KR101848573B1 - 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 - Google Patents

반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 Download PDF

Info

Publication number
KR101848573B1
KR101848573B1 KR1020167004681A KR20167004681A KR101848573B1 KR 101848573 B1 KR101848573 B1 KR 101848573B1 KR 1020167004681 A KR1020167004681 A KR 1020167004681A KR 20167004681 A KR20167004681 A KR 20167004681A KR 101848573 B1 KR101848573 B1 KR 101848573B1
Authority
KR
South Korea
Prior art keywords
substrate
temperature
gas
oxygen
supplying
Prior art date
Application number
KR1020167004681A
Other languages
English (en)
Other versions
KR20160034394A (ko
Inventor
다꾸야 조다
도루 가꾸다
마사히사 오꾸노
히데또 다떼노
Original Assignee
가부시키가이샤 히다치 고쿠사이 덴키
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 히다치 고쿠사이 덴키 filed Critical 가부시키가이샤 히다치 고쿠사이 덴키
Publication of KR20160034394A publication Critical patent/KR20160034394A/ko
Application granted granted Critical
Publication of KR101848573B1 publication Critical patent/KR101848573B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L2021/60007Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process
    • H01L2021/60022Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process using bump connectors, e.g. for flip chip mounting
    • H01L2021/60097Applying energy, e.g. for the soldering or alloying process
    • H01L2021/60172Applying energy, e.g. for the soldering or alloying process using static pressure
    • H01L2021/60187Isostatic pressure, e.g. degassing using vacuum or pressurised liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명의 과제는 기판 위에 형성되는 막의 특성을 향상시키는 것이다.
실라잔 결합을 갖는 막이 형성되고, 막에 프리베이크가 실시되어 있는 기판을 처리 용기에 반입시키는 공정과, 기판에 프리베이크의 온도 이하의 제1 온도에서 산소 함유 가스를 공급하는 공정과, 기판에, 상기 제1 온도보다도 높은 제2 온도에서 처리 가스를 공급하는 공정을 갖는 반도체 장치의 제조 방법 등을 제공한다.

Description

반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 {METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE, SUBSTRATE PROCESSING APPARATUS AND RECORDING MEDIUM}
본 발명은 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체에 관한 것이다.
대규모 집적 회로(Large Scale Integrated Circuit: 이하 LSI)의 미세화에 수반하여, 트랜지스터 소자간의 누설 전류 간섭을 제어하는 가공 기술은 점점 기술적인 곤란을 증가시키고 있다. LSI의 소자간 분리에는, 기판이 되는 실리콘(Si)에, 분리하고 싶은 소자 사이에 홈 혹은 구멍 등의 공극을 형성하고, 그 공극에 절연물을 퇴적하는 방법에 의해 이루어져 있다. 절연물로서, 산화막이 이용되는 경우가 많고, 예를 들어 실리콘 산화막이 이용된다. 실리콘 산화막은 Si 기판 자체의 산화나, 화학 기상 성장법(Chemical Vapor Deposition: 이하 CVD), 절연물 도포법(Spin On Dielectric: 이하 SOD)에 의해 형성되어 있다.
최근의 미세화에 의해, 미세 구조의 매립, 특히 종방향으로 깊거나, 혹은 횡방향으로 좁은 공극 구조에의 산화물의 매립에 대해, CVD법에 의한 매립 방법이 기술 한계에 달하고 있다. 이와 같은 배경에서, 유동성을 갖는 산화물을 이용한 매립 방법, 즉 SOD의 채용이 증가 경향이 있다. SOD에서는 SOG(Spin on glass)라고 불리는 무기 혹은 유기 성분을 포함하는 도포 절연 재료가 이용되어 있다. 이 재료는 CVD 산화막의 등장 이전부터 LSI의 제조 공정에 채용되어 있었지만, 가공 기술이 0.35㎛ 내지 1㎛ 정도의 가공 치수이며 미세하지 않았으므로, 도포 후의 개질 방법은 질소 분위기에서 400℃ 정도의 열처리를 행함으로써 허용되어 있었다.
그러나, 최근의 LSI, DRAM(Dynamic Random Access Memory)이나 Flash Memory로 대표되는 반도체 장치의 최소 가공 치수가, 50㎚ 폭보다 작게 되어 있어, 품질을 유지한 상태의 미세화나 제조 스루풋 향상의 달성이나 처리 온도의 저온화가 곤란해지고 있다.
본 발명은 기판 위에 형성되는 막의 특성을 향상시킴과 함께, 제조 스루풋을 향상시키는 것이 가능한 기술을 제공하는 것을 목적으로 한다.
일 형태에 의하면, 실라잔 결합을 갖는 막이 형성되고, 당해 막에 프리베이크가 실시되어 있는 기판을, 처리 용기 내에 반입하는 공정과, 상기 기판에, 상기 프리베이크의 온도 이하의 제1 온도에서 산소 함유 가스를 공급하는 공정과, 상기 기판에, 상기 제1 온도보다도 높은 제2 온도에서 처리 가스를 공급하는 공정을 갖는 반도체 장치의 제조 방법이 제공된다.
다른 형태에 의하면, 실라잔 결합을 갖는 막이 형성되고, 당해 막에 프리베이크 공정이 실시되어 있는 기판이 수용되는 처리 용기와, 상기 처리 용기 내의 상기 기판에, 산소 함유 가스를 공급하는 산소 함유 가스 공급부와, 상기 처리 용기 내의 상기 기판에, 처리 가스를 공급하는 처리 가스 공급부와, 상기 기판을 가열하는 가열부와, 상기 처리 가스가 공급되지 않고 상기 산소 함유 가스가 공급된 상태에 있어서, 상기 기판을 상기 프리베이크 공정의 온도 이하의 제1 온도에서 소정 시간 가열하고, 상기 처리 가스가 공급된 상태에 있어서, 상기 기판을 상기 제1 온도보다도 높은 제2 온도에서 소정 시간 가열하도록, 상기 산소 함유 가스 공급부와 상기 처리 가스 공급부와 상기 가열부를 제어하도록 구성되는 제어부를 갖는 기판 처리 장치가 제공된다.
또 다른 형태에 의하면, 실라잔 결합을 갖는 막이 형성되고, 당해 막에 프리베이크가 실시되어 있는 기판을 처리 용기에 반입하는 수순과, 상기 기판에, 상기 프리베이크의 온도 이하의 제1 온도에서 산소 함유 가스를 공급하는 수순과, 상기 기판에, 상기 제1 온도보다도 높은 제2 온도에서 처리 가스를 공급하는 수순을 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체가 제공된다.
본 발명에 따른 기술에 의하면, 기판 위에 형성되는 막의 특성을 향상시키는 것이 가능해진다.
도 1은 본 발명의 일 실시 형태에 따른 기판 처리 장치의 개략 구성도이다.
도 2는 본 발명의 일 실시 형태에 따른 기판 처리 장치가 구비하는 처리로의 종단면 개략도이다.
도 3은 본 발명의 실시 형태에서 적절히 이용되는 기판 처리 장치의 컨트롤러의 개략 구성도이다.
도 4는 본 발명의 일 실시 형태에 따른 기판 처리 공정의 사전 처리를 도시하는 흐름도이다.
도 5는 본 발명의 일 실시 형태에 따른 기판 처리 공정을 도시하는 흐름도이다.
도 6은 본 발명의 일 실시 형태에 따른 기판 처리 이벤트와 온도의 타이밍예를 도시하는 도면이다.
도 7은 본 발명의 실시 형태에 따른 기판 표면의 이물량의 비교를 도시하는 도면이다.
이하에 본 발명의 실시 형태에 대해 설명한다.
발명자 등은 실라잔 결합(-Si-N- 결합)을 함유하는 막(예를 들어, 폴리실라잔막)이 도포된 기판을 처리액이나 처리 가스로 처리했을 때에, 처리 후의 기판 위에 복수의 이물(파티클)이 발생한다는 과제를 발견하였다. 또한, 이물의 발생에 의해, 품질을 유지할 수 없어 미세화를 저해한다는 과제를 발견하였다. 또한, 이들에 부수하여, 품질을 확보한 처리물을 계속해서 생산할 수 없어, 제조 스루풋이 악화된다는 과제를 발견하였다.
발명자 등은 이들 과제의 원인을 이하의 점이다라고 추정하였다. 첫번째는, 폴리실라잔막은 폴리실라잔 용액의 도포와, 프리베이크에 의해 형성되지만, 이 프리베이크에서는 폴리실라잔 도포막의 용제나 불순물을 완전히 제거시킬 수 없어, 개질 공정에서, 폴리실라잔막 중에 잔존하고 있는 용제가 이탈하여, 처리 용기 내에 아웃 가스로서 방출ㆍ재부착ㆍ반응을 일으켜 버린다는 원인이다. 두번째는, 폴리실라잔에는 분자량의 분포가 발생하고 있어, 분자량이 낮은 폴리실라잔이 도포막 중으로부터 이탈하여, 처리 용기 내에 아웃 가스로서 방출ㆍ재부착ㆍ잔존 용제와 반응하고, 그 결과, 기판 표면에 SiO 이물 혹은 불순물로서 부착되어 있다는 원인이다. 세번째는, 처리액에 포함되는 불순물과 폴리실라잔막 중에 잔존하고 있는 용제 등이 반응하여 부생성물이 생성되어 있다는 원인이다.
이들 원인을 근거로 하여, 예의 연구한 결과, 발명자들은 폴리실라잔 도포막을 개질 처리하기 전의 예비 가열 공정의 온도를, 폴리실라잔의 프리베이크 시의 온도 이하로 함으로써, 저분자량의 폴리실라잔의 이탈을 억제하여, 상술한 과제를 해결할 수 있는 것을 발견하였다. 또한, 예비 가열 공정을 산소 함유 분위기로 함으로써, 저분자량의 폴리실라잔의 골격 구조를 산화실리콘(Si-O)으로 변화시킬 수 있고, 저분자량의 폴리실라잔의 이탈을 억제하여, 상술한 과제를 해결할 수 있는 것을 발견하였다.
<본 발명의 일 실시 형태>
이하에, 본 발명의 바람직한 실시 형태에 대해 도면을 참조하여 보다 상세하게 설명한다.
(1) 기판 처리 장치의 구성
먼저, 본 실시 형태에 따른 기판 처리 장치의 구성에 대해, 주로 도 1 및 도 2를 이용하여 설명한다. 도 1은 본 실시 형태에 따른 기판 처리 장치의 개략 구성도이고, 처리로(202) 부분을 종단면으로 도시하고 있다. 도 2는 본 실시 형태에 따른 기판 처리 장치가 구비하는 처리로(202)의 종단면 개략도이다.
(처리 용기)
도 1에 도시한 바와 같이, 처리로(202)는 처리 용기(반응관)(203)를 구비하고 있다. 처리 용기(203)는, 예를 들어 석영(SiO2) 또는 탄화실리콘(SiC) 등의 내열성 재료를 포함하고, 상단부 및 하단부가 개구된 원통 형상으로 형성되어 있다. 처리 용기(203)의 통 중공부에는 처리실(201)이 형성되고, 기판으로서의 웨이퍼(200)를 기판 지지부로서의 보트(217)에 의해 수평 자세로 수직 방향으로 다단으로 정렬한 상태에서 수용 가능하게 구성되어 있다.
처리 용기(203)의 하부에는 처리 용기(반응관)(203)의 하단부 개구(노구)를 기밀하게 밀봉(폐색) 가능한 노구 덮개체로서의 시일 캡(219)이 설치되어 있다. 시일 캡(219)은 처리 용기(203)의 하단부에 수직 방향 하측으로부터 접촉되도록 구성되어 있다. 시일 캡(219)은 원판 형상으로 형성되어 있다. 기판의 처리 공간이 되는 기판 처리실(201)은 처리 용기(203)와 시일 캡(219)을 포함한다.
(기판 지지부)
기판 보유 지지부로서의 보트(217)는 복수매의 웨이퍼(200)를 다단으로 보유 지지할 수 있도록 구성되어 있다. 보트(217)는 복수매의 웨이퍼(200)를 보유 지지하는 복수개의 지주(217a)를 구비하고 있다. 지주(217a)는, 예를 들어 3개 구비되어 있다. 복수개의 지주(217a)는 각각, 저판(217b)과 천장판(217c) 사이에 가설되어 있다. 복수매의 웨이퍼(200)가, 지주(217a)에 의해, 수평 자세로, 또한 서로 중심을 정렬시킨 상태로 정렬되어 관축 방향으로 다단으로 보유 지지되어 있다. 천장판(217c)은 보트(217)에 보유 지지되는 웨이퍼(200)의 최대 외경보다도 커지도록 형성되어 있다.
지주(217a), 저판(217b), 천장판(217c)의 구성 재료로서, 예를 들어 산화실리콘(SiO2), 탄화실리콘(SiC), 석영(AlO), 질화알루미늄(AlN), 질화실리콘(SiN), 산화지르코늄(ZrO) 등의 열전도성이 양호한 비금속 재료가 이용된다. 특히, 열전도율이 10W/mK 이상인 비금속 재료가 바람직하다. 또한, 열전도율이 문제가 되지 않으면, 석영(SiO) 등으로 형성할 수도 있고, 또한 금속에 의한 웨이퍼(200)에 오염이 문제가 되지 않으면, 지주(217a), 천장판(217c)은 스테인리스(SUS) 등의 금속 재료로 형성할 수도 있다. 지주(217a), 천장판(217c)의 구성 재료로서 금속이 이용되는 경우, 금속에 세라믹이나, 테플론(등록 상표) 등의 피막을 형성할 수도 있다.
보트(217)의 하부에는, 예를 들어 석영이나 탄화실리콘 등의 내열 재료를 포함하는 단열체(218)가 설치되어 있고, 제1 가열부(207)로부터의 열이 시일 캡(219)측으로 전해지기 어려워지도록 구성되어 있다. 단열체(218)는 단열 부재로서 기능함과 함께 보트(217)를 보유 지지하는 보유 지지체로서도 기능한다. 또한, 단열체(218)는, 도시한 바와 같이 원판 형상으로 형성된 단열판이 수평 자세로 다단으로 복수매 설치된 것으로 한정되지 않고, 예를 들어 원통 형상으로 형성된 석영 캡 등이어도 된다. 또한, 단열체(218)는 보트(217)의 구성 부재의 하나로서 생각할 수도 있다.
(승강부)
처리 용기(203)의 하방에는 보트(217)를 승강시켜 처리 용기(반응관)(203)의 내외로 반송하는 승강부로서의 보트 엘리베이터가 설치되어 있다. 보트 엘리베이터에는 보트 엘리베이터에 의해 보트(217)가 상승되었을 때에 노구를 밀봉하는 시일 캡(219)이 설치되어 있다.
시일 캡(219)의 처리실(201)과 반대측에는 보트(217)를 회전시키는 보트 회전 기구(267)가 설치되어 있다. 보트 회전 기구(267)의 회전축(261)은 시일 캡(219)을 관통하여 보트(217)에 접속되어 있고, 보트(217)를 회전시킴으로써 웨이퍼(200)를 회전시키도록 구성되어 있다.
(제1 가열부)
처리 용기(반응관)(203)의 외측에는 처리 용기(반응관)(203)의 측벽면을 둘러싸는 동심원 형상으로, 처리 용기(반응관)(203) 내의 웨이퍼(200)를 가열하는 제1 가열부(207)가 설치되어 있다. 제1 가열부(207)는 히터 베이스(206)에 의해 지지되어 설치되어 있다. 도 2에 도시한 바와 같이, 제1 가열부(207)는 제1 내지 제4 히터 유닛(207a 내지 207d)을 구비하고 있다. 제1 내지 제4 히터 유닛(207a 내지 207d)은 각각, 처리 용기(반응관)(203) 내에서의 웨이퍼(200)의 적층 방향을 따라 설치되어 있다.
처리 용기(반응관)(203) 내에는 가열부로서의 제1 내지 제4 히터 유닛(207a 내지 207d)마다, 웨이퍼(200) 또는 주변 온도를 검출하는 온도 검출기로서, 예를 들어 열전대 등의 제1 내지 제4 온도 센서(263a 내지 263d)는 각각, 처리 용기(반응관)(203)와 보트(217) 사이에 각각 설치되어 있다. 또한, 제1 내지 제4 온도 센서(263a 내지 263d)는 각각, 제1 내지 제4 히터 유닛(207a 내지 207d)에 의해 각각 가열되는 복수매의 웨이퍼(200) 중, 그 중앙에 위치하는 웨이퍼(200)의 온도를 검출하도록 설치될 수도 있다.
제1 가열부(207), 제1 내지 제4 온도 센서(263a 내지 263d)에는 각각, 후술하는 컨트롤러(121)가 전기적으로 접속되어 있다. 컨트롤러(121)는 처리 용기(반응관)(203) 내의 웨이퍼(200)의 온도가 소정의 온도가 되도록, 제1 내지 제4 온도 센서(263a 내지 263d)에 의해 각각 검출된 온도 정보에 기초하여, 제1 내지 제4 히터 유닛(207a 내지 207d)에의 공급 전력을 소정의 타이밍에서 각각 제어하고, 제1 내지 제4 히터 유닛(207a 내지 207d)마다 개별로 온도 설정이나 온도 조정을 행하도록 구성되어 있다.
(가스 공급부)
도 1에 도시한 바와 같이, 처리 용기(반응관)(203)와 제1 가열부(207) 사이에는 처리 가스 공급 노즐(501)이 설치되어 있다. 처리 가스 공급 노즐(501)은, 예를 들어 열전도율이 낮은 석영 등에 의해 형성되어 있다. 처리 가스 공급 노즐(501)은 이중관 구조를 갖고 있을 수도 있다. 처리 가스 공급 노즐(501)은 처리 용기(반응관)(203)의 외벽의 측부를 따라 배치되어 있다. 처리 가스 공급 노즐(501)의 선단(하류 단부)은 처리 용기(반응관)(203)의 정상부(상단부 개구)에 기밀하게 설치되어 있다. 처리 용기(반응관)(203)의 상단부 개구에 위치하는 처리 가스 공급 노즐(501)의 선단에는 공급 구멍(502)이 형성되어 있다. 가스 공급부는, 주로, 처리 가스 공급 노즐(501)과, 공급 구멍(502)을 포함한다. 또한, 후술하는 처리 가스 생성 유닛(300)과 퍼지 가스 공급부(601)를 가스 공급부에 포함할 수도 있다. 또한, 후술하는 산소 함유 가스 공급부(602)을 가스 공급부에 포함하도록 구성할 수도 있다.
산소 함유 가스 공급부(602)는 밸브(602a, 602d), 가스 유량 제어부(매스 플로우 컨트롤러)(602b), 산소 함유 가스 공급관(602c) 등을 포함하고, 도시하지 않은 산소 함유 가스원으로부터 공급되는 산소 함유 가스를 처리 용기(203) 내에 공급한다. 산소 함유 가스 공급관(602c)의 선단(하류 단부)은 처리 용기(203)의 정상부에 기밀하게 설치되어, 산소 함유 가스를 처리 용기(203) 내에 도입한다. 산소 함유 가스는, 예를 들어 산소(O2) 가스, 오존(O3) 가스, 일산화질소(NO) 가스, 아산화질소(N2O) 가스 중 적어도 1개 이상을 포함하는 가스가 이용된다.
처리 가스 공급 노즐(501)의 상류 단부에는 처리 가스를 공급하는 처리 가스 공급관(289a)의 하류 단부가 접속되어 있다. 처리 가스 공급관(289a)에는 상류 방향으로부터 순서대로, 처리 가스 생성 유닛(300)과 퍼지 가스 공급부(601)(퍼지 가스 공급관(601c))가 설치되어 있다.
(처리 가스 생성 유닛)
처리 가스 생성 유닛(300)에는 상류측으로부터, 산소 함유 가스 공급관(301), 수소 함유 가스 공급관(302), 밸브(303a, 303b), 가스 유량 제어부(매스 플로우 컨트롤러; MFC)(304a, 304b), 처리 가스 생성 장치(305), 밸브(305a, 305b, 305c)가 설치되어 있다. 밸브(305c)에는 드레인관(306)이 접속되어 있다.
처리 가스 생성 유닛(305)은 도시하지 않은 산소 함유 가스원에 접속된 산소 함유 가스 공급관(301)으로부터, 예를 들어 산소(O2) 가스가 공급되어, 도시하지 않은 수소 함유 가스원에 접속된 수소 함유 가스 공급관(302)으로부터, 예를 들어 수소(H2) 가스가 공급되도록 구성되어 있다. 또한, 처리 가스 생성 장치(305)에 공급된 산소 함유 가스인 산소 가스와 수소 함유 가스인 수소 가스는 연소되어, 수증기가 생성된다. 생성된 수증기는 처리 가스 생성 유닛으로부터 처리 용기(203) 내에 공급 가능하게 되어 있다.
퍼지 가스 공급부(601)는 퍼지 가스 밸브(601a, 601d), 퍼지 가스 유량 제어부(601b), 퍼지 가스 공급관(601c) 등을 포함하고, 도시하지 않은 퍼지 가스원으로부터 공급되는 퍼지 가스를 처리 가스 공급관(289a)을 경유하여 처리 용기(203) 내에 공급한다. 퍼지 가스는, 예를 들어 웨이퍼(200)나 웨이퍼(200)에 형성된 막에 대해 반응성이 낮은 가스가 이용된다. 예를 들어, 질소(N2) 가스, 또는 아르곤 가스, 헬륨 가스, 네온 가스 등의 희가스가 이용된다.
(배기부)
처리 용기(203)의 하방에는 기판 처리실(201) 내의 가스를 배기하는 가스 배기관(231)의 일단부가 접속되어 있다. 가스 배기관(231)의 타단부는 진공 펌프(246a)(배기 장치)에 압력 조정기로서의 APC(Auto Pressure Controller) 밸브(255)를 통해 접속되어 있다. 기판 처리실(201) 내는 진공 펌프(246)에서 발생하는 압력 구배에 의해 배기된다. 또한, APC 밸브(255)는 밸브의 개폐에 의해 기판 처리실(201)의 배기 및 배기 정지를 행할 수 있는 개폐 밸브이다. 또한, 밸브 개방도의 조정에 의해 압력을 조정할 수 있는 압력 조정 밸브이기도 하다. 또한, 압력 검출기로서의 압력 센서(223)가 APC 밸브(255)의 상류측에 설치되어 있다. 이와 같이 하여, 기판 처리실(201) 내의 압력이 소정의 압력(진공도)이 되도록, 진공 배기하도록 구성되어 있다. APC 밸브(255)에 의해 기판 처리실(201) 및 압력 센서(223)에는 압력 제어부(284)(도 3 참조)가 전기적으로 접속되어 있고, 압력 제어부(284)는 압력 센서(223)에 의해 검출된 압력에 기초하여, APC 밸브(255)에 의해 기판 처리실(201) 내의 압력이 원하는 압력이 되도록, 원하는 타이밍에서 제어하도록 구성되어 있다.
배기부는 가스 배기관(231), APC 밸브(255), 압력 센서(223) 등을 포함하고 있다. 또한, 진공 펌프(246)를 배기부에 포함하여 생각할 수도 있다.
(제2 가열부)
예를 들어, 처리 가스로서, 수증기가 이용되는 경우, 수증기(가스 상태의 물)가 처리 용기(203) 내에서 물의 기화점 이하로 냉각되어 액화되어 버리는 경우가 있었다.
이와 같은 수증기의 액화는 처리 용기(203) 내의 제1 가열부(207)에서 가열되는 영역 이외의 영역에서 발생해 버리는 경우가 많다. 제1 가열부(207)는, 상술한 바와 같이 처리 용기(203) 내의 웨이퍼(200)를 가열하도록 설치되어 있으므로, 처리 용기(203) 내의 웨이퍼(200)가 수용된 영역은 제1 가열부(207)에 의해 가열된다. 그러나, 처리 용기(203) 내의 웨이퍼(200)의 수용 영역 이외의 영역은, 제1 가열부(207)에서는 가열되기 어렵다. 그 결과, 처리 용기(203) 내의 제1 가열부(207)에서 가열되는 영역 이외의 영역에서 저온 영역이 발생하고, 수증기가 이 저온 영역을 통과할 때에 냉각되어 액화되어 버리는 경우가 있다.
처리 가스가 액화되어 발생해 버린 액체는 처리 용기(203) 내의 저부(시일 캡(219)의 상면)에 저류되는 경우가 있다. 이로 인해, 액체와 시일 캡(219)이 반응하여, 시일 캡(219)이 손상되는 경우가 있다.
또한, 보트(217)를 처리 용기(203) 밖으로 반출하기 위해 시일 캡(219)을 하강시키고, 노구(처리 용기(203)의 하단부 개구)를 개방했을 때, 액체가 시일 캡(219) 위에 저류되어 있으면, 시일 캡(219) 위의 액체가 노구로부터 처리 용기(203) 밖으로 떨어지는 경우가 있다. 이로 인해, 처리로(202)의 노구 주변 부재가 손상되는 경우가 있음과 함께, 작업원 등이 안전하게 처리로(202) 부근에 출입할 수 없는 경우가 있다.
따라서, 도 1 및 도 2에 도시한 바와 같이, 제1 가열부(207)에서 가열되는 영역 이외의 영역을 가열하도록, 제2 가열부(280)가 설치되어 있다. 즉, 제2 가열부(280)가, 처리 용기(203)의 하부의 외측(외주)에, 처리 용기(203)의 측벽면을 동심원 형상으로 둘러싸도록 설치되어 있다.
제2 가열부(280)는 배기부를 향해 처리 용기(203)의 상측(상류측)으로부터 하측(하류측)으로 흐르는 수증기를, 처리 용기(203) 내의 하류측(즉, 처리 용기(203) 내의 단열체(218)가 수용되는 영역)에서 가열하도록 구성되어 있다. 또한, 제2 가열부(280)는 처리 용기(203)의 하단부 개구를 밀봉하는 시일 캡(219)이나, 처리 용기(203)의 하부, 처리 용기(203) 내의 저부에 배치되는 단열체(218) 등의 처리 용기(203)의 하부를 구성하는 부재를 가열하도록 구성되어 있다. 바꿔 말하면, 보트(217)가 처리실(201)에 장전되었을 때에, 저판(217b)보다도 하방에 위치하도록, 제2 가열부(280)를 배치한다.
제2 가열부(280)에는 후술하는 컨트롤러(121)가 전기적으로 접속되어 있다. 컨트롤러(121)는 처리 용기(203) 내에서의 처리 가스(수증기)의 액화를 억제할 수 있는 온도(예를 들어, 100℃로부터 300℃)가 되도록, 제2 가열부(280)에의 공급 전력을 소정의 타이밍에서 제어하도록 구성되어 있다. 제2 가열부(280)에 의한 처리 용기(203)의 노구부의 가열은 적어도, 처리 용기(203)에 처리액 또는 처리 가스가 공급되고 있는 동안은 계속해서 행해진다. 바람직하게는, 웨이퍼(200)가 처리 용기(203)에 반입 후부터 반출 전까지 행해진다. 이와 같이 가열함으로써, 노구부에서의 처리 가스의 액화나, 건조 공정까지 발생하는 파티클이나 불순물 등이 노구부에 부착되는 것을 방지할 수 있다.
(제어부)
도 3에 도시한 바와 같이, 제어부(제어 수단)인 컨트롤러(121)는 CPU(Central Processing Unit)(121a), RAM(Random Access Memory)(121b), 기억 장치(121c), I/O 포트(121d)를 구비한 컴퓨터로서 구성되어 있다. RAM(121b), 기억 장치(121c), I/O 포트(121d)는 내부 버스(121e)를 통해, CPU(121a)와 데이터 교환 가능하게 구성되어 있다. 컨트롤러(121)에는, 예를 들어 터치 패널 등으로서 구성된 입출력 장치(122)가 접속되어 있다.
기억 장치(121c)는, 예를 들어 플래시 메모리, HDD(Hard Disk Drive) 등을 포함하고 있다. 기억 장치(121c) 내에는 기판 처리 장치의 동작을 제어하는 제어 프로그램이나, 후술하는 기판 처리의 수순이나 조건 등이 기재된 프로그램 레시피 등이 판독 가능하게 저장되어 있다. 또한, 프로세스 레시피는 후술하는 기판 처리 공정에 있어서의 각 수순을 컨트롤러(121)에 실행시켜, 소정의 결과를 얻을 수 있도록 조합된 것이고, 프로그램으로서 기능한다. 이하, 이 프로그램 레시피나 제어 프로그램 등을 총칭하여, 간단히 프로그램이라고도 한다. 또한, 본 명세서에 있어서 프로그램이라는 용어를 이용한 경우는, 프로그램 레시피 단체만을 포함하는 경우, 제어 프로그램 단체만을 포함하는 경우, 또는 그 양쪽을 포함하는 경우가 있다. 또한, RAM(121b)은 CPU(121a)에 의해 판독된 프로그램이나 데이터 등이 일시적으로 유지되는 메모리 영역(워크 에리어)으로서 구성되어 있다.
I/O 포트(121d)는 상술한 처리 가스 생성 유닛(305), MFC(304a, 304b, 601b, 602b), 오토 밸브(303a, 303b, 305a, 305b, 305c, 601a, 601d, 602a, 602d), 셔터(252, 254, 256), APC 밸브(255), 제1 가열부(207)(207a, 207b, 207c, 207d), 제2 가열부(280), 블로어 회전 기구(259), 제1 내지 제4 온도 센서(263a 내지 263d), 보트 회전 기구(267), 압력 센서(233), 온도 제어 컨트롤러(400) 등에 접속되어 있다.
CPU(121a)는 기억 장치(121c)로부터의 제어 프로그램을 판독하여 실행함과 함께, 입출력 장치(122)로부터의 조작 커맨드의 입력 등에 따라 기억 장치(121c)로부터 프로세스 레시피를 판독하도록 구성되어 있다. 그리고, CPU(121a)는 판독된 프로세스 레시피의 내용에 따르도록, 처리 가스 생성 유닛(305)에 의한 처리 가스 생성 동작, MFC(304a, 304b, 601b, 602b)에 의한 가스의 유량 조정 동작, 오토 밸브(303a, 303b, 305a, 305b, 305c, 601a, 601d, 602a, 602d)의 개폐 동작, 셔터(252, 254, 256)의 차단 동작, APC 밸브(255)의 개폐 조정 동작 및 제1 내지 제4 온도 센서(263a 내지 263d)에 기초하는 제1 가열부(207)의 온도 조정 동작, 제2 가열부(280)의 온도 조정 동작, 진공 펌프(246a, 246b)의 기동ㆍ정지, 블로어 회전 기구(259)의 회전 속도 조절 동작, 보트 회전 기구(267)의 회전 속도 조절 동작 등을 제어하도록 구성되어 있다.
또한, 컨트롤러(121)는 전용의 컴퓨터로서 구성되어 있는 경우로 한정되지 않고, 범용의 컴퓨터로서 구성되어 있을 수도 있다. 예를 들어, 상술한 프로그램을 저장한 외부 기억 장치(예를 들어, 자기 테이프, 플렉시블 디스크나 하드 디스크 등의 자기 디스크, CD나 DVD 등의 광디스크, MO 등의 광자기 디스크, USB 메모리나 메모리 카드 등의 반도체 메모리)(123)를 준비하고, 이러한 외부 기억 장치(123)를 이용하여 범용의 컴퓨터에 프로그램을 인스톨하는 것 등에 의해, 본 실시 형태에 따른 컨트롤러(121)를 구성할 수 있다. 또한, 컴퓨터에 프로그램을 공급하기 위한 수단은 외부 기억 장치(123)를 통해 공급하는 경우로 한정되지 않는다. 예를 들어, 인터넷이나 전용 회선 등의 통신 수단을 이용하여, 외부 기억 장치(123)를 통하지 않고 프로그램을 공급하도록 할 수도 있다. 또한, 기억 장치(121c)나 외부 기억 장치(123)는 컴퓨터 판독 가능한 기록 매체로서 구성된다. 이하, 이들을 총칭하여, 간단히 기록 매체라고도 한다. 또한, 본 명세서에 있어서, 기록 매체라는 용어를 이용한 경우는, 기억 장치(121c) 단체만을 포함하는 경우, 외부 기억 장치(123) 단체만을 포함하는 경우, 또는 그 양쪽을 포함하는 경우가 있다.
(2) 사전 처리 공정
여기서, 기판으로서의 웨이퍼(200)에 후술하는 개질 처리가 실시되기 전에 실시되는 사전 처리 공정에 대해 도 4를 이용하여 설명한다. 도 4에 도시한 바와 같이, 웨이퍼(200)에는 PHPS 도포 공정 T20과 프리베이크 공정 T30이 실시되어 있다. PHPS 도포 공정 T20에서는 도포 장치(도시하지 않음)에 의해, 폴리실라잔이 도포된다. 도포된 폴리실라잔의 두께는 폴리실라잔의 분자량, 폴리실라잔 용액의 점도, 코터의 회전수에 따라 조정된다. 프리베이크 공정 T30에서는, 웨이퍼(200)에 도포된 폴리실라잔으로부터 용제가 제거된다. 구체적으로는, 70℃ 내지 250℃ 정도로 가열됨으로써 용제가 휘발함으로써 행해진다. 바람직하게는 150℃ 정도에서 가열된다.
또한, 웨이퍼(200)는 미세 구조인 요철 구조를 갖고, 폴리실라잔(SiH2NH)을 적어도 오목부(홈)에 충전하도록 공급되고, 홈 내에 실리콘(Si) 함유막이 형성된 기판이 이용된다. 이 웨이퍼(200)에 처리 가스로서 수증기를 이용하는 예에 대해 설명한다. 또한, 실리콘 함유막에는 실리콘(Si)이나 질소(N), 수소(H)가 포함되어 있고, 경우에 따라서는, 탄소(C)나 다른 불순물이 혼합되어 있을 가능성이 있다. 또한, 미세 구조를 갖는 기판이란, 실리콘 기판에 대해 수직 방향으로 깊은 홈(오목부), 혹은 예를 들어 10㎚ 내지 30㎚ 정도의 폭의 횡방향으로 좁은 홈(오목부) 등의 애스펙트비가 높은 구조를 갖는 기판을 말한다.
(3) 기판 처리 공정
계속해서, 본 실시 형태에 따른 반도체 장치의 제조 공정의 일 공정으로서 실시되는 기판 처리 공정에 대해, 도 5, 도 6을 이용하여 설명한다. 이러한 공정은 상술한 기판 처리 장치에 의해 실시된다. 본 실시 형태에서는 이러한 기판 처리 공정의 일례로서, 처리 가스로서 수증기를 이용하고, 기판으로서의 웨이퍼(200) 위에 형성된 실리콘 함유막을 SiO막에 개질(산화)하는 공정(개질 처리 공정)을 행하는 경우에 대해 설명한다. 또한, 이하의 설명에 있어서, 기판 처리 장치를 구성하는 각 부의 동작은 컨트롤러(121)에 의해 제어된다.
도 5는 본 기판 처리 공정 중의 각 공정을 도시하는 흐름도이다. 도 6은 본 기판 처리 공정에 있어서의 기판 처리 이벤트와 온도의 타이밍예를 도시하는 도면이고, 도면 중의 파선은 처리 용기(203) 내의 압력을, 실선은 처리 용기(203) 내의 웨이퍼(200)의 온도를, 횡축의 파라미터는 처리 시간(분 단위)을 나타내고 있다.
(기판 반입 공정(S10))
먼저, 미리 지정된 매수의 웨이퍼(200)를 보트(217)에 장전(웨이퍼 차지)한다. 복수매의 웨이퍼(200)를 보유 지지한 보트(217)를, 보트 엘리베이터에 의해 들어 올려 처리 용기(반응관)(203) 내(처리실(201) 내)에 반입(보트 로드)한다. 이 상태에서, 처리로(202)의 개구부인 노구는 시일 캡(219)에 의해 시일된 상태가 된다. 그 후, 처리 용기(203) 내가 원하는 압력(진공도)이 되도록 진공 펌프(246a) 또는 진공 펌프(246b) 중 적어도 어느 하나에 의해 진공 배기한다. 이때, 처리 용기(203) 내의 압력은 압력 센서로 측정하고, 이 측정한 압력에 기초하여 APC 밸브(255)의 개방도 또는 밸브(240)의 개폐를 피드백 제어한다(압력 조정). 또한, 처리 용기(203) 내의 웨이퍼(200)가 원하는 온도(예를 들어, 약 150℃)가 되도록, 제1 온도 센서(263a), 제2 온도 센서(263b), 제3 온도 센서(263c), 제4 온도 센서(263d)가 검출한 온도 정보에 기초하여 제1 가열부(207)가 구비하는 제1 히터 유닛(207a), 제2 히터 유닛(207b), 제3 히터 유닛(207c), 제4 히터 유닛(207d)에의 공급 전력을 피드백 제어한다(온도 조정). 이때, 제1 히터 유닛(207a), 제2 히터 유닛(207b), 제3 히터 유닛(207c), 제4 히터 유닛(207d)의 설정 온도는 모두 동일한 온도가 되도록 제어한다.
(예비 가열 공정(S20))
처리 용기(203) 내가 소정의 압력에 도달하고, 웨이퍼(200)가 소정의 온도에 도달한 후, 처리 용기(203) 내에 산소(O) 함유 가스를 공급하여, 약 100Torr가 되도록 조정한다. 소정의 온도란, 상술한 프리베이크 공정 T30에서의 온도 이하의 제1 온도이다. 구체적으로는, 밸브(602a, 602d)를 개방하여, MFC(602b)에 의해 유량이 조정된 산소 함유 가스가 처리 용기(203)에 공급되고, APC 밸브(255)와 압력 센서(223)에 의해 압력이 조정된다. 산소 함유 가스의 유량은, 예를 들어 5slm 내지 15slm으로 설정된다. 산소 함유 가스는 산소(O2) 가스나, 오존(O3) 가스, 일산화질소(NO) 가스, 아산화질소(N2O)가 이용되고, 적합하게는 산소 가스가 이용된다. 본 실시 형태에서는 산소 가스를 이용한다. 이때의 소정의 온도는 상술한 프리베이크 공정 T30의 온도 이하가 되도록 유지하는 것이 바람직하다. 또한, 이때의 소정의 온도는 적어도 저분자량의 폴리실라잔의 골격 구조를 산화실리콘(Si-O)으로 변화시키는 데 필요한 온도 이상(예를 들어, 70℃ 이상)인 것이 필요하다. 소정 시간 경과 후, 온도 조정 공정 S30을 행한다. 프리베이크 공정 T30의 온도 이하가 되도록 조정함으로써, 폴리실라잔막의 연화를 억제하면서, 산소 함유 가스로 저분자량의 폴리실라잔의 골격 구조를 산화실리콘(Si-O)으로 변화시키므로, 파티클의 발생을 억제할 수 있다.
또한, 웨이퍼(200)를 가열하면서, 보트 회전 기구(267)를 작동하여, 보트(217)의 회전을 개시한다. 이때, 보트(217)의 회전 속도를 컨트롤러(121)에 의해 제어한다. 또한, 보트(217)는 적어도 후술하는 산화 공정(S40)이 종료될 때까지의 동안은, 항상 회전시킨 상태로 한다.
(온도 조정 공정(S30))
예비 가열 공정 S20 후, 처리 용기(203) 내의 압력을 약 100Torr로 유지한 상태에서, 산소 함유 분위기 중에서 웨이퍼(200)의 온도를 제2 온도까지 승온시킨다. 제2 온도는 250 내지 450℃이고, 예를 들어 400℃이다. 또한, 400℃에 도달 후, 산소 함유 가스의 유량을 증가시켜 처리 용기(203) 내의 압력을 증가시키고, 약 400Torr로 유지시킨다. 또한, 압력과 온도가 안정될 때까지 소정 시간 그 압력과 온도를 유지한다.
(산화 공정(S40))
웨이퍼(200)의 온도가 400℃에서 안정된 후, 처리 용기(203) 내에 처리 가스로서의 수증기(H2O 가스)의 공급을 개시한다. 구체적으로는, 처리 가스 발생 유닛(305)에 산소 함유 가스와 수소 함유 가스를 공급하고, 산소와 수소를 반응시켜, 수증기를 발생시킨다. 또한, 산소 함유 가스(O2 가스)와 수소 함유 가스(H2 가스)의 가스 공급비(O2/H2)가 2:3, 스팀 농도가 60%가 되도록 MFC(304a)와 MFC(304b)에 의해 산소 함유 가스와 수소 함유 가스의 유량이 조정된다. 수증기를 공급한 상태에서, 약 30분간 산화 처리를 행하여, 폴리실라잔막을 산화한다(산화 공정). 산화 처리를 행하는 동안, 산소 가스 공급부(602)로부터는 계속해서 산소 함유 가스(본 실시 형태에서는 산소 가스)가 처리 용기(203)에 공급된다. 웨이퍼(200)의 온도는 수증기에 의해 폴리실라잔막을 산화하기 위해, 소정의 온도 이상(예를 들어, 250℃ 이상)일 필요가 있고, 또한 폴리실라잔막의 상부의 경화를 피하기 위해, 소정의 온도 이하(예를 들어, 400℃ 이하)인 것이 바람직하다.
(어닐 공정(S50))
산화 공정 S40이 소정의 시간 경과 후, 처리 용기(203)에의 수증기의 공급과, 산소 가스의 공급을 정지하여, 웨이퍼(200)의 온도를 유지한 상태에서, 처리 용기(203) 내에 질소 함유 가스를 공급하고, 웨이퍼(200) 위에 형성된 실리콘 산화막에 어닐을 소정 시간(예를 들어, 30분간) 행할 수도 있다. 여기서 질소 함유 가스는, 예를 들어 질소(N2) 가스이고, 퍼지 가스 공급부(601)로부터 공급할 수도 있다.
(퍼지 공정(S60))
어닐 공정 S50이 종료된 후, 웨이퍼(200)의 온도를 유지한 상태에서, 처리 용기(203) 내를 소정의 압력이 될 때까지 배기한다. 예를 들어, 약 1Torr가 될 때까지 배기한다. 소정의 압력에 도달 후, 처리 용기(203) 내에 불활성 가스로서의 질소 가스를 공급 개시하여, 소정의 압력이 될 때까지 공급한다. 이와 같이, 웨이퍼(200)의 온도를 유지한 상태에서 처리 용기(203) 내를 배기하여 압력을 내림으로써, 파티클이나 불순물을 제거할 수 있다. 또한, 배기 후에 웨이퍼(200)의 온도를 유지한 상태에서, 불활성 가스를 공급함으로써, 처리 용기(203) 내에 잔존하는, 진공 배기로 제거할 수 없었던 파티클, 불순물, 웨이퍼(200)로부터의 아웃 가스를 제거할 수 있다.
(강온ㆍ대기압 복귀 공정(S70))
처리 용기(203) 내의 압력이 소정의 압력에 도달 후, 웨이퍼(200)의 강온을 개시한다. 예를 들어, 처리 용기(203) 내의 압력이 약 100Torr 이상이 되면, 웨이퍼(200)의 강온을 개시한다.
웨이퍼(200)를 강온시키면서, 블로어(257)를 작동시킨 상태에서 셔터(252, 254, 256)를 개방하여, 냉각 가스 공급관(249)으로부터, 냉각 가스를 매스 플로우 컨트롤러(251)에 의해 유량 제어하면서 처리 용기(203)와 단열 부재(210) 사이의 공간(260) 내에 공급하면서, 냉각 가스 배기관(253)으로부터 배기할 수도 있다. 냉각 가스로서는, N2 가스 외에, 예를 들어 He 가스, Ne 가스, Ar 가스 등의 희가스, 공기 등을 단독으로 혹은 혼합하여 이용할 수 있다. 이에 의해, 공간(260) 내를 급냉시켜, 공간(260) 내에 설치되는 처리 용기(203) 및 제1 가열부(207)를 단시간에 냉각할 수 있다. 또한, 처리 용기(203) 내에서의 웨이퍼(200)를 보다 단시간에 강온시킬 수 있다.
또한, 셔터(254, 256)를 폐쇄한 상태에서, 냉각 가스 공급관(249)으로부터 N2 가스를 공간(260) 내에 공급하고, 공간(260) 내를 냉각 가스로 충만시켜 냉각한 후, 블로어(257)를 작동시킨 상태에서 셔터(254, 256)를 개방하여, 공간(260) 내의 냉각 가스를 냉각 가스 배기관(253)으로부터 배기할 수도 있다.
(기판 반출 공정(S80))
그 후, 보트 엘리베이터에 의해 시일 캡(219)을 하강시켜 처리 용기(203)의 하단부를 개구함과 함께, 처리 완료 웨이퍼(200)를 보트(217)에 보유 지지한 상태에서 처리 용기(203)의 하단부로부터 처리 용기(203)(처리실(201))의 외부로 반출(보트 언로드)한다. 그 후, 처리 완료 웨이퍼(200)는 보트(217)로부터 취출되고(웨이퍼 디스차지), 본 실시 형태에 따른 기판 처리 공정을 종료한다.
(4) 본 실시 형태에 따른 효과
본 실시 형태에 따르면, 이하에 나타내는 하나 또는 복수의 효과를 발휘한다.
(a) 예비 가열 공정을 프리베이크 공정의 온도 이하에서 가열함으로써, 저분자량의 폴리실라잔의 연화를 방지할 수 있어, 파티클의 수를 저감시킬 수 있다.
(b) 또한, 예비 가열 공정을 산소 함유 분위기에서 행함으로써, 저분자량의 폴리실라잔의 골격 구조를 산화실리콘(Si-O)으로 변화시킬 수 있고, 저분자량의 폴리실라잔의 이탈을 억제하여, 파티클의 발생을 억제할 수 있다.
(c) 또한, 예비 가열 공정을 산소 가스(O2) 분위기에서 행함으로써, 파티클의 발생을 억제할 수 있다. 도 7에 예비 가열 공정을 산소 가스 분위기에서 행하였을 때에 발생한 파티클의 수와, 질소 가스(N2) 분위기에서 행하였을 때에 발생한 파티클의 수를 비교한 도를 도시한다. 도 7에 도시한 바와 같이, 산소 가스 분위기에서 처리한 경우는, 질소 가스 분위기에서 처리한 경우에 비해, 대폭으로 파티클 수를 억제할 수 있는 것을 알 수 있다.
(d) 또한, 예비 가열 공정을 웨이퍼(200)에 형성된 폴리실라잔막의 프리베이크 온도 이하에서 행한 경우에, 폴리실라잔의 산화를 균일하게 실시할 수 있다. 예를 들어, 프리베이크 온도보다도 높은 온도에서 예비 가열하면, 웨이퍼(200)에 형성된 요철에 매립된 폴리실라잔의 상부가 경화되어 버려, 후속의 산화 공정에서, 요철의 저부까지 균일하게 산화할 수 없게 되어 버리는 경우가 있지만, 프리베이크 온도 이하로 유지함으로써, 폴리실라잔의 상부가 경화되는 것을 억제할 수 있다.
<본 발명의 다른 실시 형태>
이상, 본 발명의 실시 형태를 구체적으로 설명하였지만, 본 발명은 상술한 실시 형태로 한정되는 것은 아니고, 그 요지를 일탈하지 않는 범위에서 다양하게 변경 가능하다.
상술한 실시 형태에서는, 처리 가스로서 수증기를 이용하는 경우에 대해 설명하였지만, 이에 한정되는 것은 아니다. 즉, 처리 가스는 상온에서 고체 또는 액체인 원료(반응물)를 용매에 용해시킨 용액(액체 상태의 반응물)을 기화시킨 산화성의 가스이면 된다. 예를 들어, 과산화수소(H2O2)를 물(H2O)에 용해시킨 과산화수소수를 이용할 수 있다. 과산화수소수를 기화시킨 과산화수소를 함유하는 가스를 웨이퍼(200)에 공급하여 산화 처리를 행함으로써, 폴리실라잔막의 산화를 보다 저온에서 행하는 것이 가능해진다. 예를 들어, 70 내지 130℃ 정도에서 처리를 할 수 있게 된다. 또한, 저온이 됨으로써, 웨이퍼(200)에 요철이 더 형성되어 있는 경우에, 오목부의 저부까지 보다 균일하게 산화시킬 수 있다. 예를 들어, 상술한 실시 형태와 같이 약 400℃로 가열하면 오목부의 상부 폴리실라잔이 경화되어, 오목부의 바닥까지 처리가 진행되지 않는 경우가 있다. 과산화수소는 수증기(물, H2O)와 비교하면, 활성화 에너지가 높고, 1분자 중에 포함되는 산소 원자의 수가 많기 때문에 산화력이 강하다는 특징이 있다. 그로 인해, 과산화수소 가스를 이용한 경우, 웨이퍼(200)의 홈 내에 형성된 막의 심부(홈의 저부)까지 산소 원자(O)를 도달시킬 수 있는 점에서 우위이다.
또한, 처리 가스로서 수증기나 과산화수소 가스를 이용하는 경우로 한정되지 않고, 예를 들어 물(H2O)을 가열하여 발생시킨 수증기여도 된다. 또한, 산소 함유 가스로서 O2 가스 외에, 예를 들어 오존(O3) 가스나 수증기(H2O) 등을 이용할 수도 있다. 또한, 웨이퍼(200) 위에 형성된 회로, 특히 고온 처리에 약한 재질(예를 들어, 알루미늄)을 이용한 회로의 성능 열화 등을 억제할 수 있다.
또한, 처리 가스로서의 수증기(가스 상태의 물)에는 H2O 분자 단체의 상태나, 몇 개의 분자가 결합한 클러스터 상태가 포함될 수도 있다. 또한, 물(H2O)을 액체 상태로부터 기체 상태로 할 때, H2O 분자 단체까지 분열시키도록 할 수도 있고, 몇 개의 분자가 결합한 클러스터 상태까지 분열시키도록 할 수도 있다. 또한, 상기의 클러스터가 몇 개 모여 생긴 안개(미스트) 상태여도 된다.
또한, 상술한 처리 가스로서 과산화수소 가스를 이용한 경우도 마찬가지로, H2O2 분자 단체의 상태나, 몇 개의 분자가 결합한 클러스터 상태가 포함될 수도 있다. 또한, 과산화수소수(H2O2)로부터 과산화수소 가스로 기화시킬 때, H2O2 분자 단체까지 분열시키도록 할 수도 있고, 몇 개의 분자가 결합한 클러스터 상태까지 분열시키도록 할 수도 있다. 또한, 상기의 클러스터가 몇 개 모여 생긴 안개(미스트) 상태여도 된다.
또한, 상술한 실시 형태에서는 폴리실라잔막이 형성된 웨이퍼(200)를 처리하는 예를 나타냈지만, 이에 한정되는 것은 아니다. 예를 들어, 실라잔 결합(-Si-N-)을 갖는 막이 형성된 웨이퍼(200)를 처리함으로써 동일한 효과가 얻어진다.
또한, 상술에서는 실라잔 결합을 갖는 막이 스핀 코트된 웨이퍼(200)를 처리하는 예를 나타냈지만, 이에 한정되는 것은 아니고, Chemical Vapor Deposition(CVD)법으로 형성된 실리콘 함유막이라도 마찬가지로 산화시킬 수 있다.
상술한 처리로(202)에 있어서, 처리 용기(203) 외에, 제1 가열부(207)가 구비하는 제1 히터 유닛(207a), 제2 히터 유닛(207b), 제3 히터 유닛(207c), 제4 히터 유닛(207d)의 각각의 온도를 검출하는 온도 검출기로서, 예를 들어 열전대 등의 제1 외부 온도 센서(264a), 제2 외부 온도 센서(264b), 제3 외부 온도 센서(264c), 제4 외부 온도 센서(264d)(도 2 참조)가 설치되어 있을 수도 있다. 제1 외부 온도 센서(264a), 제2 외부 온도 센서(264b), 제3 외부 온도 센서(264c), 제4 외부 온도 센서(264d)는 각각 컨트롤러(121)에 접속되어 있다. 이에 의해, 제1 외부 온도 센서(264a), 제2 외부 온도 센서(264b), 제3 외부 온도 센서(264c), 제4 외부 온도 센서(264d)에 의해 각각 검출된 온도 정보에 기초하여, 제1 히터 유닛(207a), 제2 히터 유닛(207b), 제3 히터 유닛(207c), 제4 히터 유닛(207d)의 각각의 온도가 소정의 온도로 가열되어 있는지를 감시할 수 있다.
상술한 실시 형태에서는 종형 처리로를 구비하는 기판 처리 장치에 대해 설명하였지만 이에 한정되지 않고, 예를 들어 낱장식, Hot Wall형, Cold Wall형의 처리로를 갖는 기판 처리 장치나, 처리 가스를 여기시켜 웨이퍼(200)를 처리하는 기판 처리 장치에도 적절히 적용할 수 있다.
<본 발명의 바람직한 형태>
이하에, 본 발명의 바람직한 형태에 대해 부기한다.
<부기 1>
일 형태에 의하면, 실라잔 결합을 갖는 막이 형성되고, 프리베이크가 실시되어 있는 기판을 처리 용기에 반입시키는 공정과, 상기 기판에, 상기 프리베이크의 온도 이하의 제1 온도에서 산소 함유 가스를 공급하는 공정과, 상기 기판에, 상기 제1 온도보다도 높은 제2 온도에서 처리 가스를 공급하는 공정을 갖는 반도체 장치의 제조 방법이 제공된다.
<부기 2>
부기 1에 기재된 반도체 장치의 제조 방법으로서, 바람직하게는, 상기 실라잔 결합을 갖는 막은 저분자량의 폴리실라잔을 포함하는 막이다.
<부기 3>
부기 1 내지 부기 2에 기재된 반도체 장치의 제조 방법으로서, 바람직하게는, 상기 산소 함유 가스는 산소 가스를 포함하는 가스이고, 상기 처리 가스는 수증기를 포함하는 가스이다.
<부기 4>
부기 1 내지 부기 3 중 어느 하나에 기재된 반도체 장치의 제조 방법으로서, 바람직하게는, 상기 처리 가스를 공급하는 공정은 상기 산소 함유 가스를 공급하는 공정 후에 행해지고, 상기 처리 가스를 공급하는 공정에서는 상기 산소 함유 가스를 공급하면서 상기 처리 가스의 공급이 행해진다.
<부기 5>
부기 4에 기재된 반도체 장치의 제조 방법으로서, 바람직하게는, 상기 처리 가스를 공급하는 공정 후에, 상기 처리 가스와 상기 산소 함유 가스의 공급이 정지되고 질소 함유 가스가 공급되는 어닐 공정을 갖는다.
<부기 6>
부기 1 내지 부기 5에 기재된 반도체 장치의 제조 방법으로서, 바람직하게는, 상기 처리 가스를 공급하는 공정 후에, 상기 기판의 온도를 유지한 상태에서 상기 처리 용기 내를 배기하는 공정을 갖는다.
<부기 7>
부기 6에 기재된 반도체 장치의 제조 방법으로서, 바람직하게는, 상기 처리 용기 내를 배기하는 공정 후에, 상기 처리 용기 내에 불활성 가스를 공급하고, 소정의 압력으로 조정한 후, 기판을 강온시키는 공정을 갖는다.
<부기 8>
다른 형태에 의하면, 실라잔 결합을 갖는 막이 형성되고, 프리베이크 공정이 실시되어 있는 기판이 수용되는 처리 용기와, 상기 기판에 산소 함유 가스를 공급하는 산소 함유 가스 공급부와, 상기 기판에 처리 가스를 공급하는 가스 공급부와, 상기 기판을 가열하는 가열부와, 상기 산소 함유 가스를 공급한 상태에서 상기 기판을 상기 프리베이크 공정의 온도 이하의 제1 온도로 가열하고, 상기 처리 가스를 공급한 상태에서 상기 제1 온도보다도 높은 제2 온도에서 상기 기판을 가열하도록 상기 산소 함유 가스 공급부와 상기 가스 공급부와 상기 가열부를 제어하는 제어부를 갖는 기판 처리 장치가 제공된다.
<부기 9>
부기 8에 기재된 기판 처리 장치로서, 바람직하게는, 상기 처리 용기 내의 분위기를 배기하는 배기부를 갖고, 상기 제어부는 상기 처리 가스를 공급한 상태에 있어서 제2 온도에서 가열한 후에, 상기 기판의 온도를 제2 온도로 유지한 상태에서 상기 처리 용기 내의 분위기를 배기하도록 상기 가스 공급부와 상기 가열부와 상기 배기부를 제어한다.
<부기 10>
부기 9에 기재된 기판 처리 장치로서, 바람직하게는, 상기 제어부는 상기 배기 후에, 상기 기판의 온도를 제2 온도로 유지한 상태에서, 상기 가스 공급부가 상기 처리 용기 내에 불활성 가스를 공급하여 처리 용기 내의 압력을 높게 하도록, 상기 가스 공급부와 상기 배기부와 상기 가열부를 제어한다.
<부기 11>
부기 8 내지 부기 10 중 어느 한 항에 기재된 기판 처리 장치로서, 바람직하게는, 상기 제1 온도는 150℃ 이하이며, 상기 제2 온도는 250℃ 내지 400℃이다.
<부기 12>
부기 8 내지 부기 11중 어느 하나에 기재된 기판 처리 장치로서, 바람직하게는, 상기 산소 함유 가스는 산소 가스를 포함하는 가스이고, 상기 처리 가스는 수증기를 포함하는 가스이다.
<부기 13>
또 다른 형태에 의하면, 실라잔 결합을 갖는 막이 형성되고, 프리베이크가 실시되어 있는 기판을 처리 용기에 반입시키는 수순과, 상기 기판에 상기 프리베이크의 온도 이하의 제1 온도에서 산소 함유 가스를 공급하는 수순과, 상기 기판에, 상기 제1 온도보다도 높은 제2 온도에서 처리 가스를 공급하는 수순을 컴퓨터에 실행시키는 프로그램, 또는 당해 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체가 제공된다.
<부기 14>
부기 13에 기재된 프로그램, 또는 당해 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체로서, 바람직하게는, 상기 제2 온도에서 처리 가스를 공급하는 수순은 상기 산소 함유 가스를 공급하는 수순 후에 행해진다.
<부기 15>
부기 13 또는 부기 14에 기재된 프로그램, 또는 당해 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체로서, 바람직하게는, 상기 제2 온도에서 상기 처리 가스를 공급한 후에, 상기 산소 함유 가스의 공급이 정지되고 질소 함유 가스가 공급되는 수순을 갖는다.
<부기 16>
부기 13 내지 부기 15 중 어느 하나에 기재된 프로그램, 또는 당해 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체로서, 바람직하게는, 상기 처리 가스를 공급하는 수순 후에, 상기 기판의 온도를 유지한 상태에서 상기 처리 용기 내를 배기하는 배기 수순을 갖는다.
<부기 17>
부기 16 중 어느 하나에 기재된 프로그램, 또는 당해 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체로서, 바람직하게는, 상기 처리 용기 내를 배기하는 수순 후에, 상기 처리 용기 내에 불활성 가스를 공급하여 소정의 압력으로 조정된 후에 상기 기판을 강온시키는 수순을 갖는다.
본 발명에 따른 기술에 의하면, 반도체 장치의 제조 품질을 향상시키는 것이 가능해진다.
200 : 웨이퍼(기판)
203 : 처리 용기(반응관)
217 : 보트
219 : 시일 캡
207 : 제1 가열부
280 : 제2 가열부
300 : 액체 유량 제어 유닛
501 : 처리 가스 공급 노즐
502 : 공급 구멍
231 : 가스 배기관
121 : 컨트롤러(제어부)

Claims (16)

  1. 실라잔 결합을 갖는 막이 형성되고, 당해 막에 프리베이크가 실시되어 있는 기판을, 처리 용기 내에 반입하는 공정과,
    상기 기판에, 상기 프리베이크의 온도 이하의 제1 온도에서 산소 함유 가스를 공급하는 공정과,
    상기 산소 함유 가스를 공급하는 공정 후, 상기 기판에, 상기 산소 함유 가스를 공급하면서, 상기 제1 온도보다도 높은 제2 온도에서 수증기 또는 과산화수소 중 적어도 어느 한쪽을 포함하는 처리 가스를 공급하는 공정을 갖는 반도체 장치의 제조 방법.
  2. 제1항에 있어서,
    상기 산소 함유 가스는, 산소 가스, 오존 가스, 일산화질소 가스 및 아산화질소 가스를 포함하는 군으로부터 선택되는 적어도 어느 하나를 포함하는 반도체 장치의 제조 방법.
  3. 제1항에 있어서,
    상기 산소 함유 가스를 공급하는 공정에서는, 상기 실라잔 결합을 갖는 막에 포함되는 상기 실라잔 결합을 갖는 분자의 골격 구조를 산화 실리콘으로 변화시키도록 상기 산소 함유 가스를 상기 기판에 공급하는 반도체 장치의 제조 방법.
  4. 삭제
  5. 제1항에 있어서,
    상기 처리 가스를 공급하는 공정 후에, 상기 처리 가스와 상기 산소 함유 가스의 공급을 정지하고 질소 함유 가스를 공급하는 어닐 공정을 갖는 반도체 장치의 제조 방법.
  6. 실라잔 결합을 갖는 막이 형성되고, 당해 막에 프리베이크가 실시되어 있는 기판을, 처리 용기 내에 반입하는 공정과,
    상기 기판에, 상기 프리베이크의 온도 이하의 제1 온도에서 산소 함유 가스를 공급하는 공정과,
    상기 기판에, 상기 제1 온도보다도 높은 제2 온도에서 수증기 또는 과산화수소 중 적어도 어느 한쪽을 포함하는 처리 가스를 공급하는 공정과,
    상기 처리 가스를 공급하는 공정 후에, 상기 기판의 온도를 유지한 상태에서 상기 처리 용기 내를 배기하는 공정을 갖는 반도체 장치의 제조 방법.
  7. 제6항에 있어서,
    상기 처리 용기 내를 배기하는 공정 후에, 상기 기판의 온도를 유지한 상태에서 상기 처리 용기 내에 불활성 가스를 공급하고, 상기 처리 용기 내가 소정의 압력이 될 때까지 상기 불활성 가스를 공급한 후, 기판을 강온시키는 공정을 갖는 반도체 장치의 제조 방법.
  8. 제1항에 있어서,
    상기 제1 온도는 150℃ 이하이며, 상기 제2 온도는 250℃ 내지 400℃인 반도체 장치의 제조 방법.
  9. 제1항에 있어서,
    상기 실라잔 결합을 갖는 막은, 분자량이 상이한 상기 실라잔 결합을 갖는 분자가 분포하는 막이고,
    상기 산소 함유 가스를 공급하는 공정에서는, 상기 실라잔 결합을 갖는 막에 포함되는, 일부의 분자량의 상기 실라잔 결합을 갖는 분자의 골격 구조를 산화 실리콘으로 변화시키는 반도체 장치의 제조 방법.
  10. 삭제
  11. 제1항에 있어서, 상기 실라잔 결합을 갖는 막은 CVD법에 의해 형성되는 막인 반도체 장치의 제조 방법.
  12. 실라잔 결합을 갖는 막이 형성되고, 당해 막에 프리베이크 공정이 실시되어 있는 기판이 수용되는 처리 용기와,
    상기 처리 용기 내의 상기 기판에 산소 함유 가스를 공급하는 산소 함유 가스 공급부와,
    상기 처리 용기 내의 상기 기판에 수증기 또는 과산화수소 중 적어도 어느 한쪽을 포함하는 처리 가스를 공급하는 처리 가스 공급부와,
    상기 기판을 가열하는 가열부와,
    상기 처리 가스가 공급되지 않고 상기 산소 함유 가스가 공급된 상태에 있어서, 상기 기판을 상기 프리베이크 공정의 온도 이하의 제1 온도에서 소정 시간 가열한 후, 상기 산소 함유 가스와 상기 처리 가스가 동시에 상기 기판에 공급된 상태에 있어서, 상기 기판을 상기 제1 온도보다도 높은 제2 온도에서 소정 시간 가열하도록, 상기 산소 함유 가스 공급부와 상기 처리 가스 공급부와 상기 가열부를 제어하도록 구성되는 제어부를 갖는 기판 처리 장치.
  13. 삭제
  14. 실라잔 결합을 갖는 막이 형성되고, 당해 막에 프리베이크 공정이 실시되어 있는 기판이 수용되는 처리 용기와,
    상기 처리 용기 내의 상기 기판에 산소 함유 가스를 공급하는 산소 함유 가스 공급부와,
    상기 처리 용기 내의 상기 기판에 수증기 또는 과산화수소 중 적어도 어느 한쪽을 포함하는 처리 가스를 공급하는 처리 가스 공급부와,
    상기 기판을 가열하는 가열부와,
    상기 처리 용기 내의 분위기를 배기하는 배기부와,
    상기 처리 가스가 공급되지 않고 상기 산소 함유 가스가 공급된 상태에 있어서, 상기 기판을 상기 프리베이크 공정의 온도 이하의 제1 온도에서 소정 시간 가열한 후, 상기 처리 가스가 공급된 상태에 있어서, 상기 기판을 상기 제1 온도보다도 높은 제2 온도에서 소정 시간 가열하고, 상기 기판을 제2 온도에서 소정 시간 가열한 후에, 상기 기판의 온도를 제2 온도로 유지한 상태에서 상기 처리 용기 내의 분위기를 배기하도록, 상기 산소 함유 가스 공급부와 상기 처리 가스 공급부와 상기 가열부와 상기 배기부를 제어하도록 구성되는 제어부를 갖는 기판 처리 장치.
  15. 제14항에 있어서,
    상기 처리 용기 내에 불활성 가스를 공급하는 불활성 가스 공급부를 더 갖고,
    상기 제어부는 상기 기판의 온도를 제2 온도로 유지한 상태에서 상기 처리 용기 내의 분위기가 배기된 후에, 상기 기판의 온도를 제2 온도로 유지한 상태에서 상기 처리 용기 내에 불활성 가스를 공급하여 처리 용기 내의 압력을 증가시키도록, 상기 불활성 가스 공급부와 상기 배기부와 상기 가열부를 제어하도록 구성되는 기판 처리 장치.
  16. 실라잔 결합을 갖는 막이 형성되고, 당해 막에 프리베이크가 실시되어 있는 기판을 처리 용기에 반입하는 수순과,
    상기 기판에, 상기 프리베이크의 온도 이하의 제1 온도에서 산소 함유 가스를 공급하는 수순과,
    상기 산소 함유 가스를 공급하는 수순 후, 상기 기판에, 상기 산소 함유 가스를 공급하면서, 상기 제1 온도보다도 높은 제2 온도에서 수증기 또는 과산화수소 중 적어도 어느 한쪽을 포함하는 처리 가스를 공급하는 수순을 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체.
KR1020167004681A 2013-10-10 2014-09-29 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 KR101848573B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013212806 2013-10-10
JPJP-P-2013-212806 2013-10-10
PCT/JP2014/075870 WO2015053121A1 (ja) 2013-10-10 2014-09-29 半導体装置の製造方法、基板処理装置及び記録媒体

Publications (2)

Publication Number Publication Date
KR20160034394A KR20160034394A (ko) 2016-03-29
KR101848573B1 true KR101848573B1 (ko) 2018-04-12

Family

ID=52812940

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167004681A KR101848573B1 (ko) 2013-10-10 2014-09-29 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체

Country Status (5)

Country Link
US (1) US9793112B2 (ko)
JP (1) JP6151789B2 (ko)
KR (1) KR101848573B1 (ko)
CN (1) CN105518836B (ko)
WO (1) WO2015053121A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003072A1 (ja) * 2016-06-30 2018-01-04 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体
DE102017200588A1 (de) * 2017-01-16 2018-07-19 Ers Electronic Gmbh Vorrichtung zum Temperieren eines Substrats und entsprechendes Herstellungsverfahren
JP7058575B2 (ja) * 2018-09-12 2022-04-22 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP7149884B2 (ja) * 2019-03-20 2022-10-07 東京エレクトロン株式会社 熱処理装置及び成膜方法
KR102552458B1 (ko) * 2019-07-31 2023-07-06 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 기판 지지구 및 반도체 장치의 제조 방법
CN110634775B (zh) * 2019-09-16 2022-11-08 西安奕斯伟材料科技有限公司 一种气流控制装置和晶圆处理装置
TWI745069B (zh) * 2020-07-27 2021-11-01 劉劭祺 材料處理設備及其操作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238695A (ja) * 2009-03-30 2010-10-21 National Institute Of Advanced Industrial Science & Technology アモルファススピンオングラス膜の形成方法
JP2012174717A (ja) * 2011-02-17 2012-09-10 Az Electronic Materials Ip Ltd 二酸化ケイ素膜の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4164092B2 (ja) * 2003-08-26 2008-10-08 株式会社日立国際電気 半導体装置の製造方法および基板処理装置
JP2012060000A (ja) 2010-09-10 2012-03-22 Toshiba Corp シリコン酸化膜の製造装置
US9404178B2 (en) * 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing
JP6038043B2 (ja) * 2011-11-21 2016-12-07 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238695A (ja) * 2009-03-30 2010-10-21 National Institute Of Advanced Industrial Science & Technology アモルファススピンオングラス膜の形成方法
JP2012174717A (ja) * 2011-02-17 2012-09-10 Az Electronic Materials Ip Ltd 二酸化ケイ素膜の製造方法

Also Published As

Publication number Publication date
CN105518836A (zh) 2016-04-20
WO2015053121A1 (ja) 2015-04-16
CN105518836B (zh) 2018-02-13
JP6151789B2 (ja) 2017-06-21
US20160203976A1 (en) 2016-07-14
KR20160034394A (ko) 2016-03-29
US9793112B2 (en) 2017-10-17
JPWO2015053121A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
KR101848573B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
JP5778846B2 (ja) 気化装置、基板処理装置、及び半導体装置の製造方法
KR102104728B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
KR101615584B1 (ko) 반도체 장치의 제조 장치, 반도체 장치의 제조 방법 및 기록 매체
US9587313B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and non-transitory computer-readable recording medium
KR101718419B1 (ko) 기판 처리 방법, 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
US20170365459A1 (en) Method for manufacturing semiconductor device and recording medium
JP6318139B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
KR101788429B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
JP6240712B1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20160153085A1 (en) Substrate processing apparatus
JP2016033955A (ja) 基板処理装置、チャンバリッドアセンブリ、半導体装置の製造方法、プログラム及び記録媒体
US11168396B2 (en) Method of manufacturing semiconductor device and recording medium
JPWO2019064434A1 (ja) 半導体装置の製造方法、基板処理装置及びプログラム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant