containing at least one of ceramics such as quartz, aluminum oxide (Al 2 O 3
  • the exhaust tube heater 411 that heats the first exhaust pipe 346 is provided at least upstream of the APC valve 403 in the first exhaust pipe 346. Therefore, it can suppress that a process liquid reliquefies within an exhaust part. Therefore, for example, after re-liquefied in the exhaust part, the vaporized gas of the re-vaporized processing liquid can be prevented from flowing back into the processing tube 360, and as a result, foreign matter generated on the wafer 12 can be reduced.
  • hydrogen peroxide water is used as the processing liquid, and after the hydrogen peroxide water is supplied into the processing tube 360, the hydrogen peroxide water is evaporated and vaporized in the processing tube 360 to generate hydrogen peroxide water.
  • vaporized gas was generated and the wafer 12 was oxidized
  • the present invention is not limited to this.
  • the wafer 12 may be oxidized using water (H 2 O) as a processing liquid.
  • the water vapor supplied onto the wafer 12 may include a state of a single H 2 O molecule or a cluster state in which several molecules are bonded.
  • the water vapor supplied onto the wafer 12 may include a state of a single H 2 O molecule or a cluster state in which several molecules are bonded.
  • it when changing water (H 2 O) from a liquid state to a gas state, it may be split into single H 2 O molecules, or may be split into a cluster state in which several molecules are bonded. good.
  • a fog (mist) state in which several of the above clusters are gathered may be used.
  • a gas containing hydrogen element (H) such as hydrogen (H 2 ) gas (hydrogen-containing gas) and a gas containing oxygen element (O) such as oxygen (O 2 ) gas (oxygen-containing gas) are used.
  • a gas heated to steam (H 2 O) may be used. That is, the valves 204, 213b, and 208 are closed, the valves 213d and 213e are opened, and H 2 gas and O 2 gas are respectively supplied from the first gas supply pipe 340d and the second gas supply pipe 340e into the processing pipe 360.
  • the mass flow controllers 212d and 212e may be supplied while controlling the flow rate.
  • a silicon-containing film formed on the wafer 12 may be modified into a silicon oxide film (SiO film).
  • oxygen-containing gas for example, ozone (O 3 ) gas, water vapor (H 2 O), or the like may be used in addition to O 2 gas. This is particularly effective when the wafer 12 to be processed can handle high temperatures.
  • the processing liquid supplied into the processing chamber 30 is evaporated and vaporized by bringing it into contact with the vaporization unit 342, and the vaporized gas of the processing liquid is generated in the processing chamber 30, but this is not limitative. Is not to be done. That is, it is only necessary that the processing liquid supplied into the processing chamber 30 is heated and evaporated and vaporized in the processing chamber 30.
  • the processing liquid may be heated and vaporized in the processing chamber 30 by heating the joint between the processing liquid supply nozzle 339 and the processing chamber 30 (processing tube 360).
  • the processing liquid supplied into the processing chamber 30 is evaporated and vaporized by bringing it into contact with the vaporization unit 342, and the vaporized gas of the processing liquid is generated in the processing chamber 30, but this is not limitative. Is not to be done. That is, it is only necessary that the processing liquid supplied into the processing chamber 30 is heated and evaporated and vaporized in the processing chamber 30.
  • the processing liquid may be heated and vaporized in the processing chamber 30 by heating the joint between the processing liquid supply nozzle 339 and the processing chamber 30 (processing tube 360).
  • a treatment gas such as hydrogen peroxide water or water is heated to evaporate and vaporize to generate a vaporized gas, or a reaction product of oxygen gas and hydrogen gas is heated to produce water vapor
  • a method of misting the processing liquid in the processing chamber 30 by applying ultrasonic waves to a processing liquid such as hydrogen peroxide or water, or a method of spraying mist using an atomizer may be used.
  • a method of directly irradiating the processing liquid with laser or microwave in the processing chamber 30 to evaporate and vaporize the processing liquid in the processing chamber 30 may be used.
  • a heat treatment step may be performed between the reforming step (S40) and the purge step (S50). That is, for example, the wafer 12 may be heated to a high temperature to perform annealing (heat treatment) or the like.
  • the first heating unit 320 is heated so that the temperature in the processing chamber 30 becomes a predetermined temperature (for example, 600 ° C. to 1100 ° C.), and the processing chamber 30 has a predetermined pressure (for example, the pressure is adjusted by operating at least one of the vacuum pump 405 and the vacuum pump 408 so that the pressure is 6000 Pa to 60000 Pa).
  • the valve 213c and the valve 208 are opened while exhausting from the exhaust section, and the inert gas is supplied into the processing chamber 30 from the inert gas supply pipe 340c.
  • heat treatment is performed for a predetermined time (for example, 5 minutes to 120 minutes) in a state where the inside of the processing tube 360 is maintained at a predetermined temperature and a predetermined pressure.
  • a predetermined time for example, 5 minutes to 120 minutes
  • the predetermined time has elapsed, at least the power supply to the first heating unit 320 is stopped.
  • the heat treatment step may be performed for 30 minutes at a temperature of about 800 ° C. and a pressure atmosphere of 53200 Pa.
  • the power supply to the sub-heaters 210a, 210d, 210e, the liquefaction prevention heater 280, and the exhaust tube heater 411 may be stopped. At this time, the power supply to each heater may be stopped simultaneously, or may be stopped at different timings. Further, for example, in the heat treatment process, since gas flows in the first exhaust pipe 346, power is supplied to the exhaust tube heater 411, and power supply to the sub heaters 210a, 210d, 210e and the liquefaction prevention heater 280 is stopped. You may do it.
  • the shutter 359 is opened while the temperature of the wafer 12 is lowered, and N 2 gas as a cooling gas is supplied from the cooling gas supply pipe 363 to the processing pipe. It is good to supply in the space 352 between 360 and the heat insulation member 300. Thereby, the process tube 360 and the first heating unit 320 provided in the space 352 can be cooled in a shorter time. As a result, the start time of the next modification process step (S40) can be advanced, and the throughput can be improved.
  • the heat treatment step By performing the heat treatment step in this way, components in the silicon-containing film that could not be oxidized in the modification treatment step (S40) can be oxidized. That is, by performing the heat treatment step, for example, nitrogen, hydrogen, and other impurities, which are impurities in the silicon-containing film existing at the deepest portion in the groove of the wafer 12, can be removed. Therefore, the film quality of the silicon oxide film can be further improved. That is, the silicon-containing film can be sufficiently oxidized, densified, and cured. As a result, the silicon oxide film can obtain good WER (wafer etching rate) characteristics as an insulating film. Note that WER has a large dependence on the final annealing temperature, and the WER characteristic improves as the temperature increases.
  • WER wafer etching rate
  • a cleaning step of cleaning the inside of the processing tube 360 may be performed.
  • impurities accumulated in the processing pipe 360, the boat 14, the first exhaust pipe 346, and the like can be removed, and corrosion of members provided in the processing pipe 360 can be prevented.
  • the constituent members that come into contact with the processing liquid are made of a material that is less reactive with the processing liquid. is not.
  • the constituent member that comes into contact with the treatment liquid may be made of a metal material, and a film made of a material that is less reactive with the treatment liquid may be formed on the metal material.
  • the constituent member that contacts the treatment liquid is formed of aluminum, which is a metal material, alumite (Al 2 O 3 ), or stainless steel, a chromium oxide film may be formed on the metal material.
  • the constituent members that are not heated may be configured using plastic or the like as a material that is low in reactivity with the processing liquid.
  • the vaporizing unit 342 is provided so as to be supported by the column 14a of the boat 14 as an example, but the present invention is not limited to this. That is, for example, the vaporization unit 342 may be provided inside the processing tube 360 and on the processing tube 360.
  • the support column 14a and the substrate mounting portion 14b are independent from each other.
  • the present invention is not limited to this. That is, the support column 14a and the substrate platform 14b may be integrally formed.
  • a groove as the substrate mounting portion 14b may be provided in the support column 14a, and the wafer 12 may be supported by the groove.
  • the present invention is not limited to this. That is, it is only necessary that a film that can be oxidized is formed on the wafer 12 using an oxidant solution such as hydrogen peroxide.
  • a plasma polymerized film of trisilylamine (TSA) or ammonia may be used.
  • a silicon-containing film is formed on the wafer 12 using a solution (silicon-containing material) in which a silicon material such as polysilazane (SiH 2 NH) is dissolved in a solvent such as xylene (C 8 H 10 ).
  • a silicon material such as polysilazane (SiH 2 NH) is dissolved in a solvent such as xylene (C 8 H 10 ).
  • a polysilazane film is formed, the present invention is not limited to this.
  • HMDS hexamethyldisilazane
  • HMCTS hexamethylcyclotrisilazane
  • TSA trisilylamine
  • the solvent toluene (C 6 H 5 CH 3) , may be used organic solvents such as dibutyl ether (C 8 H 18 O).
  • a polysilazane film as a silicon-containing film is formed on the wafer 12 by applying a solution containing polysilazane onto the wafer 12 using a spin coater.
  • a silicon-containing film is formed on the wafer 12 by a CVD (Chemical Vapor Deposition) method using a silicon (Si) material such as monosilane (SiH 4 ) gas or trisilylamine (TSA) gas.
  • a wafer 12 on which a silicon-containing film such as a polysilicon film is formed in advance may be used.
  • the processing liquid supply nozzle 339, the processing liquid supply pipe 340a, and the first exhaust pipe 346 are provided to face each other, but the present invention is not limited to this.
  • the processing liquid supply nozzle 339, the processing liquid supply pipe 340a, and the first exhaust pipe 346 may be provided on the same side. Thereby, space saving of the substrate processing apparatus 10 can be achieved. Further, since the processing liquid supply nozzle 339, the processing liquid supply pipe 340a, and the first exhaust pipe 346 are arranged close to each other, the time required for maintenance can be shortened and the throughput can be improved.
  • the sub heaters 210a, 210d, and 210e, the liquefaction prevention heater 280, and the exhaust tube heater 411 are each electrically connected to the controller 500.
  • the controller 500 includes the sub heaters 210a, 210d, and 210e, and liquefaction prevention. Based on temperature information detected by temperature sensors connected to the heater 280 and the exhaust tube heater 411, the power supplied to the sub-heaters 210a, 210d, 210e, the liquefaction prevention heater 280, and the exhaust tube heater 411 is controlled. Although configured, the present invention is not limited to this.
  • a liquefaction prevention control device is provided as a liquefaction prevention control unit that controls the sub heaters 210a, 210d, 210e, the liquefaction prevention heater 280, and the exhaust tube heater 411 to have predetermined temperatures. Good.
  • the liquefaction prevention control device is provided with a liquefaction prevention heater 280, an exhaust tube heater 411, and a temperature detector that detects the temperatures of the sub-heaters 210a, 210d, and 210e.
  • the temperature detector is composed of, for example, a sheath type thermocouple. Based on the temperature detected by the temperature detector, the amount of power supplied to the liquefaction prevention heater 280, the exhaust tube heater 411, and the sub-heaters 210a, 210d, and 210e is controlled. For example, when the temperature of each of the sub heaters 210a, 210d, 210e, the liquefaction prevention heater 280, and the exhaust tube heater 411 is 100 ° C.
  • control ON / OFF control
  • feedback control such as PID (Proportional Integral Differential) control is performed so that the sub-heaters 210a, 210d, 210e, the liquefaction prevention heater 280, and the exhaust tube heater 411 each maintain a predetermined temperature (for example, 200 ° C.).
  • the power supply to each heater may be controlled.
  • the liquefaction prevention heater 280 performs the above-described ON / OFF control at least during the reforming process (S30), and when the wafer 12 is not accommodated in the processing chamber 30, or on the wafer 12 When processing at 400 ° C. or higher is being performed, control may be performed so that the supply of power to the liquefaction prevention heater 280 is stopped.
  • the seal cap 344 is protected from a treatment liquid, a vapor of the treatment liquid, a liquid obtained by re-liquefying the vaporization gas of the treatment liquid (hereinafter also referred to as a treatment liquid or the like).
  • a seal cap protection part may be provided.
  • the seal cap protection part is made of a non-metallic material such as quartz (SiO 2 ) that hardly reacts with the processing liquid or the like.
  • An O-ring for keeping the inside of the processing chamber 30 airtight may be provided between the lower end of the processing tube 360, the seal cap protection unit, and the seal cap 344.
  • the seal cap 344 and the seal cap protection part may be provided with a cooling channel through which cooling water for cooling the seal cap 344 and the seal cap protection part flows. Thereby, it is possible to prevent the seal cap 344 from being deformed or the O-ring from being deteriorated by heat released from the first to fourth heater units 320a to 320d or the liquefaction prevention heater 280.
  • a heat conduction part is provided on the seal cap protection part, The surface of the cap protection part may be easily heated.
  • the heat conduction part examples include silicon carbide (SiC), aluminum oxide (AlO), aluminum nitride (AlN), boron nitride (BN), silicon nitride (SiN), zirconium oxide (ZrO), graphite, and glassy carbon. It may be formed using a constituent material similar to that of the boat 14 such as a non-metallic material having good thermal conductivity such as a carbon material. In particular, a constituent material having a thermal conductivity of 5 W / mK or more is preferably used for the heat conducting portion. Further, the heat conducting unit may come into contact with the vaporized gas of the processing liquid.
  • the heat conducting unit is made of a material that does not react with the processing liquid (the vaporized gas of the processing liquid). Moreover, you may comprise so that a heat conductive part may be comprised with the member which has electroconductivity, and a heat conductive part self-heats by supplying with electricity to a heat conductive part. Further, the evaporation area may be increased by providing a porous (porous) structure in the heat conducting portion.
  • FIG. 6 is a schematic configuration diagram of a substrate processing apparatus 10A according to another embodiment of the present invention.
  • FIG. 7 is a schematic vertical cross-sectional view of a pervaporation generator included in the substrate processing apparatus 10A according to the present embodiment.
  • the configuration other than the configuration of the supply unit is the same as that of the above-described embodiment. Therefore, description of the same configuration as that of the above-described embodiment is omitted.
  • a gas supply nozzle 339 ⁇ / b> A is provided in the processing tube 360 so as to penetrate the lower portion of the processing tube 360.
  • the gas supply nozzle 339A is provided in the space between the processing tube 360 and the boat 14 so as to rise upward in the stacking direction of the wafers 12 along the upper portion from the lower portion of the inner wall of the processing tube 360.
  • a supply hole 341A for supplying gas into the processing tube 360 is provided on the side surface of the vertical portion of the gas supply nozzle 339A.
  • a plurality of supply holes 341 ⁇ / b> A are opened toward the center of the wafer 12, respectively, along the direction (vertical direction) in which the wafers 12 are stacked.
  • the gas supply holes 341A have the same opening area and are provided at the same opening pitch.
  • the opening diameter of the gas supply hole 341A may be gradually increased from the lower part to the upper part so as to optimize the gas flow rate distribution and velocity distribution in the processing tube 360.
  • the downstream end of the super-steam supply pipe 340f is connected to the upstream end of the gas supply nozzle 339A.
  • the super-steam supply pipe 340f is provided with a super-steam generator 220 and a valve 221 that is an on-off valve.
  • a sub-heater 210f such as an inlet tube heater is provided at least downstream of the super-steam supply pipe 340f at least downstream from the super-steam generator 220.
  • the sub-heater 210f keeps the supersteam supply pipe 340f at a predetermined temperature so that the vaporized hydrogen peroxide water generated by the supersteam generator 220 does not reliquefy (condensation) inside the supersteam supply pipe 340f. It is configured to heat to (for example, 50 ° C. to 300 ° C.).
  • the portion of the pervaporation supply pipe 340f that is in contact with the hydrogen peroxide solution or the vaporized gas of hydrogen peroxide water, that is, the inner surface of the pervaporation supply tube 340f is less reactive with the hydrogen peroxide solution or the vaporized gas of hydrogen peroxide solution. It may be composed of materials.
  • the inner surface of the supersteam supply pipe 340f contains at least one of ceramics such as Teflon (registered trademark), quartz, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon carbide (SiC), and the like. It may be composed of materials. Thereby, corrosion of the super-steam supply pipe 340f can be suppressed.
  • a protective film may be provided.
  • the reaction preventing film may be made of a material having low reactivity with the vaporized gas of the treatment liquid such as Teflon (registered trademark).
  • a vaporized gas of hydrogen peroxide generated by the pervaporation generator 220 is supplied from the pervaporation supply pipe 340f into the processing pipe 360 via the valve 222, the gas supply nozzle 339A, and the supply hole 341A.
  • a hydrogen peroxide solution supply pipe 340 g for supplying hydrogen peroxide solution is connected to the over-steam generator 220.
  • the hydrogen peroxide solution supply pipe 340g is provided with a hydrogen peroxide solution supply source 211g, a liquid mass flow controller 221 and a valve 213g as an on-off valve in this order from the upstream side. From the hydrogen peroxide solution supply pipe 340g, the hydrogen peroxide solution is supplied into the pervaporation generator 220 via the liquid mass flow controller 221 and the valve 213g.
  • a supersteam supply unit is configured by the supersteam supply pipe 340f, the valve 221, and the gas supply nozzle 339A.
  • a hydrogen peroxide solution supply unit is mainly configured by the liquid mass flow controller 221 and the valve 213g.
  • the hydrogen peroxide solution supply source 211g may be included in the hydrogen peroxide solution supply unit. Further, the hydrogen peroxide solution supply unit may be included in the pervaporation supply unit.
  • the downstream end of the inert gas supply pipe 340h is connected between the super-steam generator 220 of the super-steam supply pipe 340f and the valve 209.
  • the inert gas supply pipe 340h is provided with an inert gas supply source 211h, a mass flow controller (MFC) 212h, which is a flow rate controller (flow rate control unit), and a valve 213h, which is an on-off valve, in order from the upstream direction.
  • MFC mass flow controller
  • the inert gas is supplied into the processing pipe 360 via the mass flow controller 212h, the valve 213h, the super-steam supply pipe 340f, and the gas supply nozzle 339A.
  • the inert gas for example, nitrogen (N 2 ) gas, or a rare gas such as He gas, Ne gas, or Ar gas can be used.
  • an inert gas supply unit is configured by the inert gas supply pipe 340h, the mass flow controller 212h, and the valve 213h.
  • the inert gas supply source 211h, the super-steam supply pipe 340f, and the gas supply nozzle 339A may be included in the inert gas supply unit.
  • the supply unit according to the present embodiment is mainly configured by the pervaporation supply unit and the inert gas supply unit.
  • the pervaporation generator 220 uses a dropping method in which the hydrogen peroxide solution that is the treatment liquid is vaporized by dropping the hydrogen peroxide solution that is the treatment solution onto the member heated by the heating mechanism. ing.
  • the over-steam generator 220 includes a vaporization vessel 224 that constitutes a processing space (vaporization space) 223.
  • a constituent material of the vaporization vessel 224 for example, quartz, silicon carbide, or the like that has low reactivity with the hydrogen peroxide solution that is the treatment liquid may be used.
  • the temperature in the vaporization vessel 224 may decrease due to the temperature of the hydrogen peroxide solution supplied into the vaporization vessel 224 or the heat of vaporization of the hydrogen peroxide solution. Therefore, in order to prevent the temperature in the vaporization vessel 224 from decreasing, it is more preferable that silicon carbide having a high thermal conductivity is used as the constituent material of the vaporization vessel 224.
  • a vaporizer heater 225 as a heating unit for heating the vaporization container 224 is provided outside the vaporization container 224 so as to surround the side wall surface and the bottom surface of the vaporization container 223. That is, the vaporization vessel 224 is heated by the vaporizer heater 225 to such a temperature that the hydrogen peroxide solution supplied into the vaporization vessel 224 reaches the inner wall of the vaporization vessel 224 and vaporizes instantaneously. It is configured.
  • a temperature sensor 226 such as a thermocouple for measuring the temperature in the vaporization container 224 is provided at the bottom center of the vaporization container 224.
  • a controller 500 is electrically connected to the temperature sensor 226. The controller 500 is configured to control the power supplied to the vaporizer heater 225 based on the temperature information detected by the temperature sensor 226 so that the inside of the vaporization vessel 224 has a predetermined temperature.
  • a dripping nozzle 229 for supplying hydrogen peroxide solution into the vaporization space 223 is provided on the vaporization vessel 224.
  • the upstream end of the dropping nozzle 229 is connected to the downstream end of the hydrogen peroxide solution supply pipe 340g.
  • an exhaust port 227 is provided in the upper part of the vaporization vessel 224.
  • the upstream end of the super-steam supply pipe 340f is connected to the exhaust port 227. That is, the vaporized hydrogen peroxide water vapor (hydrogen peroxide water vapor) generated in the vaporization vessel 224 is supplied into the processing tube 360 via the exhaust port 227, the super-water vapor supply tube 340f, and the gas supply nozzle 341A. It is configured to be.
  • a heat insulating material 228 is provided around the vaporization container 224 so that the heat from the vaporizer heater 225 is not easily transmitted to, for example, other components of the substrate processing apparatus 10A. Further, by providing the heat insulating material 228, the heating efficiency in the vaporization vessel 224 by the vaporizer heater 225 can be improved.
  • the substrate processing process according to this embodiment is the same as the above-described substrate processing process except for the modifying process (S40). Therefore, description of the same configuration as that of the above-described embodiment is omitted.
  • the hydrogen peroxide solution supplied into the vaporization vessel 224 comes into contact with the inner wall such as the bottom wall of the vaporization vessel 224, the hydrogen peroxide solution is instantaneously heated to evaporate and vaporize. Vaporized gas can be generated.
  • the valve 222 is opened, and the vaporized hydrogen peroxide solution generated in the vaporization vessel 224 is supplied from the super-steam supply pipe 340f through the gas supply nozzle 339A and the supply hole 341A to the process pipe 360 (process It supplies in the chamber 30). Then, a vaporized gas of hydrogen peroxide water is supplied to the wafer 12 accommodated in the processing tube 360. The vaporized hydrogen peroxide gas supplied to the wafer 12 undergoes an oxidation reaction with the surface of the wafer 200 to modify the silicon-containing film formed on the wafer 12 into a silicon oxide film (SiO film).
  • SiO film silicon oxide film
  • valve 213g is closed, and the supply of hydrogen peroxide water into the supersteam generator 220 is stopped.
  • the valve 222 is closed and the supply of the vaporized hydrogen peroxide solution into the processing tube 360 is stopped.
  • the hydrogen peroxide solution is supplied to the persteam generator 220 and the vaporized gas of the hydrogen peroxide solution is generated by the persteam generator 220 has been described.
  • the present invention is not limited to this. is not.
  • a liquid containing ozone (O 3 ), water (H 2 O), or the like is supplied to the pervaporation generator 220, and a vaporized gas containing ozone, water vapor, or the like is generated by the pervaporation generator 220, and processed. You may make it supply in the pipe
  • FIG. 8 is a schematic longitudinal sectional view of a processing chamber 600 provided in the substrate processing apparatus 10B according to the present embodiment.
  • the processing container 612 constituting the processing chamber 600 includes a dome-side upper container 613 and a bowl-shaped lower container 614. Then, the processing chamber 600 is formed by covering the upper container 613 on the lower container 614.
  • the processing container 612 includes a heating mechanism that heats the inside of the processing container 612 to an appropriate temperature so that the vaporized gas of the processing liquid such as a hydrogen peroxide water vaporization gas does not reliquefy (condensate) in the processing container 612. May be provided.
  • a resistance heating type heater is brought into close contact with the outside of the processing container 612 to heat the inside of the processing container 612 or to flow a temperature-controlled liquid or gas through a flow path provided in the processing container 612. The inside of 612 may be heated.
  • a gate valve 606 as a gate valve is provided on the side wall of the lower container 614.
  • the processing chamber 600 is provided through a gate valve 606 so as to communicate with a transfer chamber provided in the substrate processing apparatus 10B.
  • the gate valve 606 is opened, the wafer 12 can be carried into or out of the processing chamber 600 by a transfer arm as a transfer robot. Then, by closing the gate valve 606, the inside of the processing chamber 600 can be made airtight.
  • a susceptor 608 that supports the wafer 12 is disposed at the bottom center in the processing chamber 600.
  • a plurality of slight protrusions 608 a are provided on the support surface of the wafer 12 of the susceptor 608. Thereby, the area of the wafer 12 in contact with the susceptor 608 can be reduced.
  • the susceptor 608 is made of a non-metallic material so that metal contamination of the wafer 12 can be reduced.
  • At least the surface of the susceptor 608 may be covered with a film made of silicon carbide. Thereby, for example, when the vaporized gas of the treatment liquid such as hydrogen peroxide solution contacts the susceptor 608, the susceptor 608 can be prevented from deteriorating.
  • the susceptor 608 is provided with a plurality of through holes.
  • a plurality of support pins 607 that push up the wafer 12 and support the back surface of the wafer 12 are provided at positions corresponding to the through holes on the bottom surface of the lower container 613.
  • the wafer 12 carried into the processing chamber 600 by the transfer arm is placed on the support pins 607.
  • the susceptor 608 is raised, the wafer 12 can be disposed on the upper surface of the susceptor 608.
  • a heater as a heating mechanism is integrally embedded in the susceptor 608 so that the wafer 12 can be heated.
  • the surface of the wafer 12 is heated to a predetermined temperature.
  • a vaporized gas supply part and an inert gas supply part for the processing liquid are provided in an airtight manner on the upper part of the upper container 613 through openings 615 and 616 provided on the upper surface of the upper container 613.
  • the downstream end of the vaporized gas supply pipe 617 is provided in the opening 615 in an airtight manner.
  • the downstream end of the inert gas supply pipe 618 is airtightly provided in the opening 616.
  • the processing gas supply pipe 616 is provided with a gas generator 603 that generates a vaporized gas of the processing liquid, a mass flow controller 619 as a flow rate control device, and a valve 604 that is an on-off valve in order from the upstream side.
  • a vaporized gas vaporized gas of the processing liquid
  • vaporized for example, hydrogen peroxide water or water vapor, which is a processing liquid
  • the mass flow controller 619 and the valve 604. And supplied into the processing chamber 600 through the opening 615.
  • the vaporized gas supply pipe 617, the mass flow controller 619, and the valve 604 constitute a vaporized gas supply unit for the processing liquid.
  • the gas generator 603 and the opening 615 may be included in the vaporized gas supply unit.
  • the inert gas supply pipe 618 is provided with an inert gas supply source 620, a mass flow controller 601 as a flow rate control device, and a valve 602 that is an on-off valve in order from the upstream side.
  • An inert gas such as nitrogen (N 2 ) gas is supplied from the inert gas supply pipe 618 into the processing chamber 600 through the mass flow controller 601, the valve 602, and the opening 616.
  • N 2 nitrogen
  • the inert gas for example, a rare gas such as He gas, Ne gas, or Ar gas can be used in addition to nitrogen gas.
  • the vaporized gas of the processing liquid when supplied into the processing chamber 600 from the processing gas supply pipe 616, in parallel with this, nitrogen (N 2 ) gas, Ar gas, or the like as a forming gas is processed. It can be supplied into the chamber 600.
  • an inert gas supply unit is configured by the inert gas supply pipe 618, the mass flow controller 601 and the valve 602. Note that the inert gas supply source 620 and the opening 616 may be included in the inert gas supply unit.
  • a gas dispersion plate 605 that disperses the vaporized gas or inert gas of the processing liquid supplied in the processing chamber 600 in the processing chamber 600 is provided in the upper portion of the processing chamber 600. Thereby, the vaporized gas of the processing liquid can be supplied to the wafer 12 uniformly in the surface.
  • the gas dispersion plate 605 may not be provided depending on the processing conditions.
  • the upstream end of an exhaust pipe 621 that exhausts the atmosphere in the processing chamber 600 is connected to the processing container 612.
  • the exhaust pipe 621 is provided with a valve 622 as an on-off valve, an APC valve 611 as a pressure regulator, and a vacuum pump 609 as a vacuum exhaust device in order from the upstream direction.
  • the exhaust pipe 621 is configured to be evacuated by a vacuum pump 609 so that the pressure in the processing chamber 600 becomes a predetermined pressure.
  • a pressure gauge (pressure sensor) 610 as a pressure detection unit that detects the pressure in the processing chamber 600 is connected to the processing container 612 via a valve 623.
  • a controller 500 is electrically connected to the pressure gauge 610 and the APC valve 611. The controller is configured to control the opening degree of the APC valve 611 based on the pressure information detected by the pressure gauge 610 so that the pressure in the processing chamber 600 becomes a predetermined pressure at a predetermined timing. Yes.
  • the manufacturing process of the semiconductor device has been described.
  • the present invention is not limited to this.
  • the present invention can be applied to a sealing process of a substrate having liquid crystal in a manufacturing process of a liquid crystal device and a water-repellent coating process to a glass substrate or a ceramic substrate used in various devices.
  • it can be applied to a water-repellent coating treatment on a mirror.
  • FIG. 9 shows physical property values of quartz (SiO), silicon carbide (SiC), and aluminum oxide (AlO).
  • a quartz plate was placed on a heater set at a temperature equal to or higher than the boiling point of water, which is the treatment liquid, in an atmospheric pressure environment. Then, a thermocouple was brought into contact with the surface of the quartz plate, and it was confirmed that the temperature of the quartz was heated above the boiling point of water. Subsequently, a drop of water was appropriately applied to the quartz plate. At this time, the water droplet was appropriately touched so as to touch the tip of the thermocouple. And the time change of the temperature (temperature which a thermocouple shows) of the surface of a quartz board was measured. At the beginning of dripping water droplets, the water droplets boiled in a very short time.
  • a silicon carbide plate was placed on the heater and the same experiment was performed. Similar to the quartz plate, the silicon carbide plate also has a suitable drop of water droplets and a temperature drop due to latent heat of vaporization, but the water droplets can be evaporated more quickly than the quartz plate. confirmed. As a result, it was confirmed that the temperature recovery of the silicon carbide plate was faster than that of the quartz plate even when the temperature dropped. This is because, as shown in FIG. 9, silicon carbide has a thermal conductivity two orders of magnitude higher than that of quartz.
  • quartz and aluminum oxide have a lower thermal conductivity than silicon carbide. For this reason, the structural member disposed in the processing tube 360 formed using quartz or aluminum oxide may be cooled below the boiling point of the processing liquid by the latent heat of vaporization of the processing liquid. As a result, it is considered that the vaporization rate of the treatment liquid may decrease. Further, it is considered that the vaporized gas of the processing liquid may be re-liquefied when the vaporized gas of the processing liquid comes into contact with a constituent member disposed in the cooled processing tube 360.
  • the constituent member disposed in the processing tube 360 is made of, for example, quartz
  • such a constituent member is cooled by the latent heat of vaporization of the vaporized gas of the processing liquid, and then the temperature recovery takes time. Take it. Therefore, it is considered that the temperature of such a constituent member may be cooled to a boiling point or lower of the processing liquid.
  • re-liquefaction of the vaporized gas of the processing liquid is likely to occur at and around the portion cooled to the boiling point of the processing liquid of the constituent member.
  • hydrogen peroxide water is used as the treatment liquid
  • the re-liquefied hydrogen peroxide solution may have a higher concentration of hydrogen peroxide and a strong oxidizing property as compared with the hydrogen peroxide solution supplied into the processing tube 360.
  • a processing chamber for accommodating the substrate;
  • a processing liquid supply unit for supplying a processing liquid into the processing chamber;
  • a heating unit for heating the treatment liquid in the treatment chamber;
  • a semiconductor device manufacturing apparatus including a substrate support portion provided in the processing chamber and supporting the substrate.
  • Appendix 2 An apparatus for manufacturing a semiconductor device according to appendix 1, preferably, A control unit is provided for controlling the processing liquid supply unit and the heating unit so that the processing liquid is heated by the heating unit and the processing liquid is evaporated in the processing chamber.
  • the treatment liquid contains hydrogen peroxide.
  • Appendix 4 An apparatus for manufacturing a semiconductor device according to appendix 3, preferably, The treatment liquid contains water.
  • Appendix 5 An apparatus for manufacturing a semiconductor device according to appendix 1 or appendix 2, preferably, The treatment liquid contains water.
  • Appendix 6 An apparatus for manufacturing a semiconductor device according to any one of appendices 1 to 5, preferably, A silicon-containing film is formed on the substrate.
  • Appendix 7 An apparatus for manufacturing a semiconductor device according to appendix 6, preferably, The silicon-containing film has a silazane bond.
  • Appendix 8 An apparatus for manufacturing a semiconductor device according to appendix 7, preferably, The film having a silazane bond has polysilazane.
  • Appendix 9 An apparatus for manufacturing a semiconductor device according to appendix 8, preferably, The film having polysilazane is formed by applying a solution containing polysilazane to the substrate or by a CVD method using a silicon material.
  • Appendix 10 An apparatus for manufacturing a semiconductor device according to any one of appendices 1 to 9, preferably, A vaporization unit to which the processing liquid is supplied from the processing liquid supply unit is provided in the processing chamber.
  • Appendix 11 An apparatus for manufacturing a semiconductor device according to appendix 10, preferably, The vaporization part contains silicon carbide.
  • Appendix 12 An apparatus for manufacturing a semiconductor device according to appendix 10 or appendix 11, preferably, The vaporization unit is provided on the substrate support unit.
  • Appendix 13 An apparatus for manufacturing a semiconductor device according to appendix 12, preferably, The vaporization unit is provided to be supported by the substrate support unit.
  • Appendix 14 An apparatus for manufacturing a semiconductor device according to any one of appendix 1 to appendix 13, wherein: The substrate support portion is provided with a substrate placement portion that supports a plurality of the substrates.
  • the treatment liquid includes two or more substances having different boiling points
  • the control unit controls the heating unit such that the treatment liquid concentration before supplying the treatment liquid to the heating unit and the treatment liquid concentration after the treatment liquid evaporates are the same.
  • a method for manufacturing a semiconductor device comprising: a treatment liquid heating step of heating the treatment liquid in the treatment chamber by a heating unit.
  • Appendix 17 The method for manufacturing a semiconductor device according to appendix 16, preferably, In the process liquid heating step, the process liquid is evaporated in the process chamber to generate a vaporized gas of the process liquid.
  • Appendix 18 A method for manufacturing a semiconductor device according to appendix 16 or appendix 17, preferably, In the process liquid heating step, the process liquid is supplied to a vaporization section provided in the process chamber and heated by the heating section.
  • Appendix 20 An apparatus for manufacturing a semiconductor device according to appendix 16 to appendix 19, preferably, The treatment liquid contains hydrogen peroxide.
  • Appendix 21 A method of manufacturing a semiconductor device according to appendix 16 to appendix 20, preferably, A silicon-containing film is formed on the substrate.
  • Appendix 22 The method of manufacturing a semiconductor device according to appendix 21, preferably, The silicon-containing film has a silazane bond.
  • Appendix 23 The method of manufacturing a semiconductor device according to appendix 22, preferably, The film having a silazane bond contains polysilazane.
  • a processing liquid supply procedure for supplying the processing liquid from the processing liquid supply unit to the processing chamber for storing the substrate There is provided a recording medium on which a program for causing a computer to execute a processing liquid heating procedure for heating the processing liquid in the processing chamber by a heating unit is recorded.
  • a processing liquid supply pipe for supplying a processing liquid into a processing chamber containing the substrate;
  • a processing liquid supply unit is provided that includes a processing liquid flow rate control unit that is provided in the processing liquid supply pipe and controls a flow rate of the processing liquid supplied into the processing chamber.
  • the processing liquid supply unit of appendix 26 preferably, The surface of the processing liquid supply pipe that contacts the processing liquid is made of a material that is less reactive with the processing liquid.
  • the treatment liquid supply unit of Appendix 27 preferably The material having low reactivity with the treatment liquid includes any of Teflon, quartz, and ceramics.
  • a vaporization unit is provided that evaporates a processing liquid supplied into a processing chamber that accommodates a substrate.
  • a substrate support unit having a vaporization unit for supporting a substrate and evaporating a processing liquid for processing the substrate.
  • a processing container has a vaporization unit that accommodates a substrate and evaporates a processing liquid for processing the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 基板を収容する処理室内に処理液を供給する処理液供給部と、処理室内で処理液を加熱する加熱部と、処理室内に設けられ、基板を支持する基板支持部と、を備える。

Description

半導体装置の製造装置、半導体装置の製造方法及び記録媒体
 本発明は、半導体装置の製造装置、半導体装置の製造方法及び記録媒体に関する。
 例えば大規模集積回路(Large Scale Integrated Circuit:以下、LSIと言う。)の微細化に伴い、LSIに設けられたトランジスタ素子間の漏れ電流干渉を制御する加工技術は、ますます技術的な困難を増している。一般的に、LSIの素子間分離には、例えばシリコン(Si)からなるシリコン基板等の基板の分離したい素子間に、溝もしくは孔等の空隙を形成し、その空隙に絶縁物を堆積する方法によって行われる。この絶縁物として、酸化膜が用いられることが多い。酸化膜としては、例えばシリコン酸化膜(SiO)を用いることができる。このシリコン酸化膜は、シリコン(Si)基板自体の自然酸化や、化学気相成長法(Chemical Vapor Deposition、以下CVD法とも言う。)等によって形成される。例えば、特許文献1には、CVD法による絶縁膜の形成方法の一例が開示されている。
 近年の半導体装置の微細化により、空隙は、縦方向に深い、あるいは横方向に狭い微細な構造で基板上に形成されている。このような微細な構造である空隙に対しては、例えばCVD法を用いた埋め込みによって、基板上に酸化膜を形成していた。しかしながら、CVD法を用いて微細な構造である空隙内に成膜することは、技術限界に達しつつある。
 そこで、流動性を有する酸化物を用いた埋め込み方法、即ち絶縁物塗布法(Spin On Dielectric、以下SOD法とも言う。)が注目されている。SOD方法では、SOG(Spin on glass)と呼ばれる無機もしくは有機成分を含む塗布絶縁材料が用いられている。この塗布絶縁材料を用いた埋め込み方法は、上述のCVD法を用いて基板上に酸化膜を形成する技術が登場する以前より、LSI等の製造工程に採用されていた。
特開2010-87475号公報
 上述のSOD方法では、加工寸法が0.35μm~1.0μm程度である。これに対し、近年のLSI、DRAM(Dynamic Random Access Memory)やフラッシュメモリ(Flash Memory)に代表される半導体装置は、最小加工寸法が50nmより小さくなっている。このため、SOD法では、絶縁膜としての品質を保ったまま、微細な構造を有する基板に酸化膜を形成することが難しい場合があった。
 本発明は、微細構造を有する基板に高品質で緻密な膜を形成する半導体装置の製造装置、半導体装置の製造方法及び記録媒体を提供することを目的とする。
 一態様によれば、
 基板を収容する処理室と、
 前記処理室内に処理液を供給する処理液供給部と、
 前記処理室内で前記処理液を加熱する加熱部と、
 前記処理室内に設けられ、前記基板を支持する基板支持部と、を備える半導体装置の製造装置が提供される。
 他の態様によれば、
 基板を収容する処理室に、処理液供給部から処理液を供給する処理液供給工程と、
 加熱部により前記処理室内で前記処理液を加熱する処理液加熱工程と、を有する半導体装置の製造方法が提供される。
 更に他の態様によれば、
 基板を収容する処理室に、処理液供給部から処理液を供給する処理液供給手順と、
 加熱部により前記処理室内で前記処理液を加熱する処理液加熱手順と、をコンピュータに実行させるプログラムが記録された記録媒体が提供される。
 本発明に係る半導体装置の製造装置、半導体装置の製造方法及び記録媒体によれば、微細構造を有する基板に高品質で緻密な膜を形成できる。
本発明の一実施形態に係る基板処理装置の概略構成図である。 本発明の一実施形態に係る基板処理装置が備える処理室の縦断面概略図である。 本発明の一実施形態に係る基板処理装置が備える基板支持部の縦断面部分拡大図である。 本発明の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図である。 本発明の一実施形態に係る基板処理工程を示すフロー図である。 本発明の他の実施形態に係る基板処理装置の概略構成図である。 本発明の他の実施形態に係る基板処理装置が備える過水蒸気発生装置の概略構成図である。 本発明の他の実施形態に係る基板処理装置が備える処理室の縦断面概略図である。 石英、炭化シリコン、酸化アルミニウムの物性値を示す表図である。
<本発明の一実施形態>
 以下に、本発明の一実施形態について、図面を参照しながら説明する。
(1)基板処理装置の構成
 まず、本実施形態に係る基板処理装置の構成について、主に図1~図3を用いて説明する。図1は、本実施形態に係る基板処理装置10の概略構成図であり、処理室30部分を縦断面で示している。図2は、本実施形態に係る基板処理装置10が備える処理室30の縦断面概略図である。図3は、本実施形態に係る基板処理装置10が備える基板支持部の縦断面部分拡大図である。
 図1及び図2に示すように、処理室30は、処理管(処理容器)360を備えている。処理管360は、例えば、光を透過させる石英(SiO)又は炭化シリコン(SiC)等の耐熱性材料や、SiO及びSiCを組み合わせた耐熱材料からなり、下端が開口した円筒形状に形成されている。処理管360の筒中空部には、処理室30が形成され、基板としてのウエハ12を後述するボート14によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。なお、ウエハ12として、微細構造である凹凸構造(空隙)を有する基板が用いられるとよい。微細構造を有する基板とは、例えばシリコン基板に対して垂直方向に深い溝(凹部)、あるいは例えば10nm~50nm程度の幅の横方向に狭い溝(凹部)等のアスペクト比の高い構造を有する基板をいう。
 処理管360の下部には、処理管360の下端開口(炉口)を気密に封止(閉塞)可能な炉口蓋としてのシールキャップ344が、Oリングを介して設けられている。シールキャップ344は、処理管360の下端に垂直方向下側から当接されるように構成されている。シールキャップ344は円板状に形成されている。ウエハ12の処理空間となる処理室30は、処理管360とシールキャップ344とで構成されている。
(第1の加熱部)
 処理管360の外側には、処理管360の側壁面を囲う中空の同心円状に、処理管360内のウエハ12を加熱する第1の加熱部320が設けられている。第1の加熱部320は、ヒータベースにより支持されて設けられている。図2に示すように、第1の加熱部320は第1~第4のヒータユニット320a~320dを備えている。第1~第4のヒータユニット320a~320dはそれぞれ、処理管360内でのウエハ12の積層方向に沿って設けられている。第1~第4のヒータユニット320a~320dそれぞれは、例えば処理管360の周囲から光を放射し、処理管360を透過した光がウエハ12に吸収されることでウエハ12を昇温させる(加熱する)ことができるように構成されている。
 処理管360外には、第1~第4のヒータユニット320a~320d毎に、第1~第4のヒータユニット320a~320dの温度を検出する温度検出器として、例えば熱電対等の第1~第4の外部温度センサ322a~322dが設けられている。
 処理管360内には、第1~第4のヒータユニット320a~320d毎に、ウエハ12又は周辺温度を検出する温度検出器として、例えば熱電対等の第1~第4の内部温度センサ324a~324dが設けられている。第1~第4の内部温度センサ324a~324dはそれぞれ、処理管360とボート14との間に設けられている。なお、第1~第4の内部温度センサ324a~324dはそれぞれ、第1~第4のヒータユニット320a~320dによりそれぞれ加熱される複数枚のウエハ12のうち、その中央に位置するウエハ12の温度を検出するように設けられても良い。
 第1の加熱部320(第1~第4のヒータユニット320a~320d)、第1~第4の外部温度センサ322a~322d、第1~第4の内部温度センサ324a~324dには、それぞれ、後述するコントローラ500が電気的に接続されている。コントローラ500は、処理管360内のウエハ12の温度が所定の温度になるように、第1~第4の内部温度センサ324a~324dによりそれぞれ検出された温度情報に基づいて、第1~第4のヒータユニット320a~320dへの供給電力を所定のタイミングにてそれぞれ制御し、第1~第4のヒータユニット320a~320d毎に個別に温度設定や温度調整を行うように構成されている。また、コントローラ500は、第1~第4の外部温度センサ322a~322dによりそれぞれ検出された温度情報に基づいて、第1~第4のヒータユニット320a~320dがそれぞれ所定の温度に加熱されているか否かを確認する。
(基板支持部)
 基板支持部としてのボート14は、複数枚のウエハ12を多段に支持できるように構成されている。図3に示すように、ボート14は、複数枚のウエハ12を支持する複数本(例えば3本)の支柱14aを備えている。支柱14aには、複数枚のウエハ12を載置可能なように、複数の基板載置部14bが設けられている。基板載置部14bは、ボート14の重力方向に複数設けられ、各基板載置部14bがそれぞれウエハ12を支持するように構成されている。また、基板載置部14bは、ウエハ12を水平に支持するために、支柱14aと垂直に設けられている。
 複数本の支柱14aはそれぞれ、底板14cと後述の気化部342との間に架設されている。複数枚のウエハ12が、支柱14aに水平姿勢でかつ、互いに中心を揃えた状態で整列されて菅軸方向に多段に保持されている。
 支柱14a、基板載置部14b、底板14cの構成材料として、後述する処理液と反応性の低い材料が用いられるとよい。例えばテフロン(登録商標)、石英、酸化アルミニウム(Al),窒化アルミニウム(AlN),炭化シリコン(SiC)などのセラミックス等の少なくともいずれかを含有する材料で構成されているとよい。これにより、支柱14a、基板載置部14b、底板14cが後述する処理液によって腐食されることを抑制できる。なお、支柱14a、基板載置部14b、底板14cの構成材料として、窒化シリコン(SiN)、酸化ジルコニウム(ZrO)等が含有されていてもよい。
 支柱14a、基板載置部14b、底板14cの構成材料として、例えば炭化シリコン(SiC)等の熱伝導性の良い(熱伝導率が高い)非金属材料が用いられると、より良い。特に熱伝導率が10W/mK以上である非金属材料が用いられるとよい。これにより、支柱14a、基板載置部14b、底板14cが、後述する処理液が有する蒸発潜熱等によって冷却されることを抑制できる。すなわち、後述するように、処理液を処理管360内で蒸発、気化させて気化ガスを生成する場合、処理液が有する蒸発潜熱等によって、支柱14a、基板載置部14b、底板14cが冷却される場合があった。これにより、処理液の気化ガスが処理管360内で処理液の気化点よりも低い温度に冷却されて再液化してしまう場合があった。このような処理液の再液化は、処理管360内の第1の加熱部320から発生する熱が届きにくい箇所で発生してしまう場合が多い。具体的には、例えば、基板載置部14bとウエハ12との接触箇所や、ボート14の下部で、処理液の気化ガスの再液化が発生してしまう場合が多い。処理液の気化ガスが再液化すると、例えば基板載置部14b上に処理液が溜まってしまう場合がある。その結果、基板載置部14bとウエハ12との接触箇所、即ちウエハ12の裏面端部に所謂ウォーターマークが形成されてしまう場合がある。ウォーターマークが形成されたウエハ12は、例えばLSIの収率低下を引き起こす可能性があり、加工不良品となる場合がある。
 なお、支柱14a、基板載置部14b、底板14cは、熱伝導率が問題にならなければ、石英(SiO)などで形成しても良く、また、金属によるウエハ12への汚染が問題にならなければ、支柱14a等は、ステンレス(SUS)等の金属材料で形成しても良い。支柱14aの構成材料として金属が用いられる場合、金属にセラミックや、テフロン(登録商標)などの皮膜が形成されているとより良い。
 図1及び図2に示すように、ボート14の下部には、例えば石英や炭化シリコン等の耐熱材料からなる断熱体140が設けられており、後述の第1の加熱部320からの熱がシールキャップ344側へ伝わりにくくなるように構成されている。断熱体140は、断熱部材として機能すると共にボート14を保持する保持体としても機能する。なお、断熱体140は、図示するように円板形状に形成された断熱板が水平姿勢で多段に複数枚設けられたものに限らず、例えば円筒形状に形成された石英キャップ等であっても良い。また、断熱体140は、ボート14の構成部材の1つとして考えても良い。
 処理管360の下方には、ボート14を昇降させて処理管360の内外へ搬送する昇降部としてのボートエレベータが設けられている。ボートエレベータには、ボートエレベータによりボート14が上昇された際に炉口を封止するシールキャップ344が設けられている。
 シールキャップ344の処理室30と反対側には、ボート14を回転させるボート回転機構349が設けられている。ボート回転機構349の回転軸348はシールキャップ344を貫通してボート14に接続されており、ボート14を回転させることでウエハ12を回転させるように構成されている。
(供給部)
[処理液供給部]
 処理管360と第1の加熱部320との間には、処理液が通過する処理液供給ノズル339が設けられている。処理液供給ノズル339は、例えば熱伝導率の低い石英等により形成されている。処理液供給ノズル339は二重管構造を有していてもよい。処理液供給ノズル339は、処理管360の外壁の側部に沿って配設されている。処理液供給ノズル339の上端(下流端)は、処理管360の頂部(上端開口)に気密に設けられている。処理管360の上端開口に位置する処理液供給ノズル339には、供給孔341が上流側から下流側にわたって複数設けられている(図2参照)。供給孔341は、処理管360内に供給された処理液を後述の気化部342に向かって噴射させるように形成されている。
 処理液供給ノズル339の上流端には、処理液を供給する処理液供給管340aの下流端が接続されている。処理液供給管340aには、上流方向から順に、液体原料供給タンクとしての貯留槽201、液体流量制御器(液体流量制御部)である液体用マスフローコントローラ(LMFC)203、開閉弁であるバルブ204、セパレータ205及び開閉弁であるバルブ208が設けられている。また、処理液供給管340aの少なくともバルブ208よりも下流側には、例えばインレットチューブヒータ等のサブヒータ210aが設けられていても良い。サブヒータ210aは、処理液供給管340aの内部を流れる処理液を予備加熱できるように、処理液供給管340aを所定の温度(例えば50℃~300℃)に加熱するように構成されている。
 処理液供給管340aの処理液と接触する箇所、すなわち処理液供給管340aの内面は、処理液と反応性の低い材料で構成されているとよい。処理液供給管340aの内面は、例えばテフロン(登録商標)、石英、酸化アルミニウム(Al),窒化アルミニウム(AlN),炭化シリコン(SiC)などのセラミックス等の少なくともいずれかを含有する材料で構成されているとよい。また、処理液供給管340aの内面には、例えばテフロン(登録商標)などの皮膜が形成されていてもよい。これにより、処理液供給管340aの腐食を抑制することができる。
 処理液供給管340aからは、処理液が、液体用マスフローコントローラ203、バルブ204、セパレータ205、バルブ208及び処理液供給ノズル339を介して、処理室30内に供給される。処理液としては、例えば沸点が50℃~200℃である気化原料を用いるとよい。すなわち、処理液としては、例えば過酸化水素水や、水(HO)等の酸化剤溶液を用いるとよい。
 過酸化水素水は、例えば常温で固体又は液体である過酸化水素(H)を用い、溶媒として水(HO)を用い、過酸化水素を水に溶解させて生成されている。過酸化水素水中の過酸化水素の濃度は、1%~40%が好ましい。本実施形態では、例えば、過酸化水素の濃度が15%や30%の過酸化水素水が好適に用いられる。なお、過酸化水素を溶解する溶媒としては、水に限定されるものではない。
 過酸化水素(H)水は、酸素分子に水素が結合した単純構造であることから、低密度媒体に対して浸透しやすい特徴がある。また、過酸化水素水は、分解するとヒドロキシラジカル(OH*)を発生させる。このヒドロキシラジカルは活性酸素の一種であり、酸素と水素とが結合した中性ラジカルである。従って、本実施形態の場合、処理室30内に供給した過酸化水素水が分解して発生したヒドロキシラジカルによって、ウエハ12に酸化処理が行われる。
 発明者の鋭意研究により、例えば微細構造である凹凸(溝)が形成されたウエハ12を用い、溝内に形成された膜を酸化させる場合、処理液として過酸化水素水が用いられると、処理液として水が用いられた場合と比べて、溝内のより深い場所(溝内の底)に形成された膜を酸化することができることが確認されている。すなわち、気体状態の過酸化水素水は、気体状態の水よりも酸化力が高いことが確認されている。これは、気体状態の過酸化水素水のエネルギが、気体状態の水のエネルギより高く、更には過酸化水素の方が、水よりも酸素量が多いことが理由と考えられる。従って、処理液として過酸化水素水が用いられると、ウエハ12の溝内の底部に形成された膜をより酸化させ、酸化膜を形成することができる。また、ウエハ12の溝内に形成された酸化膜は、表面と奥(底)との間で酸素の量を均一にすることができ、その結果誘電率を均一にできる。
 また、過酸化水素水は、常温より高い例えば40℃以上100℃以下の低温の使用環境において、より活性に作用する。これにより、ウエハ12の溝の深い場所に形成されたシリコン含有膜に、より多くの過酸化水素水を供給できる。また、この温度帯では、過酸化水素の酸化力を十分に発揮させることができる。従って、酸化処理を低温かつ短時間で行うことができる。
 貯留槽201の上部には、圧送ガスを供給する圧送ガス供給管340bの下流端が接続されている。圧送ガス供給管340bには、上流方向から順に、圧送ガス供給源211b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)211b及び開閉弁であるバルブ213bが設けられている。
 圧送ガス供給管340bからは、圧送ガスが、マスフローコントローラ212b、バルブ213bを介して貯留槽201内に供給される。圧送ガスとしては、例えば窒素(N)ガスや、Heガス、Neガス、Arガス等の希ガスを用いることができる。
 主に、処理液供給管340a、液体用マスフローコントローラ203、バルブ204、セパレータ205、バルブ208及び処理液供給ノズル339により、処理液供給部が構成される。なお、貯留槽201や、圧送ガス供給管340b、圧送ガス供給源211b、マスフローコントローラ212b、バルブ213bを処理液供給部に含めて考えてもよい。
[不活性ガス供給部]
 処理液供給管340aのバルブ204とセパレータ205との間には、不活性ガス供給管340cの下流端が接続されている。不活性ガス供給管340cには、上流方向から順に、不活性ガス供給源211c、流量制御器(流量制御部)であるマスフローコントローラ(MFC)212c及び開閉弁であるバルブ213cが設けられている。
 不活性ガス供給管340cからは、不活性ガスが、マスフローコントローラ212c、バルブ213c、セパレータ205、バルブ208、処理液供給管340a及び処理液供給ノズル339を介して処理室30内に供給される。不活性ガスとしては、例えば窒素(N)ガスや、Heガス、Neガス、Arガス等の希ガスを用いることができる。
 主に、不活性ガス供給管340c、マスフローコントローラ212c及びバルブ213cにより、不活性ガス供給部が構成される。なお、不活性ガス供給源211cや、処理液供給管340a、セパレータ205、バルブ208、処理液供給ノズル339を不活性ガス供給部に含めて考えてもよい。
[水蒸気用ガス供給部]
 処理液供給管340aのバルブ208よりも下流側には、第1のガス供給管340dの下流端が接続されている。第1のガス供給管340dには、上流方向から順に、原料ガス供給源211d、流量制御器(流量制御部)であるマスフローコントローラ(MFC)212d及び開閉弁であるバルブ213dが設けられている。第1のガス供給管340dの少なくともバルブ213dより下流側には、例えばインレットチューブヒータ等のサブヒータ210dが設けられていても良い。サブヒータ210dは、第1のガス供給管340dの内部を流れる流体を予備加熱できるように、第1のガス供給管340dを所定の温度(例えば50℃~300℃)に加熱するように構成されている。
 第1のガス供給管340dからは、第1の処理ガスが、マスフローコントローラ212dや、バルブ213d、処理液供給ノズル339を介して処理室30内に供給される。第1の処理ガスとしては、例えば水素(H)ガスを用いることができる。
 第1のガス供給管340dのバルブ213dよりも下流側には、第2のガス供給管340eの下流端が接続されている。第2のガス供給管340eには、上流方向から順に、原料ガス供給源211e、流量制御器(流量制御部)であるマスフローコントローラ(MFC)212e及び開閉弁であるバルブ213eが設けられている。第2のガス供給管340eの少なくともバルブ213eより下流側には、例えばインレットチューブヒータ等のサブヒータ210eが設けられていても良い。サブヒータ210eは、第2のガス供給管340eの内部を流れる流体を予備加熱できるように、第2のガス供給管340eを所定の温度(例えば50℃~300℃)に加熱するように構成されている。
 第2のガス供給管340eからは、第2の処理ガスが、マスフローコントローラ212aや、バルブ213e、処理液供給ノズル339を介して処理室30内に供給される。第2の処理ガスとしては、例えば酸素(O)ガスを用いることができる。
 主に、第1のガス供給管340d、マスフローコントローラ212d及びバルブ213dにより、第1の処理ガス供給部が構成される。なお、原料ガス供給源211dや、処理液供給管340a、処理液供給ノズル339を第1の処理ガス供給部に含めて考えてもよい。また、主に、第2のガス供給管340e、マスフローコントローラ212e及びバルブ213eにより、第2の処理ガス供給部が構成される。なお、原料ガス供給源211eや、処理液供給管340a、第1のガス供給管340d、処理液供給ノズル339を第2の処理ガス供給部に含めて考えてもよい。第1の処理ガス供給部及び第2の処理ガス供給部により、水蒸気用ガス供給部が構成される。
 処理液供給部と、不活性ガス供給部と、水蒸気用ガス供給部とにより、供給部が構成される。
(気化部)
 処理管360内には、処理液供給部から処理管360内に供給された処理液を蒸発させる気化部342が設けられている。すなわち、気化部342は、後述する第2の加熱部345によって加熱され、供給孔341から供給された例えば過酸化水素水等の処理液を加熱して蒸発させ、気化させ、処理液の気化ガスを生成するように構成されている。気化部342は、支柱14aによって支持されるように設けられている。気化部342の直径はボート14で支持されるウエハ12の最大外径より大きくなるように構成されている。すなわち、供給孔341側から気化部342を見たとき、ウエハ12が気化部342によって隠れるように、気化部342が構成されている。なお、気化部342は、ボート14の天板としても機能する。
 気化部342は、処理液と反応性の低い材料で構成されているとよい。気化部342は、例えばテフロン(登録商標)、石英、酸化アルミニウム(Al),窒化アルミニウム(AlN),炭化シリコン(SiC)などのセラミックス等の少なくともいずれかを含有する材料で構成されているとよい。これにより、気化部342が処理液によって腐食されることを抑制できる。なお、気化部342の構成材料として、窒化シリコン(SiN)、酸化ジルコニウム(ZrO)等が含有されていてもよい。また、気化部342の構成材料としては、例えば炭化シリコン(SiC)等の熱伝導性の良い(熱伝導率が高い)非金属材料を用いることが特に好ましい。
(第2の加熱部)
 処理管360の外側上部には、第2の加熱部345が設けられている。すなわち、気化部342の供給孔341を介した上部には、第2の加熱部345が配設されている。第2の加熱部345は、ボート14の支柱14aに支持されるように設けられる気化部342を加熱するように構成されている。第2の加熱部345は、気化部342を例えば200℃程度まで加熱するように構成されている。また、第2の加熱部345は、供給孔341及びその周辺を加熱するように構成されている。これにより、過酸化水素水等の処理液が供給孔341で固化することを防止できる。第2の加熱部345としては、例えば、カーボンランプ等のランプヒータユニットや抵抗加熱ヒータ等を用いることができる。このとき、第2の加熱部345からは、処理液供給ノズル339を加熱しやすい波長の光が照射されることが望ましい。例えば、気化部342が、炭化シリコンで構成されている場合、気化部342の輻射率は1に近似する。従って、気化部342は、遠赤外線を効率的に吸収すると共に、例えば石英等で構成された供給孔341やその周囲の構成部材の吸収波長帯に照度を持つ。このため、石英等で構成された供給孔341やその周囲の構成部材を効率的に加熱することができる。
 第2の加熱部345には、後述するコントローラ500が電気的に接続されている。コントローラ500は、気化部342が所定の温度となるように、第2の加熱部345への供給電力を所定のタイミングにて制御するように構成されている。
 ここで、処理室30(処理管360)内で処理液を気化させて気化ガス(処理ガス)を生成する動作について説明する。まず、圧送ガス供給管340bからマスフローコントローラ212b、バルブ213bを介して、圧送ガスが貯留槽201内に供給される。これにより、貯留槽201内に貯留されている処理液が処理液供給管340a内に送り出される。貯留槽201から処理液供給管340a内に供給された処理液は、液体用マスコントローラ203、バルブ204、セパレータ205、バルブ208及び処理液供給ノズル339を介して処理管360内に供給される。そして、処理管360内に供給された処理液が第2の加熱部345により加熱された気化部342に接触することで気化され、処理液の気化ガス(処理ガス)が生成される。この処理ガスが処理管360内のウエハ12に供給されて、ウエハ12上に所定の基板処理が行われる。
 なお、処理液の気化を促すため、サブヒータ210aにより処理液供給管340a内を流れる処理液を予備加熱してもよい。これにより、処理液をより気化させやすい状態で処理管360内に供給することができる。また、第1の加熱部320(第1~第4のヒータユニット320a~320d)により、処理液供給ノズル339内を流れる処理液を予備加熱しても良い。
(第3の加熱部)
 処理管360の下部であって、シールキャップ344の上部には、処理管360の側壁面を囲うように、第3の加熱部としての液化防止ヒータ280が設けられている。液化防止ヒータ280は、例えば抵抗加熱ヒータや、ランプヒータ等で構成されている。これにより、処理管360内の下部領域(すなわち、処理管360内の断熱板140が収容された領域)で、処理液の気化ガスが再液化することを抑制できる。
 また、処理管360内での処理液の気化ガスの再液化を抑制することで、シールキャップ344等の処理室30内の構成部材が損傷することを抑制できる。すなわち、液化防止ヒータ280で処理管360の下部を加熱することで、処理管360内で、処理液の気化ガスが再液化してしまって生じた液体(以下では、単に「液体」ともいう)が、処理管360内の底部(シールキャップ344の上面)に溜まることを抑制できる。
 また、処理液として過酸化水素水が用いられた場合、処理管360内で、処理液の気化ガスが再液化してしまって生じた液体は、処理管360内に供給される際の過酸化水素水と比べて過酸化水素の濃度が高くなる場合がある。過酸化水素水が、処理管360内で液化と蒸発(気化)とを繰り返すと、処理管360内で、過酸化水素濃度の高い過酸化水素水が生成されることが考えられる。過酸化水素濃度の高い過酸化水素水は、高い酸化性を有する。高い酸化性を有する過酸化水素が生成されると、処理管360内の上部(上流側)と下部(下流側)との間で、過酸化水素濃度の差が生じ、処理管360内でのウエハ12への処理に差が生じてしまう。従って、処理管360内での処理液の気化ガスの再液化を抑制することで、ウエハ12に均一な処理を施すことができる。
(排気部)
 処理管360の下方には、処理室30内のガスを排気する第1の排気管346の上流端が接続されている。第1の排気管346は、例えばテフロン(登録商標)等の処理液と反応性の低い材料で構成されているとよい。また、第1の排気管346を金属で構成した場合、第1の排気管346の少なくとも内面には、例えばテフロン(登録商標)などの皮膜が形成されていてもよい。これにより、処理液による第1の排気管346の腐食を抑制できる。
 第1の排気管346には、上流方向から順に、処理管360内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ404、圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ403、真空排気装置としての真空ポンプ405が設けられている。処理室30内は、真空ポンプ405で発生する負圧によって排気されるように構成されている。すなわち、第1の排気管346は、真空ポンプ405により、処理管360内の圧力が所定の圧力(真空度)となるよう、処理管360内を真空排気し得るように構成されている。なお、APCバルブ403は、弁の開閉により処理室30内の排気および排気停止を行うことができる開閉弁である。また、APCバルブ403は、弁開度を調整することで処理室30内の圧力を調整することができる圧力調整弁でもある。
 第1の排気管346の少なくともAPCバルブ403よりも上流側には、第1の排気管346を加熱する排気加熱部としてのエキゾーストチューブヒータ411が設けられている。エキゾーストチューブヒータ411は、第1の排気管346の内部に結露が生じないように、第1の排気管346を加熱する。
 エキゾーストチューブヒータ411には、後述するコントローラ500が電気的に接続されている。コントローラ500は、第1の排気管346が所定の温度(例えば50℃~300℃)となるように、エキゾーストチューブヒータ411への供給電力を制御するように構成されている。
 第1の排気管346のAPCバルブ403よりも上流側には、第2の排気管347の上流端が接続されている。第2の排気管347には、上流方向から順に、開閉弁であるバルブ406、処理管360から排気された排気ガスを液体と気体とに分離する分離器407、及び真空排気装置としての真空ポンプ408が設けられている。分離器407には、第3の排気管409の上流端が接続されており、第3の排気管409には、液体回収タンク410が設けられている。分離器407としては、例えばガスクロマトグラフ等を用いることができる。
 第2の排気管347、第3の排気管409は、例えばテフロン(登録商標)等の処理液と反応性の低い材料で構成されているとよい。また、第2の排気管347、第3の排気管409を金属で構成した場合、第2の排気管347、第3の排気管409の少なくとも内面には、例えばテフロン(登録商標)などの皮膜が形成されていてもよい。これにより、処理液による第2の排気管347、第3の排気管409の腐食を抑制できる。
 APCバルブ403及び圧力センサ404には、後述するコントローラ500が電気的に接続されている。コントローラ500は、処理室30内の圧力が所定のタイミングにて所定の圧力になるように、圧力センサ404で検出された圧力情報に基づいて、APCバルブ403の開度を制御するように構成されている。
 主に、第1の排気管346により排気部が構成される。なお、第2の排気管347や、APCバルブ403、圧力センサ404、バルブ406、分離器407、液体回収タンク410、真空ポンプ406、真空ポンプ408を排気部に含めて考えてもよい。
(処理管冷却部)
 図2に示すように、第1の加熱部320の外周には、処理管360及び第1の加熱部320を覆うように断熱部材300が設けられている。断熱部材300は、処理管360の側壁を囲うように設けられる側部断熱部材300aと、処理管360の上方端を覆うように設けられる上部断熱部材300bと、を備えて構成されている。側部断熱部材300aと上部断熱部材300bとはそれぞれ気密に接続されている。なお、断熱部材300は、側部断熱部材300aと上部断熱部材300bとが一体に形成されていてもよい。断熱部材300は、例えば石英や炭化シリコン等の耐熱性材料で構成されている。
 側部断熱部材300aの下方には、処理管360と断熱部材300との間の空間352内に冷却ガスを供給する吸気口353が形成されている。なお、本実施形態では、吸気口353は、側部断熱部材300aの下端部とヒータベース321とにより形成されているが、例えば側部断熱部材300aに開口を設けることにより形成されていてもよい。吸気口353には、冷却ガス供給管363の下流端が接続されている。冷却ガス供給管363には、上流方向から順に、冷却ガス供給源364、流量制御器(流量制御部)であるマスフローコントローラ(MFC)365、遮断弁としてのシャッタ359が設けられている。冷却ガス供給管363からは、冷却ガスが、マスフローコントローラ365、シャッタ359を介して空間352内に供給される。冷却ガスとしては、例えば窒素(N)ガスや、空気等を用いることができる。
 主に、冷却ガス供給管363及びマスフローコントローラ365により、冷却ガス供給部が構成される。なお、冷却ガス供給源364や、シャッタ359を冷却ガス供給部に含めて考えてもよい。
 上部断熱部材300bには、処理管360と断熱部材300との間の空間352内の雰囲気を排気する排気路354が形成されている。排気路354の下流端には、冷却ガス排気管355の上流端が接続されている。冷却ガス排気管355には、上流方向から順に、遮断弁としてのシャッタ361、冷却水等を循環させて冷却ガス排気管355内を流れる排気ガスを冷却させるラジエタ357、遮断弁としてのシャッタ362、冷却ガス排気管355の上流側から下流側へと排気ガスを流す例えばブロア等の冷却ガス排気装置356、及び排気ガスを処理室30の外部へ排出する排気口358が設けられている。冷却ガス排気装置356には、例えばインバータ384が接続されており、インバータ384により冷却ガス排気装置356を作動させるように構成されている。例えば、インバータ384は、冷却ガス排気装置356であるブロアの回転数を制御するように構成されている。
 主に、排気路354、冷却ガス排気管355、冷却ガス排気装置356、ラジエタ357及び排気口358により、断熱部材300と処理管360との間の空間352の雰囲気を排気する冷却ガス排気部が構成される。なお、シャッタ361や、シャッタ361を冷却ガス排気部に含めて考えてもよい。また、主に、上述の冷却ガス供給部及び冷却ガス排気部により、処理管冷却部が構成される。
(制御部)
 図4に示すように、制御部(制御手段)であるコントローラ500は、CPU(Central Processing Unit)500a、RAM(Random Access Memory)500b、記憶装置500c、I/Oポート500dを備えたコンピュータとして構成されている。RAM500b、記憶装置500c、I/Oポート500dは、内部バス500eを介して、CPU500aとデータ交換可能なように構成されている。コントローラ500には、例えばタッチパネル等として構成された入出力装置501が接続されている。
 記憶装置500cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置500c内には、基板処理装置10の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ500に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM500bは、CPU500aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート500dは、上述の液体用マスフローコントローラ203、マスフローコントローラ212b,212c,212d,212e,365、バルブ204,208,213b,213c,213d,213e,406、シャッタ359,361,362、真空ポンプ405,408、APCバルブ403、第1の加熱部320、第2の加熱部345、第3の加熱部280、インバータ384、第1~第4の外部温度センサ322a~322d、第1~第4の内部温度センサ324a~324d、第4の温度センサ263d、ボート回転機構349等に接続されている。
 CPU500aは、記憶装置500cから制御プログラムを読み出して実行すると共に、入出力装置501からの操作コマンドの入力等に応じて記憶装置500cからプロセスレシピを読み出すように構成されている。そして、CPU500aは、読み出したプロセスレシピの内容に沿うように、液体用マスフローコントローラ203による処理液の流量調整動作、マスフローコントローラ212b,212c,212d,212e,365による各種ガスの流量調整動作、バルブ204,208,213b,213c,213d,213e,406の開閉動作、シャッタ359,361,362の遮断動作、APCバルブ403の開度調整動作、第1~第4の外部温度センサ322a~322d及び第1~第4の内部温度センサ324a~324dに基づく第1の加熱部320の温度調整動作、温度センサに基づく第2の加熱部345及び第3の加熱部280の温度調整動作、真空ポンプ405,408の起動・停止、インバータ384による冷却ガス排気装置356の回転速度調節動作、ボート回転機構349の回転速度調節動作等を制御するように構成されている。
 なお、コントローラ500は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリ(USB Flash Drive)やメモリカード等の半導体メモリ)502を用意し、係る外部記憶装置502を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ500を構成することができる。なお、コンピュータにプログラムを供給するための手段は、外部記憶装置502を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置502を介さずにプログラムを供給するようにしてもよい。なお、記憶装置500cや外部記憶装置502は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において記録媒体という言葉を用いた場合は、記憶装置500c単体のみを含む場合、外部記憶装置502単体のみを含む場合、または、その両方を含む場合がある。
(2)基板処理工程
 次に、本実施形態に係る半導体装置の製造工程の一工程として実施される基板処理工程について、主に図5を用いて説明する。図5は、本実施形態にかかる基板処理工程を示すフロー図である。かかる工程は、上述の基板処理装置10により実施される。なお、以下の説明において、基板処理装置10を構成する各部の動作は、図4に示すコントローラ500により制御されている。
 本実施形態では、ウエハ12として、微細構造である凹凸構造を有する基板を用いる場合について説明する。なお、微細構造を有する基板とは、例えばシリコン基板に対して垂直方向に深い溝(凹部)、あるいは例えば10nm~50nm程度の幅の横方向に狭い溝(凹部)等のアスペクト比の高い構造を有する基板をいう。以下では、ウエハ12に形成された凹部を空隙ともいう。
 以下に、ポリシラザン(SiHNH)をウエハ12に形成された少なくとも凹部(溝)に充填するように供給し、溝内にシリコン(Si)含有膜を形成する第一工程と、処理液として過酸化水素水を用い、ウエハ12上に形成されたシリコン含有膜をシリコン酸化膜に改質(酸化)する第二工程とを行う場合について説明する。ウエハ12上に形成されるシリコン酸化膜は、電極間の絶縁膜等として用いられる。
(第一工程)
 ウエハ12上にシリコン含有膜を形成する第一工程について説明する。
<シリコン含有膜形成工程(S10)>
 まず、微細構造を有するウエハ12を例えばスピンコータ装置に搬入する。スピンコータ装置に、例えばポリシラザン(SiHNH)等のシリコン材料をキシレン(C10)等の溶媒に溶解した溶液(シリコン含有材料)を供給し、ウエハ12にシリコン含有材料を塗布する。こで、溶媒として、例えば、キシレン(C10)、トルエン(CCH)、ジブチルエーテル(C18O)等の少なくともいずれかを用いる。塗布膜圧は、例えば100nmから700nmとする。シリコン含有材料をウエハ12に塗布した後、フォーミングガス(水素を窒素で希釈したガス)をスピンコータ装置内に供給する。そして、フォーミングガス雰囲気で、ウエハ12を所定の温度(例えば150℃)に加熱して熱処理(プリベーク処理)を行う。プリベーク処理を行うことで、シリコン含有材料中の溶媒を蒸発させる。このようにして、ウエハ12が有する空隙にシリコン含有膜であるポリシラザン膜を形成(成膜)する。ウエハ12上にシリコン含有膜を形成したら、ウエハ12をスピンコータ装置から搬出する。
 ここで、ウエハ12上に形成されるシリコン含有膜は、主にシリコン材料(ポリシラザン)で形成される。しかしながら、シリコン含有膜には、シリコン含有材料に含まれる溶媒成分が残留していることがある。また、シリコン含有膜には、シリコン(Si)の他、シリコン材料に由来する窒素(N)や水素(H)等の不純物が含まれている。すなわち、シリコン含有膜は、少なくともシラザン結合(Si-N結合)を有する。また、シリコン含有膜には、場合によっては、炭素(C)や他の不純物が混ざっている可能性がある。すなわち、スピンコート法では、シリコン含有材料として、ポリシラザン等のシリコン材料に、溶媒として有機溶媒を加えた液体が用いられることが多い。この有機溶媒に由来する炭素(C)や他の不純物(すなわち、Si,O以外の元素)が、シリコン含有膜中に混ざっている場合がある。
(第二工程)
 続いて、ウエハ12上に形成されたシリコン含有膜をシリコン酸化膜に改質(酸化)する第二工程について説明する。
<基板搬入工程(S20)>
 まず、シリコン含有膜が形成された複数枚のウエハ12をボート14に装填(ウエハチャージ)する。複数枚のウエハ12を保持したボート14を、ボートエレベータによって持ち上げて処理管360内(処理室30)内に搬入(ボートロード)する。この状態で、処理管360の開口部である炉口は、シールキャップ344によりシールされた状態となる。
<圧力・温度調整工程(S30)>
 処理室30(処理管360)内が所定の圧力となるように、真空ポンプ405又は真空ポンプ408の少なくともいずれかによって真空排気する。この際、処理室30内の圧力は圧力センサ404で測定され、この測定された圧力情報に基づきAPCバルブ403の弁の開度をフィードバック制御する(圧力調整)。
 処理室30(処理管360)内に収容されたウエハ12が所定の温度(例えば40℃~300℃、好ましくは50℃~150℃程度)となるように、第1の加熱部320によって加熱する。この際、処理室30内のウエハ12が所定の温度分布となるように、第1~第4の内部温度センサ324a~324dが検出した温度情報に基づき、第1の加熱部320が備える第1~第4のヒータユニット320a~320dへの供給電力をフィードバック制御する(温度調整)。このとき、第1~第4のヒータユニット320a~320dの設定温度は全て同じ温度となるように制御する。
 また、ウエハ12を加熱しつつ、ボート回転機構349を作動して、ボート14の回転を開始する。この際、ボート14の回転速度をコントローラ500によって制御する。なお、ボート14は、少なくとも後述する改質処理工程(S40)が終了するまでの間は、常に回転させた状態とする。
 また、気化部342が処理液である過酸化水素水を気化させることができる温度(例えば150℃~170℃)以上となるように、第2の加熱部345に電力を供給して、気化部342の加熱を開始する。なお、後述する改質処理工程(S40)が終了するまでの間は、気化部342の温度が例えば150℃程度に維持されるように、第2の加熱部345を制御する。
 また、サブヒータ210a,210d,210e、液化防止ヒータ280、及びエキゾーストチューブヒータ411が所定の温度(例えばサブヒータを50℃~100℃、液化防止ヒータ280及びエキゾーストチューブヒータをそれぞれ100℃~300℃、好ましくは約200℃)になるように、サブヒータ210a,210d,210e、液化防止ヒータ280、及びエキゾーストチューブヒータ411への供給電力を制御する。なお、サブヒータ210a,210d,210e、液化防止ヒータ280、及びエキゾーストチューブヒータ411を全て同じ温度となるように制御してもよいし、それぞれ異なる温度になるように制御してもよい。
<改質処理工程(S40)>
[処理液供給工程(S41)]
 ウエハ12を加熱して所定の温度に達し、ボート14が所定の回転速度に到達したら、処理液供給管340aから処理管360内への処理液としての過酸化水素水の供給を開始する。すなわち、まず、バルブ213c,213d,213eを閉じ、バルブ213bを開け、圧送ガス供給源211bから貯留槽201内に、マスフローコントローラ212bにより流量制御しながら圧送ガスを供給する。さらにバルブ204及びバルブ208を開け、貯留槽201内に貯留されている処理液である過酸化水素水を、液体用マスフローコントローラ203により流量制御しながら、処理液供給管340aからセパレータ205、処理液供給ノズル339、供給孔341を介して処理管360(処理室30)内に供給する。圧送ガスとしては、例えば窒素(N)ガス等の不活性ガスや、Heガス、Neガス、Arガス等の希ガスを用いることができる。このとき、バルブ213cを開け、不活性ガス供給管340cから、キャリアガスとしての不活性ガスを供給してもよい。
[処理液加熱工程(S42)]
 処理管360内に供給した過酸化水素水を、第2の加熱部345により加熱した気化部342に接触させて蒸発、気化させ、処理ガスである過酸化水素水の気化ガスを生成する。このように、処理ガスである過酸化水素水の気化ガスは、処理管360内で生成される。すなわち、処理液供給ノズル339内には、液体状態の過酸化水素水を通過させるとよい。
 過酸化水素水の気化ガスをウエハ12に供給し、過酸化水素水の気化ガスがウエハ12の表面と酸化反応することで、ウエハ12上に形成されたシリコン含有膜をシリコン酸化膜(SiO膜)に改質する。すなわち、処理管360内に供給し、気化部342によって気化した過酸化水素水の気化ガスがウエハ12に供給されて分解すると、ヒドロキシラジカル(OH*)が発生する。ヒドロキシラジカルが有する酸化力によって、ウエハ12上のシリコン含有膜が有するシラザン結合(Si-N結合)や、Si-H結合が切断される。そして、切断された窒素(N)や水素(H)が、ヒドロキシラジカルが有する酸素(O)と置換されて、シリコン含有膜中にSi-O結合が形成される。その結果、シリコン含有膜が酸化されて、シリコン酸化膜に改質される。なお、ヒドロキシラジカルによって切断された窒素(N)や水素(H)等の不純物は、例えば排気部等から処理管360外へ排出される。
 なお、ウエハ12上に供給される過酸化水素水の気化ガスには、H分子単体の状態や、いくつかの分子が結合したクラスタ状態が含まれても良い。また、過酸化水素(H)水から過酸化水素水の気化ガスに変化させる際には、H分子単体まで分裂させるようにしても良いし、いくつかの分子が結合したクラスタ状態にまで分裂させるようにしても良い。また、上記のクラスタが幾つか集まってできた霧(ミスト)状態であっても良い。
 処理管360内に過酸化水素水を供給しつつ、真空ポンプ408、液体回収タンク410から排気する。すなわち、APCバルブ403を閉じ、バルブ406を開け、処理管360内から排気された排気ガスを、第1の排気管346から第2の排気管347を介して分離器407内を通過させる。そして、排気ガスを分離器407により過酸化水素を含む液体と過酸化水素を含まない気体とに分離した後、気体を真空ポンプ408から排気し、液体を液体回収タンク410に回収する。
 なお、処理管360内に過酸化水素水を供給する際、バルブ406及びAPCバルブ403を閉じ、処理管360内を加圧するようにしてもよい。これにより、処理管360内の過酸化水素水雰囲気を均一にできる。
 所定時間経過後、バルブ204a,213b,208を閉じ、処理管360内への過酸化水素水の供給を停止する。
<パージ工程(S50)>
 改質処理工程(S40)が終了した後、APCバルブ403を閉じ、バルブ406を開けて処理管360内を真空排気し、処理管360内に残留している過酸化水素水の気化ガスを排気する。すなわち、バルブ406を開け、処理管360(処理室30)を排気しつつ、バルブ213cを開け、不活性ガス供給管340cから処理液供給ノズル339を介して処理管360内に、パージガスとしてのNガス(不活性ガス)を、マスフローコントローラ212cにより流量制御しながら供給する。パージガスとしては、例えば窒素(N)ガスや、例えばHeガス、Neガス、Arガス等の希ガス等の不活性ガスを用いることができる。これにより、処理管360内の残留ガスの排出を促すことができる。また、処理液供給ノズル339内をNガス等の不活性ガスが通過することで、処理液供給ノズル339内に残留する過酸化水素水(液体状態の過酸化水素)を押し出して除去することもできる。このとき、APCバルブ403の開度及びバルブ406の開閉を調整し、真空ポンプ405から排気してもよい。
<降温・大気圧復帰工程(S60)>
 パージ工程(S50)が終了した後、バルブ406又はAPCバルブ403を調整し、処理管360内の圧力を大気圧に復帰させつつ、ウエハ12を所定の温度(例えば室温程度)に降温させる。具体的には、バルブ213cを開けたままとし、処理管360内に不活性ガスであるNガスを供給しつつ、処理管360内の圧力を大気圧に昇圧させる。そして、第1の加熱部320及び第2の加熱部345への供給電力を制御して、ウエハ12の温度を降温させる。
 ウエハ12を降温させつつ、冷却ガス排気装置356を作動させた状態でシャッタ359,361,362を開け、冷却ガス供給管363から、冷却ガスをマスフローコントローラ365により流量制御しながら処理管360と断熱部材300との間の空間352内に供給しつつ、冷却ガス排気管355から排気してもよい。冷却ガスとしては、Nガスのほか、例えばHeガス、Neガス、Arガス等の希ガスや、空気等を単独であるいは混合して用いることができる。これにより、空間352内を急冷させ、空間352内に設けられる処理管360及び第1の加熱部320を短時間で冷却できる。また、処理管360が冷却されることで、処理管360内に収容されたウエハ12を周方向(外周側)から冷却することができる。すなわち、処理管360内のウエハ12をより短時間で降温させることができる。
 なお、シャッタ361,362を閉じた状態で、冷却ガス供給管363からNガスを空間352内に供給し、空間352内を冷却ガスで充満させて冷却した後、冷却ガス排気装置356を作動させた状態でシャッタ361,362を開け、空間352内の冷却ガスを冷却ガス排気管355から排気してもよい。
<基板搬出工程(S70)>
 その後、ボートエレベータによりシールキャップ344を下降させて処理管360の下端を開口するとともに、処理済みウエハ12がボート14に保持された状態で処理管360の下端から処理管360(処理室30)の外部へ搬出(ボートアンロード)される。その後、処理済みウエハ12はボート14より取り出され(ウエハディスチャージ)、本実施形態に係る基板処理工程を終了する。
(3)本実施形態に係る効果
 本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(a)本実施形態によれば、処理室30(処理管360)内に処理液を供給する処理液供給部と、処理室30内で処理液を加熱する加熱部(第2の加熱部345)と、を備えている。すなわち、液体状態である処理液を処理管360内に供給し、処理管360内で処理液を加熱して蒸発、気化させて処理液の気化ガスを生成し、処理液の気化ガスを処理室30内のウエハ12に供給している。これにより、ウエハ12に供給される処理液の気化ガスの濃度を均一にできる。従って、ウエハ12に均一な処理を行うことができ、高品質で緻密な膜を形成できる。
 また、例えばウエハ12が有する微細構造の溝の底(溝内の深い場所)に形成された膜まで、処理液の気化ガスを供給し、浸透させることができる。その結果、ウエハ12の溝内で均一な処理を行うことができ、高品質で緻密な膜を形成できる。また、例えば加工寸法が50nm以下の微小な凹凸構造が形成され、表面積が増えたウエハ12であっても、溝内で均一な処理を施すことが可能となる。また、基板処理を再現性良く行うことができる。
 また、処理液を処理管360内で蒸発、気化させているので、処理液供給ノズル339等の供給部の設備内での結露発生を抑制できる。これにより、ウエハ12上に発生する異物を低減できる。
 また、処理液を加熱部に供給して瞬時に気化させることによって、沸点の異なる物質が混合された処理液、例えば、過酸化水素と水とを混ぜた処理液を用いたとしても、処理液の気化ガス濃度のばらつきを抑制することができる。
 これに対し、処理管360内に供給する前に処理液を気化させ、処理液の気化ガスを処理液供給ノズル339等を介して、処理室30内に供給すると、処理液の気化ガスが処理液供給ノズル339を通過する際、処理液供給ノズル339の熱条件等により処理液の気化ガスの濃度にばらつきが出てしまう場合がある。
(b)本実施形態によれば、処理液は、過酸化水素を含んでいる。すなわち、処理液として、過酸化水素を溶媒としての水に溶解させた過酸化水素水を用いている。これにより、低温かつ短時間でウエハ12上のシリコン含有膜を酸化させてシリコン酸化膜に改質することができる。低温で酸化処理を行うことにより、シリコン含有膜の表面部(溝の上端)のみが先に酸化されてしまうことを抑制できる。従って、ウエハ12により均一な酸化処理を施すことができ、シリコン酸化膜の膜質をより向上させることができる。これに対し、高温で処理した場合には、シリコン含有膜の表面部のみが先に酸化されてしまう場合がある。
 また、低温で処理を行うことで、シリコン酸化膜(半導体素子)への熱負荷を低減することができる。すなわち、ウエハ12に形成されたゲート酸化膜やゲート電極など半導体素子の特性を変質させることなく、シリコン含有膜をシリコン酸化膜に改質できる。例えば、ウエハ12上に形成された回路そのものの性能が劣化することを抑制できる。具体的には、トランジスタの動作用に打ち込んだボロンや砒素、燐などの不純物の過剰な拡散を抑制できる。また、電極用の金属シリサイドの凝縮、ゲート用仕事関数の性能変動、メモリ素子の読み込みまたは書き込みの繰り返し寿命の劣化などを抑制できる。
(c)本実施形態によれば、シリコン含有膜は、ポリシラザンを含有する。これにより、微細な凹凸構造を有するウエハ12上に形成されたシリコン含有膜をより容易に酸化させ、シリコン酸化膜に改質することができる。すなわち、過酸化水素が分解することで発生するヒドロキシラジカル(OH*)が有する酸化力により、ポリシラザン中のシラザン結合(Si-N結合)や、Si-H結合が切断される。そして、切断された窒素(N)や水素(H)が、ヒドロキシラジカルが有する酸素(O)と置換されて、シリコン含有膜中にSi-O結合を形成することができる。
 また、シリコン含有膜を、NH-を多く含まないSi-O結合を主骨格にするシリコン酸化膜に改質することができる。このシリコン酸化膜は、従来の有機SOGで形成されるシリコン酸化膜とは異なり、高い耐熱性を有する。
(d)本実施形態によれば、基板処理装置10が備える構成部材のうち、処理液と接触する構成部材は、処理液と反応性の低い材料で構成されている。すなわち、例えばボート14の支柱14a、基板載置部14b、底板14c、処理液供給管340a、第1の排気管346、第2の排気管347、第3の排気管409等は、例えばテフロン(登録商標)、石英、酸化アルミニウム(Al),窒化アルミニウム(AlN),炭化シリコン(SiC)などのセラミックス等の少なくともいずれかを含有する材料で構成されている。これにより、処理液と接触する構成部材が、処理液によって腐食されることを抑制できる。
(e)本実施形態によれば、第1の排気管346の少なくともAPCバルブ403よりも上流側には、第1の排気管346を加熱するエキゾーストチューブヒータ411が設けられている。これにより、排気部内で、処理液が再液化することを抑制できる。従って、例えば排気部内で再液化した後、再気化した処理液の気化ガスが、処理管360内に逆流することを抑制でき、その結果、ウエハ12上に発生する異物を低減できる。
<本発明の他の実施形態>
 以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態では、処理液として過酸化水素水を用い、処理管360内に過酸化水素水を供給した後、処理管360内で過酸化水素水を蒸発、気化させて過酸化水素水の気化ガスを生成し、ウエハ12に酸化処理を行ったが、これに限定されるものではない。この他、例えば処理液として水(HO)を用いて、ウエハ12に酸化処理を行ってもよい。
 なお、処理液として水(HO)を用いる場合、ウエハ12上に供給される水蒸気には、HO分子単体の状態や、いくつかの分子が結合したクラスタ状態が含まれても良い。また、水(HO)を液体状態から気体状態に変化させる際、HO分子単体まで分裂させるようにしても良いし、いくつかの分子が結合したクラスタ状態まで分裂させるようにしても良い。また、上記のクラスタが幾つか集まってできた霧(ミスト)状態であっても良い。
 また、例えば、水素(H)ガス等の水素元素(H)を含むガス(水素含有ガス)、及び例えば酸素(O)ガス等の酸素元素(O)を含むガス(酸素含有ガス)を加熱して水蒸気(HO)化したガスを用いてもよい。すなわち、バルブ204,213b,208を閉じ、バルブ213d、213eを開け、第1のガス供給管340d及び第2のガス供給管340eからそれぞれ、Hガス及びOガスを処理管360内へ、マスフローコントローラ212d,212eによりそれぞれ流量制御しながら供給してもよい。そして、処理管360内に供給されたHガス及びOガスを反応させ、第2の加熱部345により加熱した気化部342に接触させて水蒸気を発生させ、水蒸気をウエハ12に供給することで、例えばウエハ12上に形成されたシリコン含有膜をシリコン酸化膜(SiO膜)に改質してもよい。なお、酸素含有ガスとしては、Oガスの他、例えばオゾン(O)ガスや水蒸気(HO)等を用いてもよい。処理するウエハ12が高温に対応可能な場合、特に有効である。
 上述の実施形態では、処理室30内に供給された処理液を、気化部342に接触させることで蒸発、気化させて、処理室30内で処理液の気化ガスを生成したが、これに限定されるものではない。すなわち、処理室30内に供給された処理液が、処理室30内で加熱されて蒸発、気化されるように構成されていればよい。例えば、処理液供給ノズル339と処理室30(処理管360)との接合部を加熱することで処理室30内で処理液を加熱して気化させてもよい。
 上述の実施形態では、処理室30内に供給された処理液を、気化部342に接触させることで蒸発、気化させて、処理室30内で処理液の気化ガスを生成したが、これに限定されるものではない。すなわち、処理室30内に供給された処理液が、処理室30内で加熱されて蒸発、気化されるように構成されていればよい。例えば、処理液供給ノズル339と処理室30(処理管360)との接合部を加熱することで処理室30内で処理液を加熱して気化させてもよい。
 上述の実施形態では、例えば過酸化水素水や水等の処理液を加熱することで蒸発、気化させて気化ガスを生成する場合や、酸素ガスと水素ガスとの反応物を加熱して水蒸気(HO)化したガスを生成する場合について説明したが、これに限定されるものではない。例えば、過酸化水素水や水等の処理液に超音波を加えることで、処理室30内で処理液をミスト化する方法や、アトマイザを用いてミストを噴霧する方法でも良い。また、処理室30内で、処理液にレーザやマイクロ波を直接照射し、処理室30内で処理液を蒸発、気化させる方法であっても良い。
 また、例えば、上述した実施形態において、改質処理工程(S40)とパージ工程(S50)との間に、熱処理工程を行ってもよい。すなわち、例えばウエハ12を高温に加熱してアニール処理(熱処理)等を行ってもよい。
 熱処理工程では、まず、処理室30内の温度が所定の温度(例えば600℃~1100℃)となるように、少なくとも第1の加熱部320によって加熱するとともに、処理室30内が所定の圧力(例えば6000Pa~60000Pa)となるように、真空ポンプ405又は真空ポンプ408の少なくともいずれかを作動させて調整する。処理室30内が所定の温度及び所定の圧力に達したら、排気部から排気しつつ、バルブ213c及びバルブ208を開け、不活性ガス供給管340cから、処理室30内への不活性ガスの供給を開始する。そして、処理管360内を所定の温度及び所定の圧力に維持した状態で、所定時間(例えば5分~120分)、熱処理を行う。所定の時間が経過したら、少なくとも第1の加熱部320への電力供給を停止する。例えば、熱処理工程は、約800℃の温度、53200Paの圧力雰囲気下で、30分間を行うとよい。
 熱処理工程では、サブヒータ210a,210d,210e、液化防止ヒータ280、エキゾーストチューブヒータ411への電力供給は停止してもよい。このとき、各ヒータへの電力供給を同時に停止にしても良いし、別々のタイミングで停止しても良い。また、例えば、熱処理工程では、第1の排気管346内ではガスが流れるため、エキゾーストチューブヒータ411には電力を供給し、サブヒータ210a,210d,210e及び液化防止ヒータ280への電力供給を停止するようにしてもよい。
 熱処理を行った場合は、上述したように降温・大気圧復帰工程(S60)で、ウエハ12を降温させつつ、シャッタ359を開け、冷却ガスとしてのNガスを冷却ガス供給管363から処理管360と断熱部材300との間の空間352内に供給するとよい。これにより、空間352内に設けられる処理管360及び第1の加熱部320をより短時間で冷却できる。その結果、次の改質処理工程(S40)の開始時間を早めることができ、スループットを向上させることができる。
 このように熱処理工程を行うことで、改質処理工程(S40)で酸化しきれなかったシリコン含有膜中の成分を酸化させることができる。すなわち、熱処理工程を実施することにより、例えばウエハ12の溝内の最深部に存在するシリコン含有膜中の不純物である窒素や水素、その他の不純物を除去することができる。従って、シリコン酸化膜の膜質をより向上させることができる。すなわち、シリコン含有膜を十分に酸化、緻密化、硬化させることができる。その結果、シリコン酸化膜は、絶縁膜として良好なWER(ウエハエッチングレート)特性を得ることができる。なお、WERは、最終アニール温度依存性が大きく、高温になるほどWER特性が向上する。
 また、例えば、上述の基板搬出工程(S70)の後に、処理管360内のクリーニングを行うクリーニング工程を実施しても良い。クリーニング工程を行うことで、処理管360、ボート14、第1の排気管346等に溜まる不純物を除去することができ、処理管360内に設けられる部材の腐食を防止することができる。
 上述の実施形態では、処理液と接触する構成部材(例えば処理液供給管340aの内面やボート14の支柱14a等)を処理液と反応性の低い材料で構成したが、これに限定されるものではない。この他、処理液と接触する構成部材を金属材料で構成し、金属材料に処理液と反応性の低い材料から成る皮膜を形成してもよい。例えば、処理液と接触する構成部材を、金属材料であるアルミニウムや、アルマイト(Al)、ステンレス鋼で形成した場合、金属材料にクロム酸化膜を形成すればよい。また、処理液と接触する構成部材のうち、加熱されない構成部材については、処理液と反応性の低い材料としてプラスチックなどを用いて構成してもよい。
 上述の実施形態では、気化部342がボート14の支柱14aによって支持されるように設けられる場合を例に説明したが、これに限定されるものではない。すなわち、例えば、気化部342は、処理管360の内部であって、処理管360の上部に設けられていてもよい。
 上述の実施形態では、支柱14aと基板載置部14bとがそれぞれ独立した構成である場合について説明したが、これに限定されるものではない。すなわち、支柱14aと基板載置部14bとは、一体成型されていてもよい。例えば、支柱14aに基板載置部14bとしての溝を設け、この溝でウエハ12を支持するように構成してもよい。
 上述の実施形態では、ウエハ12上に形成されるシリコン含有膜として、例えばポリシラザンを含有する場合について説明したが、これに限定されるものではない。すなわち、例えば過酸化水素水等の酸化剤溶液を用いて、酸化させることができる膜がウエハ12上に形成されていればよい。例えば、トリシリルアミン(TSA)やアンモニアのプラズマ重合膜を用いても良い。
 上述の実施形態では、例えばポリシラザン(SiHNH)等のシリコン材料をキシレン(C10)等の溶媒に溶解した溶液(シリコン含有材料)を用いて、ウエハ12上にシリコン含有膜であるポリシラザン膜を成膜したが、これに限定されるものではない。この他、シリコン材料として、例えばヘキサメチルジシラザン(HMDS)、ヘキサメチルシクロトリシラザン(HMCTS)、ポリカルボシラザン、ポリオルガノシラザン、トリシリルアミン(TSA)等を用いてもよい。また、溶媒として、トルエン(CCH)、ジブチルエーテル(C18O)等の有機溶媒を用いてもよい。
 上述の実施形態では、ウエハ12上にシリコン含有膜としてのポリシラザン膜を、スピンコータ装置によって、ポリシラザンを含む溶液をウエハ12上に塗布することで成膜(形成)したが、これに限定されるものではない。この他、例えば、モノシラン(SiH)ガス又はトリシリルアミン(TSA)ガス等のシリコン(Si)原料を用いたCVD(Chemical Vapor Deposition)法によって、ウエハ12上にシリコン含有膜を成膜してもよい。また、例えばポリシリコン膜等のシリコン含有膜が予め形成されたウエハ12を用いてもよい。
 上述の実施形態では、処理液供給ノズル339や処理液供給管340aと、第1の排気管346とを対向する位置に設けたが、これに限定されるものではない。例えば、処理液供給ノズル339や処理液供給管340aと、第1の排気管346とを同じ側に設けても良い。これにより、基板処理装置10の省スペース化を図ることができる。また、処理液供給ノズル339や処理液供給管340aと、第1の排気管346とが近接して配置されるため、メンテナンスにかかる時間を短縮することができ、スループットを向上させることができる。
 上述の実施形態では、サブヒータ210a,210d,210eと、液化防止ヒータ280と、エキゾーストチューブヒータ411とはそれぞれ、コントローラ500に電気的に接続し、コントローラ500は、サブヒータ210a,210d,210e、液化防止ヒータ280、及びエキゾーストチューブヒータ411にそれぞれ接続された温度センサが検出した温度情報に基づいて、サブヒータ210a,210d,210e、液化防止ヒータ280、及びエキゾーストチューブヒータ411への供給電力を制御するように構成したが、これに限定されるものではない。例えば、サブヒータ210a,210d,210eと、液化防止ヒータ280と、エキゾーストチューブヒータ411との温度が所定の温度になるように制御する、液化防止制御部としての液化防止制御装置が設けられていてもよい。
 液化防止制御装置には、液化防止ヒータ280と、エキゾーストチューブヒータ411と、サブヒータ210a,210d,210eの温度を検出する温度検出器が設けられている。温度検出器は、例えば、シースタイプの熱電対で構成されている。温度検出器が検出した温度に基づいて、液化防止ヒータ280と、エキゾーストチューブヒータ411と、サブヒータ210a,210d,210eとへの電力供給量が制御される。例えば、サブヒータ210a,210d,210e、液化防止ヒータ280、エキゾーストチューブヒータ411の温度が、100℃以下になった際に各ヒータへ電力を供給し、各ヒータの温度が300℃以上になった際に各ヒータへの電力の供給を停止する制御(ON/OFF制御)が行われる。また、例えば、PID(Proportinal Integral Differential)制御のようなフィードバック制御を行い、サブヒータ210a,210d,210e、液化防止ヒータ280、エキゾーストチューブヒータ411がそれぞれ、所定の温度(例えば200℃)を維持するように各ヒータへの電力供給の制御を行ってもよい。また、例えば、液化防止ヒータ280は、少なくとも改質処理工程(S30)を行っている間は上述のON/OFF制御を行い、処理室30にウエハ12が収容されていない時や、ウエハ12に400℃以上の処理が行われている時は、液化防止ヒータ280への電力の供給を停止するように制御してもよい。
 また、例えば、シールキャップ344の上には、処理液や、処理液の気化ガス、処理液の気化ガスが再液化した液体等(以下、処理液等ともいう。)からシールキャップ344を保護するシールキャップ保護部が設けられていてもよい。シールキャップ保護部は、例えば石英(SiO)等の非金属材料の、処理液等と反応し難い材料で構成されている。処理管360の下端とシールキャップ保護部とシールキャップ344との間にはそれぞれ、処理室30内の気密を保つためのOリングが設けられているとよい。シールキャップ344や、シールキャップ保護部には、シールキャップ344やシールキャップ保護部を冷却する冷却水が流れる冷却流路が設けられていてもよい。これにより、第1~第4のヒータユニット320a~320dや液化防止ヒータ280から放出される熱によって、シールキャップ344が変形したり、Oリングが劣化することを抑制できる。シールキャップ344やシールキャップ保護部が冷却されることで、シールキャップ344の表面で処理液の気化ガスの再液化が生じる場合には、シールキャップ保護部の上に熱伝導部を設けて、シールキャップ保護部の表面を容易に加熱できるようにしても良い。熱伝導部は、例えば、炭化シリコン(SiC)、酸化アルミニウム(AlO)、窒化アルミニウム(AlN)、窒化ホウ素(BN)、窒化シリコン(SiN)、酸化ジルコニウム(ZrO)や、グラファイトやグラッシーカーボン等の炭素材料等の熱伝導性の良い非金属材料等、ボート14と同様の構成材料を用いて形成されているとよい。熱伝導部には、特に熱伝導率が5W/mK以上である構成材料が用いられるとよい。また、熱伝導部は、処理液の気化ガスと接触する場合がある。従って、熱伝導部は、処理液(処理液の気化ガス)と反応しない材料で構成されているとより良い。また、熱伝導部を伝導性を有する部材で構成し、熱伝導部に通電することで、熱伝導部が自己発熱するように構成しても良い。また、熱伝導部に、ポーラス(多孔)構造を設けることにより、蒸発面積を増やすようにしても良い。
<本発明の更に他の実施形態>
 上述した実施形態では、処理液を処理管360内に供給し、処理管360内で処理液を蒸発、気化させて処理液の気化ガスを生成する場合について説明したが、本発明は、これに限定されるものではない。例えば、処理液を処理管360外で気化させ、処理管360内に処理液の気化ガスを供給してもよい。なお、本実施形態では、処理液として過酸化水素水を用いる場合を例に説明する。
 図6は、本発明の他の実施形態に係る基板処理装置10Aの概略構成図である。図7は、本実施形態に係る基板処理装置10Aが備える過水蒸気発生装置の縦断面概略図である。本実施形態では、供給部の構成の他は、上述の実施形態と同様に構成されている。従って、上述の実施形態と同様の構成については、説明を省略する。
(供給部)
 図6に示すように、処理管360には、ガス供給ノズル339Aが処理管360の下部を貫通するように設けられている。ガス供給ノズル339Aは、処理管360とボート14との間の空間に、処理管360の内壁の下部より上部に沿って、ウエハ12の積載方向上方に向かって立ち上がるように設けられている。
 ガス供給ノズル339Aの垂直部側面には、処理管360内にガスを供給する供給孔341Aが設けられている。この供給孔341Aは、ウエハ12が積層される方向(鉛直方向)に沿って、それぞれ複数個ずつ、ウエハ12の中心に向けて開口されている。ガス供給孔341Aはそれぞれ、同一の開口面積を有し、更に同じ開口ピッチで設けられている。なお、ガス供給孔341Aの開口径は、処理管360内のガスの流量分布や速度分布を適正化するように、下部から上部にわたって徐々に大きくする等してもよい。
[過水蒸気供給部]
 ガス供給ノズル339Aの上流端には、過水蒸気供給管340fの下流端が接続されている。過水蒸気供給管340fには、過水蒸気発生装置220及び開閉弁であるバルブ221が設けられている。また、過水蒸気供給管340fの少なくとも過水蒸気発生装置220より下流側には、例えばインレットチューブヒータ等のサブヒータ210fが設けられている。サブヒータ210fは、過水蒸気発生装置220で発生させた過酸化水素水の気化ガスが、過水蒸気供給管340fの内部で再液化(結露が発生)しないように、過水蒸気供給管340fを所定の温度(例えば50℃~300℃)に加熱するように構成されている。
 過水蒸気供給管340fの過酸化水素水又は過酸化水素水の気化ガスと接触する箇所、すなわち過水蒸気供給管340fの内面は、過酸化水素水又は過酸化水素水の気化ガスと反応性の低い材料で構成されているとよい。過水蒸気供給管340fの内面は、例えばテフロン(登録商標)や、石英、酸化アルミニウム(Al),窒化アルミニウム(AlN),炭化シリコン(SiC)などのセラミックス等の少なくともいずれかを含有する材料で構成されているとよい。これにより、過水蒸気供給管340fの腐食を抑制することができる。また、過水蒸気供給管340fとして金属部材が用いられた場合、過水蒸気供給管340fの内面には、金属部材と過酸化水素水又は過酸化水素水の気化ガスとが反応することを防止する反応防止皮膜を設けるとよい。反応防止皮膜は、例えばテフロン(登録商標)などの処理液の気化ガスと反応性の低い材料で構成されているとよい。
 過水蒸気供給管340fからは、過水蒸気発生装置220で発生させた過酸化水素水の気化ガスが、バルブ222、ガス供給ノズル339A、供給孔341Aを介して処理管360内に供給される。
 過水蒸気発生装置220には、過酸化水素水を供給する過酸化水素水供給管340gが接続されている。過酸化水素水供給管340gには、上流側から順に、過酸化水素水供給源211g、液体用マスフローコントローラ221及び開閉弁であるバルブ213gが設けられている。過酸化水素水供給管340gからは、過酸化水素水が、液体用マスフローコントローラ221、バルブ213gを介して過水蒸気発生装置220内に供給される。
 主に、過水蒸気供給管340f、バルブ221、ガス供給ノズル339Aにより、過水蒸気供給部が構成される。なお、過水蒸気発生装置220を過水蒸気供給部に含めて考えてもよい。また、主に液体用マスフローコントローラ221及びバルブ213gにより、過酸化水素水供給部が構成される。なお、過酸化水素水供給源211gを過酸化水素水供給部に含めて考えてもよい。また、過酸化水素水供給部を過水蒸気供給部に含めて考えてもよい。
[不活性ガス供給部]
 過水蒸気供給管340fの過水蒸気発生装置220とバルブ209との間には、不活性ガス供給管340hの下流端が接続されている。不活性ガス供給管340hには、上流方向から順に、不活性ガス供給源211h、流量制御器(流量制御部)であるマスフローコントローラ(MFC)212h及び開閉弁であるバルブ213hが設けられている。
 不活性ガス供給管340hからは、不活性ガスが、マスフローコントローラ212h、バルブ213h、過水蒸気供給管340f及びガス供給ノズル339Aを介して処理管360内に供給される。不活性ガスとしては、例えば窒素(N)ガスや、Heガス、Neガス、Arガス等の希ガスを用いることができる。
 主に、不活性ガス供給管340h、マスフローコントローラ212h及びバルブ213hにより、不活性ガス供給部が構成される。なお、不活性ガス供給源211hや、過水蒸気供給管340f、ガス供給ノズル339Aを不活性ガス供給部に含めて考えてもよい。
 また、主に、過水蒸気供給部と不活性ガス供給部とにより、本実施形態にかかる供給部が構成されている。
(過水蒸気発生装置)
 次に、過水蒸気発生装置220の構成について、図7を用いて説明する。図7に示すように、過水蒸気発生装置220は、処理液である過酸化水素水を加熱機構によって加熱した部材に滴下することで、処理液である過酸化水素水を気化させる滴下法を用いている。
 過水蒸気発生装置220は、処理空間(気化空間)223を構成する気化容器224を備えている。気化容器224の構成材料としては、処理液である過酸化水素水と反応性の低い例えば石英や炭化シリコン等を用いるとよい。気化容器224内の温度は、気化容器224内に供給された過酸化水素水の温度や、過酸化水素水の気化熱により低下する場合がある。従って、気化容器224内の温度の低下を防止するために、気化容器224の構成材料として、熱伝導率が高い炭化シリコンが用いられると、より好ましい。
 気化容器224の外側には、気化容器223の側壁面及び底面を囲うように、気化容器224を加熱する加熱部としての気化器ヒータ225が設けられている。すなわち、気化容器224は、気化容器224内に供給された過酸化水素水が気化容器224の内壁に到達すると同時に(瞬時に)気化するような温度に、気化器ヒータ225によって加熱されるように構成されている。気化容器224の底側中央には、気化容器224内の温度を測定する例えば熱電対等の温度センサ226が設けられている。温度センサ226には、コントローラ500が電気的に接続されている。コントローラ500は、温度センサ226によって検出された温度情報に基づいて、気化容器224内が所定の温度となるように、気化器ヒータ225への供給電力を制御するように構成されている。
 気化容器224の上部には、過酸化水素水を気化空間223内に供給する滴下ノズル229が設けられている。滴下ノズル229の上流端は、過酸化水素水供給管340gの下流端に接続されている。
 また、気化容器224の上部には、排気口227が設けられている。排気口227には、過水蒸気供給管340fの上流端が接続されている。すなわち、気化容器224内で生成された過酸化水素水の気化ガス(過酸化水素水の水蒸気)は、排気口227、過水蒸気供給管340f、ガス供給ノズル341Aを介して処理管360内へ供給されるように構成されている。
 気化容器224の周囲には、気化器ヒータ225からの熱が例えば基板処理装置10Aの他の構成部材等へ伝わりにくくなるように、断熱材228が設けられている。また、断熱材228が設けられることで、気化器ヒータ225による気化容器224内の加熱効率を向上させることもできる。
 次に、基板処理装置10Aを用いて、例えば、ウエハ12上に形成されたシリコン含有膜をシリコン酸化膜に改質する改質処理工程を有する基板処理工程について説明する。なお、本実施形態にかかる基板処理工程は、改質処理工程(S40)の他は、上述した基板処理工程と同様である。従って、上述の実施形態と同様の構成については、説明を省略する。
<改質処理工程(S40)>
 ウエハ12を加熱して所定の温度に達し、ボート14が所定の回転速度に到達したら、過水蒸気供給管340fから処理管360内への過酸化水素水の気化ガスの供給を開始する。すなわち、バルブ213gを開け、滴下ノズル229を介して、過酸化水素水供給源211fから過水蒸気発生装置220が備える気化容器224内に、過酸化水素水を液体用マスフローコントローラ221により流量制御しながら供給する。このとき、気化容器224内が所定の温度(例えば150℃~170℃)となるように、気化器ヒータ225によって予め加熱されている。これにより、気化容器224内に供給された過酸化水素水が気化容器224内の底壁等の内壁に接触すると、過酸化水素水は瞬時に加熱されて蒸発、気化し、過酸化水素水の気化ガスを生成することができる。
 バルブ213gを開けると同時に、バルブ222を開け、気化容器224内で生成した過酸化水素水の気化ガスを、過水蒸気供給管340fからガス供給ノズル339A、供給孔341Aを介して処理管360(処理室30)内に供給する。そして、過酸化水素水の気化ガスを、処理管360内に収容したウエハ12に供給する。ウエハ12に供給した過酸化水素水の気化ガスがウエハ200の表面と酸化反応し、ウエハ12上に形成されたシリコン含有膜をシリコン酸化膜(SiO膜)に改質する。
 所定時間経過後、バルブ213gを閉じ、過水蒸気発生装置220内への過酸化水素水の供給を停止する。これと併行して、バルブ222を閉じ、処理管360内への過酸化水素水の気化ガスの供給を停止する。
 このように、処理管360外で処理液である過酸化水素水の気化ガスを生成し、過酸化水素水の気化ガスを処理管360内に供給する構成であっても、例えばウエハ12に形成された微細構造の溝の底部に形成されたシリコン含有膜まで酸素原子を供給できる。従って、ウエハ12に形成されたシリコン含有膜に均一な酸化処理を行うことができ、ウエハ12上に形成される酸化膜を高品質で緻密な膜にすることができる。
 なお、上述の実施形態では、過水蒸気発生装置220に過酸化水素水を供給し、過水蒸気発生装置220で過酸化水素水の気化ガスを生成する場合について説明したが、これに限定されるものではない。例えば、過水蒸気発生装置220に、オゾン(O)を含む液体や、水(HO)等を供給し、過水蒸気発生装置220でオゾンを含む気化ガスや、水蒸気等を生成し、処理管360内に供給するようにしてもよい。
<本発明の更に他の実施形態>
 上述の実施形態では、縦型の処理室30を備える基板処理装置について説明したが、これに限定されず、他の装置を用いても実施可能である。以下、枚葉式の処理室を備える基板処理装置について、図8を用いて説明する。図8は、本実施形態にかかる基板処理装置10Bが備える処理室600の縦断面概略図である。
 図8に示すように、処理室600を構成する処理容器612は、ドーム側の上側容器613と、碗型の下側容器614と、を備えている。そして、上側容器613が下側容器614の上に被さることにより、処理室600が形成される。処理容器612には、例えば過酸化水素水の気化ガス等の処理液の気化ガスが処理容器612内で、再液化(結露)しないように、処理容器612内を適切な温度に加熱する加熱機構が設けられていてもよい。例えば、抵抗加熱型のヒータを処理容器612の外側に密着させることで、処理容器612内を加熱したり、温度制御した液体やガスを処理容器612に設けた流路に流すことによって、処理容器612内を加熱してもよい。
 下側容器614の側壁には、仕切弁としてのゲートバルブ606が設けられている。処理室600は、ゲートバルブ606を介して基板処理装置10Bが備える搬送室と連通可能に設けられている。ゲートバルブ606が開けられると、搬送ロボットとしての搬送アームによって、処理室600内へウエハ12を搬入し、または処理室600外へウエハ12を搬出することができるように構成されている。そして、ゲートバルブ606を閉じることにより、処理室600内を気密にすることができるように構成されている。
 処理室600内の底側中央には、ウエハ12を支持するサセプタ608が配置されている。サセプタ608のウエハ12の支持面には、複数の僅かな突起608aが設けられている。これにより、サセプタ608と接触するウエハ12の面積を減らすことができる。サセプタ608は、ウエハ12の金属汚染を低減することができるように非金属材料で形成されている。少なくともサセプタ608の表面は、炭化シリコンからなる皮膜で覆われているとよい。これにより、例えば過酸化水素水等の処理液の気化ガスが、サセプタ608と接触した際、サセプタ608が劣化することを抑制できる。
 サセプタ608には、複数の貫通孔が設けられている。下側容器613の底面の貫通孔に対応する位置には、ウエハ12を突き上げてウエハ12の裏面を支持する複数の支持ピン607が設けられている。搬送アームによって処理室600内へ搬入されたウエハ12は、支持ピン607上に載置される。そして、サセプタ608を上昇させると、ウエハ12をサセプタ608の上面に配置することができる。
 サセプタ608の内部には、加熱機構としてのヒータが一体的に埋め込まれており、ウエハ12を加熱できるように構成されている。ヒータに電力が供給されると、ウエハ12の表面が所定温度にまで加熱されるように構成されている。
 上側容器613の上部には、上側容器613の上面に開設された開口615,616を介して、処理液の気化ガス供給部及び不活性ガス供給部がそれぞれ気密に設けられている。すなわち、開口615には、気化ガス供給管617の下流端が気密に設けられている。また、開口616には、不活性ガス供給管618の下流端が気密に設けられている。
 処理ガス供給管616には、上流側から順に、処理液の気化ガスを生成するガス発生器603、流量制御装置としてのマスフローコントローラ619、及び開閉弁であるバルブ604が設けられている。処理ガス供給管616からは、ガス発生器603によって生成された、例えば処理液である過酸化水素水や水蒸気等を気化させた気化ガス(処理液の気化ガス)が、マスフローコントローラ619、バルブ604、開口615を介して処理室600内に供給される。
 主に、気化ガス供給管617、マスフローコントローラ619及びバルブ604により、処理液の気化ガス供給部が構成される。なお、ガス発生器603、開口615を気化ガス供給部に含めて考えてもよい。
 不活性ガス供給管618には、上流側から順に、不活性ガス供給源620、流量制御装置としてのマスフローコントローラ601、及び開閉弁であるバルブ602が設けられている。不活性ガス供給管618からは、例えば窒素(N)ガス等の不活性ガスが、マスフローコントローラ601、バルブ602及び開口616を介して処理室600内に供給される。不活性ガスとしては、窒素ガスの他、例えばHeガスや、Neガス、Arガス等の希ガスを用いることができる。
 なお、本実施形態では、処理ガス供給管616から処理液の気化ガスを処理室600内に供給する際、これと併行して、フォーミングガスとしての窒素(N)ガスやArガス等を処理室600内に供給することができる。
 主に、不活性ガス供給管618、マスフローコントローラ601及びバルブ602により、不活性ガス供給部が構成される。なお、不活性ガス供給源620、開口616を不活性ガス供給部に含めて考えてもよい。
 処理室600内の上部には、処理室600内に供給された処理液の気化ガスや不活性ガスを、処理室600内に分散させるガス分散板605が設けられている。これにより、ウエハ12に面内均一に処理液の気化ガスを供給することができる。なお、ガス分散板605は処理条件によっては設けられていなくてもよい。
 処理容器612には、処理室600内の雰囲気を排気する排気管621の上流端が接続されている。排気管621には、上流方向から順に、開閉弁であるバルブ622、圧力調整器としてのAPCバルブ611、及び真空排気装置としての真空ポンプ609が設けられている。排気管621は、真空ポンプ609により、処理室600内の圧力が所定の圧力となるよう真空排気し得るように構成されている。また、処理容器612には、処理室600内の圧力を検出する圧力検出部としての圧力計(圧力センサ)610が、バルブ623を介して接続されている。圧力計610、APCバルブ611には、コントローラ500が電気的に接続されている。コントローラは、処理室600内の圧力が所定のタイミングにて所定の圧力になるように、圧力計610で検出された圧力情報に基づいて、APCバルブ611の開度を制御するように構成されている。
 このように、処理管360外で処理液である過酸化水素水の気化ガスを生成し、過酸化水素水の気化ガスを処理管360内に供給する構成であっても、ウエハ12上に形成された膜に均一に酸素原子を供給することができる。従って、ウエハ12上に形成される酸化膜の膜質を向上させることができる。
<本発明の更に他の実施形態>
 上述の実施形態では、ウエハ12を処理する半導体装置の製造工程であって、ウエハ12に形成された微細な溝に絶縁膜である酸化膜を形成する工程を例に説明したが、これに限定されるものではない。この他、例えば、半導体装置基板の層間絶縁膜を形成する工程や、半導体装置の封止工程等にも適用可能である。
 また、上述の実施形態では、半導体装置の製造工程について説明したが、これに限定されるものではない。この他、例えば、液晶デバイスの製造工程での液晶を有する基板の封止処理や、各種デバイスに使われるガラス基板やセラミック基板への撥水コーティング処理にも適用可能である。更には、鏡への撥水コーティング処理などにも適用可能である。
 次に、本発明の実施例を図9を参照しながら説明する。図9に、石英(SiO)、炭化シリコン(SiC)、酸化アルミニウム(AlO)の物性値を示す。
 まず、大気圧環境において、処理液である水の沸点以上の温度に設定したヒータ上に、石英の板を設置した。そして、石英の板の表面に熱電対を接触させて、石英の温度が水の沸点以上に加熱されていることを確認した。続いて、石英の板に水の液滴を適下した。このとき、水の液滴が熱電対の先端に触れるように適下した。そして、石英の板の表面の温度(熱電対の示す温度)の時間変化を計測した。水の液滴の滴下を開始した当初は、水の液滴は、極めて短時間で沸騰した。すなわち、水の液滴は極めて短時間で蒸発、気化されて水蒸気になった。その後、水の液滴の滴下を続け、時間が経過するにしたがって、水の液滴は沸騰せず(蒸発せず)、水の液滴が、石英の板上で徐々に乾燥していく状態が確認されたた。このとき、水の液滴の滴下開始当初は、石英の板の表面の温度が100℃(水の沸点)を超えていたが、水の液滴が沸騰しなくなることに追従して、石英の板の表面の温度が70℃程度となることが確認された。そして、水の液滴が完全に蒸発して石英の板の表面から無くなると、石英はヒータによって加熱され、石英の板の表面の温度が100℃以上に復帰することが確認された。すなわち、石英の板は、水(処理液)が有する蒸発潜熱によって、冷却されてしまうことが確認された。
 次に、石英の板の代わりに、炭化シリコンの板をヒータ上に設置して、同様の実験を実施した。炭化シリコンの板も、石英の板と同様に、水の液滴の適下とともに、蒸発潜熱による温度低下が生じるが、石英の板と比べて速やかに水の液滴を蒸発させることができることが確認された。その結果、炭化シリコンの板は、温度低下が生じても、石英の板と比べて温度回復が早いことが確認された。これは、図9に示すように、炭化シリコンは、石英よりも熱伝導率が二桁高い為である。
 従って、気化部342やボート14等の処理管360内に配設される構成部材として、熱伝導率の高い材料として炭化シリコンを採用することが望ましいことが確認された。これにより、処理液の気化ガスが処理管360内で再液化されることを抑制できる。
 図9に示すように、石英や酸化アルミニウムは、炭化シリコンに比べると、熱伝導率が低い。このため、石英や酸化アルミニウムを用いて形成した処理管360内に配設される構成部材は、処理液の蒸発潜熱で、処理液の沸点以下に冷却される場合がある。その結果、処理液の気化率が低下する場合があると考えられる。また、処理液の気化ガスが、冷却された処理管360内に配設される構成部材に接触すると、処理液の気化ガスが再液化してしまう場合があると考えられる。
 これに対し、処理管360内に配設される構成部材を例えば石英により形成した場合、このような構成部材は、処理液の気化ガスが有する蒸発潜熱によって冷却された後、温度回復に時間がかかる。従って、このような構成部材の温度は、処理液の沸点以下まで冷却している場合があると考えられる。その結果、構成部材の処理液の沸点以下まで冷却された箇所及びその周辺で、処理液の気化ガスの再液化が生じやすい。特に、処理液として過酸化水素水が用いられる場合においては、過酸化水素の沸点が水の沸点より高いため、再液化が生じやすい。また、再液化した過酸化水素水は、処理管360内に供給される過酸化水素水と比べて、過酸化水素の濃度が高く、強い酸化性を持つ場合がある。
 また、石英で構成された部材は、炭化シリコンで構成された部材に比べて、温度回復に時間がかかるため、処理液の気化ガスが再液化されて生じた液体を再気化させにくい場合があると考えられる。このため、処理液の気化ガスが再液化することで発生した液体が、処理管360内に溜まりやすく、処理管360内に配設される構成部材が腐食しやすいと考えられる。また、処理管360内で処理液の気化ガスが再液化しないように、処理管360内に供給する処理液の量を少なくする必要性が生じる場合もあると考えられる。その結果、ウエハ12の処理に時間がかかる場合があると考えられる。
<好ましい態様>
 以下に、好ましい態様について付記する。
(付記1)
 一態様によれば、
 基板を収容する処理室と、
 前記処理室内に処理液を供給する処理液供給部と、
 前記処理室内で前記処理液を加熱する加熱部と、
 前記処理室内に設けられ、前記基板を支持する基板支持部と、を備える半導体装置の製造装置が提供される。
(付記2)
 付記1の半導体装置の製造装置であって、好ましくは、
 前記加熱部によって前記処理液を加熱し、前記処理室内で前記処理液を蒸発させるように、前記処理液供給部と前記加熱部とを制御する制御部を備える。
(付記3)
 付記1又は付記2の半導体装置の製造装置であって、好ましくは、
 前記処理液は、過酸化水素を含有する。
(付記4)
 付記3の半導体装置の製造装置であって、好ましくは、
 前記処理液は、水を含有する。
(付記5)
 付記1又は付記2の半導体装置の製造装置であって、好ましくは、
 前記処理液は、水を含有する。
(付記6)
 付記1ないし付記5のいずれかの半導体装置の製造装置であって、好ましくは、
 前記基板には、シリコン含有膜が形成されている。
(付記7)
 付記6の半導体装置の製造装置であって、好ましくは、
 前記シリコン含有膜は、シラザン結合を有する。
(付記8)
 付記7の半導体装置の製造装置であって、好ましくは、
 前記シラザン結合を有する膜は、ポリシラザンを有する。
(付記9)
 付記8の半導体装置の製造装置であって、好ましくは、
 前記ポリシラザンを有する膜は、ポリシラザンを含む溶液を前記基板に塗布する、又はシリコン材料を用いたCVD法によって形成されている。
(付記10)
 付記1ないし付記9のいずれかの半導体装置の製造装置であって、好ましくは、
 前記処理室内には、前記処理液供給部から前記処理液が供給される気化部が設けられている。
(付記11)
 付記10の半導体装置の製造装置であって、好ましくは、
 前記気化部は、炭化シリコンを含有する。
(付記12)
 付記10又は付記11の半導体装置の製造装置であって、好ましくは、
 前記気化部は、前記基板支持部に設けられている。
(付記13)
 付記12の半導体装置の製造装置であって、好ましくは、
 前記気化部は、前記基板支持部によって支持されるように設けられている。
(付記14)
 付記1ないし付記13のいずれかの半導体装置の製造装置であって、好ましくは、
 前記基板支持部には、前記基板を複数枚支持する基板載置部が設けられている。
(付記15)
 付記2の半導体装置の製造装置であって、好ましくは、
 前記処理液は、沸点の異なる2つ以上の物質を含み、
 前記制御部は、前記処理液を前記加熱部に供給する前の処理液濃度と前記処理液が蒸発した後の処理液濃度とが同じ濃度になるように前記加熱部を制御する。
(付記16)
 他の態様によれば、
 基板を収容する処理室に、処理液供給部から処理液を供給する処理液供給工程と、
 加熱部により前記処理室内で前記処理液を加熱する処理液加熱工程と、を有する半導体装置の製造方法が提供される。
(付記17)
 付記16の半導体装置の製造方法であって、好ましくは、
 前記処理液加熱工程では、前記処理室内で前記処理液を蒸発させ、前記処理液の気化ガスを生成する。
(付記18)
 付記16又は付記17の半導体装置の製造方法であって、好ましくは、
 前記処理液加熱工程では、前記処理室内に設けられ、前記加熱部によって加熱した気化部に前記処理液を供給する。
(付記19)
 付記18の半導体装置の製造方法であって、好ましくは、
 前記気化部は、前記処理室内に設けられ、前記基板を支持する基板支持部に設けられている。
(付記20)
 付記16ないし付記19の半導体装置の製造装置であって、好ましくは、
 前記処理液は、過酸化水素を含有する。
(付記21)
 付記16ないし付記20の半導体装置の製造方法であって、好ましくは、
 前記基板にはシリコン含有膜が形成されている。
(付記22)
 付記21の半導体装置の製造方法であって、好ましくは、
 前記シリコン含有膜は、シラザン結合を有する。
(付記23)
 付記22の半導体装置の製造方法であって、好ましくは、
 前記シラザン結合を有する膜はポリシラザンを含有する。
(付記24)
 更に他の態様によれば、
 基板を収容する処理室に、処理液供給部から処理液を供給する処理液供給手順と、
 加熱部により前記処理室内で前記処理液を加熱する処理液加熱手順と、をコンピュータに実行させるプログラムが提供される。
(付記25)
 更に他の態様によれば、
 基板を収容する処理室に、処理液供給部から処理液を供給する処理液供給手順と、
 加熱部により前記処理室内で前記処理液を加熱する処理液加熱手順と、をコンピュータに実行させるプログラムが記録された記録媒体が提供される。
(付記26)
 更に他の態様によれば、
 基板を収容する処理室内に、処理液を供給する処理液供給管と、
 前記処理液供給管に設けられ、前記処理室内に供給する前記処理液の流量を制御する処理液流量制御部と、を備える処理液供給ユニットが提供される。
(付記27)
 付記26の処理液供給ユニットであって、好ましくは、
 前記処理液供給管の前記処理液と接触する面は、前記処理液と反応性の低い材料で構成されている。
(付記28)
 付記27の処理液供給ユニットであって、好ましくは、
 前記処理液と反応性の低い材料は、テフロン、石英、セラミックスのいずれかを有する。
(付記29)
 更に他の態様によれば、
 基板を収容する処理室内に供給される処理液を蒸発させる気化ユニットが提供される。
(付記30)
 更に他の態様によれば、
 基板を支持し、当該基板を処理する処理液を蒸発させる気化部を有する基板支持ユニットが提供される。
(付記31)
 更に他の態様によれば、
 基板を収容し、当該基板を処理する処理液を蒸発させる気化部を有する処理容器が提供される。

Claims (14)

  1.  基板を収容する処理室と、
     前記処理室内に処理液を供給する処理液供給部と、
     前記処理室内で前記処理液を加熱する加熱部と、
     前記処理室内に設けられ、前記基板を支持する基板支持部と、を備える
    半導体装置の製造装置。
  2.  前記加熱部によって前記処理液を加熱し、前記処理室内で前記処理液を蒸発させるように、前記処理液供給部と前記加熱部とを制御する制御部を備える
    請求項1に記載の半導体装置の製造装置。
  3.  前記処理液は、過酸化水素を含有する
    請求項1に記載の半導体装置の製造装置。
  4.  前記基板には、シリコン含有膜が形成されている
    請求項1に記載の半導体装置の製造装置。
  5.  前記処理室内には、前記処理液供給部から前記処理液が供給される気化部が設けられている
    請求項1に記載の半導体装置の製造装置。
  6.  前記気化部は、前記基板支持部に設けられている
    請求項5に記載の半導体装置の製造装置。
  7.  前記処理液は、沸点の異なる2つ以上の物質を含み、
     前記制御部は、前記処理液を前記加熱部供給する前の処理液濃度と前記処理液が蒸発した後の処理液濃度とが同じ濃度になるように前記加熱部を制御する
    請求項2の半導体装置の製造装置。
  8.  基板を収容する処理室に、処理液供給部から処理液を供給する処理液供給工程と、
     加熱部により前記処理室内で前記処理液を加熱する処理液加熱工程と、を有する
    半導体装置の製造方法。
  9.  前記処理液加熱工程では、前記処理室内で前記処理液を蒸発させ、前記処理液の気化ガスを生成する
    請求項8に記載の半導体装置の製造方法。
  10.  前記処理液加熱工程では、前記処理室内に設けられ、前記加熱部によって加熱した気化部に前記処理液を供給する
    請求項9に記載の半導体装置の製造方法。
  11.  前記処理液は、過酸化水素を含有する
    請求項8に記載の半導体装置の製造方法。
  12.  前記基板にはシリコン含有膜が形成されている
    請求項8に記載の半導体装置の製造方法。
  13.  前記シリコン含有膜は、ポリシラザンを含有する
    請求項12に記載の半導体装置の製造方法。
  14.  基板を収容する処理室に、処理液供給部から処理液を供給する処理液供給手順と、
     加熱部により前記処理室内で前記処理液を加熱する処理液加熱手順と、をコンピュータに実行させるプログラムが記録された
    記録媒体。
PCT/JP2012/080072 2011-11-21 2012-11-20 半導体装置の製造装置、半導体装置の製造方法及び記録媒体 WO2013077321A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147013250A KR101615584B1 (ko) 2011-11-21 2012-11-20 반도체 장치의 제조 장치, 반도체 장치의 제조 방법 및 기록 매체
JP2013545928A JP6038043B2 (ja) 2011-11-21 2012-11-20 基板処理装置、半導体装置の製造方法及びプログラム
US14/283,593 US9190299B2 (en) 2011-11-21 2014-05-21 Apparatus for manufacturing semiconductor device, method of manufacturing semiconductor device, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-254184 2011-11-21
JP2011254184 2011-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/283,593 Continuation US9190299B2 (en) 2011-11-21 2014-05-21 Apparatus for manufacturing semiconductor device, method of manufacturing semiconductor device, and recording medium

Publications (1)

Publication Number Publication Date
WO2013077321A1 true WO2013077321A1 (ja) 2013-05-30

Family

ID=48469765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080072 WO2013077321A1 (ja) 2011-11-21 2012-11-20 半導体装置の製造装置、半導体装置の製造方法及び記録媒体

Country Status (4)

Country Link
US (1) US9190299B2 (ja)
JP (1) JP6038043B2 (ja)
KR (1) KR101615584B1 (ja)
WO (1) WO2013077321A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192871A1 (ja) * 2013-05-31 2014-12-04 株式会社日立国際電気 基板処理装置、半導体製造装置の製造方法及び炉口蓋体
WO2015016180A1 (ja) * 2013-07-31 2015-02-05 株式会社日立国際電気 基板処理方法、基板処理装置、半導体装置の製造方法及び記録媒体
WO2015053121A1 (ja) * 2013-10-10 2015-04-16 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び記録媒体
US20150279693A1 (en) * 2014-03-28 2015-10-01 Asm Ip Holding B.V. Method and system for delivering hydrogen peroxide to a semiconductor processing chamber
JP2015233137A (ja) * 2014-06-05 2015-12-24 エーエスエム アイピー ホールディング ビー.ブイ. 半導体基板のための反応性硬化プロセス
JP2017533589A (ja) * 2014-10-24 2017-11-09 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー ケイ素含有膜の堆積のための組成物及びそれを使用した方法
KR20180038536A (ko) 2015-09-30 2018-04-16 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
KR20180111917A (ko) 2016-03-24 2018-10-11 가부시키가이샤 코쿠사이 엘렉트릭 기화기 및 기판 처리 장치
WO2019176031A1 (ja) * 2018-03-14 2019-09-19 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
KR20200101981A (ko) 2018-03-23 2020-08-28 가부시키가이샤 코쿠사이 엘렉트릭 기화기, 기판 처리 장치 및 반도체 장치의 제조 방법
CN112309927A (zh) * 2019-07-31 2021-02-02 株式会社国际电气 基板处理装置、基板支撑件以及半导体装置的制造方法
JP2021027342A (ja) * 2019-07-31 2021-02-22 株式会社Kokusai Electric 基板処理装置、基板支持具および半導体装置の製造方法
WO2023026412A1 (ja) * 2021-08-25 2023-03-02 株式会社Kokusai Electric 基板支持具、基板処理装置及び半導体装置の製造方法

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394360B2 (ja) * 2010-03-10 2014-01-22 東京エレクトロン株式会社 縦型熱処理装置およびその冷却方法
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
JP5792390B2 (ja) * 2012-07-30 2015-10-14 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
DE102014109194A1 (de) * 2014-07-01 2016-01-07 Aixtron Se Vorrichtung und Verfahren zum Erzeugen eines Dampfes für eine CVD- oder PVD-Einrichtung
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
JP6936027B2 (ja) * 2017-03-09 2021-09-15 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
CN111344522B (zh) 2017-11-27 2022-04-12 阿斯莫Ip控股公司 包括洁净迷你环境的装置
KR102597978B1 (ko) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. 배치 퍼니스와 함께 사용하기 위한 웨이퍼 카세트를 보관하기 위한 보관 장치
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (zh) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
CN111630203A (zh) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 通过等离子体辅助沉积来沉积间隙填充层的方法
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
TWI815915B (zh) 2018-06-27 2023-09-21 荷蘭商Asm Ip私人控股有限公司 用於形成含金屬材料及包含含金屬材料的膜及結構之循環沉積方法
JP2021529254A (ja) 2018-06-27 2021-10-28 エーエスエム・アイピー・ホールディング・ベー・フェー 金属含有材料ならびに金属含有材料を含む膜および構造体を形成するための周期的堆積方法
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
JP7055075B2 (ja) * 2018-07-20 2022-04-15 東京エレクトロン株式会社 熱処理装置及び熱処理方法
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102707956B1 (ko) 2018-09-11 2024-09-19 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US10998205B2 (en) * 2018-09-14 2021-05-04 Kokusai Electric Corporation Substrate processing apparatus and manufacturing method of semiconductor device
KR20200038184A (ko) 2018-10-01 2020-04-10 에이에스엠 아이피 홀딩 비.브이. 기판 유지 장치, 장치를 포함하는 시스템, 및 이를 이용하는 방법
US11232963B2 (en) * 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
JP7101599B2 (ja) * 2018-11-27 2022-07-15 東京エレクトロン株式会社 熱処理装置及び熱処理方法
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TW202037745A (zh) 2018-12-14 2020-10-16 荷蘭商Asm Ip私人控股有限公司 形成裝置結構之方法、其所形成之結構及施行其之系統
US11779871B2 (en) * 2018-12-21 2023-10-10 Xia Tai Xin Semiconductor (Qing Dao) Ltd. Exhaust module for wafer baking apparatus and wafer processing system having the same
TW202405220A (zh) 2019-01-17 2024-02-01 荷蘭商Asm Ip 私人控股有限公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
TW202044325A (zh) 2019-02-20 2020-12-01 荷蘭商Asm Ip私人控股有限公司 填充一基板之一表面內所形成的一凹槽的方法、根據其所形成之半導體結構、及半導體處理設備
TWI845607B (zh) 2019-02-20 2024-06-21 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
TWI842826B (zh) 2019-02-22 2024-05-21 荷蘭商Asm Ip私人控股有限公司 基材處理設備及處理基材之方法
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
KR20200108248A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOCN 층을 포함한 구조체 및 이의 형성 방법
US11538716B2 (en) * 2019-03-22 2022-12-27 Kokusai Electric Corporation Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP2020167398A (ja) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー ドアオープナーおよびドアオープナーが提供される基材処理装置
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
JP2020188254A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
DE102019207990B4 (de) * 2019-05-31 2024-03-21 Disco Corporation Verfahren zum Bearbeiten eines Werkstücks und System zum Bearbeiten eines Werkstücks
KR20200141002A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP7499079B2 (ja) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
KR20210010817A (ko) 2019-07-19 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법
CN112309843A (zh) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 实现高掺杂剂掺入的选择性沉积方法
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (ko) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. 화학물질 공급원 용기를 위한 액체 레벨 센서
KR102294220B1 (ko) * 2019-08-14 2021-08-30 세메스 주식회사 지지 유닛, 이를 포함하는 기판 처리 장치 및 기판 처리 방법
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TWI846953B (zh) 2019-10-08 2024-07-01 荷蘭商Asm Ip私人控股有限公司 基板處理裝置
KR20210042810A (ko) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법
TWI846966B (zh) 2019-10-10 2024-07-01 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (zh) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 氧化矽之拓撲選擇性膜形成之方法
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
KR20210050453A (ko) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP7527928B2 (ja) 2019-12-02 2024-08-05 エーエスエム・アイピー・ホールディング・ベー・フェー 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
TW202125596A (zh) 2019-12-17 2021-07-01 荷蘭商Asm Ip私人控股有限公司 形成氮化釩層之方法以及包括該氮化釩層之結構
KR20210080214A (ko) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
TW202142733A (zh) 2020-01-06 2021-11-16 荷蘭商Asm Ip私人控股有限公司 反應器系統、抬升銷、及處理方法
JP2021109175A (ja) 2020-01-06 2021-08-02 エーエスエム・アイピー・ホールディング・ベー・フェー ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR102675856B1 (ko) 2020-01-20 2024-06-17 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
TW202146882A (zh) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (zh) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 專用於零件清潔的系統
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210117157A (ko) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
KR20210127620A (ko) 2020-04-13 2021-10-22 에이에스엠 아이피 홀딩 비.브이. 질소 함유 탄소 막을 형성하는 방법 및 이를 수행하기 위한 시스템
KR20210128343A (ko) 2020-04-15 2021-10-26 에이에스엠 아이피 홀딩 비.브이. 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
KR20210132576A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐 나이트라이드 함유 층을 형성하는 방법 및 이를 포함하는 구조
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
TW202146831A (zh) * 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
TW202147543A (zh) 2020-05-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 半導體處理系統
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
TW202146699A (zh) 2020-05-15 2021-12-16 荷蘭商Asm Ip私人控股有限公司 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
KR102702526B1 (ko) 2020-05-22 2024-09-03 에이에스엠 아이피 홀딩 비.브이. 과산화수소를 사용하여 박막을 증착하기 위한 장치
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202212620A (zh) 2020-06-02 2022-04-01 荷蘭商Asm Ip私人控股有限公司 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202202649A (zh) 2020-07-08 2022-01-16 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220010438A (ko) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. 포토리소그래피에 사용하기 위한 구조체 및 방법
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
KR20220027026A (ko) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. 금속 실리콘 산화물 및 금속 실리콘 산질화물 층을 형성하기 위한 방법 및 시스템
TW202229601A (zh) 2020-08-27 2022-08-01 荷蘭商Asm Ip私人控股有限公司 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統
JP7463238B2 (ja) * 2020-09-08 2024-04-08 キオクシア株式会社 半導体製造装置および半導体装置の製造方法
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
KR20220045900A (ko) 2020-10-06 2022-04-13 에이에스엠 아이피 홀딩 비.브이. 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치
CN114293174A (zh) 2020-10-07 2022-04-08 Asm Ip私人控股有限公司 气体供应单元和包括气体供应单元的衬底处理设备
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
TW202217037A (zh) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積釩金屬的方法、結構、裝置及沉積總成
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202235649A (zh) 2020-11-24 2022-09-16 荷蘭商Asm Ip私人控股有限公司 填充間隙之方法與相關之系統及裝置
TW202235675A (zh) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 注入器、及基板處理設備
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
JP2022118628A (ja) * 2021-02-02 2022-08-15 東京エレクトロン株式会社 処理装置及び処理方法
US12074055B2 (en) * 2021-02-25 2024-08-27 Shibaura Mechatronics Corporation Substrate treatment device
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230246A (ja) * 2000-02-17 2001-08-24 Mitsubishi Heavy Ind Ltd 半導体の熱酸化方法および熱酸化装置
JP2004332033A (ja) * 2003-05-06 2004-11-25 Asahi Denka Kogyo Kk 組成物、該組成物からなる化学気相成長用原料、及びこれを用いた薄膜の製造方法
WO2005063685A1 (ja) * 2003-12-25 2005-07-14 Asahi Denka Co., Ltd. 金属化合物、薄膜形成用原料及び薄膜の製造方法
JP2009500857A (ja) * 2005-07-08 2009-01-08 アヴィザ テクノロジー インコーポレイテッド シリコン含有膜の堆積方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145769A (ja) * 1988-11-29 1990-06-05 Nippon Telegr & Teleph Corp <Ntt> 薄膜形成法および薄膜形成装置
JPH07211644A (ja) * 1994-01-26 1995-08-11 Oki Electric Ind Co Ltd 薄膜の製造方法およびその製造装置
JPH07273052A (ja) * 1994-03-30 1995-10-20 Hitachi Electron Eng Co Ltd Cvd装置
JPH08311653A (ja) * 1995-05-12 1996-11-26 Murata Mfg Co Ltd Cvd成膜装置及び成膜方法
JP2000008168A (ja) * 1998-06-19 2000-01-11 Shincron:Kk 薄膜形成方法
JP2001345302A (ja) * 2000-03-28 2001-12-14 Seiko Epson Corp 表面処理方法及び表面処理装置
JP2007142155A (ja) * 2005-11-18 2007-06-07 Sony Corp 酸化処理方法および半導体装置の製造方法
US7759237B2 (en) * 2007-06-28 2010-07-20 Micron Technology, Inc. Method of forming lutetium and lanthanum dielectric structures
JP2010087475A (ja) 2008-09-03 2010-04-15 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び製造装置
JP2012060000A (ja) * 2010-09-10 2012-03-22 Toshiba Corp シリコン酸化膜の製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230246A (ja) * 2000-02-17 2001-08-24 Mitsubishi Heavy Ind Ltd 半導体の熱酸化方法および熱酸化装置
JP2004332033A (ja) * 2003-05-06 2004-11-25 Asahi Denka Kogyo Kk 組成物、該組成物からなる化学気相成長用原料、及びこれを用いた薄膜の製造方法
WO2005063685A1 (ja) * 2003-12-25 2005-07-14 Asahi Denka Co., Ltd. 金属化合物、薄膜形成用原料及び薄膜の製造方法
JP2009500857A (ja) * 2005-07-08 2009-01-08 アヴィザ テクノロジー インコーポレイテッド シリコン含有膜の堆積方法

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247664A (zh) * 2013-05-31 2016-01-13 株式会社日立国际电气 衬底处理装置、半导体制造装置的制造方法及炉口盖体
CN105247664B (zh) * 2013-05-31 2018-04-10 株式会社日立国际电气 衬底处理装置、半导体器件的制造方法及炉口盖体
KR101801113B1 (ko) * 2013-05-31 2017-11-24 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 반도체 제조 장치의 제조 방법 및 노구 개체
JP6068633B2 (ja) * 2013-05-31 2017-01-25 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び炉口蓋体
WO2014192871A1 (ja) * 2013-05-31 2014-12-04 株式会社日立国際電気 基板処理装置、半導体製造装置の製造方法及び炉口蓋体
US9502239B2 (en) 2013-07-31 2016-11-22 Hitachi Kokusai Electric Inc. Substrate processing method, substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
WO2015016180A1 (ja) * 2013-07-31 2015-02-05 株式会社日立国際電気 基板処理方法、基板処理装置、半導体装置の製造方法及び記録媒体
KR20160009705A (ko) * 2013-07-31 2016-01-26 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 방법, 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
CN105518835A (zh) * 2013-07-31 2016-04-20 株式会社日立国际电气 衬底处理方法、衬底处理装置、半导体器件的制造方法及记录介质
CN105518835B (zh) * 2013-07-31 2017-05-10 株式会社日立国际电气 衬底处理方法、衬底处理装置及半导体器件的制造方法
KR101718419B1 (ko) * 2013-07-31 2017-03-22 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 방법, 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
EP3029718A4 (en) * 2013-07-31 2017-03-15 AZ Electronic Materials (Luxembourg) S.à.r.l. Substrate processing method, substrate processing apparatus, method for manufacturing semiconductor device, and recording medium
JPWO2015053121A1 (ja) * 2013-10-10 2017-03-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及びプログラム
US9793112B2 (en) 2013-10-10 2017-10-17 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device and non-transitory computer-readable recording medium
WO2015053121A1 (ja) * 2013-10-10 2015-04-16 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び記録媒体
US20150279693A1 (en) * 2014-03-28 2015-10-01 Asm Ip Holding B.V. Method and system for delivering hydrogen peroxide to a semiconductor processing chamber
JP2015192148A (ja) * 2014-03-28 2015-11-02 エーエスエム アイピー ホールディング ビー.ブイ. 過酸化水素を半導体処理チャンバへ送る方法及びシステム
US10343907B2 (en) 2014-03-28 2019-07-09 Asm Ip Holding B.V. Method and system for delivering hydrogen peroxide to a semiconductor processing chamber
JP2015233137A (ja) * 2014-06-05 2015-12-24 エーエスエム アイピー ホールディング ビー.ブイ. 半導体基板のための反応性硬化プロセス
JP2018198318A (ja) * 2014-06-05 2018-12-13 エーエスエム アイピー ホールディング ビー.ブイ. 半導体基板のための反応性硬化プロセス
JP2017533589A (ja) * 2014-10-24 2017-11-09 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー ケイ素含有膜の堆積のための組成物及びそれを使用した方法
US12087598B2 (en) 2015-09-30 2024-09-10 Kokusai Electric Corporation Substrate processing apparatus
KR20180038536A (ko) 2015-09-30 2018-04-16 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
KR20180111917A (ko) 2016-03-24 2018-10-11 가부시키가이샤 코쿠사이 엘렉트릭 기화기 및 기판 처리 장치
US11499224B2 (en) 2018-03-14 2022-11-15 Kokusai Electric Corporation Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
WO2019176031A1 (ja) * 2018-03-14 2019-09-19 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
CN111868893A (zh) * 2018-03-14 2020-10-30 株式会社国际电气 基板处理装置、半导体装置的制造方法和程序
JPWO2019176031A1 (ja) * 2018-03-14 2020-12-17 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
KR20200095565A (ko) 2018-03-14 2020-08-10 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
KR20230142659A (ko) 2018-03-23 2023-10-11 가부시키가이샤 코쿠사이 엘렉트릭 기화기, 기판 처리 장치 및 반도체 장치의 제조 방법
KR20200101981A (ko) 2018-03-23 2020-08-28 가부시키가이샤 코쿠사이 엘렉트릭 기화기, 기판 처리 장치 및 반도체 장치의 제조 방법
JP7016920B2 (ja) 2019-07-31 2022-02-07 株式会社Kokusai Electric 基板処理装置、基板支持具、半導体装置の製造方法および基板処理方法
JP2021027342A (ja) * 2019-07-31 2021-02-22 株式会社Kokusai Electric 基板処理装置、基板支持具および半導体装置の製造方法
CN112309927A (zh) * 2019-07-31 2021-02-02 株式会社国际电气 基板处理装置、基板支撑件以及半导体装置的制造方法
US11929272B2 (en) 2019-07-31 2024-03-12 Kokusai Electric Corporation Substrate processing apparatus, substrate support, and method of manufacturing semiconductor device
CN112309927B (zh) * 2019-07-31 2024-05-28 株式会社国际电气 基板处理装置、基板支撑件以及半导体装置的制造方法
WO2023026412A1 (ja) * 2021-08-25 2023-03-02 株式会社Kokusai Electric 基板支持具、基板処理装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
US20140256160A1 (en) 2014-09-11
KR20140085516A (ko) 2014-07-07
KR101615584B1 (ko) 2016-04-26
US9190299B2 (en) 2015-11-17
JP6038043B2 (ja) 2016-12-07
JPWO2013077321A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6038043B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP5778846B2 (ja) 気化装置、基板処理装置、及び半導体装置の製造方法
JP6417052B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
US20230077197A1 (en) Substrate processing apparatus, substrate processing method and non-transitory computer-readable recording medium
JP6199744B2 (ja) 基板処理装置、半導体装置の製造方法および気化装置
WO2014192871A1 (ja) 基板処理装置、半導体製造装置の製造方法及び炉口蓋体
WO2014017638A1 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
US20160013053A1 (en) Method of Manufacturing Semiconductor Device, Substrate Processing Apparatus and Non-Transitory Computer-Readable Recording Medium
US9793112B2 (en) Method of manufacturing semiconductor device and non-transitory computer-readable recording medium
WO2019180906A1 (ja) 気化器、基板処理装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545928

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20147013250

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852420

Country of ref document: EP

Kind code of ref document: A1