WO2015053121A1 - 半導体装置の製造方法、基板処理装置及び記録媒体 - Google Patents

半導体装置の製造方法、基板処理装置及び記録媒体 Download PDF

Info

Publication number
WO2015053121A1
WO2015053121A1 PCT/JP2014/075870 JP2014075870W WO2015053121A1 WO 2015053121 A1 WO2015053121 A1 WO 2015053121A1 JP 2014075870 W JP2014075870 W JP 2014075870W WO 2015053121 A1 WO2015053121 A1 WO 2015053121A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
temperature
substrate
processing
supplying
Prior art date
Application number
PCT/JP2014/075870
Other languages
English (en)
French (fr)
Inventor
拓也 定田
徹 角田
正久 奥野
立野 秀人
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to KR1020167004681A priority Critical patent/KR101848573B1/ko
Priority to JP2015541527A priority patent/JP6151789B2/ja
Priority to CN201480046974.1A priority patent/CN105518836B/zh
Publication of WO2015053121A1 publication Critical patent/WO2015053121A1/ja
Priority to US15/078,253 priority patent/US9793112B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, a substrate processing apparatus, and a recording medium.
  • LSI elements are separated by a method of forming a gap such as a groove or a hole between elements to be separated in silicon (Si) serving as a substrate and depositing an insulator in the gap.
  • An oxide film is often used as the insulator, and for example, a silicon oxide film is used.
  • the silicon oxide film is formed by oxidation of the Si substrate itself, chemical vapor deposition (hereinafter CVD), or insulating coating (Spin On Dielectric: SOD).
  • the filling method by the CVD method is reaching the technical limit with respect to the filling of the fine structure, particularly the filling of the oxide into the void structure deep in the vertical direction or narrow in the horizontal direction.
  • SOD a coating insulating material containing an inorganic or organic component called SOG (Spin on glass) is used. This material has been used in LSI manufacturing processes before the advent of CVD oxide films, but since the processing technology is not as fine as the processing dimensions of about 0.35 ⁇ m to 1 ⁇ m, the modification method after coating is It was permitted by performing a heat treatment at about 400 ° C. in a nitrogen atmosphere.
  • the minimum processing dimensions of recent semiconductor devices such as LSI, DRAM (Dynamic Random Access Memory) and Flash Memory are smaller than 50 nm width, achieving miniaturization while maintaining quality and improving manufacturing throughput. It has become difficult to lower the processing temperature.
  • An object of the present invention is to provide a technique capable of improving characteristics of a film formed on a substrate and improving manufacturing throughput.
  • a step in which a film having a silazane bond is formed and the substrate pre-baked on the film is carried into a processing vessel, and the substrate is heated at a first temperature equal to or lower than the pre-baking temperature.
  • a method for manufacturing a semiconductor device comprising: supplying an oxygen-containing gas; and supplying a processing gas to the substrate at a second temperature higher than the first temperature.
  • a processing container in which a film having a silazane bond is formed and a substrate on which a prebaking process has been performed is accommodated, and an oxygen-containing gas is supplied to the substrate in the processing container
  • the substrate is heated for a predetermined time at a first temperature equal to or lower than the temperature of the pre-bake process, and the substrate is heated for a predetermined time at a second temperature higher than the first temperature in the state where the processing gas is supplied.
  • a substrate processing apparatus having a control unit configured to control the oxygen-containing gas supply unit, the processing gas supply unit, and the heating unit.
  • a procedure in which a film having a silazane bond is formed and a substrate on which the film is pre-baked is carried into a processing container, and the substrate is heated at a first temperature that is equal to or lower than the temperature of the pre-baking.
  • a computer-readable recording medium storing a program for causing a computer to execute a procedure for supplying an oxygen-containing gas and a procedure for supplying a processing gas to the substrate at a second temperature higher than the first temperature.
  • the technique according to the present invention can improve the characteristics of a film formed on a substrate.
  • the inventors have disclosed a plurality of foreign substances on a substrate after treatment when a substrate coated with a film containing a silazane bond (—Si—N— bond) (for example, a polysilazane film) is treated with a treatment liquid or a treatment gas.
  • a substrate coated with a film containing a silazane bond for example, a polysilazane film
  • the problem of generating (particles) was found.
  • the present inventors have found a problem that the quality cannot be maintained due to the generation of foreign matters and the miniaturization is hindered.
  • the polysilazane film is formed by applying a polysilazane solution and pre-baking, but in this pre-baking, the solvent and impurities of the polysilazane-coated film cannot be completely removed. This is because the solvent remaining in the film is detached, and is discharged, reattached, and reacted as outgas in the processing container.
  • polysilazane has a molecular weight distribution, and the low molecular weight polysilazane is released from the coating film and is released as outgas in the processing vessel, reacts with the remaining solvent, and as a result, the substrate surface It is a cause of being adhered as SiO foreign matter or impurities.
  • the third cause is that a by-product is generated by a reaction between impurities contained in the processing solution and a solvent remaining in the polysilazane film.
  • the inventors have made it possible to reduce the temperature of the low molecular weight polysilazane by setting the temperature of the preheating step before modifying the polysilazane coating film to be equal to or lower than the temperature during prebaking of the polysilazane. It has been found that separation can be suppressed and the above-mentioned problems can be solved.
  • the skeleton structure of the low molecular weight polysilazane can be changed to silicon oxide (Si—O), and the release of the low molecular weight polysilazane is suppressed, and the above-described problems are solved. I found that it can be solved.
  • FIG. 1 is a schematic configuration diagram of a substrate processing apparatus according to the present embodiment, and shows a processing furnace 202 portion in a longitudinal section.
  • FIG. 2 is a schematic longitudinal sectional view of the processing furnace 202 provided in the substrate processing apparatus according to the present embodiment.
  • the processing furnace 202 includes a processing container (reaction tube) 203.
  • the processing vessel 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with an upper end and a lower end opened.
  • a processing chamber 201 is formed in the cylindrical hollow portion of the processing container 203, and the wafer 200 as a substrate can be accommodated by a boat 217 as a substrate support portion in a horizontal posture and aligned in multiple stages in the vertical direction. .
  • a seal cap 219 as a furnace port lid that can hermetically seal (close) the lower end opening (furnace port) of the process vessel (reaction tube) 203 is provided at the lower part of the process vessel 203.
  • the seal cap 219 is configured to contact the lower end of the processing container 203 from the lower side in the vertical direction.
  • the seal cap 219 is formed in a disc shape.
  • a substrate processing chamber 201 serving as a substrate processing space includes a processing container 203 and a seal cap 219.
  • a boat 217 as a substrate holding unit is configured to hold a plurality of wafers 200 in multiple stages.
  • the boat 217 includes a plurality of support columns 217 a that hold a plurality of wafers 200.
  • three support columns 217a are provided.
  • Each of the plurality of support columns 217a is installed between the bottom plate 217b and the top plate 217c.
  • a plurality of wafers 200 are aligned in a horizontal posture and in a state where their centers are aligned with each other by columns 217a, and are held in multiple stages in the axial direction.
  • the top plate 217 c is formed so as to be larger than the maximum outer diameter of the wafer 200 held by the boat 217.
  • silicon oxide (SiO 2), silicon carbide (SiC), quartz (AlO), aluminum nitride (AlN), silicon nitride (SiN), zirconium oxide (ZrO), etc. are used as the constituent materials of the columns 217a, the bottom plate 217b, and the top plate 217c.
  • Non-metallic materials with good thermal conductivity are used.
  • a nonmetallic material having a thermal conductivity of 10 W / mK or more is preferable. If the thermal conductivity is not a problem, it may be formed of quartz (SiO) or the like. If the contamination of the metal wafer 200 is not a problem, the support 217a and the top plate 217c are made of stainless steel (SUS). ) Or the like.
  • a metal is used as a constituent material of the support columns 217a and the top plate 217c, a film such as ceramic or Teflon (registered trademark) may be formed on the metal.
  • a heat insulator 218 made of a heat-resistant material such as quartz or silicon carbide is provided at the lower part of the boat 217 so that heat from the first heating unit 207 is not easily transmitted to the seal cap 219 side. Yes.
  • the heat insulator 218 functions as a heat insulating member and also functions as a holding body that holds the boat 217.
  • the heat insulator 218 is not limited to the one in which a plurality of heat insulating plates formed in a disk shape are provided in a horizontal posture as shown in the figure, and may be a quartz cap formed in a cylindrical shape, for example. good.
  • the heat insulator 218 may be considered as one of the constituent members of the boat 217.
  • a boat elevator is provided as an elevating unit that moves the boat 217 up and down and conveys the inside and outside of the processing vessel (reaction tube) 203.
  • the boat elevator is provided with a seal cap 219 that seals the furnace port when the boat 217 is raised by the boat elevator.
  • a boat rotation mechanism 267 that rotates the boat 217 is provided on the side of the seal cap 219 opposite to the processing chamber 201.
  • a rotation shaft 261 of the boat rotation mechanism 267 is connected to the boat 217 through the seal cap 219, and is configured to rotate the wafer 200 by rotating the boat 217.
  • a first heating unit 207 that heats the wafer 200 in the processing vessel (reaction tube) 203 is provided outside the processing vessel (reaction tube) 203 in a concentric shape surrounding the side wall surface of the processing vessel (reaction tube) 203. It has been.
  • the first heating unit 207 is supported and provided by the heater base 206.
  • the first heating unit 207 includes first to fourth heater units 207a to 207d.
  • the first to fourth heater units 207a to 207d are provided along the stacking direction of the wafers 200 in the processing container (reaction tube) 203, respectively.
  • first to fourth heater units 207a to 207d as the heating unit, as a temperature detector for detecting the temperature of the wafer 200 or the surroundings, for example, first to second such as thermocouples are used.
  • the four temperature sensors 263a to 263d are provided between the processing vessel (reaction tube) 203 and the boat 217, respectively.
  • the first to fourth temperature sensors 263a to 263d respectively indicate the temperature of the wafer 200 positioned at the center of the plurality of wafers 200 heated by the first to fourth heater units 207a to 207d, respectively. It may be provided to detect.
  • a controller 121 (to be described later) is electrically connected to the first heating unit 207 and the first to fourth temperature sensors 263a to 263d. Based on the temperature information detected by the first to fourth temperature sensors 263a to 263d so that the temperature of the wafer 200 in the processing container (reaction tube) 203 becomes a predetermined temperature, the controller 121 performs the first operation.
  • the power supplied to the fourth to fourth heater units 207a to 207d is controlled at a predetermined timing, and the temperature setting and temperature adjustment are individually performed for each of the first to fourth heater units 207a to 207d. Yes.
  • a processing gas supply nozzle 501 is provided between the processing container (reaction tube) 203 and the first heating unit 207.
  • the processing gas supply nozzle 501 is made of, for example, quartz having a low thermal conductivity.
  • the processing gas supply nozzle 501 may have a double tube structure.
  • the processing gas supply nozzle 501 is disposed along the side of the outer wall of the processing container (reaction tube) 203.
  • the front end (downstream end) of the processing gas supply nozzle 501 is airtightly provided at the top (upper end opening) of the processing container (reaction tube) 203.
  • a supply hole 502 is provided at the tip of the processing gas supply nozzle 501 located at the upper end opening of the processing vessel (reaction tube) 203.
  • the gas supply unit mainly includes a processing gas supply nozzle 501 and a supply hole 502. Further, a processing gas generation unit 300 and a purge gas supply unit 601 described later may be included in the gas supply unit. Furthermore, you may comprise so that the oxygen-containing gas supply part 602 mentioned later may be included in a gas supply part.
  • the oxygen-containing gas supply unit 602 includes valves 602a and 602d, a gas flow rate control unit (mass flow controller) 602b, an oxygen-containing gas supply pipe 602c, and the like.
  • the oxygen-containing gas supplied from an oxygen-containing gas source (not shown) is a processing container. It supplies in 203.
  • the tip (downstream end) of the oxygen-containing gas supply pipe 602 c is airtightly provided at the top of the processing container 203, and introduces the oxygen-containing gas into the processing container 203.
  • the oxygen-containing gas for example, a gas containing at least one of oxygen (O 2 ) gas, ozone (O 3 ) gas, nitrogen monoxide (NO) gas, and nitrous oxide (N 2 O) gas is used.
  • the downstream end of the processing gas supply pipe 289a for supplying the processing gas is connected to the upstream end of the processing gas supply nozzle 501.
  • the processing gas supply pipe 289a is provided with a processing gas generation unit 300 and a purge gas supply unit 601 (purge gas supply pipe 601c) in order from the upstream direction.
  • the processing gas generation unit 300 includes an oxygen-containing gas supply pipe 301, a hydrogen-containing gas supply pipe 302, valves 303a and 303b, gas flow rate control units (mass flow controllers; MFC) 304a and 304b, and a processing gas generation device 305 from the upstream side. Valves 305a, 305b, and 305c are provided. A drain pipe 306 is connected to the valve 305c.
  • the processing gas generation unit 305 is supplied with, for example, oxygen (O 2 ) gas from an oxygen-containing gas supply pipe 301 connected to an oxygen-containing gas source (not shown), and supplies a hydrogen-containing gas connected to a hydrogen-containing gas source (not shown).
  • oxygen (O 2 ) gas is supplied from the pipe 302.
  • the oxygen gas that is an oxygen-containing gas and the hydrogen gas that is a hydrogen-containing gas supplied to the processing gas generation device 305 are combusted to generate water vapor.
  • the generated water vapor can be supplied into the processing container 203 from the processing gas generation unit.
  • the purge gas supply unit 601 includes purge gas valves 601a and 601d, a purge gas flow rate control unit 601b, a purge gas supply pipe 601c, and the like.
  • the purge gas for example, a gas having low reactivity with respect to the wafer 200 or a film formed on the wafer 200 is used.
  • nitrogen (N 2 ) gas or a rare gas such as argon gas, helium gas, or neon gas is used.
  • APC Automatic Pressure Controller
  • APC valve 255 is an on-off valve that can exhaust and stop the exhaust of the substrate processing chamber 201 by opening and closing the valve.
  • a pressure control valve which can adjust a pressure by adjusting a valve opening degree.
  • a pressure sensor 223 as a pressure detector is provided on the upstream side of the APC valve 255.
  • the substrate processing chamber 201 is configured to be evacuated so that the pressure in the substrate processing chamber 201 becomes a predetermined pressure (degree of vacuum).
  • a pressure control unit 284 (see FIG. 3) is electrically connected to the substrate processing chamber 201 and the pressure sensor 223 by the APC valve 255, and the pressure control unit 284 is based on the pressure detected by the pressure sensor 223.
  • the APC valve 255 is configured to control at a desired timing so that the pressure in the substrate processing chamber 201 becomes a desired pressure.
  • the exhaust section includes a gas exhaust pipe 231, an APC valve 255, a pressure sensor 223, and the like. Note that the vacuum pump 246 may be included in the exhaust part.
  • the water vapor gas state water
  • the water vapor may be cooled and liquefied below the vaporization point of water in the processing vessel 203.
  • Such liquefaction of water vapor often occurs in a region other than the region heated by the first heating unit 207 in the processing vessel 203. Since the first heating unit 207 is provided so as to heat the wafer 200 in the processing container 203 as described above, an area in which the wafer 200 is accommodated in the processing container 203 is formed by the first heating unit 207. Heated. However, the region other than the accommodation region of the wafer 200 in the processing container 203 is not easily heated by the first heating unit 207. As a result, a low temperature region is generated in a region other than the region heated by the first heating unit 207 in the processing container 203, and the water vapor may be cooled and liquefied when passing through the low temperature region.
  • the liquid that has been generated by liquefying the processing gas may accumulate at the bottom of the processing container 203 (the upper surface of the seal cap 219). For this reason, the liquid and the seal cap 219 react with each other, and the seal cap 219 may be damaged.
  • the second heating unit 280 is provided so as to heat the region other than the region heated by the first heating unit 207. That is, the 2nd heating part 280 is provided in the outer side (outer periphery) of the lower part of the processing container 203 so that the side wall surface of the processing container 203 may be concentrically enclosed.
  • the second heating unit 280 causes the water vapor flowing from the upper side (upstream side) to the lower side (downstream side) of the processing container 203 toward the exhaust part to flow downstream from the processing container 203 (that is, the heat insulator in the processing container 203).
  • 218 is configured to be heated in a region where 218 is accommodated.
  • the second heating unit 280 includes a processing cap 203 such as a seal cap 219 that seals the lower end opening of the processing vessel 203, a heat insulator 218 disposed at the bottom of the processing vessel 203, and the bottom of the processing vessel 203.
  • the member which comprises the lower part of this is comprised so that it may heat.
  • the second heating unit 280 is disposed so as to be positioned below the bottom plate 217b.
  • a controller 121 described later is electrically connected to the second heating unit 280.
  • the controller 121 supplies power supplied to the second heating unit 280 at a predetermined timing so that the temperature (for example, 100 ° C. to 300 ° C.) can suppress the liquefaction of the processing gas (water vapor) in the processing container 203. It is comprised so that it may control.
  • the heating of the furnace port portion of the processing container 203 by the second heating unit 280 is continuously performed at least while the processing liquid or the processing gas is supplied to the processing container 203.
  • the process is performed from the time when the wafer 200 is loaded into the processing container 203 to the time when it is unloaded. By heating in this way, it is possible to prevent liquefaction of the processing gas at the furnace port and adhesion of particles, impurities, etc. generated before the drying process to the furnace port.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a program recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in a substrate processing step to be described later, and functions as a program.
  • the program recipe, the control program, and the like are collectively referred to simply as a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the above-described processing gas generation unit 305, MFCs 304a, 304b, 601b, 602b, auto valves 303a, 303b, 305a, 305b, 305c, 601a, 601d, 602a, 602d, shutters 252, 254, 256, APC valve 255, first heating unit 207 (207a, 207b, 207c, 207d), second heating unit 280, blower rotation mechanism 259, first to fourth temperature sensors 263a to 263d, boat rotation mechanism 267, pressure The sensor 233, the temperature controller 400, etc. are connected.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. Then, the CPU 121a adjusts the processing gas generation operation by the processing gas generation unit 305, the gas flow rate adjustment operation by the MFCs 304a, 304b, 601b, and 602b, the auto valves 303a, 303b, and 305a in accordance with the contents of the read process recipe.
  • Temperature adjustment operation of the heating unit 207, temperature adjustment operation of the second heating unit 280, start / stop of the vacuum pumps 246a and 246b, rotation speed adjustment operation of the blower rotation mechanism 259, rotation speed adjustment operation of the boat rotation mechanism 267, And the like are controlled.
  • the controller 121 is not limited to being configured as a dedicated computer, but may be configured as a general-purpose computer.
  • an external storage device storing the above-described program for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, a semiconductor memory such as a USB memory or a memory card
  • the controller 121 according to the present embodiment can be configured by installing a program in a general-purpose computer using the external storage device 123.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device 123.
  • the program may be supplied without using the external storage device 123 by using communication means such as the Internet or a dedicated line.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. Note that in this specification, when the term “recording medium” is used, it may include only the storage device 121 c alone, may include only the external storage device 123 alone, or may include both.
  • a pre-processing step performed before the below-described modification processing is performed on the wafer 200 as a substrate will be described with reference to FIG.
  • the wafer 200 has been subjected to a PHPS coating process T20 and a pre-baking process T30.
  • the PHPS coating step T20 polysilazane is applied by a coating device (not shown).
  • the thickness of the applied polysilazane is adjusted by the molecular weight of the polysilazane, the viscosity of the polysilazane solution, and the rotation speed of the coater.
  • the solvent is removed from the polysilazane applied to the wafer 200. Specifically, it is carried out by volatilization of the solvent by heating to about 70 ° C. to 250 ° C. Preferably it is heated at about 150 ° C.
  • the wafer 200 has a concavo-convex structure which is a fine structure, and is supplied so as to fill at least a recess (groove) with polysilazane (SiH 2 NH), and a silicon (Si) -containing film is formed in the groove.
  • Si silicon
  • the silicon-containing film contains silicon (Si), nitrogen (N), and hydrogen (H), and in some cases, carbon (C) and other impurities may be mixed.
  • a substrate having a fine structure has a structure with a high aspect ratio such as a deep groove (concave portion) perpendicular to a silicon substrate, or a laterally narrow groove (concave portion) having a width of about 10 nm to 30 nm, for example.
  • a substrate has a structure with a high aspect ratio such as a deep groove (concave portion) perpendicular to a silicon substrate, or a laterally narrow groove (concave portion) having a width of about 10 nm to 30 nm, for example.
  • FIG. 5 is a flowchart showing each step in the substrate processing step.
  • FIG. 6 is a diagram showing an example of substrate processing event and temperature timing in this substrate processing step.
  • the broken line in the figure indicates the pressure in the processing container 203, the solid line indicates the temperature of the wafer 200 in the processing container 203,
  • the axis parameter indicates the processing time (in minutes).
  • Substrate carrying-in process (S10) First, a predetermined number of wafers 200 are loaded into the boat 217 (wafer charge). The boat 217 holding a plurality of wafers 200 is lifted by a boat elevator and loaded into the processing container (reaction tube) 203 (inside the processing chamber 201) (boat loading). In this state, the furnace port that is the opening of the processing furnace 202 is sealed by the seal cap 219. Thereafter, vacuum evacuation is performed by at least one of the vacuum pump 246a and the vacuum pump 246b so that the inside of the processing container 203 has a desired pressure (degree of vacuum).
  • the pressure in the processing container 203 is measured by a pressure sensor, and the opening degree of the APC valve 255 or the opening / closing of the valve 240 is feedback-controlled based on the measured pressure (pressure adjustment).
  • the first temperature sensor 263a, the second temperature sensor 263b, the third temperature sensor 263c, and the fourth temperature sensor are set so that the wafer 200 in the processing container 203 has a desired temperature (for example, about 150 ° C.).
  • feedback control is performed on the power supplied to the first heater unit 207a, the second heater unit 207b, the third heater unit 207c, and the fourth heater unit 207d included in the first heating unit 207.
  • the set temperatures of the first heater unit 207a, the second heater unit 207b, the third heater unit 207c, and the fourth heater unit 207d are all controlled to be the same temperature.
  • an oxygen (O) -containing gas is supplied into the processing container 203 and is adjusted to about 100 Torr.
  • the predetermined temperature is a first temperature equal to or lower than the temperature in the above-described pre-baking step T30.
  • the valves 602a and 602d are opened, the oxygen-containing gas whose flow rate is adjusted by the MFC 602b is supplied to the processing container 203, and the pressure is adjusted by the APC valve 255 and the pressure sensor 223.
  • the flow rate of the oxygen-containing gas is set to, for example, 5 slm to 15 slm.
  • oxygen-containing gas oxygen (O 2 ) gas, ozone (O 3 ) gas, nitrogen monoxide (NO) gas, or nitrous oxide (N 2 O) is used, and oxygen gas is preferably used. In this embodiment, oxygen gas is used. It is preferable to hold
  • the skeleton structure of the low molecular weight polysilazane is changed to silicon oxide (Si—O) with an oxygen-containing gas while suppressing the softening of the polysilazane film. Occurrence can be suppressed.
  • the boat rotation mechanism 267 is operated to start the rotation of the boat 217.
  • the rotation speed of the boat 217 is controlled by the controller 121.
  • the boat 217 is always rotated until at least the oxidation step (S40) described later is completed.
  • the temperature of the wafer 200 is raised to the second temperature in the oxygen-containing atmosphere while maintaining the pressure in the processing container 203 at about 100 Torr.
  • the second temperature is 250 to 450 ° C., for example, 400 ° C.
  • the flow rate of the oxygen-containing gas is increased to increase the pressure in the processing vessel 203, and the pressure is maintained at about 400 Torr. Further, the pressure and temperature are maintained for a predetermined time until the pressure and temperature are stabilized.
  • Oxidation step (S40) After the temperature of the wafer 200 is stabilized at 400 ° C., supply of water vapor (H 2 O gas) as a processing gas into the processing container 203 is started. Specifically, an oxygen-containing gas and a hydrogen-containing gas are supplied to the processing gas generation unit 305, and oxygen and hydrogen are reacted to generate water vapor.
  • the gas feed ratio of oxygen-containing gas (O 2 gas) and hydrogen-containing gas (H 2 gas) (O 2 / H 2) is 2: 3, the oxygen-containing by MFC304a and MFC304b as steam concentration of 60%
  • the flow rates of the gas and the hydrogen-containing gas are adjusted.
  • an oxidation treatment is performed for about 30 minutes to oxidize the polysilazane film (oxidation step).
  • an oxygen-containing gas oxygen gas in this embodiment
  • the temperature of the wafer 200 needs to be equal to or higher than a predetermined temperature (for example, 250 ° C. or higher) in order to oxidize the polysilazane film with water vapor. Also, in order to avoid hardening of the upper portion of the polysilazane film, It is desirable that the temperature be equal to or lower than ° C.
  • the supply of water vapor and oxygen gas to the processing container 203 is stopped, and the nitrogen-containing gas is supplied into the processing container 203 while maintaining the temperature of the wafer 200.
  • the silicon oxide film formed on 200 may be annealed for a predetermined time (for example, 30 minutes).
  • the nitrogen-containing gas is, for example, nitrogen (N 2 ) gas, and may be supplied from the purge gas supply unit 601.
  • the processing chamber 203 is evacuated to a predetermined pressure while maintaining the temperature of the wafer 200. For example, exhaust until about 1 Torr. After reaching a predetermined pressure, supply of nitrogen gas as an inert gas into the processing container 203 is started, and is supplied until a predetermined pressure is reached. In this way, particles and impurities can be removed by evacuating the processing vessel 203 while maintaining the temperature of the wafer 200 and reducing the pressure. Further, by supplying an inert gas while maintaining the temperature of the wafer 200 after evacuation, particles, impurities, and outgas from the wafer 200 that remain in the processing container 203 and cannot be removed by evacuation are removed. Can do.
  • the blower 257 is operated while the temperature of the wafer 200 is lowered, the shutters 252, 254, and 256 are opened, and the processing vessel 203 and the heat insulating member 210 are controlled from the cooling gas supply pipe 249 while controlling the flow rate of the cooling gas by the mass flow controller 251.
  • the exhaust gas may be exhausted from the cooling gas exhaust pipe 253 while being supplied into the space 260.
  • the cooling gas in addition to N 2 gas, for example, rare gas such as He gas, Ne gas, Ar gas, air, or the like can be used alone or in combination. Thereby, the inside of the space 260 is rapidly cooled, and the processing container 203 and the first heating unit 207 provided in the space 260 can be cooled in a short time. Further, the temperature of the wafer 200 in the processing container 203 can be lowered in a shorter time.
  • N 2 gas is supplied into the space 260 from the cooling gas supply pipe 249, the space 260 is filled with the cooling gas and cooled, and then the blower 257 is operated.
  • the shutters 254 and 256 may be opened, and the cooling gas in the space 260 may be exhausted from the cooling gas exhaust pipe 253.
  • Substrate unloading step (S80) Thereafter, the seal cap 219 is lowered by the boat elevator to open the lower end of the processing container 203, and the processed wafer 200 is held on the boat 217 from the lower end of the processing container 203 to the outside of the processing container 203 (processing chamber 201). Unload to (boat unload). Thereafter, the processed wafer 200 is taken out from the boat 217 (wafer discharge), and the substrate processing process according to the present embodiment is completed.
  • the skeleton structure of the low molecular weight polysilazane can be changed to silicon oxide (Si—O), and the release of the low molecular weight polysilazane can be suppressed. Can be suppressed.
  • FIG. 7 shows a comparison between the number of particles generated when the preheating step is performed in an oxygen gas atmosphere and the number of particles generated when performed in a nitrogen gas (N 2 ) atmosphere. As shown in FIG. 7, it can be seen that the number of particles can be significantly reduced when the treatment is performed in an oxygen gas atmosphere as compared with the case where the treatment is performed in a nitrogen gas atmosphere.
  • the polysilazane when the preheating step is performed at a temperature lower than the pre-baking temperature of the polysilazane film formed on the wafer 200, the polysilazane can be uniformly oxidized. For example, if preheating is performed at a temperature higher than the pre-baking temperature, the upper part of the polysilazane embedded in the unevenness formed on the wafer 200 is cured, and the bottom of the unevenness cannot be uniformly oxidized in the subsequent oxidation step. In some cases, the upper part of the polysilazane can be prevented from being cured by keeping the temperature below the pre-baking temperature.
  • the processing gas may be an oxidizing gas obtained by vaporizing a solution (reactant in a liquid state) in which a raw material (reactant) that is solid or liquid at room temperature is dissolved in a solvent.
  • a solution reactant in a liquid state
  • hydrogen peroxide solution in which hydrogen peroxide (H 2 O 2 ) is dissolved in water (H 2 O) can be used.
  • the treatment can be performed at about 70 to 130 ° C.
  • the bottom of the recesses can be more uniformly oxidized.
  • Hydrogen peroxide has a feature that its activation energy is higher than that of water vapor (water, H 2 O) and its oxidizing power is strong because of the large number of oxygen atoms contained in one molecule. Therefore, when hydrogen peroxide gas is used, it is advantageous in that oxygen atoms (O) can reach the deep part of the film formed in the groove of the wafer 200 (bottom part of the groove).
  • the process gas is not limited to the case where steam or hydrogen peroxide gas is used.
  • the process gas may be steam generated by heating water (H 2 O).
  • O 2 gas for example, ozone (O 3 ) gas or water vapor (H 2 O) may be used as the oxygen-containing gas.
  • O 3 ozone
  • H 2 O water vapor
  • water vapor (gas water) as the processing gas may include a state of a single H 2 O molecule or a cluster state in which several molecules are bonded.
  • water (H 2 O) when water (H 2 O) is changed from a liquid state to a gas state, it may be split up to a single H 2 O molecule, or may be split into a cluster state in which several molecules are bonded. .
  • a fog (mist) state in which several of the above clusters are gathered may be used.
  • a state of a single H 2 O 2 molecule or a cluster state in which several molecules are bonded may be included.
  • hydrogen peroxide water (H 2 O 2 ) into hydrogen peroxide gas it may be split into single H 2 O 2 molecules, or even in a cluster state in which several molecules are bonded. You may make it split. Further, a fog (mist) state in which several of the above clusters are gathered may be used.
  • the present invention is not limited to this, and is a silicon-containing film formed by a Chemical Vapor Deposition (CVD) method. Can be oxidized as well.
  • CVD Chemical Vapor Deposition
  • the first heater unit 207a, the second heater unit 207b, the third heater unit 207c, and the fourth heater unit 207d provided in the first heating unit 207 are provided outside the processing vessel 203, respectively.
  • As temperature detectors for detecting the temperature of the first external temperature sensor 264a such as a thermocouple, a second external temperature sensor 264b, a third external temperature sensor 264c, and a fourth external temperature sensor 264d (see FIG. 2). May be installed.
  • the first external temperature sensor 264a, the second external temperature sensor 264b, the third external temperature sensor 264c, and the fourth external temperature sensor 264d are each connected to the controller 121.
  • the first heater unit is based on the temperature information detected by the first external temperature sensor 264a, the second external temperature sensor 264b, the third external temperature sensor 264c, and the fourth external temperature sensor 264d, respectively. It is possible to monitor whether the temperatures of 207a, the second heater unit 207b, the third heater unit 207c, and the fourth heater unit 207d are heated to a predetermined temperature.
  • the substrate processing apparatus including the vertical processing furnace has been described.
  • the present invention is not limited to this.
  • a substrate processing apparatus having a single-wafer type, Hot Wall type, Cold Wall type processing furnace, or a processing gas is used.
  • the present invention can also be suitably applied to a substrate processing apparatus that processes the wafer 200 by being excited.
  • a method for manufacturing a semiconductor device comprising: a step; and a step of supplying a processing gas to the substrate at a second temperature higher than the first temperature.
  • Appendix 2 The method for manufacturing a semiconductor device according to appendix 1, wherein the film having a silazane bond is preferably a film containing a low molecular weight polysilazane.
  • Appendix 3 The method for manufacturing a semiconductor device according to appendix 1 or appendix 2, wherein the oxygen-containing gas is preferably a gas containing oxygen gas, and the processing gas is a gas containing water vapor.
  • ⁇ Appendix 4> 4 The method of manufacturing a semiconductor device according to claim 1, wherein the step of supplying the processing gas is performed after the step of supplying the oxygen-containing gas, and the processing gas is supplied. In the step of supplying the process gas, the process gas is supplied while supplying the oxygen-containing gas.
  • Appendix 5 The method for manufacturing a semiconductor device according to appendix 4, wherein after the step of supplying the processing gas, an annealing step in which the supply of the processing gas and the oxygen-containing gas is stopped and the nitrogen-containing gas is supplied. Have.
  • Appendix 6 The method for manufacturing a semiconductor device according to appendix 1 to appendix 5, preferably including a step of exhausting the inside of the processing vessel while maintaining the temperature of the substrate after the step of supplying the processing gas.
  • Appendix 7 The method for manufacturing a semiconductor device according to appendix 6, preferably, after the step of exhausting the inside of the processing container, an inert gas is supplied into the processing container and the substrate is adjusted to a predetermined pressure. A step of lowering the temperature.
  • a processing vessel in which a substrate having a silazane bond is formed and a substrate subjected to a pre-bake process is accommodated, an oxygen-containing gas supply unit that supplies an oxygen-containing gas to the substrate, and the substrate
  • a gas supply unit for supplying a processing gas to the substrate, a heating unit for heating the substrate, and heating the substrate to a first temperature that is equal to or lower than the temperature of the pre-baking step while supplying the oxygen-containing gas.
  • a substrate processing apparatus comprising: a control unit configured to control the oxygen-containing gas supply unit, the gas supply unit, and the heating unit so as to heat the substrate at a second temperature higher than the first temperature in a supplied state.
  • the substrate processing apparatus preferably having an exhaust unit for exhausting the atmosphere in the processing container, and the control unit after heating at the second temperature in a state where the processing gas is supplied
  • the gas supply unit, the heating unit, and the exhaust unit are controlled to exhaust the atmosphere in the processing container while maintaining the temperature of the substrate at the second temperature.
  • ⁇ Appendix 10> The substrate processing apparatus according to appendix 9, wherein, preferably, the control unit maintains the temperature of the substrate at the second temperature after the exhaust, and the gas supply unit is not in the processing container.
  • the gas supply unit, the exhaust unit, and the heating unit are controlled so as to increase the pressure in the processing container by supplying the active gas.
  • ⁇ Appendix 11> 11 The substrate processing apparatus according to any one of appendices 8 to 10, wherein the first temperature is preferably 150 ° C. or lower and the second temperature is 250 ° C. to 400 ° C.
  • ⁇ Appendix 12> The substrate processing apparatus according to any one of appendices 8 to 11, wherein the oxygen-containing gas is preferably a gas containing oxygen gas, and the process gas is a gas containing water vapor.
  • a procedure in which a substrate having a silazane bond formed and pre-baked is carried into a processing vessel, and an oxygen-containing gas is supplied to the substrate at a first temperature equal to or lower than the temperature of the pre-bake.
  • Appendix 14 The program according to appendix 13, or a computer-readable recording medium on which the program is recorded, preferably, the procedure of supplying the processing gas at the second temperature is after the procedure of supplying the oxygen-containing gas. Done.
  • Appendix 15 The program according to appendix 13 or appendix 14, or a computer-readable recording medium recording the program, preferably, after supplying the processing gas at the second temperature, supplying the oxygen-containing gas And having a procedure in which nitrogen-containing gas is supplied.
  • Appendix 16> The program according to any one of appendix 13 to appendix 15, or a computer-readable recording medium on which the program is recorded, and preferably the temperature of the substrate is maintained after the procedure of supplying the processing gas. An evacuation procedure for evacuating the inside of the processing container is provided.
  • Appendix 17 The program according to any one of appendix 16, or a computer-readable recording medium storing the program, preferably, after the procedure of exhausting the inside of the processing container, the inert gas in the processing container And the temperature of the substrate is lowered after the pressure is adjusted to a predetermined pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

課題:基板上に形成される膜の特性を向上させる。 解決手段:シラザン結合を有する膜が形成され、膜にプリベークが施されている基板を処理容器に搬入させる工程と、基板にプリベークの温度以下の第1温度で酸素含有ガスを供給する工程と、基板に、前記第1温度よりも高い第2温度で処理ガスを供給する工程と、を有する半導体装置の製造方法等を提供する。

Description

半導体装置の製造方法、基板処理装置及び記録媒体
 本発明は、半導体装置の製造方法、基板処理装置及び記録媒体に関する。
 大規模集積回路(Large Scale Integrated Circuit:以下LSI)の微細化に伴って、トランジスタ素子間の漏れ電流干渉を制御する加工技術はますます、技術的な困難を増している。LSIの素子間分離には、基板となるシリコン(Si)に、分離したい素子間に溝もしくは孔等の空隙を形成し、その空隙に絶縁物を堆積する方法によってなされている。絶縁物として、酸化膜が用いられることが多く、例えば、シリコン酸化膜が用いられる。シリコン酸化膜は、Si基板自体の酸化や、化学気相成長法(Chemical Vapor Deposition:以下CVD)、絶縁物塗布法(Spin On Dielectric:以下SOD)によって形成されている。
 近年の微細化により、微細構造の埋め込み、特に縦方向に深い、あるいは横方向に狭い空隙構造への酸化物の埋め込みに対して、CVD法による埋め込み方法が技術限界に達しつつある。この様な背景を受けて、流動性を有する酸化物を用いた埋め込み方法、すなわちSODの採用が増加傾向にある。SODでは、SOG(Spin on glass)と呼ばれる無機もしくは有機成分を含む塗布絶縁材料が用いられている。この材料は、CVD酸化膜の登場以前よりLSIの製造工程に採用されていたが、加工技術が0.35μm~1μm程度の加工寸法であって微細でなかった故に、塗布後の改質方法は窒素雰囲気にて400℃程度の熱処理をおこなうことで許容されていた。
 しかしながら、近年のLSI、DRAM(Dynamic Random Access Memory)やFlash Memoryに代表される半導体装置の最小加工寸法が、50nm幅より小さくなっており、品質を保ったままの微細化や製造スループット向上の達成や処理温度の低温化が困難になってきている。
 本発明は、基板上に形成される膜の特性を向上させると共に、製造スループットを向上させることが可能な技術を提供することを目的とする。
 一態様によれば、シラザン結合を有する膜が形成され、当該膜にプリベークが施されている基板を、処理容器内に搬入する工程と、前記基板に、前記プリベークの温度以下の第1温度で酸素含有ガスを供給する工程と、前記基板に、前記第1温度よりも高い第2温度で処理ガスを供給する工程と、を有する半導体装置の製造方法が提供される。
 他の態様によれば、シラザン結合を有する膜が形成され、当該膜にプリベーク工程が施されている基板が収容される処理容器と、前記処理容器内の前記基板に、酸素含有ガスを供給する酸素含有ガス供給部と、前記処理容器内の前記基板に、処理ガスを供給する処理ガス供給部と、前記基板を加熱する加熱部と、前記処理ガスが供給されず前記酸素含有ガスが供給された状態において、前記基板を前記プリベーク工程の温度以下の第1温度で所定時間加熱し、前記処理ガスが供給された状態において、前記基板を前記第1温度よりも高い第2温度で所定時間加熱するように、前記酸素含有ガス供給部と前記処理ガス供給部と前記加熱部とを制御するよう構成される制御部と、を有する基板処理装置が提供される。
 更に他の態様によれば、シラザン結合を有する膜が形成され、当該膜にプリベークが施されている基板を処理容器に搬入する手順と、前記基板に、前記プリベークの温度以下の第1温度で酸素含有ガスを供給する手順と、前記基板に、前記第1温度よりも高い第2温度で処理ガスを供給する手順と、をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
 本発明に係る技術によれば、基板上に形成される膜の特性を向上させることが可能となる。
本発明の一実施形態に係る基板処理装置の概略構成図である。 本発明の一実施形態に係る基板処理装置が備える処理炉の縦断面概略図である。 本発明の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図である。 本発明の一実施形態に係る基板処理工程の事前処理を示すフロー図である。 本発明の一実施形態に係る基板処理工程を示すフロー図である。 本発明の一実施形態に係る基板処理イベントと温度のタイミング例を示す図である。 本発明の実施形態に係る基板表面の異物量の比較を示す図である。
 以下に本発明の実施の形態について説明する。
 発明者等は、シラザン結合(-Si-N-結合)を含有する膜(例えばポリシラザン膜)が塗布された基板を処理液や処理ガスで処理した際に、処理後の基板上に複数の異物(パーティクル)が発生するという課題を見出した。また、異物の発生により、品質を保つことができず微細化を阻害するという課題を見出した。さらに、これらに付随し、品質を確保した処理物を生産し続けることができず、製造スループットが悪化するという課題を見出した。
 発明者等は、これら課題の原因を以下の点であると推察した。 一つ目は、ポリシラザン膜は、ポリシラザン溶液の塗布と、プリベークにより形成されるが、このプリベークでは、ポリシラザン塗布膜の溶剤や不純物を完全に除去させる事ができずに、改質工程で、ポリシラザン膜中に残存している溶剤が離脱し、処理容器内にアウトガスとして放出・再付着・反応を起こしてしまうという原因である。二つ目は、ポリシラザンには分子量の分布が生じており、分子量の低いポリシラザンが塗布膜中から離脱し、処理容器内にアウトガスとして放出・再付着・残存溶剤と反応し、その結果、基板表面にSiO異物もしくは不純物として付着されているという原因である。三つ目は、処理液に含まれる不純物とポリシラザン膜中に残存している溶剤などとが反応して副生成物が生成されているという原因である。
 これらの原因を踏まえ、鋭意研究した結果、発明者等は、ポリシラザン塗布膜を改質処理する前の予備加熱工程の温度を、ポリシラザンのプリベーク時の温度以下にすることによって、低分子量のポリシラザンの離脱を抑制し、上述の課題を解決できることを見出した。また、予備加熱工程を酸素含有雰囲気にすることによって、低分子量のポリシラザンの骨格構造を酸化シリコン(Si-O)に変化させることができ、低分子量のポリシラザンの離脱を抑制し、上述の課題を解決できることを見出した。
<本発明の一実施形態>
 以下に、本発明の好ましい実施の形態について図面を参照してより詳細に説明する。
(1)基板処理装置の構成
 まず、本実施形態に係る基板処理装置の構成について、主に図1及び図2を用いて説明する。図1は、本実施形態に係る基板処理装置の概略構成図であり、処理炉202部分を縦断面で示している。図2は、本実施形態に係る基板処理装置が備える処理炉202の縦断面概略図である。
(処理容器)
 図1に示すように、処理炉202は処理容器(反応管)203を備えている。処理容器203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料からなり、上端及び下端が開口した円筒形状に形成されている。処理容器203の筒中空部には、処理室201が形成され、基板としてのウエハ200を基板支持部としてのボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
 処理容器203の下部には、処理容器(反応管)203の下端開口(炉口)を気密に封止(閉塞)可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、処理容器203の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は円板状に形成されている。 基板の処理空間となる基板処理室201は、処理容器203とシールキャップ219で構成される。
(基板支持部)
 基板保持部としてのボート217は、複数枚のウエハ200を多段に保持できるように構成されている。ボート217は、複数枚のウエハ200を保持する複数本の支柱217aを備えている。支柱217aは例えば3本備えられている。複数本の支柱217aはそれぞれ、底板217bと天板217cとの間に架設されている。複数枚のウエハ200が、支柱217aにより、水平姿勢でかつ、互いに中心を揃えた状態で整列されて菅軸方向に多段に保持されている。天板217cは、ボート217に保持されるウエハ200の最大外径よりも大きくなるように形成されている。
 支柱217a、底板217b、天板217cの構成材料として、例えば酸化シリコン(SiO2)、炭化シリコン(SiC)、石英(AlO)、窒化アルミニウム(AlN)、窒化シリコン(SiN)、酸化ジルコニウム(ZrO)等の熱伝導性の良い非金属材料が用いられる。特に熱伝導率が10W/mK以上である非金属材料が好ましい。なお、熱伝導率が問題にならなければ、石英(SiO)などで形成しても良く、また、金属によるウエハ200へ汚染が問題にならなければ、支柱217a、天板217cは、ステンレス(SUS)等の金属材料で形成しても良い。支柱217a、天板217cの構成材料として金属が用いられる場合、金属にセラミックや、テフロン(登録商標)などの被膜を形成しても良い。
 ボート217の下部には、例えば石英や炭化シリコン等の耐熱材料からなる断熱体218が設けられており、第1の加熱部207からの熱がシールキャップ219側へ伝わりにくくなるように構成されている。断熱体218は、断熱部材として機能すると共にボート217を保持する保持体としても機能する。なお、断熱体218は、図示するように円板形状に形成された断熱板が水平姿勢で多段に複数枚設けられたものに限らず、例えば円筒形状に形成された石英キャップ等であっても良い。また、断熱体218は、ボート217の構成部材の1つとして考えても良い。
(昇降部)
 処理容器203の下方には、ボート217を昇降させて処理容器(反応管)203の内外へ搬送する昇降部としてのボートエレベータが設けられている。ボートエレベータには、ボートエレベータによりボート217が上昇された際に炉口を封止するシールキャップ219が設けられている。
 シールキャップ219の処理室201と反対側には、ボート217を回転させるボート回転機構267が設けられている。ボート回転機構267の回転軸261はシールキャップ219を貫通してボート217に接続されており、ボート217を回転させることでウエハ200を回転させるように構成されている。
(第1の加熱部)
 処理容器(反応管)203の外側には、処理容器(反応管)203の側壁面を囲う同心円状に、処理容器(反応管)203内のウエハ200を加熱する第1の加熱部207が設けられている。第1の加熱部207は、ヒータベース206により支持されて設けられている。図2に示すように、第1の加熱部207は第1~第4のヒータユニット207a~207dを備えている。第1~第4のヒータユニット207a~207dはそれぞれ、処理容器(反応管)203内でのウエハ200の積層方向に沿って設けられている。
 処理容器(反応管)203内には、加熱部としての第1~第4のヒータユニット207a~207d毎に、ウエハ200又は周辺温度を検出する温度検出器として、例えば熱電対等の第1~第4の温度センサ263a~263dはそれぞれ、処理容器(反応管)203とボート217との間にそれぞれ設けられている。なお、第1~第4の温度センサ263a~263dはそれぞれ、第1~第4のヒータユニット207a~207dによりそれぞれ加熱される複数枚のウエハ200のうち、その中央に位置するウエハ200の温度を検出するように設けられても良い。
 第1の加熱部207、第1~第4の温度センサ263a~263dには、それぞれ、後述するコントローラ121が電気的に接続されている。コントローラ121は、処理容器(反応管)203内のウエハ200の温度が所定の温度になるように、第1~第4の温度センサ263a~263dによりそれぞれ検出された温度情報に基づいて、第1~第4のヒータユニット207a~207dへの供給電力を所定のタイミングにてそれぞれ制御し、第1~第4のヒータユニット207a~207d毎に個別に温度設定や温度調整を行うように構成されている。
(ガス供給部)
 図1に示すように、処理容器(反応管)203と第1の加熱部207との間には、処理ガス供給ノズル501が設けられている。処理ガス供給ノズル501は、例えば熱伝導率の低い石英等により形成されている。処理ガス供給ノズル501は二重管構造を有していてもよい。処理ガス供給ノズル501は、処理容器(反応管)203の外壁の側部に沿って配設されている。処理ガス供給ノズル501の先端(下流端)は、処理容器(反応管)203の頂部(上端開口)に気密に設けられている。処理容器(反応管)203の上端開口に位置する処理ガス供給ノズル501の先端には、供給孔502が設けられている。ガス供給部は、主に、処理ガス供給ノズル501と、供給孔502で構成される。また、後述する処理ガス生成ユニット300とパージガス供給部601をガス供給部に含めてもよい。さらに、後述する酸素含有ガス供給部602をガス供給部に含めるように構成しても良い。
 酸素含有ガス供給部602は、バルブ602a、602d、ガス流量制御部(マスフローコントローラ)602b、酸素含有ガス供給管602cなどで構成され、図示しない酸素含有ガス源から供給される酸素含有ガスを処理容器203内に供給する。酸素含有ガス供給管602cの先端(下流端)は、処理容器203の頂部に気密に設けられ、酸素含有ガスを処理容器203内に導入する。酸素含有ガスは例えば、酸素(O)ガス、オゾン(O)ガス、一酸化窒素(NO)ガス、亜酸化窒素(NO)ガスの少なくとも1つ以上を含むガスが用いられる。
 処理ガス供給ノズル501の上流端には、処理ガスを供給する処理ガス供給管289aの下流端が接続されている。処理ガス供給管289aには、上流方向から順に、処理ガス生成ユニット300とパージガス供給部601(パージガス供給管601c)が設けられている。
(処理ガス生成ユニット)
 処理ガス生成ユニット300には、上流側から、酸素含有ガス供給管301、水素含有ガス供給管302、バルブ303a,303b、ガス流量制御部(マスフローコントローラ;MFC)304a,304b、処理ガス生成装置305、バルブ305a,305b,305cが設けられている。バルブ305cには、ドレイン管306が接続されている。
 処理ガス生成ユニット305は、図示しない酸素含有ガス源に接続された酸素含有ガス供給管301から、例えば酸素(O)ガスが供給され、図示しない水素含有ガス源に接続された水素含有ガス供給管302から、例えば水素(H)ガスが供給される様に構成されている。また、処理ガス生成装置305に供給された酸素含有ガスである酸素ガスと水素含有ガスである水素ガスは燃焼し、水蒸気が生成される。生成された水蒸気は、処理ガス生成ユニットから処理容器203内に供給可能になっている。
 パージガス供給部601は、パージガスバルブ601a,601d、パージガス流量制御部601b、パージガス供給管601cなどで構成され、図示しないパージガス源から供給されるパージガスを処理ガス供給管289aを経由して処理容器203内に供給する。パージガスは、例えば、ウエハ200やウエハ200に形成された膜に対して反応性の低いガスが用いられる。たとえば、窒素(N)ガス又は、アルゴンガス,ヘリウムガス,ネオンガスなどの希ガスが用いられる。
(排気部)
 処理容器203の下方には、基板処理室201内のガスを排気するガス排気管231の一端が接続されている。ガス排気管231の他端は、真空ポンプ246a(排気装置)に圧力調整器としてのAPC(Auto Pressure Controller)バルブ255を介して接続されている。基板処理室201内は、真空ポンプ246で発生する圧力勾配によって排気される。なお、APCバルブ255は、弁の開閉により基板処理室201の排気および排気停止を行うことができる開閉弁である。また、弁開度の調整により圧力を調整することができる圧力調整弁でもある。 また、圧力検出器としての圧力センサ223がAPCバルブ255の上流側に設けられている。このようにして、基板処理室201内の圧力が所定の圧力(真空度)となるよう、真空排気するように構成されている。APCバルブ255により基板処理室201および圧力センサ223には、圧力制御部284(図3参照)が電気的に接続されており、圧力制御部284は、圧力センサ223により検出された圧力に基づいて、APCバルブ255により基板処理室201内の圧力が所望の圧力となるよう、所望のタイミングで制御するように構成されている。
 排気部は、ガス排気管231、APCバルブ255、圧力センサ223などで構成されている。 なお、真空ポンプ246を排気部に含めて考えても良い。
(第2の加熱部)
 例えば、処理ガスとして、水蒸気が用いられる場合、水蒸気(ガス状態の水)が、処理容器203内で水の気化点以下に冷却されて液化してしまう場合があった。
 このような水蒸気の液化は、処理容器203内の第1の加熱部207で加熱される領域以外の領域で発生してしまう場合が多い。第1の加熱部207は、上述したように処理容器203内のウエハ200を加熱するように設けられているため、処理容器203内のウエハ200が収容された領域は第1の加熱部207により加熱される。しかしながら、処理容器203内のウエハ200の収容領域以外の領域は、第1の加熱部207では加熱されにくい。その結果、処理容器203内の第1の加熱部207で加熱される領域以外の領域で低温領域が生じ、水蒸気がこの低温領域を通過する際に冷却されて液化してしまう場合がある。
 処理ガスが液化して生じてしまった液体は、処理容器203内の底部(シールキャップ219の上面)に溜まる場合がある。このため、液体とシールキャップ219とが反応し、シールキャップ219が損傷を受ける場合がある。
 また、ボート217を処理容器203外へ搬出するためにシールキャップ219を下降させ、炉口(処理容器203の下端開口)を開放した際、液体がシールキャップ219上に溜まっていると、シールキャップ219上の液体が炉口から処理容器203外へ落ちる場合がある。このため、処理炉202の炉口周辺部材が損傷を受ける場合があるとともに、作業員等が安全に処理炉202付近に立ち入ることができない場合がある。
 そこで、図1および図2に示すように、第1の加熱部207で加熱される領域以外の領域を加熱するように、第2の加熱部280が設けられている。すなわち、第2の加熱部280が、処理容器203の下部の外側(外周)に、処理容器203の側壁面を同心円状に囲うように設けられている。
 第2の加熱部280は、排気部へ向かって処理容器203の上側(上流側)から下側(下流側)へ流れる水蒸気を、処理容器203内の下流側(すなわち処理容器203内の断熱体218が収容される領域)で加熱するように構成されている。また、第2の加熱部280は、処理容器203の下端開口を封止するシールキャップ219や、処理容器203の下部、処理容器203内の底部に配設される断熱体218等の処理容器203の下部を構成する部材を加熱するように構成されている。言い換えれば、ボート217が処理室201に装填された際に、底板217bよりも下方に位置するよう、第2の加熱部280を配置する。
 第2の加熱部280には、後述するコントローラ121が電気的に接続されている。コントローラ121は、処理容器203内での処理ガス(水蒸気)の液化を抑制できるような温度(例えば100℃から300℃)となるように、第2の加熱部280への供給電力を所定のタイミングにて制御するように構成されている。第2の加熱部280による処理容器203の炉口部の加熱は、少なくとも、処理容器203に処理液又は処理ガスが供給されている間は継続して行われる。好ましくは、ウエハ200が処理容器203に搬入後から搬出前まで行われる。この様に加熱することによって、炉口部での処理ガスの液化や、乾燥工程までに発生するパーティクルや不純物などが炉口部に付着することを防止することができる。
(制御部)
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプログラムレシピ等が読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプログラムレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プログラムレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述の処理ガス生成ユニット305、MFC304a,304b,601b,602b、オートバルブ303a,303b,305a,305b,305c,601a,601d,602a,602d、シャッタ252、254、256、APCバルブ255、第1の加熱部207(207a,207b,207c,207d)、第2の加熱部280、ブロア回転機構259、第1~第4の温度センサ263a~263d、ボート回転機構267、圧力センサ233、温度制御コントローラ400、等に接続されている。
 CPU121aは、記憶装置121cからの制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。そして、CPU121aは、読み出されたプロセスレシピの内容に沿うように、処理ガス生成ユニット305による処理ガス生成動作、MFC304a,304b,601b,602bによるガスの流量調整動作、オートバルブ303a,303b,305a,305b,305c,601a,601d,602a,602dの開閉動作、シャッタ252、254、256の遮断動作、APCバルブ255の開閉調整動作、及び第1~第4の温度センサ263a~263dに基づく第1の加熱部207の温度調整動作、第2の加熱部280の温度調整動作、真空ポンプ246a、246bの起動・停止、ブロア回転機構259の回転速度調節動作、ボート回転機構267の回転速度調節動作、等を制御するように構成されている。
 なお、コントローラ121は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていても良い。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MOなどの光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123を用意し、係る外部記憶装置123を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ121を構成することができる。なお、コンピュータにプログラムを供給するための手段は、外部記憶装置123を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置123を介さずにプログラムを供給するようにしても良い。なお、記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において、記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合が有る。
(2)事前処理工程
 ここで、基板としてのウエハ200に後述の改質処理が施される前に施される事前処理工程について図4を用いて説明する。図4に示すように、ウエハ200には、PHPS塗布工程T20とプリベーク工程T30が施されている。PHPS塗布工程T20では、塗布装置(不図示)により、ポリシラザンが塗布される。塗布されたポリシラザンの厚さは、ポリシラザンの分子量、ポリシラザン溶液の粘度、コーターの回転数によって調整される。プリベーク工程T30では、ウエハ200に塗布されたポリシラザンから溶剤が除去される。具体的には、70℃~250℃程度に加熱されることにより溶剤が揮発することにより行われる。好ましくは150℃程度で加熱される。
 また、ウエハ200は、微細構造である凹凸構造を有し、ポリシラザン(SiHNH)を少なくとも凹部(溝)に充填するように供給され、溝内にシリコン(Si)含有膜が形成された基板を用いられる。このウエハ200に、処理ガスとして水蒸気を用いる例について説明する。なお、シリコン含有膜には、シリコン(Si)や窒素(N)、水素(H)が含まれており、場合によっては、炭素(C)や他の不純物が混ざっている可能性が有る。なお、微細構造を有する基板とは、シリコン基板に対して垂直方向に深い溝(凹部)、あるいは例えば10nm~30nm程度の幅の横方向に狭い溝(凹部)等のアスペクト比の高い構造を有する基板をいう。
(3)基板処理工程
 続いて、本実施形態に係る半導体装置の製造工程の一工程として実施される基板処理工程について、図5,6を用いて説明する。かかる工程は、上述の基板処理装置により実施される。本実施形態では、かかる基板処理工程の一例として、処理ガスとして水蒸気を用い、基板としてのウエハ200上に形成されたシリコン含有膜をSiO膜に改質(酸化)する工程(改質処理工程)を行う場合について説明する。なお、以下の説明において、基板処理装置を構成する各部の動作は、コントローラ121により制御される。
 図5は、本基板処理工程中の各工程を示すフロー図である。図6は、本基板処理工程における基板処理イベントと温度のタイミング例を示す図であり、図中の破線は処理容器203内の圧力を、実線は処理容器203内のウエハ200の温度を、横軸のパラメータは処理時間(分単位)を示している。
(基板搬入工程(S10))
 まず、予め指定された枚数のウエハ200をボート217に装填(ウエハチャージ)する。複数枚のウエハ200を保持したボート217を、ボートエレベータによって持ち上げて処理容器(反応管)203内(処理室201内)に搬入(ボートロード)する。この状態で、処理炉202の開口部である炉口はシールキャップ219によりシールされた状態となる。その後、処理容器203内が所望の圧力(真空度)となるように真空ポンプ246a又は真空ポンプ246bの少なくともいずれかによって真空排気する。この際、処理容器203内の圧力は、圧力センサで測定し、この測定した圧力に基づきAPCバルブ255の開度又はバルブ240の開閉をフィードバック制御する(圧力調整)。また、処理容器203内のウエハ200が所望の温度(例えば約150℃)となるように、第1の温度センサ263a、第2の温度センサ263b、第3の温度センサ263c、第4の温度センサ263dが検出した温度情報に基づき第1の加熱部207が備える第1のヒータユニット207a、第2のヒータユニット207b、第3のヒータユニット207c、第4のヒータユニット207dへの供給電力をフィードバック制御する(温度調整)。このとき、第1のヒータユニット207a、第2のヒータユニット207b、第3のヒータユニット207c、第4のヒータユニット207dの設定温度は全て同じ温度となるように制御する。
(予備加熱工程(S20))
 処理容器203内が所定の圧力に到達し、ウエハ200が所定の温度に到達後、処理容器203内に酸素(O)含有ガスを供給し、約100Torrになるように調整する。所定の温度とは、上述のプリベーク工程T30での温度以下の第1温度である。具体的には、バルブ602a、602dを開き、MFC602bにより流量が調整された酸素含有ガスが処理容器203に供給され、APCバルブ255と圧力センサ223により圧力が調整される。酸素含有ガスの流量は、例えば、5slm~15slmに設定される。酸素含有ガスは、酸素(O)ガスや、オゾン(O)ガス、一酸化窒素(NO)ガス、亜酸化窒素(NO)が用いられ、好適には、酸素ガスが用いられる。本実施形態では酸素ガスを用いる。このときの所定の温度は、上述のプリベーク工程T30の温度以下になるように保持することが好ましい。また、このときの所定の温度は、少なくとも低分子量のポリシラザンの骨格構造を酸化シリコン(Si-O)に変化させるのに必要な温度以上(例えば70℃以上)であることが必要である。所定時間経過後、温度調整工程S30を行う。プリベーク工程T30の温度以下になるように調整することで、ポリシラザン膜の軟化を抑制しながら、酸素含有ガスで低分子量のポリシラザンの骨格構造を酸化シリコン(Si-O)に変化させるので、パーティクルの発生を抑制することができる。
 なお、ウエハ200を加熱しつつ、ボート回転機構267を作動して、ボート217の回転を開始する。この際、ボート217の回転速度をコントローラ121によって制御する。なお、ボート217は、少なくとも後述する酸化工程(S40)が終了するまでの間は、常に回転させた状態とする。
(温度調整工程(S30))
 予備加熱工程S20の後、処理容器203内の圧力を約100Torrに保持したまま、酸素含有雰囲気中でウエハ200の温度を第2温度まで昇温させる。第2温度は、250~450℃であり、例えば400℃である。また、400℃に到達後、酸素含有ガスの流量を増加させて処理容器203内の圧力を増加させ、約400Torrに保持させる。また、圧力と温度が安定するまで所定時間その圧力と温度を保持する。
(酸化工程(S40))
 ウエハ200の温度が400℃で安定後、処理容器203内に処理ガスとしての水蒸気(HOガス)の供給を開始する。具体的には、処理ガス発生ユニット305に酸素含有ガスと水素含有ガスを供給し、酸素と水素を反応させ、水蒸気を発生させる。なお、酸素含有ガス(Oガス)と水素含有ガス(Hガス)のガス供給比(O/H)が2:3、スチーム濃度が60%となるようにMFC304aとMFC304bにより酸素含有ガスと水素含有ガスの流量が調整される。水蒸気を供給した状態で、約30分間酸化処理を行い、ポリシラザン膜を酸化する(酸化工程)。酸化処理を行う間、酸素ガス供給部602からは引き続き酸素含有ガス(本実施態様では酸素ガス)が処理容器203に供給される。ウエハ200の温度は、水蒸気によりポリシラザン膜を酸化するため、所定の温度以上(例えば250℃以上)である必要があり、また、ポリシラザン膜の上部の硬化を避けるため、所定の温度以下(例えば400℃以下)であることが望ましい。
(アニール工程(S50))
 酸化工程S40が所定の時間経過後、処理容器203への水蒸気の供給と、酸素ガスの供給を停止し、ウエハ200の温度を保持したまま、処理容器203内に窒素含有ガスを供給し、ウエハ200上に形成されたシリコン酸化膜にアニールを所定時間(例えば30分間)行っても良い。ここで窒素含有ガスは例えば窒素(N)ガスであり、パージガス供給部601から供給しても良い。
(パージ工程(S60))
 アニール工程S50が終了した後、ウエハ200の温度を保持したまま、処理容器203内を所定の圧力になるまで排気する。例えば約1Torrになるまで排気する。所定の圧力に到達後、処理容器203内に不活性ガスとしての窒素ガスを供給開始し、所定の圧力になるまで供給する。この様に、ウエハ200の温度を保持したまま処理容器203内を排気して圧力を下げることによって、パーティクルや不純物を除去することができる。また、排気後にウエハ200の温度を保持したまま、不活性ガスを供給することによって、処理容器203内に残存する、真空排気で除去できなかったパーティクル、不純物、ウエハ200からのアウトガスを除去することができる。
(降温・大気圧復帰工程(S70))
 処理容器203内の圧力が所定の圧力に到達後、ウエハ200の降温を開始する。例えば、処理容器203内の圧力が、約100Torr以上になったら、ウエハ200の降温を開始する。
 ウエハ200を降温させつつ、ブロア257を作動させた状態でシャッタ252,254,256を開け、冷却ガス供給管249から、冷却ガスをマスフローコントローラ251により流量制御しながら処理容器203と断熱部材210との間の空間260内に供給しつつ、冷却ガス排気管253から排気してもよい。冷却ガスとしては、Nガスのほか、例えばHeガス、Neガス、Arガス等の希ガス、空気等を単独であるいは混合して用いることができる。これにより、空間260内を急冷させ、空間260内に設けられる処理容器203及び第1の加熱部207を短時間で冷却できる。また、処理容器203内でのウエハ200をより短時間で降温させることができる。
 なお、シャッタ254,256を閉じた状態で、冷却ガス供給管249からNガスを空間260内に供給し、空間260内を冷却ガスで充満させて冷却した後、ブロア257を作動させた状態でシャッタ254,256を開け、空間260内の冷却ガスを冷却ガス排気管253から排気してもよい。
(基板搬出工程(S80))
 その後、ボートエレベータによりシールキャップ219を下降させて処理容器203の下端を開口するとともに、処理済みウエハ200をボート217に保持した状態で処理容器203の下端から処理容器203(処理室201)の外部へ搬出(ボートアンロード)する。その後、処理済みウエハ200はボート217より取り出され(ウエハディスチャージ)、本実施形態に係る基板処理工程を終了する。
(4)本実施形態に係る効果
 本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(a)予備加熱工程をプリベーク工程の温度以下で加熱することで、低分子量のポリシラザンの軟化を防ぐことができ、パーティクルの数を減らすことができる。
(b)また、予備加熱工程を酸素含有雰囲気で行うことによって、低分子量のポリシラザンの骨格構造を酸化シリコン(Si-O)に変化させることができ、低分子量のポリシラザンの離脱を抑制し、パーティクルの発生を抑制することができる。
(c)また、予備加熱工程を酸素ガス(O)雰囲気で行うことによって、パーティクルの発生を抑制することができる。図7に予備加熱工程を酸素ガス雰囲気で行ったときに発生したパーティクルの数と、窒素ガス(N)雰囲気で行ったときに発生したパーティクルの数とを比較した図を示す。図7に示す様に、酸素ガス雰囲気で処理した場合は、窒素ガス雰囲気で処理した場合に比べて、大幅にパーティクル数を抑制できていることが分かる。
(d)また、予備加熱工程をウエハ200に形成されたポリシラザン膜のプリベーク温度以下で行った場合に、ポリシラザンの酸化を均一に施すことができる。例えば、プリベーク温度よりも高い温度で予備加熱すると、ウエハ200に形成された凹凸に埋め込まれたポリシラザンの上部が硬化してしまい、後の酸化工程で、凹凸の底部まで均一に酸化できなくなってしまう場合があるが、プリベーク温度以下に保つことで、ポリシラザンの上部が硬化することを抑制することができる。
<本発明の他の実施形態>
 以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態では、処理ガスとして水蒸気を用いる場合について説明したがこれに限定されるものではない。すなわち、処理ガスは、常温で固体又は液体である原料(反応物)を溶媒に溶解させた溶液(液体状態の反応物)を気化させた酸化性のガスであればよい。例えば、過酸化水素(H)を水(HO)に溶解させた過酸化水素水を用いることができる。過酸化水素水を気化させた過酸化水素を含有するガスをウエハ200に供給して酸化処理を行うことによって、ポリシラザン膜の酸化をより低温で行うことが可能になる。例えば70~130℃程度で処理ができるようになる。また、更に、低温になることによって、ウエハ200に凹凸が形成されている場合に、凹部の底部までより均一に酸化させることができる。例えば上述の実施形態の様に約400℃に加熱すると凹部の上部のポリシラザンが硬化し、凹部の底まで処理が進まない場合が有る。過酸化水素は、水蒸気(水、HO)と比較すると、活性化エネルギーが高く、1分子中に含まれる酸素原子の数が多いため酸化力が強いという特徴が有る。そのため、過酸化水素ガスを用いた場合、ウエハ200の溝内に形成された膜の深部(溝の底部)まで酸素原子(O)を到達させることができる点で優位である。
 また、処理ガスとして水蒸気や過酸化水素ガスを用いる場合に限らず、例えば水(HO)を加熱して発生させた水蒸気であっても良い。また酸素含有ガスとしてOガスの他、例えばオゾン(O)ガスや水蒸気(HO)等を用いてもよい。また、ウエハ200上に形成された回路、特に高温処理に弱い材質(例えばアルミニウム)を用いた回路の性能劣化等を抑制することができる。
 なお、処理ガスとしての水蒸気(ガス状態の水)には、HO分子単体の状態や、いくつかの分子が結合したクラスタ状態が含まれても良い。また、水(HO)を液体状態から気体状態にする際、HO分子単体まで分裂させるようにしても良いし、いくつかの分子が結合したクラスタ状態まで分裂させるようにしても良い。また、上記のクラスタが幾つか集まってできた霧(ミスト)状態であっても良い。
 また、上述の処理ガスとして過酸化水素ガスを用いた場合も同様に、H分子単体の状態や、いくつかの分子が結合したクラスタ状態が含まれても良い。また、過酸化水素水(H)から過酸化水素ガスに気化させる際に、H分子単体まで分裂させるようにしても良いし、いくつかの分子が結合したクラスタ状態にまで分裂させるようにしても良い。また、上記のクラスタが幾つか集まってできた霧(ミスト)状態であっても良い。
 また、上述の実施形態では、ポリシラザン膜が形成されたウエハ200を処理する例を示したがこれに限るものでは無い。例えば、シラザン結合(-Si-N-)を有する膜が形成されたウエハ200を処理することにより同様の効果が得られる。
 また、上述では、シラザン結合を有する膜がスピンコートされたウエハ200を処理する例を示したが、これに限るものでは無く、Chemical Vapor Deposition(CVD)法で形成されたシリコン含有膜であっても同様に酸化させることができる。
 上述の処理炉202において、処理容器203外に、第1の加熱部207が備える第1のヒータユニット207a,第2のヒータユニット207b,第3のヒータユニット207c,第4のヒータユニット207dのそれぞれの温度を検出する温度検出器として、例えば熱電対等の第1の外部温度センサ264a,第2の外部温度センサ264b,第3の外部温度センサ264c,第4の外部温度センサ264d(図2参照)が設置されていてもよい。第1の外部温度センサ264a,第2の外部温度センサ264b,第3の外部温度センサ264c,第4の外部温度センサ264dは、それぞれコントローラ121に接続されている。これにより、第1の外部温度センサ264a,第2の外部温度センサ264b,第3の外部温度センサ264c,第4の外部温度センサ264dによりそれぞれ検出された温度情報に基づいて、第1のヒータユニット207a,第2のヒータユニット207b,第3のヒータユニット207c,第4のヒータユニット207dのそれぞれの温度が所定の温度に加熱されているかを監視できる。
 上述の実施形態では、縦型処理炉を備える基板処理装置について説明したがこれに限らず、例えば、枚葉式、Hot Wall型、Cold Wall型の処理炉を有する基板処理装置や、処理ガスを励起させてウエハ200を処理する基板処理装置にも好適に適用できる。
<本発明の好ましい態様>
 以下に、本発明の好ましい態様について付記する。
<付記1>
 一態様によれば、シラザン結合を有する膜が形成され、プリベークが施されている基板を処理容器に搬入させる工程と、前記基板に前記プリベークの温度以下の第1温度で酸素含有ガスを供給する工程と、前記基板に、前記第1温度よりも高い第2温度で処理ガスを供給する工程と、を有する半導体装置の製造方法が提供される。
<付記2>
 付記1に記載の半導体装置の製造方法であって、好ましくは、前記シラザン結合を有する膜は、低分子量のポリシラザンを含む膜である。
<付記3>
 付記1乃至付記2に記載の半導体装置の製造方法であって、好ましくは、前記酸素含有ガスは、酸素ガスを含むガスであり、前記処理ガスは水蒸気を含むガスである。
<付記4>
 付記1乃至付記3のいずれか一項に記載の半導体装置の製造方法であって、好ましくは、前記処理ガスを供給する工程は、前記酸素含有ガスを供給する工程の後に行われ、前記処理ガスを供給する工程では前記酸素含有ガスを供給しつつ前記処理ガスの供給が行われる。
<付記5>
 付記4に記載の半導体装置の製造方法であって、好ましくは、前記処理ガスを供給する工程の後に、前記処理ガスと前記酸素含有ガスの供給が停止され窒素含有ガスが供給されるアニール工程を有する。
<付記6>
 付記1乃至付記5に記載の半導体装置の製造方法であって、好ましくは、前記処理ガスを供給する工程の後に、前記基板の温度を保ったまま前記処理容器内を排気する工程を有する。
<付記7>
 付記6に記載の半導体装置の製造方法であって、好ましくは、前記処理容器内を排気する工程の後に、前記処理容器内に不活性ガスを供給し、所定の圧力に調整した後、基板を降温させる工程を有する。
<付記8>
 他の態様によれば、シラザン結合を有する膜が形成され、プリベーク工程が施されている基板が収容される処理容器と、前記基板に酸素含有ガスを供給する酸素含有ガス供給部と、前記基板に処理ガスを供給するガス供給部と、前記基板を加熱する加熱部と、前記酸素含有ガスを供給した状態で前記基板を前記プリベーク工程の温度以下の第1温度に加熱し、前記処理ガスを供給した状態で前記第1温度よりも高い第2温度で前記基板を加熱するように前記酸素含有ガス供給部と前記ガス供給部と前記加熱部とを制御する制御部と、を有する基板処理装置が提供される。
<付記9>
 付記8に記載の基板処理装置であって、好ましくは、前記処理容器内の雰囲気を排気する排気部を有し、前記制御部は、前記処理ガスを供給した状態において第2温度で加熱した後に、前記基板の温度を第2温度に維持した状態で前記処理容器内の雰囲気を排気するように前記ガス供給部と前記加熱部と前記排気部を制御する。
<付記10>
 付記9に記載の基板処理装置であって、好ましくは、前記制御部は、前記排気の後に、前記基板の温度を第2温度に維持した状態で、前記ガス供給部が前記処理容器内に不活性ガスを供給して処理容器内の圧力を高くするように、前記ガス供給部と前記排気部と前記加熱部を制御する。
<付記11>
 付記8乃至付記10のいずれか一項に記載の基板処理装置であって、好ましくは、前記第1温度は150℃以下であって、前記第2温度は、250℃~400℃である。
<付記12>
 付記8乃至付記11のいずれか一項に記載の基板処理装置であって、好ましくは、前記酸素含有ガスは、酸素ガスを含むガスで、前記処理ガスは、水蒸気を含むガスである。
<付記13>
 更に他の態様によれば、シラザン結合を有する膜が形成され、プリベークが施されている基板を処理容器に搬入させる手順と、前記基板に前記プリベークの温度以下の第1温度で酸素含有ガスを供給する手順と、前記基板に、前記第1温度よりも高い第2温度で処理ガスを供給する手順と、をコンピュータに実行させるプログラム、又は当該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
<付記14>
 付記13に記載のプログラム、又は当該プログラムを記録したコンピュータ読み取り可能な記録媒体であって、好ましくは、前記第2の温度で処理ガスを供給する手順は、前記酸素含有ガスを供給する手順の後に行われる。
<付記15>
 付記13又は付記14に記載のプログラム、又は当該プログラムを記録したコンピュータ読み取り可能な記録媒体であって、好ましくは、前記第2の温度で前記処理ガスを供給した後に、前記酸素含有ガスの供給が停止されて窒素含有ガスが供給される手順を有する。
<付記16>
 付記13乃至付記15のいずれか一項に記載のプログラム、又は当該プログラムを記録したコンピュータ読み取り可能な記録媒体であって、好ましくは、前記処理ガスを供給する手順の後に、前記基板の温度を保ったまま前記処理容器内を排気する排気手順を有する。
<付記17>
 付記16のいずれか一項に記載のプログラム、又は当該プログラムを記録したコンピュータ読み取り可能な記録媒体であって、好ましくは、前記処理容器内を排気する手順の後に、前記処理容器内に不活性ガスを供給して所定の圧力に調整された後に前記基板を降温させる手順を有する。
 本発明に係る技術によれば、半導体装置の製造品質を向上させることが可能となる。
 200・・・ウエハ(基板)、203・・・処理容器(反応管)、217・・・ボート、219・・・シールキャップ、207・・・第1の加熱部、280・・・第2の加熱部、300・・・液体流量制御ユニット、501・・・処理ガス供給ノズル、502・・・供給孔、231・・・ガス排気管、121・・・コントローラ(制御部) 
 

Claims (15)

  1. シラザン結合を有する膜が形成され、当該膜にプリベークが施されている基板を、処理容器内に搬入する工程と、
    前記基板に、前記プリベークの温度以下の第1温度で酸素含有ガスを供給する工程と、
    前記基板に、前記第1温度よりも高い第2温度で処理ガスを供給する工程と、
    を有する半導体装置の製造方法。
  2. 前記処理ガスは水蒸気を含むガスである、
    請求項1記載の半導体装置の製造方法。
  3. 前記処理ガスを供給する工程は、前記酸素含有ガスを供給する工程の後に行われ、
    前記処理ガスを供給する工程では前記酸素含有ガスを供給しつつ前記処理ガスが供給される、
    請求項2記載の半導体装置の製造方法。
  4. 前記処理ガスを供給する工程の後に、前記処理ガスと前記酸素含有ガスの供給を停止して窒素含有ガスを供給するアニール工程を有する、
    請求項3記載の半導体装置の製造方法。
  5. 前記処理ガスを供給する工程の後に、前記基板の温度を保ったまま前記処理容器内を排気する工程を有する、
    請求項1記載の半導体装置の製造方法。
  6. 前記処理容器内を排気する工程の後に、前記基板の温度を保ったまま前記処理容器内に不活性ガスを供給し、前記処理容器内が所定の圧力になるまで前記不活性ガスを供給した後、基板を降温させる工程を有する、
    請求項5記載の半導体装置の製造方法。
  7. 前記第1温度は150℃以下であって、前記第2温度は250℃~400℃である、
    請求項2記載の半導体装置の製造方法。
  8. 前記シラザン結合を有する膜は低分子量のポリシラザンを含む膜である、
    請求項1記載の半導体装置の製造方法。
  9. 前記処理ガスは過酸化水素を含むガスである、
    請求項1記載の半導体装置の製造方法。
  10. 前記シラザン結合を有する膜はCVD法により形成される膜である、
    請求項1記載の半導体装置の製造方法。
  11. シラザン結合を有する膜が形成され、当該膜にプリベーク工程が施されている基板が収容される処理容器と、
    前記処理容器内の前記基板に、酸素含有ガスを供給する酸素含有ガス供給部と、
    前記処理容器内の前記基板に、処理ガスを供給する処理ガス供給部と、
    前記基板を加熱する加熱部と、
    前記処理ガスが供給されず前記酸素含有ガスが供給された状態において、前記基板を前記プリベーク工程の温度以下の第1温度で所定時間加熱し、前記処理ガスが供給された状態において、前記基板を前記第1温度よりも高い第2温度で所定時間加熱するように、前記酸素含有ガス供給部と前記処理ガス供給部と前記加熱部とを制御するよう構成される制御部と、
    を有する基板処理装置。
  12. 前記制御部は、前記処理ガスが供給された状態において前記基板を前記第2温度で所定時間加熱する間、前記酸素含有ガスを前記処理ガスと同時に前記基板に供給するように、前記酸素含有ガス供給部を制御するよう構成される、
    請求項11記載の基板処理装置。
  13. 前記処理容器内の雰囲気を排気する排気部をさらに有し、
    前記制御部は、前記処理ガスが供給された状態において前記基板を第2温度で所定時間加熱した後に、前記基板の温度を第2温度に維持した状態で前記処理容器内の雰囲気を排気するように、前記処理ガス供給部と前記加熱部と前記排気部を制御するよう構成される、
    請求項11記載の基板処理装置。
  14. 前記処理容器内に不活性ガスを供給する不活性ガス供給部をさらに有し、
    前記制御部は、前記基板の温度を第2温度に維持した状態で前記処理容器内の雰囲気が排気された後に、前記基板の温度を第2温度に維持した状態で前記処理容器内に不活性ガスを供給して処理容器内の圧力を高くするように、前記不活性ガス供給部と前記排気部と前記加熱部とを制御するよう構成される、
    請求項13記載の基板処理装置。
  15. シラザン結合を有する膜が形成され、当該膜にプリベークが施されている基板を処理容器に搬入する手順と、
    前記基板に、前記プリベークの温度以下の第1温度で酸素含有ガスを供給する手順と、
    前記基板に、前記第1温度よりも高い第2温度で処理ガスを供給する手順と、
    をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。 
PCT/JP2014/075870 2013-10-10 2014-09-29 半導体装置の製造方法、基板処理装置及び記録媒体 WO2015053121A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167004681A KR101848573B1 (ko) 2013-10-10 2014-09-29 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
JP2015541527A JP6151789B2 (ja) 2013-10-10 2014-09-29 半導体装置の製造方法、基板処理装置及びプログラム
CN201480046974.1A CN105518836B (zh) 2013-10-10 2014-09-29 半导体器件的制造方法、衬底处理装置及记录介质
US15/078,253 US9793112B2 (en) 2013-10-10 2016-03-23 Method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013212806 2013-10-10
JP2013-212806 2013-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/078,253 Continuation US9793112B2 (en) 2013-10-10 2016-03-23 Method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2015053121A1 true WO2015053121A1 (ja) 2015-04-16

Family

ID=52812940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075870 WO2015053121A1 (ja) 2013-10-10 2014-09-29 半導体装置の製造方法、基板処理装置及び記録媒体

Country Status (5)

Country Link
US (1) US9793112B2 (ja)
JP (1) JP6151789B2 (ja)
KR (1) KR101848573B1 (ja)
CN (1) CN105518836B (ja)
WO (1) WO2015053121A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240017095A (ko) * 2016-06-30 2024-02-06 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
DE102017200588A1 (de) * 2017-01-16 2018-07-19 Ers Electronic Gmbh Vorrichtung zum Temperieren eines Substrats und entsprechendes Herstellungsverfahren
JP7058575B2 (ja) * 2018-09-12 2022-04-22 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP7149884B2 (ja) * 2019-03-20 2022-10-07 東京エレクトロン株式会社 熱処理装置及び成膜方法
KR102552458B1 (ko) * 2019-07-31 2023-07-06 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 기판 지지구 및 반도체 장치의 제조 방법
CN110634775B (zh) * 2019-09-16 2022-11-08 西安奕斯伟材料科技有限公司 一种气流控制装置和晶圆处理装置
TWI745069B (zh) * 2020-07-27 2021-11-01 劉劭祺 材料處理設備及其操作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238695A (ja) * 2009-03-30 2010-10-21 National Institute Of Advanced Industrial Science & Technology アモルファススピンオングラス膜の形成方法
JP2012060000A (ja) * 2010-09-10 2012-03-22 Toshiba Corp シリコン酸化膜の製造装置
WO2012111729A1 (ja) * 2011-02-17 2012-08-23 AzエレクトロニックマテリアルズIp株式会社 二酸化ケイ素膜の製造方法
WO2013077321A1 (ja) * 2011-11-21 2013-05-30 株式会社日立国際電気 半導体装置の製造装置、半導体装置の製造方法及び記録媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766196B1 (ko) * 2003-08-26 2007-10-10 가부시키가이샤 히다치 고쿠사이 덴키 반도체 장치의 제조 방법 및 기판 처리 장치
US9404178B2 (en) * 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238695A (ja) * 2009-03-30 2010-10-21 National Institute Of Advanced Industrial Science & Technology アモルファススピンオングラス膜の形成方法
JP2012060000A (ja) * 2010-09-10 2012-03-22 Toshiba Corp シリコン酸化膜の製造装置
WO2012111729A1 (ja) * 2011-02-17 2012-08-23 AzエレクトロニックマテリアルズIp株式会社 二酸化ケイ素膜の製造方法
WO2013077321A1 (ja) * 2011-11-21 2013-05-30 株式会社日立国際電気 半導体装置の製造装置、半導体装置の製造方法及び記録媒体

Also Published As

Publication number Publication date
JPWO2015053121A1 (ja) 2017-03-09
US20160203976A1 (en) 2016-07-14
CN105518836A (zh) 2016-04-20
US9793112B2 (en) 2017-10-17
KR20160034394A (ko) 2016-03-29
JP6151789B2 (ja) 2017-06-21
KR101848573B1 (ko) 2018-04-12
CN105518836B (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
JP5778846B2 (ja) 気化装置、基板処理装置、及び半導体装置の製造方法
JP6151789B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP6417052B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6457104B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6000665B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP5916909B1 (ja) 基板処理装置、ガス整流部、半導体装置の製造方法およびプログラム
JP5809771B2 (ja) 基板処理方法、基板処理装置、半導体装置の製造方法及びプログラム
JP6038288B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6318139B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2016151684A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
JP6606595B2 (ja) 気化器、基板処理装置及び半導体装置の製造方法
JP6895582B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6749469B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167004681

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015541527

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852869

Country of ref document: EP

Kind code of ref document: A1