WO2013046781A1 - 重合性化合物の製造中間体及びその製造方法 - Google Patents
重合性化合物の製造中間体及びその製造方法 Download PDFInfo
- Publication number
- WO2013046781A1 WO2013046781A1 PCT/JP2012/061323 JP2012061323W WO2013046781A1 WO 2013046781 A1 WO2013046781 A1 WO 2013046781A1 JP 2012061323 W JP2012061323 W JP 2012061323W WO 2013046781 A1 WO2013046781 A1 WO 2013046781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- carbon atoms
- mmol
- ring
- Prior art date
Links
- 0 CC(C)(*)*c1c(C)cccc1 Chemical compound CC(C)(*)*c1c(C)cccc1 0.000 description 5
- YNJRAJBXCVPGKP-BYYHNAKLSA-N C=CC(OCCCCCCOc(cc1)ccc1C(Oc1ccc(/C=C/Nc2nc(cccc3)c3[s]2)c(OC(c(cc2)ccc2OCCCCCCOC(C=C)=O)=O)c1)=O)=O Chemical compound C=CC(OCCCCCCOc(cc1)ccc1C(Oc1ccc(/C=C/Nc2nc(cccc3)c3[s]2)c(OC(c(cc2)ccc2OCCCCCCOC(C=C)=O)=O)c1)=O)=O YNJRAJBXCVPGKP-BYYHNAKLSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/68—Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
- C07D277/82—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4012—Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
- C08G65/4031—(I) or (II) containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C251/00—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C251/72—Hydrazones
- C07C251/86—Hydrazones having doubly-bound carbon atoms of hydrazone groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/38—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D237/00—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
- C07D237/26—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings condensed with carbocyclic rings or ring systems
- C07D237/30—Phthalazines
- C07D237/34—Phthalazines with nitrogen atoms directly attached to carbon atoms of the nitrogen-containing ring, e.g. hydrazine radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/52—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
- C07D263/54—Benzoxazoles; Hydrogenated benzoxazoles
- C07D263/58—Benzoxazoles; Hydrogenated benzoxazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4012—Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
- C08G65/4043—(I) or (II) containing oxygen other than as phenol or carbonyl group
- C08G65/405—(I) or (II) containing oxygen other than as phenol or carbonyl group in ring structure, e.g. phenolphtalein
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4012—Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
- C08G65/4056—(I) or (II) containing sulfur
- C08G65/4062—(I) or (II) containing sulfur in ring structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
Definitions
- the present invention relates to a novel compound that can be a production intermediate of a polymerizable compound capable of producing an optical film capable of uniform polarization conversion in a wide wavelength range, and a production method thereof.
- a retardation plate such as a quarter-wave plate for converting linearly polarized light into circularly-polarized light or a half-wave plate for converting the polarization vibration plane of linearly polarized light by 90 degrees has been widely used in flat panel display devices.
- the conventional retardation plate has a problem that polarized light output through the retardation plate is converted into colored polarized light.
- various studies have been made on a broadband retardation plate capable of giving a uniform retardation to light in a wide wavelength range, that is, a retardation plate having reverse wavelength dispersion (Patent Documents 1 to 6). .
- Patent Document 25 describes a dihydroxy compound having a structure similar to that of the compound of the present invention. However, this document does not describe the compound of the present invention. In addition, the compounds described in this document are used as certain drugs (enhancers of protein degradation).
- a 1 represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring
- a 2 represents a hydrogen atom
- An optionally substituted alkyl group having 1 to 6 carbon atoms, or at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and having 2 to 30 carbon atoms Represents an organic group, the aromatic ring of A 1 and A 2 may have a substituent, and A 1 and A 2 may be combined to form a ring, Q 1 is Represents a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms.
- Japanese Patent Application No. 2011-99525 Japanese Patent Application No. 2011-99525) .
- An object of the present invention is to provide a novel compound which can be a production intermediate of a polymerizable compound disclosed in Japanese Patent Application No. 2011-99525, and a production method
- a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring
- a y represents a hydrogen atom
- a x and A y may be combined to form a ring
- Q is a hydrogen atom or an optionally substituted carbon atom having 1 to 6 carbon atoms.
- a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring
- a y represents a hydrogen atom
- Ax and Ay may be combined to form a ring.
- the compound of the present invention By using the compound of the present invention as a production intermediate, a polymerizable compound capable of uniform polarization conversion in a wide wavelength range and capable of producing an optical film satisfying in performance is obtained at a low cost. Can be manufactured well. According to the production method of the present invention, the compound of the present invention can be produced industrially advantageously.
- a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
- the “aromatic ring” is represented by a cyclic structure having a broad sense of aromaticity according to the Huckle rule, that is, a cyclic conjugated structure having (4n + 2) ⁇ electrons, and thiophene, furan, pyrrole, etc. This means that a lone pair of heteroatoms such as sulfur, oxygen, and nitrogen is involved in the ⁇ -electron system and exhibits aromaticity.
- the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A x may have a plurality of aromatic rings. And may have both an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
- aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring.
- aromatic heterocycle examples include 5-membered rings such as pyrrole ring, furan ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring, and thiazole ring; 6-membered rings such as pyridine ring, pyridazine ring, pyrimidine ring, and pyrazine ring.
- a condensed ring such as a benzimidazole ring, a benzothiophene ring, a benzofuran ring, a benzothiazole ring, a benzoxazole ring, a quinoline ring, a phthalazine ring or a carbazole ring;
- the aromatic ring of A x may have a substituent.
- substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and 2 to 6 carbon atoms such as vinyl group and allyl group.
- An alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; a substituted amino group such as a dimethylamino group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, and an isopropoxy group; Nitro group; aryl group such as phenyl group and naphthyl group; —C ( ⁇ O) —OR group; —SO 2 R group; and the like.
- R represents an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; or an aryl group having 6 to 14 carbon atoms such as a phenyl group or a naphthyl group.
- the aromatic ring within A x may have a plurality of identical or different substituents, bonded two adjacent substituents together may form a ring.
- the ring formed may be monocyclic or condensed polycyclic.
- the “carbon number” of the organic group having 2 to 30 carbon atoms of A x means the total carbon number of the entire organic group including the aromatic ring and not including the carbon atom of the substituent (in A y described later). The same.)
- an aromatic hydrocarbon ring group As the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A x , an aromatic hydrocarbon ring group; an aromatic heterocyclic ring Group: an alkyl group having 3 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring group and an aromatic heterocyclic group; from an aromatic hydrocarbon ring group and an aromatic heterocyclic group An alkenyl group having 4 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of: a carbon number having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring group and an aromatic heterocyclic group 4-30 alkynyl groups; and the like.
- a x aromatic group (an aromatic hydrocarbon ring group or an aromatic heterocyclic group).
- a y is a hydrogen atom, an optionally substituted alkyl group having 1 to 18 carbon atoms, an optionally substituted cycloalkyl group, or an optionally substituted carbon number 2 Represents an alkenyl group having 1 to 18 carbon atoms, or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
- alkyl group having 1 to 18 carbon atoms that may have a substituent of A y include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl.
- Examples of the substituent of the alkyl group having 1 to 18 carbon atoms which may have a substituent include halogen atoms such as fluorine atom and chlorine atom; cyano group; substituted amino group such as dimethylamino group; methoxy group, ethoxy
- An alkoxy group having 1 to 6 carbon atoms such as an isopropoxy group; a nitro group; a cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group and a cyclohexyl group; an aryl group such as a phenyl group and a naphthyl group; ⁇ O) —OR group; —SO 2 R group; and the like.
- R represents the same meaning as described above.
- Examples of the cycloalkyl group which may have a substituent include a cycloalkyl group having 3 to 12 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
- a cycloalkyl group is mentioned.
- Examples of the substituent of the cycloalkyl group which may have a substituent include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a substituted amino group such as a dimethylamino group; a methoxy group, an ethoxy group, and an isopropoxy group.
- R represents the same meaning as described above.
- alkenyl group having 2 to 18 carbon atoms which may have a substituent include vinyl, 1-propenyl, allyl, 1-butenyl, 2-butenyl, 3-butenyl, pentenyl, hexenyl Group, heptenyl group and the like.
- Examples of the substituent of the alkenyl group having 2 to 18 carbon atoms which may have a substituent are the same as those exemplified as the substituent of the alkyl group having 1 to 18 carbon atoms which may have a substituent. Can be mentioned.
- Examples of the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring for A y are the same as those exemplified for A x above. Is mentioned.
- the aromatic ring which Ay has may have a substituent in arbitrary positions. As such a substituent include the same as those listed as the substituent of the aromatic ring wherein A x has.
- a y is a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or an alkenyl group having 2 to 8 carbon atoms. It is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
- aromatic ring of A x and A y are shown below.
- a x, aromatic ring within A y is not intended to be limited to those shown below.
- [-] represents an aromatic ring bond.
- E represents NR 3 , an oxygen atom or a sulfur atom.
- R 3 represents a hydrogen atom; or an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group.
- X, Y and Z each independently represent NR 3 , oxygen atom, sulfur atom, —SO— or —SO 2 — (provided that oxygen atom, sulfur atom, —SO—, — Except when SO 2 -is adjacent to each other).
- R 3 represents the same meaning as described above.
- X and Y represent the same meaning as described above.
- a x and A y may be combined to form a ring.
- examples of such a ring include an optionally substituted unsaturated heterocyclic ring having 4 to 30 carbon atoms and an unsaturated carbocyclic ring having 6 to 30 carbon atoms.
- the unsaturated heterocyclic ring having 4 to 30 carbon atoms and the unsaturated carbocyclic ring having 6 to 30 carbon atoms may or may not have aromaticity.
- the ring shown below is mentioned.
- the ring shown below is the one in the formula (I)
- X, Y and Z represent the same meaning as described above.
- these rings may have a substituent.
- substituents include a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a —C ( ⁇ O) —OR group, an —SO 2 R group, and the like. It is done.
- R represents the same meaning as described above.
- the total number of ⁇ electrons contained in A x and A y is preferably 24 or less, more preferably 4 to 24, and more preferably 6 to 18 from the viewpoint of obtaining a preferable intermediate for producing a polymerizable compound. More preferably.
- a x is an aromatic group having 4 to 30 carbon atoms
- a y has a hydrogen atom and a substituent from the viewpoint of obtaining a preferable intermediate for producing a polymerizable compound.
- Q represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
- alkyl group having 1 to 6 carbon atoms which may have a substituent include the same groups as those exemplified for Ay .
- Q is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and more preferably a hydrogen atom.
- the compound of the present invention is useful as an intermediate for producing a polymerizable compound capable of obtaining an optical film capable of uniform polarization conversion in a wide wavelength range.
- examples of the polymerizable compound produced using the compound of the present invention as a production intermediate include the compounds described in Japanese Patent Application No. 2011-099525 and those described in the production examples described later.
- Such a polymerizable compound can produce an optical film capable of uniform polarization conversion in a wide wavelength range, has a practically low melting point, has excellent solubility in general-purpose solvents, and is manufactured at low cost. can do.
- the method for producing the present invention is a method for producing a hydrazone compound (compound (I)) represented by the formula (I), wherein the carbonyl compound is represented by the formula (II). (Hereinafter sometimes referred to as “carbonyl compound (II)”) and a hydrazine compound represented by formula (III) (hereinafter sometimes referred to as “hydrazine compound (III)”) in a solvent. It is made to react by.
- a x , A y and Q represent the same meaning as described above.
- Examples of the solvent to be used include alcohol solvents and ether solvents.
- Examples of the ether solvent include ethers such as diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, cyclopentyl methyl ether, and the like.
- Examples of the alcohol solvent include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, n-pentyl alcohol, amyl alcohol and the like.
- an alcohol solvent is preferably used as the reaction solvent, and an alcohol having 1 to 4 carbon atoms is used. Is more preferable.
- alcohols can be used alone or in combination of two or more.
- the alcohol solvent can also be used in combination with other solvents.
- Other solvents include ether solvents such as tetrahydrofuran.
- the amount of the solvent used is not particularly limited and can be appropriately determined in consideration of the type of compound used, reaction scale, etc., but is usually 1 to 100 ml with respect to 1 g of hydrazine compound (III).
- the use ratio of the carbonyl compound (II) to the hydrazine compound (III) is usually a molar ratio of [carbonyl compound (II): hydrazine compound (III)] of 1: 2 to 2: 1, preferably 1: 1. 5 to 1.5: 1.
- the reaction can also be carried out by adding an acid catalyst such as ( ⁇ ) -10-camphorsulfonic acid, p-toluenesulfonic acid and other organic acids; salts of these organic acids; hydrochloric acid, sulfuric acid and other inorganic acids; .
- an acid catalyst such as ( ⁇ ) -10-camphorsulfonic acid, p-toluenesulfonic acid and other organic acids; salts of these organic acids; hydrochloric acid, sulfuric acid and other inorganic acids; .
- the addition amount of the acid catalyst is usually 0.001 to 1 mol with respect to 1 mol of the carbonyl compound (II). Further, the acid catalyst may be added as it is, or may be added as a solution dissolved in an appropriate solvent.
- the reaction proceeds smoothly in the temperature range from ⁇ 10 ° C. to the boiling point of the solvent used.
- the reaction time is usually several minutes to several tens of hours, preferably 30 minutes to 10 hours.
- the target compound of the present invention can be obtained with good yield.
- the structure of the target compound can be identified by measurement of NMR spectrum, IR spectrum, mass spectrum, etc., elemental analysis or the like.
- the hydrazine compound (III) can be produced as follows.
- a x and A y represent the same meaning as described above.
- L represents a leaving group such as a halogen atom, a methanesulfonyloxy group, and a p-toluenesulfonyloxy group.
- the compound represented by the formula (2a) and hydrazine (1) are mixed in a suitable solvent in a molar ratio of (compound (2a): hydrazine (1)) of 1: 1 to 1:20, preferably 1 : 2 to 1:10 to obtain the corresponding hydrazine compound (3a). Further, by reacting the hydrazine compound (3a) with the compound represented by the formula (2b), the hydrazine compound ( III) can be obtained.
- hydrazine (1) a monohydrate is usually used.
- hydrazine (1) a commercially available product can be used as it is.
- the solvent used in this reaction is not particularly limited as long as it is inert to the reaction.
- alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, n-pentyl alcohol, amyl alcohol; diethyl ether, tetrahydrofuran , 1,2-dimethoxyethane, 1,4-dioxane, cyclopentyl methyl ether and other ethers; benzene, toluene, xylene and other aromatic hydrocarbons; n-pentane, n-hexane, n-heptane and other aliphatic hydrocarbons Hydrocarbons; amides such as N
- the amount of the solvent to be used is not particularly limited and can be appropriately determined in consideration of the type of compound used, reaction scale, etc., but is usually 1 to 100 ml with respect to 1 g of hydrazine.
- the reaction proceeds smoothly in a temperature range from ⁇ 10 ° C. to the boiling point of the solvent used.
- the reaction time for each reaction is usually from several minutes to several hours depending on the reaction scale.
- the hydrazine compound (III) can also be produced by reducing the diazonium salt (4) using a conventionally known method as follows.
- Z ⁇ represents an anion which is a counter ion for diazonium.
- Z 2 - include inorganic anions such as hexafluorophosphate ion, borofluoride ion, chloride ion, sulfate ion; polyfluoroalkylcarboxylate ion, polyfluoroalkylsulfonate ion, tetraphenylborate ion And organic anions such as aromatic carboxylate ions and aromatic sulfonate ions.
- a metal salt reducing agent is generally a compound containing a low-valent metal or a compound consisting of a metal ion and a hydride source (“Organic Synthesis Experiment Handbook” 1990, page 810 issued by Maruzen Co., Ltd.) reference).
- the diazonium salt (4) can be produced from a compound such as aniline by a conventional method.
- the compound of the present invention can be produced simply and with good yield, and as a result, the target polymerizable compound can be produced easily and at low cost.
- Example 1b Production of Compound (I-1)
- Compound (I-1) was prepared in the same manner as in Example 1a except that the solvent used in the reaction and post-treatment was changed from methanol to 1-propanol. ) Was manufactured. 10.7 g of compound (I-1) was obtained as a pale yellow solid (yield 92.5%).
- THF tetrahydrofuran
- Chloroform layers were collected, washed with 800 ml of 10% aqueous sodium bicarbonate, dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. From the obtained filtrate, chloroform was distilled off under reduced pressure by a rotary evaporator to obtain 18 g of a raw material A as a white solid. This white solid was directly used in Step 2 without purification.
- Step 2 Synthesis of Compound (I-2)
- a four-necked reactor equipped with a thermometer 5.4 g (39.1 mmol) of 2,5-dihydroxybenzaldehyde and 5.83 g (39. 1 mmol) and 150 ml of ethanol were added, and the whole volume was stirred at 25 ° C. for 4 hours. After completion of the reaction, the precipitated solid was collected by filtration. The solid collected by filtration was washed with ethanol and then dried with a vacuum dryer to obtain 10.1 g of compound (I-2) as a white solid (yield: 95.9%).
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- a 4-necked reactor equipped with a thermometer was charged with 1.00 g (6.05 mmol) of 2-hydrazinobenzothiazole and 15 ml of THF in a nitrogen stream to obtain a uniform solution.
- 4.5 ml (7.26 mmol) of hexamethyldisilazane lithium (26% THF solution) was slowly added dropwise at 0 ° C.
- 0.46 ml (7.26 mmol) of methyl iodide was added to this solution, and the whole volume was stirred at 25 ° C. for 3 hours.
- Step 2 Synthesis of Compound (I-6)
- 380 mg (2.75 mmol) of 2,5-dihydroxybenzaldehyde, 493 mg (2.75 mmol) of raw material B and 1 -10 ml of propanol was added and the whole volume was stirred at 80 ° C for 1 hour.
- the reaction solution was cooled to 20 ° C., and the precipitated solid was collected by filtration.
- the solid collected by filtration was washed with 1-propanol and then dried with a vacuum dryer to obtain 599 mg of compound (I-6) as a pale yellow solid (yield: 72.7%).
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- a 4-necked reactor equipped with a thermometer was charged with 2.00 g (12.1 mmol) of 2-hydrazinobenzothiazole and 20 ml of N, N-dimethylformamide (DMF) in a nitrogen stream to obtain a uniform solution.
- DMF N, N-dimethylformamide
- 8.36 g (60.5 mmol) of potassium carbonate and 2.67 g (14.5 mmol) of 1-iodobutane were added, and the whole volume was stirred at 50 ° C. for 7 hours. After completion of the reaction, the reaction solution was cooled to 20 ° C., poured into 200 ml of water, and extracted with 300 ml of ethyl acetate.
- Step 2 Synthesis of Compound (I-7)
- 763 mg (5.52 mmol) of 2,5-dihydroxybenzaldehyde and 1.34 g (6.07 mmol) of starting material C were added in a nitrogen stream.
- 15 ml of 1-propanol was added, and the whole volume was stirred at 80 ° C. for 1.5 hours.
- the reaction solution was cooled to 20 ° C., and the precipitated solid was collected by filtration.
- the solid collected by filtration was washed with 1-propanol and then dried with a vacuum dryer to obtain 1.76 g of Compound (I-7) as a pale yellow solid (yield: 84.9%).
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- a four-necked reactor equipped with a thermometer was charged with 2.00 g (12.1 mmol) of 2-hydrazinobenzothiazole and 20 ml of DMF in a nitrogen stream to obtain a uniform solution.
- 8.36 g (60.5 mmol) of potassium carbonate and 3.08 g (14.5 mmol) of 1-iodohexane were added, and the whole volume was stirred at 50 ° C. for 7 hours.
- the reaction solution was cooled to 20 ° C., poured into 200 ml of water, and extracted with 300 ml of ethyl acetate.
- Step 2 Synthesis of Compound (I-8)
- 504 mg (3.65 mmol) of 2,5-dihydroxybenzaldehyde and 1.00 g (4.01 mmol) of raw material D And 10 ml of 1-propanol was added, and the whole volume was stirred at 80 ° C. for 3 hours.
- the reaction solution was cooled to 20 ° C., and the precipitated solid was collected by filtration.
- the solid collected by filtration was washed with 1-propanol and then dried with a vacuum dryer to obtain 1.20 g of compound (I-8) as a pale yellow solid (yield: 88.8%).
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- a 4-necked reactor equipped with a thermometer was charged with 1.00 g (6.05 mmol) of 2-hydrazinobenzothiazole and 15 ml of THF in a nitrogen stream to obtain a uniform solution.
- 4.5 ml (7.26 mmol) of hexamethyldisilazane lithium (26% THF solution) was slowly added dropwise at 0 ° C. After completion of the addition, the mixture was further stirred at 0 ° C. for 30 minutes.
- 1.23 g (7.26 mmol) of 2-chlorobenzothiazole was added, and the whole volume was stirred at 25 ° C. for 3 hours.
- Step 2 Synthesis of Compound (I-9)
- a four-necked reactor equipped with a thermometer 197 mg (1.43 mmol) of 2,5-dihydroxybenzaldehyde, 511 mg (1.71 mmol) of raw material E, ( ⁇ ) -10-camphorsulfonic acid 32.5 mg (0.14 mmol) and 1-propanol 10 ml were added, and the whole volume was stirred at 80 ° C. for 2.5 hours. After completion of the reaction, the reaction solution was cooled to 20 ° C., and the precipitated solid was collected by filtration.
- Step 2 Synthesis of Compound (I-11)
- a four-necked reactor equipped with a thermometer 1.62 g (11.7 mmol) of 2,5-dihydroxybenzaldehyde in the nitrogen stream, the raw material synthesized in the previous Step 1 2.89 g (11.7 mmol) of F and 30 ml of 1-propanol were added, and the whole volume was stirred at 80 ° C. for 7 hours.
- the reaction solution was cooled to 20 ° C., and the precipitated solid was collected by filtration.
- the solid collected by filtration was washed with 1-propanol and then dried with a vacuum dryer to obtain 2.92 g of compound (I-11) as a white solid (yield: 68.2%).
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- a 4-neck reactor equipped with a thermometer was charged with 1.45 g (8.75 mmol) of 2-hydrazinobenzothiazole and 20 ml of DMF in a nitrogen stream to obtain a uniform solution.
- 3.63 g (26.3 mmol) of potassium carbonate and 2.50 g (10.5 mmol) of 1,1,1-trifluoro-4-iodobutane were added, and the whole volume was stirred at 80 ° C. for 8 hours.
- the reaction solution was cooled to 20 ° C., poured into 200 ml of water, and extracted with 300 ml of ethyl acetate.
- Step 2 Synthesis of Compound (I-12)
- 372 mg (2.69 mmol) of 2,5-dihydroxybenzaldehyde in a nitrogen stream 740 mg of the raw material G synthesized in the previous Step 1 (2.69 mmol) and 10 ml of 1-propanol were added, and the whole volume was stirred at 80 ° C. for 6 hours.
- the reaction solution was cooled to 20 ° C., and the precipitated solid was collected by filtration.
- the solid collected by filtration was washed with 1-propanol and then dried with a vacuum dryer to obtain 916 mg of Compound (I-12) as a white solid (yield: 86.1%).
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- a 4-necked reactor equipped with a thermometer was charged with 3.00 g (18.2 mmol) of 2-hydrazinobenzothiazole and 30 ml of DMF in a nitrogen stream to obtain a uniform solution.
- To this solution 7.55 g (54.6 mmol) of potassium carbonate and 2.94 g (21.8 mmol) of 4-bromo-1-butene were added, and the whole volume was stirred at 80 ° C. for 4 hours. After completion of the reaction, the reaction solution was cooled to 20 ° C., poured into 300 ml of water, and extracted with 500 ml of ethyl acetate.
- Step 2 Synthesis of Compound (I-13)
- 630 mg (4.56 mmol) of 2,5-dihydroxybenzaldehyde in the nitrogen stream and the raw material synthesized in the previous Step 1 H 1.00 g (4.56 mmol) and 1-propanol 15 ml were added, and the whole volume was stirred at 80 ° C. for 6 hours.
- the reaction solution was cooled to 20 ° C., and the precipitated solid was collected by filtration.
- the solid collected by filtration was washed with 1-propanol and then dried with a vacuum dryer to obtain 760 mg of compound (I-13) as a white solid (yield: 49.1%).
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- Step 1 Synthesis of raw material I
- 3.00 g (18.2 mmol) of 2-hydrazinobenzothiazole and 20 ml of THF were added to obtain a uniform solution.
- 11.4 ml (18.2 mmol) of hexamethyldisilazane lithium (26% THF solution) was slowly added dropwise at 0 ° C. After completion of the addition, the mixture was further stirred at 0 ° C. for 30 minutes.
- 2.9 ml (21.8 mmol) of 1-iodo-3-methylbutane was added, and the whole volume was stirred at room temperature for 6 hours.
- Step 2 Synthesis of Compound (I-14)
- 1.21-g (8.78 mmol) of 2,5-dihydroxybenzaldehyde was synthesized in the previous Step 1 in a nitrogen stream.
- the raw material I 2.07g (8.78mmol) and 2-propanol 15ml were put, and the whole volume was stirred at 80 degreeC for 1.5 hours.
- the reaction solution was cooled to 20 ° C., and the precipitated solid was collected by filtration.
- the solid collected by filtration was washed with 2-propanol and then dried with a vacuum dryer to obtain 1.36 g of compound (I-14) as a white solid (yield: 43.6%).
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- a 4-necked reactor equipped with a thermometer was charged with 3.00 g (18.2 mmol) of 2-hydrazinobenzothiazole and 30 ml of DMF in a nitrogen stream to obtain a uniform solution.
- To this solution 7.55 g (54.6 mmol) of potassium carbonate and 3.86 g (21.8 mmol) of (bromomethyl) cyclohexane were added, and the whole volume was stirred at 80 ° C. for 9 hours. After completion of the reaction, the reaction solution was cooled to 20 ° C., poured into 300 ml of water, and extracted with 500 ml of ethyl acetate.
- Step 2 Synthesis of Compound (I-15)
- a four-necked reactor equipped with a thermometer 1.06 g (7.65 mmol) of 2,5-dihydroxybenzaldehyde in a nitrogen stream, the raw material synthesized in the previous Step 1 J 2.00 g (7.65 mmol) and 1-propanol 20 ml were added, and the whole volume was stirred at 80 ° C. for 5 hours.
- the reaction solution was cooled to 20 ° C., and the precipitated solid was collected by filtration.
- the solid collected by filtration was washed with 1-propanol and then dried with a vacuum dryer to obtain 2.00 g of Compound (I-15) as a white solid (yield: 70.8%).
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- Step 2 Synthesis of Compound (I-16)
- a four-necked reactor equipped with a thermometer in a nitrogen stream, 510 mg (3.69 mmol) of 2,5-dihydroxybenzaldehyde, the raw material K synthesized in Step 1 above.
- 1.02 g (3.69 mmol) and 10 ml of 2-propanol were added, and the whole volume was stirred at 80 ° C. for 3 hours.
- the reaction solution was cooled to 20 ° C., and the precipitated solid was collected by filtration.
- the solid collected by filtration was washed with 2-propanol and then dried with a vacuum dryer to obtain 685 mg of Compound (I-16) as a white solid (yield: 46.9%).
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- the structure of the target product was identified by 1 H-NMR and mass spectrum. 1 H-NMR spectrum data and mass spectrum data are shown below.
- the reaction solution was poured into 800 ml of water and extracted with 500 ml of ethyl acetate.
- the ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. From the obtained filtrate, ethyl acetate was distilled off under reduced pressure using a rotary evaporator to obtain a pale yellow solid.
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- the reaction solution was poured into 800 ml of water and extracted with 500 ml of ethyl acetate.
- the ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. From the obtained filtrate, ethyl acetate was distilled off under reduced pressure using a rotary evaporator to obtain a pale yellow solid.
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- the reaction solution was poured into 500 ml of water and extracted with 200 ml of ethyl acetate.
- the ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. From the obtained filtrate, ethyl acetate was distilled off under reduced pressure using a rotary evaporator to obtain a pale yellow solid.
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- the reaction solution was poured into 800 ml of water and extracted with 300 ml of ethyl acetate.
- the ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. From the obtained filtrate, ethyl acetate was distilled off under reduced pressure using a rotary evaporator to obtain a pale yellow solid.
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- the reaction solution was poured into 500 ml of water and extracted with 150 ml of ethyl acetate.
- the ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. From the obtained filtrate, ethyl acetate was distilled off under reduced pressure using a rotary evaporator to obtain a pale yellow solid.
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- the reaction solution was poured into 500 ml of water and extracted with 150 ml of ethyl acetate.
- the ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. From the obtained filtrate, ethyl acetate was distilled off under reduced pressure using a rotary evaporator to obtain a pale yellow solid.
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- the reaction solution was poured into 150 ml of water and extracted with 200 ml of ethyl acetate.
- the ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. From the obtained filtrate, ethyl acetate was distilled off under reduced pressure by a rotary evaporator to obtain a white solid.
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- the reaction solution was poured into 200 ml of water and extracted with 300 ml of ethyl acetate.
- the ethyl acetate layer was dried over anhydrous sodium sulfate, and anhydrous sodium sulfate was filtered off. From the obtained filtrate, ethyl acetate was distilled off under reduced pressure by a rotary evaporator to obtain a white solid.
- the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
- phase transition temperature, the phase difference, and the wavelength dispersion were evaluated as described below.
- phase transition temperature 10 mg of each of the polymerizable compounds 1 to 18 was weighed, and sandwiched between two glass substrates with a polyimide alignment film subjected to rubbing treatment in the solid state. The substrate was placed on a hot plate, heated from 50 ° C. to 200 ° C., and then cooled again to 50 ° C. Changes in the structure of the structure when the temperature was raised or lowered were observed with a deflection optical microscope (Nikon Corporation, ECLIPSE LV100POL type). The measured phase transition temperatures are shown in Table 2 below. In Table 2, “C” represents Crystal, “N” represents Nematic, and “I” represents Isotropic.
- Crystal means that the test compound is in a solid phase
- Nematic means that the test compound is in a nematic liquid crystal phase
- Isotropic means that the test compound is in an isotropic liquid phase. Show.
- ⁇ is smaller than 1 and ⁇ is larger than 1.
- ⁇ and ⁇ have the same value. If it has a general normal variance, ⁇ will be greater than 1 and ⁇ will be less than 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polarising Elements (AREA)
- Thiazole And Isothizaole Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Plural Heterocyclic Compounds (AREA)
- Quinoline Compounds (AREA)
Abstract
Description
しかし、従来の位相差板には、位相差板を通過して出力される偏光が、有色の偏光に変換されてしまうという問題があった。この問題を解決するため、広い波長域の光に対して均一な位相差を与え得る広帯域位相差板、いわゆる逆波長分散性を有する位相差板が種々検討されている(特許文献1~6)。
本発明は、特願2011-99525号に開示した重合性化合物の製造中間体となりうる新規化合物、及びその製造方法を提供することを目的とする。
かくして本発明によれば、(1)~(4)の化合物、(5)~(7)の製造方法が提供される。
(1)下記式(I)
(3)Qが水素原子である(1)又は(2)に記載の化合物。
(4)Ayが、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基である(1)~(3)のいずれかに記載の化合物。
(5)下記式(II)
(6)前記溶媒が、アルコール系溶媒である(5)に記載のヒドラゾン化合物の製造方法。
(7)前記アルコール系溶媒が、炭素数1~4のアルコール系溶媒である(6)に記載のヒドラゾン化合物の製造方法。
本発明の製造方法によれば、本発明の化合物を工業的に有利に製造することができる。
本発明の化合物(以下、「化合物(I)」ということがある。)は、前記式(I)で表される新規化合物である。
式(I)中、Axは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
本発明において、「芳香環」は、Huckel則に従う広義の芳香族性を有する環状構造、すなわち、π電子を(4n+2)個有する環状共役構造、及び、チオフェン、フラン、ピロール等に代表される、硫黄、酸素、窒素等のヘテロ原子の孤立電子対がπ電子系に関与して芳香族性を示すものを意味する。
なお、Axの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない、芳香環を含む有機基全体の総炭素数を意味する(後述するAyにて同じである。)。
これらの中でも、Axとしては、芳香族基(芳香族炭化水素環基又は芳香族複素環基)が好ましい。
また、Ayが有する芳香環は、任意の位置に置換基を有していてもよい。かかる置換基としては、前記Axが有する芳香環の置換基として列記したものと同様のものが挙げられる。
また、AxとAyは一緒になって、環を形成していてもよい。かかる環としては、置換基を有していてもよい炭素数4~30の不飽和複素環や、炭素数6~30の不飽和炭素環が挙げられる。
前記炭素数4~30の不飽和複素環、炭素数6~30の不飽和炭素環は、芳香族性を有していても有していなくてもよい。例えば、下記に示す環が挙げられる。なお、下記に示す環は、式(I)中の
また、これらの環は置換基を有していてもよい。
置換基としては、ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、-C(=O)-OR基、-SO2R基等が挙げられる。ここで、Rは前記と同じ意味を表す。
置換基を有していてもよい炭素数1~6のアルキル基としては、前記Ayで例示したのと同様のものが挙げられる。
これらの中でも、Qは、水素原子又は炭素数1~6のアルキル基が好ましく、水素原子がより好ましい。
このような重合性化合物は、広い波長域において一様の偏光変換が可能な光学フィルムを得ることができ、実用的な低い融点を有し、汎用溶媒に対する溶解性に優れ、しかも低コストで製造することができる。
本発明の製造方法は、前記式(I)で表されるヒドラゾン化合物(化合物(I))の製造方法であって、前記式(II)で表されるカルボニル化合物(以下、「カルボニル化合物(II)」ということがある。)と、前記式(III)で表されるヒドラジン化合物(以下、「ヒドラジン化合物(III)」ということがある。)とを、溶媒中で反応させることを特徴とする。
式(I)、(II)、(III)中、Ax、Ay、Qは、前記と同じ意味を表す。
エーテル系溶媒としては、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル類等が挙げられる。
また、アルコール系溶媒は、他の溶媒と組み合わせて用いることもできる。他の溶媒としては、テトラヒドロフラン等のエーテル系溶媒等が挙げられる。
この反応に用いる溶媒としては、反応に不活性なものであれば特に限定されない。例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルルコール、sec-ブチルアルコール、t-ブチルアルコール、n-ペンチルアルコール、アミルアルコール等のアルコール類;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;N,N-ジメチルホルムアミド、N-メチルピロリドン、ヘキサメチルリン酸トリアミド等のアミド類;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;及びこれらの2種以上からなる混合溶媒;等が挙げられる。
これらの中でも、アルコール類、エーテル類、及びアルコール類とエーテル類の混合溶媒が好ましい。
反応は、-10℃から用いる溶媒の沸点までの温度範囲で円滑に進行する。各反応の反応時間は、反応規模にもよるが、通常、数分から数時間である。
金属塩還元剤とは一般に低原子価金属を含む化合物、もしくは金属イオンとヒドリド源からなる化合物である(「有機合成実験法ハンドブック」1990年社団法人有機合成化学協会編 丸善株式会社発行810ページを参照)。
金属塩還元剤としては、例えば、NaAlH4、NaAlHp(Or)q(pは1~3の整数を表し、qはp+q=4を満たす整数である。rはアルキル基を表す。)、LiAlH4、iBu2AlH、LiBH4、NaBH4、SnCl2、CrCl2、TiCl3等が挙げられる。
また、ジアゾニウム塩(4)は、アニリン等の化合物から常法により製造することができる。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
実施例1aにおいて、反応及び後処理において用いる溶媒をメタノールから1-プロパノールに代えた以外は、実施例1aと同様にして、化合物(I-1)を製造した。淡黄色固体として、化合物(I-1)を10.7g得た(収率92.5%)。
実施例1aにおいて、反応溶媒をメタノールからテトラヒドロフラン(THF)に代えた以外は、実施例1aと同様の操作を行った。反応後、固体が析出しなかったので、ロータリーエバポレーターにてTHFを減圧留去させて黄色固体を得た。この黄色固体をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=85:15(体積比))により精製し、淡黄色固体として化合物(I-1)を8.78g得た(収率:75.9%)。
温度計を備えた4つ口反応器に、窒素気流中、2,5-ジヒドロキシベンズアルデヒド5.4g(39.1mmol)、原料A 5.83g(39.1mmol)及びエタノール150mlを入れ、全容を25℃にて4時間撹拌した。反応終了後、析出した固体をろ取した。ろ取した固体をエタノールで洗浄後、真空乾燥機で乾燥させて、白色固体として化合物(I-2)を10.1g得た(収率:95.9%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
実施例2aのステップ2において、反応溶媒をエタノールからTHFに代えた以外は、実施例2aと同様の操作により合成を行った。反応後、固体が析出しなかったので、ロータリーエバポレーターにてTHFを減圧留去させて淡黄色固体を得た。この淡黄色固体をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=85:15(体積比))により精製し、白色固体として化合物(I-2)を8.69g得た(収率:82.5%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
実施例5aにおいて、反応溶媒をエタノールからTHFに代えた以外は、実施例5aと同様の操作により合成を行った。反応後、固体が析出しなかったので、ロータリーエバポレーターにてTHFを減圧留去させて黄色固体を得た。この黄色固体をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=85:15(体積比))により精製し、黄色固体として化合物(I-5)を7.70g得た(収率:70.5%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に、窒素気流中、2,5-ジヒドロキシベンズアルデヒド380mg(2.75mmol)、原料B 493mg(2.75mmol)及び1-プロパノール10mlを入れ、全容を80℃で1時間撹拌した。反応終了後、反応液を20℃まで冷却し、析出した固体をろ取した。ろ取した固体を1-プロパノールで洗浄後、真空乾燥機で乾燥させて、淡黄色固体として化合物(I-6)を599mg得た(収率:72.7%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に、窒素気流中、2,5-ジヒドロキシベンズアルデヒド 763mg(5.52mmol)、原料C 1.34g(6.07mmol)及び1-プロパノール15mlを入れ、全容を80℃で1.5時間撹拌した。反応終了後、反応液を20℃まで冷却し、析出した固体をろ取した。ろ取した固体を1-プロパノールで洗浄後、真空乾燥機で乾燥させて、淡黄色固体として化合物(I-7)を1.76g得た(収率:84.9%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に、窒素気流中、2,5-ジヒドロキシベンズアルデヒド 504mg(3.65mmol)、原料D 1.00g(4.01mmol)及び1-プロパノール10mlを入れ、全容を80℃で3時間撹拌した。反応終了後、反応液を20℃まで冷却し、析出した固体をろ取した。ろ取した固体を1-プロパノールで洗浄後、真空乾燥機で乾燥させて、淡黄色固体として化合物(I-8)を1.20g得た(収率:88.8%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に、窒素気流中、2,5-ジヒドロキシベンズアルデヒド 197mg(1.43mmol)、原料E 511mg(1.71mmol)、(±)-10-カンファースルホン酸 32.5mg(0.14mmol)及び1-プロパノール 10mlを入れ、全容を80℃で2.5時間撹拌した。反応終了後、反応液を20℃まで冷却し、析出した固体をろ取した。ろ取した固体を1-プロパノールで洗浄後、真空乾燥機で乾燥させて、淡黄色固体として化合物(I-9)を401mg得た(収率:66.9%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に、窒素気流中、2,5-ジヒドロキシベンズアルデヒド 1.62g(11.7mmol)、先のステップ1で合成した原料F 2.89g(11.7mmol)及び1-プロパノール30mlを入れ、全容を80℃で7時間撹拌した。反応終了後、反応液を20℃まで冷却し、析出した固体をろ取した。ろ取した固体を1-プロパノールで洗浄後、真空乾燥機で乾燥させて、白色固体として化合物(I-11)を2.92g得た(収率:68.2%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に、窒素気流中、2,5-ジヒドロキシベンズアルデヒド 372mg(2.69mmol)、先のステップ1で合成した原料G 740mg(2.69mmol)及び1-プロパノール10mlを入れ、全容を80℃で6時間撹拌した。反応終了後、反応液を20℃まで冷却し、析出した固体をろ取した。ろ取した固体を1-プロパノールで洗浄後、真空乾燥機で乾燥させて、白色固体として化合物(I-12)を916mg得た(収率:86.1%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に、窒素気流中、2,5-ジヒドロキシベンズアルデヒド 630mg(4.56mmol)、及び、先のステップ1で合成した原料H 1.00g(4.56mmol)及び1-プロパノール15mlを入れ、全容を80℃で6時間撹拌した。反応終了後、反応液を20℃まで冷却し、析出した固体をろ取した。ろ取した固体を1-プロパノールで洗浄後、真空乾燥機で乾燥させて、白色固体として化合物(I-13)を760mg得た(収率:49.1%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に窒素気流下中、2-ヒドラジノベンゾチアゾール 3.00g(18.2mmol)及びTHF20mlを入れ、均一な溶液とした。この溶液に、ヘキサメチルジシラザンリチウム(26%THF溶液)11.4ml(18.2mmol)を0℃でゆっくり滴下し、滴下終了後、0℃で30分さらに撹拌した。得られた反応混合物に、1-ヨード-3-メチルブタン 2.9ml(21.8mmol)を加え、全容を室温で6時間撹拌した。反応終了後、反応液を水100mlに投入し、酢酸エチル150mlで抽出した。酢酸エチル層を無水硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した。得られたろ液から、ロータリーエバポレーターにて酢酸エチルを減圧留去して、黄色個体を得た。この黄色個体をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=75:25(体積比))により精製し、白色個体として原料Iを2.07g得た(収率:48.2%)。構造は1H-NMRで同定した。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に、窒素気流下中、2,5-ジヒドロキシベンズアルデヒド 1.21g(8.78mmol)、先のステップ1で合成した原料I 2.07g(8.78mmol)及び2-プロパノール15mlを入れ、全容を80℃で1.5時間撹拌した。反応終了後、反応液を20℃まで冷却し、析出した固体をろ取した。ろ取した固体を2-プロパノールで洗浄後、真空乾燥機で乾燥させて、白色固体として化合物(I-14)を1.36g得た(収率:43.6%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に、窒素気流中、2,5-ジヒドロキシベンズアルデヒド 1.06g(7.65mmol)、先のステップ1で合成した原料J 2.00g(7.65mmol)及び1-プロパノール20mlを入れ、全容を80℃で5時間撹拌した。反応終了後、反応液を20℃まで冷却し、析出した固体をろ取した。ろ取した固体を1-プロパノールで洗浄後、真空乾燥機で乾燥させて、白色固体として化合物(I-15)を2.00g得た(収率:70.8%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
温度計を備えた4つ口反応器に、窒素気流下中、2,5-ジヒドロキシベンズアルデヒド 510mg(3.69mmol)、先のステップ1で合成した原料K 1.02g(3.69mmol)及び2-プロパノール10mlを入れ、全容を80℃で3時間撹拌した。反応終了後、反応液を20℃まで冷却し、析出した固体をろ取した。ろ取した固体を2-プロパノールで洗浄後、真空乾燥機で乾燥させて、白色固体として化合物(I-16)を685mg得た(収率:46.9%)。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
また、アルコール系溶媒を用いる場合(実施例1a、1b、実施例2a、実施例5a)の方が、エーテル系溶媒(THF)を用いる場合(実施例1c、実施例2b、実施例5b)に比して、目的物をより高純度で、かつ、収率よく得ることができることがわかる。
なお、エーテル系溶媒(THF)を用いた場合には、反応終了後、結晶の析出がみられなかった。溶媒の減圧留去後得られる固体は、濃く着色されており、カラム精製が必要だった。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMR、マススペクトルで同定した。
1H-NMRスペクトルデータ及びマススペクトルデータを下記に示す。
目的物の構造は1H-NMR、マススペクトルで同定した。
1H-NMRスペクトルデータ及びマススペクトルデータを下記に示す。
目的物の構造は1H-NMR、マススペクトルで同定した。
1H-NMRスペクトルデータ及びマススペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
目的物の構造は1H-NMRで同定した。
1H-NMRスペクトルデータを下記に示す。
重合性化合物1~18をそれぞれ10mg計量し、固体状態のままで、ラビング処理を施したポリイミド配向膜付きのガラス基板2枚に挟んだ。この基板をホットプレート上に載せ、50℃から200℃まで昇温した後、再び50℃まで降温した。昇温、降温する際の組織構造の変化を偏向光学顕微鏡(ニコン社製、ECLIPSE LV100POL型)で観察した。
測定した相転移温度を下記表2に示す。
表2中、「C」はCrystal、「N」はNematic、「I」はIsotropicをそれぞれ表す。ここで、Crystalとは、試験化合物が固相にあることを、Nematicとは、試験化合物がネマチック液晶相にあることを、Isotropicとは、試験化合物が等方性液体相にあることを、それぞれ示す。
(1)重合性組成物の調製
製造例1~18で得られた重合性化合物1~18のそれぞれを1g、光重合開始剤として、アデカオプトマーN-1919(ADEKA社製)を30mg、界面活性剤として、KH-40(AGCセイミケミカル社製)の1%シクロペンタノン溶液100mgを、シクロペンタノン2.3gに溶解させた。この溶液を0.45μmの細孔径を有するディスポーサブルフィルターでろ過し、重合性組成物1~18をそれぞれ得た。
(i)配向膜を有する透明樹脂基材の作製
厚み100μmの、脂環式オレフィンポリマーからなるフィルム(日本ゼオン社製、ゼオノアフィルムZF16-100)の両面をコロナ放電処理した。5%のポリビニルアルコールの水溶液を当該フィルムの片面に♯2のワイヤーバーを使用して塗布し、塗膜を乾燥し、膜厚0.1μmの配向膜を形成した。次いで当該配向膜をラビング処理し、配向膜を有する透明樹脂基材を作製した。
得られた配向膜を有する透明樹脂基材の、配向膜を有する面に、重合性組成物1~18を、♯4のワイヤーバーを使用して塗布した。塗膜を下記表3に示す乾燥温度で30秒間乾燥した後、表3に示す配向処理温度で1分間配向処理して、液晶層を形成した。その後、液晶層の塗布面側から2000mJ/cm2の紫外線を照射して重合させ、波長分散測定用の試料とした。
得られた試料につき、400nmから800nm間の位相差を、エリプソメーター(J.A.Woollam社製、XLS-100型)を用いて測定した。
測定した位相差を用いて以下のように算出されるα、β値から波長分散を評価した。
塗膜の乾燥温度、配向処理温度、重合性組成物1~18を重合して得られた液晶性高分子膜の膜厚(μm)、波長548.5nmにおける位相差(Re)、α、βの値を、下記表3にまとめて示す。
Claims (7)
- 下記式(I)
Ayは、水素原子、置換基を有していてもよい炭素数1~18のアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよい炭素数2~18のアルケニル基、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。Ax及びAyが有する芳香環は置換基を有していてもよい。また、AxとAyは一緒になって、環を形成していてもよい。
Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。)で示される化合物。 - AxとAyに含まれる芳香環π電子の総数が24以下である請求項1に記載の化合物。
- Qが水素原子である請求項1又は2に記載の化合物。
- Ayが、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基である請求項1~3のいずれかに記載の化合物。
- 下記式(II)
で表されるカルボニル化合物と、下記式(III)
Ayは、水素原子、置換基を有していてもよい炭素数1~18のアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよい炭素数2~18のアルケニル基、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。Ax及びAyが有する芳香環は置換基を有していてもよい。また、AxとAyは一緒になって、環を形成していてもよい。)
で表されるヒドラジン化合物とを、溶媒中で反応させることを特徴とする、下記式(I)
で表されるヒドラゾン化合物の製造方法。 - 前記溶媒が、アルコール系溶媒である請求項5に記載のヒドラゾン化合物の製造方法。
- 前記アルコール系溶媒が、炭素数1~4のアルコール系溶媒である請求項6に記載のヒドラゾン化合物の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/347,962 US9447059B2 (en) | 2011-09-27 | 2012-04-27 | Intermediate for manufacture of polymerizable compound and process for manufacture thereof |
KR1020147006431A KR101954702B1 (ko) | 2011-09-27 | 2012-04-27 | 중합성 화합물의 제조 중간체 및 그 제조 방법 |
EP12837151.5A EP2762465B1 (en) | 2011-09-27 | 2012-04-27 | Intermediate for manufacture of polymerizable compound and process for manufacture thereof |
CN201280047147.5A CN103842334B (zh) | 2011-09-27 | 2012-04-27 | 聚合性化合物的制备中间体及其制备方法 |
JP2013535962A JP6123673B2 (ja) | 2011-09-27 | 2012-04-27 | 重合性化合物の製造中間体及びその製造方法 |
KR1020207005995A KR20200024367A (ko) | 2011-09-27 | 2012-04-27 | 중합성 화합물의 제조 중간체 및 그 제조 방법 |
KR1020197005866A KR102085198B1 (ko) | 2011-09-27 | 2012-04-27 | 중합성 화합물의 제조 중간체 및 그 제조 방법 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-211581 | 2011-09-27 | ||
JP2011211581 | 2011-09-27 | ||
JP2012039648 | 2012-02-27 | ||
JP2012-039648 | 2012-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013046781A1 true WO2013046781A1 (ja) | 2013-04-04 |
Family
ID=47994848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/061323 WO2013046781A1 (ja) | 2011-09-27 | 2012-04-27 | 重合性化合物の製造中間体及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9447059B2 (ja) |
EP (1) | EP2762465B1 (ja) |
JP (3) | JP6123673B2 (ja) |
KR (3) | KR20200024367A (ja) |
CN (1) | CN103842334B (ja) |
WO (1) | WO2013046781A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146633A1 (ja) * | 2012-03-30 | 2013-10-03 | 日本ゼオン株式会社 | 位相差フィルム積層体およびその製造方法、ならびに液晶表示装置 |
JP2013213012A (ja) * | 2012-04-03 | 2013-10-17 | Nippon Zeon Co Ltd | 重合性化合物の製造方法 |
WO2014061709A1 (ja) * | 2012-10-19 | 2014-04-24 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
WO2014065176A1 (ja) * | 2012-10-23 | 2014-05-01 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
WO2015064698A1 (ja) * | 2013-10-31 | 2015-05-07 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
JPWO2014010325A1 (ja) * | 2012-07-09 | 2016-06-20 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、光学異方体、及び重合性化合物の製造方法 |
JP2016190818A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | 1,1−ジ置換ヒドラジン化合物の製造方法 |
JP2016190828A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | 重合性化合物の製造方法 |
WO2017169839A1 (ja) * | 2016-03-30 | 2017-10-05 | Dic株式会社 | 2-ヒドラジノベンゾチアゾール誘導体の製造方法 |
WO2018096938A1 (ja) * | 2016-11-22 | 2018-05-31 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物 |
KR20180090820A (ko) | 2015-12-07 | 2018-08-13 | 디아이씨 가부시끼가이샤 | 중합성 화합물의 제조 방법 |
WO2018168778A1 (ja) | 2017-03-17 | 2018-09-20 | 日本ゼオン株式会社 | 重合性化合物、重合性液晶混合物、高分子、光学フィルム、光学異方体、偏光板、表示装置、反射防止フィルム、および化合物 |
WO2018173954A1 (ja) | 2017-03-23 | 2018-09-27 | 日本ゼオン株式会社 | 重合性化合物およびその製造方法、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、表示装置、反射防止フィルム、並びに、化合物およびその使用方法 |
WO2019151263A1 (ja) * | 2018-02-05 | 2019-08-08 | 日本ゼオン株式会社 | 1,1-ジ置換ヒドラジン化合物の製造方法および重合性化合物の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012141245A1 (ja) * | 2011-04-15 | 2012-10-18 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
KR20200024367A (ko) * | 2011-09-27 | 2020-03-06 | 제온 코포레이션 | 중합성 화합물의 제조 중간체 및 그 제조 방법 |
JP7172504B2 (ja) * | 2018-11-28 | 2022-11-16 | 大日本印刷株式会社 | 重合性組成物、重合体、位相差フィルム、位相差フィルムの製造方法、転写用積層体、光学部材、光学部材の製造方法及び表示装置 |
JP7155957B2 (ja) * | 2018-11-30 | 2022-10-19 | 大日本印刷株式会社 | 位相差フィルム及びその製造方法、転写用積層体、光学部材及びその製造方法、並びに表示装置 |
JP7192514B2 (ja) * | 2019-01-18 | 2022-12-20 | 大日本印刷株式会社 | 重合性組成物、位相差フィルム及びその製造方法、転写用積層体、光学部材及びその製造方法、並びに表示装置 |
KR102279138B1 (ko) * | 2020-11-02 | 2021-07-20 | 주식회사 에이드림 | 현무암 분말을 포함하는 콘크리트 구조물의 보수재 조성물 및 콘크리트 구조물의 보수공법 |
Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993022361A1 (en) * | 1992-05-01 | 1993-11-11 | Idemitsu Kosan Co., Ltd. | Ester polymer, production thereof, and electrophotographic photoreceptor made therefrom |
US5567349A (en) | 1994-03-30 | 1996-10-22 | Hoffmann-La Roche Inc. | Photo cross-linkable liquid crystals |
JPH1068816A (ja) | 1996-08-29 | 1998-03-10 | Sharp Corp | 位相差板及び円偏光板 |
JPH1090521A (ja) | 1996-07-24 | 1998-04-10 | Sumitomo Chem Co Ltd | 偏光軸回転積層位相差板およびこれを用いた投射型液晶表示装置 |
JPH1152131A (ja) | 1997-08-01 | 1999-02-26 | Sumitomo Bakelite Co Ltd | 位相差板及びそれを用いた偏光素子 |
WO2000026705A1 (fr) | 1998-10-30 | 2000-05-11 | Teijin Limited | Film a differences de phase et dispositif optique dans lequel il est utilise |
JP2000284126A (ja) | 1999-01-27 | 2000-10-13 | Fuji Photo Film Co Ltd | 位相差板、円偏光板および反射型液晶表示装置 |
US6139771A (en) | 1997-04-04 | 2000-10-31 | Displaytech, Inc. | Mesogenic materials with anomalous birefringence dispersion and high second order susceptibility (X.sup.(2)). |
JP2001004837A (ja) | 1999-06-22 | 2001-01-12 | Fuji Photo Film Co Ltd | 位相差板および円偏光板 |
US6203724B1 (en) | 1998-12-03 | 2001-03-20 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Crosslinked cyclohexane derivatives, and liquid-crystalline medium |
JP2002267838A (ja) | 2001-03-06 | 2002-09-18 | Fuji Photo Film Co Ltd | 位相差膜 |
US20020159005A1 (en) | 1998-11-06 | 2002-10-31 | Kohei Arakawa | Quarter wave plate comprising two optically anisotropic layers |
JP2003160540A (ja) | 2001-09-17 | 2003-06-03 | Fuji Photo Film Co Ltd | 四員環化合物、それを用いた複屈折媒体および光学部材 |
JP2005208414A (ja) | 2004-01-23 | 2005-08-04 | Nitto Denko Corp | 逆波長分散位相差フィルム、それを用いた偏光板及びディスプレイ装置 |
JP2005208416A (ja) | 2004-01-23 | 2005-08-04 | Nitto Denko Corp | 逆波長分散位相差フィルム、それを用いた偏光板及びディスプレイ装置 |
JP2005208415A (ja) | 2004-01-23 | 2005-08-04 | Nitto Denko Corp | 逆波長分散位相差フィルム、それを用いた偏光板及びディスプレイ装置 |
JP2005289980A (ja) | 2004-03-08 | 2005-10-20 | Fuji Photo Film Co Ltd | 液晶化合物、液晶組成物、重合体、位相差板、及び楕円偏光板 |
JP2005336103A (ja) | 2004-05-27 | 2005-12-08 | Fuji Photo Film Co Ltd | フェニルヒドラジン類の製造方法 |
WO2006052001A1 (ja) | 2004-11-11 | 2006-05-18 | Sumitomo Chemical Company, Limited | 光学フィルム |
JP2006330710A (ja) | 2005-04-28 | 2006-12-07 | Sumitomo Chemical Co Ltd | フィルム及びその製造方法 |
US20090072194A1 (en) | 2005-04-28 | 2009-03-19 | Motohiro Yamahara | Films and Processes for Producing the Same |
US20090189120A1 (en) | 2008-01-29 | 2009-07-30 | Fujifilm Corporation | Compound, liquid crystal composition, and anisotropic material |
JP2010031223A (ja) | 2007-12-28 | 2010-02-12 | Sumitomo Chemical Co Ltd | 化合物、光学フィルム及び光学フィルムの製造方法 |
US20100201920A1 (en) | 2007-09-03 | 2010-08-12 | Merck Patent Gesellschaft | Calamitic Mesogenic Compounds |
JP2010194518A (ja) * | 2009-02-27 | 2010-09-09 | Hitachi Zosen Corp | アンモニア分解触媒 |
US20100301271A1 (en) | 2007-09-03 | 2010-12-02 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Fluorene derivatives |
JP2011006361A (ja) | 2009-06-26 | 2011-01-13 | Sumitomo Chemical Co Ltd | 化合物、光学フィルム及び光学フィルムの製造方法 |
JP2011006360A (ja) | 2009-06-26 | 2011-01-13 | Sumitomo Chemical Co Ltd | 化合物、光学フィルム及び光学フィルムの製造方法 |
WO2011020883A1 (en) | 2009-08-20 | 2011-02-24 | Max-Delbrück-Centrum für Molekulare Medizin | Enhancers of protein degradation |
JP2011042606A (ja) | 2009-08-20 | 2011-03-03 | Sumitomo Chemical Co Ltd | 化合物、光学フィルム及び光学フィルムの製造方法 |
JP2011099525A (ja) | 2009-11-06 | 2011-05-19 | Toyota Motor Corp | 変速機のパーキング装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE561091A (ja) * | ||||
GB8430072D0 (en) * | 1984-11-28 | 1985-01-09 | Lilly Industries Ltd | Pharmaceutical compounds |
US5208299A (en) * | 1992-04-10 | 1993-05-04 | The Dow Chemical Company | Nonlinear optical arylhydrazones and nonlinear optical polymers thereof |
JP3222255B2 (ja) * | 1993-03-12 | 2001-10-22 | 出光興産株式会社 | ポリカーボネート系重合体とその製造法及びこれを用いた電子写真感光体 |
DE4230262A1 (de) * | 1992-09-10 | 1994-03-17 | Behringwerke Ag | Substituierte Phenole, Verfahren zu ihrer Herstellung und ihre Verwendung zur Behandlung von zellproliferationsbedingten Erkrankungen |
JP3497199B2 (ja) * | 1993-03-12 | 2004-02-16 | 出光興産株式会社 | ヒドラゾン誘導体及びこれを用いた電子写真感光体 |
EP0670506B1 (en) * | 1993-09-10 | 2004-01-14 | Nippon Kayaku Kabushiki Kaisha | Polarizer, polarizing plate and process for production thereof |
JP3615538B2 (ja) * | 1993-09-10 | 2005-02-02 | 日本化薬株式会社 | 偏光素子、偏光板およびその製造方法 |
JP4666742B2 (ja) * | 1999-12-14 | 2011-04-06 | 株式会社林原生物化学研究所 | 光吸収材とその用途 |
FI20000577A0 (fi) * | 2000-03-13 | 2000-03-13 | Orion Yhtymae Oy | Pyridatsinyylifenyylihydratsoneja |
JP4929546B2 (ja) * | 2001-08-20 | 2012-05-09 | Dic株式会社 | 重合性液晶組成物及びこれを用いた光学異方体 |
CN102924326B (zh) * | 2007-02-23 | 2014-12-17 | 日本瑞翁株式会社 | 液晶化合物,液晶组合物,光学膜和光学层合材料 |
WO2008133290A1 (ja) * | 2007-04-24 | 2008-11-06 | Zeon Corporation | 重合性液晶化合物、重合性液晶組成物、液晶性高分子および光学異方体 |
JP5401822B2 (ja) * | 2007-04-24 | 2014-01-29 | 日本ゼオン株式会社 | 重合性液晶化合物、重合性液晶組成物、液晶性高分子および光学異方体 |
CN101470212B (zh) * | 2007-12-28 | 2014-10-22 | 住友化学株式会社 | 光学膜 |
JP5564773B2 (ja) | 2008-09-19 | 2014-08-06 | 日本ゼオン株式会社 | 重合性液晶化合物、重合性液晶組成物、液晶性高分子及び光学異方体 |
EP2402081A4 (en) * | 2009-02-27 | 2012-11-14 | Hitachi Shipbuilding Eng Co | CATALYST OF DECOMPOSITION OF AMMONIA |
KR20110020883A (ko) | 2011-01-18 | 2011-03-03 | 원광밸브주식회사 | 밸브의 부식 방지 방법 |
KR20200024367A (ko) * | 2011-09-27 | 2020-03-06 | 제온 코포레이션 | 중합성 화합물의 제조 중간체 및 그 제조 방법 |
-
2012
- 2012-04-27 KR KR1020207005995A patent/KR20200024367A/ko not_active Application Discontinuation
- 2012-04-27 KR KR1020197005866A patent/KR102085198B1/ko active IP Right Grant
- 2012-04-27 JP JP2013535962A patent/JP6123673B2/ja active Active
- 2012-04-27 CN CN201280047147.5A patent/CN103842334B/zh active Active
- 2012-04-27 US US14/347,962 patent/US9447059B2/en active Active
- 2012-04-27 KR KR1020147006431A patent/KR101954702B1/ko active IP Right Grant
- 2012-04-27 EP EP12837151.5A patent/EP2762465B1/en active Active
- 2012-04-27 WO PCT/JP2012/061323 patent/WO2013046781A1/ja active Application Filing
-
2017
- 2017-04-06 JP JP2017076306A patent/JP6414266B2/ja active Active
-
2018
- 2018-10-03 JP JP2018188308A patent/JP6844597B2/ja active Active
Patent Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993022361A1 (en) * | 1992-05-01 | 1993-11-11 | Idemitsu Kosan Co., Ltd. | Ester polymer, production thereof, and electrophotographic photoreceptor made therefrom |
US5567349A (en) | 1994-03-30 | 1996-10-22 | Hoffmann-La Roche Inc. | Photo cross-linkable liquid crystals |
JPH1090521A (ja) | 1996-07-24 | 1998-04-10 | Sumitomo Chem Co Ltd | 偏光軸回転積層位相差板およびこれを用いた投射型液晶表示装置 |
JPH1068816A (ja) | 1996-08-29 | 1998-03-10 | Sharp Corp | 位相差板及び円偏光板 |
US6139771A (en) | 1997-04-04 | 2000-10-31 | Displaytech, Inc. | Mesogenic materials with anomalous birefringence dispersion and high second order susceptibility (X.sup.(2)). |
JPH1152131A (ja) | 1997-08-01 | 1999-02-26 | Sumitomo Bakelite Co Ltd | 位相差板及びそれを用いた偏光素子 |
WO2000026705A1 (fr) | 1998-10-30 | 2000-05-11 | Teijin Limited | Film a differences de phase et dispositif optique dans lequel il est utilise |
US20020159005A1 (en) | 1998-11-06 | 2002-10-31 | Kohei Arakawa | Quarter wave plate comprising two optically anisotropic layers |
US6203724B1 (en) | 1998-12-03 | 2001-03-20 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Crosslinked cyclohexane derivatives, and liquid-crystalline medium |
JP2000284126A (ja) | 1999-01-27 | 2000-10-13 | Fuji Photo Film Co Ltd | 位相差板、円偏光板および反射型液晶表示装置 |
JP2001004837A (ja) | 1999-06-22 | 2001-01-12 | Fuji Photo Film Co Ltd | 位相差板および円偏光板 |
JP2002267838A (ja) | 2001-03-06 | 2002-09-18 | Fuji Photo Film Co Ltd | 位相差膜 |
JP2003160540A (ja) | 2001-09-17 | 2003-06-03 | Fuji Photo Film Co Ltd | 四員環化合物、それを用いた複屈折媒体および光学部材 |
US20030102458A1 (en) | 2001-09-17 | 2003-06-05 | Naoyuki Nishikawa | 4-Membered ring compound and optical phase optical retardation plate using the same |
JP2005208414A (ja) | 2004-01-23 | 2005-08-04 | Nitto Denko Corp | 逆波長分散位相差フィルム、それを用いた偏光板及びディスプレイ装置 |
JP2005208416A (ja) | 2004-01-23 | 2005-08-04 | Nitto Denko Corp | 逆波長分散位相差フィルム、それを用いた偏光板及びディスプレイ装置 |
JP2005208415A (ja) | 2004-01-23 | 2005-08-04 | Nitto Denko Corp | 逆波長分散位相差フィルム、それを用いた偏光板及びディスプレイ装置 |
JP2005289980A (ja) | 2004-03-08 | 2005-10-20 | Fuji Photo Film Co Ltd | 液晶化合物、液晶組成物、重合体、位相差板、及び楕円偏光板 |
US20070176145A1 (en) | 2004-03-08 | 2007-08-02 | Fuji Photo Film Co., Ltd. | Liquid crystal compound comprising two condensed and substituted rings |
JP2005336103A (ja) | 2004-05-27 | 2005-12-08 | Fuji Photo Film Co Ltd | フェニルヒドラジン類の製造方法 |
WO2006052001A1 (ja) | 2004-11-11 | 2006-05-18 | Sumitomo Chemical Company, Limited | 光学フィルム |
US20070298191A1 (en) | 2004-11-11 | 2007-12-27 | Motohiro Yamahara | Optical Film |
US20090072194A1 (en) | 2005-04-28 | 2009-03-19 | Motohiro Yamahara | Films and Processes for Producing the Same |
JP2006330710A (ja) | 2005-04-28 | 2006-12-07 | Sumitomo Chemical Co Ltd | フィルム及びその製造方法 |
JP2010537954A (ja) | 2007-09-03 | 2010-12-09 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | カラミチックメソゲン化合物 |
US20100201920A1 (en) | 2007-09-03 | 2010-08-12 | Merck Patent Gesellschaft | Calamitic Mesogenic Compounds |
US20100301271A1 (en) | 2007-09-03 | 2010-12-02 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Fluorene derivatives |
JP2010537955A (ja) | 2007-09-03 | 2010-12-09 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | フルオレン誘導体 |
JP2010031223A (ja) | 2007-12-28 | 2010-02-12 | Sumitomo Chemical Co Ltd | 化合物、光学フィルム及び光学フィルムの製造方法 |
US20090189120A1 (en) | 2008-01-29 | 2009-07-30 | Fujifilm Corporation | Compound, liquid crystal composition, and anisotropic material |
JP2009179563A (ja) | 2008-01-29 | 2009-08-13 | Fujifilm Corp | 化合物、液晶組成物及び異方性材料 |
JP2010194518A (ja) * | 2009-02-27 | 2010-09-09 | Hitachi Zosen Corp | アンモニア分解触媒 |
JP2011006361A (ja) | 2009-06-26 | 2011-01-13 | Sumitomo Chemical Co Ltd | 化合物、光学フィルム及び光学フィルムの製造方法 |
JP2011006360A (ja) | 2009-06-26 | 2011-01-13 | Sumitomo Chemical Co Ltd | 化合物、光学フィルム及び光学フィルムの製造方法 |
WO2011020883A1 (en) | 2009-08-20 | 2011-02-24 | Max-Delbrück-Centrum für Molekulare Medizin | Enhancers of protein degradation |
JP2011042606A (ja) | 2009-08-20 | 2011-03-03 | Sumitomo Chemical Co Ltd | 化合物、光学フィルム及び光学フィルムの製造方法 |
JP2011099525A (ja) | 2009-11-06 | 2011-05-19 | Toyota Motor Corp | 変速機のパーキング装置 |
Non-Patent Citations (12)
Title |
---|
"ikken Kagaku Koza", vol. 20, 1992, MARUZEN CO., LTD. |
"Shin-Jikken Kagaku Koza", vol. 14, 1978, MARUZEN CO., LTD. |
"Yuki Gosei Jikkenhou Handbook", 1990, MARUZEN CO., LTD., pages: 8 - 10 |
ALANG ET AL.: "Synthesis and antibacterial activity of some new benzothiazole derivatives", ACTA PHARMACEUTICA SCIENCIA, vol. 52, 2010, pages 213 - 218, XP027458792 * |
KHAN ET AL.: "Synthesis of 2,4,6-trichlorophenyl hydrazones and their inhibitory potential against glycation of protein", MEDICINAL CHEMISTRY, vol. 7, 1 November 2011 (2011-11-01), pages 572 - 580, XP055145521 * |
MOTENEGRO ET AL.: "Cytotoxic activity of polysubstituted 7-chloro-4-quinolinylhydrazone derivatives", LETTERS IN DRUG DESIGN & DISCOVERY, vol. 9, 15 March 2012 (2012-03-15), pages 251 - 256, XP008172944 * |
RUFFINI, G.: "Thin-layer chromatography of 2,4-dinitrophenylhydrazones of aromatic aldehydes and ketones", JOURNAL OF CHROMATOGRAPHY, vol. 17, 1965, pages 483 - 487, XP026713333 * |
See also references of EP2762465A4 * |
SHARMA ET AL.: "Computer aided drug design of 2-substituted hydrazino-6-fluoro-1,3-benzothiazoles as anti-microbial agents", JOURNAL OF PHARMACY RESEARCH, vol. 3, no. 5, 2010, pages 969 - 970, XP055148213 * |
SIDDIQUI ET AL.: "Cytotoxicity and enzymes estimation of some newer benzimidazoles", ANNALS OF BIOLOGICAL RESEARCH, vol. 2, 29 December 2011 (2011-12-29), pages 194 - 199, XP055145524 * |
VOLMAJER ET AL.: "Synthesis of new iminocoumarins and their transformations into N-chloro and hydrazono compounds", TETRAHEDRON, vol. 61, 2005, pages 7012 - 7021, XP027861192 * |
XIE ET AL.: "Study on tumor chemotherapeutic agents: synthesis of 9-hydrazinoacridine derivatives", YAOXUE XUEBAO, vol. 19, no. 6, 1984, pages 466 - 470, XP008172938 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146633A1 (ja) * | 2012-03-30 | 2013-10-03 | 日本ゼオン株式会社 | 位相差フィルム積層体およびその製造方法、ならびに液晶表示装置 |
JP2013213012A (ja) * | 2012-04-03 | 2013-10-17 | Nippon Zeon Co Ltd | 重合性化合物の製造方法 |
JPWO2014010325A1 (ja) * | 2012-07-09 | 2016-06-20 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、光学異方体、及び重合性化合物の製造方法 |
WO2014061709A1 (ja) * | 2012-10-19 | 2014-04-24 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
US10329247B2 (en) | 2012-10-19 | 2019-06-25 | Zeon Corporation | Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance |
US9776954B2 (en) | 2012-10-19 | 2017-10-03 | Zeon Corporation | Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance |
WO2014065176A1 (ja) * | 2012-10-23 | 2014-05-01 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
US9777096B2 (en) | 2012-10-23 | 2017-10-03 | Zeon Corporation | Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body |
JP2019077870A (ja) * | 2013-10-31 | 2019-05-23 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
WO2015064698A1 (ja) * | 2013-10-31 | 2015-05-07 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
JPWO2015064698A1 (ja) * | 2013-10-31 | 2017-03-09 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
JP2016190818A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | 1,1−ジ置換ヒドラジン化合物の製造方法 |
JP2016190828A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | 重合性化合物の製造方法 |
KR20180090820A (ko) | 2015-12-07 | 2018-08-13 | 디아이씨 가부시끼가이샤 | 중합성 화합물의 제조 방법 |
US10927087B2 (en) | 2015-12-07 | 2021-02-23 | Dic Corporation | Method for producing polymerizable compound |
JPWO2017169839A1 (ja) * | 2016-03-30 | 2018-06-28 | Dic株式会社 | 2−ヒドラジノベンゾチアゾール誘導体の製造方法 |
US10968189B2 (en) | 2016-03-30 | 2021-04-06 | Dic Corporation | Method for producing 2-hydrazinobenzothiazole derivative |
KR20180129767A (ko) | 2016-03-30 | 2018-12-05 | 디아이씨 가부시끼가이샤 | 2-히드라지노벤조티아졸 유도체의 제조 방법 |
WO2017169839A1 (ja) * | 2016-03-30 | 2017-10-05 | Dic株式会社 | 2-ヒドラジノベンゾチアゾール誘導体の製造方法 |
JPWO2018096938A1 (ja) * | 2016-11-22 | 2019-10-17 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物 |
WO2018096938A1 (ja) * | 2016-11-22 | 2018-05-31 | 日本ゼオン株式会社 | 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物 |
CN109996780A (zh) * | 2016-11-22 | 2019-07-09 | 日本瑞翁株式会社 | 聚合性化合物、聚合性组合物、高分子、光学膜、光学各向异性体、偏振片、平板显示装置、有机电致发光显示装置、防反射膜和化合物 |
WO2018168778A1 (ja) | 2017-03-17 | 2018-09-20 | 日本ゼオン株式会社 | 重合性化合物、重合性液晶混合物、高分子、光学フィルム、光学異方体、偏光板、表示装置、反射防止フィルム、および化合物 |
WO2018173954A1 (ja) | 2017-03-23 | 2018-09-27 | 日本ゼオン株式会社 | 重合性化合物およびその製造方法、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、表示装置、反射防止フィルム、並びに、化合物およびその使用方法 |
JPWO2019151263A1 (ja) * | 2018-02-05 | 2021-01-28 | 日本ゼオン株式会社 | 1,1−ジ置換ヒドラジン化合物の製造方法および重合性化合物の製造方法 |
WO2019151263A1 (ja) * | 2018-02-05 | 2019-08-08 | 日本ゼオン株式会社 | 1,1-ジ置換ヒドラジン化合物の製造方法および重合性化合物の製造方法 |
JP7318535B2 (ja) | 2018-02-05 | 2023-08-01 | 日本ゼオン株式会社 | 1,1-ジ置換ヒドラジン化合物の製造方法および重合性化合物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101954702B1 (ko) | 2019-03-06 |
EP2762465B1 (en) | 2018-01-10 |
JP2019032548A (ja) | 2019-02-28 |
JP6123673B2 (ja) | 2017-05-10 |
EP2762465A4 (en) | 2015-03-04 |
US9447059B2 (en) | 2016-09-20 |
KR20190026040A (ko) | 2019-03-12 |
EP2762465A1 (en) | 2014-08-06 |
US20140235857A1 (en) | 2014-08-21 |
CN103842334B (zh) | 2016-06-29 |
KR102085198B1 (ko) | 2020-03-05 |
JP6844597B2 (ja) | 2021-03-17 |
KR20200024367A (ko) | 2020-03-06 |
JP2017120448A (ja) | 2017-07-06 |
CN103842334A (zh) | 2014-06-04 |
JP6414266B2 (ja) | 2018-10-31 |
KR20140068960A (ko) | 2014-06-09 |
JPWO2013046781A1 (ja) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6414266B2 (ja) | 光学フィルム | |
US11091452B2 (en) | Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound | |
JP6773613B2 (ja) | ヒドラジン化合物、その使用方法及び光学異方体の製造方法 | |
CN110003008B (zh) | 混合物和化合物 | |
WO2013180217A1 (ja) | 重合性化合物、重合性組成物、高分子、及び光学異方体 | |
WO2013018526A1 (ja) | 光学異方体の波長分散調整方法及び重合性組成物 | |
WO2015025793A1 (ja) | 重合性化合物、重合性組成物、高分子、及び光学異方体 | |
WO2014126113A1 (ja) | 重合性化合物、重合性組成物、高分子、及び光学異方体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12837151 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013535962 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147006431 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012837151 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14347962 Country of ref document: US |