WO2012111729A1 - 二酸化ケイ素膜の製造方法 - Google Patents

二酸化ケイ素膜の製造方法 Download PDF

Info

Publication number
WO2012111729A1
WO2012111729A1 PCT/JP2012/053605 JP2012053605W WO2012111729A1 WO 2012111729 A1 WO2012111729 A1 WO 2012111729A1 JP 2012053605 W JP2012053605 W JP 2012053605W WO 2012111729 A1 WO2012111729 A1 WO 2012111729A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon dioxide
dioxide film
film
producing
hydrogen peroxide
Prior art date
Application number
PCT/JP2012/053605
Other languages
English (en)
French (fr)
Inventor
長原 達郎
昌伸 林
勝力 鈴木
Original Assignee
AzエレクトロニックマテリアルズIp株式会社
AzエレクトロニックマテリアルズUsaコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AzエレクトロニックマテリアルズIp株式会社, AzエレクトロニックマテリアルズUsaコーポレーション filed Critical AzエレクトロニックマテリアルズIp株式会社
Priority to CN201280008537.1A priority Critical patent/CN103354948B/zh
Priority to KR1020137024491A priority patent/KR101927683B1/ko
Priority to US13/982,359 priority patent/US20130316515A1/en
Priority to EP12747252.0A priority patent/EP2677536B1/en
Priority to SG2013054507A priority patent/SG191997A1/en
Publication of WO2012111729A1 publication Critical patent/WO2012111729A1/ja
Priority to IL227776A priority patent/IL227776B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for producing a silicon dioxide film in an electronic device. More particularly, the present invention relates to a method of forming a silicon dioxide film for use in forming an insulating film used in an electronic device, for example, forming a shallow trench isolation structure in the manufacture of an electronic device such as a semiconductor element. It is.
  • semiconductor elements such as transistors, resistors, and others are arranged on a substrate, but they need to be electrically insulated. Therefore, an isolation structure for separating the elements is necessary between these elements.
  • the trench isolation structure is a structure in which a fine groove is formed on the surface of a semiconductor substrate and an insulator is filled in the groove to electrically separate elements formed on both sides of the groove.
  • Such a structure for element isolation is an element isolation structure that is effective for achieving the high degree of integration required in recent years because the isolation region can be made narrower than in the conventional method.
  • an insulating film include a sub-metal film insulating film and a metal wiring interlayer insulating film.
  • a method for forming such an isolation structure a method is known in which a composition containing a polysilazane compound is applied to the surface of a substrate having a groove structure, and the groove is buried and then baked to form an oxide film. ing.
  • Such firing is generally performed in a steam atmosphere, but a technique for performing firing in the presence of hydrogen peroxide is known to promote oxidation of polysilazane.
  • Patent Document 1 discloses a method of forming an SOG film by dehydration condensation of a perhydrosilazane polymer, and the dehydration condensation includes moisture (H 2 O) and ozone (O 3 ). It is also shown that the heat treatment can be performed in a hydrogen peroxide atmosphere at that time.
  • the firing temperature is not clearly described, and in the examples, only firing at about 400 ° C. is performed. For this reason, the firing temperature is high in the method described in this patent document.
  • application to a so-called interlayer insulating film is intended, and for example, it is not intended to provide a silicon oxide film on a base material such as plastic.
  • Patent Document 2 also discloses a method of obtaining a ceramic by firing a polysilazane coating film in hydrogen peroxide vapor, and the firing temperature is 500 to 1800 ° C.
  • Patent Document 3 discloses a method in which polysilazane is applied to a plastic film and converted into SiO 2 ceramics by contacting with an amine compound and / or an acid compound.
  • hydrogen peroxide is listed as one of the acid compounds, and after drying at 25 ° C. in the presence of the hydrogen peroxide vapor, the condition is 95 ° C./85% RH in a steam atmosphere.
  • the silicon oxide film is obtained by firing.
  • there was room for further improvement in order to obtain a silicon dioxide film having excellent characteristics Specifically, when forming an oxide film under the conditions described in Patent Document 3, the hydrogen peroxide vapor alone does not accelerate the oxidation reaction, but only triggers the oxidation reaction.
  • the present invention provides a method capable of manufacturing an insulating film having low shrinkage and low stress with respect to such a conventional technique.
  • the method for producing a silicon dioxide film according to the present invention comprises: (A) A coating process in which a polysilazane composition is coated on the substrate surface to form a coating film, (B) An oxidation step of heating the coating film at 50 to 200 ° C. in a hydrogen peroxide atmosphere is characterized.
  • the method for forming a shallow trench isolation structure according to the present invention is characterized in that a silicon dioxide film for burying the groove is formed on the surface of a substrate having a groove structure on the surface by the method described above. It is.
  • the silicon dioxide film formed according to the present invention is characterized by low shrinkage and low stress because of the low content of silanol groups.
  • the method for producing a silicon dioxide film according to the present invention includes an oxidation step in which polysilazane is converted to silicon dioxide by heating a coating film containing polysilazane in a hydrogen peroxide atmosphere at a specific temperature range.
  • oxidation step in which polysilazane is converted to silicon dioxide by heating a coating film containing polysilazane in a hydrogen peroxide atmosphere at a specific temperature range.
  • the shrinkage rate of the obtained silicon dioxide film is increased.
  • the heating temperature is too low, the oxidation reaction itself does not proceed, and the hydrogen peroxide vapor does not sufficiently penetrate into the coating film, and the oxidation reaction may not proceed easily.
  • the conditions of the step of performing the firing need to satisfy specific conditions. The method for producing a silicon dioxide film according to the present invention including such an oxidation step will be described in more detail as follows.
  • a substrate on which a silicon dioxide film is to be formed is prepared.
  • the substrate material can be selected from a wider range than the method for producing a general silicon dioxide film.
  • a substrate made of a semiconductor material such as a silicon substrate, a substrate made of an inorganic material such as glass, or a substrate made of an organic material such as plastic can be arbitrarily selected.
  • the silicon dioxide film can have various functions. For example, it can be an insulating layer constituting a shallow trench isolation structure for isolating elements arranged on the surface of the substrate, or an interlayer insulating film when a circuit structure is stacked on the substrate.
  • a groove structure that is, a substrate having irregularities is prepared.
  • any method can be used to form the groove on the substrate surface. A specific method is as follows.
  • a silicon dioxide film is formed on the surface of a silicon substrate, for example, by a thermal oxidation method.
  • the thickness of the silicon dioxide film formed here is generally 5 to 30 nm.
  • a silicon nitride film is formed on the formed silicon dioxide film by, for example, a low pressure CVD method.
  • This silicon nitride film can function as a mask in a later etching process or a stop layer in a polishing process described later.
  • the silicon nitride film is generally formed with a thickness of 100 to 400 nm when formed.
  • a photoresist is applied on the silicon dioxide film or silicon nitride film thus formed.
  • the photoresist film is dried or cured as necessary, and then exposed and developed with a desired pattern to form a pattern.
  • the exposure method can be performed by any method such as mask exposure or scanning exposure. Also, any photoresist can be selected and used from the viewpoint of resolution and the like.
  • the silicon nitride film and the underlying silicon dioxide film are sequentially etched. By this operation, a desired pattern is formed on the silicon nitride film and the silicon dioxide film.
  • the silicon substrate is dry-etched to form trench isolation grooves.
  • the width of the trench isolation groove to be formed is determined by the pattern for exposing the photoresist film.
  • the width of the trench isolation groove in the semiconductor element is appropriately set depending on the target semiconductor element.
  • the width of the groove is preferably 5 to 50 nm, and preferably 5 to 40 nm. preferable.
  • the ratio of the groove depth to the groove width is preferably 10 to 100, more preferably 10 to 50.
  • a polysilazane composition as a material for the silicon dioxide film is applied on the substrate thus prepared to form a coating film.
  • a conventionally known arbitrary polysilazane compound dissolved in a solvent can be used.
  • the polysilazane compound used in the present invention is not particularly limited and can be arbitrarily selected as long as the effects of the present invention are not impaired. These may be either inorganic compounds or organic compounds. Among these polysilazanes, preferred are those composed of combinations of units represented by the following general formulas (Ia) to (Ic): (Where m1 to m3 are numbers representing the degree of polymerization) Of these, those having a weight average molecular weight in terms of styrene of 700 to 30,000 are particularly preferred.
  • Examples of other polysilazanes include, for example, a general formula: (Wherein R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a group directly connected to silicon such as a fluoroalkyl group other than these groups. A group which is carbon, an alkylsilyl group, an alkylamino group or an alkoxy group, provided that at least one of R 1 , R 2 and R 3 is a hydrogen atom and n is a number representing the degree of polymerization). Examples thereof include polysilazane having a skeleton composed of the above structural units and a number average molecular weight of about 100 to 50,000 or a modified product thereof. These polysilazane compounds can be used in combination of two or more.
  • the polysilazane composition used in the present invention comprises a solvent capable of dissolving the polysilazane compound.
  • the solvent used here is different from the solvent used for the dipping solution.
  • Such a solvent is not particularly limited as long as it can dissolve each of the above-mentioned components.
  • Specific examples of preferable solvents include the following: (A) Aromatic compounds such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, triethylbenzene, etc.
  • solvents can be used in combination of two or more as appropriate in order to adjust the evaporation rate of the solvent, to reduce the harmfulness to the human body, or to adjust the solubility of each component.
  • the polysilazane composition used in the present invention may contain other additive components as necessary.
  • examples of such components include a crosslinking accelerator that accelerates the crosslinking reaction of polysilazane, a catalyst for the reaction to be converted into silicon dioxide, a viscosity modifier for adjusting the viscosity of the composition, and the like.
  • a phosphorus compound such as tris (trimethylsilyl) phosphate may be contained for the purpose of obtaining a sodium gettering effect when used in a semiconductor device.
  • the content of each of the above components varies depending on the application conditions, firing conditions, and the like.
  • the content of the polysilazane compound is preferably 1 to 40% by weight, more preferably 2 to 35% by weight, based on the total weight of the polysilazane composition.
  • the concentration of polysilazane contained in the polysilazane composition is not limited to this, and any concentration of polysilazane composition can be used as long as the trench isolation structure specified in the present invention can be formed. .
  • the content of various additives other than polysilazane varies depending on the type of the additive, etc., but the amount added to the polysilazane compound is preferably 0.001 to 40% by weight, and 0.005 to 30% by weight. More preferably, it is 0.01 to 20% by weight.
  • the polysilazane composition can be applied on the substrate by any method. Specific examples include spin coating, curtain coating, dip coating, and others. Of these, spin coating is particularly preferable from the viewpoint of uniformity of the coating surface.
  • the thickness of the applied coating film is preferably 5 to 10,000 nm, more preferably 20 to 5,000 nm.
  • channel on the substrate surface is said. If the thickness of this coating film is excessively high, the oxidation reaction in the portion close to the substrate may not proceed sufficiently. On the other hand, if the film thickness is too thin, a silicon dioxide film having a sufficient thickness may not be formed. So be careful.
  • a hydrogen peroxide atmosphere By this heating, polysilazane is converted into a silicon dioxide film, that is, an insulating film.
  • Heating can be performed using any apparatus, such as a curing furnace or a hot plate, as long as the temperature and hydrogen peroxide atmosphere can be controlled.
  • an apparatus that can convert a hydrogen peroxide atmosphere by supplying hydrogen peroxide water is preferable.
  • a cover is provided on the hot plate and sealed, a coated substrate is placed in the sealed space, and hydrogen peroxide solution is dropped into the sealed space.
  • the heat of the hot plate causes hydrogen peroxide to exist as a vapor in the sealed space, so that the conditions of the oxidation process of the present invention can be satisfied.
  • an aqueous solution having a concentration of 5 to 90% by weight can be generally used. However, it is convenient and preferable to use a commercially available 30 w / v%.
  • the concentration in the hydrogen peroxide atmosphere is preferable because the oxidation reaction is promoted and the production efficiency is improved. Therefore, generally it is preferably 5 mol% or more, more preferably 7 mol% or more. However, if the concentration of hydrogen peroxide is too high, there is a risk of explosion. Therefore, the concentration is preferably lower than the lower explosion limit. Although the lower explosion limit varies depending on the temperature, in the present invention, the hydrogen peroxide concentration is preferably 50 mol% or less, and more preferably 28 mol% or less.
  • the hydrogen peroxide atmosphere may further contain water vapor. It can be expected that the oxidation reaction of polysilazane is promoted by containing water vapor in the atmosphere. Normally, hydrogen peroxide is circulated as an aqueous solution. By using it as it is, it is possible to easily generate a conversion or hydrogen atmosphere containing water vapor. On the other hand, when the water vapor concentration is low, it can be expected that production of silanol groups during heating is suppressed. Therefore, specifically, the water vapor concentration in the atmosphere is preferably 5 to 90 mol%, and more preferably 20 to 80 mol%.
  • the atmosphere may further contain other inert gas such as nitrogen or argon.
  • the temperature conditions in the oxidation process vary depending on the type of polysilazane composition used and the process combination. Generally, the higher the temperature, the faster the conversion rate of the polysilazane compound to the silicon dioxide film, and the higher the production efficiency. However, if the temperature of the oxidation treatment is excessively high, the low molecular weight component present from the beginning or the low molecular weight component generated during the oxidation treatment may be scattered and sublimated, and the silicon dioxide film may be contracted greatly. In addition, when the substrate is a silicon substrate, the device characteristics may be adversely affected by the oxidation of the substrate. From such a viewpoint, in the method according to the present invention, the temperature in the oxidation step needs to be 200 ° C.
  • a silicon dioxide film can be formed at a relatively low temperature. Since this silicon dioxide film has low shrinkage and low stress, it can be used for plastic substrates such as acrylic resin, polyethylene terephthalate, and polycarbonate. It is effective for forming a scratch-resistant film, a passivation film, a primer film, etc. on the surface.
  • the heating time in the oxidation process is selected so that the oxidation reaction proceeds sufficiently.
  • the heating time is generally 0.5 to 60 minutes, preferably 1 to 30 minutes.
  • the polysilazane compound present in the coating film can be converted into silicon dioxide to obtain a silicon dioxide film.
  • the silicon dioxide film thus obtained has excellent physical properties such as low shrinkage and film stress and high wet etching resistance.
  • the method for forming a shallow trench isolation structure according to the present invention requires the steps (A) and (B) described above, but the following auxiliary steps may be combined as necessary.
  • (A) Solvent removal step After the coating step, the substrate coated with the polysilazane composition can be pre-baked prior to the firing step. This step aims to remove at least a part of the solvent contained in the coating film.
  • the temperature in the solvent removal step is usually 200 ° C. or lower, preferably 150 ° C. or lower, more preferably 100 ° C. or lower.
  • the temperature of the solvent removal step is generally 50 ° C. or higher.
  • the time required for the solvent removal step is generally 0.5 to 10 minutes, preferably 1 to 5 minutes.
  • the heating temperature of the solvent removal step is selected so as not to exceed the temperature of the oxidation step performed subsequent to the solvent removal step. This is to suppress the generation of scattered matter in the solvent drying process as much as possible.
  • the substrate after the oxidation step can be further heated in a steam atmosphere to further promote the oxidation reaction.
  • the steam oxidation is preferably performed in an inert gas or oxygen atmosphere containing steam using a curing furnace or a hot plate.
  • the water vapor is effective to sufficiently convert the polysilazane compound into silicon dioxide, and the concentration in the atmosphere is preferably 1 mol% or more, more preferably 10 mol% or more, and most preferably 20 mol% or more. In particular, when the water vapor concentration is 20 mol% or more, the oxidation reaction is more likely to proceed, the occurrence of defects such as voids is reduced, and the characteristics of the silicon dioxide film are improved.
  • nitrogen, argon, helium, or the like is used.
  • the temperature conditions in the steam oxidation process vary depending on the type of polysilazane composition used and the process combination. In general, the higher the temperature, the faster the oxidation reaction and the higher the production efficiency. On the other hand, when the substrate is a silicon substrate, the adverse effect on the device characteristics due to oxidation or change in crystal structure tends to be reduced. Note that since the oxidation reaction proceeds at a low temperature by the previous oxidation step, even if heating at a higher temperature is performed in the steam oxidation step, the film physical properties due to the scattered matter hardly deteriorate. From such a viewpoint, in the method according to the present invention, the temperature in the steam oxidation step is preferably 300 to 1000 ° C., more preferably 350 to 700 ° C. In addition, the heating temperature and water vapor
  • an oxidation reaction can fully be advanced. That is, steam oxidation is necessary when supplementing the oxidation reaction in a hydrogen peroxide atmosphere. Therefore, if oxidation in a hydrogen peroxide atmosphere is sufficiently advanced, it is preferable not to perform steam oxidation from the viewpoint of production efficiency and production cost.
  • polishing Step After the oxidation step, it is preferable to remove unnecessary portions of the obtained silicon dioxide film.
  • the silicon dioxide film formed on the inner side of the groove on the substrate is left by the polishing process, and the silicon dioxide film formed on the flat portion of the substrate surface is removed by polishing.
  • This process is a polishing process.
  • This polishing process can be performed after the curing process, or can be performed immediately after the solvent removal in the case of combining the solvent removal process.
  • Polishing is generally performed by CMP.
  • This polishing by CMP can be performed with a general abrasive and polishing apparatus.
  • the polishing agent an aqueous solution in which an abrasive such as silica, alumina, or ceria and other additives are dispersed as required can be used.
  • a typical CMP apparatus can be used.
  • (D) Etching Step In the polishing step, the silicon dioxide film derived from the polysilazane composition formed on the flat portion of the substrate surface is almost removed, but the silicon dioxide film remaining on the flat portion of the substrate surface is removed. In order to remove this, it is preferable to perform an etching process.
  • An etching solution is generally used for the etching treatment, and the etching solution is not particularly limited as long as it can remove the silicon dioxide film.
  • a hydrofluoric acid aqueous solution containing ammonium fluoride is used. The concentration of ammonium fluoride in this aqueous solution is preferably 5% or more, and more preferably 30% or more.
  • Example 1 (Effect of hydrogen peroxide) A polysilazane solution (20% by weight dibutyl ether solution) was spin-coated on a silicon substrate at a rotational speed of 1000 rpm, and prebaked at 70 ° C. for about 3 minutes. As a result, a polysilazane coating film having a thickness of 600 nm was obtained. This was placed on a hot plate heated to 150 ° C. and covered with a quartz petri dish. A hole with a diameter of about 3 mm was formed outside the petri dish. Hydrogen peroxide (30% by weight) was dropped from this hole at a rate of 0.2 cc / min.
  • the dropped hydrogen peroxide solution contacted the hot plate, quickly changed from the liquid phase to the gas phase (vapor), and evenly distributed in the petri dish. At this time, the hydrogen peroxide concentration in the petri dish is calculated to be about 25 mo1% and the water vapor concentration is about 75 mo1%.
  • This oxidation treatment was performed for 10 minutes. When the obtained silicon dioxide film was measured by infrared spectroscopy, it was found that most of the silazane bonds in the polysilazane were changed to siloxane bonds, and almost no silanol groups remained.
  • Comparative Example 1 For Example 1, pure water was dropped instead of hydrogen peroxide, and the coated substrate was heat-treated in the same manner as in Example 1. When the infrared spectroscopic spectrum of the coating film was measured after the treatment, the oxidation reaction hardly proceeded and was almost equivalent to the polysilazane before the oxidation.
  • Comparative Example 2 In the same manner as in Example 1, a polysilazane solution was applied to a silicon substrate to obtain a polysilazane film. The sample was left in a superheated steam atmosphere of 350 ° C. and 80% H 2 O / O 2 for 30 minutes, and then heated at 850 ° C. for 30 minutes in a nitrogen atmosphere. The shrinkage rate, dielectric constant, and dielectric breakdown voltage of the obtained silicon dioxide film were measured. The obtained results were as shown in Table 1.
  • Comparative Example 3 In the same manner as in Example 1, a polysilazane solution was applied to a silicon substrate to obtain a polysilazane film. On the other hand, a 30% by weight aqueous hydrogen peroxide solution maintained at 40 ° C. was sealed in the container, and a heat insulating container was prepared so that the internal atmosphere was adjusted to a temperature of 25 ° C. and a relative humidity of 60%. The sample was allowed to stand for 10 minutes in this heat insulation container, and then left for 5 minutes in a steam atmosphere at 95 ° C. and 80% relative humidity. Further, heating was then performed at 850 ° C. for 30 minutes in a nitrogen atmosphere.
  • the stress “+” indicates tensile stress and “ ⁇ ” indicates compressive stress.
  • the silicon dioxide film obtained in Example 1 achieves an excellent shrinkage rate and dielectric breakdown voltage.
  • the dielectric constant of the silicon dioxide film is generally known to be about 3.5 to 4.0, but the dielectric constant of the film according to Comparative Example 3 is higher than that, and the reaction has not progressed completely. It is presumed that nitrogen atoms remain in the film.
  • the preferred range of stress varies depending on the application of the silicon dioxide film. However, it is preferable that the stress is low in, for example, an insulating film used for an isolation structure, and the silicon dioxide film according to Example 1 is excellent in this respect.
  • Example 2 The polysilazane coating film was heated in the same manner as in Example 1 except that the concentration of the hydrogen peroxide solution was changed to 10 mol% (Example 2) or 5 mol% (Example 3).
  • the heating time was 10 minutes, the coating films of Examples 2 and 3 did not sufficiently undergo the oxidation reaction, and thus further continued to be heated. It was found that the oxidation reaction progressed to the same level as in Example 1 in Example 2 with a heating time of 15 minutes and in Example 3 with a heating time of 40 minutes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

[課題]低収縮かつ低応力である絶縁膜を製造することができる方法の提供。 [解決手段]基板表面にポリシラザン組成物を塗布して塗膜を形成させ、引き続き前記塗膜を過酸化水素雰囲気下、50~200℃で加熱することを含んでなることを特徴とする、二酸化ケイ素膜の製造方法。この二酸化ケイ素膜の製造方法によって各種絶縁膜などのアイソレーション構造を形成させることができる。

Description

二酸化ケイ素膜の製造方法
 本発明は、電子デバイスにおける二酸化ケイ素膜の製造方法に関するものである。さらに詳しくは、本発明は半導体素子などの電子デバイスの製造において、電子デバイスに用いられる絶縁膜の形成、例えばシャロー・トレンチ・アイソレーション構造の形成に用いるための二酸化ケイ素膜を形成させる方法に関するものである。
 一般に、半導体装置の様な電子デバイスにおいては、半導体素子、例えばトランジスタ、抵抗、およびその他、が基板上に配置されているが、これらは電気的に絶縁されている必要がある。したがって、これら素子の間には、素子を分離するためのアイソレーション構造が必要である。
 一方、電子デバイスの分野においては、近年、高密度化、および高集積化が進んでいる。このような高密度および高集積度化が進むと、必要な集積度に見合った、微細なアイソレーション構造を形成させることが要求される。そのようなニーズに合致した新たなアイソレーション構造のひとつとして、トレンチ・アイソレーション構造が挙げられる。この構造は、半導体基板の表面に微細な溝を形成させ、その溝の内部に絶縁物を充填して、溝の両側に形成される素子の間を電気的に分離する構造である。このような素子分離のための構造は、従来の方法に比べてアイソレーション領域を狭くできるため、昨今要求される高集積度を達成するために有効な素子分離構造である。また、素子を三次元に積層して高密度化を図る場合には、導電性材料の層の間に絶縁層を設けることも必要である。このような絶縁膜としては金属膜下絶縁膜や金属配線層間絶縁膜などがある。
 このようなアイソレーション構造を形成させるための方法として、溝構造を有する基板の表面に、ポリシラザン化合物を含む組成物を塗布し、溝を埋設した後に焼成して酸化膜を形成させる方法が知られている。
 このような焼成は、通常は水蒸気雰囲気下において行うことが一般的であるが、ポリシラザンの酸化を促進するために、過酸化水素の存在下において焼成を行う技術が知られている。
 例えば、特許文献1にはパー・ハイドロ・シラザン重合体の脱水縮合によりSOG膜を形成する方法が開示されているが、その脱水縮合は水分(HO)とオゾン(O)とを含んだ雰囲気で熱処理することにより行われており、そのときに過酸化水素雰囲気で行うことが可能であることも示されている。しかしながら、この特許文献においては、焼成温度は明確に記載されておらず、実施例では400℃程度での焼成を行っているだけである。このためこの特許文献に記載された方法では焼成温度は高い。また、その記載を見る限り、いわゆる層間絶縁膜についての適用を意図しており、たとえば、プラスチックなどの基材に酸化ケイ素膜を設けることを意図していない。
 特許文献2にもポリシラザン塗膜を過酸化水素蒸気中で焼成してセラミックを得る方法が開示されているが、その焼成温度は500~1800℃である。
 しかし、本発明者らの検討によれば、高温で焼成を行うと、雰囲気中に飛散物があり、その影響によって得られる二酸化ケイ素膜の収縮および膜応力が増加する傾向があることがわかった。このため、特許文献1または2に記載の方法により形成された二酸化ケイ素膜は、物性の観点からはさらなる改良の余地があった。
   また、特許文献3には、プラスチックフィルムにポリシラザンを塗布して、アミン化合物及び/又は酸化合物と接触させることでSiO系セラミックスに転化する方法が開示されている。この特許文献には、酸化合物の一つとして過酸化水素が挙げられており、その過酸化水素蒸気の存在下に25℃で乾燥させた後、水蒸気雰囲気下95℃/85%RHの条件にて焼成を行って、酸化ケイ素膜を得ている。しかし、本発明者らの検討によれば、優れた特性を有する二酸化ケイ素膜を得るためにはさらなる改良の余地があった。具体的には、特許文献3に記載された条件で酸化膜を形成させる場合、過酸化水素蒸気のみでは酸化反応を促進するというよりも酸化反応開始のきっかけをあたえるのみであり、酸化反応そのものは過酸化水素蒸気に接触させた後の水蒸気処理によって生じるものであることがわかった。また、特許文献3に記載された方法では、形成された酸化膜中に無視できない量のシラノール基(Si-OH基)が含まれることがわかった。このシラノール基は、引き続き行われる焼成処理によって、脱水縮合を起こして最終的には二酸化ケイ素膜を形成するが、脱水縮合に伴う水の脱離に伴って酸化膜の収縮を引き起こすことがあることもわかった。
特開平9-275135号公報 米国特許第5,055,431号明細書 特開平9-183663号公報、段落[0067]
 本発明は、このような従来技術に対して、低収縮かつ低応力である絶縁膜を製造することができる方法を提供するものである。
 本発明による二酸化ケイ素膜の製造方法は、
(A)基板表面にポリシラザン組成物を塗布して塗膜を形成させる塗布工程、
(B)前記塗膜を過酸化水素雰囲気下、50~200℃で加熱する酸化工程
を含んでなることを特徴とするものである。
 また、本発明によるシャロー・トレンチ・アイソレーション構造の形成方法は、表面に溝構造を有する基板の表面に、前記の方法により、前記溝を埋設する二酸化ケイ素膜を形成させることを特徴とするものである。
 本発明によれば、従来の方法に比較して短時間で優れた特性の二酸化ケイ素膜を形成させることができる。特に、本発明により形成された二酸化ケイ素膜はシラノール基の含有量が少ないので、低収縮かつ低応力であるという特徴を有する。
二酸化ケイ素膜の製造方法
 本発明による二酸化ケイ素膜の製造方法は、ポリシラザンを含む塗膜を過酸化水素雰囲気下で特定の温度範囲で加熱することによりポリシラザンを二酸化ケイ素に転化させる酸化工程を含むことをひとつの特徴としている。ここで、前記したとおり、過酸化水素の存在下にポリシラザンを酸化して二酸化ケイ素に転化されることは知られていた。しかし、過酸化水素雰囲気で加熱する場合であっても、加熱温度が高すぎると塗膜中に最初から存在する低分子量成分や酸化処理中に生成した低分子量成分の飛散や昇華が生じ、その結果、得られる二酸化ケイ素膜の収縮率が大きくなってしまう。これに対して、加熱温度が低すぎれば酸化反応そのものが進行せず、また過酸化水素蒸気が塗膜中に十分に浸透せずに酸化反応が進行しにくいこともある。このように、十分な特性を有する二酸化ケイ素膜を得るためには焼成を行う工程の条件が特定の条件を満たす必要がある。このような酸化工程を含む本発明による二酸化ケイ素膜の製造方法について、より詳細に説明すると以下の通りである。
(A)塗布工程
 まず、二酸化ケイ素膜を形成させる基板を準備する。本発明による二酸化ケイ素膜の製造方法は、酸化工程における加熱温度が相対的に低いため、一般的な二酸化ケイ素膜の製造方法よりもより広範な範囲から基板の材料を選択することができる。具体的には、シリコン基板などの半導体材料からなる基板、ガラスなどの無機材料からなる基板、プラスチックなどの有機材料からなる基板など、任意に選択することができる。
 このような基板の表面に二酸化ケイ素膜を形成させる場合、二酸化ケイ素膜に種々の機能をもたせることができる。例えば、基板の表面に配置された素子を分離するためのシャロー・トレンチ・アイソレーション構造を構成する絶縁層にしたり、基板上に回路構造を積層する際の層間絶縁膜にすることもできる。
 シャロー・トレンチ・アイソレーション構造を形成させる場合には、溝構造、すなわち凹凸を有する基板を用意する。また基板表面に溝を形成するには、任意の方法を用いることができる。具体的な方法は、以下に示すとおりである。
 まず、例えばシリコン基板表面に、例えば熱酸化法により、二酸化ケイ素膜を形成させる。ここで形成させる二酸化ケイ素膜の厚さは一般に5~30nmである。
 必要に応じて、形成された二酸化ケイ素膜上に、例えば減圧CVD法により、窒化シリコン膜を形成させる。この窒化シリコン膜は、後のエッチング工程におけるマスク、あるいは後述する研磨工程におけるストップ層として機能させることのできるものである。窒化シリコン膜は、形成させる場合には、一般に100~400nmの厚さで形成させる。
 このように形成させた二酸化ケイ素膜または窒化シリコン膜の上に、フォトレジストを塗布する。必要に応じてフォトレジスト膜を乾燥または硬化させた後、所望のパターンで露光および現像してパターンを形成させる。露光の方法はマスク露光、走査露光など、任意の方法で行うことができる。また、フォトレジストも解像度などの観点から任意のものを選択して用いることができる。
 形成されたフォトレジスト膜をマスクとして、窒化シリコン膜およびその下にある二酸化ケイ素膜を順次エッチングする。この操作によって、窒化シリコン膜および二酸化ケイ素膜に所望のパターンが形成される。
 パターンが形成された窒化シリコン膜および二酸化ケイ素膜をマスクとして、シリコン基板をドライエッチングして、トレンチ・アイソレーション溝を形成させる。
 形成されるトレンチ・アイソレーション溝の幅は、フォトレジスト膜を露光するパターンにより決定される。半導体素子におけるトレンチ・アイソレーション溝の幅は、目的とする半導体素子により適切に設定されるが、本発明においては、溝の幅が5~50nmであることが好ましく、5~40nmであることが好ましい。また、溝の幅に対する溝の深さの比、すなわちアスペクト比が10~100であることが好ましく、10~50であることがより好ましい。
 次いで、このように準備された基板上に、二酸化ケイ素膜の材料となるポリシラザン組成物を塗布して、塗膜を形成させる。このポリシラザン組成物は、従来知られている任意のポリシラザン化合物を溶媒に溶解させたものを用いることができる。
 本発明に用いられるポリシラザン化合物は特に限定されず、本発明の効果を損なわない限り任意に選択することができる。これらは、無機化合物あるいは有機化合物のいずれのものであってもよい。これらポリシラザンのうち、好ましいものとして下記一般式(Ia)~(Ic)で表される単位の組み合わせからなるものが挙げられる: 
Figure JPOXMLDOC01-appb-C000001
(式中、m1~m3は重合度を表す数である)
 このうち、特に好ましいものとしてスチレン換算重量平均分子量が700~30,000であるものが好ましい。
 また、他のポリシラザンの例として、例えば、主として一般式:
Figure JPOXMLDOC01-appb-C000002
(式中、R、RおよびRは、それぞれ独立に水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、もしくはこれらの基以外でフルオロアルキル基等のケイ素に直結する基が炭素である基、アルキルシリル基、アルキルアミノ基またはアルコキシ基を表す。但し、R、RおよびRの少なくとも1つは水素原子であり、nは重合度を表す数である)で表される構造単位からなる骨格を有する数平均分子量が約100~50,000のポリシラザンまたはその変性物が挙げられる。これらのポリシラザン化合物は2種類以上を組み合わせて用いることもできる。
 本発明に用いられるポリシラザン組成物は、前記のポリシラザン化合物を溶解し得る溶媒を含んでなる。ここで用いられる溶媒は、前記の浸漬用溶液に用いられる溶媒とは別のものである。このような溶媒としては、前記の各成分を溶解し得るものであれば特に限定されるものではないが、好ましい溶媒の具体例としては、次のものが挙げられる:
(a)芳香族化合物、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、トリエチルベンゼン等、(b)飽和炭化水素化合物、例えばn-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、n-オクタン、i-オクタン、n-ノナン、i-ノナン、n-デカン、i-デカン等、(c)脂環式炭化水素化合物、例えばエチルシクロヘキサン、メチルシクロヘキサン、シクロヘキサン、シクロヘキセン、p-メンタン、デカヒドロナフタレン、ジペンテン、リモネン等、(d)エーテル類、例えばジプロピルエーテル、ジブチルエーテル、ジエチルエーテル、メチルターシャリーブチルエーテル(以下、MTBEという)、アニソール等、および(e)ケトン類、例えばメチルイソブチルケトン(以下、MIBKという)等。これらのうち、(b)飽和炭化水素化合物、(c)脂環式炭化水素化合物(d)エーテル類、および(e)ケトン類がより好ましい。
 これらの溶媒は、溶剤の蒸発速度の調整のため、人体への有害性を低くするため、または各成分の溶解性の調製のために、適宜2種以上混合したものも使用できる。
 本発明に用いられるポリシラザン組成物は、必要に応じてその他の添加剤成分を含有することもできる。そのような成分として、例えばポリシラザンの架橋反応を促進する架橋促進剤等、二酸化ケイ素に転化させる反応の触媒、組成物の粘度を調製するための粘度調整剤などが挙げられる。また、半導体装置に用いられたときにナトリウムのゲッタリング効果などを目的に、リン化合物、例えばトリス(トリメチルシリル)フォスフェート等、を含有することもできる。
 また、前記の各成分の含有量は、塗布条件や焼成条件などによって変化する。ただし、ポリシラザン化合物の含有率がポリシラザン組成物の総重量を基準として1~40重量%であることが好ましく、2~35重量%とすることがより好ましい。ただし、ポリシラザン組成物に含まれるポリシラザンの濃度はこれに限定されるものではなく、本発明において特定されたトレンチ・アイソレーション構造を形成できるのであれば、任意濃度のポリシラザン組成物を用いることができる。また、ポリシラザン以外の各種添加剤の含有量は、添加剤の種類などによって変化するが、ポリシラザン化合物に対する添加量が0.001~40重量%であることが好ましく、0.005~30重量%であることがより好ましく、0.01~20重量%であることがさらに好ましい。
 前記のポリシラザン組成物は、任意の方法で基板上に塗布することができる。具体的には、スピンコート、カーテンコート、ディップコート、およびその他が挙げられる。これらのうち、塗膜面の均一性などの観点からスピンコートが特に好ましい。塗布される塗膜の厚さは、5~10,000nmであることが好ましく、20~5,000nmであることがより好ましい。なお、基板表面に溝などが形成されている場合には基板表面の溝のない部分における塗膜の厚さをいう。この塗膜の厚さが過度に高いと、基板に近い部分における酸化反応が十分進行しないことがあり、一方で膜厚が薄すぎると、十分な膜厚の二酸化ケイ素膜が形成できないことがあるので注意が必要である。
(B)酸化工程
 塗布工程に引き続き、過酸化水素雰囲気下でポリシラザン塗膜を加熱して、塗膜全体を二酸化ケイ素膜に転化させる。この加熱によって、ポリシラザンが二酸化ケイ素膜、すなわち絶縁膜に転化される。加熱は、温度および過酸化水素雰囲気を制御できるものであれば任意の装置、例えば硬化炉やホットプレートを用いて行うことができる。特に、過酸化水素水を供給することにより、それを過酸化水素雰囲気に転換することできる装置が好ましい。例えば、ホットプレートを用いた装置では、ホットプレート上にカバーを設けて密閉し、その密閉された空間内に塗布済み基板を配置し、さらにその密閉空間内に過酸化水素水を滴下することにより、ホットプレートの熱により過酸化水素が密閉空間内に蒸気として存在することになり、本発明の酸化工程の条件を満たすことができる。
 過酸化水素を過酸化水素水として供給する場合には、一般に5~90重量%濃度水溶液を用いることができるが、市販されている30w/v%を用いることも簡便であり好ましい。
 過酸化水素雰囲気に含まれる過酸化水素濃度は、一般に高いほうが酸化反応を促進され、生産効率が改善されるので好ましい。したがって、一般に5モル%以上であることが好ましく、7モル%以上であることがより好ましい。しかしながら、過酸化水素の濃度が高すぎると爆発の危険性がある。このため爆発下限界よりも低い濃度とすることが好ましい。爆発下限界は温度によっても変化するが、本発明においては過酸化水素濃度は50モル%以下であることが好ましく、28モル%以下であることがより好ましい。
 過酸化水素雰囲気は、水蒸気をさらに含んでもよい。雰囲気に水蒸気が含まれることによりポリシラザンの酸化反応の促進が期待できる。通常、過酸化水素は水溶液として流通しているので、それをそのまま用いることにより、容易に水蒸気を含んだ換算か水素雰囲気を生成させることができる。一方、水蒸気濃度が低いと、加熱時のシラノール基生成が抑制されることが期待できる。このため、具体的には雰囲気中の水蒸気濃度は5~90モル%であることが好ましく、20~80モル%であることがより好ましい。また、雰囲気はその他の不活性ガス、例えば窒素やアルゴンをさらに含んでもよい。
 酸化工程における温度条件は、用いるポリシラザン組成物の種類や、工程の組み合わせ方によって変化する。一般的に温度が高いほうがポリシラザン化合物が二酸化ケイ素膜に転化される速度が速くなる傾向にあり、生産効率も高くなる。しかしながら酸化処理の温度が過度に高いと最初から存在する低分子量成分や酸化処理中に生成した低分子量成分の飛散や昇華が生じ、二酸化ケイ素膜の収縮が大きくなることがある。また、基板がシリコン基板である場合には基板の酸化によるデバイス特性への悪影響を与える場合もある。このような観点から、本発明による方法では、酸化工程における温度は200℃以下であることが必要であり、好ましくは180℃以下である。一方、酸化工程における温度は50℃以上であること必要であり、好ましくは70℃以上、より好ましくは100℃以上である。必要に応じて酸化工程の加熱温度を段階的に変化させることもできる。なお、本発明によれば、比較的低温で二酸化ケイ素膜を形成させることができ、またこの二酸化ケイ素膜は低収縮かつ低応力であるので、アクリル樹脂、ポリエチレンテレフタレート、ポリカーボネートなどのプラスチック基材の表面に、耐擦傷膜、パッシベーション膜、プライマー膜などを形成させるのに有効である。
 酸化工程の加熱時間は、酸化反応が十分に進行するように選択される。加熱時間は一般に、0.5~60分、好ましくは1~30分とされる。
 この加熱により、塗布膜中に存在するポリシラザン化合物を二酸化ケイ素に転化させて二酸化ケイ素膜を得ることができる。このようにして得られた二酸化ケイ素膜は、収縮および膜応力が低く、またウェットエッチング耐性も高い、優れた物性を有するものである。
 本発明によるシャロー・トレンチ・アイソレーション構造の形成方法は、前記した(A)および(B)の工程を必須とするが、必要に応じて、下記の補助工程を組み合わせることもできる。
(a)溶媒除去工程
 塗布工程後、焼成工程に先立って、ポリシラザン組成物が塗布された基板をプリベーク処理をすることができる。この工程では、塗膜中に含まれる溶媒の少なくとも一部を除去することを目的とする。
 通常、溶媒除去工程では、実質的に一定温度で加熱する方法がとられる。このとき、実質的にポリシラザンの酸化または重合反応が起こらない条件で溶媒除去を行うべきである。したがって、溶媒除去工程における温度は通常200℃以下、好ましくは150℃以下、より好ましくは100℃以下で行われる。一方、十分に溶媒を除去するために、溶媒除去工程の温度は一般的に50℃以上とされる。溶媒除去工程の所要時間は一般に0.5~10分、好ましくは1~5分、である。なお、一般に溶媒除去工程の加熱温度は、溶媒除去工程に引き続いて行われる酸化工程の温度を上回らないように選択する。これは溶媒乾燥工程での飛散物の発生を極力抑えるためである。
(b)水蒸気酸化工程
 酸化工程後の基板を、さらに水蒸気雰囲気下で加熱して、さらに酸化反応を進行させることができる。水蒸気酸化は、硬化炉やホットプレートを用いて、水蒸気を含んだ不活性ガスまたは酸素雰囲気下で行うことが好ましい。水蒸気はポリシラザン化合物を二酸化ケイ素に十分に転化させるのに有効であり、雰囲気中の濃度は、好ましくは1モル%以上、より好ましくは10モル%以上、最も好ましくは20モル%以上とする。特に水蒸気濃度が20モル%以上であると、酸化反応がより進行しやすくなり、ボイドなどの欠陥が発生が少なくなり、二酸化ケイ素膜の特性が改良されるので好ましい。雰囲気ガスとして不活性ガスを用いる場合には、窒素、アルゴン、またはヘリウムなどを用いる。
 水蒸気酸化工程における温度条件は、用いるポリシラザン組成物の種類や、工程の組み合わせ方によって変化する。一般的に温度が高いほうが酸化反応が速くなる傾向にあり、生産効率も高くなる。一方、基板がシリコン基板である場合には酸化または結晶構造の変化によるデバイス特性への悪影響が小さくなる傾向がある。なお、先の酸化工程により低温で酸化反応が進んでいるため、水蒸気酸化工程でより高い温度による加熱を行っても、飛散物に起因する膜物性の低下はほとんど起こらない。このような観点から、本発明による方法では、水蒸気酸化工程における温度は300~1000℃であることが好ましく、350~700℃であることがより好ましい。なお、必要に応じて水蒸気酸化工程の加熱温度や水蒸気濃度を段階的に変化させることもできる。
 なお、本発明によれば、水蒸気酸化を行わなくても、十分に酸化反応を進行させることができる。すなわち、水蒸気酸化は、過酸化水素雰囲気下における酸化反応を補う場合に必要になるものである。したがって過酸化水素雰囲気における酸化が十分に進行していれば、製造効率や製造コストの点から水蒸気酸化は行わないことが好ましい。
(c)研磨工程
 酸化工程後、得られた二酸化ケイ素膜の不要な部分は除去することが好ましい。そのために、まず研磨工程により、基板上の溝部内側に形成された二酸化ケイ素膜を残し、基板表面の平坦部上に形成された二酸化ケイ素膜を研磨により除去する。この工程が研磨工程である。この研磨工程は、硬化処理の後に行うほか、溶媒除去工程を組み合わせる場合には、溶媒除去直後に行うこともできる。
 研磨は、一般的にCMPにより行う。このCMPによる研磨は、一般的な研磨剤および研磨装置により行うことができる。具体的には、研磨剤としてはシリカ、アルミナ、またはセリアなどの研磨材と、必要に応じてその他の添加剤とを分散させた水溶液などを用いることができる、研磨装置としては、市販の一般的なCMP装置を用いることができる。
(d)エッチング工程
 前記の研磨工程において、基板表面の平坦部上に形成されたポリシラザン組成物に由来する二酸化ケイ素膜はほとんど除去されるが、基板表面の平坦部に残存している二酸化ケイ素膜を除去するために、さらにエッチング処理を行うことが好ましい。エッチング処理はエッチング液を用いるのが一般的であり、エッチング液としては、二酸化ケイ素膜を除去できるものであれば特に限定されないが、通常はフッ化アンモニウムを含有するフッ酸水溶液を用いる。この水溶液のフッ化アンモニウム濃度は5%以上であることが好ましく、30%以上であることがより好ましい。
 本発明を諸例を用いて説明すると以下の通りである。
実施例1(過酸化水素の効果)
 シリコン基板にポリシラザン溶液(20重量%ジブチルエーテル溶液)を回転数1000rpmにてスピン塗布し、70℃のプリベークを3分間ほどこした。これにより膜厚600nmのポリシラザン塗膜を得た。これを150℃に加熱したホットプレート上に置き、石英シャーレで覆った。このシャーレの外側には直径3mmほどの穴が開けられていた。この穴から過酸化水素水(30重量%)を0.2cc/minの速度で滴下した。滴下された過酸化水素水はホットプレートに接触し、速やかに液相から気相(蒸気)に変わり、シャーレの中に一様に行き渡った。なおこの時のシャーレ内の過酸化水素濃度は約25mo1%、水蒸気濃度は約75mo1%と算出される。この酸化処理を10分間行った。得られた二酸化ケイ素膜を赤外分光スペクトルを測定したところ、ポリシラザン中のシラザン結合のほとんどがシロキサン結合に変わっており、シラノール基はほとんど残存していないことが分かった。
 赤外分光スペクトルを測定した後、さらに窒素雰囲気下850℃で30分間加熱を行い、その後、得られた二酸化ケイ素膜の収縮率、誘電率、絶縁破壊電圧の測定を行った。得られた結果は表1に示すとおりであった。
比較例1
 実施例1に対して、過酸化水素水の代わりに純水を滴下し、その他は同様にして塗布済み基板を加熱処理した。処理後に塗膜の赤外分光スペクトルを測定したところ、酸化反応がほとんど進行しておらず、酸化前のポリシラザンとほぼ同等であった。
比較例2
 実施例1と同様にしてシリコン基板にポリシラザン溶液を塗布し、ポリシラザン膜を得た。この試料を350℃80%HO/Oの過熱水蒸気雰囲気中に30分間放置した後、窒素雰囲気下850℃で30分間加熱した。得られた二酸化ケイ素膜の収縮率、誘電率、絶縁破壊電圧の測定を行った。得られた結果は表1に示すとおりであった。
比較例3
 実施例1と同様にしてシリコン基板にポリシラザン溶液を塗布し、ポリシラザン膜を得た。一方、容器中に40℃に保温した30重量%過酸化水素水溶液を封入し、内部雰囲気が温度25℃相対湿度60%になるよう調整した保温容器を準備した。この保温容器内に試料を10分間放置し、さらにその後95℃相対湿度80%の水蒸気雰囲気中に5分間放置した。さらにその後窒素雰囲気下850℃で30分間加熱した。得られた二酸化ケイ素膜の赤外分光スペクトルを測定したところ、3300cm-1付近にブロードなピークが認められた。このピークは、シラノール基に帰属するものと考えられ、酸化反応が十分に進行していないことを示していた。得られた二酸化ケイ素膜の収縮率、誘電率、絶縁破壊電圧の測定を行った。得られた結果は表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000003
 表中、応力の「+」は引張応力、「-」は圧縮応力を示す。
 この結果より、実施例1で得られた二酸化ケイ素膜は、優れた収縮率と絶縁破壊電圧を達成していることがわかる。また二酸化ケイ素膜の誘電率は一般に3.5~4.0程度であることが知られているが、比較例3による膜の誘電率はそれよりも高く、反応が完全に進んでおらず、膜中に窒素原子が残存していると推測される。また応力は二酸化ケイ素膜の用途に応じて好ましい範囲が変わるが、例えばアイソレーション構造に用いる絶縁膜においては低いことが好ましく、実施例1による二酸化ケイ素膜はこの点でも優れている。
実施例2および3
 過酸化水素水の濃度を10モル%(実施例2)または5モル%(実施例3)に変更したほかは、実施例1と同様にしてポリシラザン塗膜を加熱した。加熱時間が10分の場合、実施例2および3の塗膜は十分に酸化反応が進行していなかったので、それぞれさらに過熱を継続させた。実施例2は加熱時間15分で、実施例3は加熱時間40分で実施例1と同程度まで酸化反応が進行することがわかった。

Claims (14)

  1. (A)基板表面にポリシラザン組成物を塗布して塗膜を形成させる塗布工程、
    (B)前記塗膜を過酸化水素雰囲気下、50~200℃で加熱する酸化工程
    を含んでなることを特徴とする、二酸化ケイ素膜の製造方法。
  2.  前記酸化工程を100~200℃の温度で行う、請求項1に記載の二酸化ケイ素膜の製造方法。
  3.  前記酸化工程における過酸化水素雰囲気に含まれる過酸化水素濃度が、5~50モル%である、請求項1または2に記載の二酸化ケイ素膜の製造方法。
  4.  前記酸化工程における過酸化水素雰囲気に含まれる水蒸気濃度が、5~50モル%である、請求項1~3のいずれか1項に記載の二酸化ケイ素膜の製造方法。
  5.  前記酸化工程の加熱時間が0.5~60分間である、請求項1~4のいずれか1項に記載の二酸化ケイ素膜の製造方法。
  6.  前記塗布工程と前記酸化工程との間に、溶媒除去工程をさらに含む、1~5のいずれか1項に記載の二酸化ケイ素膜の製造方法。
  7.  前記酸化工程の後に、水蒸気雰囲気下、300~1000℃で加熱する水蒸気酸化工程をさらに含む、請求項1~6のいずれか1項に記載の二酸化ケイ素膜の製造方法。
  8.  前記ポリシラザン組成物の固形分含有量が組成物の総重量を基準として、1~40重量%である、1~7のいずれか1項に記載の二酸化ケイ素膜の製造方法。
  9.  前記塗布工程において形成された塗膜の厚さが5~10,000nmである、1~8のいずれか1項に記載の二酸化ケイ素膜の製造方法。
  10.  前記基板がプラスチック材料である、請求項1~9のいずれか1項に記載の二酸化ケイ素膜の製造方法。
  11.  表面に溝または孔を有する基板の表面に、請求項1~10のいずれか1項に記載の方法により、前記溝または孔を埋設する二酸化ケイ素膜を形成させることを特徴とする、アイソレーション構造の製造方法。
  12.  前記二酸化ケイ素膜が、金属膜下絶縁膜または金属配線層間絶縁膜である、請求項11に記載のアイソレーション構造の製造方法。
  13.  前記二酸化ケイ素膜が、シャロー・トレンチ・アイソレーション構造を構成する、請求項11に記載のアイソレーション構造の形成方法。
  14.  前記溝の溝幅が5~50nm、アスペクト比が10~100である、請求項13に記載のアイソレーション構造の形成方法。
PCT/JP2012/053605 2011-02-17 2012-02-16 二酸化ケイ素膜の製造方法 WO2012111729A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280008537.1A CN103354948B (zh) 2011-02-17 2012-02-16 二氧化硅膜的制造方法
KR1020137024491A KR101927683B1 (ko) 2011-02-17 2012-02-16 이산화규소막의 제조 방법
US13/982,359 US20130316515A1 (en) 2011-02-17 2012-02-16 Method for producing silicon dioxide film
EP12747252.0A EP2677536B1 (en) 2011-02-17 2012-02-16 Method for producing silicon dioxide film
SG2013054507A SG191997A1 (en) 2011-02-17 2012-02-16 Method for producing silicon dioxide film
IL227776A IL227776B (en) 2011-02-17 2013-08-01 A method for making a silicon dioxide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-032099 2011-02-17
JP2011032099A JP5710308B2 (ja) 2011-02-17 2011-02-17 二酸化ケイ素膜の製造方法

Publications (1)

Publication Number Publication Date
WO2012111729A1 true WO2012111729A1 (ja) 2012-08-23

Family

ID=46672641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053605 WO2012111729A1 (ja) 2011-02-17 2012-02-16 二酸化ケイ素膜の製造方法

Country Status (9)

Country Link
US (1) US20130316515A1 (ja)
EP (1) EP2677536B1 (ja)
JP (1) JP5710308B2 (ja)
KR (1) KR101927683B1 (ja)
CN (1) CN103354948B (ja)
IL (1) IL227776B (ja)
SG (1) SG191997A1 (ja)
TW (1) TWI518033B (ja)
WO (1) WO2012111729A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053121A1 (ja) * 2013-10-10 2015-04-16 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び記録媒体

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085209B2 (ja) * 2013-03-27 2017-02-22 株式会社神戸製鋼所 SiO2膜被覆アルミニウム板の製造方法
JP2014213318A (ja) * 2013-04-30 2014-11-17 チェイル インダストリーズインコーポレイテッド 改質シリカ膜の製造方法、塗工液、及び改質シリカ膜
US9528028B2 (en) 2013-04-30 2016-12-27 Cheil Industries, Inc. Method for preparing modified silica film and modified silica film prepared from the same
JP6134576B2 (ja) * 2013-04-30 2017-05-24 サムスン エスディアイ カンパニー,リミテッドSamsung Sdi Co.,Ltd. 改質シリカ膜の製造方法、塗工液、及び改質シリカ膜
SG11201600523PA (en) * 2013-07-31 2016-02-26 Hitachi Int Electric Inc Substrate processing method, substrate processing apparatus, method for manufacturing semiconductor device, and recording medium
WO2016151684A1 (ja) * 2015-03-20 2016-09-29 株式会社日立国際電気 半導体装置の製造方法、記録媒体及び基板処理装置
WO2017056188A1 (ja) * 2015-09-29 2017-04-06 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び記録媒体
JP6737343B2 (ja) * 2016-11-16 2020-08-05 株式会社Ihi クロロシランポリマーの安定化方法
WO2018173182A1 (ja) * 2017-03-23 2018-09-27 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
CN110546744B (zh) 2017-04-17 2023-10-20 东京毅力科创株式会社 绝缘膜的成膜方法、绝缘膜的成膜装置及基板处理系统
KR20240028546A (ko) 2017-09-11 2024-03-05 도쿄엘렉트론가부시키가이샤 절연막의 성막 방법, 기판 처리 장치 및 기판 처리 시스템
JP6752249B2 (ja) 2018-03-27 2020-09-09 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
KR102155047B1 (ko) * 2018-11-30 2020-09-11 한국생산기술연구원 내염기성 코팅 조성물 및 이의 제조 방법
CN111599675A (zh) * 2020-05-25 2020-08-28 上海华力集成电路制造有限公司 一种自对准双重图形化的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055431A (en) 1985-04-26 1991-10-08 Sri International Polysilazanes and related compositions, processes and uses
JPH09183663A (ja) 1995-10-30 1997-07-15 Tonen Corp プラスチックフィルムにSiO2系セラミックスを被覆する方法
JPH09275135A (ja) 1996-04-02 1997-10-21 Nec Corp 半導体装置の製造方法
JP2000198160A (ja) * 1999-01-04 2000-07-18 Tonen Corp SiO2系セラミックス膜の形成方法
JP2005045230A (ja) * 2003-07-21 2005-02-17 Samsung Electronics Co Ltd スピンオンガラスによるシリコン酸化膜の形成方法
JP2008273913A (ja) * 2007-05-07 2008-11-13 Toshio Teranaka 医療用部材の製造方法
JP2012060000A (ja) * 2010-09-10 2012-03-22 Toshiba Corp シリコン酸化膜の製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781815B1 (en) * 1995-07-13 2010-11-17 AZ Electronic Materials USA Corp. Composition for forming ceramic substances and process for producing ceramic substances
US7192891B2 (en) * 2003-08-01 2007-03-20 Samsung Electronics, Co., Ltd. Method for forming a silicon oxide layer using spin-on glass
JP5177617B2 (ja) * 2006-12-25 2013-04-03 独立行政法人産業技術総合研究所 酸化シリコン薄膜形成装置
KR100908821B1 (ko) * 2007-11-08 2009-07-21 주식회사 하이닉스반도체 반도체 소자의 절연막 형성방법
KR100955935B1 (ko) * 2007-12-21 2010-05-03 주식회사 하이닉스반도체 반도체 소자의 소자분리막 형성방법
JP2010003983A (ja) * 2008-06-23 2010-01-07 Az Electronic Materials Kk シャロー・トレンチ・アイソレーション構造とその形成方法
KR20100082170A (ko) * 2009-01-08 2010-07-16 삼성전자주식회사 실리콘 산화막 패턴 및 소자 분리막 형성 방법
KR101171020B1 (ko) * 2009-07-03 2012-08-08 주식회사 메카로닉스 이산화실리콘 증착을 위한 박막 증착 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055431A (en) 1985-04-26 1991-10-08 Sri International Polysilazanes and related compositions, processes and uses
JPH09183663A (ja) 1995-10-30 1997-07-15 Tonen Corp プラスチックフィルムにSiO2系セラミックスを被覆する方法
JPH09275135A (ja) 1996-04-02 1997-10-21 Nec Corp 半導体装置の製造方法
JP2000198160A (ja) * 1999-01-04 2000-07-18 Tonen Corp SiO2系セラミックス膜の形成方法
JP2005045230A (ja) * 2003-07-21 2005-02-17 Samsung Electronics Co Ltd スピンオンガラスによるシリコン酸化膜の形成方法
JP2008273913A (ja) * 2007-05-07 2008-11-13 Toshio Teranaka 医療用部材の製造方法
JP2012060000A (ja) * 2010-09-10 2012-03-22 Toshiba Corp シリコン酸化膜の製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677536A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053121A1 (ja) * 2013-10-10 2015-04-16 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び記録媒体
CN105518836A (zh) * 2013-10-10 2016-04-20 株式会社日立国际电气 半导体器件的制造方法、衬底处理装置及记录介质
JPWO2015053121A1 (ja) * 2013-10-10 2017-03-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及びプログラム
US9793112B2 (en) 2013-10-10 2017-10-17 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Also Published As

Publication number Publication date
TW201245045A (en) 2012-11-16
US20130316515A1 (en) 2013-11-28
EP2677536B1 (en) 2020-03-25
CN103354948B (zh) 2017-03-15
CN103354948A (zh) 2013-10-16
IL227776B (en) 2019-12-31
JP5710308B2 (ja) 2015-04-30
EP2677536A4 (en) 2014-11-19
IL227776A0 (en) 2013-09-30
EP2677536A1 (en) 2013-12-25
KR101927683B1 (ko) 2018-12-12
JP2012174717A (ja) 2012-09-10
KR20140009369A (ko) 2014-01-22
TWI518033B (zh) 2016-01-21
SG191997A1 (en) 2013-08-30

Similar Documents

Publication Publication Date Title
JP5710308B2 (ja) 二酸化ケイ素膜の製造方法
JP5405031B2 (ja) シリカ質膜の製造に用いる浸漬用溶液およびそれを用いたシリカ質膜の製造法
JP4982659B2 (ja) シリカ質膜の製造法およびそれにより製造されたシリカ質膜付き基板
JP6104785B2 (ja) ペルヒドロポリシラザン、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法
KR101168452B1 (ko) 절연막 형성용 조성물, 그의 제조 방법, 실리카계 절연막및 그의 형성 방법
JP5306669B2 (ja) シリカ質膜の形成方法およびそれにより形成されたシリカ質膜
EP1564269A1 (en) Composition for porous film formation, porous film, process for producing the same, interlayer insulation film and semiconductor device
JP5535583B2 (ja) トレンチ・アイソレーション構造の形成方法
WO2008029834A1 (fr) Composition pour former un film siliceux et procédé de production de film siliceux à partir de celle-ci
JP5405437B2 (ja) アイソレーション構造の形成方法
WO2009157333A1 (ja) シャロー・トレンチ・アイソレーション構造とその形成方法
KR20060002786A (ko) 트렌치 아이솔레이션 구조의 형성방법
WO2012111789A1 (ja) 絶縁膜の形成方法
JP4180417B2 (ja) 多孔質膜形成用組成物、多孔質膜の製造方法、多孔質膜、層間絶縁膜、及び半導体装置
JP2004292636A (ja) 多孔質膜形成用組成物、多孔質膜の製造方法、多孔質膜、層間絶縁膜、及び半導体装置
JP2004292641A (ja) 多孔質膜形成用組成物、多孔質膜の製造方法、多孔質膜、層間絶縁膜、及び半導体装置
JP2004269692A (ja) 多孔質膜形成用組成物、多孔質膜の製造方法、多孔質膜、層間絶縁膜、及び半導体装置
JP4257141B2 (ja) 多孔質膜形成用組成物、多孔質膜の製造方法、多孔質膜、層間絶縁膜、及び半導体装置
JP2004161876A (ja) 多孔質膜形成用組成物、多孔質膜とその製造方法、層間絶縁膜及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13982359

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137024491

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012747252

Country of ref document: EP