WO2019180906A1 - 気化器、基板処理装置及び半導体装置の製造方法 - Google Patents

気化器、基板処理装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2019180906A1
WO2019180906A1 PCT/JP2018/011626 JP2018011626W WO2019180906A1 WO 2019180906 A1 WO2019180906 A1 WO 2019180906A1 JP 2018011626 W JP2018011626 W JP 2018011626W WO 2019180906 A1 WO2019180906 A1 WO 2019180906A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
heater
vaporization
supply unit
liquid
Prior art date
Application number
PCT/JP2018/011626
Other languages
English (en)
French (fr)
Inventor
野内 英博
稲田 哲明
立野 秀人
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to KR1020207022183A priority Critical patent/KR20200101981A/ko
Priority to SG11202007413VA priority patent/SG11202007413VA/en
Priority to CN201880089963.XA priority patent/CN111742394A/zh
Priority to PCT/JP2018/011626 priority patent/WO2019180906A1/ja
Priority to KR1020237033574A priority patent/KR20230142659A/ko
Priority to JP2020507238A priority patent/JP6907406B2/ja
Publication of WO2019180906A1 publication Critical patent/WO2019180906A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Definitions

  • the present invention relates to a vaporizer, a substrate processing apparatus, and a semiconductor device manufacturing method.
  • a film is modified by supplying a modifying gas to the film.
  • a gas containing hydrogen peroxide H 2 O 2
  • a desired processing gas such as a gas containing H 2 O 2
  • a vaporizer it has been difficult to precisely manage and control the temperature of the liquid raw material introduced into the vaporizer.
  • a liquid raw material supply unit that supplies a liquid raw material
  • a vaporization container that constitutes a vaporization chamber in which the liquid raw material supplied by the liquid raw material supply unit is vaporized
  • the vaporization container include: There is provided a vaporizer including a first heater to be heated and a heat insulating member provided so as to block heat released from the first heater from the liquid material supply unit.
  • the temperature of the liquid raw material introduced into the vaporizer can be precisely managed and controlled.
  • FIG. 1 It is a schematic block diagram which shows the structure of the substrate processing apparatus which concerns on one Embodiment. It is a longitudinal section schematic diagram showing the composition of the processing furnace with which the substrate processing apparatus concerning one embodiment is provided. It is a longitudinal section structure figure showing the outline of the vaporizer with which the substrate processing apparatus concerning one embodiment is provided.
  • (A) is a longitudinal cross-sectional block diagram which shows the outline of the vaporizer
  • (B) is a schematic diagram of the space
  • (A) is a figure which shows the calculation result of the temperature of the gas which flows between 1.0 mm parallel plates
  • (B) is the figure which shows the calculation result of the temperature of the gas which flows between 0.8 mm parallel plates. It is. It is a figure which shows the calculation result of the pressure rise amount at the time of making water vapor
  • FIG. 1 It is a longitudinal section structure figure showing the outline of the vaporizer concerning a 2nd embodiment.
  • A is a longitudinal cross-sectional structure figure which shows the outline of the vaporizer
  • B is a longitudinal cross-section structure figure which shows the outline of the vaporizer
  • the substrate processing apparatus 10 is an apparatus for processing a substrate using a liquid raw material containing hydrogen peroxide (H 2 O 2 ), that is, a processing gas generated by vaporizing hydrogen peroxide water.
  • H 2 O 2 hydrogen peroxide
  • it is an apparatus for processing a wafer 200 as a substrate made of silicon or the like.
  • the substrate processing apparatus 10 is suitable for use in processing a wafer 200 having a concavo-convex structure (void) that is a fine structure.
  • a polysilazane (SiH 2 NH) film which is a silicon-containing film, is filled in a groove having a fine structure, and the SiO film is formed by processing the polysilazane film with a processing gas.
  • H 2 O 2 gas the process gas containing at least H 2 O 2 gas Gas
  • An aqueous solution containing H 2 O 2 is called a hydrogen peroxide solution or a liquid raw material.
  • the processing furnace 202 constituting the substrate processing apparatus 10 includes a processing container (reaction tube) 203.
  • the processing container 203 is formed in a cylindrical shape having an open lower end.
  • a processing chamber 201 is formed in a cylindrical hollow portion of the processing container 203 so that wafers 200 as substrates can be accommodated by a boat 217, which will be described later, in a horizontal posture and aligned in multiple stages in the vertical direction.
  • a seal cap 219 serving as a furnace port lid that can hermetically seal (close) the lower end opening (furnace port) of the process container 203 is provided below the process container 203.
  • the seal cap 219 is configured to contact the lower end of the processing container 203 from the lower side in the vertical direction.
  • a processing chamber 201 serving as a substrate processing space includes a processing container 203 and a seal cap 219.
  • a boat 217 as a substrate holding unit is configured to hold a plurality of wafers 200 in multiple stages.
  • the boat 217 includes a plurality of support columns 217a provided between the bottom plate 217b and the top plate 217c.
  • the plurality of wafers 200 are aligned in a horizontal posture on the support column 217a and held in multiple stages in the tube axis direction.
  • a heat insulator 218 is provided at the lower portion of the boat 217 so that heat from the first heating unit 207 is not easily transmitted to the seal cap 219 side.
  • a boat elevator is provided as an elevating unit that raises and lowers the boat 217.
  • the boat elevator is provided with a seal cap 219 that seals the furnace port when the boat 217 is raised by the boat elevator.
  • a boat rotation mechanism 267 that rotates the boat 217 is provided on the side of the seal cap 219 opposite to the processing chamber 201.
  • a first heating unit 207 for heating the wafer 200 in the processing container 203 is provided outside the processing container 203 in a concentric shape surrounding the side wall surface of the processing container 203.
  • the first heating unit 207 is supported and provided by the heater base 206.
  • the first heating unit 207 includes first to fourth heater units 207a to 207d.
  • first to fourth temperature sensors such as thermocouples are used as temperature detectors for detecting the wafer 200 or the ambient temperature. 263a to 263d are provided between the processing vessel 203 and the boat 217, respectively.
  • a controller 121 (to be described later) is electrically connected to the first heating unit 207 and the first to fourth temperature sensors 263a to 263d. Further, as temperature detectors for detecting the temperatures of the first to fourth heater units 207a to 207d, a first external temperature sensor 264a, a second external temperature sensor 264b, An external temperature sensor 264c and a fourth external temperature sensor 264d may be provided. The first to fourth external temperature sensors 264a to 264d are connected to the controller 121, respectively.
  • a processing gas supply nozzle 501a and an oxygen-containing gas supply nozzle 502a are provided between the processing container 203 and the first heating unit 207 along the side of the outer wall of the processing container 203. Is provided.
  • the distal ends (downstream ends) of the processing gas supply nozzle 501a and the oxygen-containing gas supply nozzle 502a are inserted airtightly into the processing container 203 from the top of the processing container 203, respectively.
  • a supply hole 501b and a supply hole 502b are provided at the tips of the processing gas supply nozzle 501a and the oxygen-containing gas supply nozzle 502a located inside the processing container 203, respectively.
  • a gas supply pipe 602c is connected to the upstream end of the oxygen-containing gas supply nozzle 502a. Further, the gas supply pipe 602c is provided with a valve 602a, a mass flow controller (MFC) 602b constituting the gas flow rate control unit, a valve 602d, and an oxygen-containing gas heating unit 602e in this order from the upstream side.
  • MFC mass flow controller
  • a gas containing at least one of oxygen (O 2 ) gas, ozone (O 3 ) gas, and nitrous oxide (N 2 O) gas is used as the oxygen-containing gas.
  • O 2 gas is used as the oxygen-containing gas.
  • the oxygen-containing gas heating unit 602e is provided to heat the oxygen-containing gas.
  • a downstream end of a processing gas supply pipe 289a for supplying a processing gas is connected to an upstream end of the processing gas supply nozzle 501a. Further, the processing gas supply pipe 289a is provided with a vaporizer 100 and a valve 289b as a processing gas generation unit for generating a processing gas by vaporizing a liquid raw material from the upstream side. In the present embodiment, a gas containing at least H 2 O 2 is used as the processing gas.
  • a pipe heater 289c constituted by a jacket heater or the like is provided around the processing gas supply pipe 289a.
  • the process gas supply pipe 289a and the process gas supply nozzle 501a constitute a vaporized gas pipe that supplies the vaporized gas generated by the vaporizer 100 into the process chamber 201.
  • a liquid source supply system 300 that supplies a liquid source of processing gas to the vaporizer 100 and a carrier gas supply unit (carrier gas supply system) that supplies a carrier gas to the vaporizer 100.
  • a carrier gas supply unit carrier gas supply system
  • the liquid source supply system 300 includes a liquid source supply source 301, a valve 302, and a liquid flow rate controller (LMFC) 303 that controls the flow rate of the liquid source supplied to the vaporizer 100 from the upstream side.
  • the carrier gas supply unit includes a carrier gas supply pipe 601c, a carrier gas valve 601a, an MFC 601b as a carrier gas flow rate control unit, a carrier gas valve 601d, and the like.
  • O 2 gas that is an oxygen-containing gas is used as the carrier gas.
  • a gas containing at least one oxygen-containing gas in addition to O 2 gas, for example, O 3 gas, NO gas, etc.
  • the carrier gas a gas having low reactivity with respect to the wafer 200 or a film formed on the wafer 200 can be used.
  • N 2 gas or rare gas can be used.
  • the processing gas supply unit may further include a processing gas supply pipe 289a, a valve 289b, a vaporizer 100, and the like.
  • at least the oxygen-containing gas supply nozzle 502a and the supply hole 502b constitute an oxygen-containing gas supply unit.
  • the oxygen-containing gas supply unit may further include a gas supply pipe 602c, an oxygen-containing gas heating unit 602e, a valve 602d, an MFC 602b, a valve 602a, and the like.
  • the processing gas supply unit and the oxygen-containing gas supply unit constitute a gas supply unit (gas supply system).
  • the vaporizer 100 is vaporized by heating a liquid raw material supply unit 150 (atomization unit, atomizer unit) for supplying a liquid raw material into the vaporization vessel 111 and the vapor raw material supplied into the vaporization vessel 111 with a vaporizer heater 113. And a vaporizing unit 108.
  • the vaporizer 100 vaporizes the liquid raw material by supplying fine liquid raw material droplets atomized by the liquid raw material supply unit 150 into the vaporization vessel 111 heated by the vaporizer heater 113.
  • the vaporization container 111 constituting the vaporization unit 108 and the liquid raw material supply unit 150 are integrally formed.
  • both the vaporization container 111 and the liquid raw material supply part 150 are comprised with the quartz member (quartz glass).
  • the vaporization unit 108 is mainly discharged from the vaporization vessel 111, the vaporization chamber 112 formed inside the vaporization vessel 111, the vaporizer heater 113 as a first heater for heating the vaporization vessel 111, and the vaporizer heater 113.
  • a metal block 116 that transmits heat to the vaporization vessel 111, an exhaust port 114, and a temperature sensor 115 configured by a thermocouple that measures the temperature of the vaporization vessel 111.
  • the vaporization unit 108 can be divided into two blocks, an outer block 110a and an inner block 110b.
  • the outer block 110a has a cylindrical shape, and is configured such that a cylindrical inner block 110b is inserted inside the cylindrical shape.
  • the upper part (tip part) of the inner block 110b is formed in a dome shape (spherical shape).
  • a gap 112b is provided between the cylindrical inner wall surface of the outer block 110a and the outer wall surface of the outer block 110a.
  • the outer block 110a includes an outer heater 113a described later, a part of the metal block 116, a part of the vaporization container 111 (quartz member 111a described later), and a part of the heat insulating member 160.
  • the inner block 110b includes an inner heater 113b described later, a part of the metal block 116, a part of the vaporization vessel 111 (quartz member 111b described later), a part of the heat insulating member 160, and a temperature sensor 115.
  • the carburetor heater 113 includes an outer heater 113a built in the outer block 110a and an inner heater 113b built in the inner block 110b. Based on the temperature data measured by the temperature sensor 115, the outer heater 113a and the inner heater 113b are each controlled.
  • the upper space 112a formed between the lower surface of the ceiling wall 161 of the vaporization vessel 111 to which the liquid source supply unit 150 is connected and the upper portion of the inner block 110b, and the gap 112b constitute the vaporization chamber 112.
  • the vaporization container 111 is configured by the ceiling wall 161. That is, the vaporization vessel 111 has a double tube structure including the quartz member 111a and the quartz member 111b.
  • the vaporization container 111 constitutes a vaporization chamber 112 for vaporizing the liquid raw material supplied by the liquid raw material supply unit 150, and the vaporized gas generated in the vaporization chamber 112 is an exhaust port 114 as a processing gas together with the carrier gas.
  • the processing gas supply pipe 289a To the processing gas supply pipe 289a.
  • the surface exposed to the vaporization chamber 112 that is, the surface in contact with the liquid raw material or the vaporized gas is entirely made of quartz which is a metal-free material. Therefore, metal contamination caused by the reaction of the material of the vaporization container with H 2 O 2 having high reactivity with the metal can be prevented.
  • the liquid source supply unit 150 is provided on the vaporization container 111.
  • the liquid source supply unit 150 is provided above the upper end of the metal block 116 and above the vaporization chamber 112.
  • the vaporization container 111 and the liquid material supply unit 150 are integrally formed and both are partitioned by the ceiling wall 161, but both can be configured as separable units.
  • the liquid raw material supply unit 150 includes a liquid raw material introduction port 151 into which the liquid raw material supplied from the LMFC 303 is introduced, a discharge port 152 through which the liquid raw material introduced from the liquid raw material introduction port 151 is discharged into the vaporization vessel 111, and a liquid A liquid source introduction pipe 158 that introduces a liquid source from the source introduction port 151 to the discharge port 152, a carrier gas introduction port 153 into which a carrier gas supplied from a carrier gas supply pipe 601c is introduced, and an introduction from the carrier gas introduction port 153
  • the carrier gas outlet 155 is configured to jet the carrier gas into the vaporization vessel 111.
  • a buffer space 154 is formed between the carrier gas inlet 153 and the carrier gas outlet 155.
  • the carrier gas ejection port 155 is configured by a narrow gap formed between the edge of the opening formed in the ceiling wall 161 and the liquid source introduction pipe 158 inserted into the opening.
  • the carrier gas ejection port 155 is formed in the vicinity of the discharge port 152 at the tip of the liquid source introduction pipe 158.
  • the carrier gas introduced into the carrier gas inlet 153 is injected into the upper space 112 a from the carrier gas outlet 155 formed around the outlet 152 of the liquid source inlet pipe 158 via the buffer space 154. Is done. Since the flow of the carrier gas passing through the carrier gas outlet 155 having a narrow and restricted flow path becomes very high, the liquid material droplets discharged from the tip of the discharge port 152 when jetting. Is atomized. Thus, the liquid raw material discharged from the discharge port 152 is injected into the upper space 112a in the vaporization vessel 111 in a fine droplet state together with the carrier gas.
  • a metal block as a first metal block is configured between the outer heater 113a and the vaporization vessel 111 so as to be heated by the outer heater 113a and indirectly transmit heat to the quartz member of the vaporization vessel 111.
  • the metal block 116 is provided from below to the same height position as the ceiling wall 161 or from below to a height position lower than the ceiling wall 161 so as to cover the outer surface of the quartz member 111a.
  • the quartz member 111a is provided so as to cover the entire surface of the quartz member 111a (that is, the metal block 116 extends to the same height as the ceiling wall 161).
  • the metal block 116 since a heat insulating member 160 described later is provided between the metal block 116 and the liquid raw material supply unit 150, the metal corresponding to the thickness of the heat insulating member 160 necessary for obtaining a sufficient heat insulating effect is provided.
  • the height of the upper end portion of the block 116 is set at a position lower than the ceiling wall 161.
  • the metal block 116 is made of aluminum.
  • the quartz member has a lower thermal conductivity than the metal, but the heat from the outer heater 113a can be evenly transmitted to the vaporization vessel 111 by inserting a metal block having a high thermal conductivity.
  • heat transfer paste 117 is filled between the vaporizer heater 113 and the metal block 116 and between the metal block 116 and the vaporization vessel 111.
  • the gap can be eliminated and heat can be transferred more uniformly.
  • temperature unevenness in the vaporization vessel 111 is likely to occur. Therefore, it is effective to fill the gap with the heat transfer paste 117.
  • the periphery of the vaporizing unit 108 is covered with a heat insulating member 160 formed of a heat insulating cloth.
  • the heat insulating member 160 is provided so as to cover at least a part of the surface of the metal block 116, specifically, the upper surface, the lower surface, and the outer peripheral surface.
  • the portion of the heat insulating member 160 provided so as to cover the upper surface of the metal block 116 is between the outer heater 113a and the liquid source supply unit 150 (more specifically, the metal block 116 and the liquid source supply unit in the outer block 110a). 150), and is configured to shield (shield) the heat released from the outer heater 113a from the liquid material supply unit 150. That is, the heat insulating member 160 is provided so that the liquid source supply unit 150 is thermally sufficiently isolated from the vaporizer heater 113 (particularly, the outer heater 113a adjacent to the liquid source supply unit 150).
  • heat release means at least one of heat radiation and conduction. More specifically, the heat released from the outer heater 113a blocked by the heat insulating member 160 includes a) heat indirectly radiated from the metal block 116 heated by the outer heater 113a, and b) the metal block 116. Or heat indirectly radiated through the outer heater 113a (when the outer heater 113a is exposed from the metal block 116), or the like. In the present embodiment, by providing the heat insulating member 160, at least the heat of a) and b) is blocked from the liquid raw material supply unit 150.
  • the temperature of the liquid raw material in the liquid raw material supply unit 150 is controlled so that the temperature of the vaporization container 111 (vaporization chamber 112) becomes a desired temperature. It receives thermal interference from a vaporizer heater 113 that heats the vaporization chamber 112. For this reason, it has been difficult to manage and control the temperature of the liquid source in the liquid source supply unit 150 so as to be a desired temperature independent of the temperature of the vaporization vessel 111.
  • the liquid raw material when a liquid raw material containing a compound having a property of rapidly decomposing as the temperature rises such as H 2 O 2 is used, the liquid raw material is vaporized in the vaporization chamber 112 if the temperature of the liquid raw material is not controlled or controlled. Accordingly, the concentration of the compound in the liquid raw material before being changed fluctuates without being controlled or controlled, and as a result, an unintended variation occurs in the concentration of the compound in the vaporized gas generated in the vaporization chamber 112.
  • the heat insulating member 160 by providing the heat insulating member 160, thermal interference from the vaporizer heater 113 with respect to the liquid source supply unit 150 is suppressed, and management and control of the temperature of the liquid source in the liquid source supply unit 150 are facilitated. Yes.
  • the vaporizer heater 113 is controlled so that the vaporization vessel 111 is heated to 180 to 210 ° C.
  • thermal interference from the vaporizer heater 113 is suppressed, and the temperature of the liquid material in the liquid material supply unit 150 is controlled to be 100 ° C. or less.
  • the temperature of the liquid material in the liquid material supply unit 150 can be suppressed to a predetermined temperature (for example, 100 ° C.) or less without providing a cooling unit.
  • a predetermined temperature for example, 100 ° C.
  • the concentration of H 2 O 2 in the liquid is stable, and the concentration of the vaporized gas obtained is also stable. I know it.
  • the description of a numerical range such as “180 to 210 ° C.” means that the lower limit value and the upper limit value are included in the range. Therefore, for example, “180 to 210 ° C.” means “180 ° C. or more and 210 ° C. or less”. The same applies to other numerical ranges.
  • the material, thickness, structure, and the like of the heat insulating member 160 are selected so that the temperature of the liquid material in the liquid material supply unit 150 is 100 ° C. or less with respect to the heating by the vaporizer heater 113.
  • a heat insulating cloth having a thermal conductivity of 0.1 to 0.3 W / mk is used as the heat insulating member 160.
  • the temperature of the liquid source supply unit 150 measured by a temperature sensor 119 described later is 100 so that the temperature of the liquid source in the liquid source supply unit 150 is 100 ° C. or lower. It is desirable to configure the heat insulating member 160 so as to be equal to or lower than ° C.
  • the portion of the heat insulating member 160 provided on the upper surface of the metal block 116 can be replaced with another heat insulating material.
  • a resin plate material such as polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), polybenzimidazole (PBI), polyetheretherketone (PEEK) having a thermal conductivity equivalent to that of a heat insulating cloth, and heat insulation
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • PBI polybenzimidazole
  • PEEK polyetheretherketone
  • a temperature sensor 119 composed of a thermocouple is attached to the outer surface of the liquid material introduction pipe 158 in the buffer space 154.
  • the temperature sensor 119 measures the temperature of the liquid source supply unit 150, more specifically, the temperature of the liquid source introduction pipe 158.
  • the temperature sensor 119 is connected to the controller 121, and the temperature of the liquid raw material is monitored by the controller 121.
  • the vaporizer 100 includes one temperature sensor 119 on the outer surface of the liquid raw material introduction pipe 158, but may be provided at other locations or a plurality of temperature sensors. For example, it may be provided on the inner surface of the liquid source introduction pipe 158, the side surface of the buffer space 154, or the like.
  • the temperature sensor 119 is provided on the outer surface of the liquid source introduction pipe 158, it may be provided inside the buffer space 154 as in this embodiment. (In particular, it may be provided on the upstream side of the liquid source introduction pipe 158).
  • the temperature of the vaporizer heater 113 may be controlled.
  • the temperature data measured by the temperature sensors 115 and 119 are respectively output to the temperature controller 106, and the temperature controller 106 controls the temperature of the vaporizer heater 113 based on the temperature data.
  • the heat insulation member 160 sufficiently suppresses the interference of the heat supplied from the vaporizer heater 113 to the liquid raw material supply unit 150 (that is, the liquid raw material supply unit 150 is thermally coupled to the vaporizer heater 113).
  • the vaporizer heater 113 is not controlled based on the temperature data measured by the temperature sensor 119.
  • a heater for heating the liquid raw material supply unit 150 is provided separately from the vaporizer heater 113 so as to be maintained at a desired temperature of 100 ° C. or lower.
  • the temperature of the liquid raw material can also be controlled.
  • the vaporization vessel 111 has a double tube structure in order to more efficiently transfer the heat from the heater to the liquid material.
  • the liquid material droplets supplied from the liquid material supply unit 150 are heated and vaporized by passing through the upper space 112a and the cylindrical gap 112b constituting the cylindrical gas flow path.
  • a heat-resistant O-ring 118 is provided between the metal block 116 of the outer block 110a and the vaporization vessel 111 in order to prevent the vaporization vessel 111 from being damaged due to direct contact between the metal block 116 and the vaporization vessel 111. Is provided.
  • the exhaust port 114 is made of a quartz member like the vaporization vessel 111.
  • the exhaust port 114 has a flange structure at the connection interface with the processing gas supply pipe 289a, and seals the connection with the processing gas supply pipe 289a with an O-ring interposed therebetween.
  • the width of the gap 112b (the width of the cylindrical gas flow path) is 0.6 mm or more and 0.8 mm or less. The basis for this will be described below with reference to FIGS.
  • the analysis of the temperature of the gas flowing through the gap 112b shown in FIG. 4 (A) is assumed to be a heat transfer problem of convection of the gas flowing between the heated parallel plates as shown in FIG. 4 (B).
  • the temperature of the gas flowing between the parallel plates was calculated using the following differential equation.
  • x indicates the coordinate in the length direction of the flow path
  • y indicates the coordinate in the width direction of the flow path.
  • T represents the gas temperature
  • u represents the velocity component
  • represents the temperature conductivity.
  • FIG. 5A is a diagram showing a calculation result when the distance between the parallel plates is 1.0 mm
  • FIG. 5B shows a calculation result when the distance between the parallel plates is 0.8 mm.
  • the length L of the flow path was set to 0.15 m
  • the parallel plates were calculated to be heated to 200 ° C., respectively.
  • the processing conditions other than the distance between the parallel plates were the same.
  • the vertical axis in FIG. 5 indicates the gas temperature
  • the horizontal axis indicates the coordinate y in the width direction of the flow path.
  • FIG. 6 is a diagram showing a calculation result of the amount of pressure increase in the vaporization chamber 112 when water vapor flows through the gap 112b at 25 slm.
  • the vertical axis indicates the amount of pressure increase
  • the horizontal axis indicates the width of the flow path.
  • the width of the gap 112b which is the width of the flow path, is 0.8 mm or less that can sufficiently increase the gas temperature at the center of the flow path. Yes, and when it is 0.6 mm or more, which can prevent vaporization failure due to pressure rise, it is possible to suppress the vaporization failure by reducing the amount of pressure rise while improving the vaporization efficiency by increasing the heat transfer efficiency. Conceivable.
  • One end of a gas exhaust pipe 231 for exhausting the gas in the processing chamber 201 is connected to the lower side of the processing container 203.
  • the other end of the gas exhaust pipe 231 is connected to a vacuum pump 246 via an APC (Auto Pressure Controller) valve 255 as a pressure regulator.
  • a pressure sensor 223 as a pressure detector is provided on the upstream side of the APC valve 255.
  • a pressure controller 224 is electrically connected to the pressure sensor 223 and the APC valve 255.
  • the pressure controller 224 is configured to control the APC valve 255 at a desired timing so that the pressure in the processing chamber 201 becomes a desired pressure based on the pressure detected by the pressure sensor 223.
  • the controller 121 as a control unit is configured as a computer including a CPU 121a, a RAM 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or a display is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of the controller 121 that allows the controller 121 to execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to as simply a program.
  • the process recipe is also simply called a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the LMFC 303, MFC 601b, 602b, valves 601a, 601d, 602a, 602d, 302, 289b, the APC valve 255, the first heating unit 207, and the first to fourth temperature sensors 263a to 263d. , A boat rotation mechanism 267, a pressure sensor 223, a pressure controller 224, a temperature controller 106, a vaporizer heater 113, temperature sensors 115 and 119, a pipe heater 289c, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of the liquid material by the LMFC 303, adjusts the flow rate of the gas by the MFCs 601b and 602b, and opens and closes the valves 601a, 601d, 602a, 602d, 302, and 289b in accordance with the contents of the read recipe.
  • the controller 121 stores the above-described program stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a flash memory) 123. It can be configured by installing it on a computer.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium when the term “recording medium” is used, it may include only the storage device 121 c alone, may include only the external storage device 123 alone, or may include both.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the pre-processing step performed before the below-described modification processing is performed on the wafer 200 as a substrate will be described with reference to FIG.
  • the wafer 200 is loaded into a coating apparatus (not shown) (substrate loading process T10), and a polysilazane coating process T20 and a prebake process T30 are performed on the wafer 200 in the coating apparatus.
  • a coating apparatus not shown
  • a polysilazane coating process T20 and a prebake process T30 are performed on the wafer 200 in the coating apparatus.
  • the polysilazane coating process T20 polysilazane is applied to the wafer 200 by a coating apparatus.
  • the solvent is removed from the applied polysilazane, A polysilazane coating film that is a silicon-containing film is formed. Thereafter, the wafer 200 is unloaded from the coating apparatus (substrate unloading step T40).
  • a substrate processing step performed as one step of the semiconductor device manufacturing process according to the present embodiment will be described with reference to FIG.
  • Such a process is performed by the substrate processing apparatus 10 described above.
  • a gas containing H 2 O 2 is used as a processing gas, and a silicon-containing film formed on a wafer 200 as a substrate is modified (oxidized) into an SiO film.
  • the operation of each unit constituting the substrate processing apparatus is controlled by the controller 121.
  • the vacuum pump 246 is controlled so that the inside of the processing container 203 has a desired pressure, and the atmosphere in the processing container 203 is evacuated. Further, an oxygen-containing gas is supplied to the processing vessel 203 from the supply hole 502b. At this time, the pressure in the processing container 203 is measured by the pressure sensor 223, and the opening degree of the APC valve 255 is controlled based on the measured pressure. For example, the pressure in the processing container 203 is adjusted to a slightly reduced pressure state (about 700 hPa to 1000 hPa). Further, the wafer 200 accommodated in the processing container 203 is heated by the first heating unit 207 so as to have a desired first temperature, for example, 40 ° C. to 100 ° C.
  • the boat rotation mechanism 267 is operated to start the rotation of the boat 217.
  • the boat 217 is always rotated until at least the reforming step (S30) described later is completed.
  • Modification step (S30) When the wafer 200 reaches a predetermined first temperature and the boat 217 reaches a desired rotation speed, the liquid source is supplied from the liquid source supply system 300 to the vaporizer 100. That is, the valve 302 is opened, and the liquid material whose flow rate is controlled by the LMFC 303 is introduced into the liquid material supply unit 150 through the liquid material introduction port 151. It is monitored by the temperature sensor 119 whether or not the liquid material supplied to the liquid material supply unit 150 is 100 ° C. or lower (for example, 80 to 100 ° C.).
  • the liquid raw material is atomized by the carrier gas when discharged from the discharge port 152, and is sprayed into the upper space 112 a in the vaporization container 111 in a fine droplet state (for example, a mist state).
  • the vaporization vessel 111 is heated to a desired temperature (for example, 180 to 210 ° C.) by a vaporizer heater 113 through a metal block 116.
  • the sprayed liquid material droplets are applied to the surface of the vaporization vessel 111 or the vaporization chamber. In 112, it is heated and evaporated to become a gas.
  • the vaporized liquid raw material is sent to the processing gas supply pipe 289a from the exhaust port 114 as a processing gas (vaporization gas) together with the carrier gas.
  • the temperature of the vaporizer heater 113 is controlled based on the temperature data measured by the temperature sensor 115 so that no vaporization failure occurs. If the processing gas supplied into the processing chamber 201 due to vaporization failure contains liquid material in the form of droplets, particles are generated during the reforming process, leading to deterioration of the quality of the SiO film. is there. Specifically, the vaporization chamber 112 is vaporized so that the temperature of the vaporization chamber 112 is maintained at a predetermined temperature or higher so that the droplets are not completely vaporized or re-liquefied due to a temperature drop of a part or all of the vaporization container 111. The heater 113 is controlled.
  • valve 289b is opened, and the processing gas sent from the vaporizer 100 is supplied into the processing chamber 201 through the processing gas supply pipe 289a, the valve 289b, the processing gas supply nozzle 501a, and the supply hole 501b.
  • the processing gas introduced into the processing chamber 201 from the supply hole 501 b is supplied to the wafer 200.
  • the H 2 O 2 gas contained in the processing gas undergoes an oxidation reaction with the silicon-containing film on the surface of the wafer 200 as a reaction gas, thereby modifying the silicon-containing film into an SiO film.
  • the processing container 203 is evacuated by the vacuum pump 246. That is, the APC valve 255 is opened, and the exhaust gas exhausted from the processing vessel 203 through the gas exhaust pipe 231 is exhausted by the vacuum pump 246. After a predetermined time elapses, the valve 289b is closed and the supply of the processing gas into the processing container 203 is stopped. Further, after a predetermined time has passed, the APC valve 255 is closed and the exhaust in the processing container 203 is stopped.
  • hydrogen peroxide water is used as the liquid raw material.
  • the liquid raw material is not limited to this.
  • a liquid containing ozone (O 3 ), water, or the like can be used as the liquid raw material.
  • the use of the vaporizer 100 in the present embodiment is particularly suitable in the case of vaporizing a liquid raw material containing a compound having a property of rapidly decomposing as the temperature rises, such as H 2 O 2 used in the present embodiment. is there.
  • the wafer 200 is heated to a predetermined second temperature that is equal to or lower than the temperature processed in the pre-bake step T30.
  • the second temperature is higher than the first temperature described above, and is set to a temperature equal to or lower than the temperature of the prebaking step T30 described above. After the temperature rise, the temperature is maintained and the inside of the wafer 200 and the processing container 203 is dried.
  • Substrate unloading step (S60) Thereafter, the processed wafer 200 is carried out from the lower end of the processing container 203 to the outside of the processing container 203 while being held by the boat 217 by the boat elevator. Thereafter, the processed wafer 200 is taken out from the boat 217, and the substrate processing process according to the present embodiment is completed.
  • the vaporizer 400 is used instead of the vaporizer 100.
  • the vaporizer 400 according to the present embodiment is provided with an atomizing heater 162 as a second heater that heats the liquid source supply unit 150 around the liquid source supply unit 150.
  • the vaporizer 400 is provided between the atomizing heater 162 and the liquid material supply unit 150 so as to conduct the heat released from the atomization heater 162 to the quartz member of the liquid material supply unit 150 (second block).
  • a metal block) is inserted. That is, the metal block 163 is provided so as to cover the periphery of the liquid source supply unit 150 along the side surface of the liquid supply unit 150.
  • the metal block 163 is heated by the atomizing heater 162 and is configured to conduct heat to the buffer chamber 154.
  • a temperature sensor 119 composed of a thermocouple is attached to the outer surface of the liquid source introduction pipe 158 in the buffer space 154, and the metal block 163 is configured based on the temperature data measured by the temperature sensor 119. 162 is heated.
  • the temperature controller 106 individually controls the vaporizer heater 113 as the first heater and the atomizer heater 162 as the second heater. Specifically, the temperature controller 106 holds the temperature of the liquid material supply unit 150 at a predetermined temperature (for example, 90 ° C.) of 80 ° C. or more and 100 ° C. or less based on the temperature data measured by the temperature sensor 119. Thus, the temperature of the atomizing heater 162 is controlled. In addition, the temperature controller 106 controls the temperature of the vaporizer heater 113 based on the temperature data measured by the temperature sensor 115 so that the temperature of the vaporization vessel 111 is 180 ° C. or higher and 210 ° C. or lower.
  • a predetermined temperature for example, 90 ° C.
  • the liquid raw material supply unit 150, the metal block 163, and the atomizing heater 162 are prevented from receiving interference of heat released from the outer heater 113a. Therefore, the vaporizer heater 113 and the atomizer heater 162 can easily control the temperature of the liquid source supply unit 150 and the temperature of the vaporization vessel 111 without causing thermal interference with each other. That is, the vaporizer heater 113 can be controlled based on the temperature data measured by the temperature sensor 115, and the atomizer heater 162 can be controlled based on the temperature data measured by the temperature sensor 119.
  • the atomizing heater 162 is controlled to maintain the temperature of the liquid source supply unit 150 at a predetermined temperature, so that the decomposition rate of H 2 O 2 in the liquid source in the liquid source supply unit 150 is constant. Can be managed. That is, since the concentration of H 2 O 2 in the liquid raw material supplied to the vaporization chamber 112 can be constantly controlled and managed on the basis of the concentration of H 2 O 2 in the gas generated in the vaporizer 400 to the theoretical value It becomes easier.
  • the liquid source supply unit 150 is preheated at 80 ° C. or more and 100 ° C. or less to suppress the decomposition of H 2 O 2 in the liquid source supply unit 150 while preventing rapid decomposition. Vaporization inside can be promoted.
  • the vaporizer 400 is covered with an integrated heat insulating member 160, and a heat insulating member 165 is provided between the metal block 116 and the metal block 163 separately from the heat insulating member 160. That is, the heat insulating member 165 is provided between the outer heater 113a constituting the first heater and the atomizing heater 162 constituting the second heater. The heat insulating member 165 is provided between the ceiling wall 161 of the vaporization container 111 connected to the liquid raw material supply unit 150 and the upper surface of the metal block 116.
  • the heat insulating member 165 is provided below the liquid source supply unit 150, and heat released from the vaporizer heater 113 through the metal block 116 is blocked from the metal block 163 and the liquid source supply unit 150. It is comprised so that. In other words, the liquid source supply unit 150 and the vaporization chamber 112 are separated and independent, and temperature interference in the liquid source supply unit 150 and the vaporization chamber 112 is reduced.
  • the present invention is not limited to this.
  • the present invention can be similarly applied to processing a wafer 200 on which a film containing silicon element, nitrogen element, and hydrogen element, particularly a film having a silazane bond (—Si—N—) is formed.
  • the above-described vaporizer can also be used for treatment of a coating film using hexamethyldisilazane (HMDS), hexamethylcyclotrisilazane (HMCS), polycarbosilazane, or polyorganosilazane.
  • the above vaporizer can be used for the treatment of a plasma polymerized film of tetrasilylamine and ammonia.
  • the above vaporizer is also used for processing a silicon-containing film formed by a CVD method, for example, a silicon-containing film formed by a CVD method using a silicon raw material such as monosilane gas or trisilylamine (TSA) gas.
  • a silicon raw material such as monosilane gas or trisilylamine (TSA) gas.
  • TSA trisilylamine
  • a method for forming a silicon-containing film by a CVD method in particular, a fluid CVD method can be used.
  • the substrate processing apparatus including the vertical processing furnace has been described.
  • the present invention is not limited thereto.
  • the above-described vaporizer may be applied to the substrate processing apparatus that processes the wafer 200 by exciting the gas.
  • the vaporizer 500 shown in FIG. 11B has the ability to vaporize a liquid raw material at a maximum of 20 g / min when the liquid part temperature (the temperature in the liquid raw material supply part 150) is 143 ° C. It was. On the other hand, it was confirmed that the vaporizer 400 shown in FIG. 11 (A) has the ability to vaporize a liquid raw material of a maximum of 20 g / min when the liquid part temperature is 89 ° C.
  • the liquid part temperature is maintained at 100 ° C. or lower by providing the heat insulating member 165 between the atomizing heater that heats the liquid raw material supply unit 150 and the vaporizer heater 113 that heats the vaporizing chamber 112. It was confirmed that even when the liquid part temperature was 100 ° C. or lower, an amount of liquid raw material equivalent to that at a temperature exceeding 100 ° C. could be vaporized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

液体原料を供給する液体原料供給部と、前記液体原料供給部により供給された液体原料が内部で気化される気化室を構成する気化容器と、前記気化容器を加熱する第1ヒータと、前記第1ヒータから放出される熱を前記液体原料供給部に対して遮断するように設けられた断熱部材と、を備える気化器。

Description

気化器、基板処理装置及び半導体装置の製造方法
 本発明は、気化器、基板処理装置及び半導体装置の製造方法に関する。
 絶縁物塗布法や化学気相成長法などにより形成された膜から更に緻密な膜を得る方法として、改質ガスを膜に供給することにより膜を改質することが行われる。例えば特許文献1に開示された技術のように、絶縁材料の膜から更に緻密なSiO膜等の酸化膜を得る方法として、過酸化水素(H22)を含むガスを絶縁材料の膜に供給してその膜を改質することが知られている。
国際公開第2013/077321号
 H22を含むガスのような所望の処理ガスを生成する手法の一つとして、液体原料を気化器により気化させて所望のガスを得ることが考えられる。しかし従来の気化器では、気化器内に導入された液体原料の温度を精密に管理したり制御したりすることが困難であった。
 本発明の一態様によれば、液体原料を供給する液体原料供給部と、前記液体原料供給部により供給された液体原料が内部で気化される気化室を構成する気化容器と、前記気化容器を加熱する第1ヒータと、前記第1ヒータから放出される熱を前記液体原料供給部に対して遮断するように設けられた断熱部材と、を備える気化器が提供される。
 本発明によれば、液体原料を気化させる気化器において、気化器内に導入された液体原料の温度を精密に管理したり制御したりすることができる。
一実施形態に係る基板処理装置の構成を示す概略構成図である。 一実施形態に係る基板処理装置が備える処理炉の構成を示す縦断面概略図である。 一実施形態に係る基板処理装置が備える気化器の概略を示す縦断面構造図である。 (A)は、本実施形態における気化器の概略を示す縦断面構成図であって、(B)は、(A)に示されている気化器の間隙の模式図である。 (A)は、1.0mmの平行平板間を流れるガスの温度の計算結果を示す図であって、(B)は、0.8mmの平行平板間を流れるガスの温度の計算結果を示す図である。 水蒸気を25slmで間隙に流した場合の圧力上昇量の計算結果を示す図である。 一実施形態に係る基板処理装置が備えるコントローラの概略構成図である。 一実施形態に係る基板処理工程に対する事前処理工程を示すフロー図である。 一実施形態に係る基板処理工程を示すフロー図である。 第2の実施形態に係る気化器の概略を示す縦断面構造図である。 (A)は、本実施例に係る気化器の概略を示す縦断面構造図であって、(B)は、比較例に係る気化器の概略を示す縦断面構造図である。
<本発明の一実施形態>
 以下に、本発明の好ましい実施の形態について図面を参照してより詳細に説明する。
(1)基板処理装置の構成
 まず、本実施形態にかかる半導体装置の製造方法を実施する基板処理装置10の構成例について、図1及び図2を用いて説明する。本基板処理装置10は、過酸化水素(H22)を含有する液体原料、すなわち過酸化水素水を気化させて生成される処理ガス用いて基板を処理する装置である。例えばシリコン等からなる基板としてのウエハ200を処理する装置である。本基板処理装置10は、微細構造である凹凸構造(空隙)を有するウエハ200に対する処理に用いる場合に好適である。本実施形態では、微細構造の溝にシリコン含有膜であるポリシラザン(SiH2NH)の膜が充填されており、当該ポリシラザン膜を処理ガスにより処理することによりSiO膜を形成する。
 なお、本実施形態においては、H22を気化もしくはミスト化したもの(すなわち気体状態のH22)をH22ガスと呼び、少なくともH22ガスを含むガスを処理ガスと呼び、H22を含む液体状態の水溶液を過酸化水素水又は液体原料と呼ぶ。
(処理容器)
 図1に示すように、基板処理装置10を構成する処理炉202は処理容器(反応管)203を備えている。処理容器203は、下端が開口した円筒形状に形成されている。処理容器203の筒中空部には処理室201が形成され、基板としてのウエハ200を、後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
 処理容器203の下部には、処理容器203の下端開口(炉口)を気密に封止(閉塞)可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、処理容器203の下端に垂直方向下側から当接されるように構成されている。基板の処理空間となる処理室201は、処理容器203とシールキャップ219で構成される。
(基板保持部)
 基板保持部としてのボート217は、複数枚のウエハ200を多段に保持できるように構成されている。ボート217は、底板217bと天板217cとの間に架設された複数本の支柱217aを備えている。複数枚のウエハ200は、支柱217aに水平姿勢で整列されて管軸方向に多段に保持される。
 ボート217の下部には断熱体218が設けられており、第1の加熱部207からの熱がシールキャップ219側へ伝わりにくくなるように構成されている。
(昇降部)
 処理容器203の下方には、ボート217を昇降させる昇降部としてのボートエレベータが設けられている。ボートエレベータには、ボートエレベータによりボート217が上昇された際に炉口を封止するシールキャップ219が設けられている。シールキャップ219の処理室201と反対側には、ボート217を回転させるボート回転機構267が設けられている。
(第1の加熱部)
 処理容器203の外側には、処理容器203の側壁面を囲う同心円状に、処理容器203内のウエハ200を加熱する第1の加熱部207が設けられている。第1の加熱部207は、ヒータベース206により支持されて設けられている。図2に示すように、第1の加熱部207は第1~第4のヒータユニット207a~207dを備えている。処理容器203内には、加熱部としての第1~第4のヒータユニット207a~207d毎に、ウエハ200又は周辺温度を検出する温度検出器として、例えば熱電対等の第1~第4の温度センサ263a~263dが、処理容器203とボート217との間にそれぞれ設けられている。
 第1の加熱部207、第1~第4の温度センサ263a~263dには、それぞれ、後述するコントローラ121が電気的に接続されている。また、第1~第4のヒータユニット207a~207dのそれぞれの温度を検出する温度検出器として、熱電対で構成される第1の外部温度センサ264a,第2の外部温度センサ264b,第3の外部温度センサ264c,第4の外部温度センサ264dがそれぞれ設けられていてもよい。第1~第4の外部温度センサ264a~264dはそれぞれコントローラ121に接続されている。
(ガス供給部(ガス供給系))
 図1、図2に示すように、処理容器203と第1の加熱部207との間には、処理容器203の外壁の側部に沿って、処理ガス供給ノズル501aと酸素含有ガス供給ノズル502aが設けられている。処理ガス供給ノズル501aと酸素含有ガス供給ノズル502aの先端(下流端)は、それぞれ処理容器203の頂部から処理容器203の内部に気密に挿入されている。処理容器203の内部に位置する処理ガス供給ノズル501aと酸素含有ガス供給ノズル502aの先端には、それぞれ供給孔501bと供給孔502bが設けられている。
 酸素含有ガス供給ノズル502aの上流端にはガス供給管602cが接続されている。さらにガス供給管602cには、上流側から順に、バルブ602a、ガス流量制御部を構成するマスフローコントローラ(MFC)602b、バルブ602d、酸素含有ガス加熱部602e、が設けられている。酸素含有ガスは例えば、酸素(O2)ガス、オゾン(O3)ガス、亜酸化窒素(N2O)ガスの少なくとも1つ以上を含むガスが用いられる。本実施形態では、酸素含有ガスとしてO2ガスを用いる。酸素含有ガス加熱部602eは、酸素含有ガスを加熱するように設けられている。
 処理ガス供給ノズル501aの上流端には、処理ガスを供給する処理ガス供給管289aの下流端が接続されている。さらに処理ガス供給管289aには、上流側から、液体原料を気化させて処理ガスを生成する処理ガス生成部としての気化器100、バルブ289bが設けられている。本実施形態では、処理ガスとしてH22を少なくとも含むガスを用いる。また、処理ガス供給管289aの周囲には、ジャケットヒータ等により構成される配管ヒータ289cが設けられている。処理ガス供給管289aと処理ガス供給ノズル501aは、気化器100で生成された気化ガスを処理室201内に供給する気化ガス配管を構成する。
 気化器100には、気化器100に対して処理ガスの液体原料を供給する液体原料供給系300と、気化器100に対してキャリアガスを供給するキャリアガス供給部(キャリアガス供給系)が接続されている。気化器100において生成された液体原料の気化ガスは、キャリアガスとともに、処理ガスとして処理ガス供給管289aへ向けて送出(排出)される。
 液体原料供給系300は、上流側から、液体原料供給源301と、バルブ302と、気化器100へ供給される液体原料の流量を制御する液体流量コントローラ(LMFC)303を備えている。キャリアガス供給部は、キャリアガス供給管601c、キャリアガスバルブ601a,キャリアガス流量制御部としてのMFC601b、キャリアガスバルブ601d、などにより構成される。本実施形態では、キャリアガスとして酸素含有ガスであるO2ガスが用いられる。但し、キャリアガスとしては、酸素含有ガス(O2ガスの他、例えばO3ガス、NOガス、等)を少なくとも1つ以上を含むガスを用いることができる。また、キャリアガスとして、ウエハ200やウエハ200に形成された膜に対して反応性の低いガスを用いることもできる。たとえば、N2ガス又は希ガスを用いることができる。
 ここで、少なくとも処理ガス供給ノズル501aと供給孔501bにより処理ガス供給部が構成される。処理ガス供給部には更に、処理ガス供給管289a、バルブ289b、気化器100等を含めるようにしても良い。また、少なくとも酸素含有ガス供給ノズル502aと供給孔502bにより酸素含有ガス供給部が構成される。酸素含有ガス供給部には更に、ガス供給管602c、酸素含有ガス加熱部602e、バルブ602d、MFC602b、バルブ602a等を含めるようにしても良い。また、処理ガス供給部と酸素含有ガス供給部により、ガス供給部(ガス供給系)が構成される。
(気化器)
 続いて、図3を用いて気化器100の構造の概略を説明する。
 気化器100は、気化容器111内に液体原料を供給する液体原料供給部150(霧化部、アトマイザ部)と、気化容器111内に供給された液体原料を気化器ヒータ113で加熱して気化する気化部108と、から構成される。気化器100は、気化器ヒータ113で加熱された気化容器111内に、液体原料供給部150により霧化された微細な液体原料の液滴を供給することで液体原料を気化する。また、気化部108を構成する気化容器111と、液体原料供給部150とは、一体に形成されている。また、気化容器111と液体原料供給部150とは、共に石英部材(石英ガラス)で構成されている。
(気化部)
 気化部108の詳細な構造を説明する。気化部108は主に、気化容器111と、気化容器111の内部に形成される気化室112と、気化容器111を加熱する第1ヒータとしての気化器ヒータ113と、気化器ヒータ113から放出される熱を気化容器111に伝える金属ブロック116と、排気口114と、気化容器111の温度を測定する、熱電対で構成された温度センサ115とを備えている。
 また、気化部108は、アウタブロック110aとインナブロック110bの2つのブロックに区分することができる。アウタブロック110aは円筒形状であって、円柱形状であるインナブロック110bがその円筒形状の内側に挿入されるように構成されている。インナブロック110bは、その上部(先端部)がドーム状(球面状)に形成されている。また、アウタブロック110aの円筒形状の内周の壁面と、アウタブロック110aの外周の壁面との間には間隙112bが設けられている。アウタブロック110aは、後述するアウタヒータ113a、金属ブロック116の一部、気化容器111の一部(後述する石英部材111a)、断熱部材160の一部、を含んでいる。インナブロック110bは、後述するインナヒータ113b、金属ブロック116の一部、気化容器111の一部(後述する石英部材111b)、断熱部材160の一部、温度センサ115、を含んでいる。
 気化器ヒータ113は、アウタブロック110aに内蔵されたアウタヒータ113aと、インナブロック110bに内蔵されたインナヒータ113bにより構成されている。温度センサ115により測定された温度データに基づいて、アウタヒータ113aとインナヒータ113bはそれぞれ制御される。
 液体原料供給部150が接続される気化容器111の天井壁161の下面とインナブロック110bの上部との間に形成される上部空間112aと、間隙112bは気化室112を構成する。また、アウタブロック110aの気化室112に露出する面に形成された外側容器部としての石英部材111aと、インナブロック110bの気化室112に露出する面に形成された内側容器部としての石英部材111bと、天井壁161とにより気化容器111が構成されている。すなわち、気化容器111は、石英部材111aと石英部材111bによる二重管構造となっている。
 つまり、気化容器111は、液体原料供給部150により供給された液体原料を気化するための気化室112を構成し、気化室112内で生じた気化ガスは、キャリアガスとともに処理ガスとして排気口114から処理ガス供給管289aへ排気(送出)される。
 気化容器111は、気化室112に露出する面、すなわち液体原料又は気化ガスに接触する面が全て、メタルフリー材料である石英で構成されている。したがって、気化容器の材料が金属との反応性が高いH22と反応することにより生じる金属汚染を防止することができる。
(液体原料供給部(霧化部、アトマイザ部))
 液体原料供給部150は、気化容器111の上部に設けられている。また、液体原料供給部150は、金属ブロック116の上端よりも上方であって、気化室112の上方に設けられている。なお、本実施形態では、気化容器111と液体原料供給部150が一体として形成されており、両者は天井壁161により区画されているが、両者はそれぞれ分離可能なユニットとして構成することもできる。
 液体原料供給部150は、LMFC303から供給される液体原料が導入される液体原料導入口151と、液体原料導入口151から導入された液体原料を気化容器111内に吐出する吐出口152と、液体原料導入口151から吐出口152まで液体原料を導入する液体原料導入管158と、キャリアガス供給管601cから供給されるキャリアガスが導入されるキャリアガス導入口153と、キャリアガス導入口153から導入されたキャリアガスを気化容器111内に噴出させるキャリアガス噴出口155から構成される。
 さらに、キャリアガス導入口153とキャリアガス噴出口155の間には、バッファ空間154が形成される。キャリアガス噴出口155は、天井壁161に形成された開口の縁と、この開口に挿入された液体原料導入管158との間に形成される狭小な隙間により構成されている。キャリアガス噴出口155は、液体原料導入管158の先端の吐出口152の近傍に形成される。
 つまり、キャリアガス導入口153に導入されたキャリアガスは、バッファ空間154を経由して、液体原料導入管158の吐出口152の周囲に形成されたキャリアガス噴出口155から上部空間112a内へ噴射される。流路が狭く制限された構造となっているキャリアガス噴出口155を通過するキャリアガスの流れは非常に高速になるため、噴出する際に吐出口152の先端から吐出される液体原料の液滴を霧化(アトマイジング)する。このように、吐出口152から吐出される液体原料は、キャリアガスとともに、微細な液滴状態で気化容器111内の上部空間112aに噴射される。
(ヒータとその周辺部の構成)
 気化容器111を構成する石英部材は熱伝導性が低いため、金属製の気化容器に比べて、ヒータからの熱を均一に液体原料に伝えて気化させることが難しい。そこで本実施形態では、アウタヒータ113aと気化容器111との間には、アウタヒータ113aにより加熱され気化容器111の石英部材に間接的に熱を伝えるように構成された、第1金属ブロックとしての金属ブロック116が挿入されている。金属ブロック116は、石英部材111aの外側面を覆うように、下方から天井壁161と同じ高さ位置まで、若しくは下方から天井壁161よりも低い高さ位置まで設けられている。石英部材111aを均一に加熱するという観点からは、石英部材111aの全面を覆うように、(すなわち、天井壁161と同じ高さまで金属ブロック116が延伸するように)設けられることが望ましい。ただし、本実施形態では、金属ブロック116と液体原料供給部150との間に、後述する断熱部材160を設けるため、十分な断熱作用を得るために必要な断熱部材160の厚さ分だけ、金属ブロック116の上端部の高さは天井壁161よりも低い位置に設定されている。
 本実施形態では、金属ブロック116はアルミニウムにより構成されている。石英部材は金属と比べて熱伝導性が低いが、熱伝導性の高い金属のブロックを挿入することにより、アウタヒータ113aからの熱を気化容器111へ均等に伝えることができる。
 また、気化器ヒータ113と金属ブロック116との間、及び金属ブロック116と気化容器111との間には伝熱ペースト117が充填されている。こられの間に生じる間隙に伝熱ペースト117が充填されていることにより、間隙を無くし、より均一に熱を伝えることができる。特に金属ブロック116と気化容器111の間に間隙があると、気化容器111における温度ムラが発生しやすいため、当該間隙に伝熱ペースト117を充填することは有効である。
(断熱構造)
 気化部108の周囲は、断熱クロスで構成される断熱部材160で覆われている。具体的には、断熱部材160は、金属ブロック116の表面の少なくとも一部、具体的には上面、下面及び外周面を覆うように設けられている。特に金属ブロック116の上面を覆うように設けられた断熱部材160の部分は、アウタヒータ113aと液体原料供給部150との間(より詳細には、アウタブロック110a内の金属ブロック116と液体原料供給部150との間)に設けられ、アウタヒータ113aから放出される熱を液体原料供給部150に対して遮断(遮蔽)するように構成されている。すなわち、気化器ヒータ113(特に液体原料供給部150に近接しているアウタヒータ113a)に対して、液体原料供給部150が熱的に十分に隔離されるように、断熱部材160は設けられる。
 なお、本明細書における「熱の放出」とは、熱の放射又は伝導の少なくともいずれかを含む意味である。より具体的には、断熱部材160により遮断されるアウタヒータ113aから放出される熱とは、a)アウタヒータ113aにより加熱された金属ブロック116から間接的に放射される熱の他、b)金属ブロック116を介して間接的に伝導する熱や、c)アウタヒータ113aから直接放射される熱(アウタヒータ113aが金属ブロック116から露出している場合)、等が考えられる。本実施形態では、断熱部材160を設けることにより、少なくともa)とb)の熱が液体原料供給部150に対して遮断される。
 ここで、断熱部材160が設けられていない気化器では、気化容器111(気化室112)の温度が所望の温度となるように制御される一方、液体原料供給部150における液体原料の温度が、気化室112を加熱する気化器ヒータ113からの熱干渉を受ける。そのため、液体原料供給部150における液体原料の温度を、気化容器111の温度から独立した所望の温度となるように管理や制御することは困難であった。特に、H22のように温度上昇と共に急速に分解が進む性質を有する化合物を含む液体原料を用いる場合、液体原料の温度が管理や制御がされていないと、気化室112内で気化される前の液体原料中の化合物の濃度が管理や制御をされないまま変動し、結果として気化室112内で生成された気化ガス中の化合物の濃度に意図しないバラつきが生じてしまう。
 そこで本実施形態では、断熱部材160を設けることによって、液体原料供給部150に対する気化器ヒータ113からの熱干渉を抑制し、液体原料供給部150における液体原料の温度の管理や制御を容易にしている。本実施形態では、気化容器111が180~210℃に加熱されるように気化器ヒータ113が制御される。一方、断熱部材160が設けられることによって気化器ヒータ113からの熱干渉は抑制され、液体原料供給部150における液体原料の温度が100℃以下となるように管理される。また、本実施形態によれば、冷却手段を設けることなく、液体原料供給部150における液体原料の温度を所定の温度(例えば100℃)以下に抑えることができる。発明者による検証によれば、H22を含む液体原料の温度が100℃以下であれば、液中のH22の濃度は安定し、得られる気化ガスの濃度も安定することが分かっている。なお、本明細書における「180~210℃」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「180~210℃」とは「180℃以上210℃以下」を意味する。他の数値範囲についても同様である。
 気化器ヒータ113による加熱に対して、液体原料供給部150における液体原料の温度が100℃以下となるように、断熱部材160の材質や厚み、構造等は選択される。本実施形態では、熱伝導率が0.1~0.3W/mkである断熱クロスを断熱部材160として用いている。なお、より具体的な実施形態としては、液体原料供給部150における液体原料の温度が100℃以下となるようにするため、後述する温度センサ119で測定される液体原料供給部150の温度が100℃以下となるように、断熱部材160を構成することが望ましい。
本実施形態において金属ブロック116の上面に設けられた断熱部材160の部分を、他の断熱材に置き換えることもできる。例えば、断熱クロスと同等の熱伝導率を有するポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、ポリベンゾイミダゾール(PBI)、ポリエーテルエーテルケトン(PEEK)等の樹脂の板材と、断熱部材160の一部とを置き換えてもよい。また、金属ブロック116の一部を多孔構造にして断熱機能を与えることによって、断熱部材160に換えることもできる。
 バッファ空間154内の液体原料導入管158の外面には、熱電対で構成された温度センサ119が装着されている。温度センサ119は液体原料供給部150の温度、より具体的には液体原料導入管158の温度を測定する。液体原料導入管158の外面の温度を測定するように温度センサ119を設けることによって、液体原料導入管158を通過する液体原料の温度を間接的に測定することができる。本実施形態では、温度センサ119はコントローラ121に接続され、コントローラ121によって液体原料の温度がモニタされる。
 本実施形態における気化器100は、温度センサ119を液体原料導入管158の外面に1つ備えているが、他の箇所に備えても良く、複数備えても良い。例えば、液体原料導入管158の内面やバッファ空間154の側面等に設けても良い。温度センサ119を液体原料導入管158の外面に設ける場合、本実施形態のようにバッファ空間154の内側に設けてもよく、また、バッファ空間154の内側に設けることが困難であれば、その外側(特に液体原料導入管158の上流側)に設けてもよい。
 また、気化器ヒータ113から放出される熱の干渉により、温度センサ119により測定された温度が所望の温度を超えるような場合には、温度センサ115,119により測定された温度データに基づいて、気化器ヒータ113の温度を制御してもよい。この場合、温度センサ115,119により測定された温度データはそれぞれ温度制御コントローラ106に出力され、温度制御コントローラ106は、当該温度データに基づいて気化器ヒータ113の温度を制御する。ただし、断熱部材160によって、液体原料供給部150に対する気化器ヒータ113から供給される熱の干渉が十分に抑制されている場合(すなわち、気化器ヒータ113に対して液体原料供給部150が熱的に実質的に隔離されている場合)、温度センサ119により測定された温度データに基づいた気化器ヒータ113の制御は行わない。
 また、後述する本発明の第2の実施形態のように、液体原料供給部150を加熱するヒータを気化器ヒータ113とは別に設けることによって、100℃以下の所望の温度で維持されるように液体原料の温度を制御することもできる。
(気化容器の二重管構造)
 さらに本実施形態では、ヒータからの熱をより効率的に液体原料に伝えるため、気化容器111を二重管構造としている。液体原料供給部150から供給される液体原料の液滴は、上部空間112aと、筒状の気体流路を構成する円筒状の間隙112bとを通ることにより加熱され、気化される。
 アウタブロック110aの金属ブロック116と気化容器111の間には、金属ブロック116と気化容器111が直接接触することによって気化容器111が破損するのを防止するため、耐熱性を有するO-リング118が設けられている。
 排気口114は気化容器111と同じく石英部材により構成されている。排気口114は、処理ガス供給管289aとの接続インターフェイス部をフランジ構造とし、O-リングを挟んで処理ガス供給管289aとの接続部をシールしている。
 ここで、間隙112bの幅(筒状の気体流路の幅)は0.6mm以上0.8mm以下とする。以下、その根拠について図4~図6に基づいて説明する。
 図4(A)に示す間隙112bを流れるガス温度の解析を、図4(B)に示されるような加熱された平行平板間を流れるガスの対流の熱伝達問題であると仮定し、加熱した平行平板間を流れるガス温度を下記の差分式で計算した。
Figure JPOXMLDOC01-appb-M000001
 ここで、xは流路の長さ方向の座標を示し、yは流路の幅方向の座標を示している。また、Tはガス温度、uは速度成分、αは温度伝導率をそれぞれ示している。
 図5(A)は、平行平板間の距離が1.0mmの場合の計算結果を示す図であって、図5(B)は、平行平板間の距離が0.8mmの場合の計算結果を示す図である。両者において、流路の長さLを0.15mとし、平行平板をそれぞれ200℃に加熱することとして計算した。また、平行平板間の距離以外の他の処理条件は同一のものとした。図5の縦軸はガス温度を、横軸は流路の幅方向の座標yをそれぞれ示している。
 図5(A)及び図5(B)に示されているように、流路の入口付近(x=0.05m)において、平行平板間の距離が1.0mmの場合と比較して、平行平板間の距離が0.8mmの場合の方が流路の中心(y=0.4mm)におけるガス温度を高くすることができることが確認された。また、流路の出口付近(x=0.10m)においても、平行平板間の距離が1.0mmの場合と比較して、平行平板間の距離が0.8mmの場合の方が、流路の中心(y=0.4mm)におけるガス温度を高くすることができることが確認された。すなわち、平行平板間の距離が狭いほど熱伝達効率が高められ、気化効率が向上されると考えられる。特に、平行平板間の距離を0.8mm以下にすることにより、流路の中心においてもガス温度を充分高くすることが可能であることが分かる。
 図6は、水蒸気を25slmで間隙112bに流した場合における気化室112の圧力上昇量の計算結果を示す図である。図6の縦軸は圧力上昇量を、横軸は流路の幅をそれぞれ示している。
 図5に示されているように、気化室112の流路の幅(間隙112bの幅)を狭くすると熱伝達効率が良好となり、導入される液滴(ミスト)の気化が安定化する傾向となる。一方、図6に示されているように、流路の幅を狭くしすぎると、気化室112の圧力が急激に上昇し、液滴が気化しにくい状態となるため気化不良がおこる。具体的には、流路の幅が0.5mm以下になると、急激に圧力が上昇して、気化不良となることが予想される。これは、H22含有ガスについても同様の傾向と考えられる。これらの結果から、気化不良を防止するためには、流路の幅を0.6mm以上とする必要があることが分かる。
 つまり、図5及び図6に示されている計算結果を考慮すると、流路の幅である間隙112bの幅が、流路の中心におけるガス温度を十分に高くすることができる0.8mm以下であり、且つ、圧力上昇による気化不良を防止することができる0.6mm以上である場合に、熱伝達効率を高めて気化効率を向上させつつ、圧力上昇量を小さくして気化不良を抑制できると考えられる。
(排気部)
 処理容器203の下方には、処理室201内のガスを排気するガス排気管231の一端が接続されている。ガス排気管231の他端は、圧力調整器としてのAPC(Auto Pressure Controller)バルブ255を介して、真空ポンプ246に接続されている。また、圧力検出器としての圧力センサ223がAPCバルブ255の上流側に設けられている。圧力センサ223およびAPCバルブ255には、圧力制御コントローラ224が電気的に接続されている。圧力制御コントローラ224は、圧力センサ223により検出された圧力に基づいて、処理室201内の圧力が所望の圧力となるよう、APCバルブ255を所望のタイミングで制御するように構成されている。
(制御部)
 図7に示すように、制御部(制御手段)であるコントローラ121は、CPU121a、RAM121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネルやディスプレイ等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピ等が読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のLMFC303、MFC601b,602b、バルブ601a,601d,602a,602d,302,289b、APCバルブ255、第1の加熱部207、第1~第4の温度センサ263a~263d、ボート回転機構267、圧力センサ223、圧力制御コントローラ224、温度制御コントローラ106、気化器ヒータ113、温度センサ115,119、配管ヒータ289c、等に接続されている。
 CPU121aは、記憶装置121cからの制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出されたレシピの内容に沿うように、LMFC303による液体原料の流量調整動作、MFC601b,602bによるガスの流量調整動作、バルブ601a,601d,602a,602d,302,289bの開閉動作、APCバルブ255の開閉調整動作、及び第1~第4の温度センサ263a~263dに基づく第1の加熱部207の温度調整動作、真空ポンプ246の起動及び停止、ボート回転機構267の回転速度調節動作、温度制御コントローラ106を介した気化器ヒータ113、配管ヒータ289cの温度調整動作、等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CD等の光ディスク、MOなどの光磁気ディスク、フラッシュメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。本明細書において、記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合が有る。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)事前処理工程
 ここで、基板としてのウエハ200に後述の改質処理が施される前に施される事前処理工程について図8を用いて説明する。図8に示すように、事前処理工程では、塗布装置(不図示)にウエハ200を搬入し(基板搬入工程T10)、塗布装置内でウエハ200に対して、ポリシラザン塗布工程T20とプリベーク工程T30が施される。ポリシラザン塗布工程T20では、塗布装置により、ウエハ200にポリシラザンが塗布される。プリベーク工程T30では、ウエハ200を加熱することにより、塗布されたポリシラザンから溶剤が除去され、
シリコン含有膜であるポリシラザン塗布膜が形成される。その後ウエハ200が塗布装置から搬出される(基板搬出工程T40)。
(3)基板処理工程
 続いて、本実施形態に係る半導体装置の製造工程の一工程として実施される基板処理工程について、図9を用いて説明する。かかる工程は、上述の基板処理装置10により実施される。本実施形態では、かかる基板処理工程の一例として、処理ガスとしてH22を含むガスを用い、基板としてのウエハ200上に形成されたシリコン含有膜をSiO膜に改質(酸化)する工程(改質工程)を行う場合について説明する。なお、以下の説明において、基板処理装置を構成する各部の動作は、コントローラ121により制御される。
(基板搬入工程(S10))
 まず、ウエハ200をボート217に装填し、ボート217をボートエレベータによって持ち上げて処理容器203内に搬入する。この状態で、処理炉202の開口部である炉口はシールキャップ219によりシールされる。
(圧力・温度調整工程(S20))
 処理容器203内が所望の圧力となるように真空ポンプ246を制御して処理容器203内の雰囲気を真空排気する。また、供給孔502bから酸素含有ガスを処理容器203に供給する。この際、処理容器203内の圧力は、圧力センサ223で測定し、この測定した圧力に基づきAPCバルブ255の開度を制御する。処理容器203内の圧力は例えば、微減圧状態(約700hPa~1000hPa)に調整される。また、処理容器203内に収容されたウエハ200が所望の第1の温度、例えば40℃から100℃となるように第1の加熱部207によって加熱する。
 また、ウエハ200を加熱しつつ、ボート回転機構267を作動させ、ボート217の回転を開始する。なお、ボート217は、少なくとも後述する改質工程(S30)が終了するまでの間は、常に回転させた状態とする。
(改質工程(S30))
 ウエハ200が所定の第1温度に到達し、ボート217が所望とする回転速度に到達したら、液体原料供給系300から液体原料を気化器100へ供給する。すなわち、バルブ302を開け、LMFC303により流量制御された液体原料を、液体原料導入口151を介して液体原料供給部150に導入する。液体原料供給部150に供給された液体原料は、温度センサ119により100℃以下(例えば80~100℃)になっているか否か監視される。液体原料は吐出口152から吐出される際にキャリアガスによって霧化され、微細な液滴の状態(例えばミスト状態)となって気化容器111内の上部空間112aに噴霧される。気化容器111は、気化器ヒータ113によって金属ブロック116を介して所望の温度(例えば180~210℃)に加熱されており、噴霧された液体原料の液滴は、気化容器111の表面や気化室112中において加熱されて蒸発し、気体となる。気化された液体原料は、キャリアガスとともに処理ガス(気化ガス)として排気口114から処理ガス供給管289aへ送出される。
 気化器ヒータ113の温度は、温度センサ115により測定された温度データに基づいて、気化不良が起こらないように制御する。気化不良によって処理室201内に供給される処理ガス中に液滴状態の液体原料が含まれていると、改質処理中にパーティクルが発生するなどしてSiO膜の品質の低下につながるからである。具体的には、気化容器111の一部又は全部の温度低下によって液滴が完全に気化されない、又は再液化することのないように、気化室112の温度を所定の温度以上に保つように気化器ヒータ113を制御する。
 また、バルブ289bを開け、気化器100から送出された処理ガスを、処理ガス供給管289a、バルブ289b、処理ガス供給ノズル501a、供給孔501bを介して、処理室201内に供給する。供給孔501bから処理室201内に導入された処理ガスはウエハ200に供給される。処理ガスに含まれるH22ガスは、反応ガスとしてウエハ200の表面のシリコン含有膜と酸化反応することで、当該シリコン含有膜をSiO膜に改質する。
 また、処理容器203内に処理ガスを供給しつつ、処理容器203内を真空ポンプ246により排気する。すなわち、APCバルブ255を開け、ガス排気管231を介して処理容器203内から排気された排気ガスを、真空ポンプ246により排気する。そして所定時間経過後、バルブ289bを閉じ、処理容器203内への処理ガスの供給を停止する。また、さらに所定時間経過後、APCバルブ255を閉じ、処理容器203内の排気を停止する。
 本実施形態では、液体原料として過酸化水素水を用いているが、これに限らず、液体原料として例えばオゾン(O3)を含む液体や、水などを用いることもできる。但し、本実施形態で用いるH22のような、温度上昇により急速に分解が進む特性を有する化合物を含む液体原料を気化させる場合において、本実施形態における気化器100の使用は特に好適である。
(乾燥工程(S40))
 改質工程(S30)が終了した後、ウエハ200を、プリベーク工程T30で処理された温度以下の所定の第2温度に昇温させる。第2温度は、上述の第1温度よりも高い温度であって、上述のプリベーク工程T30の温度以下の温度に設定される。昇温後、温度を保持して、ウエハ200と処理容器203内を乾燥させる。
(降温・大気圧復帰工程(S50))
 乾燥工程(S40)が終了した後、APCバルブ255を開け、処理容器203内を真空排気することで、処理容器203内に残存するパーティクルや不純物を除去する。真空排気後、APCバルブ255を閉じ、処理容器203内の圧力を大気圧に復帰させる。処理容器203内の圧力が大気圧になり、所定時間経過した後、例えばウエハ200の挿入温度程度に降温させる。
(基板搬出工程(S60))
 その後、ボートエレベータにより、処理済みウエハ200をボート217に保持した状態で処理容器203の下端から処理容器203の外部へ搬出する。その後、処理済みウエハ200はボート217より取り出され、本実施形態に係る基板処理工程を終了する。
<本発明の第2の実施形態>
 続いて、本発明の第2の実施形態について図10に基づいて説明する。以下において、上述の実施形態と同様の構成及び工程については、詳細な説明を省略する。
 本実施形態の基板処理装置では、気化器100のかわりに気化器400を用いる。本実施形態に係る気化器400は、液体原料供給部150の周囲に液体原料供給部150を加熱する第2ヒータとしてのアトマイズヒータ162が設けられている。
 気化器400は、アトマイズヒータ162と液体原料供給部150との間に、アトマイズヒータ162から放出される熱を液体原料供給部150の石英部材に伝導させるように設けられた金属ブロック163(第2金属ブロック)が挿入されている。つまり、金属ブロック163は、液体供給部150の側面に沿って、液体原料供給部150の周囲を覆うように設けられている。金属ブロック163は、アトマイズヒータ162により加熱され、バッファ室154に熱を伝導するように構成されている。
 また、バッファ空間154内の液体原料導入管158の外面には、熱電対で構成された温度センサ119が装着され、温度センサ119により測定された温度データに基づいて、金属ブロック163は、アトマイズヒータ162により加熱される。
 温度制御コントローラ106は、第1ヒータである気化器ヒータ113と第2ヒータであるアトマイズヒータ162とをそれぞれ個別に制御する。具体的には、温度制御コントローラ106は、温度センサ119により測定された温度データに基づいて、液体原料供給部150の温度が80℃以上100℃以下の所定の温度(例えば90℃)で保持されるようにアトマイズヒータ162の温度を制御する。また、温度制御コントローラ106は、温度センサ115により測定された温度データに基づいて、気化容器111の温度が180℃以上210℃以下となるように気化器ヒータ113の温度を制御する。
 本実施形態では、後述する断熱部材165が設けられることによって、液体原料供給部150、金属ブロック163、及びアトマイズヒータ162が、アウタヒータ113aから放出される熱の干渉を受けることを防止している。したがって、気化器ヒータ113とアトマイズヒータ162とは互いに熱干渉をすることなく、液体原料供給部150の温度と気化容器111の温度とをそれぞれ簡易に制御することができる。すなわち、気化器ヒータ113は温度センサ115で測定された温度データに基づいて制御し、アトマイズヒータ162は温度センサ119で測定された温度データに基づいて制御することができる。
 また、本実施形態では、アトマイズヒータ162を制御して、液体原料供給部150の温度を所定の温度に維持するので、液体原料供給部150における液体原料中のH22の分解速度が一定となるように管理することができる。すなわち、気化室112に供給される液体原料中のH22の濃度を一定に管理できるので、気化器400で生成されるガス中のH22の濃度を理論値に基づいて管理することがより容易になる。
 また、気化室112に供給される液体原料の温度が低過ぎると、気化されるまでの時間が長くなり、気化不良が発生する可能性がある。本実施形態では、液体原料供給部150を80℃以上100℃以下で予備加熱することにより、液体原料供給部150でのH22の分解が急速に進まないように抑制しながら気化室112内における気化を促進させることができる。
 なお、気化器400は、一体となった断熱部材160で覆われており、金属ブロック116と金属ブロック163との間には、断熱部材160とは別に断熱部材165が設けられている。つまり、断熱部材165は、第1ヒータを構成するアウタヒータ113aと第2ヒータを構成するアトマイズヒータ162との間に設けられている。また、断熱部材165は、液体原料供給部150と接続される気化容器111の天井壁161と、金属ブロック116の上面との間に設けられている。
 このように、断熱部材165は液体原料供給部150の下方に設けられ、気化器ヒータ113から金属ブロック116を介して放出される熱が、金属ブロック163や液体原料供給部150に対して遮断されるように構成されている。言い換えれば、液体原料供給部150と気化室112とを分離独立構造とし、液体原料供給部150と気化室112内の温度干渉が低減される。
<本発明の他の実施形態>
 以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態では、ポリシラザン膜が形成されたウエハ200を処理する例を示したがこれに限るものでは無い。例えば、シリコン元素と窒素元素と水素元素を含む膜、特にシラザン結合(-Si-N-)を有する膜が形成されたウエハ200を処理する場合にも同様に本発明を適用することができる。例えば、ヘキサメチルジシラザン(HMDS)、ヘキサメチルシクロトリシラザン(HMCTS)、ポリカルボシラザン、ポリオルガノシラザンを用いた塗布膜に対する処理にも、上述の気化器を用いることができる。
 また、テトラシリルアミンとアンモニアのプラズマ重合膜などに対する処理にも、上述の気化器を用いることができる。また、CVD法で形成されたシリコン含有膜、例えば、モノシランガス又は、トリシリルアミン(TSA)ガスなどのシリコン原料を用いたCVD法によって形成されたシリコン含有膜に対する処理にも、上述の気化器を用いることができる。CVD法によるシリコン含有膜の形成方法としては、特に流動性CVD法を用いることができる。
 また、上述の実施形態では、縦型処理炉を備える基板処理装置について説明したがこれに限らず、例えば、枚葉式、Hot Wall型、Cold Wall型の処理炉を有する基板処理装置や、処理ガスを励起させてウエハ200を処理する基板処理装置に上述の気化器を適用してもよい。
<実施例>
 以下、本発明の実施例を説明する。
 本実施例として図10及び図11(A)に示す上述した気化器400を用い、比較例として図11(B)に示す気化器500を用いて、それぞれ液体原料としての水(H2O)を液体原料供給部150に供給して気化する実験を行った。気化器500には、気化器400における断熱部材165がなく、液体原料供給部150と気化容器111とが熱的に分離独立した構造ではない。また、処理条件は同一のものとした。
 図11(B)に示す気化器500では、液部温度(液体原料供給部150における温度)が143℃である場合に、最大で20g/分の液体原料を気化する能力があることが確認された。一方、図11(A)に示す気化器400では、液部温度が89℃である場合に、最大で同じく20g/分の液体原料を気化する能力があることが確認された。
 すなわち、本実施例では、液体原料供給部150を加熱するアトマイズヒータと気化室112を加熱する気化器ヒータ113との間に断熱部材165を設けることにより、液部温度を100℃以下に保持することができ、液部温度が100℃以下であっても100℃超のときと同等量の液体原料を気化できることが確認された。
  10       基板処理装置
  100,400  気化器
  150      液体原料ガス供給部
  108      気化部
  111      気化容器
  112      気化室
  160,165  断熱部材
  200   ウエハ(基板)

Claims (15)

  1.  液体原料を供給する液体原料供給部と、
     前記液体原料供給部により供給された液体原料が内部で気化される気化室を構成する気化容器と、
     前記気化容器を加熱する第1ヒータと、
     前記第1ヒータから放出される熱を前記液体原料供給部に対して遮断するように設けられた断熱部材と、
     を備える気化器。
  2.  前記液体原料供給部を加熱する第2ヒータと、
     前記第1ヒータと前記第2ヒータの温度をそれぞれ個別に制御する制御部と、
     を備える請求項1記載の気化器。
  3.  前記断熱部材は、前記第1ヒータと前記第2ヒータとの間に設けられる請求項2記載の気化器。
  4.  前記気化容器は、
     筒形状の外側容器部と、
     前記外側容器部の内側に設けられる柱状の内側容器部と、
     を有し、
     前記内側容器部の外側壁は、前記外側容器部の内側壁との間に所定の間隙をあけて設けられることにより、前記間隙に前記液体原料が気化される筒状の気体流路を形成するように構成され、
     前記筒状の気体流路の幅は0.6mm以上0.8mm以下である請求項1~3のいずれか1項に記載の気化器。
  5.  前記断熱部材は、前記液体原料供給部の温度が100℃以下となるように構成されている請求項1~4のいずれか1項に記載の気化器。
  6.  前記制御部は、前記液体原料供給部の温度が80℃以上100℃以下となるように前記第2ヒータの温度を制御する請求項2又は3記載の気化器。
  7.  前記液体原料供給部は、前記液体原料を前記気化室内に吐出する吐出口と、前記吐出口まで前記液体原料を導入する液体原料供給管と、を備える請求項1~6のいずれか1項に記載の気化器。
  8.  前記液体原料供給部は、前記吐出口の近傍に設けられ、キャリアガスを前記気化室内に噴出させるように構成されたキャリアガス噴出口と、前記キャリアガス噴出口までキャリアガスを導入するキャリアガス供給管と、を備える請求項7記載の気化器。
  9.  前記気化容器および前記液体原料供給部は石英で構成され、両者は一体として形成されている請求項1~8のいずれか1項に記載の気化器。
  10.  前記第1ヒータと前記気化容器との間には、前記第1ヒータにより加熱され前記気化容器に熱を伝導させるように設けられた第1金属ブロックが設けられ、
     前記断熱部材は、前記第1金属ブロックから放出される熱を前記液体原料供給部に対して遮断するように、前記第1金属ブロックの表面の少なくとも一部を覆っている請求項1~9のいずれか1項に記載の気化器。
  11.  前記気化容器は筒形状の外側容器部を有し、前記第1金属ブロックは、前記外側容器部の外側面を覆うように、下方から前記液体原料供給部が接続される前記気化容器の天井壁と同じ高さ位置まで、もしくは下方から前記天井壁よりも低い位置まで設けられている請求項10記載の気化器。
  12.  前記第2ヒータと前記液体原料供給部との間には、前記第2ヒータにより加熱され前記液体原料供給部に熱を伝導させるように設けられた第2金属ブロックが設けられ、
     前記断熱部材は、前記第1金属ブロックと前記第2金属ブロックの間に設けられている請求項10又は11記載の気化器。
  13.  前記液体原料は、過酸化水素を含む請求項1~12のいずれか1項に記載の気化器。
  14.  基板を収容する処理室と、
     液体原料を供給する液体原料供給部と、前記液体原料供給部により供給された液体原料が内部で気化される気化室を構成する気化容器と、前記気化容器を加熱する第1ヒータと、前記第1ヒータから放出される熱を前記液体原料供給部に対して遮断するように設けられた断熱部材と、を備える気化器と、
     前記気化器で生成された気化ガスを前記処理室内に供給する気化ガス配管と、
    を備える基板処理装置。
  15.  基板を処理室内に搬入する工程と、
     液体原料を供給する液体原料供給部により供給された液体原料が内部で気化される気化室を構成する気化容器内に液体原料を供給する工程と、
     前記気化容器を加熱する第1ヒータから放出される熱を前記液体原料供給部に対して断熱部材で遮断しつつ、前記第1ヒータにより前記気化容器を加熱する工程と、
     加熱された気化容器内に供給された液体原料を気化して気化ガスを生成し、気化ガスを処理室内に供給する工程と、
     を備える半導体装置の製造方法。
PCT/JP2018/011626 2018-03-23 2018-03-23 気化器、基板処理装置及び半導体装置の製造方法 WO2019180906A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207022183A KR20200101981A (ko) 2018-03-23 2018-03-23 기화기, 기판 처리 장치 및 반도체 장치의 제조 방법
SG11202007413VA SG11202007413VA (en) 2018-03-23 2018-03-23 Vaporizer, substrate processing apparatus and method of manufacturing semiconductor device
CN201880089963.XA CN111742394A (zh) 2018-03-23 2018-03-23 气化器、基板处理装置及半导体器件的制造方法
PCT/JP2018/011626 WO2019180906A1 (ja) 2018-03-23 2018-03-23 気化器、基板処理装置及び半導体装置の製造方法
KR1020237033574A KR20230142659A (ko) 2018-03-23 2018-03-23 기화기, 기판 처리 장치 및 반도체 장치의 제조 방법
JP2020507238A JP6907406B2 (ja) 2018-03-23 2018-03-23 気化器、基板処理装置及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011626 WO2019180906A1 (ja) 2018-03-23 2018-03-23 気化器、基板処理装置及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2019180906A1 true WO2019180906A1 (ja) 2019-09-26

Family

ID=67987022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011626 WO2019180906A1 (ja) 2018-03-23 2018-03-23 気化器、基板処理装置及び半導体装置の製造方法

Country Status (5)

Country Link
JP (1) JP6907406B2 (ja)
KR (2) KR20230142659A (ja)
CN (1) CN111742394A (ja)
SG (1) SG11202007413VA (ja)
WO (1) WO2019180906A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873555B2 (en) 2020-03-19 2024-01-16 Kokusai Electric Corporation Vaporizer, substrate processing apparatus and method of manufacturing semiconductor device
JP7495334B2 (ja) 2020-11-26 2024-06-04 株式会社リンテック 気化器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273639A (ja) * 1999-03-25 2000-10-03 Mitsubishi Electric Corp Cvd原料用気化装置およびこれを用いたcvd装置
JP2000282242A (ja) * 1999-04-01 2000-10-10 Tokyo Electron Ltd 気化器、処理装置、処理方法、及び半導体チップの製造方法
JP2010087169A (ja) * 2008-09-30 2010-04-15 Tokyo Electron Ltd 気化器およびそれを用いた成膜装置
JP2012020227A (ja) * 2010-07-14 2012-02-02 Horiba Stec Co Ltd 液体試料加熱気化装置
JP2013089911A (ja) * 2011-10-21 2013-05-13 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
WO2017163375A1 (ja) * 2016-03-24 2017-09-28 株式会社日立国際電気 気化器、基板処理装置及び半導体装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051006A (ja) * 2003-07-28 2005-02-24 Shimadzu Corp 気化器
JP2009188266A (ja) * 2008-02-07 2009-08-20 Tokyo Electron Ltd 液体原料気化器及びそれを用いた成膜装置
WO2013077321A1 (ja) 2011-11-21 2013-05-30 株式会社日立国際電気 半導体装置の製造装置、半導体装置の製造方法及び記録媒体
WO2013094680A1 (ja) * 2011-12-20 2013-06-27 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および気化装置
KR101678100B1 (ko) * 2015-02-12 2016-11-22 (주)티티에스 원료 공급기 및 기판 처리 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273639A (ja) * 1999-03-25 2000-10-03 Mitsubishi Electric Corp Cvd原料用気化装置およびこれを用いたcvd装置
JP2000282242A (ja) * 1999-04-01 2000-10-10 Tokyo Electron Ltd 気化器、処理装置、処理方法、及び半導体チップの製造方法
JP2010087169A (ja) * 2008-09-30 2010-04-15 Tokyo Electron Ltd 気化器およびそれを用いた成膜装置
JP2012020227A (ja) * 2010-07-14 2012-02-02 Horiba Stec Co Ltd 液体試料加熱気化装置
JP2013089911A (ja) * 2011-10-21 2013-05-13 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
WO2017163375A1 (ja) * 2016-03-24 2017-09-28 株式会社日立国際電気 気化器、基板処理装置及び半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873555B2 (en) 2020-03-19 2024-01-16 Kokusai Electric Corporation Vaporizer, substrate processing apparatus and method of manufacturing semiconductor device
JP7495334B2 (ja) 2020-11-26 2024-06-04 株式会社リンテック 気化器

Also Published As

Publication number Publication date
SG11202007413VA (en) 2020-09-29
KR20200101981A (ko) 2020-08-28
JP6907406B2 (ja) 2021-07-21
JPWO2019180906A1 (ja) 2020-12-17
CN111742394A (zh) 2020-10-02
KR20230142659A (ko) 2023-10-11

Similar Documents

Publication Publication Date Title
JP6417052B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
US9816182B2 (en) Substrate processing apparatus, method for manufacturing semiconductor device, and recording medium
JP6038043B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6457104B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6199744B2 (ja) 基板処理装置、半導体装置の製造方法および気化装置
JP6151789B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
US20190003047A1 (en) Vaporizer and Substrate Processing Apparatus
JP6151943B2 (ja) 基板処理装置及び半導体装置の製造方法
WO2019180906A1 (ja) 気化器、基板処理装置及び半導体装置の製造方法
WO2017138183A1 (ja) 基板処理装置、継手部および半導体装置の製造方法
WO2016199193A1 (ja) 気化装置、基板処理装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507238

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207022183

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910711

Country of ref document: EP

Kind code of ref document: A1