WO2013058505A2 - 유기전자소자용 기판 - Google Patents

유기전자소자용 기판 Download PDF

Info

Publication number
WO2013058505A2
WO2013058505A2 PCT/KR2012/008361 KR2012008361W WO2013058505A2 WO 2013058505 A2 WO2013058505 A2 WO 2013058505A2 KR 2012008361 W KR2012008361 W KR 2012008361W WO 2013058505 A2 WO2013058505 A2 WO 2013058505A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light scattering
substrate
electrode layer
organic
Prior art date
Application number
PCT/KR2012/008361
Other languages
English (en)
French (fr)
Other versions
WO2013058505A3 (ko
Inventor
이연근
안용식
김정두
박민춘
김지희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201280062445.1A priority Critical patent/CN104303327B/zh
Priority to EP12842033.8A priority patent/EP2770551B1/en
Priority to JP2014535651A priority patent/JP5709194B2/ja
Publication of WO2013058505A2 publication Critical patent/WO2013058505A2/ko
Publication of WO2013058505A3 publication Critical patent/WO2013058505A3/ko
Priority to US14/255,493 priority patent/US9461275B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to a substrate for an organic electronic device, an organic electronic device, a method of manufacturing the device or the substrate, and an illumination.
  • An organic electronic device is a device including one or more layers of organic materials capable of conducting current.
  • the organic electronic device includes an organic light emitting diode (OLED), an organic solar cell, an organic photoconductor (OPC), or an organic transistor.
  • An organic light emitting device which is a representative organic electronic device, typically includes a substrate, a first electrode layer, an organic layer, and a second electrode layer sequentially.
  • the first electrode layer may be formed of a transparent electrode layer, and the second electrode layer may be formed of a reflective electrode layer.
  • the first electrode layer may be formed of a reflective electrode layer, and the second electrode layer may be formed of a transparent electrode layer.
  • Electrons and holes injected by the electrode layer may be recombined in the emission layer existing in the organic layer to generate light.
  • Light may be emitted to the substrate side in the bottom light emitting device and to the second electrode layer side in the top light emitting device.
  • the light generated in the light emitting layer of the lower light emitting device is trapped by the total internal reflection phenomenon or the like at the interface between the organic layer and the first electrode layer or in the substrate, Only a small amount of light is emitted.
  • Patent Documents 1 to 4 and the like propose a structure that can block the penetration of foreign substances.
  • Patent Document 1 US Patent No. 6,226,890
  • Patent Document 2 US Patent No. 6,808,828
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-145627
  • Patent Document 4 Japanese Laid-Open Patent No. 2001-252505
  • the present application provides a substrate for an organic electronic device, an organic electronic device, a method of manufacturing the substrate or the device, and an illumination.
  • Exemplary organic electronic device substrate of the present application the substrate layer; And a light scattering layer and an electrode layer.
  • the light scattering layer and the electrode layer may be sequentially formed on the substrate layer, and thus the light scattering layer may be present between the substrate layer and the electrode layer.
  • 1 and 2 show an exemplary substrate in which the light scattering layer 103 and the electrode layer 102 are sequentially formed on the substrate layer 101.
  • the electrode layer may be formed such that its formation area is wider than that of the light scattering layer.
  • the term "formation area" is the area of a light scattering layer or an electrode layer recognized when the substrate is viewed from above.
  • the light scattering layer may exist in various forms as long as the formation area of the electrode layer is wider than that of the light scattering layer.
  • the light scattering layer 103 may be formed only at a portion excluding the edge of the base layer 101 as shown in FIG. 1, or a part of the light scattering layer may remain at the edge of the base layer 101 as shown in FIG. 2.
  • FIG. 3 is a view showing an example of observing the substrate of FIG. 1 from above, and as shown in FIG. 3, the formation area A of the electrode layer recognized when observing the substrate from above is light scattering thereunder. It is larger than the formation area B of a layer.
  • the ratio A / B of the formation area A of the electrode layer and the formation area B of the light scattering layer may be, for example, 1.04 or more, 1.06 or more, 1.08 or more, 1.1 or more, or 1.15 or more.
  • the upper limit of the ratio (A / B) is not particularly limited, for example, the ratio (A / B) may be about 2.0 or less, about 1.5 or less, about 1.4 or less, about 1.3 or less or about 1.25 or less.
  • the electrode layer may be formed on the surface of the base layer on which the light scattering layer is not formed. By such a structure, when the organic electronic device is implemented, the light scattering layer may not be exposed to the outside.
  • the electrode layer may be formed up to an area including a region deviating from all peripheral portions of the light scattering layer when viewed from the top.
  • the electrode layer may be formed up to an area including an area beyond all periphery of the. For example, in the structure of FIG. 2, if the organic layer is formed on the upper part of the light scattering layer existing on the right and left edges, the structure of FIG.
  • the structure 2 extends to the left and right sides of the light scattering layer existing on the right and left edges.
  • the structure can be changed so that the electrode layer is formed up to an area beyond all peripheral circumferences.
  • a structure for sealing the light scattering layer may be formed.
  • a base layer an appropriate material may be used without particular limitation.
  • a light transmissive base layer for example, a base layer having a transmittance of 50% or more for light in the visible region may be used.
  • a light transmissive base material layer a glass base material layer, a transparent polymer base material layer, etc. can be illustrated.
  • the glass base layer base layers such as soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, or quartz can be exemplified, and as the polymer base layer, PC ( A base layer including a polycarbonate, an acrylic resin, polyethylene (poly (ethylene terephthatle)), PET (poly (ether sulfide)), PS (polysulfone), or the like may be exemplified, but is not limited thereto.
  • the said base material layer may be a TFT substrate in which a driving TFT exists.
  • the base layer does not necessarily need to be a light transmissive base layer. If necessary, a reflective layer made of aluminum or the like may be formed on the surface of the substrate layer or the like.
  • the electrode layer may be a conventional hole injection or electron injection electrode layer used for fabricating an organic electronic device.
  • the hole injection electrode layer can be formed using a material having a relatively high work function, for example, and can be formed using a transparent material if necessary.
  • the hole injection electrode layer may comprise a metal, alloy, electrically conductive compound, or a mixture of two or more thereof, having a work function of about 4.0 eV or more.
  • Such materials include metals such as gold, CuI, Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), Zinc Tin Oxide (ZTO), zinc oxide doped with aluminum or indium, magnesium indium oxide, nickel tungsten oxide, Oxide materials such as ZnO, SnO 2 or In 2 O 3 , metal nitrides such as gallium nitride, metal serenides such as zinc serenides, metal sulfides such as zinc sulfides, and the like.
  • the transparent hole injection electrode layer can also be formed using a laminate of a metal thin film such as Au, Ag or Cu, and a high refractive transparent material such as ZnS, TiO 2 or ITO.
  • the hole injection electrode layer may be formed by any means such as vapor deposition, sputtering, chemical vapor deposition, or electrochemical means.
  • the electrode layer formed as needed may be patterned through a process using known photolithography, shadow mask, or the like.
  • the electron injection transparent electrode layer may be formed using, for example, a transparent material having a relatively small work function.
  • an electron injection transparent electrode layer may be formed by using an appropriate material among materials used for forming the hole injection electrode layer. It may be formed, but is not limited thereto.
  • the electron injection electrode layer can also be formed using, for example, a vapor deposition method or a sputtering method, and can be appropriately patterned if necessary.
  • the light scattering layer means a layer formed to scatter, refract or diffract light incident on the layer, and the embodiment of the light scattering layer is not particularly limited as long as the light scattering layer is implemented to exhibit the above functions.
  • the light scattering layer can be a layer comprising a matrix material and scattering regions.
  • 4 shows a form in which an exemplary light scattering layer comprising a scattering region 1031 formed of scattering particles and a matrix material 1032 is formed in the base layer 101.
  • the term “scattering region” may refer to a region having a refractive index different from a surrounding material such as, for example, a matrix material or a flat layer described below, and having an appropriate size and capable of scattering, refracting, or diffracting incident light. have.
  • the scattering region may be, for example, a particle having the above refractive index and size, or may be an empty space.
  • scattering regions can be formed using particles that are different from the surrounding material and have a higher or lower refractive index than the surrounding material.
  • the refractive index of the scattering particles may have a difference in refractive index between the surrounding material, for example, the matrix material and / or the flat layer, greater than 0.3 or greater than 0.3.
  • the scattering particles may have a refractive index of about 1.0 to 3.5 or about 1.0 to 3.0.
  • the term "refractive index" is a refractive index measured with respect to light of about 550 nm wavelength.
  • the refractive index of the scattering particles may be, for example, 1.0 to 1.6 or 1.0 to 1.3.
  • the refractive index of the scattering particles may be about 2.0 to 3.5 or about 2.2 to 3.0.
  • the scattering particles for example, particles having an average particle diameter of 50 nm or more, 100 nm or more, 500 nm or more or 1,000 nm or more can be exemplified.
  • the average particle diameter of the scattering particles may be, for example, 10,000 nm or less.
  • the scattering region may also be formed by a space filled with air as an empty space having such a size.
  • the scattering particles or regions may have a shape such as a spherical shape, an ellipsoid, a polyhedron, or an amorphous form, but the shape is not particularly limited.
  • the scattering particles for example, organic materials such as polystyrene or derivatives thereof, acrylic resins or derivatives thereof, silicone resins or derivatives thereof, or novolak resins or derivatives thereof, or silica, alumina, titanium oxide or zirconium oxide Particles containing an inorganic material and the like can be exemplified.
  • the scattering particles may be formed of only one of the above materials or two or more of the above materials.
  • hollow particles such as hollow silica or particles having a core / cell structure may be used as the scattering particles.
  • the light scattering layer may further include a matrix material that retains scattering regions, such as scattering particles.
  • a matrix material for example, a material having a refractive index similar to that of another adjacent material such as a base material layer or a material having a higher refractive index may be formed.
  • the matrix material is, for example, a polyimide, a cardo resin having a fluorene ring, a urethane, an epoxide, a polyester or an acrylate-based thermal or photocurable monomeric, oligomeric or polymeric organic
  • an inorganic material such as silicon oxide, silicon nitride, silicon oxynitride or polysiloxane, or an organic-inorganic composite material can be used.
  • the matrix material may comprise polysiloxane, polyamic acid or polyimide.
  • the polysiloxane may be formed by, for example, polycondensing a condensable silane compound or a siloxane oligomer, and may form a matrix material based on a bond between silicon and oxygen (Si-O) through the above.
  • the condensation conditions may be adjusted so that the polysiloxane is based solely on siloxane bonds (Si-O), or some organic groups such as alkyl groups or condensable functional groups such as alkoxy groups may remain.
  • a polyamic acid or polyimide for example, a polyamic acid or polyimide having a refractive index of about 1.5 or more, about 1.6 or more, about 1.65 or more, or about 1.7 or more can be used.
  • Such high refractive polyamic acid or polyimide can be produced using, for example, a monomer into which a halogen atom, a sulfur atom or a phosphorus atom other than fluorine is introduced.
  • a polyamic acid capable of improving the dispersion stability of the particles may be used because there is a site capable of bonding with the particles such as a carboxyl group.
  • the compound containing the repeating unit of following General formula (1) can be used, for example.
  • n is a positive number.
  • the repeating unit may be optionally substituted by one or more substituents.
  • substituents the functional group containing a halogen atom, such as a halogen atom other than fluorine, a phenyl group, a benzyl group, a naphthyl group, or a thiophenyl group, a sulfur atom, a phosphorus atom, etc. can be illustrated.
  • the polyamic acid may be a homopolymer formed of only the repeating unit of Formula 1, or may be a block or random copolymer including other units other than the repeating unit of Formula 1.
  • the kind and ratio of another repeating unit can be suitably selected in the range which does not inhibit a desired refractive index, heat resistance, a light transmittance, etc., for example.
  • repeating unit of formula (1) include repeating units of the following formula (2).
  • N in the formula (2) is a positive number.
  • the polyamic acid may be, for example, about 10,000 to 100,000 or about 10,000 to 50,000, based on the standard polystyrene weight average molecular weight measured by gel permeation chromatography (GPC).
  • the polyamic acid having a repeating unit of formula (1) also has a light transmittance of 80% or more, 85% or more or 90% or more in the visible light region, and is excellent in heat resistance.
  • the light scattering layer may be, for example, a layer having an uneven structure.
  • FIG. 5 is a diagram exemplarily illustrating a light scattering layer 103 having an uneven structure formed on the substrate layer 101.
  • the light scattering layer having a concave-convex structure hardens the material or forms a light-scattering layer in contact with a mold capable of transferring the concave-convex structure of a desired shape in the process of curing the heat or photocurable material.
  • the light scattering layer may be, for example, a material coated by a wet coating method, a method of applying heat or irradiating light, or a method of curing the material by a sol-gel method, or a chemical vapor deposition (CVD) or PVD ( It may be formed through a deposition method such as a physical vapor deposition method or the like, or nanoimprinting or microembossing.
  • the light scattering layer may further comprise high refractive particles, if necessary.
  • high refractive particles may mean, for example, particles having a refractive index of 1.5 or more, 2.0 or more, 2.5 or more, 2.6 or more, or 2.7 or more.
  • the upper limit of the refractive index of the high refractive particles may be selected, for example, in a range capable of satisfying the refractive index of the desired light scattering layer.
  • the high refractive particles may, for example, have a smaller average particle diameter than the scattering particles.
  • the high refractive particles may be, for example, about 1 nm to 100 nm, 10 nm to 90 nm, 10 nm to 80 nm, 10 nm to 70 nm, 10 nm to 60 nm, 10 nm to 50 nm or about 10 nm to 45 nm. It may have an average particle diameter of.
  • alumina, aluminosilicate, titanium oxide or zirconium oxide and the like can be exemplified.
  • rutile titanium oxide can be used, for example, as particles having a refractive index of 2.5 or more. Titanium oxide of the rutile type has a high refractive index compared to other particles, and therefore can be adjusted to the desired refractive index in a relatively small proportion.
  • the substrate may further include a flat layer formed on the light scattering layer.
  • the flat layer may be formed with a formation area corresponding to the light scattering layer.
  • the term "B having a formation area corresponding to A” means that the formation area of A and the formation area of B are substantially based on the area recognized when the substrate is observed from the top unless otherwise specified. It means the same case. Substantially the same also includes a case where the formation area of the two regions is slightly different due to, for example, a process error.
  • the ratio (AA / BA) of the formation area AA of A to the formation area BA of B having the formation area corresponding to A is 0.5 to 1.5, 0.7 to 1.3, 0.85 to 1.15 or substantially 1 may also be included in the above case.
  • the flat layer is further present, the light scattering layer and the flat layer are present between the base layer and the electrode layer, the formation area of the electrode layer is wider than that of the light scattering layer and the flat layer, and the electrode layer is It may be formed also on the surface of the said base material layer in which the light scattering layer and the flat layer are not formed.
  • the flat layer is not essential and may not exist, for example, if the light scattering layer itself is formed flat.
  • the flat layer may provide a surface on which the electrode may be formed on the light scattering layer, and may realize better light extraction efficiency through interaction with the light scattering layer.
  • the flat layer may have, for example, a refractive index equivalent to that of the adjacent electrode layer.
  • the refractive index of the flat layer may be, for example, 1.7 or more, 1.8 to 3.5, or 2.2 to 3.0.
  • the flat layer may be formed to have a refractive index different from that of the light scattering layer.
  • the flat layer can be formed, for example, by mixing the aforementioned high refractive particles with the matrix material.
  • the matrix material for example, the matrix material described in the item of the light scattering layer can be used.
  • the flat layer may be formed using a material in which a compound such as alkoxide or acylate of a metal such as zirconium, titanium or cerium is combined with a binder having a polar group such as a carboxyl group or a hydroxy group.
  • a compound such as alkoxides or acylates may be condensed with the polar groups in the binder, and the high refractive index may be realized by including the metal in the binder.
  • the alkoxide or acylate compound include titanium alkoxides such as tetra-n-butoxy titanium, tetraisopropoxy titanium, tetra-n-propoxy titanium or tetraethoxy titanium, titanium stearate and the like.
  • Zirconium such as zirconium alkoxide, zirconium tributoxy stearate such as titanium acylate, titanium chelates, tetra-n-butoxy zirconium, tetra-n-propoxy zirconium, tetraisopropoxy zirconium or tetraethoxy zirconium Acylate, zirconium chelates, etc. can be illustrated.
  • the flat layer may also be formed by a sol-gel coating method in which a metal alkoxide, such as titanium alkoxide or zirconium alkoxide, and a solvent, such as alcohol or water, are prepared to prepare a coating solution, and then applied and fired at an appropriate temperature.
  • An exemplary organic electronic device of the present application may include a substrate including a substrate layer, a light scattering layer, and an electrode layer.
  • substrate the board
  • the organic electronic device may include a base layer; A light scattering layer formed on the substrate layer, a first electrode layer formed on the light scattering layer, and an organic layer formed on the first electrode layer; And a second electrode layer formed on the organic layer.
  • the formation area of the first electrode layer is wider than that of the light scattering layer, and the electrode layer may be formed on the surface of the base layer on which the light scattering layer is not formed.
  • the above-described contents may be applied in the same manner, and if necessary, the above-described flat layer may exist between the light scattering layer and the first electrode layer.
  • the organic layer may include at least a light emitting layer.
  • the first electrode layer is transparent and the second electrode layer is a reflective electrode layer, a light emitting device in which light generated in the light emitting layer of the organic layer is emitted to the substrate layer side through the light scattering layer may be implemented.
  • the light scattering layer may have, for example, a formation area corresponding to or larger than the emission area of the emission layer.
  • the difference B-C between the length B of the light scattering layer forming region and the length C of the light emitting region of the light emitting layer may be about 10 ⁇ m to about 2 mm.
  • the length B of the light scattering layer formation region is a length in any direction in the region recognized when the light scattering layer is observed from the top, in which case the length C of the light emitting region is also observed from the top. The length measured in the same direction when measuring the length (B) of the region formed in the light scattering layer on the basis of the recognized area.
  • the light scattering layer may also be formed at a position corresponding to the light emitting region.
  • the light scattering layer formed at a position corresponding to the light emitting region may mean, for example, that the light emitting region and the light scattering layer substantially overlap each other when the organic electronic device is observed from above or below.
  • the organic electronic device may be an organic light emitting diode (OLED).
  • OLED organic light emitting diode
  • the organic electronic device may have a structure in which an organic layer including at least a light emitting layer is interposed between the hole injection electrode layer and the electron injection electrode layer.
  • the electrode layer included in the substrate is a hole injection electrode layer
  • the second electrode layer may be an electron injection electrode layer.
  • the electrode layer included in the substrate is an electron injection electrode layer
  • the second electrode layer may be a hole injection electrode layer.
  • the organic layer existing between the electron and the hole injection electrode layer may include at least one light emitting layer.
  • the organic layer may include a plurality of light emitting layers of two or more layers. When two or more light emitting layers are included, the light emitting layers may have a structure divided by an intermediate electrode layer or a charge generating layer (CGL) having charge generation characteristics.
  • CGL charge generating layer
  • the light emitting layer can be formed using, for example, various fluorescent or phosphorescent organic materials known in the art.
  • Examples of the material of the light emitting layer include tris (4-methyl-8-quinolinolate) aluminum (III) (tris (4-methyl-8-quinolinolate) aluminum (III)) (Alg3), 4-MAlq3 or Gaq3.
  • the light emitting layer includes the material as a host, and further includes perylene, distyrylbiphenyl, DPT, quinacridone, rubrene, BTX, ABTX, DCJTB, and the like. It may have a host-dopant system including a dopant.
  • the light emitting layer can be formed by appropriately adopting a kind showing light emission characteristics among the electron-accepting organic compound or electron donating organic compound described later.
  • the organic layer may be formed in various structures further including other various functional layers known in the art, as long as it includes a light emitting layer.
  • Examples of the layer that may be included in the organic layer may include an electron injection layer, a hole blocking layer, an electron transport layer, a hole transport layer, a hole injection layer, and the like.
  • the electron injection layer or the electron transport layer can be formed using, for example, an electron accepting organic compound.
  • an electron accepting organic compound any compound known without particular limitation may be used.
  • organic compounds include polycyclic compounds such as p-terphenyl or quaterphenyl or derivatives thereof, naphthalene, tetratracene, pyrene, coronene, and coronene.
  • Polycyclic hydrocarbon compounds or derivatives thereof such as chrysene, anthracene, diphenylanthracene, naphthacene or phenanthrene, phenanthroline, vasophenanthrol Heterocyclic compounds or derivatives thereof, such as lean (bathophenanthroline), phenanthridine, acridine (acridine), quinoline (quinoline), quinoxaline or phenazine (phenazine) may be exemplified.
  • fluoroceine perylene, phthaloperylene, naphthaloperylene, naphthaloperylene, perynone, phthaloperinone, naphtharoferinone, diphenylbutadiene ( diphenylbutadiene, tetraphenylbutadiene, oxadiazole, ardazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene , Oxine, aminoquinoline, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyrane, thiopyrane, polymethine, mero Cyanine (merocyanine), quinacridone or rubrene, or derivatives thereof, JP-A-1988-295695, JP-A-1996-22557, JP-A-1996-81472, Japanese Patent Laid-Open Publication No.
  • Metal chelate complex compounds disclosed in Japanese Patent Application Publication No. 017764 for example, tris (8-quinolinolato) aluminium, which is a metal chelated oxanoid compound, and bis (8-quinolin) Norato) magnesium, bis [benzo (f) -8-quinolinolato] zinc ⁇ bis [benzo (f) -8-quinolinolato] zinc ⁇ , bis (2-methyl-8-quinolinolato) aluminum, Tris (8-quinolinolato) indium, tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatorium, tris (5-chloro- Metal complex having one or more 8-quinolinolato or derivatives thereof, such as 8-quinolinolato) gallium, bis (5-chloro-8-quinolinolato) calcium, as derivatives, Japanese Patent Application Laid-Open No.
  • Fluorescent brighteners such as a benzooxazole compound, a benzothiazole compound or a benzoimidazole compound; 1,4-bis (2-methylstyryl) benzene, 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, distyrylbenzene, 1,4- Bis (2-ethylstyryl) benzyl, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) -2-methylbenzene or 1,4-bis (2- Distyrylbenzene compounds such as methylstyryl) -2-ethylbenzene and the like; 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1-naphthyl) vinyl
  • the electron injection layer may be formed using, for example, a material such as LiF or CsF.
  • the hole blocking layer is a layer capable of preventing the holes injected from the hole injection electrode layer from passing through the light emitting layer and entering the electron injection electrode layer to improve the lifetime and efficiency of the device. And an appropriate portion between the electron injection electrode layer and the electron injection electrode layer.
  • the hole injection layer or hole transport layer may comprise, for example, an electron donating organic compound.
  • the electron donating organic compound include N, N ', N'-tetraphenyl-4,4'-diaminophenyl, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4, 4'-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, N, N, N ', N'-tetra-p-tolyl-4,4'-diamino ratio Phenyl, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N, N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N , N, N ', N'-tetraphenyl-4,4'-diaminodiphenylether
  • the hole injection layer or the hole transport layer may be formed by dispersing an organic compound in a polymer or using a polymer derived from the organic compound. Also, such as polyparaphenylenevinylene and derivatives thereof, hole transporting non-conjugated polymers such as ⁇ -conjugated polymers, poly (N-vinylcarbazole), or ⁇ -conjugated polymers of polysilane may also be used. Can be.
  • the hole injection layer is formed by using electrically conductive polymers such as metal phthalocyanine such as copper phthalocyanine, nonmetal phthalocyanine, carbon film and polyaniline, or by reacting the aryl amine compound with Lewis acid using an oxidizing agent. You may.
  • electrically conductive polymers such as metal phthalocyanine such as copper phthalocyanine, nonmetal phthalocyanine, carbon film and polyaniline, or by reacting the aryl amine compound with Lewis acid using an oxidizing agent. You may.
  • the organic light emitting device may include: (1) a hole injection electrode layer / organic light emitting layer / electron injection electrode layer formed sequentially; (2) the form of a hole injection electrode layer / hole injection layer / organic light emitting layer / electron injection electrode layer; (3) the form of a hole injection electrode layer / organic light emitting layer / electron injection layer / electron injection electrode layer; (4) the form of a hole injection electrode layer / hole injection layer / organic light emitting layer / electron injection layer / electron injection electrode layer; (5) the form of a hole injection electrode layer / organic semiconductor layer / organic light emitting layer / electron injection electrode layer; (6) the form of a hole injection electrode layer / organic semiconductor layer / electron barrier layer / organic light emitting layer / electron injection electrode layer; (7) the form of a hole injection electrode layer / organic semiconductor layer / organic light emitting layer / adhesion improvement layer / electron injection electrode layer; (8) the form of a hole injection electrode layer / hole injection layer / hole transport layer;
  • the organic electronic device may further include an encapsulation structure.
  • the encapsulation structure may be a protective structure to prevent foreign substances such as moisture or oxygen from flowing into the organic layer of the organic electronic device.
  • the encapsulation structure may be, for example, a can such as a glass can or a metal can, or a film covering the entire surface of the organic layer.
  • FIG. 6 shows that an organic layer 401 and a second electrode layer 402 formed on a substrate including a sequentially formed base layer 101, a light scattering layer 103, and a first electrode layer 102 may be formed of a glass can, a metal can, or the like.
  • the shape protected by the encapsulation structure 403 of the can structure is exemplarily shown.
  • the encapsulation structure 403 may be attached to the substrate by, for example, an adhesive 404.
  • the encapsulation structure may be adhered to, for example, an electrode layer in which a light scattering layer does not exist in the lower portion of the substrate.
  • the encapsulation structure 403 may be attached to the end of the substrate by an adhesive 404. In this way it is possible to maximize the protective effect through the encapsulation structure.
  • the encapsulation structure may be, for example, a film covering the entire surface of the organic layer and the second electrode layer.
  • FIG. 7 exemplarily illustrates a sealing structure 501 in the form of a film covering the entire surface of the organic layer 401 and the second electrode layer 402.
  • the encapsulation structure 501 in the form of a film covers the entire surface of the organic layer 401 and the second electrode layer 402 as shown in FIG. 7, while the base layer 101, the light scattering layer 103, and the electrode layer (
  • the substrate including the substrate 102 and the upper second substrate 502 may be bonded to each other.
  • the second substrate for example, a glass substrate, a metal substrate, a polymer film or a barrier layer may be exemplified.
  • the encapsulation structure in the form of a film is formed by applying, curing, and curing a liquid material that is cured by heat or ultraviolet (UV) irradiation or the like, for example, an epoxy resin, or by using the epoxy resin or the like beforehand It can be formed by laminating the substrate and the upper substrate using an adhesive sheet prepared in the form.
  • a liquid material that is cured by heat or ultraviolet (UV) irradiation or the like, for example, an epoxy resin, or by using the epoxy resin or the like beforehand
  • UV ultraviolet
  • the encapsulation structure may include a metal oxide such as calcium oxide, beryllium oxide, a metal halide such as calcium chloride, or a water adsorbent such as phosphorus pentoxide, or a getter material.
  • the moisture adsorbent or getter material may be included, for example, inside the encapsulation structure in the form of a film, or may be present at a predetermined position of the encapsulation structure in the can structure.
  • the encapsulation structure may further include a barrier film, a conductive film, or the like.
  • the encapsulation structure may be attached to an upper portion of the first electrode layer on which the light scattering layer or the light scattering layer and the flat layer are not formed. Accordingly, the light scattering layer or the light scattering layer and the flat layer may be implemented in such a way that the sealing structure is not exposed to the outside.
  • the sealing structure is formed by, for example, the front surface of the light scattering layer or the light scattering layer and the flat layer surrounded by the base layer, the electrode layer and / or the encapsulation structure, or including the base layer, the electrode layer and / or the encapsulation structure. It may mean a state that is not surrounded by the sealing structure is exposed to the outside.
  • the sealing structure includes the base layer, the electrode layer and the encapsulating structure as long as it is formed of only the base layer, the electrode layer and / or the encapsulating structure, or is formed so that the light scattering layer or the light scattering layer and the flat layer are not exposed to the outside. It may also be formed to include. For example, other elements may be present at a portion where the base layer 101 and the electrode layer 102 contact each other, or a portion where the first electrode layer 102 and the encapsulation structures 403 and 501 contact each other or at other positions. have. The other element may be a low moisture-permeable organic material, an inorganic material or an organic-inorganic composite material, an insulating layer or an auxiliary electrode.
  • the present application also relates to a substrate for an organic electronic device or a method for manufacturing the organic electronic device.
  • An exemplary method may include processing at least a portion of the light scattering layer or the light scattering layer and the flat layer by processing the light scattering layer or the light scattering layer and the flat layer formed on the substrate layer.
  • the light scattering layer or the light scattering layer and the flat layer formed on the substrate may be patterned to exist only at a position corresponding to the light emitting region, for example, as described above.
  • a part of the light scattering layer 103 formed after the light scattering layer 103 is formed on the entire surface of the base layer 101 may be removed.
  • the flat layer may also be removed together with the light scattering layer.
  • the method for forming the light scattering layer and / or the flat layer on the substrate layer is not particularly limited, and a conventional method may be applied in accordance with the aspects of each light scattering layer and / or the flat layer.
  • the light scattering layer and / or the flat layer may be formed by the above-described coating method, deposition method such as CVD (chemical vapor deposition) or PVD (physical vapor deposition), or nanoimprinting or microembossing method. have.
  • deposition method such as CVD (chemical vapor deposition) or PVD (physical vapor deposition)
  • nanoimprinting or microembossing method have.
  • the manner of removing a part of the light scattering layer or the light scattering layer and the flat layer formed on the base layer is not particularly limited, and an appropriate method may be applied in consideration of the kind of the light scattering layer or the light scattering layer and the flat layer formed.
  • the layer may be removed by applying a light scattering layer and / or a flat layer to wet or dry etching or the like which is treated with an etchant capable of dissolving the layer.
  • the light scattering layer and / or the flat layer may be removed through laser processing.
  • the laser can be removed by irradiation.
  • the laser may be irradiated from the side where the light scattering layer and / or the flat layer is formed, or may be irradiated from the base layer side when the base layer is light-transmissive.
  • any kind may be used as long as the light output layer can remove the light scattering layer and / or the flat layer.
  • a laser for example, a fiber diode laser, ruby (Cr 3+ : Al 2 O 3 ), YAG (Nd 3+ : Y 3 Al 5 O 12 ), phosphate glass, Silicate glass (silicate glass) or YLF (Nd 3+ : LiYF 4 ) and the like may be used.
  • Such lasers can be irradiated, for example, in the form of spot lasers or line beam lasers. Irradiation conditions of the laser are not particularly limited as long as they are adjusted to allow proper processing.
  • a laser of a wavelength belonging to an ultraviolet (UV) to infrared (IR) region may be irradiated with an output of about 1 W to about 10 W, but is not limited thereto.
  • the light scattering layer and / or the flat layer may also be removed by a water jet method.
  • the waterjet method is a method of removing water by spraying water at a predetermined pressure.
  • the light scattering layer and / or the flat layer may be removed by spraying water at a pressure of about 500 atmospheres to 2000 atmospheres or about 800 atmospheres to 1300 atmospheres.
  • the pressure water sprayed for efficient removal may further comprise an abrasive.
  • an appropriate material may be used in an appropriate ratio among known materials in consideration of the object to be removed.
  • the spray radius or the speed is not particularly limited, and may be selected in consideration of a part or a pattern to be removed.
  • the spray width may be adjusted to be about 1 mm to about 10 mm or about 2 mm to about 5 mm in the waterjet process. Through this, it is possible to remove the light scattering layer and / or flat layer precisely.
  • the speed of etching through the waterjet may be, for example, about 300 mm / min to about 2000 mm / min or about 500 mm / min to about 1200 mm / min, thereby ensuring an effective process efficiency, It can be removed.
  • the processing form of the light scattering layer and / or the flat layer is not particularly limited and may be changed according to the purpose.
  • at least a part of the light scattering layer or the like is removed, and the positions of the remaining light scattering layer and / or the flat layer correspond to the light emitting region of the light emitting layer, and the formation area thereof is formed by the light emitting layer or the light emitting layer. It may be performed to correspond to or larger than the light emitting area.
  • the light scattering layer may be processed in various patterns if necessary.
  • the light scattering layer or the stacked structure of the light scattering layer and the flat layer may be removed in the region corresponding to the encapsulation structure and the region corresponding to the terminal region of the device.
  • the manufacturing method may further include forming an electrode layer after removal of the light scattering layer or the laminated structure of the light scattering layer and the flat layer.
  • the electrode layer may be formed to form a sealing structure capable of sealing the light scattering layer and / or the flat layer processed together with the base layer.
  • the method of forming the electrode layer is not particularly limited, and may be formed by any method such as known deposition, sputtering, chemical vapor deposition, or electrochemical method.
  • the method of manufacturing an organic electronic device may include forming an organic layer and a second electrode layer including a light emitting layer after forming the electrode layer as described above, and further forming an encapsulation structure.
  • the organic layer, the second electrode layer and the encapsulation structure can be formed in a known manner.
  • the present application also relates to the use of the above-described organic electronic device, for example, an organic light emitting device.
  • the organic light emitting device may be, for example, a backlight of a liquid crystal display (LCD), a light source, a light source such as various sensors, a printer, a copier, a vehicle instrument light source, a signal lamp, an indicator light, a display device, a planar light emitting body, and the like. It can be effectively applied to a light source, a display, a decoration or various lights.
  • the present application relates to a lighting device including the organic light emitting device.
  • the organic light emitting device When the organic light emitting device is applied to the lighting device or other uses, other components constituting the device or the like or a method of constituting the device are not particularly limited, and are known in the art as long as the organic light emitting device is used. Any material or method can be employed.
  • the substrate for an organic electronic device of the present application can block the introduction of foreign substances such as moisture or oxygen, thereby improving durability and forming an organic electronic device having excellent light extraction efficiency.
  • the organic electronic device includes an encapsulation structure
  • the substrate may be stably adhered to the encapsulation structure, and the surface hardness of the terminal portion outside the organic electronic device may be maintained at an appropriate level.
  • 1 to 3 are schematic diagrams showing an exemplary substrate.
  • FIG 8 is a view illustrating a manufacturing process of an exemplary substrate.
  • 9 and 10 are photographs showing a process of removing the light scattering layer and the flat layer in Example 2.
  • 11 and 12 are photographs evaluating the durability of the organic light emitting element of the embodiment.
  • FIG. 13 is a photograph illustrating the durability of the organic light emitting diode of the comparative example.
  • the sol-gel coating liquid containing tetramethoxy silane as the condensable silane scattering particles (titanium oxide particles) having an average particle diameter of about 200 nm were blended and sufficiently dispersed to prepare a coating solution for a light scattering layer.
  • the prepared coating solution was coated on the entire surface of the glass substrate. Subsequently, in consideration of the position of the light emitting layer of the organic layer to be subsequently formed using a cloth soaked in acetone, a portion of the light scattering layer is removed so that the position of the remaining light scattering layer corresponds to the light emitting region, and a sol-gel reaction is performed to form a light scattering layer. It was.
  • a high refractive coating solution containing high refractive index titanium oxide particles having an average particle diameter of about 10 nm and a refractive index of about 2.5 was added to the sol-gel coating solution containing tetramethoxy silane in the same manner, and then wetted with acetone.
  • a portion of the flat layer was removed so that the position of the remaining flat layer corresponds to the light emitting region, and the formation area corresponds to the formation area of the light scattering layer.
  • the sol-gel reaction of the flat layer was performed to form a flat layer having a refractive index of about 1.8.
  • the hole injection electrode layer including ITO Indium Tin Oxide
  • ITO Indium Tin Oxide
  • the hole injection electrode layer including ITO is formed on the front surface of the glass substrate by a known sputtering method, and then a hole injection layer, a hole transport layer, A light emitting layer, an electron transport layer, an electron injection layer, and an electron injection electrode layer were formed. Thereafter, an organic light emitting device having an encapsulation structure as shown in FIG. 5 was manufactured using a glass can.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the light scattering layer and the flat layer were removed by a waterjet method.
  • the waterjet was performed by spraying a pressure water of 1,000 atm so that the width etched in one nozzle movement was about 3 mm.
  • the light scattering layer and the flat layer are removed in one direction, and then the light scattering layer and the flat layer are removed in a direction perpendicular to the direction as shown in FIG. 10.
  • the patterning was performed such that a rectangular light scattering layer having a length of about 5 cm and a length of about 5 cm and a flat layer remained.
  • an electrode layer, an organic layer, and an electrode layer were formed in the same manner as in Example 1, and a glass can was attached to manufacture an organic electronic device.
  • the light emitting region of the organic layer by the light emitting layer is formed in the center of the substrate to have a square shape having a length of about 4 cm and a length of about 4 cm.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the light-scattering layer and the flat layer formed on the entire surface of the glass substrate were formed without removing the ITO electrode layer, and the organic layer, the second electrode layer, and the encapsulation structure were sequentially formed to emit organic light.
  • the device was prepared.
  • FIG. 11 and 12 show initial light emitting states (FIGS. 11 (a) and 12 (a)) of Examples 1 and 2 and the light emitting states after being left at 85 ° C. for 500 hours (FIGS. 11 (b) and 12 (b)).
  • FIG. 13 is a view showing an initial light emitting state (FIG. 13 (a)) of Comparative Example 1 and a light emitting state (FIG. 13 (b)) after being left at 85 ° C. for 500 hours.
  • Comparative Example 1 from the figure, a large number of spots were observed at the time after 500 hours, it can be confirmed that the uniformity of the brightness is greatly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

본 출원은 유기전자소자용 기판, 유기전자장치, 상기 기판 또는 장치의 제조 방법 및 조명에 관한 것이다. 본 출원의 유기전자소자용 기판은, 예를 들면, 수분이나 산소 등과 같은 외래 물질이 유입되는 것을 차단하여 내구성이 향상되고, 광추출 효율이 우수한 유기전자장치를 형성할 수 있다. 유기전자장치가 봉지 구조를 포함하는 경우에 상기 기판은 상기 봉지 구조와 안정적으로 접착될 수 있고, 유기전자장치 외부의 단자부의 표면 경도도 적절한 수준으로 유지할 수 있다.

Description

유기전자소자용 기판
본 출원은, 유기전자소자용 기판, 유기전자장치, 상기 장치 또는 기판의 제조 방법 및 조명에 관한 것이다.
유기전자소자(OED; Organic Electronic Device)는, 전류를 전도할 수 있는 유기 재료의 층을 하나 이상 포함하는 소자이다. 유기전자소자의 종류에는 유기발광소자(OLED), 유기태양전지, 유기 감광체(OPC) 또는 유기 트랜지스터 등이 포함된다.
대표적인 유기전자소자인 유기발광소자는, 통상적으로 기판, 제 1 전극층, 유기층 및 제 2 전극층을 순차로 포함한다.
소위 하부 발광형 소자(bottom emitting device)로 호칭되는 구조에서는, 제 1 전극층이 투명 전극층으로 형성되고, 제 2 전극층이 반사 전극층으로 형성될 수 있다. 또한, 소위 상부 발광형 소자(top emitting device)로 호칭되는 구조에서는 제 1 전극층이 반사 전극층으로 형성되고, 제 2 전극층이 투명 전극층으로 형성되기도 한다.
전극층에 의해서 주입된 전자(electron)와 정공(hole)이 유기층에 존재하는 발광층에서 재결합(recombination)되어 광이 생성될 수 있다. 광은 하부 발광형 소자에서는 기판측으로 상부 발광형 소자에서는 제 2 전극층측으로 방출될 수 있다. 유기발광소자의 구조에서 투명 전극층으로 일반적으로 사용되는 ITO(Indium Tin Oxide), 유기층 및 통상적으로 유리 기판인 기판의 굴절률은 각각 대략적으로 2.0, 1.8 및 1.5 정도이다. 이러한 굴절률의 관계에 의해서, 예를 들어, 하부 발광형의 소자의 발광층에서 생성된 광은 유기층과 제 1 전극층의 계면 또는 기판 내에서 전반사(total internal reflection) 현상 등에 의해 트랩(trap)되고, 매우 소량의 광만이 방출된다.
유기전자소자에서 고려되어야 하는 중요한 문제로는 내구성도 존재한다. 유기층이나 전극 등은 수분이나 산소 등의 외래 물질에 매우 쉽게 산화될 수 있어서, 환경적 요인에 대한 내구성의 확보가 중요하다. 이를 위해 예를 들면, 특허문헌 1 내지 4 등은 외래 물질의 침투를 차단할 수 있는 구조를 제안하고 있다.
<선행기술문헌>
<특허문헌>
(특허문헌 1) 미국특허 제6,226,890호
(특허문헌 2) 미국특허 제6,808,828호
(특허문헌 3) 일본공개특허 제2000-145627호
(특허문헌 4) 일본공개특허 제2001-252505호
본 출원은, 유기전자소자용 기판, 유기전자장치, 상기 기판 또는 장치의 제조 방법 및 조명을 제공한다.
본 출원의 예시적인 유기전자소자용 기판은, 기재층; 광산란층 및 전극층을 포함한다. 상기에서 광산란층과 전극층은 기재층상에 순차로 형성되어 있을 수 있고, 따라서 광산란층은, 기재층과 전극층의 사이에 존재할 수 있다. 도 1 및 2는, 기재층(101)상에 광산란층(103)과 전극층(102)이 순차로 형성되어 있는 예시적인 기판을 나타낸다. 기판에서 전극층은, 그 형성 면적이 상기 광산란층의 형성 면적에 비하여 넓게 되도록 형성되어 있을 수 있다. 용어 「형성 면적」은, 기판을 상부에서 보았을 때에 인지되는 광산란층 또는 전극층의 면적이다. 광산란층의 형성 면적에 비하여 전극층의 형성 면적이 넓게 형성되는 한 광산란층은 다양한 형태로 존재할 수 있다. 예를 들면, 광산란층(103)은 도 1과 같이 기재층(101)의 테두리를 제외한 부분에만 형성되거나, 도 2와 같이 기재층(101)의 테두리에 광산란층이 일부 잔존할 수도 있다.
도 3은, 도 1의 기판을 상부에서 관찰한 경우를 예시적으로 보여주는 도면이고, 도 3에 나타난 바와 같이 기판을 상부에서 관찰할 때에 인지되는 전극층의 형성 면적(A)은 그 하부에 있는 광산란층의 형성 면적(B)에 비하여 크다. 전극층의 형성 면적(A) 및 상기 광산란층의 형성 면적(B)의 비율(A/B)은, 예를 들면, 1.04 이상, 1.06 이상, 1.08 이상, 1.1 이상 또는 1.15 이상일 수 있다. 또한, 상기 비율(A/B)의 상한은 특별히 제한되지 않으나, 예를 들면 상기 비율(A/B)은 약 2.0 이하, 약 1.5 이하, 약 1.4 이하, 약 1.3 이하 또는 약 1.25 이하일 수 있다. 상기 기판에서 전극층은 광산란층이 형성되어 있지 않은 상기 기재층의 면상에도 형성되어 있을 수 있다. 이러한 구조에 의하여 유기전자소자의 구현 시에 광산란층이 외부로 노출되지 않은 구조를 구현할 수 있다.
예를 들어, 도 3와 같이 전극층은, 상부에서 관찰한 때에 광산란층의 모든 주변부를 벗어난 영역을 포함하는 영역까지 형성되어 있을 수 있다. 이 경우, 예를 들어, 도 2와 같이 기재층상에 복수의 광산란층이 존재할 경우에는 상기 광산란층 중에서 적어도 하나의 광산란층, 예를 들면, 후술하는 바와 같이 적어도 그 상부에 유기층이 형성될 광산란층의 모든 주변부를 벗어난 영역을 포함하는 영역까지 전극층이 형성될 수 있다. 예를 들어, 도 2의 구조에서 우측과 좌측의 테두리에 존재하는 광산란층의 상부에도 유기층이 형성된다면, 도 2의 구조는 좌측과 우측으로 연장되어 상기 우측과 좌측의 테두리에 존재하는 광산란층의 모든 주변주를 벗어난 영역까지 전극층이 형성되도록 구조가 변경될 수 있다. 상기와 같은 구조에서 하부에 광산란층이 형성되어 있지 않은 전극층에 후술하는 봉지 구조를 부착하게 되면 광산란층을 밀봉하는 구조가 형성될 수 있다.
기재층으로는 특별한 제한 없이 적절한 소재가 사용될 수 있다. 예를 들어, 하부 발광(bottom emission)형 소자에 적용되는 경우에는, 투광성 기재층, 예를 들면, 가시광 영역의 광에 대한 투과율이 50% 이상인 기재층을 사용할 수 있다. 투광성 기재층으로는, 유리 기재층 또는 투명 고분자 기재층 등이 예시될 수 있다. 유리 기재층으로는, 소다석회 유리, 바륨/스트론튬 함유 유리, 납 유리, 알루미노 규산 유리, 붕규산 유리, 바륨 붕규산 유리 또는 석영 등의 기재층이 예시될 수 있고, 고분자 기재층으로는, PC(polycarbonate), 아크릴 수지, PET(poly(ethylene terephthatle)), PES(poly(ether sulfide)) 또는 PS(polysulfone) 등을 포함하는 기재층이 예시될 수 있으나, 이에 제한되는 것은 아니다. 필요에 따라서 상기 기재층은, 구동용 TFT가 존재하는 TFT 기판일 수도 있다.
기판이 상부 발광(top emission)형 소자에 적용되는 경우에는, 기재층은 반드시 투광성의 기재층일 필요는 없다. 필요한 경우 기재층의 표면 등에는 알루미늄 등을 사용한 반사층이 형성되어 있을 수도 있다.
전극층은, 유기전자소자의 제작에 사용되는 통상적인 정공 주입성 또는 전자 주입성 전극층일 수 있다.
정공 주입성인 전극층은, 예를 들면, 상대적으로 높은 일 함수(work function)를 가지는 재료를 사용하여 형성할 수 있고, 필요한 경우에 투명 재료를 사용하여 형성할 수 있다. 예를 들면, 정공 주입성 전극층은, 일 함수가 약 4.0 eV 이상인 금속, 합금, 전기 전도성 화합물 또는 상기 중 2종 이상의 혼합물을 포함할 수 있다. 이러한 재료로는, 금 등의 금속, CuI, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), ZTO(Zinc Tin Oxide), 알루미늄 또는 인듐이 도핑된 아연 옥사이드, 마그네슘 인듐 옥사이드, 니켈 텅스텐 옥사이드, ZnO, SnO2 또는 In2O3 등의 산화물 재료나, 갈륨 니트라이드와 같은 금속 니트라이드, 아연 세레나이드 등과 같은 금속 세레나이드, 아연 설파이드와 같은 금속 설파이드 등이 예시될 수 있다. 투명한 정공 주입성 전극층은, 또한, Au, Ag 또는 Cu 등의 금속 박막과 ZnS, TiO2 또는 ITO 등과 같은 고굴절의 투명 물질의 적층체 등을 사용하여서도 형성할 수 있다.
정공 주입성 전극층은, 증착, 스퍼터링, 화학 증착 또는 전기화학적 수단 등의 임의의 수단으로 형성될 수 있다. 또한, 필요에 따라서 형성된 전극층은 공지된 포토리소그래피나 새도우 마스크 등을 사용한 공정을 통하여 패턴화될 수도 있다.
전자 주입성 투명 전극층은, 예를 들면, 상대적으로 작은 일 함수를 가지는 투명 재료를 사용하여 형성할 수 있으며, 예를 들면, 상기 정공 주입성 전극층의 형성을 위해 사용되는 소재 중에서 적절한 소재를 사용하여 형성할 수 있으나, 이에 제한되는 것은 아니다. 전자 주입성 전극층도, 예를 들면, 증착법 또는 스퍼터링법 등을 사용하여 형성할 수 있으며, 필요한 경우에 적절히 패터닝될 수 있다.
광산란층은, 상기 층으로 입사되는 광을 산란, 굴절 또는 회절시킬 수 있도록 형성되는 층을 의미하며, 상기와 같은 기능이 나타나도록 구현되는 한 광산란층의 구현 형태는 특별히 제한되지 않는다.
예를 들면, 광산란층은, 매트릭스 물질 및 산란성 영역을 포함하는 층일 수 있다. 도 4는, 산란성 입자로 형성된 산란성 영역(1031) 및 매트릭스 물질(1032)을 포함하는 예시적인 광산란층이 기재층(101)에 형성되어 있는 형태를 나타낸다. 용어 「산란성 영역」은, 예를 들면, 매트릭스 물질 또는 후술하는 평탄층 등과 같은 주위 물질과는 다른 굴절률을 가지고, 또한 적절한 크기를 가져서 입사되는 광을 산란, 굴절 또는 회절시킬 수 있는 영역를 의미할 수 있다. 산란성 영역은, 예를 들면, 상기와 같은 굴절률 및 크기를 가지는 입자이거나, 혹은 빈 공간일 수 있다. 예를 들면, 주위 물질과는 다르면서 주위 물질에 비하여 높거나 낮은 굴절률을 가지는 입자를 사용하여 산란성 영역을 형성할 수 있다. 산란성 입자의 굴절률은, 주위 물질, 예를 들면, 상기 매트릭스 물질 및/또는 평탄층과의 굴절률의 차이가 0.3을 초과하거나 또는 0.3 이상일 수 있다. 예를 들면, 산란성 입자는, 1.0 내지 3.5 또는 1.0 내지 3.0 정도의 굴절률을 가질 수 있다. 용어 「굴절률」은, 약 550 nm 파장의 광에 대하여 측정한 굴절률이다. 산란성 입자의 굴절률은, 예를 들면, 1.0 내지 1.6 또는 1.0 내지 1.3일 수 있다. 다른 예시에서 산란성 입자의 굴절률은, 2.0 내지 3.5 또는 2.2 내지 3.0 정도일 수 있다. 산란성 입자로는, 예를 들면, 평균 입경이 50 nm 이상, 100 nm 이상, 500 nm 이상 또는 1,000 nm 이상인 입자가 예시될 수 있다. 산란성 입자의 평균 입경은, 예를 들면, 10,000 nm 이하일 수 있다. 산란성 영역은, 또한 상기와 같은 크기를 가지는 빈 공간으로서 공기가 충전되어 있는 공간에 의해서 형성될 수도 있다.
산란성 입자 또는 영역은, 구형, 타원형, 다면체 또는 무정형과 같은 형상을 가질 수 있으나, 상기 형태는 특별히 제한되는 것은 아니다. 산란성 입자로는, 예를 들면, 폴리스티렌 또는 그 유도체, 아크릴 수지 또는 그 유도체, 실리콘 수지 또는 그 유도체, 또는 노볼락 수지 또는 그 유도체 등과 같은 유기 재료, 또는 실리카, 알루미나, 산화 티탄 또는 산화 지르코늄과 같은 무기 재료를 포함하는 입자 등이 예시될 수 있다. 산란성 입자는, 상기 재료 중에 어느 하나의 재료만을 포함하거나, 상기 중 2종 이상의 재료를 포함하여 형성될 수 있다. 예를 들면, 산란성 입자로 중공 실리카(hollow silica) 등과 같은 중공 입자 또는 코어/셀 구조의 입자도 사용할 수 있다.
광산란층은 산란성 입자 등의 산란성 영역을 유지하는 매트릭스 물질을 추가로 포함할 수 있다. 매트릭스 물질로는, 예를 들면, 기재층 등과 같은 인접하는 다른 소재와 유사한 수준의 굴절률을 가지는 소재 또는 그보다 높은 굴절률을 가지는 소재를 사용하여 형성할 수 있다. 매트릭스 물질은, 예를 들면, 폴리이미드, 플루오렌 고리를 가지는 카도계 수지(caldo resin), 우레탄, 에폭시드, 폴리에스테르 또는 아크릴레이트 계열의 열 또는 광경화성의 단량체성, 올리고머성 또는 고분자성 유기 재료나 산화 규소, 질화 규소(silicon nitride), 옥시질화 규소(silicon oxynitride) 또는 폴리실록산 등의 무기 재료 또는 유무기 복합 재료 등을 사용할 수 있다.
매트릭스 물질은, 폴리실록산, 폴리아믹산 또는 폴리이미드를 포함할 수 있다. 상기에서 폴리실록산은, 예를 들면, 축합성 실란 화합물 또는 실록산 올리고머 등을 중축합시켜서 형성할 수 있으며, 상기를 통해 규소와 산소의 결합(Si-O)에 기반한 매트릭스 물질을 형성할 수 있다. 매트릭스 물질의 형성 과정에서 축합 조건 등을 조절하여 폴리실록산이 실록산 결합(Si-O)만을 기반으로 하도록 하거나, 혹은 알킬기 등과 같은 유기기나 알콕시기 등과 같은 축합성 관능기 등이 일부 잔존하도록 하는 것도 가능하다.
폴리아믹산 또는 폴리이미드로는, 예를 들면, 633 nm의 파장의 광에 대한 굴절률이 약 1.5 이상, 약 1.6 이상, 약 1.65 이상 또는 약 1.7 이상인 폴리아믹산 또는 폴리이미드를 사용할 수 있다. 이러한 고굴절의 폴리아믹산 또는 폴리이미드는, 예를 들면, 불소 이외의 할로겐 원자, 황 원자 또는 인 원자 등이 도입된 단량체를 사용하여 제조할 수 있다. 예를 들면, 카복실기 등과 같이 입자와 결합할 수 있는 부위가 존재하여 입자의 분산 안정성을 향상시킬 수 있는 폴리아믹산을 사용할 수 있다. 폴리아믹산으로는, 예를 들면, 하기 화학식 1의 반복 단위를 포함하는 화합물을 사용할 수 있다.
화학식 1
Figure PCTKR2012008361-appb-C000001
화학식 1에서 n은 양의 수이다.
상기 반복 단위는 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다. 치환기로는, 불소 외의 할로겐 원자, 페닐기, 벤질기, 나프틸기 또는 티오페닐기 등과 같은 할로겐 원자, 황 원자 또는 인 원자 등을 포함하는 관능기가 예시될 수 있다.
폴리아믹산은, 상기 화학식 1의 반복 단위만으로 형성되는 단독 중합체이거나, 화학식 1의 반복 단위 외의 다른 단위를 함께 포함하는 블록 또는 랜덤 공중합체일 수 있다. 공중합체의 경우에 다른 반복 단위의 종류나 비율은 예를 들면, 목적하는 굴절률, 내열성이나 투광율 등을 저해하지 않는 범위에서 적절하게 선택될 수 있다.
화학식 1의 반복 단위의 구체적인 예로는, 하기 화학식 2의 반복 단위를 들 수 있다.
화학식 2
Figure PCTKR2012008361-appb-C000002
화학식 2에서 n은 양의 수이다.
상기 폴리아믹산은 예를 들면, GPC(Gel Permeation Chromatograph)로 측정한 표준 폴리스티렌 환산 중량평균분자량이 10,000 내지 100,000 또는 약 10,000 내지 50,000 정도일 수 있다. 화학식 1의 반복 단위를 가지는 폴리아믹산은 또한, 가시 광선 영역에서의 광 투과율이 80% 이상, 85% 이상 또는 90% 이상이며, 내열성이 우수하다.
광산란층은, 예를 들면, 요철 구조를 가지는 층일 수 있다. 도 5는, 기재층(101)상에 형성된 요철 구조의 광산란층(103)을 예시적으로 보여주는 도면이다. 광산란층의 요철 구조를 적절하게 조절할 경우에 입사되는 광을 산란시킬 수 있다. 요철 구조를 가지는 광산란층은, 예를 들면, 열 또는 광 경화성 재료를 경화시키는 과정에서 목적하는 형상의 요철 구조를 전사할 수 있는 금형과 접촉시킨 상태로 상기 재료를 경화시키거나, 광산란층을 형성할 재료의 층을 미리 형성한 후에 에칭 공정 등을 통해 요철 구조를 형성하여 제조할 수 있다. 다른 방식으로는 광산란층을 형성하는 바인더 내에 적절한 크기 및 형상을 가지는 입자를 배합하는 방식으로 형성할 수도 있다. 이러한 경우에 상기 입자는 반드시 산란 기능을 가지는 입자일 필요는 없으나, 산란 기능을 가지는 입자를 사용하여도 무방하다.
광산란층은, 예를 들면, 습식 코팅(wet coating) 방식으로 재료를 코팅하고, 열의 인가 또는 광의 조사 등의 방식이나, 졸겔 방식으로 재료를 경화시키는 방식이나, CVD(Chemical Vapor Deposition) 또는 PVD(Physical Vapor Deposition) 방식 등과 같은 증착 방식 또는 나노임프린팅 또는 마이크로엠보싱 방식 등을 통하여 형성할 수 있다.
광산란층은, 필요한 경우 고굴절 입자를 추가로 포함할 수 있다. 용어 「고굴절 입자」는, 예를 들면, 굴절률이 1.5 이상, 2.0 이상 2.5 이상, 2.6 이상 또는 2.7 이상인 입자를 의미할 수 있다. 고굴절 입자의 굴절률의 상한은, 예를 들면, 목적하는 광산란층의 굴절률을 만족시킬 수 있는 범위에서 선택될 수 있다. 고굴절 입자는, 예를 들면, 상기 산란성 입자보다는 작은 평균 입경을 가질 수 있다. 고굴절 입자는, 예를 들면, 1 nm 내지 100 nm, 10 nm 내지 90 nm, 10 nm 내지 80 nm, 10 nm 내지 70 nm, 10 nm 내지 60 nm, 10 nm 내지 50 nm 또는 10 nm 내지 45 nm 정도의 평균 입경을 가질 수 있다. 고굴절 입자로는, 알루미나, 알루미노 실리케이트, 산화 티탄 또는 산화 지르코늄 등이 예시될 수 있다. 고굴절 입자로는, 예를 들면, 굴절률이 2.5 이상인 입자로서, 루틸형 산화 티탄을 사용할 수 있다. 루틸형의 산화 티탄은 여타의 입자에 비하여 높은 굴절률을 가지고, 따라서 상대적으로 적은 비율로도 목적하는 굴절률로의 조절이 가능할 수 있다.
기판은, 광산란층의 상부에 형성된 평탄층을 추가로 포함할 수 있다. 평탄층은, 상기 광산란층에 대응되는 형성 면적으로 형성될 수 있다. 본 명세서에서 용어 「A에 대응되는 형성 면적을 가지는 B」은, 특별히 달리 규정하지 않는 한, 기판을 상부에서 관찰하는 경우에 인지되는 면적을 기준으로 A의 형성 면적과 B의 형성 면적이 실질적으로 동일한 경우를 의미한다. 상기에서 실질적으로 동일하다는 것은 예를 들면, 공정 오차 등으로 인하여 두 영역의 형성 면적이 근소하게 차이가 나는 경우도 포함된다. 예를 들면, A의 형성 면적(AA)과 상기 A에 대응되는 형성 면적으로 가지는 B의 형성 면적(BA)의 비율(AA/BA)이 0.5 내지 1.5, 0.7 내지 1.3, 0.85 내지 1.15 또는 실질적으로 1인 경우도 상기의 경우에 포함될 수 있다. 평탄층이 추가로 존재하는 경우에 상기 광산란층과 평탄층이 상기 기재층과 전극층의 사이에 존재하고, 상기 전극층의 형성 면적은 상기 광산란층 및 평탄층의 형성 면적보다 넓으며, 상기 전극층은 상기 광산란층 및 평탄층이 형성되어 있지 않은 상기 기재층의 면상에도 형성되어 있을 수 있다. 다만, 평탄층은, 필수적인 것은 아니며, 예를 들어 광산란층 자체가 평탄하게 형성된다면, 존재하지 않을 수도 있다.
평탄층은, 예를 들면, 광산란층상에 전극이 형성될 수 있는 표면을 제공하고, 광산란층과의 상호 작용을 통하여 보다 우수한 광추출 효율을 구현할 수 있다. 평탄층은, 예를 들면, 인접하는 전극층과 동등한 굴절률을 가질 수 있다. 평탄층의 굴절률은, 예를 들면, 1.7 이상, 1.8 내지 3.5 또는 2.2 내지 3.0 정도일 수 있다. 평탄층이 전술한 요철 구조의 광산란층의 상부에 형성되는 경우에는 상기 평탄층은 상기 광산란층과는 상이한 굴절률을 가지도록 형성될 수 있다.
평탄층은, 예를 들면, 전술한 고굴절 입자를 매트릭스 물질과 혼합하는 방법으로 형성할 수 있다. 매트릭스 물질로는, 예를 들면, 상기 광산란층의 항목에서 기술한 매트릭스 물질을 사용할 수 있다.
다른 예시에서 평탄층은, 지르코늄, 티탄 또는 세륨 등의 금속의 알콕시드 또는 아실레이트(acylate) 등의 화합물을 카복실기 또는 히드록시기 등의 극성기를 가지는 바인더와 배합한 소재를 사용하여 형성할 수도 있다. 상기 알콕시드 또는 아실레이트 등의 화합물은 바인더에 있는 극성기와 축합 반응하고, 바인더의 골격 내에 상기 금속을 포함시켜 고굴절률을 구현할 수 있다. 상기 알콕시드 또는 아실레이트 화합물의 예로는, 테트라-n-부톡시 티탄, 테트라이소프로폭시 티탄, 테트라-n-프로폭시 티탄 또는 테트라에톡시 티탄 등의 티탄 알콕시드, 티탄 스테아레이트(stearate) 등의 티탄 아실레이트, 티탄 킬레이트류, 테트라-n-부톡시지르코늄, 테트라-n-프로폭시 지르코늄, 테트라이소프로폭시 지르코늄 또는 테트라에톡시 지르코늄 등의 지르코늄 알콕시드, 지르코늄 트리부톡시스테아레이트 등의 지르코늄 아실레이트, 지르코늄 킬레이트류 등이 예시될 수 있다. 평탄층은, 또한 티탄 알콕시드 또는 지르코늄 알콕시드 등의 금속 알콕시드 및 알코올 또는 물 등의 용매를 배합하여 코팅액을 제조하고, 이를 도포한 후에 적정한 온도에서 소성하는 졸겔 코팅 방식으로 형성할 수도 있다.
본 출원은 또한 유기전자장치에 관한 것이다. 본 출원의 예시적인 유기전자장치는, 기재층, 광산란층 및 전극층을 포함하는 기판을 포함할 수 있다. 기판으로는, 예를 들면, 상기 기술한 구조의 기판을 사용할 수 있다. 예를 들면, 유기전자장치는, 기재층; 상기 기재층상에 형성된 광산란층, 상기 광산란층상에 형성된 제 1 전극층, 상기 제 1 전극층상에 형성되어 있는 유기층; 및 상기 유기층상에 형성되어 있는 제 2 전극층을 포함할 수 있다. 상기에서 제 1 전극층의 형성 면적은 상기 광산란층의 형성 면적보다 넓으며, 상기 전극층은 상기 광산란층이 형성되어 있지 않은 상기 기재층의 면상에도 형성되어 있을 수 있다. 상기에서 기재층, 제 1 전극층 및 광산란층과 관련하여서는 이미 기술한 내용이 동일하게 적용될 수 있고, 필요한 경우 상기 기술한 평탄층이 광산란층과 제 1 전극층의 사이에 존재할 수 있다.
예를 들면, 상기 유기층은 적어도 발광층을 포함할 수 있다. 예를 들어, 제 1 전극층을 투명하게 구현하고, 제 2 전극층을 반사성 전극층으로 하면 유기층의 발광층에서 발생한 광이 광산란층을 거쳐서 기재층측으로 방사되는 하부 발광형 소자를 구현할 수 있다.
유기전자장치에서 광산란층은, 예를 들면, 발광층의 발광 영역에 대응되거나 발광 영역보다 큰 형성 면적을 가질 수 있다. 예를 들어, 광산란층의 형성 영역의 길이(B)와 발광층의 발광 영역의 길이(C)의 차이(B-C)는 약 10 ㎛ 내지 약 2 mm 정도일 수 있다. 상기에서 광산란층의 형성 영역의 길이(B)는 광산란층을 상부에서 관찰할 때에 인지되는 영역에서 임의의 방향에서의 길이이고, 이 경우 발광 영역의 길이(C)는 역시 발광 영역을 상부에서 관찰할 때에 인지되는 영역을 기준으로 상기 광산란층의 형성 영역의 길이(B)를 측정할 때에 동일한 방향에서 측정한 길이를 의미할 수 있다. 광산란층은 또한 상기 발광 영역에 대응되는 위치에 형성될 수 있다. 발광 영역에 대응되는 위치에 광산란층이 형성되어 있다는 것은, 예를 들면, 유기전자장치를 상부 또는 하부에서 관찰하는 경우에 발광 영역과 광산란층이 실질적으로 서로 겹쳐지는 경우를 의미할 수 있다.
하나의 예시에서 유기전자소자는 유기발광소자(OLED)일 수 있다. 유기발광소자인 경우, 상기 유기전자소자는, 예를 들면, 발광층을 적어도 포함하는 유기층이 정공 주입 전극층과 전자 주입 전극층의 사이에 개재된 구조를 가질 수 있다. 예를 들어, 기판에 포함되는 전극층이 정공 주입 전극층이면, 제 2 전극층은 전자 주입 전극층이고, 반대로 기판에 포함되는 전극층이 전자 주입 전극층이면, 제 2 전극층은 정공 주입성 전극층일 수 있다.
전자 및 정공 주입성 전극층의 사이에 존재하는 유기층은, 적어도 1층 이상의 발광층을 포함할 수 있다. 유기층은 2층 이상의 복수의 발광층을 포함할 수도 있다. 2층 이상의 발광층을 포함되는 경우에는, 발광층들은 전하 발생 특성을 가지는 중간 전극층이나 전하 발생층(CGL; Charge Generating Layer) 등에 의해 분할되어 있는 구조를 가질 수도 있다.
발광층은, 예를 들면, 이 분야에 공지된 다양한 형광 또는 인광 유기 재료를 사용하여 형성할 수 있다. 발광층의 재료로는, 트리스(4-메틸-8-퀴놀리놀레이트)알루미늄(III)(tris(4-methyl-8-quinolinolate)aluminum(III))(Alg3), 4-MAlq3 또는 Gaq3 등의 Alq 계열의 재료, C-545T(C26H26N2O2S), DSA-아민, TBSA, BTP, PAP-NPA, 스피로-FPA, Ph3Si(PhTDAOXD), PPCP(1,2,3,4,5-pentaphenyl-1,3-cyclopentadiene) 등과 같은 시클로페나디엔(cyclopenadiene) 유도체, DPVBi(4,4'-bis(2,2'-diphenylyinyl)-1,1'-biphenyl), 디스티릴 벤젠 또는 그 유도체 또는 DCJTB(4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7,-tetramethyljulolidyl-9-enyl)-4H-pyran), DDP, AAAP, NPAMLI, ; 또는 Firpic, m-Firpic, N-Firpic, bon2Ir(acac), (C6)2Ir(acac), bt2Ir(acac), dp2Ir(acac), bzq2Ir(acac), bo2Ir(acac), F2Ir(bpy), F2Ir(acac), op2Ir(acac), ppy2Ir(acac), tpy2Ir(acac), FIrppy(fac-tris[2-(4,5'-difluorophenyl)pyridine-C'2,N] iridium(III)) 또는 Btp2Ir(acac)(bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3') iridium(acetylactonate)) 등과 같은 인광 재료 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 발광층은, 상기 재료를 호스트(host)로 포함하고, 또한 페릴렌(perylene), 디스티릴비페닐(distyrylbiphenyl), DPT, 퀴나크리돈(quinacridone), 루브렌(rubrene), BTX, ABTX 또는 DCJTB 등을 도펀트로 포함하는 호스트-도펀트 시스템(Host-Dopant system)을 가질 수도 있다.
발광층은 또한 후술하는 전자 수용성 유기 화합물 또는 전자 공여성 유기 화합물 중에서 발광 특성을 나타내는 종류를 적절히 채용하여 형성할 수 있다.
유기층은, 발광층을 포함하는 한, 이 분야에 공지된 다른 다양한 기능성층을 추가로 포함하는 다양한 구조로 형성될 수 있다. 유기층에 포함될 수 있는 층으로는, 전자 주입층, 정공 저지층, 전자 수송층, 정공 수송층 및 정공 주입층 등이 예시될 수 있다.
전자 주입층 또는 전자 수송층은, 예를 들면, 전자 수용성 유기 화합물(electron accepting organic compound)을 사용하여 형성할 수 있다. 상기에서 전자 수용성 유기 화합물로는, 특별한 제한 없이 공지된 임의의 화합물이 사용될 수 있다. 이러한 유기 화합물로는, p-테르페닐(p-terphenyl) 또는 쿠아테르페닐(quaterphenyl) 등과 같은 다환 화합물 또는 그 유도체, 나프탈렌(naphthalene), 테트라센(tetracene), 피렌(pyrene), 코로넨(coronene), 크리센(chrysene), 안트라센(anthracene), 디페닐안트라센(diphenylanthracene), 나프타센(naphthacene) 또는 페난트렌(phenanthrene) 등과 같은 다환 탄화수소 화합물 또는 그 유도체, 페난트롤린(phenanthroline), 바소페난트롤린(bathophenanthroline), 페난트리딘(phenanthridine), 아크리딘(acridine), 퀴놀린(quinoline), 키노사린(quinoxaline) 또는 페나진(phenazine) 등의 복소환화합물 또는 그 유도체 등이 예시될 수 있다. 또한, 플루오르세인(fluoroceine), 페리렌(perylene), 프타로페리렌(phthaloperylene), 나프타로페리렌(naphthaloperylene), 페리논(perynone), 프타로페리논, 나프타로페리논, 디페닐부타디엔(diphenylbutadiene), 테트라페닐부타디엔(tetraphenylbutadiene), 옥사디아졸(oxadiazole), 아르다진(aldazine), 비스벤조옥사조린(bisbenzoxazoline), 비스스티릴(bisstyryl), 피라진(pyrazine), 사이크로펜타디엔(cyclopentadiene), 옥신(oxine), 아미노퀴놀린(aminoquinoline), 이민(imine), 디페닐에틸렌, 비닐안트라센, 디아미노카르바졸(diaminocarbazole), 피란(pyrane), 티오피란(thiopyrane), 폴리메틴(polymethine), 메로시아닌(merocyanine), 퀴나크리돈(quinacridone) 또는 루부렌(rubrene) 등이나 그 유도체, 일본특허공개 제1988-295695호, 일본특허공개 제1996-22557호, 일본특허공개 제1996-81472호, 일본특허공개 제1993-009470호 또는 일본특허공개 제1993-017764호 등의 공보에서 개시하는 금속 킬레이트 착체 화합물, 예를 들면, 금속 킬레이트화 옥사노이드화합물인 트리스(8-퀴놀리노라토)알루미늄[tris(8-quinolinolato)aluminium], 비스(8-퀴놀리노라토)마그네슘, 비스[벤조(에프)-8-퀴놀뤼노라토]아연{bis[benzo(f)-8-quinolinolato]zinc}, 비스(2-메틸-8-퀴놀리노라토)알루미늄, 트리스(8-퀴놀리노라토)인디엄[tris(8-quinolinolato)indium], 트리스(5-메틸-8-퀴놀리노라토)알루미늄, 8-퀴놀리노라토리튬, 트리스(5-클로로-8-퀴놀리노라토)갈륨, 비스(5-클로로-8-퀴놀리노라토)칼슘 등의 8-퀴놀리노라토 또는 그 유도체를 배립자로 하나 이상 가지는 금속 착체, 일본특허공개 제1993-202011호, 일본특허공개 제1995-179394호, 일본특허공개 제1995-278124호 또는 일본특허공개 제1995-228579호 등의 공보에 개시된 옥사디아졸(oxadiazole) 화합물, 일본특허공개 제1995-157473호 공보 등에 개시된 트리아진(triazine) 화합물, 일본특허공개 제1994-203963호 공보 등에 개시된 스틸벤(stilbene) 유도체나, 디스티릴아릴렌(distyrylarylene) 유도체, 일본특허공개 제1994-132080호 또는 일본특허공개 제1994-88072호 공보 등에 개시된 스티릴 유도체, 일본특허공개 제1994-100857호나 일본특허공개 제1994-207170호 공보 등에 개시된 디올레핀 유도체; 벤조옥사졸(benzooxazole) 화합물, 벤조티아졸(benzothiazole) 화합물 또는 벤조이미다졸(benzoimidazole) 화합물 등의 형광 증백제; 1,4-비스(2-메틸스티릴)벤젠, 1,4-비스(3-메틸스티릴)벤젠, 1,4-비스(4-메틸스티릴)벤젠, 디스티릴벤젠, 1,4-비스(2-에틸스티릴)벤질, 1,4-비스(3-에틸스티릴)벤젠, 1,4-비스(2-메틸스티릴)-2-메틸벤젠 또는 1,4-비스(2-메틸스티릴)-2-에틸벤젠 등과 같은 디스티릴벤젠(distyrylbenzene) 화합물; 2,5-비스(4-메틸스티릴)피라진, 2,5-비스(4-에틸스티릴)피라진, 2,5-비스[2-(1-나프틸)비닐]피라진, 2,5-비스(4-메톡시스티릴)피라진, 2,5-비스[2-(4-비페닐)비닐]피라진 또는 2,5-비스[2-(1-피레닐)비닐]피라진 등의 디스티릴피라진(distyrylpyrazine) 화합물, 1,4-페닐렌디메틸리딘, 4,4'-페닐렌디메틸리딘, 2,5-크실렌디메틸리딘, 2,6-나프틸렌디메틸리딘, 1,4-비페닐렌디메틸리딘, 1,4-파라-테레페닐렌디메텔리딘, 9,10-안트라센디일디메틸리딘(9,10-anthracenediyldimethylidine) 또는 4,4'-(2,2-디-티-부틸페닐비닐)비페닐, 4,4 -(2,2-디페닐비닐)비페닐 등과 같은 디메틸리딘(dimethylidine) 화합물 또는 그 유도체, 일본특허공개 제1994-49079호 또는 일본특허공개 제1994-293778호 공보 등에 개시된 실라나민(silanamine) 유도체, 일본특허공개 제1994-279322호 또는 일본특허공개 제1994-279323호 공보 등에 개시된 다관능 스티릴 화합물, 일본특허공개 제1994-107648호 또는 일본특허공개 제1994-092947호 공보 등에 개시되어 있는 옥사디아졸 유도체, 일본특허공개 제1994-206865호 공보 등에 개시된 안트라센 화합물, 일본특허공개 제1994-145146호 공보 등에 개시된 옥시네이트(oxynate) 유도체, 일본특허공개 제1992-96990호 공보 등에 개시된 테트라페닐부타디엔 화합물, 일본특허공개 제1991-296595호 공보 등에 개시된 유기 삼관능 화합물, 일본특허공개 제1990-191694호 공보 등에 개시된 쿠마린(coumarin)유도체, 일본특허공개 제1990-196885호 공보 등에 개시된 페리렌(perylene) 유도체, 일본특허공개 제1990-255789호 공보 등에 개시된 나프탈렌 유도체, 일본특허공개 제1990-289676호나 일본특허공개 제1990-88689호 공보 등에 개시된 프탈로페리논(phthaloperynone) 유도체 또는 일본특허공개 제1990-250292호 공보 등에 개시된 스티릴아민 유도체 등도 저굴절층에 포함되는 전자 수용성 유기 화합물로서 사용될 수 있다. 또한, 상기에서 전자 주입층은, 예를 들면, LiF 또는 CsF 등과 같은 재료를 사용하여 형성할 수도 있다.
정공 저지층은, 정공 주입성 전극층으로부터 주입된 정공이 발광층을 지나 전자 주입성 전극층으로 진입하는 것을 방지하여 소자의 수명과 효율을 향상시킬 수 있는 층이고, 필요한 경우에 공지의 재료를 사용하여 발광층과 전자 주입성 전극층의 사이에 적절한 부분에 형성될 수 있다.
정공 주입층 또는 정공 수송층은, 예를 들면, 전자 공여성 유기 화합물(electron donating organic compound)을 포함할 수 있다. 전자 공여성 유기 화합물로는, N,N',N'-테트라페닐-4,4'-디아미노페닐, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노비페닐, 2,2-비스(4-디-p-톨릴아미노페닐)프로판, N,N,N',N'-테트라-p-톨릴-4,4'-디아미노비페닐, 비스(4-디-p-톨릴아미노페닐)페닐메탄, N,N'-디페닐-N,N'-디(4-메톡시페닐)-4,4'-디아미노비페닐, N,N,N',N'-테트라페닐-4,4'-디아미노디페닐에테르, 4,4'-비스(디페닐아미노)쿠아드리페닐[4,4'-bis(diphenylamino)quadriphenyl], 4-N,N-디페닐아미노-(2-디페닐비닐)벤젠, 3-메톡시-4'-N,N-디페닐아미노스틸벤젠, N-페닐카르바졸, 1,1-비스(4-디-p-트리아미노페닐)시크로헥산, 1,1-비스(4-디-p-트리아미노페닐)-4-페닐시크로헥산, 비스(4-디메틸아미노-2-메틸페닐)페닐메탄, N,N,N-트리(p-톨릴)아민, 4-(디-p-톨릴아미노)-4'-[4-(디-p-톨릴아미노)스티릴]스틸벤, N,N,N',N'-테트라페닐-4,4'-디아미노비페닐 N-페닐카르바졸, 4,4'-비스[N-(1-나프틸)-N-페닐-아미노]비페닐, 4,4'-비스[N-(1-나프틸)-N-페닐아미노]p-테르페닐, 4,4'-비스[N-(2-나프틸)-N-페닐아미노]비페닐, 4,4'-비스[N-(3-아세나프테닐)-N-페닐아미노]비페닐, 1,5-비스[N-(1-나프틸)-N-페닐아미노]나프탈렌, 4,4'-비스[N-(9-안트릴)-N-페닐아미노]비페닐페닐아미노]비페닐, 4,4'-비스[N-(1-안트릴)-N-페닐아미노]-p-테르페닐, 4,4'-비스[N-(2-페난트릴)-N-페닐아미노]비페닐, 4,4'-비스[N-(8-플루오란테닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(2-피레닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(2-페릴레닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(1-코로네닐)-N-페닐아미노]비페닐(4,4'-bis[N-(1-coronenyl)-N-phenylamino]biphenyl), 2,6-비스(디-p-톨릴아미노)나프탈렌, 2,6-비스[디-(1-나프틸)아미노]나프탈렌, 2,6-비스[N-(1-나프틸)-N-(2-나프틸)아미노]나프탈렌, 4,4'-비스[N,N-디(2-나프틸)아미노]테르페닐, 4,4'-비스{N-페닐-N-[4-(1-나프틸)페닐]아미노}비페닐, 4,4'-비스[N-페닐-N-(2-피레닐)아미노]비페닐, 2,6-비스[N,N-디-(2-나프틸)아미노]플루오렌 또는 4,4'-비스(N,N-디-p-톨릴아미노)테르페닐, 및 비스(N-1-나프틸)(N-2-나프틸)아민 등과 같은 아릴 아민 화합물이 대표적으로 예시될 수 있으나, 이에 제한되는 것은 아니다.
정공 주입층이나 정공 수송층은, 유기화합물을 고분자 중에 분산시키거나, 상기 유기 화합물로부터 유래한 고분자를 사용하여 형성할 수도 있다. 또한, 폴리파라페닐렌비닐렌 및 그 유도체 등과 같이 소위 π-공역 고분자(π-conjugated polymers), 폴리(N-비닐카르바졸) 등의 정공 수송성 비공역 고분자 또는 폴리실란의 σ-공역 고분자 등도 사용될 수 있다.
정공 주입층은, 구리프탈로시아닌과 같은 금속 프탈로시아닌이나 비금속 프탈로시아닌, 카본막 및 폴리아닐린 등의 전기적으로 전도성인 고분자 들을 사용하여 형성하거나, 상기 아릴 아민 화합물을 산화제로 하여 루이스산(Lewis acid)과 반응시켜서 형성할 수도 있다.
예시적으로 유기발광소자는, 순차적으로 형성된 (1) 정공 주입 전극층/유기 발광층/전자 주입 전극층의 형태; (2) 정공 주입 전극층/정공 주입층/유기 발광층/전자 주입 전극층의 형태; (3) 정공 주입 전극층/유기 발광층/전자 주입층/전자 주입 전극층의 형태; (4) 정공 주입 전극층/정공 주입층/유기 발광층/전자 주입층/전자 주입 전극층의 형태; (5) 정공 주입 전극층/유기 반도체층/유기 발광층/전자 주입 전극층의 형태; (6) 정공 주입 전극층/유기 반도체층/전자장벽층/유기 발광층/전자 주입 전극층의 형태; (7) 정공 주입 전극층/유기 반도체층/유기 발광층/부착개선층/전자 주입 전극층의 형태; (8) 정공 주입 전극층/정공 주입층/정공 수송층/유기 발광층/전자 주입층/전자 주입 전극층의 형태; (9) 정공 주입 전극층/절연층/유기 발광층/절연층/전자 주입 전극층의 형태; (10) 정공 주입 전극층/무기 반도체층/절연층/유기 발광층/절연층/전자 주입 전극층의 형태; (11) 정공 주입 전극층/유기 반도체층/절연층/유기 발광층/절연층/전자 주입 전극층의 형태; (12) 정공 주입 전극층/절연층/정공 주입층/정공 수송층/유기 발광층/절연층/전자 주입 전극층의 형태 또는 (13) 정공 주입 전극층/절연층/정공 주입층/정공 수송층/유기 발광층/전자 주입층/전자 주입 전극층의 형태를 가질 수 있으며, 경우에 따라서는 정공 주입 전극층과 전자 주입 전극층의 사이에 적어도 2개의 발광층이 전하 발생 특성을 가지는 중간 전극층 또는 전하 발생층(CGL: Charge Generating Layer)에 의해 분할되어 있는 구조의 유기층을 포함하는 형태를 가질 수도 있으나, 이에 제한되는 것은 아니다.
이 분야에서는 정공 또는 전자 주입 전극층과 유기층, 예를 들면, 발광층, 전자 주입 또는 수송층, 정공 주입 또는 수송층을 형성하기 위한 다양한 소재 및 그 형성 방법이 공지되어 있으며, 상기 유기전자장치의 제조에는 상기와 같은 방식이 모두 적용될 수 있다.
유기전자장치는, 봉지 구조를 추가로 포함할 수 있다. 상기 봉지 구조는, 유기전자장치의 유기층으로 수분이나 산소 등과 같은 외래 물질이 유입되지 않도록 하는 보호 구조일 수 있다. 봉지 구조는, 예를 들면, 글라스캔 또는 금속캔 등과 같은 캔이거나, 상기 유기층의 전면을 덮고 있는 필름일 수 있다.
도 6은, 순차 형성된 기재층(101), 광산란층(103) 및 제 1 전극층(102)을 포함하는 기판 상에 형성된 유기층(401) 및 제 2 전극층(402)이 글라스캔 또는 금속캔 등과 같은 캔 구조의 봉지 구조(403)에 의해 보호되어 있는 형태를 예시적으로 보여준다. 도 6과 같이 봉지 구조(403)는, 예를 들면, 접착제(404)에 의해서 기판에 부착되어 있을 수 있다. 봉지 구조는, 예를 들면, 기판에서 하부에 광산란층이 존재하지 않는 전극층에 접착되어 있을 수 있다. 예를 들면, 도 6과 같이 봉지 구조(403)는, 기판의 끝단에 접착제(404)에 의해 부착되어 있을 수 있다. 이러한 방식으로 봉지 구조를 통한 보호 효과를 극대화할 수 있다.
봉지 구조는, 예를 들면, 유기층과 제 2 전극층의 전면을 피복하고 있는 필름일 수 있다. 도 7은, 유기층(401)과 제 2 전극층(402)의 전면을 덮고 있는 필름 형태의 봉지 구조(501)를 예시적으로 나타내고 있다. 예를 들면, 필름 형태의 봉지 구조(501)는, 도 7과 같이 유기층(401)과 제 2 전극층(402)의 전면을 피복하면서, 상기 기재층(101), 광산란층(103) 및 전극층(102)을 포함하는 기판과 상부의 제 2 기판(502)을 서로 접착시키고 있는 구조를 가질 수 있다. 상기에서 제 2 기판으로는, 예를 들면, 유리 기판, 금속 기판, 고분자 필름 또는 배리어층 등이 예시될 수 있다. 필름 형태의 봉지 구조는, 예를 들면, 에폭시 수지 등과 같이 열 또는 자외선(UV)의 조사 등에 의해 경화되는 액상의 재료를 도포하고, 경화시켜서 형성하고나, 혹은 상기 에폭시 수지 등을 사용하여 미리 필름 형태로 제조된 접착 시트 등을 사용하여 기판과 상부 기판을 라미네이트하는 방식으로 형성할 수 있다.
봉지 구조는, 필요한 경우, 산화 칼슘, 산화 베릴륨 등의 금속 산화물, 염화 칼슘 등과 같은 금속 할로겐화물 또는 오산화 인 등과 같은 수분 흡착제 또는 게터재 등을 포함할 수 있다. 수분 흡착제 또는 게터재는, 예를 들면, 필름 형태의 봉지 구조의 내부에 포함되어 있거나, 혹은 캔 구조의 봉지 구조의 소정 위치에 존재할 수 있다. 봉지 구조는 또한 배리어 필름이나 전도성 필름 등을 추가로 포함할 수 있다.
상기 봉지 구조는, 예를 들면, 도 6 또는 7에 나타난 바와 같이, 하부에 광산란층 또는 광산란층 및 평탄층이 형성되어 있지 않은 제 1 전극층의 상부에 부착되어 있을 수 있다. 이에 따라서 상기 광산란층 또는 광산란층 및 평탄층이 외부로 노출되지 않는 밀봉 구조를 구현할 수 있다. 상기 밀봉 구조는, 예를 들면, 광산란층 또는 광산란층 및 평탄층의 전면이 상기 기재층, 전극층 및/또는 봉지 구조에 의해 둘러싸이거나, 또는 상기 기재층, 전극층 및/또는 봉지 구조를 포함하여 형성되는 밀봉 구조에 의해서 둘러싸여서 외부로 노출되지 않는 상태를 의미할 수 있다. 밀봉 구조는, 기재층, 전극층 및/또는 봉지 구조만으로 형성되거나, 광산란층 또는 광산란층 및 평탄층이 외부로 노출되지 않도록 형성되는 한, 상기 기재층, 전극층 및 봉지 구조를 포함하고, 또한 다른 요소도 포함하여 형성될 수 있다. 예를 들면, 도 6 또는 7에서 기재층(101)과 전극층(102)이 접하는 부분 또는 제 1 전극층(102)과 봉지 구조(403, 501)가 접하는 부분 또는 그 외의 위치에 다른 요소가 존재할 수 있다. 상기 다른 요소로는 저투습성의 유기 물질, 무기 물질 또는 유무기 복합 물질이나, 절연층 또는 보조 전극 등이 예시될 수 있다.
본 출원은 또한 유기전자소자용 기판 또는 유기전자소자의 제조 방법에 대한 것이다. 예시적인 상기 방법은, 기재층상에 형성되어 있는 광산란층 또는 광산란층 및 평탄층을 가공하여 상기 광산란층 또는 광산란층 및 평탄층의 적어도 일부를 제거하는 것을 포함할 수 있다. 기재상에 형성된 광산란층 또는 광산란층 및 평탄층은, 상기 가공을 통하여, 예를 들면, 전술한 바와 같이 발광 영역에 대응되는 위치에만 존재하도록 패터닝(patterning)될 수 있다.
예를 들면, 도 8에 나타난 바와 같이, 기재층(101)의 전면에 광산란층(103)을 형성한 후에 형성된 광산란층(103)의 일부를 제거할 수 있다. 또한, 광산란층과 함께 전술한 평탄층이 형성되는 경우에는, 평탄층도 광산란층과 함께 제거될 수 있다. 기재층상에 광산란층 및/또는 평탄층을 형성하는 방법은 특별히 제한되지 않으며, 각 광산란층 및/또는 평탄층의 태양에 따라서 통상적인 방식을 적용하면 된다. 예를 들어, 광산란층 및/또는 평탄층은, 상기 기술한 코팅 방식, CVD(Chemical Vapor Deposition) 또는 PVD(Physical Vapor Deposition) 등과 같은 증착 방식 또는 나노임프린팅 또는 마이크로엠보싱 방식 등을 통하여 형성할 수 있다.
기재층상에 형성된 광산란층 또는 광산란층 및 평탄층의 일부를 제거하는 방식은 특별히 제한되지 않으며, 형성된 광산란층 또는 광산란층 및 평탄층의 종류를 고려하여 적절한 방식이 적용될 수 있다.
예를 들면, 광산란층 및/또는 평탄층을 그 층을 용해시킬 수 있는 에칭액 등으로 처리하는 습식 또는 건식 에칭 등에 적용하여 상기 층을 제거할 수 있다.
다른 예시에서 광산란층 및/또는 평탄층은, 레이저 가공을 통해 제거될 수도 있다. 예를 들면, 기재층상에 광산란층 및/또는 평탄층을 형성한 후에 레이저를 조사하여 제거할 수 있다. 레이저는 예를 들면, 광산란층 및/또는 평탄층이 형성된 측에서 조사되거나, 기재층이 투광성인 경우에는 기재층측에서 조사될 수 있다.
레이저로는, 적절한 출력을 나타내어서 광산란층 및/또는 평탄층을 제거할 수 있는 것이라면 어떠한 종류도 사용될 수 있다.
레이저로는, 예를 들면, 파이버 다이오드 레이저(fiber diode laser), 루비(Cr3+:Al2O3), YAG(Nd3+:Y3Al5O12), 포스페이트 글래스(phosphate glass), 실리케이트 글래스(silicate glass) 또는 YLF(Nd3+:LiYF4) 등이 사용될 수 있다. 이러한 레이저는, 예를 들면, 스팟 레이저(spot laser) 또는 라인 빔 레이저(line beam laser)의 형태로 조사될 수 있다. 레이저의 조사 조건은 적절한 가공이 이루어질 수 있도록 조절되는 한 특별히 제한되지 않는다. 예를 들면, 자외선(UV) 내지 적외선(IR) 영역에 속하는 파장의 레이저를 약 1 W 내지 약 10 W 정도의 출력으로 조사할 수 있지만 이에 제한되는 것은 아니다.
광산란층 및/또는 평탄층은 또한 워터젯(water jet) 방식으로 제거될 수도 있다. 워터젯 방식은 소정 압력으로 물을 분사하여 대상을 제거하는 방식이다. 예를 들면, 약 500 기압 내지 2000 기압 또는 약 800 기압 내지 1300 기압의 압력으로 물을 분사하여 광산란층 및/또는 평탄층을 제거할 수 있다. 효율적인 제거를 위하여 분사되는 압력수는 연마제를 추가로 포함할 수 있다. 연마제로는 제거될 대상을 고려하여 공지의 소재 중에 적절한 소재가 적절한 비율로 사용될 수 있다.
워터젯 방식을 적용하는 경우에 분사 반경이나 속도는 특별히 제한되지 않으며, 제거하고자 하는 부위나 패턴 등을 고려하여 선택될 수 있다. 예를 들어, 워터젯 과정에서 분사 폭이 약 1 mm 내지 약 10 mm 또는 약 2 mm 내지 약 5 mm 정도가 되도록 조절할 수 있다. 이를 통해서 정밀하게 광산란층 및/또는 평탄층을 제거할 수 있다. 또한, 워터젯을 통한 식각의 속도는 예를 들면, 약 300 mm/min 내지 약 2000 mm/min 또는 약 500 mm/min 내지 약 1200 mm/min 정도일 수 있고, 이를 통하여 적절한 공정 효율을 확보하면서, 효율적인 제거가 가능하다.
광산란층 및/또는 평탄층의 가공 형태는 특별히 제한되지 않고, 목적에 따라 변경될 수 있다. 예를 들면, 상기 가공은, 광산란층 등의 적어도 일부가 제거되어, 잔존하는 광산란층 및/또는 평탄층의 위치가 상기 발광층의 발광 영역에 대응되며, 그 형성 면적은 발광층 또는 발광층에 의해 형성되는 발광 영역에 대응되거나 또는 그보다 크게 되도록 수행될 수 있다. 이 외에도 필요한 경우 다양한 패턴으로 광산란층은 가공될 수 있다. 또한, 상기한 봉지 구조와의 접합을 위하여 접착제가 도포되는 영역이나 소자의 단자 영역에 해당하는 부위에 존재하는 광산란층 또는 광산란층과 평탄층의 적층 구조가 제거될 수도 있다.
상기 제조 방법은, 광산란층 또는 광산란층과 평탄층의 적층 구조의 제거 후에 전극층을 형성하는 것을 추가로 포함할 수 있다. 이 경우 전극층은, 기재층과 함께 가공된 상기 광산란층 및/또는 평탄층을 밀봉할 수 있는 밀봉 구조를 형성하도록 형성될 수 있다. 전극층을 형성하는 방식은 특별히 제한되지 않고, 공지의 증착, 스퍼터링, 화학 증착 또는 전기화학적 방식 등의 임의의 방식으로 형성할 수 있다.
유기전자소자의 제조 방법은 상기와 같이 전극층을 형성한 후에 발광층을 포함하는 유기층과 제 2 전극층을 형성하고, 추가로 봉지 구조를 형성하는 것을 포함할 수 있다. 이 경우, 유기층, 제 2 전극층 및 봉지 구조는 공지된 방식으로 형성할 수 있다.
본 출원은 또한 상기 기술한 유기전자장치, 예를 들면, 유기발광장치의 용도에 관한 것이다. 상기 유기발광장치는, 예를 들면, 액정표시장치(LCD; Liquid Crystal Display)의 백라이트, 조명, 각종 센서, 프린터, 복사기 등의 광원, 차량용 계기 광원, 신호등, 표시등, 표시장치, 면상발광체의 광원, 디스플레이, 장식 또는 각종 라이트 등에 효과적으로 적용될 수 있다. 하나의 예시에서 본 출원은, 상기 유기발광소자를 포함하는 조명 장치에 관한 것이다. 상기 조명 장치 또는 기타 다른 용도에 상기 유기발광소자가 적용될 경우에, 상기 장치 등을 구성하는 다른 부품이나 그 장치의 구성 방법은 특별히 제한되지 않고, 상기 유기발광소자가 사용되는 한, 해당 분야에 공지되어 있는 임의의 재료나 방식이 모두 채용될 수 있다.
본 출원의 유기전자소자용 기판은, 예를 들면, 수분이나 산소 등과 같은 외래 물질이 유입되는 것을 차단하여 내구성이 향상되고, 광추출 효율이 우수한 유기전자장치를 형성할 수 있다. 유기전자장치가 봉지 구조를 포함하는 경우에 상기 기판은 상기 봉지 구조와 안정적으로 접착될 수 있고, 유기전자장치 외부의 단자부의 표면 경도도 적절한 수준으로 유지할 수 있다.
도 1 내지 3은, 예시적인 기판을 나타내는 모식도이다.
도 4 및 5는 광산란층의 예시를 나타내는 도면이다.
도 6 및 7은, 예시적인 유기전자장치를 나타내는 도면이다.
도 8은 예시적인 기판의 제조 과정을 보여주는 도면이다.
도 9 및 10은 실시예 2에서 광산란층과 평탄층을 제거하는 과정을 보여주는 사진이다.
도 11 및 12는, 실시예의 유기발광소자의 내구성을 평가한 사진이다.
도 13는 비교예의 유기발광소자의 내구성을 평가한 사진이다.
<부호의 설명>
101: 기재층
102: 전극층
103: 광산란층
1031: 산란성 영역
1032: 매트릭스 물질
401: 유기층
402: 제 2 전극층
403, 501: 봉지 구조
404: 접착제
502: 상부 기판
이하, 본 출원에 따른 실시예 및 본 출원에 따르지 않는 비교예를 통하여 본 출원을 보다 구체적으로 설명하지만, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1
축합성 실란으로서 테트라메톡시 실란을 포함하는 졸겔 코팅액 내에 평균 입경이 약 200 nm인 산란성 입자(산화 티탄 입자)를 배합하고, 충분히 분산시켜서 광산란층용 코팅액을 제조하였다. 제조된 코팅액을 유리 기판의 전면에 코팅하였다. 이어서, 아세톤에 적신 천을 사용하여 후속하여 형성될 유기층의 발광층의 위치를 고려하여 잔존 광산란층의 위치가 발광 영역에 대응될 수 있도록 광산란층의 일부를 제거하고, 졸겔 반응을 진행시켜서 광산란층을 형성하였다. 그 후, 동일하게 테트라메톡시 실란을 포함하는 졸겔 코팅액에 평균 입경이 약 10 nm이고, 굴절률이 약 2.5 정도인 고굴절 산화 티탄 입자를 배합한 고굴절 코팅액을 광산란층의 상부에 코팅한 후에 아세톤에 적신 천을 사용하여 후속하여 형성될 유기층의 발광층의 위치를 고려하여 잔존 평탄층의 위치가 발광 영역에 대응되고, 형성 면적은 광산란층의 형성 면적에 대응되도록 평탄층의 일부를 제거하였다. 이어서 평탄층의 졸겔 반응을 진행하여 굴절률이 약 1.8 정도인 평탄층을 형성하였다. 제거 후에 공지의 스퍼터링 방식으로 ITO(Indium Tin Oxide)를 포함하는 정공 주입성 전극층을 상기 전극층이 상기 유리 기판의 전면에 형성하고, 계속하여 공지의 소재 및 방식을 사용하여 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 및 전자 주입성 전극층을 형성하였다. 그 후 글라스캔을 사용하여 도 5와 같은 봉지 구조를 가지는 유기발광장치를 제작하였다.
실시예 2
광산란층과 평탄층의 제거를 워터젯 방식으로 수행한 것을 제외하고는, 실시예 1과 동일하게 유기발광장치를 제조하였다. 워터젯은, 1회 노즐 이동 시에 식각되는 폭이 약 3 mm 정도가 되도록 1,000 기압의 압력수를 분사하여 수행하였다. 구체적으로는 도 9에 나타난 바와 같이 우선 일 방향으로 광산란층과 평탄층을 제거한 후에 다시 도 10에 나타난 바와 같이 상기 방향과는 수직한 방향으로 광산란층과 평탄층을 제거하여 기판의 중심부에 가로의 길이가 약 5 cm이고, 세로의 길이가 약 5 cm인 사각 형상의 광산란층과 평탄층이 잔존하도록 패터닝을 수행하였다. 이어서, 실시예 1과 동일한 방식으로 전극층, 유기층 및 전극층을 형성하고, 글라스캔을 부착하여 유기전자장치를 제조하였다. 상기에서 유기층의 발광층에 의한 발광 영역은 기판의 중심부에 가로의 길이가 약 4 cm이고, 세로의 길이가 약 4 cm인 사각 형상으로 형성되도록 형성하였다.
비교예 1
실시예 1과 동일하게 유기발광장치를 제조하되, 유리 기판의 전면에 형성된 광산란층과 평탄층을 제거하지 않고, 그대로 ITO 전극층을 형성하고, 유기층, 제 2 전극층 및 봉지 구조를 순차 형성하여 유기발광장치를 제조하였다.
시험예. 발광 상태의 측정
실시예 및 비교예의 유기발광장치의 초기 발광 상태를 관찰한 후에 각 장치를 85℃에서 500 시간 동안 방치하고, 다시 발광 상태를 측정하여 내구성을 평가하였다. 도 11 및 12는 각각 실시예 1 및 2의 초기 발광 상태(도 11(a) 및 12(a))와 85℃에서 500 시간 동안 방치한 후의 발광 상태(도 11(b) 및 12(b))를 보여주는 도면이고, 도 13는, 비교예 1의 초기 발광 상태(도 13(a))와 85℃에서 500 시간 동안 방치한 후의 발광 상태(도 13(b))를 보여주는 도면이다. 도면으로부터 비교예 1의 경우, 500 시간이 지난 시점에서 많은 얼룩이 관찰되어 휘도의 균일도가 크게 떨어지는 것을 확인할 수 있다.

Claims (20)

  1. 기재층; 광산란층 및 전극층을 순차 포함하고, 상기 전극층의 형성 면적은 상기 광산란층의 형성 면적보다 넓으며, 상기 전극층은 상기 광산란층이 형성되어 있지 않은 상기 기재층의 면상에도 형성되어 있는 유기전자소자용 기판.
  2. 제 1 항에 있어서, 전극층의 형성 면적(A)과 광산란층의 형성 면적(B)의 비율(A/B)이 1.04 이상인 유기전자소자용 기판.
  3. 제 1 항에 있어서, 전극층은, 광산란층의 모든 주변부를 벗어난 영역까지 형성되어 있는 유기전자소자용 기판.
  4. 제 1 항에 있어서, 기재층은 투광성인 유기전자소자용 기판.
  5. 제 1 항에 있어서, 전극층은 정공 주입성 전극층 또는 전자 주입성 전극층인 유기전자소자용 기판.
  6. 제 1 항에 있어서, 광산란층은, 매트릭스 물질 및 상기 매트릭스 물질과는 굴절률이 다른 산란성 입자를 포함하는 유기전자소자용 기판.
  7. 제 6 항에 있어서, 매트릭스 물질은, 폴리실록산, 폴리아믹산 또는 폴리이미드를 포함하는 유기전자소자용 기판.
  8. 제 6 항에 있어서, 산란성 입자의 굴절률이 1.0 내지 3.5인 유기전자소자용 기판.
  9. 제 1 항에 있어서, 광산란층은, 요철 구조를 가지는 층인 유기전자소자용 기판.
  10. 제 1 항에 있어서, 광산란층 및 전극층의 사이에 형성되어 있는 평탄층을 추가로 포함하는 유기전자소자용 기판.
  11. 제 10 항에 있어서, 평탄층은 굴절률이 1.7 이상인 유기전자소자용 기판.
  12. 기재층; 상기 기재층상에 형성된 광산란층, 상기 광산란층상에 형성된 제 1 전극층, 상기 제 1 전극층상에 형성되어 있고, 발광층을 포함하는 유기층; 및 상기 유기층상에 형성되어 있는 제 2 전극층을 포함하고, 상기 제 1 전극층의 형성 면적은 상기 광산란층의 형성 면적보다 넓으며, 상기 전극층은 상기 광산란층이 형성되어 있지 않은 상기 기재층의 면상에도 형성되어 있는 유기전자장치.
  13. 제 12 항에 있어서, 광산란층의 형성 영역의 길이(B)와 발광층의 발광 영역의 길이(C)의 차이(B-C)는 10 ㎛ 내지 2 mm인 유기전자장치.
  14. 제 12 항에 있어서, 유기층과 제 2 전극층을 보호하는 봉지 구조를 추가로 포함하고, 상기 봉지 구조는 하부에 광산란층이 형성되어 있지 않은 제 1 전극층의 상부에 부착되어 있는 유기전자장치.
  15. 제 14 항에 있어서, 봉지 구조는 글라스캔 또는 금속캔인 유기전자장치.
  16. 제 14 항에 있어서, 봉지 구조는 유기층과 제 2 전극층의 전면을 덮고 있는 필름인 유기전자장치.
  17. 기재층상에 형성되어 있는 광산란층을 가공하여 상기 광산란층의 일부를 제거하는 것을 포함하는 유기전자소자용 기판의 제조 방법.
  18. 제 17 항에 있어서, 광산란층의 가공은 습식 에칭, 건식 에칭, 레이저 가공 또는 워터젯으로 수행하는 유기전자소자용 기판의 제조 방법.
  19. 제 17 항에 있어서, 광산란층을 제거한 후에 상기 광산란층이 제거된 영역을 포함하는 영역에 전극층을 형성하는 것을 추가로 포함하는 유기전자소자용 기판의 제조 방법.
  20. 제 12 항의 유기전자장치를 포함하는 조명.
PCT/KR2012/008361 2011-10-17 2012-10-15 유기전자소자용 기판 WO2013058505A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280062445.1A CN104303327B (zh) 2011-10-17 2012-10-15 用于有机电子器件的基板
EP12842033.8A EP2770551B1 (en) 2011-10-17 2012-10-15 Organic electronic device
JP2014535651A JP5709194B2 (ja) 2011-10-17 2012-10-15 有機電子素子用基板
US14/255,493 US9461275B2 (en) 2011-10-17 2014-04-17 Substrate for organic electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110105957 2011-10-17
KR10-2011-0105957 2011-10-17
KR1020120111540A KR101353434B1 (ko) 2011-10-17 2012-10-08 유기전자소자용 기판
KR10-2012-0111540 2012-10-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/255,493 Continuation US9461275B2 (en) 2011-10-17 2014-04-17 Substrate for organic electronic device

Publications (2)

Publication Number Publication Date
WO2013058505A2 true WO2013058505A2 (ko) 2013-04-25
WO2013058505A3 WO2013058505A3 (ko) 2013-06-20

Family

ID=48440809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008361 WO2013058505A2 (ko) 2011-10-17 2012-10-15 유기전자소자용 기판

Country Status (7)

Country Link
US (1) US9461275B2 (ko)
EP (1) EP2770551B1 (ko)
JP (1) JP5709194B2 (ko)
KR (2) KR101353434B1 (ko)
CN (1) CN104303327B (ko)
TW (1) TWI593152B (ko)
WO (1) WO2013058505A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928489A (zh) * 2013-08-02 2014-07-16 厦门天马微电子有限公司 有机发光二极管显示面板及其形成方法
WO2015141397A1 (ja) * 2014-03-17 2015-09-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及びその製造方法
WO2016148380A1 (ko) * 2015-03-17 2016-09-22 에이피시스템 주식회사 레이저 패터닝을 이용한 섀도우 마스크의 제조 장치 및 레이저 패터닝을 이용한 섀도우 마스크의 제조 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241797B2 (ja) * 2012-07-31 2017-12-06 エルジー・ケム・リミテッド 有機電子素子用基板
CN105453697B (zh) * 2013-08-14 2018-04-17 吉坤日矿日石能源株式会社 发光元件及发光元件的制造方法
CN105405982A (zh) * 2015-12-09 2016-03-16 深圳市华星光电技术有限公司 有机发光二极管封装结构、封装方法及有机发光二极管
WO2019003292A1 (ja) * 2017-06-27 2019-01-03 堺ディスプレイプロダクト株式会社 フレキシブルディスプレイおよびその製造方法、ならびにフレキシブルディスプレイ用支持基板
US10448481B2 (en) * 2017-08-15 2019-10-15 Davorin Babic Electrically conductive infrared emitter and back reflector in a solid state source apparatus and method of use thereof
CN109148728B (zh) * 2018-08-31 2019-10-29 昆山国显光电有限公司 一种显示面板及显示装置

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH0288689A (ja) 1988-09-26 1990-03-28 Mitsubishi Kasei Corp 電界発光素子
JPH02191694A (ja) 1989-01-20 1990-07-27 Idemitsu Kosan Co Ltd 薄膜有機el素子
JPH02196885A (ja) 1989-01-25 1990-08-03 Asahi Chem Ind Co Ltd 有機電界発光素子
JPH02250292A (ja) 1989-03-23 1990-10-08 Ricoh Co Ltd 電界発光素子
JPH02255789A (ja) 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd 有機電場発光素子
JPH02289676A (ja) 1989-01-13 1990-11-29 Ricoh Co Ltd 電界発光素子
JPH03296595A (ja) 1990-04-13 1991-12-27 Kao Corp 有機薄膜エレクトロルミネッセンス素子
JPH0496990A (ja) 1990-08-10 1992-03-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH059470A (ja) 1991-02-06 1993-01-19 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH0517764A (ja) 1991-02-06 1993-01-26 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH05202011A (ja) 1992-01-27 1993-08-10 Toshiba Corp オキサジアゾール誘導体
JPH0649079A (ja) 1992-04-02 1994-02-22 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法並びに該シラナミン誘導体を用いたel素子
JPH0688072A (ja) 1992-09-07 1994-03-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0692947A (ja) 1992-07-27 1994-04-05 Ricoh Co Ltd オキサジアゾール誘導体ならびにその製造法
JPH06100857A (ja) 1992-09-21 1994-04-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06107648A (ja) 1992-09-29 1994-04-19 Ricoh Co Ltd 新規なオキサジアゾール化合物
JPH06132080A (ja) 1992-10-19 1994-05-13 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06145146A (ja) 1992-11-06 1994-05-24 Chisso Corp オキシネイト誘導体
JPH06203963A (ja) 1993-01-08 1994-07-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06207170A (ja) 1992-11-20 1994-07-26 Idemitsu Kosan Co Ltd 白色有機エレクトロルミネッセンス素子
JPH06206865A (ja) 1992-10-14 1994-07-26 Chisso Corp 新規アントラセン化合物と該化合物を用いる電界発光素子
JPH06279322A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 4官能スチリル化合物およびその製造法
JPH06279323A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 新規スチリル化合物,その製造法およびそれからなる有機エレクトロルミネッセンス素子
JPH06293778A (ja) 1993-04-05 1994-10-21 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法
JPH07157473A (ja) 1993-12-06 1995-06-20 Chisso Corp トリアジン誘導体、その製造法及びそれを用いた電界発光素子
JPH07179394A (ja) 1993-12-21 1995-07-18 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07228579A (ja) 1993-12-21 1995-08-29 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07278124A (ja) 1993-12-24 1995-10-24 Ricoh Co Ltd オキサジアゾール誘導体およびその製造方法
JPH0822557A (ja) 1994-05-24 1996-01-23 Texas Instr Inc <Ti> ユーザへビデオ画像を表示する装置及び方法
JPH0881472A (ja) 1994-09-12 1996-03-26 Motorola Inc 発光装置に使用するための有機金属錯体
JP2000145627A (ja) 1998-11-10 2000-05-26 Halla Aircon Co Ltd 可変容量斜板式圧縮機
US6226890B1 (en) 2000-04-07 2001-05-08 Eastman Kodak Company Desiccation of moisture-sensitive electronic devices
JP2001252505A (ja) 2000-03-14 2001-09-18 Sumitomo Heavy Ind Ltd 脱水装置におけるマットフォーメーションプレートとドラム型フィルターとの間隔調整機構
US6808828B2 (en) 2001-08-23 2004-10-26 Tohoku Pioneer Corporation Organic electroluminescent display panel

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230364A (ja) * 1993-02-02 1994-08-19 Toppan Printing Co Ltd 反射型液晶表示装置用カラーフィルター
JPH11329742A (ja) * 1998-05-18 1999-11-30 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子および発光装置
US6661029B1 (en) * 2000-03-31 2003-12-09 General Electric Company Color tunable organic electroluminescent light source
JP2003057413A (ja) * 2001-08-10 2003-02-26 Nippon Sheet Glass Co Ltd 光散乱基板用感光性樹脂組成物、及びそれを用いて製造された光散乱基板とその製造方法
DE10212639A1 (de) 2002-03-21 2003-10-16 Siemens Ag Vorrichtung und Verfahren zur Laserstrukturierung von Funktionspolymeren und Verwendungen
US6891330B2 (en) * 2002-03-29 2005-05-10 General Electric Company Mechanically flexible organic electroluminescent device with directional light emission
JP2004022438A (ja) * 2002-06-19 2004-01-22 Sharp Corp 表示装置
US6825983B2 (en) * 2002-08-06 2004-11-30 Eastman Kodak Company Optical element containing an interference fringe filter
US7133032B2 (en) * 2003-04-24 2006-11-07 Eastman Kodak Company OLED display and touch screen
US20040217702A1 (en) * 2003-05-02 2004-11-04 Garner Sean M. Light extraction designs for organic light emitting diodes
JP2005108678A (ja) * 2003-09-30 2005-04-21 Optrex Corp 有機el発光装置およびその製造方法
US7268485B2 (en) * 2003-10-07 2007-09-11 Eastman Kodak Company White-emitting microcavity OLED device
CN1638585A (zh) * 2003-12-26 2005-07-13 日东电工株式会社 电致发光装置,平面光源和使用该平面光源的显示器
US7602118B2 (en) * 2005-02-24 2009-10-13 Eastman Kodak Company OLED device having improved light output
KR100679372B1 (ko) * 2005-02-25 2007-02-05 엘에스전선 주식회사 매립된 회절격자를 가진 레이저 다이오드 및 그 제조방법
US7276848B2 (en) * 2005-03-29 2007-10-02 Eastman Kodak Company OLED device having improved light output
US7245065B2 (en) * 2005-03-31 2007-07-17 Eastman Kodak Company Reducing angular dependency in microcavity color OLEDs
US20070013293A1 (en) * 2005-07-12 2007-01-18 Eastman Kodak Company OLED device having spacers
US7791271B2 (en) * 2006-02-24 2010-09-07 Global Oled Technology Llc Top-emitting OLED device with light-scattering layer and color-conversion
US7851995B2 (en) * 2006-05-05 2010-12-14 Global Oled Technology Llc Electroluminescent device having improved light output
JP2007311046A (ja) * 2006-05-16 2007-11-29 Seiko Epson Corp 発光装置、発光装置の製造方法、及び電子機器
CN101460220B (zh) * 2006-06-07 2012-05-30 皇家飞利浦电子股份有限公司 光器件和制造光器件的方法
US8174187B2 (en) * 2007-01-15 2012-05-08 Global Oled Technology Llc Light-emitting device having improved light output
KR20080075359A (ko) * 2007-02-12 2008-08-18 삼성에스디아이 주식회사 전자 방출 디스플레이
US20080237611A1 (en) * 2007-03-29 2008-10-02 Cok Ronald S Electroluminescent device having improved contrast
US20080278063A1 (en) * 2007-05-07 2008-11-13 Cok Ronald S Electroluminescent device having improved power distribution
US7902748B2 (en) 2007-05-31 2011-03-08 Global Oled Technology Llc Electroluminescent device having improved light output
JP2009004275A (ja) * 2007-06-22 2009-01-08 Panasonic Electric Works Co Ltd 面発光体及び面発光体の製造方法
KR20100063729A (ko) * 2007-08-27 2010-06-11 파나소닉 전공 주식회사 유기 이엘 소자
ES2377598T3 (es) * 2008-02-27 2012-03-29 Koninklijke Philips Electronics N.V. Dispositivos optoelectrónicos orgánicos ocultos con una capa de dispersión de luz
WO2009131019A1 (ja) * 2008-04-22 2009-10-29 日本ゼオン株式会社 有機エレクトロルミネッセンス光源装置
KR101029299B1 (ko) * 2008-12-30 2011-04-18 서울대학교산학협력단 유기 발광 소자 및 그 제조 방법
CN102293054B (zh) * 2009-01-26 2016-08-03 旭硝子株式会社 电子器件用基板及使用该基板的电子器件
JP2010182449A (ja) * 2009-02-03 2010-08-19 Fujifilm Corp 有機el表示装置
KR101318374B1 (ko) * 2009-12-03 2013-10-16 한국전자통신연구원 유기 전계 발광소자 및 그 제조 방법
JP5441663B2 (ja) 2009-12-16 2014-03-12 株式会社ソノコム 多層構造メタルマスク
KR20110071530A (ko) * 2009-12-21 2011-06-29 삼성모바일디스플레이주식회사 표시장치용 편광 필름 및 이를 구비한 유기전계발광표시장치
EP3608984B1 (en) * 2010-04-08 2020-11-11 Agc Inc. Organic led element
KR101883128B1 (ko) * 2011-06-21 2018-07-27 카티바, 인크. Oled 마이크로 공동 및 버퍼 층을 위한 물질과 그 생산 방법

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH0288689A (ja) 1988-09-26 1990-03-28 Mitsubishi Kasei Corp 電界発光素子
JPH02289676A (ja) 1989-01-13 1990-11-29 Ricoh Co Ltd 電界発光素子
JPH02191694A (ja) 1989-01-20 1990-07-27 Idemitsu Kosan Co Ltd 薄膜有機el素子
JPH02196885A (ja) 1989-01-25 1990-08-03 Asahi Chem Ind Co Ltd 有機電界発光素子
JPH02250292A (ja) 1989-03-23 1990-10-08 Ricoh Co Ltd 電界発光素子
JPH02255789A (ja) 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd 有機電場発光素子
JPH03296595A (ja) 1990-04-13 1991-12-27 Kao Corp 有機薄膜エレクトロルミネッセンス素子
JPH0496990A (ja) 1990-08-10 1992-03-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH059470A (ja) 1991-02-06 1993-01-19 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH0517764A (ja) 1991-02-06 1993-01-26 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH05202011A (ja) 1992-01-27 1993-08-10 Toshiba Corp オキサジアゾール誘導体
JPH0649079A (ja) 1992-04-02 1994-02-22 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法並びに該シラナミン誘導体を用いたel素子
JPH0692947A (ja) 1992-07-27 1994-04-05 Ricoh Co Ltd オキサジアゾール誘導体ならびにその製造法
JPH0688072A (ja) 1992-09-07 1994-03-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06100857A (ja) 1992-09-21 1994-04-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06107648A (ja) 1992-09-29 1994-04-19 Ricoh Co Ltd 新規なオキサジアゾール化合物
JPH06206865A (ja) 1992-10-14 1994-07-26 Chisso Corp 新規アントラセン化合物と該化合物を用いる電界発光素子
JPH06132080A (ja) 1992-10-19 1994-05-13 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06145146A (ja) 1992-11-06 1994-05-24 Chisso Corp オキシネイト誘導体
JPH06207170A (ja) 1992-11-20 1994-07-26 Idemitsu Kosan Co Ltd 白色有機エレクトロルミネッセンス素子
JPH06203963A (ja) 1993-01-08 1994-07-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06279322A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 4官能スチリル化合物およびその製造法
JPH06279323A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 新規スチリル化合物,その製造法およびそれからなる有機エレクトロルミネッセンス素子
JPH06293778A (ja) 1993-04-05 1994-10-21 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法
JPH07157473A (ja) 1993-12-06 1995-06-20 Chisso Corp トリアジン誘導体、その製造法及びそれを用いた電界発光素子
JPH07179394A (ja) 1993-12-21 1995-07-18 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07228579A (ja) 1993-12-21 1995-08-29 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07278124A (ja) 1993-12-24 1995-10-24 Ricoh Co Ltd オキサジアゾール誘導体およびその製造方法
JPH0822557A (ja) 1994-05-24 1996-01-23 Texas Instr Inc <Ti> ユーザへビデオ画像を表示する装置及び方法
JPH0881472A (ja) 1994-09-12 1996-03-26 Motorola Inc 発光装置に使用するための有機金属錯体
JP2000145627A (ja) 1998-11-10 2000-05-26 Halla Aircon Co Ltd 可変容量斜板式圧縮機
JP2001252505A (ja) 2000-03-14 2001-09-18 Sumitomo Heavy Ind Ltd 脱水装置におけるマットフォーメーションプレートとドラム型フィルターとの間隔調整機構
US6226890B1 (en) 2000-04-07 2001-05-08 Eastman Kodak Company Desiccation of moisture-sensitive electronic devices
US6808828B2 (en) 2001-08-23 2004-10-26 Tohoku Pioneer Corporation Organic electroluminescent display panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770551A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928489A (zh) * 2013-08-02 2014-07-16 厦门天马微电子有限公司 有机发光二极管显示面板及其形成方法
WO2015141397A1 (ja) * 2014-03-17 2015-09-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及びその製造方法
JPWO2015141397A1 (ja) * 2014-03-17 2017-04-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及びその製造方法
WO2016148380A1 (ko) * 2015-03-17 2016-09-22 에이피시스템 주식회사 레이저 패터닝을 이용한 섀도우 마스크의 제조 장치 및 레이저 패터닝을 이용한 섀도우 마스크의 제조 방법
CN107427964A (zh) * 2015-03-17 2017-12-01 Ap系统股份有限公司 使用激光图案化制造阴影掩膜的装置和使用激光图案化制造阴影掩膜的方法
TWI616262B (zh) * 2015-03-17 2018-03-01 Ap系统股份有限公司 使用雷射圖案成形之蒸鍍光罩的製造裝置及方法
CN107427964B (zh) * 2015-03-17 2019-06-25 Ap系统股份有限公司 使用激光图案化制造阴影掩膜的装置和使用激光图案化制造阴影掩膜的方法

Also Published As

Publication number Publication date
JP2014532276A (ja) 2014-12-04
KR20130115184A (ko) 2013-10-21
EP2770551B1 (en) 2018-05-02
EP2770551A2 (en) 2014-08-27
KR101353434B1 (ko) 2014-01-21
TW201334251A (zh) 2013-08-16
WO2013058505A3 (ko) 2013-06-20
CN104303327A (zh) 2015-01-21
US20140225098A1 (en) 2014-08-14
CN104303327B (zh) 2018-03-16
KR101427536B1 (ko) 2014-08-07
EP2770551A4 (en) 2015-08-19
US9461275B2 (en) 2016-10-04
JP5709194B2 (ja) 2015-04-30
KR20130041729A (ko) 2013-04-25
TWI593152B (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
WO2013141679A1 (ko) 유기전자소자용 기판
WO2013141674A1 (ko) 유기발광소자
WO2013058505A2 (ko) 유기전자소자용 기판
WO2013141675A1 (ko) 유기발광소자
WO2013147571A1 (ko) 유기전자소자용 기판
WO2013147573A1 (ko) 유기전자소자용 기판
WO2013147572A1 (ko) 유기전자소자용 기판
WO2014021642A1 (ko) 유기전자소자용 기판
WO2013147570A1 (ko) 유기전자소자용 기판
WO2014021644A1 (ko) 유기전자소자용 기판
WO2014021643A1 (ko) 유기전자소자용 기판
KR20130135142A (ko) 유기전자장치
KR101589344B1 (ko) 유기전자소자용 기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842033

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014535651

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012842033

Country of ref document: EP