WO2013039131A1 - 電気化学素子用電極 - Google Patents

電気化学素子用電極 Download PDF

Info

Publication number
WO2013039131A1
WO2013039131A1 PCT/JP2012/073419 JP2012073419W WO2013039131A1 WO 2013039131 A1 WO2013039131 A1 WO 2013039131A1 JP 2012073419 W JP2012073419 W JP 2012073419W WO 2013039131 A1 WO2013039131 A1 WO 2013039131A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
roll
electrode active
active material
binder
Prior art date
Application number
PCT/JP2012/073419
Other languages
English (en)
French (fr)
Inventor
康博 一色
藤井 勉
琢也 石井
卓 松村
祐子 大谷
祐二 柴田
和幸 大西
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201280051899.9A priority Critical patent/CN103907226A/zh
Priority to US14/344,711 priority patent/US20140342225A1/en
Priority to KR1020147009517A priority patent/KR101998658B1/ko
Priority to EP12832068.6A priority patent/EP2757620A4/en
Publication of WO2013039131A1 publication Critical patent/WO2013039131A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode for an electrochemical element.
  • Electrochemical elements such as lithium ion secondary batteries that are small and lightweight, have high energy density, and can be repeatedly charged and discharged are rapidly expanding their demands by taking advantage of their characteristics.
  • Lithium ion secondary batteries are used in fields such as mobile phones, notebook personal computers, and electric vehicles because of their relatively high energy density.
  • An electrode constituting such an electrochemical element is usually produced by applying a slurry containing a binder, an electrode active material, and a solvent on a current collector such as a metal foil and removing the solvent.
  • a slurry for constituting the electrode of such an electrochemical element a fluorine-based resin such as polyvinylidene fluoride (PVDF) is used as a binder, and an organic solvent such as N-methyl-pyrrolidone (NMP) is used as a solvent.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-pyrrolidone
  • An organic slurry is generally used.
  • Patent Document 1 from a mixture of a polymer having a structural unit derived from 1,3-butadiene, a structural unit derived from aromatic vinyl, and a structural unit derived from an ethylenically unsaturated carboxylic acid ester, and poly 1,3-butadiene.
  • An aqueous binder is disclosed.
  • an aqueous slurry is obtained by mixing with an electrode active material and water using such an aqueous binder, and applying the obtained aqueous slurry on a metal foil current collector. Electrodes for electrochemical devices have been obtained.
  • the obtained electrode for an electrochemical element has a binder between an electrode active material and an electrode active material in the electrode for an electrochemical element. Therefore, the interface between the electrode active material and the electrolytic solution is not properly formed, so that the ionic conduction becomes insufficient, resulting in an increase in resistance. There was a problem that.
  • the present invention has high adhesion between the electrode active material layer and the current collector, and is excellent in wettability with respect to the electrolyte solution. As a result, when used as a battery, the electrochemical device has low internal resistance and excellent cycle characteristics.
  • An object is to provide an electrode.
  • an electrode for an electrochemical element is coated with at least a part of the surface of the electrode active material with a binder, and a plurality of electrode active parts.
  • a binder connecting portion formed by connecting the binder coating portions formed on the surfaces of the plurality of electrode active materials forming the void portion with a binder in the void portion composed of the substance.
  • the electrode for electrochemical devices has high adhesion between the electrode active material layer and the current collector, and is excellent in wettability with respect to the electrolyte solution. This makes the battery low in internal resistance and excellent in cycle characteristics. As a result, the present invention has been completed.
  • an electrode for an electrochemical device comprising an electrode active material layer containing an electrode active material and a binder, wherein the binder is coated on at least a part of the surface of the electrode active material with the binder.
  • a binder connecting portion formed by connecting the binder covering portions formed on the surfaces of the plurality of electrode active materials forming the gap portions with each other in the gap portion constituted by the coating portion and the plurality of electrode active materials.
  • the binder coating portions formed on the surfaces of the plurality of electrode active materials forming the gap portions are not integrated with each other and are formed independently of each other. Is preferred.
  • the binder connecting portion preferably has a length of 0.01 to 5 ⁇ m.
  • the binder connecting portion has a thread shape and / or a plate shape.
  • the binder is preferably an acrylate polymer and / or a conjugated diene polymer.
  • the electrode active material and the binder form composite particles.
  • the electrode active material layer is formed by pressing the composite particles with a first pressure to form a pressure body, and the pressure body is higher than the first pressure. It is preferable that it is obtained by pressurizing at the second pressure.
  • the following manufacturing method can be provided.
  • (1a) A compacted layer forming step in which composite particles containing an electrode active material and a binder are compressed and adhered to the surface of a long sheet-like support to form a long powdery layer with a sheet-like support. And a transfer step of transferring the powder layer to a long sheet-shaped current collector without using the long sheet-form support-attached powder layer as a wound body.
  • Method (2a) The method for producing an electrode for an electrochemical element according to the above (1a), further comprising a step of pressurizing the dust layer simultaneously with or after transfer.
  • a composite particle containing an electrode active material and a binder is supplied between a pair of rolls rotating in opposite directions, and the composite particle is compressed and adhered to one roll surface to form a powder layer.
  • a method for producing an electrode for an electrochemical device comprising: a dust layer forming step, and a transfer step of transferring the dust layer attached to one of the rolls to a long sheet-like current collector, (2b) The method for producing an electrode for an electrochemical element according to (1b), further comprising a step of pressurizing the dust layer simultaneously with or after the transfer, (3b) The method for producing an electrode for an electrochemical element according to (1b) or (2b), wherein the transfer step is performed simultaneously or sequentially on both sides of the sheet-like current collector, (4b) The method for producing an electrode for an electrochemical element according to any one of the above (1b) to (3b), wherein the roll to which the dust layer is attached has a roll surface roughened.
  • a compacted layer forming step of compressing composite particles containing an electrode active material and a binder to intermittently form a compacted layer on the surface of the support, and a long sheet-like collection of the compacted layer A method for producing an electrode for an electrochemical device, comprising: a transfer step of transferring to an electric body and forming a sheet-like current collector having an intermittent dust layer in a flow direction (MD direction); (2c) The method for producing an electrode for an electrochemical element according to (1c) above, wherein the support surface has intermittently different parts from the other parts, (3c) Production of an electrode for an electrochemical element according to (1c) above, wherein the surface of the support is alternately provided with a roughened portion and a non-roughened portion in the flow direction.
  • the adhesion between the electrode active material layer and the current collector is high, and the wettability with respect to the electrolytic solution is excellent.
  • the battery has a low internal resistance and excellent cycle characteristics.
  • An electrode for a device can be provided.
  • FIG. 1 is a schematic view showing an example of an electrode for an electrochemical element of the present invention.
  • FIG. 2 is a schematic view showing the fine structure of the electrode for an electrochemical element of the present invention.
  • FIG. 3 is a schematic diagram showing a microstructure of an electrode for an electrochemical element according to a conventional example.
  • FIG. 4 is a schematic view showing a fine structure of an electrode for an electrochemical element according to a conventional example.
  • FIG. 5 is a schematic view showing an electrode forming apparatus for producing the electrode for an electrochemical element of the present invention according to the first example.
  • FIG. 6 is a schematic view showing an electrode forming apparatus for producing an electrode for an electrochemical element of the present invention according to a second example.
  • FIG. 1 is a schematic view showing an example of an electrode for an electrochemical element of the present invention.
  • FIG. 2 is a schematic view showing the fine structure of the electrode for an electrochemical element of the present invention.
  • FIG. 3 is a schematic diagram showing a microstructure of an electrode for
  • FIG. 7 is a schematic view showing an electrode forming apparatus for producing an electrode for an electrochemical element of the present invention according to a second example.
  • FIG. 8 is a schematic view showing an electrode forming apparatus for producing an electrode for an electrochemical element of the present invention according to a second example.
  • FIG. 9 is a schematic view showing an electrode forming apparatus for producing an electrode for an electrochemical element of the present invention according to a third example.
  • FIG. 10 is a schematic view showing the surface states of the roll 43A and the roll 43B of the apparatus shown in FIG.
  • FIG. 11 is a schematic view showing an electrode forming apparatus for producing an electrode for an electrochemical element of the present invention according to a third example.
  • FIG. 12 is a schematic view showing an electrode forming apparatus for producing an electrode for an electrochemical element of the present invention according to a third example.
  • FIG. 13 is a schematic view showing an electrode forming apparatus for producing an electrode for an electrochemical element of the present invention according to a fourth example.
  • 14A is a schematic view showing the surface of the roll 53A
  • FIG. 14B is a side view of the roll 53A viewed from the axial direction
  • FIG. 14C is an intermittent pattern formed in the fourth example.
  • 3 is a schematic view showing a typical green compact layer 400.
  • FIG. FIG. 15 is a schematic view showing an electrode forming apparatus for producing an electrode for an electrochemical element of the present invention according to a fourth example.
  • FIG. 16 is a schematic view showing an electrode forming apparatus for producing an electrode for an electrochemical element of the present invention according to a fourth example.
  • FIG. 1 is a schematic view showing an example of an electrode for an electrochemical element of the present invention.
  • the electrode 100 for an electrochemical element of the present invention is obtained by forming a sheet-like or film-like electrode active material layer 200 on a sheet-like current collector 300.
  • Electrode element electrode 100 is not particularly limited as long as it is an electrode used for an electrochemical element.
  • a lithium ion secondary battery, an electric double layer capacitor, a hybrid capacitor (such as a lithium ion capacitor) or the like can be used. Examples include electrodes for various electrochemical devices.
  • the electrode active material layer 200 constituting the electrode for electrochemical device 100 of the present invention contains at least an electrode active material and a binder.
  • the electrode active material and the binder constituting the electrode active material layer 200 will be described.
  • the electrode active material used in the present invention is appropriately selected depending on the type of electrochemical element.
  • the positive electrode active material include metal oxides capable of reversibly doping and dedoping lithium ions.
  • metal oxides include lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, lithium manganese phosphate, lithium vanadium phosphate, lithium iron vanadate, nickel-manganese-lithium cobaltate, nickel-cobalt acid.
  • the positive electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types. Further examples include polymers such as polyacetylene, poly-p-phenylene, and polyquinone. Of these, it is preferable to use a lithium-containing metal oxide.
  • the electrochemical device electrode 100 of the present invention is used as a negative electrode as a counter electrode of the above-described positive electrode for a lithium ion secondary battery
  • the negative electrode active material graphitizable carbon, non-graphitizable Low crystalline carbon (amorphous carbon) such as carbon, activated carbon, pyrolytic carbon, graphite (natural graphite, artificial graphite), carbon nanowall, carbon nanotube, or composite carbon material of carbon with different physical properties
  • alloy materials such as tin and silicon, oxides such as silicon oxide, tin oxide, vanadium oxide and lithium titanate, and polyacene.
  • the electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
  • the shape of the positive electrode active material and the negative electrode active material for a lithium ion secondary battery is preferably a granulated particle, and if the particle shape is spherical, a higher density electrode can be formed at the time of electrode formation.
  • the volume average particle size of the positive electrode active material and the negative electrode active material for lithium ion secondary batteries is usually 0.1 to 100 ⁇ m, preferably 0.5 to 50 ⁇ m, more preferably 0.8 to 20 ⁇ m for both the positive electrode and the negative electrode. It is.
  • the tap density of the positive electrode active material and the negative electrode active material for the lithium ion secondary battery is not particularly limited, but those having a positive electrode density of 2 g / cm 3 or more and a negative electrode of 0.6 g / cm 3 or more are preferably used. .
  • the active material for the positive electrode is activated carbon, polyacene organic semiconductor capable of reversibly doping and dedoping anions and / or cations. (PAS), carbon nanotube, carbon whisker, graphite and the like. Among these, activated carbon and carbon nanotube are preferable.
  • the electrode 100 for electrochemical devices of this invention when using the electrode 100 for electrochemical devices of this invention as a negative electrode as a counter electrode of the positive electrode of the lithium ion capacitor mentioned above, it illustrated as a negative electrode active material for lithium ion secondary batteries as a negative electrode active material. Any material can be used.
  • the volume average particle diameter of the positive electrode active material and the negative electrode active material for a lithium ion capacitor is usually 0.1 to 100 ⁇ m, preferably 0.5 to 50 ⁇ m, more preferably 0.8 to 20 ⁇ m.
  • the activated carbon has a specific surface area of 30 m 2 / g or more, preferably 500 to 3,000 m 2 / g, more preferably 1,500 to 2,600 m 2. / G.
  • the capacitance per unit weight of activated carbon tends to increase as the specific surface area increases up to about 2,000 m 2 / g, but thereafter the capacitance does not increase so much.
  • the density of the material layer tends to decrease, and the capacitance density tends to decrease. Moreover, it is preferable in terms of rapid charge / discharge characteristics, which is a feature of a lithium ion capacitor, that the pore size of the activated carbon is compatible with the size of the electrolyte ion. Therefore, an electrode mixture layer having desired capacity density and input / output characteristics can be obtained by appropriately selecting an electrode active material.
  • the positive electrode active material and the negative electrode active material are exemplified as the above-described positive electrode active material for a lithium ion capacitor. Any of the prepared materials can be used, among which activated carbon is preferred.
  • the binder used in the present invention is not particularly limited as long as it is a compound capable of binding the above-mentioned electrode active materials to each other, but in the present invention, a dispersion type binder having a property of being dispersed in a solvent is preferable.
  • a dispersion type binder a polymer dispersed in a solvent can be used. Examples of such a polymer include a silicon-based polymer, a fluorine-containing polymer, a conjugated diene-based polymer, an acrylate-based polymer, High molecular compounds such as polyimide, polyamide, polyurethane and the like are mentioned. Among these, fluorine-containing polymers, conjugated diene polymers and acrylate polymers are preferable, and conjugated diene polymers and acrylate polymers are more preferable. .
  • the conjugated diene polymer is a conjugated diene homopolymer or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof.
  • the ratio of the conjugated diene in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
  • conjugated diene polymers include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR)
  • SBR carboxy-modified styrene / butadiene copolymer
  • NBR acrylonitrile / butadiene copolymer
  • SBR acrylonitrile / butadiene copolymer
  • NBR acrylonitrile / butadiene copolymer
  • the acrylate polymer has the general formula (1): CH 2 ⁇ CR 1 —COOR 2 (wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group or a cycloalkyl group, R 2 represents And a polymer containing a monomer unit derived from a compound represented by the following: an ether group, a hydroxyl group, a carboxylic acid group, a fluorine group, a phosphoric acid group, an epoxy group, or an amino group.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group or a cycloalkyl group
  • R 2 represents And a polymer containing a monomer unit derived from a compound represented by the following: an ether group, a hydroxyl group, a carboxylic acid group, a fluorine group, a phosphoric acid group, an epoxy group, or an amino group.
  • Specific examples of the compound represented by the general formula (1) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylate n.
  • Acid esters carboxylic acid-containing (meth) acrylic acid esters such as 2- (meth) acryloyloxyethylphthalic acid and 2- (meth) acryloyloxyethylphthalic acid; fluorine such as perfluorooctylethyl (meth) acrylic acid Group-containing (meth) acrylic acid ester; (meth) acrylic Phosphoric acid group-containing (meth) acrylic acid ester such as ethyl acid phosphate; Epoxy group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate; Amino group containing such as dimethylaminoethyl (meth) acrylate (meta ) Acrylic acid ester;
  • (meth) acrylic acid esters can be used alone or in combination of two or more. Of these, (meth) acrylic acid alkyl esters are preferred, and methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and alkyl groups have 6 to 12 carbon atoms. (Meth) acrylic acid alkyl ester is more preferred. By selecting these, it becomes possible to reduce the swellability with respect to the electrolytic solution, and to improve the cycle characteristics.
  • the acrylate polymer includes, for example, carboxylic acid esters having two or more carbon-carbon double bonds, aromatic vinyl monomers, amide monomers, olefins, diene monomers, Copolymerizable monomers such as vinyl ketones and heterocyclic ring-containing vinyl compounds can also be copolymerized. Further, an ⁇ , ⁇ -unsaturated nitrile compound or a vinyl compound having an acid component can be copolymerized.
  • the content of the (meth) acrylic acid ester unit in the acrylate polymer is preferably 50 to 95% by weight, more preferably 60 to 90% by weight.
  • the acrylate polymer may be a copolymer of the above-described (meth) acrylic acid ester and a monomer copolymerizable therewith.
  • a copolymerizable monomer examples thereof include ⁇ , ⁇ -unsaturated nitrile compounds and vinyl compounds having an acid component.
  • Examples of the ⁇ , ⁇ -unsaturated nitrile compound include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -bromoacrylonitrile and the like. These may be used alone or in combination of two or more. Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable.
  • the content of the ⁇ , ⁇ -unsaturated nitrile compound unit in the acrylate polymer is usually 0.1 to 40% by weight, preferably 0.5 to 30% by weight, more preferably 1 to 20 parts by weight. is there.
  • the binding force as the binder can be further increased.
  • examples of the vinyl compound having an acid component include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid. These may be used alone or in combination of two or more. Among these, acrylic acid, methacrylic acid and itaconic acid are preferable, methacrylic acid and itaconic acid are more preferable, and it is particularly preferable to use methacrylic acid and itaconic acid in combination.
  • the content ratio of the vinyl monomer unit having an acid component in the acrylate polymer is preferably 1.0 to 10% by weight, more preferably 1.5 to 5.0% by weight.
  • the acrylate polymer may be a copolymer of other monomers copolymerizable with the above-described monomers.
  • examples of such other monomers include 2 Examples include carboxylic acid esters having one or more carbon-carbon double bonds, aromatic vinyl monomers, amide monomers, olefins, diene monomers, vinyl ketones, and heterocyclic ring-containing vinyl compounds. It is done.
  • the shape of the dispersion type binder used in the present invention is not particularly limited, but is preferably particulate.
  • the binding property is good, and it is possible to suppress deterioration of the capacity of the manufactured electrode and deterioration due to repeated charge and discharge.
  • the particulate binder include those in which the particles of the binder such as latex are dispersed in water, and particulates obtained by drying such a dispersion.
  • the volume average particle diameter of the dispersion type binder used in the present invention is preferably 0.001 to 100 ⁇ m, more preferably 10 to 1000 nm, and still more preferably 50 to 500 nm.
  • the content of the binder in the electrode for an electrochemical device of the present invention is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight on a dry weight basis with respect to 100 parts by weight of the electrode active material. More preferably, it is 1 to 15 parts by weight.
  • the binder content is within this range, sufficient adhesion between the electrode active material layer and the current collector can be secured, and the internal resistance can be lowered.
  • FIG. 2 is a schematic view showing the fine structure of the electrode active material layer 200 constituting the electrode 100 for an electrochemical device of the present invention.
  • FIG. 2 shows a fine structure of a cross section of the electrode active material layer 200.
  • the electrode active material layer 200 includes an electrode active material 210 and a binder, and a part of the binder covers at least a part of the surface of the plurality of electrode active materials 210. It exists in the state and forms the binder coating
  • the binder covering portions 220 covering the plurality of electrode active materials 210 adjacent to each other are connected to each other by a binder connecting portion 230 that is also formed of a binder, thereby A plurality of adjacent electrode active materials 210 are bound to each other by a binder coating portion 220 and a binder connecting portion 230. That is, the binder connecting portion 230 connects the binder covering portions 220 that cover the plurality of electrode active materials 210 adjacent to each other in the gap 240 formed by the electrode active materials 210 adjacent to each other. Exists in form.
  • the electrode active material layer 200 is thus configured such that a plurality of electrode active materials 210 adjacent to each other are bonded to each other by the binder coating portion 220 and the binder connecting portion 230. Therefore, as shown in FIG. 2, a gap 240 formed by a plurality of electrode active materials 210 that are close to each other is secured. Therefore, when an electrochemical element is obtained using the electrode 100 for an electrochemical element of the present invention having such an electrode active material layer 200, the gap portion 240 is impregnated with an electrolytic solution. The interface between the active material 210 and the electrolytic solution can be appropriately formed, and the wettability with respect to the electrolytic solution can be improved while maintaining high adhesion to the current collector 300. As a result, the internal resistance in the case of an electrochemical device can be reduced, and the cycle characteristics can be improved.
  • the electrode active material layer 200 that constitutes the electrode 100 for an electrochemical device of the present invention has a gap 240 formed by a plurality of electrode active materials 210 that are close to each other, each component constituting the electrode active material layer 200, That is, it is not completely surrounded by the electrode active material 210, the binder coating portion 220, and the binder connecting portion 230, but is continuous within the electrode active material layer 200. Therefore, the electrolytic solution impregnated in the gap 240 and the ions contained in the electrolytic solution can easily diffuse in the electrode active material layer 200, and thus enhance ion conduction in the electrode active material layer 200. be able to.
  • the fine structure has a structure as shown in FIGS. That is, as shown in FIG. 3, in the conventional electrode for electrochemical devices, in the electrode active material layer, the gap formed by the plurality of electrode active materials 210 adjacent to each other is completely closed by the binder 220a. It was like a structure. Alternatively, as shown in FIG. 4, the gap formed by the plurality of electrode active materials 210 adjacent to each other is closed by the binder 220a, but has a structure having a gap 240a therein. It was.
  • the electrolyte solution is hardly impregnated up to the electrode active material 210, so that the interface between the electrode active material 210 and the electrolyte solution is not properly formed.
  • the internal resistance becomes high.
  • a gap 240 a is formed in the binder 220 a, but this gap 240 a is completely covered with the binder 220 a and is isolated from the surroundings. . Therefore, the electrolyte impregnated in the gap 240a and the ions contained in the electrolyte are difficult to diffuse into the electrochemical element electrode, and thus the ion conductivity in the electrochemical element electrode is substantially improved. Does not contribute.
  • the fine structure of the electrode active material layer 200 is configured as shown in FIG.
  • the length of the binder connecting portion 230 is preferably 0.01 to 5 ⁇ m, and more preferably 0.02 to 2 ⁇ m.
  • the shape of the binder connecting portion 230 is not particularly limited, and may be any shape as long as it does not block the gap portion 240, and is not particularly limited, but is preferably a thread-like and / or plate-like shape.
  • the connecting portion 230 is formed in a thread shape and / or plate shape formed by compressing the binder covering portions 220 covering the electrode active materials 210 adjacent to each other while applying a shearing force in the process of forming the electrode active material layer 200. It is preferable that.
  • coated part 220 should just be formed by coat
  • the electrode active materials 210 adjacent to each other are so close that it is difficult to form the gap 240 for impregnating the electrolyte.
  • the binder coating portions 220 that coat the electrode active materials 210 adjacent to each other may be in direct contact with each other.
  • the electrode active materials 210 that are close to each other are in direct contact with each other without the binder coating portion 220 between the portions where the binder coating portion 220 is not formed. There may be.
  • the electrode 100 for an electrochemical device of the present invention is obtained, for example, by first obtaining electrode composite particles composed of an electrode active material and a binder for forming the electrode active material layer 200, and collecting the obtained electrode composite particles. It can be manufactured by molding on the electric body 300 and compressing the molded body obtained thereby while applying a shearing force. In the following, first, the electrode composite particles will be described.
  • the composite particle for an electrode is obtained by granulating using an electrode active material as a raw material and a binder, and optional components added as necessary, and includes at least an electrode active material and a binder.
  • Each of these does not exist as an independent particle, but forms one particle by two or more components including an electrode active material and a binder as constituent components.
  • a plurality of these two or more individual particles are combined to form secondary particles, and a plurality (preferably several to several tens) of electrode active materials are bound by a binder. Those that are deposited to form particles are preferred.
  • the minor axis diameter L s and the major axis diameter L l are values measured from a scanning electron micrograph image.
  • the volume average particle diameter of the composite particles for electrodes is usually in the range of 0.1 to 1000 ⁇ m, preferably 1 to 200 ⁇ m, more preferably 30 to 150 ⁇ m. By making the volume average particle diameter of the composite particles in this range, an electrode mixture layer having a desired thickness can be easily obtained, which is preferable.
  • the average particle size of the composite particles is a volume average particle size calculated by measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3100; manufactured by Shimadzu Corporation).
  • the structure of the composite particle for an electrode is not particularly limited, but a structure in which the binder is uniformly dispersed in the composite particle without being unevenly distributed on the surface of the composite particle is preferable.
  • the conductive material is not particularly limited as long as it is a particulate material having conductivity.
  • conductive carbon black such as furnace black, acetylene black, and ketjen black
  • graphite such as natural graphite and artificial graphite
  • carbon fibers such as polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, and vapor-grown carbon fibers.
  • acetylene black and ketjen black are preferable.
  • the average particle diameter of the conductive material is not particularly limited, but is preferably smaller than the average particle diameter of the electrode active material, usually 0.001 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m, and still more preferably 0.01. It is in the range of ⁇ 1 ⁇ m.
  • the amount of the conductive material used in the case of adding the conductive material is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 0.1 to 50 with respect to 100 parts by weight of the electrode active material. Parts by weight, more preferably 0.5 to 15 parts by weight, still more preferably 1 to 10 parts by weight.
  • the dispersant is a component having an action of uniformly dispersing each component in the solvent when each component constituting the electrode composite particle is dispersed or dissolved in a solvent to form a slurry.
  • Specific examples of the dispersant include cellulosic polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose, and ammonium salts or alkali metal salts thereof, alginates such as propylene glycol alginate, and alginates such as sodium alginate.
  • Polyacrylic acid, and polyacrylic acid (or methacrylic acid) salts such as sodium polyacrylic acid (or methacrylic acid), polyvinyl alcohol, modified polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, polycarboxylic acid, oxidized starch, phosphoric acid starch , Casein, various modified starches, chitin, chitosan derivatives and the like.
  • a water-soluble polymer (specific group-containing water-soluble polymer) containing one or more, preferably two or more groups such as a carboxyl group, a sulfonic acid group, a fluorine-containing group, a hydroxyl group and a phosphoric acid group is also used as a dispersant. be able to. These dispersants can be used alone or in combination of two or more.
  • a cellulose polymer is preferable, and carboxymethyl cellulose or an ammonium salt or an alkali metal salt thereof is particularly preferable.
  • the specific group-containing water-soluble polymer is also preferable, and the specific group-containing water-soluble polymer has an acrylic group having the specific group and containing an acrylate ester monomer unit or a methacrylic ester monomer unit.
  • the polymer is particularly preferred.
  • the content of the dispersant is not particularly limited as long as it does not impair the effects of the present invention, but is usually 0.1 to 10 with respect to 100 parts by weight of the electrode active material. Parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0.8 to 2 parts by weight.
  • the first production method is a fluidized bed granulation method.
  • a step of obtaining a slurry containing a binder, and optional components such as a conductive material and a dispersant added as necessary, an electrode active material is made to flow in a heated air flow, and obtained there.
  • the resulting slurry is sprayed to bind the electrode active materials to each other and to dry them.
  • the fluidized bed granulation method will be described.
  • a slurry containing a binder and optional components such as a conductive material and a dispersant added as necessary is obtained.
  • the binder when it is dispersed in water as a dispersion medium, it can be added in a state dispersed in water. Further, water is most preferably used as a solvent used to obtain the slurry, but an organic solvent can also be used.
  • organic solvent examples include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide and N-methyl- Examples include amides such as 2-pyrrolidone and dimethylimidazolidinone, but alkyl alcohols are preferred.
  • the drying rate can be increased during fluid granulation.
  • the dispersibility of the binder or the solubility of the soluble resin changes, and the viscosity and fluidity of the slurry can be adjusted depending on the amount or type of the solvent, thereby improving the production efficiency. Can be made.
  • the amount of the solvent used in preparing the slurry is such that the solid content concentration of the slurry is usually in the range of 5 to 70% by weight, preferably 10 to 60% by weight, more preferably 15 to 50% by weight. Amount. When the amount of the solvent is within this range, the binder is preferably dispersed uniformly.
  • a method or a procedure for dispersing or dissolving a binder and optional components such as a conductive material and a dispersant added in a solvent in a solvent is not particularly limited.
  • the binder is added to the solvent as needed.
  • optional components such as conductive materials and dispersants, dissolve the dispersant in the solvent, then add and mix the binder (for example, latex) dispersed in the solvent, and finally add the conductive material and other
  • Examples of the mixing apparatus include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
  • the electrode active material is fluidized, and the slurry obtained above is sprayed thereon for fluid granulation.
  • fluidized granulation examples include a fluidized bed, a deformed fluidized bed, and a spouted bed.
  • the electrode active material is fluidized with hot air, and the slurry obtained above is sprayed on the electrode active material by spraying or the like.
  • the modified fluidized bed is the same as the fluidized bed described above, but it gives a circulating flow to the powder in the layer and discharges the granulated material that has grown relatively large using the classification effect. is there.
  • the method using the spouted bed is a method in which slurry from a spray or the like is attached to coarse particles using the characteristics of the spouted bed and granulated while being dried at the same time.
  • a fluidized bed or a deformed fluidized bed is preferred among these three methods.
  • the temperature of the slurry to be sprayed is usually room temperature, but it may be heated to room temperature or higher.
  • the temperature of the hot air used for fluidization is usually 70 to 300 ° C, preferably 80 to 200 ° C.
  • composite particles for an electrode containing an electrode active material, a binder, and optional components such as a conductive material and a dispersant added as necessary can be obtained by the above production method.
  • the second production method of the composite particles for electrodes is a spray drying granulation method.
  • the spray-drying granulation method described below is preferable because the composite particles for electrodes used in the present invention can be obtained relatively easily.
  • the spray drying granulation method will be described.
  • a slurry for composite particles containing an electrode active material and a binder is prepared.
  • the slurry for composite particles can be prepared by dispersing or dissolving an electrode active material, a binder, and optional components such as a conductive material and a dispersant added as necessary in a solvent.
  • the binder when the binder is dispersed in water as a dispersion medium, it can be added in a state dispersed in water.
  • the solvent used for obtaining the composite particle slurry water is usually used, but a mixed solvent of water and an organic solvent may be used.
  • the organic solvent that can be used in this case the same solvent as the fluidized bed granulation method described above can be used.
  • the viscosity of the slurry for composite particles is preferably in the range of 10 to 3,000 mPa ⁇ s, more preferably 30 to 1,500 mPa ⁇ s, and still more preferably 50 to 1,000 mPa ⁇ s at room temperature.
  • the productivity of the spray drying granulation step can be increased.
  • a surfactant may be added as necessary when preparing the composite particle slurry.
  • the surfactant include amphoteric surfactants such as an anionic surfactant, a cationic surfactant, a nonionic surfactant, and a nonionic anionic surfactant, but an anionic or nonionic surfactant And those that are easily pyrolyzed are preferred.
  • the compounding amount of the surfactant is preferably 50 parts by weight or less, more preferably 0.1 to 10 parts by weight, and further preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the electrode active material. .
  • the method or order of dispersing or dissolving the electrode active material, the binder, and optional components such as a conductive material and a dispersing agent as required in a solvent is not particularly limited.
  • the mixing apparatus the same fluidized bed granulation method as described above can be used, and the mixing is usually carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
  • Spray drying is a method of spraying and drying a slurry in hot air.
  • An atomizer is used as an apparatus used for spraying slurry.
  • a rotating disk system slurry is introduced almost at the center of the disk that rotates at high speed, and the slurry is removed from the disk by the centrifugal force of the disk. In this case, the slurry is atomized.
  • the rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 30,000 rpm, preferably 15,000 to 30,000 rpm.
  • a pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks. It consists of The slurry for composite particles is introduced from the center of the spray disk, adheres to the spray roller by centrifugal force, moves outward on the roller surface, and finally sprays away from the roller surface.
  • the vane atomizer has a slit formed inside the spray disc, and is formed so that the slurry for composite particles passes through it.
  • the pressurization method is a method in which the composite particle slurry is pressurized and sprayed from a nozzle to be dried, and examples thereof include a pressurization nozzle method and a pressurization two-fluid nozzle method.
  • the temperature of the slurry for composite particles to be sprayed is usually room temperature, but may be heated to a temperature higher than room temperature.
  • the hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C.
  • the method of blowing hot air is not particularly limited.
  • the method in which the hot air and the spraying direction flow side by side the method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are countercurrently flowed. Examples include a contact method, and a method in which sprayed droplets first flow in parallel with hot air, then drop by gravity and contact countercurrent.
  • the composite particles for an electrode containing an electrode active material, a binder, and optional components such as a conductive material and a dispersant added as necessary can be obtained by the above production method. .
  • FIG. 5 is a schematic view showing an electrode forming apparatus for producing the electrochemical device electrode 100 of the present invention according to the first example.
  • the electrode forming apparatus 2 includes a pair of rolls 6A and 6B arranged in a horizontal and parallel manner, and a pair of rolls arranged in a horizontal and parallel below the pre-molding roll 6.
  • the pair of rolls 6A and 6B constituting the pre-molding roll 6 rotate in the direction of the arrow shown in FIG.
  • the particles 12 are preliminarily compressed on both sides or one side of a current collector (indicated by reference numeral “300” in FIG. 5).
  • the electrode composite particles 12 are pre-compressed on both surfaces or one surface of the current collector 300 that has passed between the pair of rolls 6A and 6B, and a sheet-like pre-molded body 14 composed of the electrode composite particles 12 is formed.
  • the pre-electrode laminate 20 in which the sheet-like pre-formed body 14 is formed on both surfaces or one surface of the current collector 300 is formed.
  • the current collector 300 used in the present invention is used for taking out current from the electrode active material layer 200, and is a long sheet.
  • the material constituting the current collector include metal, carbon, conductive polymer, and the like. Among these, metal is preferable. More specifically, examples of the positive electrode current collector include aluminum and stainless steel, and examples of the negative electrode current collector include stainless steel, copper, and nickel.
  • the current collector may have a structure having no through-hole, but the method of the present invention is particularly suitable for a current collector having a through-hole.
  • Current collectors having through holes include, for example, expanded metal, punching metal, metal net, foam, etching foil provided with through holes by etching, and provision of protrusions with protrusions and embossing rolls provided with through holes.
  • Examples include electrical bodies.
  • the shape of the opening portion of the current collector having a through hole is not particularly limited, but the opening ratio is preferably 10 to 90%, more preferably 20 to 60%, and particularly preferably 40 to 60%. .
  • the aperture ratio is determined by planar observation of the perforated current collector. Specifically, the aperture ratio is determined by observing the perforated current collector in a plane and calculating the area of the through holes per unit area.
  • a conductive adhesive layer may be formed on the surface of the long sheet-like current collector.
  • the conductive adhesive layer contains a conductive substance as an essential component and, if necessary, a binder for molding. By including a binder in the conductive adhesive layer, the adhesion between the current collector 300 and the electrode active material layer 200 can be improved, the internal resistance of the electrochemical element can be reduced, and the output density can be increased.
  • the conductive substance used for the conductive adhesive layer is not particularly limited as long as it can impart conductive performance to the adhesive layer, but a conductive filler and a metal oxide filler are preferable, and a conductive filler is more preferable. preferable.
  • the metal oxide filler include silica, iron oxide, and titanium oxide, and silica is particularly preferable.
  • the conductive filler is not particularly limited as long as it has conductivity, among which conductive carbon black, graphite and the like are particularly preferable.
  • the volume average particle diameter of the conductive filler is usually in the range of 0.001 to 10 ⁇ m, preferably 0.05 to 5 ⁇ m, more preferably 0.01 to 1 ⁇ m. These conductive fillers can be used alone or in combination of two or more.
  • the binder used for the conductive adhesive layer is not particularly limited as long as it is a compound capable of binding the electrode active material layer and the current collector to each other.
  • a dispersion type binder having a property of being dispersed in a solvent is preferable.
  • the dispersion type binder include polymer compounds such as a fluorine-based polymer, a diene-based polymer, an acrylate-based polymer, a polyimide, a polyamide, and a polyurethane-based polymer.
  • a fluorine polymer, a diene polymer, or an acrylate polymer is preferable, and the diene polymer or acrylate polymer can increase the withstand voltage and increase the energy density of the electrochemical device. More preferred.
  • the content of the binder in the conductive adhesive layer is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass, particularly preferably 100 parts by mass of the conductive substance. Is 2 to 10 parts by mass.
  • the conductive adhesive layer contains a conductive material and a binder that is suitably used, and may contain a dispersant for uniformly dispersing them.
  • the dispersant include cellulosic polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose, and ammonium salts or alkali metal salts thereof; poly (meth) acrylates such as sodium poly (meth) acrylate Polyvinyl alcohol, modified polyvinyl alcohol, polyethylene oxide; polyvinyl pyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, chitosan derivatives and the like. These dispersants can be used alone or in combination of two or more. Among these, a cellulose polymer is preferable, and carboxymethyl cellulose or an ammonium salt or an alkali metal salt thereof is particularly preferable.
  • the amount of these dispersants used can be used within a range that does not impair the effects of the present invention, and is not particularly limited, but is usually 0.1 to 15 parts by mass with respect to 100 parts by mass of the conductive substance, The range is preferably 0.5 to 10 parts by mass, more preferably 0.8 to 5 parts by mass.
  • the conductive adhesive layer is formed by applying a conductive adhesive composition obtained by kneading a conductive substance, a binder to be used suitably, and a dispersant added as necessary in water or an organic solvent. And dried to form.
  • the method for producing the conductive adhesive layer composition is not particularly limited. Specifically, a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, and the like are used. be able to.
  • the method for forming the conductive adhesive layer is not particularly limited.
  • the conductive adhesive layer composition is formed on the current collector by a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, brushing, or the like.
  • soot drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. Among these, a drying method by irradiation with far infrared rays is preferable.
  • the drying temperature and the drying time are preferably a temperature and a time at which the solvent in the applied conductive adhesive composition can be completely removed, and the drying temperature is 50 to 300 ° C., preferably 80 to 250 ° C.
  • the drying time is usually 2 hours or less, preferably 5 seconds to 30 minutes.
  • the thickness of the conductive adhesive layer is usually 1 to 25 ⁇ m, preferably 2 to 20 ⁇ m, more preferably 2 to 10 ⁇ m. When the thickness of the conductive adhesive layer is within the above range, the anchor effect is satisfactorily exhibited and the electron transfer resistance can be reduced.
  • the conductive adhesive layer may be formed on only one side of the current collector or on both sides.
  • the current collector used in the present invention is a long sheet.
  • the thickness of the current collector is not particularly limited, but is preferably 5 to 50 ⁇ m, more preferably 10 to 40 ⁇ m.
  • the width of the current collector is not particularly limited, but is preferably 100 to 1000 mm, and more preferably 200 to 500 mm.
  • the porosity of the obtained sheet-shaped pre-molded body 14 is preferably 40 to 80%, more preferably 50 to 70. It is preferable to compress at a pressure that results in%.
  • the sheet density of the sheet-shaped preform 14 is preferably in the range of 130 to 300%, more preferably 150 to 250%, and still more preferably 180 to 230% with respect to the bulk density of the composite particles 12 for electrodes. It is preferable to compress with the pressure which becomes the range.
  • the linear pressure when compressed by the pre-molding roll 6 is preferably 1 to 50 kN / m, more preferably 5 to 20 kN / m.
  • the pre-electrode laminated body 20 obtained by compressing the composite particle 12 for electrodes by a pair of roll 6A, 6B which comprises the pre-molding roll 6 is sent to the molding roll 8 side, and comprises the molding roll 8.
  • the pair of rolls 8A and 8B that rotate in the direction of the arrow shown in FIG. 5 further compresses the sheet-like pre-molded body 14 constituting the pre-electrode laminate 20.
  • the sheet-like pre-molded body 14 constituting the pre-electrode 20 is compressed by the pair of rolls 8A and 8B, and the electrode active material layer 200 is formed on both surfaces or one surface of the current collector 300.
  • An element electrode 100 is formed.
  • the sheet-shaped pre-formed body 14 is further compressed by the forming roll 8, and when the electrode active material layer 200 is formed, the sheet-shaped pre-formed body 14 is compressed while applying a shearing force. Is desirable.
  • the resulting fine structure of the electrode active material layer 200 can be configured to have a binder covering portion 220 and a binder connecting portion 230 as shown in FIG.
  • a shearing force is applied between the binder covering portions 220 covering the electrode active materials 210 adjacent to each other in the sheet-shaped pre-formed body 14,
  • a shearing force is applied between the binder covering portions 220 covering the electrode active materials 210 adjacent to each other in the sheet-shaped pre-formed body 14,
  • a part of the binder covering portion 220 is fibrillated by shearing force, so that a thread-like and / or plate-like binder connecting portion 230 is formed.
  • the sheet-shaped pre-formed body 14 When the sheet-shaped pre-formed body 14 is further compressed by the forming roll 8 and the electrode active material layer 200 is formed, the sheet-shaped pre-formed body 14 may be compressed with a pressure that applies a shearing force.
  • the pressure is not particularly limited, it is preferably a pressure higher than the pressure by the pre-molding roll 6, and specifically, the linear pressure when compressed by the molding roll 8 is preferably 150 to 1000 kN / m, more preferably 250 to 800 kN / m, still more preferably 300 to 500 kN / m.
  • the rolls 8A and 8B constituting the forming roll 8 may be rotated at different speeds so that a shearing force is applied to the sheet-like pre-formed body 14.
  • the porosity of the electrode active material layer 200 thus obtained is preferably 10 to 40%, more preferably 25 to 35%.
  • the electrode 100 for an electrochemical element in which the electrode active material layer 200 is formed on the current collector 300 can be obtained.
  • the pre-forming roll 6 and the forming roll 8 are provided with a temperature adjusting mechanism capable of adjusting the temperature such as cooling and heating according to the type and properties of the composite particles 12 for electrodes.
  • the temperature adjusting mechanism may include a method using a heating medium disposed inside the rolls 6A and 6B and the rolls 8A and 8B, a method of heating directly with a heat transfer wire, and the like.
  • the biting amount of the electrode composite particles 12 is reduced as the roll diameter of the pair of rolls 6A and 6B constituting the pre-molding roll 6 is reduced.
  • the thickness of the sheet-shaped pre-formed body 14 and the finally obtained electrode active material layer 200 can be reduced.
  • the roll diameter of the pair of rolls 6A and 6B constituting the pre-molding roll 6 is too small, the roll is distorted when the electrode composite particles 12 are compressed, so that the thickness of the sheet-like pre-molded body 14 is increased. There is a risk of variation.
  • the point at which the peripheral speed of the roll in the vicinity of the roll nip point (the point at which the gap between the pair of rolls 6A and 6B becomes the smallest) and the moving speed of the composite particle 12 for electrodes is the same as the P point. Is not filled with the electrode composite particles 12, from the point P determined by the point P to the outlet of the electrode composite particles 12 (lower portions of the rolls 6 ⁇ / b> A and 6 ⁇ / b> B of the pre-molding roll 6). In molding, mottled patterns and streaks may occur due to the flow and aggregation of the composite particles 12 for electrodes. In addition, when the rotational speeds of the rolls 6A and 6B are constant, the point P decreases as the roll diameter decreases.
  • the electrode active material layer 200 finally obtained can be a thin film.
  • the roll diameter of the pair of rolls 6A and 6B constituting the pre-molding roll 6 is preferably 10 to 500 mm, more preferably 10 to 250 mm, and still more preferably 10 to 150 mm.
  • the roll diameter of the pair of rolls 8A and 8B constituting the forming roll 8 is such that the pressure when compressing the sheet-like pre-formed body 14 is larger than the pressure by the pre-forming roll 6.
  • the roll diameter of the pair of rolls 6A and 6B constituting the roller 6 may be larger, but the roll diameter is preferably 50 to 1000 mm, more preferably 100 to 500 mm.
  • the electrode 100 for electrochemical elements of the present invention obtained in this way has the fine structure as shown in FIG. 2 because the electrode active material layer 200 has a fine structure as shown in FIG. 2, and therefore the adhesion between the electrode active material layer and the current collector. Is high and has good wettability with respect to the electrolyte solution. As a result, when it is made into a battery, it has low internal resistance and excellent cycle characteristics. Utilizing these characteristics, lithium ion secondary batteries, electric double layers It can be suitably used as an electrode for various electrochemical elements such as capacitors and hybrid capacitors.
  • FIG. 6 is a schematic view showing an electrode forming apparatus for manufacturing the electrochemical device electrode 100 of the present invention according to the second example.
  • the electrode composite particles are compressed to form a long sheet-like support (indicated by reference numeral “30” in FIG. 6). It adheres to the surface and forms a long sheet-like support-attached green compact layer.
  • methods such as roll pressurization and belt pressurization can be employed. Among these, roll pressurization is preferable.
  • the compressed powder layer 400 is formed by compressing by a roll pressurizing method and attaching the electrode composite particles 12 to the surface of the long sheet-like support 30.
  • the rolls used in this example rotate in a pair of opposite directions as in the rolls 33A and 33B shown in FIG.
  • the peripheral speed of the roll 33A is usually 0.1 to 100 m / min, preferably 1 to 50 m / min.
  • the peripheral speed of the roll 33B is usually 0.1 to 100 m / min, preferably 1 to 50 m / min.
  • the distance between the roll 33A and the roll 33B is usually 10 to 500 ⁇ m, preferably 30 to 300 ⁇ m.
  • the roll surface temperature of the roll 33A is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the roll surface temperature of the roll 33B is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the linear pressure applied between the roll 33A and the roll 33B is usually 0.01 to 10 kN / cm, preferably 0.02 to 5 kN / cm.
  • a feeder 32A for supplying the composite particles for electrodes 12 is provided on the roll 33A and the roll 33B.
  • the electrode composite particles 12 are supplied between the rolls 33A and 33B from the feeder 32A.
  • the long sheet-like support 30 is supplied from the wound body 31A and supplied between the rolls 33A and 33B so as to hold the roll 33A.
  • the electrode composite particles 12 are bitten between the roll 33A and the sheet-like support 30, and the electrode composite particles 12 are compressed.
  • a long sheet-like support-attached green compact with the electrode composite particles 12 attached to the support 30 is formed.
  • the density of the dust layer (pre-molded layer) 400 is preferably compressed so as to be 100 to 10,000% of the density of the composite particle for electrode 12, and the density of the dust layer 400 is set to be equal to that of the composite particle for electrode 12. More preferably, the compression is performed so that the density becomes 200 to 1000%.
  • the density of the electrode composite particles 12 is a loose bulk density.
  • the long sheet-like support 30 used in the present invention is a long sheet-like one for supporting the green compact layer 400.
  • the material constituting the support 30 include a plastic film and paper.
  • paper and a thermoplastic resin film are preferable, and a thermoplastic resin film is more preferable from the viewpoint of versatility and handling.
  • the thermoplastic resin film include polytetrafluoroethylene (PTFE), PET (polyethylene terephthalate) film, polyolefin film, PVA (polyvinyl alcohol) film, PVB (polyvinyl butyral film), and PVC (polyvinyl chloride) film. It is done. Among these, polytetrafluoroethylene (PTFE) is preferable.
  • the support 30 is preferably subjected to a surface treatment such as a roughening treatment or a mold release treatment.
  • a roughening treatment method for example, a method of embossing the surface of the support; a method of sandblasting the surface of the support; a method of kneading a mat material into a material constituting the support; a layer including the mat material is supported.
  • a method for coating the body surface for example, a sandblasting method that can easily roughen the surface of the support is preferable.
  • thermosetting resin such as an alkyd resin on a support and curing it
  • silicone resin on a support and curing it
  • examples thereof include a method of coating a fluororesin on a support.
  • the surface treatment on the support may be performed only on one side or on both sides.
  • the surface roughness Ra of the roughened surface of the support is preferably in the range of 0.1 to 5 ⁇ m, more preferably 0.2 to 3 ⁇ m.
  • the surface roughness Ra can be calculated according to JIS B 0601 by drawing a roughness curve using, for example, a nanoscale hybrid microscope (VN-8010, manufactured by Keyence Corporation) and calculating from the following equation.
  • L is the measurement length
  • x is the deviation from the average line to the measurement curve.
  • the thickness of the heel support 30 is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and particularly preferably 20 to 100 ⁇ m. When the thickness of the support 30 is in the above range, the handleability of the long sheet-like support-attached green compact is improved.
  • the width is not particularly limited, but is preferably 100 to 1000 mm, and more preferably 100 to 500 mm.
  • the tensile strength of the heel support 30 is not particularly limited, but is preferably 30 to 500 MPa, and more preferably 30 to 300 MPa. When the tensile strength of the support 30 is within the above range, breakage of the long sheet-like support-attached green compact can be prevented.
  • the tensile strength of the support 30 is measured according to JIS K7127.
  • the long sheet-like support 30 is usually drawn out from the wound body 31 ⁇ / b> A, and after the dust layer 400 is transferred onto the current collector 300, it is wound up by a roll 36 ⁇ / b> A or the like.
  • the wound long sheet-like support 30 can be used repeatedly, and the production cost of the electrode can be reduced.
  • the long sheet-like support 30 can be a seamless belt.
  • the long sheet-like support 30 is used repeatedly or when a seamless belt is used, it is preferable to clean the electrode composite particles 12 before adhering them. Cleaning can be performed using, for example, a cleaner roll or a vacuum blower.
  • the long sheet-like support-attached powder compact is separated from the roll 33B and sent to the opposite side of the roll so as to hold the roll 33A.
  • the thickness of the green compact 400 once compressed between the roll 33A and the roll 33B is restored on the sheet-like support 30 when the compressive force is released.
  • the rate of restoration of the compressed layer 400 from the thickness at the compression point Q at and near the compression point to the thickness after release is preferably 100% to 5000%, and preferably 150% to 1000% Is more preferable.
  • the restoration rate of the dust layer 400 is the thickness of the dust layer 400 after releasing the compressive force, the thickness of the dust layer when the compressive force is applied at the Q point and its vicinity. Divided by 100 and multiplied by 100.
  • the Q point which is the compression point and the thickness of the dust layer 400 in the vicinity thereof can be estimated from the thickness of the support 30 and the distance between the rolls 33A and 33B.
  • the density of the compacted layer 400 after restoration that is, the density of the compacted layer 400 after the compacted layer forming step is preferably 130% to 400%, more preferably 150% to 300% of the density of the composite particles 12 for electrodes. More preferably.
  • the long sheet-like support-attached powder compact layer is not used as a wound body but is used as it is in the next step.
  • the dust layer 400 can be transferred onto the current collector 300 in the next step while the density of the dust layer 400 is kept low.
  • a configuration for forming the powder layer 400 (that is, a configuration including the wound body 31B of the support body 30, the feeder 32B, and the pair of rolls 34A and 34B) is provided.
  • each sheet-like support-attached green compact layer is transported along the rotation of the rolls 33 ⁇ / b> A and 34 ⁇ / b> A, and a long length is provided between the rolls 33 ⁇ / b> A and 34 ⁇ / b> A.
  • the sheet-like current collector 300 is introduced and pressurized, and the dust layer 400 is transferred to both surfaces of the sheet-like current collector 300 to obtain a laminate composed of the dust layer 400 and the current collector 300.
  • the sheet-like current collector 300 the one exemplified in the first example described above can be used, and the one in which the conductive adhesive layer is formed as in the first example mentioned above. It may be used.
  • the peripheral speed of the roll 33A is usually 0.1 to 100 m / min, preferably 1 to 50 m / min.
  • the peripheral speed of the roll 34A is usually 0.1 to 100 m / min, preferably 1 to 50 m / min.
  • the distance between the roll 33A and the roll 34A is usually 60 to 700 ⁇ m, preferably 100 to 500 ⁇ m.
  • the roll surface temperature of the roll 33A is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the roll surface temperature of the roll 34A is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the linear pressure applied between the roll 33A and the roll 34A is usually 0.01 to 10 kN / cm, preferably 0.05 to 1 kN / cm.
  • the method for transferring the dust layer 400 onto the long sheet-shaped current collector 300 is a method in which the dust layer 400 and the sheet-shaped current collector 300 are brought into contact with each other and pressed with a roll for pressure bonding.
  • a method of heating with an infrared heater or hot air, or a method of cooling with cold air can be employed.
  • the green compact 400 of the long green compact with a sheet-like support is brought into contact with the long sheet-shaped current collector 300 with a roll 37, and then an infrared heater, hot air, etc. Heat with or cool with cool air.
  • foreign matter detection, film thickness measurement, and surface defect inspection are performed by setting a state where the long sheet-like support-attached green compact layer is present alone and no metal is present. It becomes easy.
  • the laminated body including the dust layer 400 and the current collector 300 is further pressure-molded.
  • the powder layer 400 is pressed to become the electrode active material layer 200.
  • the electrode active material layer 200 is formed on both surfaces of the current collector 300 by introducing and pressurizing a laminate composed of the dust layer 400 and the current collector 300 between the rolls 35 ⁇ / b> A and 35 ⁇ / b> B. is doing.
  • the sheet-like support 30 is wound up by the rolls 36 ⁇ / b> A and 36 ⁇ / b> B, respectively, and is separated from the green compact layer 400.
  • the peripheral speed of the roll 35A is usually 0.1 to 100 m / min, preferably 1 to 50 m / min.
  • the peripheral speed of the roll 35B is usually 0.1 to 100 m / min, preferably 1 to 50 m / min.
  • the distance between the roll 35A and the roll 35B is usually 60 to 700 ⁇ m, preferably 100 to 500 ⁇ m.
  • the roll surface temperature of the roll 35A is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the roll surface temperature of the roll 35B is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the linear pressure applied between the roll 35A and the roll 35B is usually 0.01 to 10 kN / cm (1 to 1000 kN / m), preferably 0.02 to 5 kN / cm (2 to 500 kN / m).
  • the roll diameters of the rolls 35A and 35B can be determined according to the pressure applied when compressing the dust layer 400, but are usually 50 to 1000 mm, preferably 100 to 500 mm. Also in the second example, as in the first example described above, when the dust layer 400 is further compressed to form the electrode active material layer 200, shear force is applied to the dust layer 400 during compression.
  • the pressure is preferably set to such a pressure (preferably 150 kN / m or more, more preferably 250 kN / m or more, and further preferably 300 kN / m or more), whereby the electrode active material layer 200 has the above-described microstructure. It can be.
  • the roll 35A and the roll 35B may be subjected to surface treatment.
  • the thickness of the electrode active material layer 200 is usually 10 to 1000 ⁇ m, more preferably 20 to 500 ⁇ m.
  • the electrode for electrochemical elements with high electric capacity can be continuously produced with a small production facility.
  • the present inventor continuously attaches an electrode for an electrochemical element having a high electric capacity in a small production facility if a long sheet-shaped support-attached powder compact is not used as a wound body but is bonded to a current collector.
  • This second example has been made based on such knowledge.
  • FIG. 9 is a schematic view showing an electrode forming apparatus for manufacturing the electrochemical device electrode 100 of the present invention according to a third example.
  • the rolls used in this example rotate in a pair of opposite directions as in the rolls 43A and 43B shown in FIG.
  • a feeder 42A for supplying the electrode composite particles 12 is provided on the roll 43A and the roll 43B, and the composite particles are supplied between the rolls 43A and 43B from the feeder 42A.
  • the roll 43A rotates counterclockwise and the roll 43B rotates clockwise.
  • the peripheral speed of the roll 43A is usually 0.1 to 100 m / min, preferably 1 to 50 m / min.
  • the peripheral speed of the roll 43B is usually 0.1 to 100 m / min, preferably 1 to 50 m / min.
  • the distance between the roll 43A and the roll 43B is usually 10 to 500 ⁇ m, preferably 30 to 300 ⁇ m.
  • the roll surface temperature of the roll 43A is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the roll surface temperature of the roll 43B is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the pressure applied between the roll 43A and the roll 43B is usually 0.01 to 10 kN / cm, preferably 0.02 to 5 kN / cm.
  • the method for compressing and adhering the electrode composite particles 12 to one of the roll surfaces is not particularly limited, but the properties of the outer peripheral surfaces of the rolls 43A and 43B particularly make a difference in adhesion.
  • a difference is made by performing surface treatment such as mat treatment, roughening treatment, plating treatment, surface engraving, mold release treatment, mirror treatment, and matting treatment.
  • the roll 43B is mirror-finished and the roll 43A is matted.
  • the amount of biting of the electrode composite particles 12 can be controlled by the surface treatment of the rolls 43A and 43B, and the thickness of the electrode active material layer 200 obtained after passing between the rolls 45A and 45B, as will be described later. Can also be changed. Further, the surface of the roll 43A may be continuously roughened by sandblasting from the viewpoint of adhesion to the dust layer 400 obtained by compressing with the rolls 43A and 43B. Further, as a method of making a difference in adhesion between the roll 43A and the roll 43B, in addition to the above method, different materials such as electrical conductivity, thermal conductivity, emissivity, and heat absorption rate may be used for the roll 43A and the roll 43B. Differences can also be made by using each. Here, FIG.
  • FIG. 10 is a schematic view showing the surface states of the roll 43A and the roll 43B, and is a view of the surfaces of the roll 43A and the roll 43B as seen from the feeder 42A side. Therefore, in FIG. 10, the horizontal direction of the drawing corresponds to the width direction of the rolls 43A and 43B, and the vertical direction of the drawing corresponds to the circumferential direction of the rolls 43A and 43B. And in this example, it is preferable that the surface treatment of the roll 43A is performed except for the end portion in the width direction as shown in FIG. In such a case, an apparatus may be provided for removing from the roll 43A or the roll 43B the electrode composite particles 12 that are compressed in a portion where the surface treatment is not performed during compression.
  • Examples of the method of attaching the other electrode composite particles 12 to one roll surface include a method of making a difference in the rotation speeds of the roll 43A and the roll 43B, and a method of making a difference in the diameters of the roll 43A and the roll 43B. It is done.
  • the density of the green compact layer 400 is preferably compressed to be 100 to 10000% of the density of the electrode composite particles 12, and is compressed to be 200 to 1000%. Is more preferable.
  • the density of the electrode composite particles 12 is a loose bulk density.
  • the thickness of the green compact 400 once compressed between the roll 43A and the roll 43B is restored on the roll 43A when the compressive force is released.
  • the restoration rate from the thickness when the compression force is applied at and near the R point, which is the compression point, of the powder layer 400 to the thickness after release is preferably 100% to 5000%, and preferably 150 to 1000%. Is more preferable.
  • the restoration rate of the dust layer 400 is the thickness of the dust layer 400 after releasing the compressive force, the thickness of the dust layer when the compressive force is applied at the R point that is the compression point and in the vicinity thereof. Divided by 100 and multiplied by 100.
  • the thickness of the dust layer 400 at the R point that is the compression point and in the vicinity thereof can be estimated from the interval between the rolls 43A and 43B.
  • the density of the compacted layer 400 after restoration that is, the density of the compacted layer 400 adhering to the roll is preferably 130% to 400% of the density of the composite particles 12 for electrodes, and is 150% to 300%. More preferably.
  • the density of the green compact layer 400 becomes 0.75 g / cc.
  • the cleaning roll 43A and the roll 43B may be provided with a cleaning mechanism in front of the feeder 42A for supplying the electrode composite particles 12 to remove the electrode composite particles 12 attached to the roll surface. Further, a mechanism for recovering the composite particles for electrodes 12 that did not contribute to the formation of the green compact layer 400 may be provided on the downstream side of the compression portions of the rolls 43A and 43B.
  • the green compact layer 400 attached to the roll 43 ⁇ / b> A is transferred to the long sheet-like current collector 300.
  • the transfer is performed by bringing the dust layer 400 and the sheet-like current collector 300 into contact with each other and pressurizing with a roll and press-bonding, heating with an infrared heater or hot air, or cooling with cold air or the like. It can be carried out.
  • the sheet-like current collector 300 the one exemplified in the first example described above can be used, and the one in which the conductive adhesive layer is formed as in the first example mentioned above. It may be used.
  • a laminated body including the dust layer 400 and the current collector 300 is further pressure-molded.
  • the powder layer 400 is pressed to become the electrode active material layer 200. That is, as shown in FIG. 9, the green compact layer 400 is pressurized between the roll 45 ⁇ / b> A and the roll 45 ⁇ / b> B to become the electrode active material layer 200.
  • the roll 45A is rotated counterclockwise, and the roll 45B is rotated clockwise.
  • the peripheral speed of the roll 45A is usually 0.1 to 100 m / min, preferably 1 to 50 m / min.
  • the peripheral speed of the roll 45B is usually 0.1 to 100 m / min, preferably 1 to 50 m / min.
  • the distance between the roll 45A and the roll 45B is usually 60 to 700 ⁇ m, preferably 100 to 500 ⁇ m.
  • the roll surface temperature of the roll 45A is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the roll surface temperature of the roll 45B is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the roll diameter of the roll 45A and the roll 45B can be determined according to the pressure applied when compressing the dust layer 400, but is usually 50 to 1000 mm, preferably 100 to 500 mm.
  • the pressure applied between the roll 45A and the roll 45B is usually 0.01 to 10 kN / cm (1 to 1000 kN / m), preferably 0.02 to 5 kN / cm (2 to 500 kN / m).
  • the pressure applied between the roll 45A and the roll 45B is larger than the pressure applied between the roll 43A and the roll 43B.
  • the pressure is preferably set to such a pressure (preferably 150 kN / m or more, more preferably 250 kN / m or more, and further preferably 300 kN / m or more), whereby the electrode active material layer 200 has the above-described microstructure. It can be.
  • the roll 35A and the roll 35B may be subjected to surface treatment. For example, by providing engravings such as irregularities on the outer peripheral surfaces of the rolls 35A and 35B, a pattern is formed on the surface of the electrode for an electrochemical element, and the surface roughness can be changed.
  • the electrode active material layer 200 has a higher density than the dust layer 400, and the dust layer 400 has a higher density than the composite particles 12 for electrodes.
  • the thickness of the electrode active material layer 200 is usually 10 to 1000 ⁇ m, more preferably 20 to 500 ⁇ m.
  • FIG. 11 is a figure which shows another aspect of a 3rd example, and in the aspect shown in FIG. 11, in addition to the structure for forming the compacting layer 400 on the roll 43A mentioned above, current collection On the opposite side across the body 300, in the same manner as described above, a configuration for forming the dust layer 400 on the roll 44A under the same conditions (ie, a feeder 42B and a pair of rolls 44A and 44B). Configuration).
  • each of the dust layers 400 formed on the roll 43A and the roll 44A is passed through the current collector 300 between the roll 43A and the roll 44A.
  • Each powder layer 400 is pressurized on both surfaces of the electric body 300 and simultaneously transferred.
  • FIG. 12 is a figure which shows another aspect of a 3rd example, and in the aspect shown in this FIG. 12, in the structure shown in FIG. 11, the compacting layer 400 is provided on the roll 45B and the roll 44A.
  • the configuration for forming (that is, the configuration including the feeder 42B and the pair of rolls 44A and 44B) is arranged in reverse.
  • the electrode active material layer 200 is formed on one surface of the current collector 300 by applying pressure.
  • the current collector 300 in which the electrode active material layer 200 is formed on one surface is passed between the roll 44A and the roll 45A, so that the powder layer 400 formed on the roll 44A is collected.
  • the electrode active material layer 200 is transferred to the surface on which the electrode active material layer 200 is not formed and pressed to form the electrode active material layer 200 on the other surface of the current collector 300.
  • a third example (second manufacturing method) it is possible to provide a method for continuously manufacturing an electrode for an electrochemical element having a high electric capacity at a low cost with a small production facility. it can.
  • the present inventor does not require a support if the composite particle powder is compressed and adhered to the roll surface, can be continuously produced, and the production facility can be miniaturized. It has been found that an electrode for a device can be obtained, and the third example (second manufacturing method) has been made based on such knowledge.
  • the electrode composite particles are compressed to intermittently form a dust layer on the support surface.
  • a method of compressing the composite particles for electrodes to form a green compact layer a method of applying pressure between a support roll and another roll, a support belt or a support film between a pair of rolls, The method of pressurizing between a support belt and a support film is mentioned.
  • Examples of the method for intermittently forming the green compact layer include a method in which a portion having a different property from other portions is intermittently provided on the surface of the support.
  • the support surface portion on which the dust layer is formed can be provided in a strip shape in a direction orthogonal to the flow direction of the support, and the width thereof can be set as appropriate.
  • Adhesion varies depending on properties such as roughness, adhesiveness, temperature, and material of the support surface.
  • the difference is made by performing surface treatment such as roughening treatment such as mat processing and sandblasting, plating treatment, surface engraving, mold release treatment, mirror surface treatment, and matting treatment.
  • a difference can also be made by using materials having different electrical conductivity, thermal conductivity, emissivity, and heat absorption rate.
  • a dust layer is formed on the roughened portion.
  • the support used in the fourth example is used to compress the electrode composite particles on the surface thereof to form a dust layer, and to transfer the dust layer to a long sheet-like current collector. It is.
  • Examples of the support include a support roll, an endless support belt, and a long support sheet.
  • the material constituting the support examples include resin, paper, fiber, rubber, metal, and the like.
  • the material constituting the support roll is preferably a metal.
  • the material which comprises a support belt and a elongate support sheet is resin.
  • the resin examples include polytetrafluoroethylene (PTFE), PET (polyethylene terephthalate) film, polyolefin-based film, PVA (polyvinyl alcohol) film, PVB (polyvinyl butyral film), or PVC (polyvinyl chloride) film.
  • PTFE polytetrafluoroethylene
  • the support may have a multilayer structure in which layers composed of these materials are stacked.
  • the support is a roll or an endless belt, or when a long sheet is used repeatedly, it is preferable to clean the composite particle before adhering the powder. Cleaning can be performed using, for example, a cleaner roll or a vacuum blower.
  • FIG. 13 is a schematic view showing an electrode forming apparatus for producing the electrode 100 for an electrochemical element of the present invention according to a fourth example.
  • the electrode composite particles 12 are supplied from the feeder 52 ⁇ / b> A between the pair of rolls 53 ⁇ / b> A and 53 ⁇ / b> B rotating in the opposite direction, and the electrode composite particles 12 are compressed.
  • the surface of the roll 53B is mirror-finished.
  • the surface of the roll 53A is roughened at the T1 portion, and the T2 portion is mirror-finished.
  • FIG. 14A is a schematic view showing the surface of the roll 53A
  • FIG. 14B is a side view of the roll 53A viewed from the axial direction
  • FIG. 14A is a schematic view showing the surface of the roll 53A
  • FIG. 14B is a side view of the roll 53A viewed from the axial direction
  • a portion whose surface is roughened (T1 portion) and a portion which is mirror-finished (T2 portion) are distinguished from each other.
  • the roll 53A has a part (T2 part) that is mirror-finished in the circumferential direction, and the other parts are In other words, the surface is roughened (T1 portion).
  • FIG.14 (c) is the schematic which shows the intermittent compaction layer 400 formed in this example.
  • the density of the dust layer 400 is preferably compressed so as to be 100 to 10,000% of the density of the composite particle 12 for electrode, and the density of the dust layer 400 is 200 to 1000 of the density of the composite particle 12 for electrode. It is more preferable to compress so that it may become%.
  • the density of the electrode composite particles 12 is a loose bulk density.
  • the thickness of the dust layer 400 compressed between the roll 53A and the roll 53B is restored on the roll 43A when the compressive force is released.
  • the restoration rate from the thickness when the compressive force is applied at and near the S point, which is the compression point, of the green compact layer 400 to the thickness after release is preferably 100% to 5000%, and preferably 150% to 1000%. Is more preferable.
  • the restoration rate of the dust layer 400 refers to the thickness of the dust layer 400 after releasing the compressive force, the thickness of the dust layer 400 when the compressive force is applied at the compression point S and in the vicinity thereof. The value divided by 100 and multiplied by 100.
  • the S point which is the compression point and the thickness of the dust layer 400 in the vicinity thereof can be estimated from the distance between the rolls 53A and 53B.
  • the density of the green compact layer 400 after the restoration that is, the density of the green compact layer 400 after the green compact layer forming step is preferably 130% to 400% of the density of the composite particle 12 for electrodes, and is preferably 150% to 300%. And more preferred.
  • Other methods for intermittently forming the dust layer 400 include a method of making a difference in the adherence of the support surface (the surface of the roll 53A) as described above, and forming a dent in a portion where the dust layer 400 is not formed.
  • a method of providing a step on the support may be used. In this case, since the compression of the electrode composite particles 12 is weak in the recess, the powder layer 400 is not formed and falls down as it is.
  • the dust layer 400 is intermittently placed on the roll 54 on the opposite side across the current collector 300 in the same manner as above.
  • a configuration including a feeder 52B and a pair of rolls 54A and 54B Note that the roll 54A is subjected to the roughening treatment on the T1 portion and the mirror treatment on the T2 portion as in the roll 53A described above (see FIGS. 14A and 14B). Further, the surface of the roll 54B is mirror-finished similarly to the roll 53B described above.
  • FIG. 15 is a view showing another aspect of the fourth example.
  • a support belt 50 is used as a support instead of a support roll (in place of the rolls 53A and 54A as a support).
  • This embodiment is shown.
  • the surface of the rolls 53A and 54A is subjected to the treatment on the surface of the support belt.
  • a feeder 52A is provided on the roll 53A ′ and the roll 53B ′.
  • the electrode composite particles 12 are supplied between the rolls 53A ′ and 53B ′ from the feeder 52A.
  • the support belt 50 is supplied between the roll 53A ′ and the roll 53B ′ so as to hold the roll 53A ′.
  • the electrode composite particles 12 are bitten between the roll 53A ′ and the support belt 50, and the electrode composite particles 12 are compressed. .
  • a dust layer in which the dust layer 400 is intermittently attached to the support belt 50 is formed.
  • the density of the dust layer 400 is preferably compressed so as to be 130% to 400% of the density of the electrode composite particles 12, and the density of the dust layer 400 is preferably 150 to 400% of the density of the electrode composite particles 12. More preferably, the compression is performed to be 300%.
  • the dust layer 400 adhered to the support belt 50 is separated from the roll 53B ′ and sent to the opposite side of the roll so as to hold the roll 53A ′.
  • the thickness of the green compact layer 400 is restored from the time of compression.
  • the restoration rate from the thickness when the compression force is applied at the S point that is the compression point and the vicinity of the compression layer 400 to the thickness after release is preferably 100% to 1000%, and more preferably 150% to 400%. % Is more preferable.
  • the restoration rate of the dust layer 400 is the thickness of the dust layer 400 after the compression force is released, and the thickness of the dust layer 400 when the compression force is applied at the S point as a compression point and in the vicinity thereof. Divided by 100 and multiplied by 100.
  • the thickness of the dust layer 400 is estimated from the thickness of the support belt 50 and the distance between the rolls 53A ′ and 53B ′.
  • the density of the compacted powder layer 400 after restoration is preferably 130% to 400%, more preferably 150% to 300%, of the density of the composite particles 12 for electrodes.
  • the dust layer 400 intermittently formed on the support surface is transferred to a long sheet-like current collector 300, and the dust layer intermittent in the flow direction is transferred.
  • a sheet-like current collector 300 having 400 is formed.
  • the method for transferring the dust layer 400 to the current collector 300 is a method in which the dust layer 400 and the current collector 300 are brought into contact with each other and pressed by a roll and pressed, or the dust layer 400 and the current collector 300 are brought into contact with each other.
  • a method of heating with an infrared heater or warm air, or a method of cooling such as cold air can be used.
  • each green compact layer 400 formed intermittently on each of the rolls 53A and 54A moves while adhering to the rolls 53A and 54A, and is supplied from the lower side between the roll 53A and the support roll 54A.
  • the sheet is pressed onto the long sheet-like current collector 300 and transferred onto both sides of the current collector 300. That is, as shown in FIG. 14C, the green compact layer 400 is formed in the T1 ′ portion, and the green compact layer 400 is not formed in the T2 ′ portion.
  • the green compact layer 400 formed by the rolls 53A and 53B and the green compact layer 400 formed by the rolls 54A and 54B are non-formed portions where the green compact layer 400 is not formed (that is, 14 (c) may be in the form of being at the same position or different from each other, but may be processed in the case of an electrode for an electrochemical device. From the viewpoint of sex and the like, it is preferable to adopt an aspect in which they are at the same position.
  • a long sheet-shaped current collector 300 is introduced between the roll 53A ′ and the roll 54A ′, pressurized, and pressed onto both sides of the sheet-shaped current collector 300 from the support belt 50, respectively. 400 is transferred to obtain a laminate comprising the dust layer 400 formed on both sides and a current collector.
  • intermittent dust layers 400 in the flow direction are transferred to both surfaces of a long sheet-like current collector 300.
  • the sheet-like current collector 300 having the intermittent dust layer 400 obtained as described above is further pressure-formed.
  • the powder layer 400 is pressed to become the electrode active material layer 200.
  • the laminated body which consists of the compacting layer 400 and the electrical power collector 300 is introduce
  • a laminated body composed of the dust layer 400 and the current collector 300 is introduced and pressed between the rolls 55 ⁇ / b> A and 55 ⁇ / b> B.
  • the support belt 50 is separated from the electrode active material layer 200 by the roll 55A and the roll 55B, respectively.
  • the pressure is preferably set to such a pressure (preferably 150 kN / m or more, more preferably 250 kN / m or more, and further preferably 300 kN / m or more), whereby the electrode active material layer 200 has the above-described microstructure. It can be.
  • the thickness of the electrode active material layer 200 is usually 10 to 1000 ⁇ m, more preferably 20 to 500 ⁇ m.
  • Such a long sheet-like current collector having an electrode active material layer intermittent in the flow direction is cut into a tab portion by cutting a portion not having the electrode active material layer into an electrode element for an electrochemical element. can do. Since there is no electrode active material layer at the cut portion, it is effective in preventing cutting loss, reducing the strength of the cutting edge, and preventing deformation.
  • the electrochemical element electrode having the tab portion is prevented from cutting loss, strength reduction and deformation of the cutting edge, cost is reduced, and a small production facility.
  • the present inventor intermittently forms a dust layer on the surface of the support and forms an electrode active material layer intermittently in the flow direction when it is transferred to a long sheet-like current collector and pressurized. If a long sheet is obtained, and such a long sheet is cut at a portion where there is no electrode active material layer, the cutting loss and strength reduction and deformation of the cutting edge are prevented, and the tab portion is prevented. It has been found that an electrode for an electrochemical element can be produced, and this fourth example (third production method) has been made based on such knowledge.
  • ⁇ Bulk density of composite particles for electrode> The bulk density of the composite particles for electrodes was measured using a powder tester “PT-S” (manufactured by Hosokawa Micron). Specifically, the electrode composite particles are allowed to stand on a sieve having an opening of 250 ⁇ m, and the electrode composite particles are dropped by applying a vibration of 1 kHz, filled in a 100 cc measurement cup, The bulk density (g / cc) of the composite particles for electrodes was obtained by dividing the weight (g) of the composite particles for electrodes filled in by the volume (cc) of the cup for measurement.
  • ⁇ Peel strength> The negative electrodes obtained in the examples and comparative examples were cut into rectangular pieces each having a width of 1 cm and a length of 10 cm to form test pieces, which were fixed with the negative electrode active material layer face up, and cellophane tape was applied to the surface of the negative electrode active material layer. After pasting, the stress when the cellophane tape was peeled off from one end of the test piece in the 180 ° direction at a speed of 50 mm / min was measured. And this measurement was performed 10 times, the average value was calculated
  • Capacity maintenance rate is 90% or more
  • Example 1 ⁇ Manufacture of slurry for forming conductive adhesive layer> 100 parts of carbon black having a volume average particle size of 0.7 ⁇ m, and 4 parts of a 4.0% aqueous solution of ammonium carboxymethylcellulose (DN-10L; manufactured by Daicel Chemical Industries, Ltd.) as a dispersing agent in terms of solid content
  • a resin component binder
  • a 40% aqueous dispersion of an acrylate polymer (2-ethylhexyl acrylate: acrylonitrile 75: 25 (mass ratio)) having a number average particle size of 0.25 ⁇ m and 8 parts solid equivalent and ions
  • the exchange water was mixed so that the total solid content concentration was 30% to prepare a slurry for forming a conductive adhesive layer.
  • BM-480B 40% aqueous dispersion of styrene / butadiene copolymer
  • BSH-12 carboxymethylcellulose sodium salt solution
  • the obtained slurry for negative electrode was sprayed using a spray dryer (OC-16; manufactured by Okawara Chemical Co., Ltd.), rotating at 25,000 rpm with a rotating disk type atomizer (vane type, diameter 65 mm), hot air temperature 150 Spray drying granulation was carried out under the conditions of 0 ° C. and the temperature of the particle recovery outlet being 90 ° C. to obtain composite particles for negative electrode.
  • the obtained composite particles for negative electrode had a weight average particle diameter of 78 ⁇ m and a bulk density of 0.40 g / cc.
  • the conductive adhesive layer-forming slurry prepared above is applied to a current collector made of copper foil having a thickness of 20 ⁇ m, dried at 120 ° C. for 10 minutes, and conductive adhesive having a thickness of 4 ⁇ m on the copper foil. An agent layer was formed.
  • the roll diameters of the rolls 6A and 6B constituting the pre-molding roll 6 are 50 mm, the roll gap is 50 ⁇ m, the roll pressure (linear pressure) is 15 kN / m, and the forming roll 8 is
  • the rolls 8A and 8B constituting the roll had a roll diameter of 250 mm, a roll gap of 50 ⁇ m, a roll pressure (linear pressure) of 350 kN / m, and a roll temperature of 100 ° C.
  • the obtained negative electrode active material layer had an average density of 1.5 g / cm 3 and an average thickness of 95 ⁇ m.
  • the average density of the sheet-like pre-molded body 14 after passing through the rolls 6A and 6B constituting the pre-molding roll 6 was 0.8 g / cm 3 .
  • a sodium salt 2.0% aqueous solution (BS-H; manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) to a solid content of 0.8 part, and 85.0 parts of water as a solvent.
  • the slurry for positive electrode having a solid content concentration of 45% was obtained.
  • the obtained positive electrode slurry was sprayed using a spray dryer (OC-16; manufactured by Okawara Chemical Co., Ltd.), a rotating disk type atomizer (vane type, diameter 65 mm), rotating at 25,000 rpm, hot air temperature 150 ° C.
  • spray drying granulation was performed under the condition where the temperature of the particle recovery outlet was 90 ° C. to obtain composite particles for positive electrode.
  • the obtained composite particles for positive electrode had a weight average particle diameter of 54 ⁇ m and a bulk density of 0.90 g / cc.
  • the conductive adhesive layer forming slurry prepared above is applied to a current collector made of aluminum foil having a thickness of 20 ⁇ m, dried at 120 ° C. for 10 minutes, and conductive adhesive having a thickness of 4 ⁇ m on the aluminum foil. An agent layer was formed.
  • the roll diameters of the rolls 6A and 6B constituting the pre-molding roll 6 are 50 mm, the roll gap is 50 ⁇ m, the roll pressure (linear pressure) is 15 kN / m, and the forming roll 8 is
  • the roll diameters of the rolls 8A and 8B to be configured were 250 mm, the roll gap was 50 ⁇ m, the roll pressure (linear pressure) was 400 kN / m, and the roll temperature was 100 ° C.
  • the obtained negative electrode active material layer had an average density of 3.50 g / cm 3 and an average thickness of 100 ⁇ m.
  • the average density of the sheet-like pre-molded body 14 after passing through the rolls 6A and 6B constituting the pre-molding roll 6 was 1.8 g / cm 3 .
  • the portion where the active material layer is not formed is 2 cm long ⁇ 2 cm wide, and the portion where the active material layer is formed is a negative electrode of 5.2 cm.
  • the electrode laminate was obtained by arranging and laminating the terminal welded portions of the positive electrode current collector and the negative electrode current collector in the same direction so as not to overlap each other with the cut-out material sandwiched therebetween.
  • the obtained electrode laminated body is arrange
  • positioned inside a deep drawing exterior laminate film, and after heat-sealing three sides, electrolyte solution (solvent: ethylene carbonate / ethyl methyl carbonate 3/7 (weight ratio), electrolyte 1M LiPF 6 (manufactured by Kishida Chemical Co., Ltd.) was filled and vacuum impregnated, and then the remaining one side was heat-sealed under reduced pressure and sealed to obtain a lithium ion secondary battery.
  • electrolyte 1M LiPF 6 manufactured by Kishida Chemical Co., Ltd.
  • Example 2 When manufacturing the negative electrode using the negative electrode composite particles and the copper foil on which the conductive adhesive layer is formed, roll pressures of rolls 6A and 6B constituting the pre-molding roll 6 of the electrode forming apparatus 2 shown in FIG.
  • the negative electrode is obtained and obtained in the same manner as in Example 1 except that the linear pressure is 20 kN / m and the roll pressure (linear pressure) of the rolls 8A and 8B constituting the forming roll 8 is 250 kN / m.
  • a lithium ion secondary battery was manufactured using the negative electrode and evaluated in the same manner. The results are shown in Table 1.
  • Example 3 When manufacturing the negative electrode using the negative electrode composite particles and the copper foil on which the conductive adhesive layer is formed, roll pressures of rolls 6A and 6B constituting the pre-molding roll 6 of the electrode forming apparatus 2 shown in FIG.
  • the negative electrode was obtained in the same manner as in Example 1 except that the linear pressure was 3 kN / m and the roll pressure (linear pressure) of the rolls 8A and 8B constituting the forming roll 8 was 750 kN / m.
  • a lithium ion secondary battery was manufactured using the negative electrode and evaluated in the same manner. The results are shown in Table 1.
  • Example 4 When spray-drying granulation is performed with a spray dryer using the negative electrode slurry and the positive electrode slurry, a pin type atomizer (rotation speed 25,000 rpm) is used as a rotating disk type atomizer instead of the vane atomizer. Except that, a negative electrode and a positive electrode were obtained in the same manner as in Example 1, a lithium ion secondary battery was produced using the obtained negative electrode and positive electrode, and evaluated in the same manner. The results are shown in Table 1.
  • Example 5 When spray drying granulation is performed by a spray dryer using the negative electrode slurry and the positive electrode slurry, a pressurized two-fluid nozzle system (pressurized pressure of 0.1 mm) is used instead of the vane atomizer as a rotating disk type atomizer. Except for using 3 MPa), a negative electrode and a positive electrode were obtained in the same manner as in Example 1, and using the obtained negative electrode and positive electrode, a lithium ion secondary battery was produced and evaluated in the same manner. The results are shown in Table 1.
  • Example 6 When obtaining composite particles for negative electrode, instead of styrene / butadiene copolymer (BM-480B), styrene / butadiene copolymer with different glass transition temperature (BM-430B, glass transition temperature ⁇ 37 ° C .; Nippon Zeon Co., Ltd.) Except for using the product, a negative electrode was obtained in the same manner as in Example 1, and a lithium ion secondary battery was produced using the obtained negative electrode and evaluated in the same manner. The results are shown in Table 1.
  • Example 8 When obtaining composite particles for negative electrode, first, a slurry for negative electrode was obtained in the same manner as in Example 1 except that graphite as a negative electrode active material was not added. Next, using the obtained slurry for negative electrode and graphite as the negative electrode active material, a fluidized bed dryer (Agromaster “AGM-PJ”, manufactured by Hosokawa Micron Co., Ltd.) was used for drying instead of a spray dryer. By performing granulation, composite particles for negative electrode were obtained. The drying temperature at this time was 80 ° C. And except having used the obtained composite particle for negative electrodes, it carried out similarly to Example 1, and obtained the negative electrode, manufactured the lithium ion secondary battery using the obtained negative electrode, and performed evaluation similarly. It was. The results are shown in Table 1.
  • Example 9 When obtaining composite particles for negative electrode, first, a slurry for negative electrode was obtained in the same manner as in Example 1 except that graphite as a negative electrode active material was not added. Then, using the obtained negative electrode slurry and graphite as the negative electrode active material, instead of a spray dryer, a stirring rolling fluidized bed granulator (New Gram Machine “SEG-200”, manufactured by Seishin Enterprise Co., Ltd.) The composite particles for negative electrode were obtained by performing dry granulation. The drying temperature at this time was 25 ° C., and the negative electrode was obtained in the same manner as in Example 1 except that the obtained composite particles for negative electrode were used. An ion secondary battery was manufactured and evaluated in the same manner. The results are shown in Table 1.
  • Example 10 Except that the conductive adhesive was not formed on the copper foil as the negative electrode current collector, a negative electrode was obtained in the same manner as in Example 1, and a lithium ion secondary battery was produced using the obtained negative electrode. The same evaluation was performed. The results are shown in Table 1.
  • the negative electrode slurry obtained above was applied onto a copper foil having a thickness of 20 ⁇ m using a comma coater at a speed of 5 m / min so that the film thickness after drying was about 95 ⁇ m.
  • the negative electrode was obtained by drying at 60 degreeC for 2 minutes, heat-processing at 120 degreeC for 2 minutes, and then compressing with a pair of rolls by the pressure (linear pressure) of 200 kN / m. And it evaluated similarly to Example 1 using the obtained negative electrode. The results are shown in Table 1.
  • the positive electrode slurry obtained above was applied on a 20 ⁇ m thick aluminum foil using a comma coater at a rate of 5 m / min so that the film thickness after drying was about 100 ⁇ m.
  • the film was dried at 60 ° C. for 2 minutes, heat-treated at 120 ° C. for 2 minutes, and then compressed by a pair of rolls at a pressure (linear pressure) of 200 kN / m to obtain a positive electrode.
  • the rolls 6A and 6B constituting the pre-molding roll 6 of the electrode forming apparatus 2 shown in FIG. 5 and the rolls 8A and 8B constituting the forming roll 8 are both roll diameter 250 mm, roll gap 50 ⁇ m, roll pressure (linear pressure).
  • a positive electrode was obtained in the same manner as in Example 4 except that was set to 250 kN / m.
  • the composite particle for the electrode was obtained, and when the obtained composite particle for the electrode was molded, first, pre-molding was performed, and the sheet-shaped pre-molded body 14 was obtained. Then, the main molding is performed at a pressure higher than the pressure at the time of pre-molding, and thus the sheet-shaped pre-molded body 14 is compressed by applying a shearing force to produce the Examples 1 to 10 2, the fine structure of the electrode active material layer of the obtained electrode is such that, as shown in FIG. 2, the binder covering portions 220 covering the plurality of electrode active materials 210 adjacent to each other are connected by the binder connecting portion 230. Had the structure.
  • the electrodes obtained in Examples 1 to 10 all had high peel strength, excellent wettability to the electrolytic solution, low internal resistance when used as a battery, and excellent charge / discharge cycle characteristics. .
  • this tendency is observed when the pressure during pre-molding and the pressure during main molding are changed (Examples 2 and 3), and when the granulation conditions are changed (Examples 4, 5, 8, and 9).
  • the same tendency was observed when the binder was changed (Examples 6 and 7) and when the presence or absence of the conductive adhesive was changed (Examples 1 and 10).
  • the evaluation in the case of using a negative electrode was illustrated, the same tendency was observed in the case of the positive electrode.
  • Comparative Example 1 in which an electrode was formed by a coating method and Comparative Example 2 in which the pressure during pre-molding and the pressure during main molding were the same, the microstructure of the electrode active material layer of the obtained electrode was as shown in FIG. As shown in FIG. 4, the gap formed by the plurality of electrode active materials 210 adjacent to each other is completely closed by the binder 220 a. And the electrode obtained in these comparative examples 1 and 2 had low wettability of electrolyte solution, and was inferior to the internal resistance at the time of setting it as a battery, and charging / discharging cycling characteristics.
  • Example 11 which is an example according to the second example described above will be described.
  • 100 parts of steam activated activated carbon with a specific surface area of 1,700 m 2 / g, 7.5 parts of acetylene black, 1.4 parts of sodium carboxymethyl cellulose, and latex of diene polymer (glass transition temperature: ⁇ 19 ° C.) Is mixed with 10 parts in a solid content, and ion-exchanged water is further added so that the solid content concentration is 20%, followed by mixing and dispersion to obtain a composite particle composition.
  • This composite particle composition is spray-dried and granulated using a spray dryer at a rotational speed of 16,000 rpm of a rotary disk atomizer (diameter 65 mm), a hot air temperature of 150 ° C., and a particle recovery outlet temperature of 85 ° C. To obtain spherical composite particles.
  • the spherical composite particles have a sphericity of 0.12 and an average volume particle diameter of 102 ⁇ m.
  • Spherical composite particles obtained here long sheet-like support (PET film (thickness 50 ⁇ m, tensile strength 200 MPa) subjected to sandblasting so that the surface roughness Ra is 0.4 ⁇ m as a roughening treatment)
  • PET film thinness 50 ⁇ m, tensile strength 200 MPa
  • a long sheet-like current collector a 4 ⁇ m adhesive-coated aluminum current collector with a thickness of 30 ⁇ m
  • the accuracy of the thickness of the electrode active material layer of the obtained electrode is within 4% over the entire surface.
  • the loose bulk density of the electrode composite particles 12 made of spherical composite particles is 0.18 g / cc, and the density of the green compact layer 400 is 0.4 g / cc.
  • the thickness of the green compact layer 400 is 220 ⁇ m.
  • Example 12 Next, a twelfth embodiment which is an embodiment according to the above-described fourth example will be described.
  • 100 parts of steam activated activated carbon with a specific surface area of 1,700 m 2 / g, 7.5 parts of acetylene black, 1.4 parts of sodium carboxymethyl cellulose, and latex of diene polymer (glass transition temperature: ⁇ 19 ° C.) Is mixed with 10 parts in a solid content, and ion-exchanged water is further added so that the solid content concentration is 20%, followed by mixing and dispersion to obtain a composite particle composition.
  • This composite particle composition is spray-dried and granulated using a spray dryer at a rotational speed of 16,000 rpm of a rotary disk atomizer (diameter 65 mm), a hot air temperature of 150 ° C., and a particle recovery outlet temperature of 85 ° C. To obtain spherical composite particles.
  • the spherical composite particles have a sphericity of 0.12 and an average volume particle diameter of 102 ⁇ m.
  • the spherical composite particles obtained here a long support sheet 50 intermittently sandblasted (a PET film sandblasted to have a surface roughness Ra of 0.4 ⁇ m as a roughening treatment [thickness 50 ⁇ m , Tensile strength 200 MPa]), a long sheet-shaped current collector 300 (4 ⁇ m adhesive-coated aluminum current collector 30 ⁇ m thick), and the apparatus shown in FIG.
  • the accuracy of the thickness of the electrode active material layer 200 of the obtained electrode is within 4% over the entire surface.
  • the support sheet 50 is supplied from a wound body 51 of the support sheet 50 and is taken up by a roll 56.
  • the loose bulk density of the electrode composite particles 12 made of spherical composite particles is 0.18 g / cc, and the density of the green compact layer 400 is 0.4 g / cc.
  • the thickness of the green compact layer 400 is 220 ⁇ m.
  • Electrode for electrochemical elements 200 ... Electrode active material layer 210 . Electrode active material 220 ... Binder coating part 230 . Binder connection part 240 ... Gap part 300 ... Current collector

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電極活物質及びバインダを含有する電極活物質層を備える電気化学素子用電極であって、前記電極活物質210の表面の少なくとも一部に前記バインダで被覆されてなるバインダ被覆部220と、複数の前記電極活物質210から構成される空隙部240内に、前記空隙部240を形成する複数の電極活物質210の表面に形成されたバインダ被覆部220同士を前記バインダにより連結してなるバインダ連結部230と、を備える電気化学素子用電極を提供する。

Description

電気化学素子用電極
 本発明は、電気化学素子用電極に関する。
 小型で軽量であり、エネルギー密度が高く、さらに繰り返し充放電が可能なリチウムイオン二次電池などの電気化学素子は、その特性を活かして急速に需要を拡大している。リチウムイオン二次電池は、エネルギー密度が比較的に大きいことから携帯電話やノート型パーソナルコンピュータ、電気自動車などの分野で利用されている。
 このような電気化学素子を構成する電極は、通常、バインダと、電極活物質と、溶媒とを含有するスラリーを、金属箔などの集電体上に塗布し、溶媒を除去することにより製造される。このような電気化学素子の電極を構成するためのスラリーとしては、バインダとして、ポリフッ化ビニリデン(PVDF)などのフッ素系樹脂、溶媒として、N-メチル-ピロリドン(NMP)などの有機溶剤を用いた有機系のスラリーが一般的に用いられている。
 しかしその一方で、有機系のスラリーを用いる方法においては、有機溶剤のリサイクルに要する費用の問題や、有機溶剤を使用することによる安全性確保の問題があり、そのため、これらの問題を解決するために、水を媒体とする水系スラリーに用いる水系のバインダが検討されている。
 たとえば、特許文献1では、1,3-ブタジエン由来の構造単位、芳香族ビニル由来の構造単位及びエチレン性不飽和カルボン酸エステル由来の構造単位を有するポリマーとポリ1,3-ブタジエンとの混合物からなる水系のバインダが開示されている。なお、この特許文献1では、このような水系バインダを用い、電極活物質及び水と混合することにより水系スラリーを得て、得られた水系スラリーを、金属箔集電体上に塗布することで、電気化学素子用電極を得ている。
特許第3627586号公報
 しかしながら、本発明者等が検討したところ、上述した特許文献1の技術では、得られる電気化学素子用電極は、電気化学素子用電極内において、バインダが、電極活物質と電極活物質との間に形成される空隙を塞ぐような形態で存在しており、そのため、電極活物質と電解液との界面が適切に形成されず、そのため、イオン伝導が不十分となり、結果として、抵抗が高くなってしまうという問題があった。
 本発明は、電極活物質層と集電体との密着性が高く、電解液に対する濡れ性に優れ、これにより、電池とした場合における、内部抵抗が低く、サイクル特性に優れた電気化学素子用電極を提供することを目的とする。
 本発明者等は、上記目的を達成するために鋭意研究した結果、電気化学素子用電極を、電極活物質の表面の少なくとも一部にバインダで被覆されてなるバインダ被覆部と、複数の電極活物質から構成される空隙部内に、該空隙部を形成する複数の電極活物質の表面に形成されたバインダ被覆部同士をバインダにより連結してなるバインダ連結部とを備えるような構成とすることにより、電気化学素子用電極を、電極活物質層と集電体との密着性が高く、電解液に対する濡れ性に優れ、これにより、電池とした場合における、内部抵抗が低く、サイクル特性に優れたものとすることができることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、電極活物質及びバインダを含有する電極活物質層を備える電気化学素子用電極であって、前記電極活物質の表面の少なくとも一部に前記バインダで被覆されてなるバインダ被覆部と、複数の前記電極活物質から構成される空隙部内に、前記空隙部を形成する複数の電極活物質の表面に形成されたバインダ被覆部同士を前記バインダにより連結してなるバインダ連結部と、を備える電気化学素子用電極が提供される。
 本発明の電気化学素子用電極において、前記空隙部を形成する複数の電極活物質の表面に形成された各バインダ被覆部同士は、一体化されておらず、互いに独立して形成されていることが好ましい。
 本発明の電気化学素子用電極において、前記バインダ連結部の長さが0.01~5μmであることが好ましい。
 本発明の電気化学素子用電極において、前記バインダ連結部は、糸状及び/又は板状の形状を有していることが好ましい。
 本発明の電気化学素子用電極において、前記バインダが、アクリレート系重合体及び/又は共役ジエン系重合体であることが好ましい。
 本発明の電気化学素子用電極において、前記電極活物質及びバインダが、複合粒子を形成していることが好ましい。
 本発明の電気化学素子用電極において、前記電極活物質層は、前記複合粒子を、第1の圧力で加圧することで加圧体とし、前記加圧体を、前記第1の圧力よりも高い第2の圧力で加圧することにより得られたものであることが好ましい。
 なお、上述した本発明の電気化学素子用電極の製造方法として、たとえば、次の製造方法を提供することができる。
 すなわち、第1の製造方法として、
(1a)電極活物質およびバインダを含有してなる複合粒子を圧縮して長尺のシート状支持体表面に付着させ、長尺のシート状支持体付圧粉層を形成する圧粉層形成工程、および該長尺のシート状支持体付圧粉層を巻回体とせずに、該圧粉層を長尺のシート状集電体に転写する転写工程、を有する電気化学素子用電極の製造方法、
(2a)転写と同時に、又は転写の後に、前記圧粉層を加圧する工程を更に有する、上記(1a)に記載の電気化学素子用電極の製造方法、
(3a)シート状集電体両面において、前記転写工程を同時に又は相前後して行う、上記(1a)または(2a)に記載の電気化学素子用電極の製造方法、
(4a)圧粉層形成工程後の圧粉層の密度が、圧縮前の複合粒子の密度の130%~400%である、上記(1a)~(3a)のいずれか一つに記載の電気化学素子用電極の製造方法、
(5a)圧粉層の復元率が、100%~5000%である、上記(1a)~(4a)のいずれか一つに記載の電気化学素子用電極の製造方法、ならびに、
(6a)シート状支持体がシームレスベルトである、上記(1a)~(5a)のいずれか一つに記載の電気化学素子用電極の製造方法、
 を提供することができる。
 また、第2の製造方法として、
(1b)一対の逆方向に回転するロール間に、電極活物質およびバインダを含有してなる複合粒子を供給し、複合粒子を圧縮して一方のロール面に付着させて圧粉層を形成する圧粉層形成工程、およびロールの一方に付着された圧粉層を長尺のシート状集電体に転写する転写工程、を有する電気化学素子用電極の製造方法、
(2b)転写と同時に、又は転写の後に、前記圧粉層を加圧する工程を更に有する、上記(1b)に記載の電気化学素子用電極の製造方法、
(3b)シート状集電体両面において、前記転写工程を同時に又は相前後して行う、上記(1b)または(2b)に記載の電気化学素子用電極の製造方法、
(4b)圧粉層の付着するロールは、そのロール面が粗面化処理されたものである、上記(1b)~(3b)のいずれか一つに記載の電気化学素子用電極の製造方法、
(5b)ロールに付着している圧粉層の密度が、圧縮前の複合粒子の密度の130%~400%である、上記(1b)~(4b)のいずれか一つに記載の電気化学素子用電極の製造方法、ならびに、
(6b)圧粉層の復元率が100%~5000%である、上記(1b)~(5b)のいずれか一つに記載の電気化学素子用電極の製造方法、
 を提供することができる。
 あるいは、第3の製造方法として、
(1c)電極活物質およびバインダを含有してなる複合粒子を圧縮して支持体表面に圧粉層を断続的に形成する圧粉層形成工程、および該圧粉層を長尺のシート状集電体に転写し、流れ方向(MD方向)において断続的な圧粉層を有するシート状集電体を形成する転写工程、を含む電気化学素子用電極の製造方法、
(2c)支持体表面には、その性状が他の部分と異なる部分が間欠的にある、上記(1c)に記載の電気化学素子用電極の製造方法、
(3c)支持体表面には、粗面化処理された部分と、粗面化処理されていない部分とが、流れ方向で交互にある、上記(1c)に記載の電気化学素子用電極の製造方法、
(4c)支持体が、支持ロールまたは支持ベルトである、上記(1c)~(3c)のいずれか一つに記載の電気化学素子用電極の製造方法、
(5c)圧粉層を有するシート状集電体を加圧する工程をさらに含む、上記(1c)~(4c)のいずれか一つに記載の電気化学素子用電極の製造方法、
 を提供することができる。
 本発明によれば、電極活物質層と集電体との密着性が高く、電解液に対する濡れ性に優れ、これにより、電池とした場合における、内部抵抗が低く、サイクル特性に優れた電気化学素子用電極を提供することができる。
図1は、本発明の電気化学素子用電極の一例を示す概略図である。 図2は、本発明の電気化学素子用電極の微細構造を示す模式図である。 図3は、従来例に係る電気化学素子用電極の微細構造を示す模式図である。 図4は、従来例に係る電気化学素子用電極の微細構造を示す模式図である。 図5は、第1の例に係る、本発明の電気化学素子用電極を製造するための電極成形装置を示す概略図である。 図6は、第2の例に係る、本発明の電気化学素子用電極を製造するための電極成形装置を示す概略図である。 図7は、第2の例に係る、本発明の電気化学素子用電極を製造するための電極成形装置を示す概略図である。 図8は、第2の例に係る、本発明の電気化学素子用電極を製造するための電極成形装置を示す概略図である。 図9は、第3の例に係る、本発明の電気化学素子用電極を製造するための電極成形装置を示す概略図である。 図10は、図9に示した装置のロール43A及びロール43Bの表面状態を示す概略図である。 図11は、第3の例に係る、本発明の電気化学素子用電極を製造するための電極成形装置を示す概略図である。 図12は、第3の例に係る、本発明の電気化学素子用電極を製造するための電極成形装置を示す概略図である。 図13は、第4の例に係る、本発明の電気化学素子用電極を製造するための電極成形装置を示す概略図である。 図14(a)は、ロール53Aの表面を示す概略図、図14(b)は、ロール53Aを軸方向から見た側面図、図14(c)は、第4の例で形成される断続的な圧粉層400を示す概略図である。 図15は、第4の例に係る、本発明の電気化学素子用電極を製造するための電極成形装置を示す概略図である。 図16は、第4の例に係る、本発明の電気化学素子用電極を製造するための電極成形装置を示す概略図である。
 以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の電気化学素子用電極の一例を示す概略図である。図1に示すように、本発明の電気化学素子用電極100は、シート状の集電体300上に、シート状又はフィルム状の電極活物質層200が形成されてなる。電気化学素子用電極100としては、電気化学素子に用いられる電極であればよく、特に限定されないが、たとえば、リチウムイオン二次電池や、電気二重層キャパシタ、ハイブリッドキャパシタ(リチウムイオンキャパシタなど)などの各種電気化学素子用の電極が挙げられる。
 本発明の電気化学素子用電極100を構成する電極活物質層200は、少なくとも電極活物質と、バインダとを含有してなる。以下、電極活物質層200を構成する電極活物質及びバインダについて説明する。
(電極活物質)
 本発明で用いる電極活物質は、電気化学素子の種類によって適宜選択される。たとえば、本発明の電気化学素子用電極100を、リチウムイオン二次電池用の正極として用いる場合、正極活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能な金属酸化物が挙げられる。かかる金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、燐酸鉄リチウム、燐酸マンガンリチウム、燐酸バナジウムリチウム、バナジン酸鉄リチウム、ニッケル-マンガン-コバルト酸リチウム、ニッケル-コバルト酸リチウム、ニッケル-マンガン酸リチウム、鉄-マンガン酸リチウム、鉄-マンガン-コバルト酸リチウム、珪酸鉄リチウム、珪酸鉄-マンガンリチウム、酸化バナジウム、バナジン酸銅、酸化ニオブ、硫化チタン、酸化モリブデン、硫化モリブデン、等を挙げることができる。なお、上記にて例示した正極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。さらに、ポリアセチレン、ポリ-p-フェニレン、ポリキノンなどのポリマーが挙げられる。これらのうち、リチウム含有金属酸化物を用いることが好ましい。
 また、本発明の電気化学素子用電極100を、上述したリチウムイオン二次電池用の正極の対極としての負極として用いる場合には、負極活物質としては、易黒鉛化性炭素、難黒鉛化性炭素、活性炭、熱分解炭素などの低結晶性炭素(非晶質炭素)、グラファイト(天然黒鉛、人造黒鉛)、カーボンナノウォール、カーボンナノチューブ、あるいはこれら物理的性質の異なる炭素の複合化炭素材料、錫やケイ素等の合金系材料、ケイ素酸化物、錫酸化物、バナジウム酸化物、チタン酸リチウム等の酸化物、ポリアセン等が挙げられる。なお、上記に例示した電極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。
 リチウムイオン二次電池用の正極活物質及び負極活物質の形状は、粒状に整粒されたものが好ましく、粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。また、リチウムイオン二次電池用の正極活物質及び負極活物質の体積平均粒子径は、正極、負極ともに通常0.1~100μm、好ましくは0.5~50μm、より好ましくは0.8~20μmである。さらに、リチウムイオン二次電池用の正極活物質及び負極活物質のタップ密度は、特に制限されないが、正極では2g/cm以上、負極では0.6g/cm以上のものが好適に用いられる。
 あるいは、本発明の電気化学素子用電極100を、リチウムイオンキャパシタの正極として用いる場合、正極用活物質としては、アニオン及び/又はカチオンを可逆的にドープ・脱ドープ可能な活性炭、ポリアセン系有機半導体(PAS)、カーボンナノチューブ、カーボンウィスカー、グラファイト等が挙げられる。これらのなかでも、活性炭、カーボンナノチューブが好ましい。
 また、本発明の電気化学素子用電極100を、上述したリチウムイオンキャパシタの正極の対極としての負極として用いる場合には、負極活物質としては、リチウムイオン二次電池用の負極活物質として例示した材料をいずれも使用することができる。
 リチウムイオンキャパシタ用の正極活物質及び負極活物質の体積平均粒子径は、通常0.1~100μm、好ましくは0.5~50μm、更に好ましくは0.8~20μmである。また、リチウムイオンキャパシタ用の正極活物質として活性炭を用いる場合、活性炭の比表面積は、30m/g以上、好ましくは500~3,000m/g、より好ましくは1,500~2,600m/gである。比表面積が約2,000m/gまでは比表面積が大きくなるほど活性炭の単位重量あたりの静電容量は増加する傾向にあるが、それ以降は静電容量は然程増加せず、かえって電極合材層の密度が低下し、静電容量密度が低下する傾向にある。また、活性炭が有する細孔のサイズは電解質イオンのサイズに適合していることがリチウムイオンキャパシタとしての特徴である急速充放電特性の面で好ましい。従って、電極活物質を適宜選択することで、所望の容量密度、入出力特性を有する電極合材層を得ることができる。
 また、本発明の電気化学素子用電極100を、電気二重層キャパシタ用の正極又は負極として用いる場合には、正極活物質及び負極活物質としては、上述したリチウムイオンキャパシタ用の正極活物質として例示された材料をいずれも使用することができるが、なかでも、活性炭が好ましい。
(バインダ)
 本発明で用いるバインダとしては、上述した電極活物質を相互に結着させることができる化合物であれば特に制限はないが、本発明においては、溶媒に分散する性質を有する分散型のバインダが好ましい。分散型のバインダとしては、溶媒に分散する重合体を用いることができ、そのような重合体としては、たとえば、シリコン系重合体、フッ素含有重合体、共役ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、これらのなかでもフッ素系含有重合体、共役ジエン系重合体及びアクリレート系重合体が好ましく、共役ジエン系重合体及びアクリレート系重合体がより好ましい。
 共役ジエン系重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、又はそれらの水素添加物である。前記単量体混合物における共役ジエンの割合は、通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。共役ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。
 アクリレート系重合体は、一般式(1):CH=CR-COOR(式中、Rは水素原子又はメチル基を、Rはアルキル基又はシクロアルキル基などを表す。Rはさらにエーテル基、水酸基、カルボン酸基、フッ素基、リン酸基、エポキシ基、アミノ基を有していてもよい。)で表される化合物由来の単量体単位を含む重合体、具体的には、一般式(1)で表される化合物の単独重合体、又は前記一般式(1)で表される化合物を含む単量体混合物を重合して得られる共重合体である。一般式(1)で表される化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸イソボニル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、及び(メタ)アクリル酸トリデシル等の(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシジエチレングリコール、(メタ)アクリル酸メトキシジプロピレングリコール、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸テトラヒドロフルフリル等のエーテル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸-2-ヒドロキシ-3-フェノキシプロピル、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタル酸等の水酸基含有(メタ)アクリル酸エステル;2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルフタル酸等のカルボン酸含有(メタ)アクリル酸エステル;(メタ)アクリル酸パーフロロオクチルエチル等のフッ素基含有(メタ)アクリル酸エステル;(メタ)アクリル酸リン酸エチル等のリン酸基含有(メタ)アクリル酸エステル;(メタ)アクリル酸グリシジル等のエポキシ基含有(メタ)アクリル酸エステル;(メタ)アクリル酸ジメチルアミノエチル等のアミノ基含有(メタ)アクリル酸エステル;等が挙げられる。
 これら(メタ)アクリル酸エステルは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのなかでも、(メタ)アクリル酸アルキルエステルが好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、及び(メタ)アクリル酸n―ブチルやアルキル基の炭素数が6~12である(メタ)アクリル酸アルキルエステルがより好ましい。これらを選択することにより、電解液に対する膨潤性を低くすることが可能となり、サイクル特性を向上させることができる。
 さらに、アクリレート系重合体は、たとえば、2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類、芳香族ビニル系単量体、アミド系単量体、オレフィン類、ジエン系単量体、ビニルケトン類、複素環含有ビニル化合物などの、共重合可能な単量体を共重合することもできる。また、α,β-不飽和ニトリル化合物や酸成分を有するビニル化合物を共重合することもできる。
 アクリレート系重合体中における(メタ)アクリル酸エステル単位の含有割合は、好ましくは50~95重量%であり、より好ましくは60~90重量%である。(メタ)アクリル酸エステル単位の含有割合を上記範囲とすることにより、本発明の電気化学素子用電極の柔軟性を向上させることができ、割れに対する耐性を高いものとすることができる。
 また、アクリレート系重合体としては、上述した(メタ)アクリル酸エステルと、これと共重合可能な単量体との共重合体であってもよく、このような共重合可能な単量体としては、たとえば、α,β-不飽和ニトリル化合物、酸成分を有するビニル化合物などが挙げられる。
 α,β-不飽和ニトリル化合物としては、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのなかでも、アクリロニトリル、メタクリロニトリルが好ましく、アクリロニトリルがより好ましい。
 アクリレート系重合体中におけるα,β-不飽和ニトリル化合物単位の含有割合は、通常0.1~40重量%、好ましくは0.5~30重量%、より好ましくは1~20重量部の範囲である。α,β-不飽和ニトリル化合物単位の含有割合を上記範囲とすることにより、結着材としての結着力をより高めることができる。
 また、酸成分を有するビニル化合物としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのなかでも、アクリル酸、メタクリル酸、イタコン酸が好ましく、メタクリル酸、イタコン酸がより好ましく、特に、メタクリル酸とイタコン酸とを併用して用いることが好ましい。
 アクリレート系重合体中における酸成分を有するビニルモノマー単位の含有割合は、好ましくは1.0~10重量%であり、より好ましくは1.5~5.0重量%である。酸成分を有するビニルモノマー単位の含有割合を上記範囲とすることにより、スラリーとした際における安定性を向上させることができる。
 さらに、アクリレート系重合体としては、上述した各単量体と共重合可能な他の単量体を共重合したものであってもよく、このような他の単量体としては、たとえば、2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類、芳香族ビニル系単量体、アミド系単量体、オレフィン類、ジエン系単量体、ビニルケトン類、複素環含有ビニル化合物などが挙げられる。
 本発明で用いる分散型のバインダの形状は、特に制限はないが、粒子状であることが好ましい。粒子状であることにより、結着性が良く、また、作製した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができる。粒子状の結着材としては、例えば、ラテックスのごとき結着材の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粒子状のものが挙げられる。
 本発明で用いる分散型のバインダの体積平均粒子径は、好ましくは0.001~100μm、より好ましくは10~1000nm、さらに好ましくは50~500nmである。本発明で用いる分散型のバインダ粒子の平均粒子径を上記範囲とすることにより、スラリーとした際における安定性を良好なものとしながら、本発明の電気化学素子用電極としての強度及び柔軟性が良好となる。
 本発明の電気化学素子用電極中における、バインダの含有量は、電極活物質100重量部に対して、乾燥重量基準で通常は0.1~50重量部、好ましくは0.5~20重量部、より好ましくは1~15重量部である。バインダの含有量がこの範囲にあると、電極活物質層と集電体との密着性が充分に確保でき、かつ、内部抵抗を低くすることができる。
(電極活物質層200の微細構造)
 次いで、本発明の電気化学素子用電極100を構成する電極活物質層200の微細構造について、説明する。図2は、本発明の電気化学素子用電極100を構成する電極活物質層200の微細構造を示す模式図である。なお、図2は、電極活物質層200の断面の微細構造を示している。
 図2に示すように、本発明に係る電極活物質層200は、電極活物質210及びバインダを含んでなり、バインダの一部は、複数の電極活物質210の表面の少なくとも一部を被覆した状態で存在し、バインダ被覆部220を形成している。また、図2に示すように、互いに近接する複数の電極活物質210を被覆するバインダ被覆部220同士は、同じくバインダから構成されるバインダ連結部230により、互いに連結されてなり、これにより、互いに近接する複数の電極活物質210同士が、バインダ被覆部220及びバインダ連結部230により互いに結着されている。すなわち、バインダ連結部230は、互いに近接する複数の電極活物質210により形成される空隙部240内において、互いに近接する複数の電極活物質210を被複するバインダ被覆部220同士を連結するような形で存在している。
 本発明においては、電極活物質層200は、このように、互いに近接する複数の電極活物質210同士が、バインダ被覆部220及びバインダ連結部230により互いに結着されるような構成となっているため、図2に示すように、互いに近接する複数の電極活物質210により形成される空隙部240が確保されている。そのため、このような電極活物質層200を有する本発明の電気化学素子用電極100を用いて電気化学素子を得た場合には、この空隙部240内に電解液が含浸し、これにより、電極活物質210と電解液との界面を適切に形成することができ、集電体300に対する密着性を高く保ちながら、電解液に対する濡れ性に優れたものとすることが可能となる。そして、結果として、電気化学素子とした場合における、内部抵抗を低減することができるとともに、サイクル特性の向上を可能とするものである。
 特に、本発明の電気化学素子用電極100を構成する電極活物質層200は、互いに近接する複数の電極活物質210により形成される空隙部240が、電極活物質層200を構成する各成分、すなわち、電極活物質210、バインダ被覆部220及びバインダ連結部230により完全に囲まれたものではなく、電極活物質層200内部において連続したものである。そのため、空隙部240内に含浸した電解液及び電解液中に含有されるイオンは、電極活物質層200内を容易に拡散することができ、そのため、電極活物質層200内におけるイオン伝導を高めることができる。
 なお、上述した特許文献1など、従来の電気化学素子用電極においては、たとえば、その微細構造は、図3、図4に示すような構造となっていた。すなわち、図3に示すように、従来の電気化学素子用電極においては、その電極活物質層において、互いに近接する複数の電極活物質210により形成される空隙が、バインダ220aにより完全に塞がれたような構造となっていた。あるいは、図4に示すように、互いに近接する複数の電極活物質210により形成される空隙は、バインダ220aにより塞がれている一方で、その内部に空隙部240aを有するような構造となっていた。
 そして、図3、図4に示すような微細構造においては、電極活物質210まで電解液が含浸され難く、そのため、電極活物質210と電解液との界面が適切に形成されず、結果として、電気化学素子とした場合における、内部抵抗が高くなってしまうという不具合がある。なお、図4に示すような微細構造においては、バインダ220a内に空隙部240aが形成されているものの、この空隙部240aは、バインダ220aにより完全に覆われており、周囲から孤立したものである。そのため、この空隙部240a内に含浸した電解液及び電解液中に含有されるイオンは、電気化学素子用電極内に拡散し難く、そのため、電気化学素子用電極内のイオン伝導性の向上に実質的に寄与しないものである。
 これ対し、本発明においては、電極活物質層200の微細構造を、図2に示すような構造とすることにより、上記従来技術における不具合を有効に解決するものである。
 本発明の電気化学素子用電極100を構成する電極活物質層200において、バインダ連結部230の長さは、好ましくは0.01~5μmであり、さらに好ましくは0.02~2μmである。バインダ連結部230の長さを上記範囲とすることにより、電極活物質層200内におけるイオン伝導性を十分に高く保ちながら、電極活物質210同士の結着力を十分に高いものとすることができる。
 バインダ連結部230の形状は特に限定されず、空隙部240を塞ぐことがないような形状であればよく、特に限定されないが、糸状及び/又は板状の形状であることが好ましく、特に、バインダ連結部230は、電極活物質層200の形成過程において、互いに近接する電極活物質210を被覆するバインダ被覆部220同士を、せん断力を加えながら圧縮することにより形成された糸状及び/又は板状のものであることが好ましい。
 なお、バインダ被覆部220は、電極活物質210の表面のうち少なくとも一部をバインダにより被覆してなるものであればよく、たとえば、電極活物質210の表面のうち一部については、バインダ被覆部220により被覆されていないものであってもよい。また、互いに近接する各電極活物質210を被覆する各バインダ被覆部220同士は、図2に示すように、一体化されておらず(すなわち、図3、図4に示すような状態となっておらず)、互いに独立して形成されているものであればよい。
 しかしその一方で、たとえば、電極活物質層200内部において、互いに近接する電極活物質210同士が、電解液を含浸するための空隙部240が形成し難い程、極めて近接しているような場合には、互いに近接する各電極活物質210を被覆する各バインダ被覆部220同士は、部分的に、直接接触していてもよい。あるいは、このような場合において、互いに近接する各電極活物質210同士は、バインダ被覆部220が形成されていない部分同士において、バインダ被覆部220を介すことなく直接接触しているような構成であってもよい。
 次いで、本発明の電気化学素子用電極100の製造方法について説明する。本発明の電気化学素子用電極100は、たとえば、まず、電極活物質層200を形成するための電極活物質及びバインダからなる電極用複合粒子を得て、得られた電極用複合粒子を、集電体300上に成形し、これにより得られた成形体を、せん断力を加えながら圧縮することにより製造することができる。
 以下においては、まず、電極用複合粒子について説明する。
(電極用複合粒子)
 電極用複合粒子は、原料となる電極活物質、及びバインダ、ならびに必要に応じて添加される任意成分を用いて造粒することにより得られ、少なくとも電極活物質、及びバインダを含んでなるが、これらのそれぞれが個別に独立した粒子として存在するのではなく、構成成分である電極活物質、バインダを含む2成分以上によって一粒子を形成するものである。具体的には、これら2成分以上の個々の粒子の複数個が結合して二次粒子を形成しており、複数個(好ましくは数個~数十個)の電極活物質が、バインダによって結着されて粒子を形成しているものが好ましい。
 また、電極用複合粒子の形状は、流動性の観点から実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をL、長軸径をL、L=(L+L)/2とし、(1-(L-L)/L)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径L及び長軸径Lは、走査型電子顕微鏡写真像より測定される値である。
 さらに、電極用複合粒子の体積平均粒子径は、通常0.1~1000μm、好ましくは1~200μm、より好ましくは30~150μmの範囲である。複合粒子の体積平均粒子径をこの範囲にすることにより、所望の厚みの電極合材層を容易に得ることができるため好ましい。複合粒子の平均粒子径は、レーザー回折式粒度分布測定装置(たとえば、SALD-3100;島津製作所製)にて測定し、算出される体積平均粒子径である。
 また、電極用複合粒子としての構造は特に限定されないが、バインダが複合粒子の表面に偏在することなく、複合粒子内に均一に分散する構造が好ましい。
 なお、電極用複合粒子に含有させることのできる任意成分としては、特に限定されないが、たとえば、導電材や分散剤などが挙げられる。
 導電材としては、導電性を有する粒子状の材料であればよく、特に限定されないが、たとえば、ファーネスブラック、アセチレンブラック、及びケッチェンブラック等の導電性カーボンブラック;天然黒鉛、人造黒鉛等の黒鉛;ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、気相法炭素繊維等の炭素繊維;が挙げられる。これらの中でも、アセチレンブラック及びケッチェンブラックが好ましい。導電材の平均粒子径は、特に限定されないが、電極活物質の平均粒子径よりも小さいものが好ましく、通常、0.001~10μm、より好ましくは0.05~5μm、さらに好ましくは0.01~1μmの範囲である。導電材の平均粒子径が上記範囲にあると、より少ない使用量で十分な導電性を発現させることができる。導電材を添加する場合における、導電材の使用量は、本発明の効果を損ねない範囲であれば格別な限定はないが、電極活物質100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~15重量部、さらに好ましくは1~10重量部である。導電材の含有割合を上記範囲とすることにより、得られる電気化学素子の容量を高く保ちながら、内部抵抗を十分に低減することが可能となる。
 分散剤は、電極用複合粒子を構成する各成分を、溶媒に分散又は溶解させてスラリー化する際に、各成分を溶媒中に均一に分散させる作用を有する成分である。分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロース及びヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩又はアルカリ金属塩、アルギン酸プロピレングリコールエステルなどのアルギン酸エステル、ならびにアルギン酸ナトリウムなどのアルギン酸塩、ポリアクリル酸、及びポリアクリル酸(又はメタクリル酸)ナトリウムなどのポリアクリル酸(又はメタクリル酸)塩、ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。また、カルボキシル基、スルホン酸基、フッ素含有基、水酸基及びリン酸基などの基を、1種以上、好ましくは2種以上含む水溶性のポリマー(特定基含有水溶性ポリマー)も分散剤として用いることができる。
 これらの分散剤は、それぞれ単独で又は2種以上を組み合わせて使用できる。中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロース又はそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。また、前記の特定基含有水溶性ポリマーも好ましく、当該特定基含有水溶性ポリマーとしては、前記の特定基を有し、アクリル酸エステル単量体単位またはメタクリル酸エステル単量体単位を含むアクリル系のポリマーが特に好ましい。
 分散剤を添加する場合における、分散剤の含有割合は、本発明の効果を損ねない範囲であれば格別な限定はないが、電極活物質100重量部に対して、通常は0.1~10重量部、好ましくは0.5~5重量部、より好ましくは0.8~2重量部の範囲である。
 次いで、このような電極用複合粒子の具体的な製造方法について説明する。
 本発明で用いる電極用複合粒子の製造方法としては、特に限定されないが、次に述べる二つの製造方法によって電極用複合粒子を容易に得ることができる。
 まず、第一の製造方法は、流動層造粒法である。流動層造粒法は、バインダ、及び必要に応じて添加される導電材、分散剤等の任意成分を含有するスラリーを得る工程、加熱された気流中に電極活物質を流動させ、そこに得られたスラリーを噴霧し、電極活物質同士を結着させると共に乾燥する工程を有するものである。
 以下、流動層造粒法について説明する。
 まず、バインダ、及び必要に応じて添加される導電材、分散剤等の任意成分を含有するスラリーを得る。なお、この場合において、バインダが分散媒としての水に分散されたものである場合には、水に分散させた状態で添加することができる。また、スラリーを得るために用いる溶媒として、最も好適には水が用いられるが、有機溶媒を用いることもできる。有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコールなどのアルキルアルコール類;アセトン、メチルエチルケトンなどのアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン等のアミド類などが挙げられるが、アルキルアルコール類が好ましい。水よりも沸点の低い有機溶媒を併用すると、流動造粒時に、乾燥速度を速くすることができる。また、水よりも沸点の低い有機溶媒を併用すると、バインダの分散性又は溶解型樹脂の溶解性が変わると共に、スラリーの粘度や流動性を溶媒の量又は種類によって調製できるので、生産効率を向上させることができる。
 スラリーを調製する際に使用する溶媒の量は、スラリーの固形分濃度が、通常は5~70重量%、好ましくは10~60重量%、より好ましくは15~50重量%の範囲となるような量である。溶媒の量がこの範囲にあるときに、バインダが均一に分散するため好適である。
 また、バインダ、及び必要に応じて添加される導電材、分散剤等の任意成分を溶媒に分散又は溶解する方法又は手順は特に限定されず、例えば、溶媒にバインダ、及び必要に応じて添加される導電材、分散剤等の任意成分を添加し混合する方法、溶媒に分散剤を溶解した後、溶媒に分散させたバインダ(例えば、ラテックス)を添加して混合し、最後に導電材やその他の添加剤を添加して混合する方法、溶媒に溶解させた分散剤に導電材を添加して混合し、それに溶媒に分散させたバインダを添加して混合する方法などが挙げられる。混合装置としては、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどの混合機器が挙げられる。混合は、通常、室温~80℃の範囲で、10分~数時間行う。
 次いで、電極活物質を流動化させ、そこに上記にて得られたスラリーを噴霧して、流動造粒する。流動造粒としては、流動層によるもの、変形流動層によるもの、噴流層によるものなどが挙げられる。流動層によるものは、熱風で電極活物質を流動化させ、これにスプレー等から、上記にて得られたスラリーを噴霧して凝集造粒を行う方法である。変形流動層によるものは、上述した流動層によるものと同様であるが、層内の粉体に循環流を与え、かつ分級効果を利用して比較的大きく成長した造粒物を排出させる方法である。また、噴流層によるものは、噴流層の特徴を利用して粗い粒子にスプレー等からのスラリーを付着させ、同時に乾燥させながら造粒する方法である。本発明における複合粒子の製造方法としては、この3つ方式のうち流動層又は変形流動層によるものが好ましい。
 噴霧されるスラリーの温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。流動化に用いる熱風の温度は、通常70~300℃、好ましくは80~200℃である。
 流動層造粒法によれば、以上の製造方法によって、電極活物質、及びバインダ、ならびに必要に応じて添加される導電材、分散剤等の任意成分を含む電極用複合粒子を得ることができる。
 また、電極用複合粒子の第二の製造方法は、噴霧乾燥造粒法である。以下に説明する噴霧乾燥造粒法によれば、本発明で用いる電極用複合粒子を比較的容易に得ることができるため、好ましい。以下、噴霧乾燥造粒法について説明する。
 まず、電極活物質、及びバインダを含有する複合粒子用スラリーを調製する。複合粒子用スラリーは、電極活物質、及びバインダ、ならびに必要に応じて添加される導電材、分散剤等の任意成分を、溶媒に分散又は溶解させることにより調製することができる。なお、この場合において、バインダが分散媒としての水に分散されたものである場合には、水に分散させた状態で添加することができる。複合粒子用スラリーを得るために用いる溶媒としては、通常、水が用いられるが、水と有機溶媒との混合溶媒を用いてもよい。この場合に用いることができる有機溶媒としては、上述した流動層造粒法と同様のものを用いることができる。
 また、複合粒子用スラリーの粘度は、室温において、好ましくは10~3,000mPa・s、より好ましくは30~1,500mPa・s、さらに好ましくは50~1,000mPa・sの範囲である。複合粒子用スラリーの粘度がこの範囲にあると、噴霧乾燥造粒工程の生産性を上げることができる。
  また、本発明においては、複合粒子用スラリーを調製する際に、必要に応じて、界面活性剤を添加してもよい。界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、ノニオニックアニオン界面活性剤等の両性界面活性剤が挙げられるが、アニオン性又はノニオン性界面活性剤で熱分解しやすいものが好ましい。界面活性剤の配合量は、電極活物質100重量部に対して、好ましくは50重量部以下であり、より好ましくは0.1~10重量部、さらに好ましくは0.5~5重量部である。
 電極活物質、及びバインダ、ならびに必要に応じて添加される導電材、分散剤等の任意成分を溶媒に分散又は溶解する方法又は順番は、特に限定されない。また、混合装置としては、上述した流動層造粒法と同様のものを用いることができ、混合は、通常、室温~80℃の範囲で、10分~数時間行う。
 次いで、得られた複合粒子用スラリーを噴霧乾燥して造粒する。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥する方法である。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーとしては、回転円盤方式と加圧方式との二種類の装置が挙げられ、回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。回転円盤方式において、円盤の回転速度は円盤の大きさに依存するが、通常は5,000~30,000rpm、好ましくは15,000~30,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられる。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。複合粒子用スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。また、ベーン型アトマイザーは、噴霧盤の内側にスリットが切ってあり、複合粒子用スラリーがその中を通過するように形成されている。一方、加圧方式は、複合粒子用スラリーを加圧してノズルから霧状にして乾燥する方式であり、加圧ノズル方式や、加圧二流体ノズル方式などが挙げられる。
 噴霧される複合粒子用スラリーの温度は、通常は室温であるが、加温して室温より高い温度としてもよい。また、噴霧乾燥時の熱風温度は、通常80~250℃、好ましくは100~200℃である。噴霧乾燥法において、熱風の吹き込み方法は特に制限されず、たとえば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
 噴霧乾燥造粒法によれば、以上の製造方法によって、電極活物質、及びバインダ、ならびに必要に応じて添加される導電材、分散剤等の任意成分を含む電極用複合粒子を得ることができる。
(電気化学素子用電極100の製造方法)
 次いで、上述した電極用複合粒子を用いて、電気化学素子用電極100を製造する方法について、説明する。
(第1の例に係る電気化学素子用電極100の製造方法)
 図5は、第1の例に係る、本発明の電気化学素子用電極100を製造するための電極成形装置を示す概略図である。図5に示すように、電極成形装置2は、水平かつ平行に配列された一対のロール6A,6Bからなるプレ成形ロール6、プレ成形ロール6の下方に水平かつ平行に配列された一対のロール8A,8Bからなる成形ロール8を備え、電極用複合粒子(図5中、符号「12」で示す。)が、プレ成形ロール6と仕切板10によりプレ成形ロール6の上部に形成された空間に貯槽されるようになっている。
 そして、電極成形装置2においては、まず、プレ成形ロール6を構成する一対のロール6A,6Bが、それぞれ図5に示す矢印方向へ回転することにより電極用複合粒子12を咬み込み、電極用複合粒子12を集電体(図5中、符号「300」で示す。)の両面又は片面に予備的に圧縮する。そして、これにより一対のロール6A,6B間を通過した集電体300の両面もしくは片面に、電極用複合粒子12が予備圧縮され、電極用複合粒子12からなるシート状のプレ成形体14が成形され、これにより、シート状のプレ成形体14が集電体300の両面又は片面に形成されたプレ電極積層体20が形成される。
 なお、本発明に用いられる集電体300としては、電極活物質層200から電流を取り出すために使用するものであり、長尺のシート状のものである。
  集電体を構成する材料の種類としては、例えば、金属、炭素、導電性高分子等が挙げられ、中でも金属が好ましい。より具体的には、正極用集電体としては、アルミニウム、ステンレスなど、負極用集電体としては、ステンレス、銅、ニッケルなどが挙げられる。また、集電体は貫通孔を有しない構造であってもよいが、本発明の方法は、特に貫通孔を有する集電体に適している。貫通孔を有する集電体としては、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、エッチングにより貫通孔を付与したエッチング箔、エンボスロールを用いて突起付与および貫通孔を付与された突起付き集電体などが挙げられる。
  貫通孔を有する集電体の開孔部の形状は特に限定されないが、開口率が10~90%であると好ましく、20~60%であるとより好ましく、40~60%であると特に好ましい。開口率は、孔開き集電体の平面観察により求められる。具体的には、孔開き集電体を平面観察し、単位面積当たりの貫通孔の面積を算出することで、開口率を決定する。
  長尺のシート状集電体の表面には、導電性接着剤層を形成させてもよい。
  導電性接着剤層は、導電性物質を必須成分として含み、必要に応じ成形のためのバインダを含む。導電性接着剤層に、バインダを含むことにより、集電体300と電極活物質層200との接着性を高め、電気化学素子の内部抵抗を低減し、出力密度を高めることができる。
  導電性接着剤層に用いる導電性物質としては、接着剤層に導電性能を付与することができるものであれば特に制限されないが、導電性フィラー、金属酸化物フィラーが好ましく、導電性フィラーがより好ましい。金属酸化物フィラーとしては、シリカ、酸化鉄、酸化チタンが挙げられるが、中でもシリカが好ましい。導電性フィラーは、導電性を有するものであれば特に限定されないが、中でも、導電性カーボンブラック、黒鉛等が特に好ましい。導電性フィラーの体積平均粒子径は、通常0.001~10μm、好ましくは0.05~5μm、より好ましくは0.01~1μmの範囲である。これらの導電性フィラーは、それぞれ単独または2種以上を組み合わせて用いることができる。
  導電性接着剤層に用いるバインダは、電極活物質層と集電体を相互に結着させることができる化合物であれば特に制限はない。中でも、溶媒に分散する性質のある分散型バインダが好ましい。分散型バインダとして、例えば、フッ素系重合体、ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン系重合体等の高分子化合物が挙げられる。中でも、フッ素系重合体、ジエン系重合体又はアクリレート系重合体が好ましく、ジエン系重合体又はアクリレート系重合体が、耐電圧を高くでき、電気化学素子のエネルギー密度を高くすることができる点でより好ましい。
  本発明において、導電性接着剤層中の結着材の含有量は、導電性物質100質量部に対して、好ましくは0.5~20質量部、より好ましくは1~15質量部、特に好ましくは2~10質量部である。
  導電性接着剤層は、導電性物質と、好適に用いられる結着材とを含み、またこれらを均一に分散するための分散剤を含んでいても良い。分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸ナトリウムなどのポリ(メタ)アクリル酸塩;ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。
  これらの分散剤の使用量は、本発明の効果を損なわない範囲で用いることができ、格別な限定はないが、導電性物質100質量部に対して、通常は0.1~15質量部、好ましくは0.5~10質量部、より好ましくは0.8~5質量部の範囲である。
  導電性接着剤層は、導電性物質、好適に用いられるバインダ、さらに必要に応じて加えられる分散剤とを、水または有機溶媒中で混練することにより得られる導電性接着剤組成物を、塗布し、乾燥して形成することができる。
  導電性接着剤層組成物の製造方法は、特に限定されないが、具体的にはボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、およびホバートミキサーなどを用いることができる。
  導電性接着剤層の形成方法は、特に制限されない。例えば、上記導電性接着剤層組成物をドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって、集電体上に形成する。
  乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。中でも、遠赤外線の照射による乾燥法が好ましい。乾燥温度と乾燥時間は、塗布した導電性接着剤組成物中の溶媒を完全に除去できる温度と時間が好ましく、乾燥温度は50~300℃、好ましくは80~250℃である。乾燥時間は、通常2時間以下、好ましくは5秒~30分である。
  導電性接着剤層の厚みは、通常1~25μm、好ましくは2~20μm、より好ましくは2~10μmである。導電性接着剤層の厚みが、上記範囲であることにより、アンカー効果が良好に発揮され、電子移動抵抗を低減することができる。なお、導電性接着剤層は、集電体の片面のみに形成されていても、両面に形成されていてもよい。
  本発明に用いられる集電体は長尺のシート状である。集電体の厚さは特に限定されないが5~50μmであると好ましく、10~40μmであるとより好ましい。また、集電体の幅も特に限定されないが、100~1000mmであると好ましく、200~500mmであるとより好ましい。
 ここで、プレ成形ロール6により、シート状のプレ成形体14を形成する際には、得られるシート状のプレ成形体14の空隙率が、好ましくは40~80%、より好ましくは50~70%となるような圧力にて圧縮することが好ましい。あるいは、シート状のプレ成形体14のシート密度が、電極用複合粒子12の嵩密度に対して、好ましくは130~300%の範囲、より好ましくは150~250%、さらに好ましくは180~230%の範囲となるような圧力にて圧縮することが好ましい。具体的には、プレ成形ロール6により圧縮する際の線圧を、好ましくは1~50kN/m、より好ましくは5~20kN/mとする。
 そして、プレ成形ロール6を構成する一対のロール6A,6Bにより、電極用複合粒子12を圧縮することにより得られたプレ電極積層体20は、成形ロール8側に送られ、成形ロール8を構成する一対のロール8A,8Bが、図5に示す矢印方向へ回転することにより、プレ電極積層体20を構成するシート状のプレ成形体14がさらに圧縮される。そして、これにより一対のロール8A,8Bによって、プレ電極20を構成するシート状のプレ成形体14が圧縮され、集電体300の両面又は片面に、電極活物質層200が形成された電気化学素子用電極100が形成される。
 本発明においては、成形ロール8により、シート状のプレ成形体14をさらに圧縮し、電極活物質層200を形成する際には、シート状のプレ成形体14にせん断力を加えながら圧縮することが望ましい。せん断力を加えながら圧縮を行なうことにより、得られる電極活物質層200の微細構造を、図2に示すような、バインダ被覆部220及びバインダ連結部230を有するような構成とすることができる。具体的には、せん断力を加えながら圧縮を行なうことにより、シート状のプレ成形体14内において、互いに近接する電極活物質210を被覆するバインダ被覆部220同士にせん断力が加わり、これにより、バインダ被覆部220同士が互いに接触した際に、せん断力によって、バインダ被覆部220の一部がフィブリル化することで、糸状及び/又は板状のバインダ連結部230が形成されることとなる。
 なお、成形ロール8により、シート状のプレ成形体14をさらに圧縮し、電極活物質層200を形成する際には、シート状のプレ成形体14にせん断力がかかるような圧力で圧縮すればよく、その圧力は特に限定されないが、プレ成形ロール6による圧力よりも高い圧力とすることが好ましく、具体的には、成形ロール8により圧縮する際の線圧を、好ましくは、150~1000kN/m、より好ましくは250~800kN/m、さらに好ましくは300~500kN/mとする。また、シート状のプレ成形体14にせん断力がかかるように、成形ロール8を構成するロール8A,8Bを異なる速度で回転させてもよい。なお、このようにして得られる電極活物質層200の空隙率は、好ましくは10~40%、より好ましくは25~35%である。
 このようにして、集電体300上に電極活物質層200が形成された電気化学素子用電極100を得ることができる。
 なお、上述した電極成形装置2において、プレ成形ロール6、成形ロール8は電極用複合粒子12の種類、性質に応じて冷却、加温等の温度調節を行うことができる温度調節機構を備えていてもよく、温度調節機構としては、ロール6A,6B、ロール8A,8Bの内部に配置された熱媒を使用する方法、直接伝熱線等で加温する方法等が挙げられる。
 また、プレ成形ロール6により、電極用複合粒子12を圧縮する際において、プレ成形ロール6を構成する一対のロール6A,6Bのロール径が小さくなるほど、電極用複合粒子12の咬み込み量を小さくすることができ、シート状のプレ成形体14及び最終的に得られる電極活物質層200の厚みを小さくすることができる。一方、プレ成形ロール6を構成する一対のロール6A,6Bのロール径が小さすぎると電極用複合粒子12を圧縮する際にロールのゆがみ等が生じることにより、シート状のプレ成形体14の厚みにバラツキが生じるおそれがある。
 ここで、ロールニップ点(一対のロール6A,6B間の間隙が最も狭くなる点)近傍のロールの周速度と電極用複合粒子12の移動速度とが同じになる点をP点というが、坪量が決定されるP点から電極用複合粒子12の出口(プレ成形ロール6のロール6A及び6Bの下部)までの間が電極用複合粒子12で満たされていないと、シート状のプレ成形体14を成形する際に電極用複合粒子12の流動・凝集によって、まだら模様やスジが生じる場合がある。また、ロール6A,6Bの回転速度が一定である場合にはロール径が小さいほどP点は下がる。従って、ロール径を小さくすることによりP点と電極用複合粒子12の出口までの間の容量を小さくすることができ、また、シート状のプレ成形体14の成形の際に粉体の流動・凝集を抑えることができるため、最終的に得られる電極活物質層200を薄膜とすることができる。
 そのため、このような点を考慮し、プレ成形ロール6を構成する一対のロール6A,6Bのロール径は、好ましく10~500mm、より好ましくは10~250mm、さらに好ましくは10~150mmである。
 また、成形ロール8を構成する一対のロール8A,8Bのロール径は、シート状のプレ成形体14を圧縮する際における圧力が、プレ成形ロール6による圧力よりも大きくなるように、プレ成形ロール6を構成する一対のロール6A,6Bのロール径よりも大きなものとすればよいが、そのロール径は、好ましくは50~1000mm、より好ましくは100~500mmである。
 そして、このようにして得られる本発明の電気化学素子用電極100は、電極活物質層200が、図2に示すような微細構造を有するため、電極活物質層と集電体との密着性が高く、電解液に対する濡れ性に優れ、これにより、電池とした場合における、内部抵抗が低く、サイクル特性に優れたものであり、このような特性を活かし、リチウムイオン二次電池、電気二重層キャパシタやハイブリッドキャパシタなど各種電気化学素子用の電極として好適に用いることができる。
(第2の例に係る電気化学素子用電極100の製造方法)
 次いで、第2の例に係る電気化学素子用電極100の製造方法について説明する。図6は、第2の例に係る、本発明の電気化学素子用電極100を製造するための電極成形装置を示す概略図である。
 第2の例においては、まず、電極用複合粒子(図6中、符号「12」で示す。)を圧縮して長尺のシート状支持体(図6中、符号「30」で示す。)表面に付着させ、長尺のシート状支持体付圧粉層を形成する。
 シート状支持体付圧粉層の形成工程においては、ロール加圧、ベルト加圧などの方法を採用できる。このうち、ロール加圧が好ましい。図1では、ロール加圧の方法で圧縮して電極用複合粒子12を長尺のシート状支持体30表面に付着させて、圧粉層400を形成している。
  この例において用いられるロールは、図6に示すロール33Aとロール33Bのごとく、一対の逆方向に回転するものである。
  ロール33Aの周速は、通常0.1~100m/分、好ましくは1~50m/分である。ロール33Bの周速は、通常0.1~100m/分、好ましくは1~50m/分である。ロール33Aとロール33Bの間隔は、通常10~500μm、好ましくは30~300μmである。ロール33Aのロール表面温度は、通常0~200℃、好ましくは20~150℃である。ロール33Bのロール表面温度は、通常0~200℃、好ましくは20~150℃である。ロール33Aとロール33Bとの間にかける線圧は、通常0.01~10kN/cm、好ましくは0.02~5kN/cmである。
  ロール33A及びロール33B上には、電極用複合粒子12を供給するためのフィーダー32Aが備えられている。電極用複合粒子12を、該フィーダー32Aからロール33A,33B間に供給する。
  また、長尺のシート状支持体30を、巻回体31Aから供給し、ロール33Aを抱くようにしてロール33Aとロール33Bの間に供給する。
  ロール33Aが反時計回りに、ロール33Bが時計回りに回転することによって、ロール33Aとシート状支持体30との間に、電極用複合粒子12を咬み込み、電極用複合粒子12を圧縮する。これにより、支持体30に電極用複合粒子12が付着した長尺のシート状支持体付圧粉層が成形される。
  ここで、圧粉層(プレ成形層)400の密度を電極用複合粒子12の密度の100~10000%となるように圧縮することが好ましく、圧粉層400の密度を電極用複合粒子12の密度の200~1000%となるように圧縮することがさらに好ましい。電極用複合粒子12の密度とは、ゆるめかさ密度である。
  なお、本発明に用いられる長尺のシート状支持体30は、圧粉層400を支持するための長尺のシート状のものである。
  支持体30を構成する材料としては、プラスチックフィルム、紙などが挙げられる。また、上記フィルムを重ねた多層構造のフィルムを用いてもよい。これらの中でも、汎用性や取扱いの観点から、紙や熱可塑性樹脂フィルムが好ましく、熱可塑性樹脂フィルムがより好ましい。熱可塑性樹脂フィルムとしては、ポリテトラフルオロエチレン(PTFE)、PET(ポリエチレンテレフタレート)フィルム、ポリオレフィン系フィルム、PVA(ポリビニルアルコール)フィルム、PVB(ポリビニルブチラールフィルム)、又はPVC(ポリ塩化ビニル)フィルムが挙げられる。中でも、ポリテトラフルオロエチレン(PTFE)が好ましい。
  支持体30は、粗面化処理、離型処理などの表面処理がされていていることが好ましい。粗面化処理の方法としては、例えば、支持体表面をエンボス処理する方法;支持体表面をサンドブラスト処理する方法;支持体を構成する材料にマット材を練り込む方法;マット材を含む層を支持体表面にコーティングする方法などが挙げられる。中でも、支持体表面を容易に粗面化できるサンドブラスト処理方法が好ましい。
  離型処理の方法としては、たとえば、アルキド樹脂などの熱硬化性樹脂を支持体上に塗工し、これを硬化する方法;シリコーン樹脂を支持体上に塗工し、これを硬化する方法;フッ素樹脂を支持体上に塗工する方法などが挙げられる。
  支持体への表面処理は、片面のみに施してもよく、両面に施してもよい。
  支持体の粗面化された面の表面粗さRaは、好ましくは0.1~5μm、より好ましくは0.2~3μmの範囲にある。支持体の粗面化された面の表面粗さRaがこの範囲にあることにより、圧粉層と支持体との密着性、及び、支持体付圧粉層を用いて電極を製造する際における支持体の剥離性、の両立が可能となる。
  表面粗さRaは、JIS B  0601に準拠して、例えばナノスケールハイブリッド顕微鏡(VN-8010、キーエンス社製)を用いて、粗さ曲線を描き、下式に示す式より算出することができる。下式において、Lは測定長さ、xは平均線から測定曲線までの偏差である。
Figure JPOXMLDOC01-appb-M000001
  支持体30の厚さは特に限定されないが、10~200μmが好ましく、20~150μmがより好ましく、20~100μmが特に好ましい。支持体30の厚さが、上記範囲にあると、長尺のシート状支持体付圧粉層のハンドリング性が向上する。また、幅も特に限定されないが100~1000mmであると好ましく、100~500mmであるとより好ましい。
  支持体30の引っ張り強度は特に限定されないが、30~500MPaであると好ましく、30~300MPaであるとより好ましい。支持体30の引っ張り強度が、上記範囲であると、長尺のシート状支持体付圧粉層の破断を防ぐことができる。支持体30の引っ張り強度は、JIS  K 7127に準拠して測定する。
  長尺のシート状支持体30は、通常、巻回体31Aから引き出され、圧粉層400を集電体300上に転写させた後にロール36Aなどで巻き取られる。巻き取られた長尺のシート状支持体30は、繰り返し使用することも可能であり、電極の生産コストを安くできる。
  また、長尺のシート状支持体30は、シームレスベルトとすることもできる。
  長尺のシート状支持体30を繰り返し使用する場合や、シームレスベルトとする場合には、電極用複合粒子12を付着させる前にクリーニングすることが好ましい。クリーニングは、例えば、クリーナーロールやバキュームブロアを用いて行うことができる。
  次に、長尺のシート状支持体付圧粉層を、ロール33Bから離し、ロール33Aを抱くようにしてロールの反対側に送る。ロール33Aとロール33Bとの間で一旦圧縮された圧粉層400は、圧縮力が解放されることによってシート状支持体30上においてその厚さが復元する。圧粉層400の、圧縮点であるQ点およびその近傍における圧縮力印加時の厚さから、解放後の厚さへの復元率は、100%~5000%であると好ましく、150~1000%であるとより好ましい。ここで、圧粉層400の復元率とは、圧縮力を解放した後の圧粉層400の厚さを、圧縮点であるQ点およびその近傍における圧縮力印加時の圧粉層の厚さで割り100を掛けた値である。圧縮点であるQ点およびその近傍における圧粉層400の厚さは、支持体30の厚さとロール33A,33Bの間隔などから推算できる。
  復元後の圧粉層400の密度、即ち圧粉層形成工程後の圧粉層400の密度は、電極用複合粒子12の密度の130%~400%であると好ましく、150%~300%であるとより好ましい。
  ここで、長尺のシート状支持体付圧粉層は、巻回体とせずに、そのまま、次の工程に使用される。巻回体としないことにより、圧粉層400の密度を低くしたまま、次工程で圧粉層400を集電体300上に転写させることができる。
 なお、図6に示す例においては、上記とは別に、集電体300を挟んで反対側に、上記と同様にして、同様の条件にて、長尺のシート状支持体30の表面に圧粉層400を形成するための構成(すなわち、支持体30の巻回体31B、フィーダー32B、および一対のロール34A、34Bからなる構成)を備えている。
 そして、この第2の例においては、各支持体30上に形成した圧粉層400を、長尺のシート状集電体300上に転写させる。具体的には、図6に示すように、各シート状支持体付圧粉層を、ロール33A及びロール34Aの回転に沿って搬送しつつ、これらロール33Aとロール34Aとの間に長尺のシート状集電体300を導入し、加圧して、シート状集電体300の両面に圧粉層400を転写させ、圧粉層400と集電体300からなる積層体を得る。なお、シート状集電体300としては、上述した第1の例において例示したものを使用することができ、また、上述した第1の例と同様に、導電性接着剤層を形成したものを用いてもよい。
  ここで、ロール33Aの周速は、通常0.1~100m/分、好ましくは1~50m/分である。ロール34Aの周速は、通常0.1~100m/分、好ましくは1~50m/分である。ロール33Aとロール34Aの間隔は、通常60~700μm、好ましくは100~500μmである。ロール33Aのロール表面温度は、通常0~200℃、好ましくは20~150℃である。ロール34Aのロール表面温度は、通常0~200℃、好ましくは20~150℃である。ロール33Aとロール34Aとの間にかける線圧は、通常0.01~10kN/cm、好ましくは0.05~1kN/cmである。
  圧粉層400を長尺のシート状集電体300上に転写させる方法は、上記のように、圧粉層400とシート状集電体300を接触させて、ロールで加圧して圧着させる方法の他、赤外線ヒーターや温風などで加温する方法、あるいは、冷風などで冷却する方法を採用できる。例えば、図7に示すように、長尺のシート状支持体付圧粉層の圧粉層400を長尺のシート状集電体300にロール37で接触させ、その後に赤外線ヒーターや温風などで加温、あるいは、冷風などで冷却する。また、図7に示すように、長尺のシート状支持体付圧粉層が単独で存在する状態とし、金属が存在しない状態とすることで、異物検出、膜厚測定、表面欠陥検査を行うことが容易となる。
 次いで、第2の例においては、圧粉層400と集電体300からなる積層体をさらに加圧成形する。圧粉層400は、加圧され電極活物質層200となる。
  図6では、ロール35Aとロール35Bとの間に圧粉層400と集電体300とからなる積層体を導入し加圧することで、集電体300の両面に、電極活物質層200を形成している。また、シート状支持体30は、それぞれロール36A、ロール36Bによって巻き取られ、圧粉層400から離れる。
  ロール35Aの周速は、通常0.1~100m/分、好ましくは1~50m/分である。ロール35Bの周速は、通常0.1~100m/分、好ましくは1~50m/分である。ロール35Aとロール35Bの間隔は、通常60~700μm、好ましくは100~500μmである。ロール35Aのロール表面温度は、通常0~200℃、好ましくは20~150℃である。ロール35Bのロール表面温度は、通常0~200℃、好ましくは20~150℃である。ロール35Aとロール35Bとの間にかける線圧は、通常0.01~10kN/cm(1~1000kN/m)、好ましくは0.02~5kN/cm(2~500kN/m)である。ロール35A及びロール35Bのロール径は圧粉層400を圧縮する際に加える圧力に応じて決めることができるが、通常50~1000mm、好ましくは100~500mmである。また、第2の例においても、上述した第1の例と同様に、圧粉層400をさらに圧縮し、電極活物質層200を形成する際に、圧縮時に、圧粉層400にせん断力がかかるような圧力(好ましくは150kN/m以上、より好ましくは250kN/m以上、さらに好ましくは300kN/m以上)とすることが望ましく、これにより、電極活物質層200を上述した微細構造を有するものとすることができる。
  ロール35A及びロール35Bは、表面処理が施されていてもよい。例えば、ロール35A及びロール35Bの外周面に凹凸等の彫刻を設けることにより電気化学素子用電極の表面に模様が形成され、表面の粗さを変更することもできる。
  電極活物質層200の厚さは、通常10~1000μm、より好ましくは20~500μmである。
 このような第2の例(第1の製造方法)によれば、電気容量の高い電気化学素子用電極を小型の生産設備で連続的に生産することができる。
 特に、本発明者は、長尺のシート状支持体付圧粉層を巻回体とせずに、集電体と貼り合わせれば、小型の生産設備で電気容量の高い電気化学素子用電極を連続的に生産できることを見出し、この第2の例(第1の製造方法)は、このような知見に基づきなされたものである。
(第3の例に係る電気化学素子用電極100の製造方法)
 次いで、第3の例に係る電気化学素子用電極100の製造方法について説明する。図9は、第3の例に係る、本発明の電気化学素子用電極100を製造するための電極成形装置を示す概略図である。
 この例において用いられるロールは、図9に示すロール43Aとロール43Bのごとく、一対の逆方向に回転するものである。
  ロール43A及びロール43B上に電極用複合粒子12を供給するためのフィーダー42Aが備えられていて、該フィーダー42Aから複合粒子がロール43A,43B間に供給される。
  ロール43Aが反時計回りに、ロール43Bが時計回りに回転する。
  ロール43Aの周速は、通常0.1~100m/分、好ましくは1~50m/分である。ロール43Bの周速は、通常0.1~100m/分、好ましくは1~50m/分である。ロール43Aとロール43Bの間隔は、通常10~500μm、好ましくは30~300μmである。ロール43Aのロール表面温度は、通常0~200℃、好ましくは20~150℃である。ロール43Bのロール表面温度は、通常0~200℃、好ましくは20~150℃である。ロール43Aとロール43Bとの間にかける圧力は、通常0.01~10kN/cm、好ましくは0.02~5kN/cmである。
  ロール43Aが反時計回りに、ロール43Bが時計回りに回転することにより電極用複合粒子12を咬み込み、電極用複合粒子12を圧縮し、ロール43Aに付着させる。
  電極用複合粒子12を圧縮して一方のロール面に付着させる方法は特に限定されないが、ロール43A及びロール43Bの外周表面の性状が特に付着性に差をつける。例えば、マット処理、粗面化処理、メッキ処理、表面彫刻、離型処理、鏡面処理、艶消し処理などの表面処理を施すことで差がつく。例えば、ロール43Bを鏡面処理し、ロール43Aをマット処理することが好ましい。ロール43A及びロール43Bの表面処理により、電極用複合粒子12の咬み込み量を制御することもでき、後述するように、ロール45A,45B間を通した後に得られる電極活物質層200の厚さを変更することもできる。また、ロール43A,43Bにより圧縮することにより得られる圧粉層400との密着性の観点からロール43Aの表面を連続的にサンドブラストによる粗面化処理をしてもよい。
  また、ロール43Aとロール43Bとで付着性に差をつける方法として、前記方法以外に、ロール43Aとロール43Bとにおいて、電気伝導度、熱伝導率、放射率、熱吸収率などの異なる材質をそれぞれ用いることによっても差をつけることができる。
  ここで、図10は、ロール43A及びロール43Bの表面状態を示す概略図であり、ロール43A、ロール43Bの表面をフィーダー42A側から見た図である。そのため、図10においては、図面横方向がロール43A,43Bの幅方向に相当し、図面縦方向がロール43A,43Bの周方向に相当する。そして、本例においては、ロール43Aの表面処理は、図10に示すように幅方向の端部分を除いて表面処理を行うことが好ましい。また、この様な場合には、圧縮時において、表面処理を行っていない部分で圧縮される電極用複合粒子12を、ロール43Aまたはロール43Bから除去する装置を備えていてもよい。
  その他の電極用複合粒子12を一方のロール面に付着させる方法としては、例えば、ロール43A及びロール43Bの回転数に差をつける方法、ロール43A及びロール43Bの径に差をつける方法などが挙げられる。
  ここで、ロール43A及びロール43Bにおいて、圧粉層400の密度を電極用複合粒子12の密度の100~10000%となるように圧縮することが好ましく、200~1000%となるように圧縮することがさらに好ましい。電極用複合粒子12の密度とは、ゆるめかさ密度である。
  ロール43Aとロール43Bとの間で一旦圧縮された圧粉層400は、圧縮力が解放されることによってロール43A上においてその厚さが復元する。圧粉層400の、圧縮点であるR点およびその近傍における圧縮力印加時の厚さから、解放後の厚さへの復元率は、100%~5000%であると好ましく、150~1000%であるとより好ましい。ここで、圧粉層400の復元率とは、圧縮力を解放した後の圧粉層400の厚さを、圧縮点であるR点およびその近傍における圧縮力印加時の圧粉層の厚さで割り100を掛けた値である。圧縮点であるR点およびその近傍における圧粉層400の厚さは、ロール43A,43Bの間隔などから推算できる。
  復元後の圧粉層400の密度、即ち、ロールに付着している圧粉層400の密度は、電極用複合粒子12の密度の130%~400%であると好ましく、150%~300%であるとより好ましい。例えば、ゆるめかさ密度が0.45g/ccである電極用複合粒子12をロール43Aとロール43Bにより圧縮すると、圧粉層400の密度は0.75g/ccとなる。
  ロール43A及びロール43Bには、電極用複合粒子12を供給するためのフィーダー42Aの手前部分にクリーニング機構を設けてロール表面に付着した電極用複合粒子12を取り除いてもよい。また、ロール43A及びロール43Bの圧縮部の下流側には、圧粉層400の形成に寄与しなかった電極用複合粒子12を回収する機構を設けても良い。
  次いで、第3の例においては、ロール43Aに付着された圧粉層400を長尺のシート状集電体300に転写させる。転写は、圧粉層400とシート状集電体300を接触させて、ロールで加圧して圧着させる方法や、赤外線ヒーターや温風などで加温する方法、あるいは、冷風などで冷却する方法により行うことができる。なお、シート状集電体300としては、上述した第1の例において例示したものを使用することができ、また、上述した第1の例と同様に、導電性接着剤層を形成したものを用いてもよい。さらに、ロールで加圧して圧着させる方法を用いる場合には、シート状集電体300を挟んで、ロール43Aと反対側に、加圧用のバックアップロールを設けることが好ましい。
  次いで、第3の例においては、圧粉層400と集電体300からなる積層体をさらに加圧成形する。圧粉層400は、加圧され電極活物質層200となる。
  すなわち、図9に示すように、圧粉層400は、ロール45Aとロール45Bとの間で、加圧され、電極活物質層200となる。
  ロール45Aは反時計回りに、ロール45Bは時計回りに回転させる。ロール45Aの周速は、通常0.1~100m/分、好ましくは1~50m/分である。ロール45Bの周速は、通常0.1~100m/分、好ましくは1~50m/分である。ロール45Aとロール45Bの間隔は、通常60~700μm、好ましくは100~500μmである。ロール45Aのロール表面温度は、通常0~200℃、好ましくは20~150℃である。ロール45Bのロール表面温度は、通常0~200℃、好ましくは20~150℃である。ロール45A及びロール45Bのロール径は圧粉層400を圧縮する際に加える圧力に応じて決めることができるが、通常50~1000mm、好ましくは100~500mmである。ロール45Aとロール45Bとの間にかける圧力は、通常0.01~10kN/cm(1~1000kN/m)、好ましくは0.02~5kN/cm(2~500kN/m)である。ロール45Aとロール45Bとの間にかける圧力は、ロール43Aとロール43Bとの間にかける圧力より大きい。また、第3の例においても、上述した第1の例と同様に、圧粉層400をさらに圧縮し、電極活物質層200を形成する際に、圧縮時に、圧粉層400にせん断力がかかるような圧力(好ましくは150kN/m以上、より好ましくは250kN/m以上、さらに好ましくは300kN/m以上)とすることが望ましく、これにより、電極活物質層200を上述した微細構造を有するものとすることができる。
  ロール35A及びロール35Bは、表面処理が施されていてもよい。例えば、ロール35A及びロール35Bの外周面に凹凸等の彫刻を設けることにより電気化学素子用電極の表面に模様が形成され、表面の粗さを変更することもできる。
  電極活物質層200は圧粉層400よりも高い密度を有し、圧粉層400は電極用複合粒子12よりも高い密度を有する。
  電極活物質層200の厚さは、通常10~1000μm、より好ましくは20~500μmである。
  また、図11は、第3の例の別の態様を示す図であり、図11に示す態様においては、上述したロール43A上に圧粉層400を形成するための構成に加えて、集電体300を挟んで反対側に、上記と同様にして、同様の条件にて、ロール44A上に圧粉層400を形成するための構成(すなわち、フィーダー42B、および一対のロール44A,44Bからなる構成)を備えている。そして、この図11に示す態様においては、ロール43A上およびロール44A上に、それぞれ形成された各圧粉層400を、ロール43Aとロール44Aとの間に集電体300を通すことで、集電体300の両面に、各圧粉層400を加圧し、同時に転写させる。
 あるいは、図12は、第3の例のさらに別の態様を示す図であり、この図12に示す態様においては、図11に示す構成において、ロール45Bと、ロール44A上に圧粉層400を形成するための構成(すなわち、フィーダー42B、および一対のロール44A、44Bからなる構成)とを逆に配置している。そして、この図12に示す態様においては、ロール43Aと、ロール45Bとの間に集電体300を通すことで、ロール43A上に形成された圧粉層400を集電体300に転写させるとともに、加圧することで、電極活物質層200を集電体300の一方の面に形成する。次いで、ロール44Aと、ロール45Aとの間に、一方の面に電極活物質層200が形成された集電体300を通すことで、ロール44A上に形成された圧粉層400を集電体300の電極活物質層200が形成されていない面に転写させるとともに、加圧することで、電極活物質層200を集電体300の他方の面に形成する。
 このような第3の例(第2の製造方法)によれば、小型の生産設備で、低コストに、連続的に、電気容量の高い電気化学素子用電極を製造する方法を提供することができる。
 特に、本発明者は、複合粒子粉末を圧縮してロール面に付着させれば、支持体を必要とせず、連続的な生産ができ、生産設備の小型化ができる、電気容量の高い電気化学素子用電極が得られることを見出し、第3の例(第2の製造方法)は、このような知見に基づきなされたものである。
(第4の例に係る電気化学素子用電極100の製造方法)
 次いで、第4の例に係る電気化学素子用電極100の製造方法について説明する。
 第4の例においては、まず、電極用複合粒子を圧縮して、支持体表面に圧粉層を断続的に形成する。
 電極用複合粒子を圧縮して圧粉層を形成する方法としては、支持ロールと他のロールとの間で加圧する方法や、一対のロール間に支持ベルトや支持フィルムを導入し、ロールとその支持ベルトや支持フィルムとの間で加圧する方法が挙げられる。圧粉層を断続的に形成する方法としては、支持体表面に、その性状が他の部分と異なる部分を間欠的に設ける方法が挙げられる。圧粉層が形成される支持体表面部分は、支持体の流れ方向に対して直交方向に帯状に設けることができ、その幅は適宜設定することができる。例えば、一方のロール表面を圧粉層が付着しづらいものとし、他方のロール表面に圧粉層が付着する部分と付着しない部分を設ける。付着性は、支持体表面の粗度、粘着性、温度、材質など性状により差がつく。例えば、マット加工やサンドブラスト加工などの粗面化処理、メッキ処理、表面彫刻、離型処理、鏡面処理、艶消し処理などの表面処理を施すことで差をつける。また、電気伝導度、熱伝導率、放射率、熱吸収率の異なる材質を用いることによっても差をつけることができる。
  例えば、支持体表面に、粗面化処理された部分と、粗面化処理されていない部分とを、流れ方向で交互に設ければ、粗面化処理された部分に圧粉層が形成される。
  第4の例に用いられる支持体は、その表面で電極用複合粒子を圧縮して圧粉層を形成し、その圧粉層を長尺のシート状集電体に移行させるために使用するものである。
  支持体としては、支持ロール、無端の支持ベルト、長尺の支持シートなどが挙げられる。
  支持体を構成する材料としては、樹脂、紙、繊維、ゴム、金属などが挙げられる。
  支持ロールを構成する材料は、金属であることが好ましい。また、支持ベルトや長尺の支持シートを構成する材料は、樹脂であることが好ましい。樹脂としては、ポリテトラフルオロエチレン(PTFE)、PET(ポリエチレンテレフタレート)フィルム、ポリオレフィン系フィルム、PVA(ポリビニルアルコール)フィルム、PVB(ポリビニルブチラールフィルム)、又はPVC(ポリ塩化ビニル)フィルムが挙げられる。中でも、ポリテトラフルオロエチレン(PTFE)が好ましい。
  また、支持体はこれらの材料で構成される層を重ねた多層構造であってもよい。
  支持体がロール、無端ベルトの場合や、長尺のシートを繰り返し使用する場合には、複合粒子の粉末を付着させる前にクリーニングすることが好ましい。クリーニングは、例えば、クリーナーロールやバキュームブロアを用いて行うことができる。
 図13は、第4の例に係る、本発明の電気化学素子用電極100を製造するための電極成形装置を示す概略図である。
  図13では、一対の逆方向に回転するロール53A及び53B間に、電極用複合粒子12をフィーダー52Aから供給し、電極用複合粒子12を圧縮している。ロール53Bの表面は鏡面処理されている。ロール53Aの表面は、図14(a)に示すようにT1部分が粗面化処理され、T2部分が鏡面処理されている。ここで、図14(a)は、ロール53Aの表面を示す概略図であり、図14(b)は、ロール53Aを軸方向から見た側面図であり、図14(b)中においては、その表面が粗面化処理されている部分(T1部分)と、鏡面処理されている部分(T2部分)とを区別して表している。この図14(a)、図14(b)に示すように、ロール53Aには、周方向において、一部に鏡面処理されている部分(T2部分)が形成されており、それ以外の部分は、粗面化処理されている部分(T1部分)となっている。このようなロールの構成にすることで、ロール53A,53B間で形成された圧粉層200は、T1部分ではロール53Aに付着したままとなり、T2部分では、剥がれ落ちるかロール53B側に付着する。そして、これにより、図14(c)に示すように、ロール53AのT1部分に対応する部分であるT1’部分においては、圧粉層400が形成され、その一方で、ロール53AのT2部分に対応する部分であるT2’部分においては、圧粉層400が形成されないような態様となる。なお、図14(c)は、本例で形成される断続的な圧粉層400を示す概略図である。
  ここで、圧粉層400の密度を電極用複合粒子12の密度の100~10000%となるように圧縮することが好ましく、圧粉層400の密度を電極用複合粒子12の密度の200~1000%となるように圧縮することがさらに好ましい。電極用複合粒子12の密度とは、ゆるめかさ密度である。
  ロール53Aとロール53Bとの間で圧縮された圧粉層400は、圧縮力が解放されることによってロール43A上においてその厚さが復元する。圧粉層400の、圧縮点であるS点およびその近傍における圧縮力印加時の厚さから、解放後の厚さへの復元率は、100%~5000%であると好ましく、150~1000%であるとより好ましい。ここで、圧粉層400の復元率とは、圧縮力を解放した後の圧粉層400の厚さを、圧縮点であるS点およびその近傍における圧縮力印加時の圧粉層400の厚さで割り100を掛けた値である。圧縮点であるS点およびその近傍における圧粉層400の厚さは、ロール53A,53Bの間隔などから推算できる。
  復元後の圧粉層400の密度、即ち圧粉層形成工程後の圧粉層400の密度は、電極用複合粒子12の密度の130%~400%であると好ましく、150~300%であるとより好ましい。
  圧粉層400を断続的に形成する他の方法としては、上記のような支持体表面(ロール53A表面)の付着性に差をつける方法の他、圧粉層400を形成させない部分に凹みを設けるなど、支持体(ロール53A表面)に段差を設ける方法も挙げられる。この場合には、凹み部分では電極用複合粒子12の圧縮が弱いので、圧粉層400が形成されずにそのまま下方に落ちる。
 なお、図13に示す例においては、上記とは別に、集電体300を挟んで反対側に、上記と同様にして、同様の条件にて、ロール54上に、圧粉層400を断続的に形成するための構成(すなわち、フィーダー52B、および一対のロール54A、54Bからなる構成)を備えている。なお、ロール54Aは、上述したロール53Aと同様に、T1部分が粗面化処理され、T2部分が鏡面処理されている(図14(a)、図14(b)参照)。また、ロール54Bも、上述したロール53Bと同様に、表面が鏡面処理されている。
  図15は、第4の例の別の態様を示す図であり、図15においては、支持体として、支持ロールの代わりに(ロール53A,54Aを支持体とする代わりに)支持ベルト50を使用した態様を示している。この態様では、上述した図13において、ロール53A,54Aの表面に施す処理を支持ベルト表面に行う。
  ロール53A’及びロール53B’上には、フィーダー52Aが備えられている。電極用複合粒子12を、該フィーダー52Aからロール53A’,53B’間に供給する。また、支持ベルト50を、ロール53A’を抱くようにしてロール53A’とロール53B’の間に供給する。
  ロール53A’が反時計回りに、ロール53B’が時計回りに回転することによって、ロール53A’と支持ベルト50との間に、電極用複合粒子12を咬み込み、電極用複合粒子12を圧縮する。これにより、支持ベルト50に圧粉層400が断続的に付着した圧粉層が成形される。
  ここで、圧粉層400の密度を電極用複合粒子12の密度の130%~400%となるように圧縮することが好ましく、圧粉層400の密度を電極用複合粒子12の密度の150~300%となるように圧縮することがさらに好ましい。 
  次に、支持ベルト50に付着した圧粉層400を、ロール53B’から離し、ロール53A’を抱くようにしてロールの反対側に送る。圧粉層400の厚さは、圧縮時より復元する。圧粉層400の、圧縮点であるS点およびその近傍における圧縮力印加時の厚さから、解放後の厚さへの復元率は、100%~1000%であると好ましく、150%~400%であるとより好ましい。ここで、圧粉層400の復元率とは、圧縮力を解放した後の圧粉層の厚さを、圧縮点であるS点およびその近傍における圧縮力印加時の圧粉層400の厚さで割り100を掛けた値である。圧粉層400の厚さは、支持ベルト50の厚さとロール53A’,53B’の間隔から推定される。
  復元後の圧粉層400の密度は、電極用複合粒子12の密度の130%~400%であると好ましく、150~300%であるとより好ましい。
  次に、支持体表面(ロール53A,54Aまたは支持ベルト50)に断続的に形成された圧粉層400を長尺のシート状集電体300に転写し、流れ方向において断続的な圧粉層400を有するシート状集電体300を形成する。圧粉層400を集電体300に転写する方法は、圧粉層400と集電体300を接触させてロールで加圧して圧着させる方法や、圧粉層400と集電体300を接触させて赤外線ヒーターや温風などで加温する方法、あるいは、冷風など冷却する方法が挙げられる。なお、シート状集電体300としては、上述した第1の例において例示したものを使用することができ、また、上述した第1の例と同様に、導電性接着剤層を形成したものを用いてもよい。
  図13では、ロール53A,54Aのそれぞれに、断続的に形成された各圧粉層400は、ロール53A,54Aに付着したまま移動し、ロール53Aと支持ロール54Aの間で、下側から供給される長尺のシート状集電体300上に加圧されて、集電体300の両面にそれぞれ転写される。すなわち、図14(c)に示すように、T1’部分に、圧粉層400が形成され、T2’部分には、圧粉層400が形成されないような態様で、それぞれ転写される。なお、本例においては、ロール53A,53Bにより形成される圧粉層400と、ロール54A,54Bにより形成される圧粉層400とは、圧粉層400が形成されていない非形成部分(すなわち、図14(c)中のT2’部分)は、互いに同じ位置に来るような態様としてもよいし、互いに異なる位置に来るような態様としてもよいが、電気化学素子用電極とした場合における加工性等の観点より、互いに同じ位置に来るような態様とすることが好ましい。
  図15では、ロール53A’とロール54A’との間に長尺のシート状集電体300を導入し、加圧して、支持ベルト50上からシート状集電体300の両面にそれぞれ圧粉層400を転写し、両面に形成された圧粉層400と集電体からなる積層体を得ている。図15では、長尺のシート状集電体300の両面に流れ方向で断続的な圧粉層400が転写される。
  次いで、第4の例においては、上記のようにして得られた断続的な圧粉層400を有するシート状集電体300をさらに加圧成形する。圧粉層400は、加圧され電極活物質層200となる。
  図13では、ロール55Aとロール55Bとの間に圧粉層400と集電体300からなる積層体を導入し加圧している。
  また、図15においても、同様に、ロール55Aとロール55Bとの間に圧粉層400と集電体300からなる積層体を導入し加圧している。なお、図15においては、支持ベルト50は、ロール55A及びロール55Bによって、それぞれ、電極活物質層200から離れる。また、第4の例においても、上述した第1の例と同様に、圧粉層400をさらに圧縮し、電極活物質層200を形成する際に、圧縮時に、圧粉層400にせん断力がかかるような圧力(好ましくは150kN/m以上、より好ましくは250kN/m以上、さらに好ましくは300kN/m以上)とすることが望ましく、これにより、電極活物質層200を上述した微細構造を有するものとすることができる。
  電極活物質層200の厚さは、通常10~1000μm、より好ましくは20~500μmである。
  このような、流れ方向で断続的な電極活物質層を有する長尺のシート状集電体は、電極活物質層を有さない部分を切断してタブ部分とし、電気化学素子用電極部品にすることができる。切断部分に電極活物質層を有さないので、裁断ロスの防止、裁断端の強度低下や変形の防止に有効である。
 このような第4の例(第3の製造方法)によれば、タブ部分を有する電気化学素子用電極を、裁断ロスや裁断端の強度低下や変形を防ぎ、コストを抑え、小型の生産設備で連続的に製造できる。
 特に、本発明者は、支持体表面に圧粉層を断続的に形成し、それを長尺のシート状集電体に移行し加圧すると、電極活物質層を流れ方向で断続的に形成させてなる長尺シートが得られること、及び、そのような長尺シートを、電極活物質層の無い部分で切断すれば、裁断ロスや裁断端の強度低下や変形を防いで、タブ部分を有する電気化学素子用電極を製造できることを見出し、この第4の例(第3の製造方法)は、このような知見に基づきなされたものである。
 以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明する。各例中の部及び%は、特に断りのない限り、重量基準である。
 なお、各特性の定義及び評価方法は、以下のとおりである。
<電極用複合粒子の嵩密度>
 電極用複合粒子の嵩密度の測定は、パウダーテスター「PT‐S」(ホソカワミクロン社製)を用いて行った。具体的には、目開き250μmの篩に電極用複合粒子を静置し、1kHzの振動を与えることで、電極用複合粒子を落下させ、100ccの測定用カップ内に充填し、測定用カップ内に充填された電極用複合粒子の重量(g)を測定用カップの容積(cc)で除算することで、電極用複合粒子の嵩密度(g/cc)とした。
<電極の微細構造>
 実施例及び比較例で得られた負極の断面について、走査型電子顕微鏡(製品名「S4700」、日立製作所社製)を用いて、観察を行い、以下の基準にて、得られた負極の微細構造の評価を行った。
  A:図2に示すように、互いに近接する複数の電極活物質210を被覆するバインダ被覆部220同士がバインダ連結部230により連結された構造を有していた。
  E:図3、図4に示すように、互いに近接する複数の電極活物質210により形成される空隙が、バインダ220aにより完全に塞がれたような構造となっていた。
<ピール強度>
 実施例及び比較例で得られた負極を、それぞれ、幅1cm×長さ10cmの矩形に切って試験片とし、負極活物質層面を上にして固定し、負極活物質層の表面にセロハンテープを貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で180°方向に引き剥がしたときの応力を測定した。そして、この測定を10回行い、その平均値を求めてこれをピール強度とし、下記基準にて判定を行った。なお、ピール強度が大きいほど、負極活物質層内における密着強度、及び負極活物質層と集電体との間の密着強度が高いと判断できる。
  A:ピール強度が8N/m以上
  B:ピール強度が6N/m以上、8N/m未満
  C:ピール強度が4N/m以上、6N/m未満
  D:ピール強度が2N/m以上、4N/m未満
  E:ピール強度が2N/m未満
<電解液濡れ性>
 実施例及び比較例で得られた負極を用いて、負極活物質層上に電解液(溶媒:エチレンカーボネート/エチルメチルカーボネート=3/7(重量比)、電解質:1MのLiPF(キシダ化学社製))3μLを滴下し、液滴が負極活物質層内に浸透して消失するまでの時間を測定することにより、電解液に対する濡れ性の測定を行い、下記基準にて判定を行った。
  A:30秒未満
  B:30秒以上、45秒未満
  C:45秒以上、60秒未満
  D:60秒以上、120秒未満
  E:120秒以上
<内部抵抗>
 実施例及び比較例で得られたコイン型のリチウム二次電池について、25℃にて、充電レート0.2Cとした定電流法により、4.2Vになるまで定電流で充電を行ない、次いで、定格電圧にて定電圧で充電を行なった。その後、放電レートを0.2Cとし3.0Vまで放電した。放電開始10秒後の電圧降下量をΔVとした。そして、放電レートを0.2C~10Cまで変化させて、同様にして、電圧降下量ΔVの測定を行い、放電電流値I(A)と電圧降下量ΔV(V)をプロットし、その直線の傾きを内部抵抗とし、下記の基準で判定した。
  A:内部抵抗が3.0Ω未満
  B:内部抵抗が3.0Ω以上、3.5Ω未満
  C:内部抵抗が3.5Ω以上、4.0Ω未満
  D:内部抵抗が4.0Ω以上、4.5Ω未満
  E:内部抵抗が4.5Ω以上
<充放電サイクル特性>
 実施例及び比較例で得られたコイン型のリチウム二次電池について、60℃で0.5Cの定電流定電圧充電法にて、4.2Vになるまで定電流で充電し、その後、定電圧で充電し、次いで、0.5Cの定電流で3.0Vまで放電する充放電サイクル試験を行った。充放電サイクル試験は100サイクルまで行い、初期放電容量に対する100サイクル目の放電容量の比を容量維持率とし、下記の基準で判定した。この値が大きいほど繰り返し充放電による容量減が少ないことを示す。
  A:容量維持率が90%以上
  B:容量維持率が80%以上、90%未満
  C:容量維持率が70%以上、80%未満
  D:容量維持率が60%以上、70%未満
  E:容量維持率が60%未満
(実施例1)
<導電性接着剤層形成用スラリーの製造>
 体積平均粒子径が0.7μmのカーボンブラック100部と、分散剤としてカルボキシメチルセルロースのアンモニウム塩の4.0%水溶液(DN-10L;ダイセル化学工業(株)社製)を固形分相当で4部、樹脂成分(バインダ)として数平均粒子径が0.25μmのアクリレート重合体(アクリル酸2-エチルヘキシル:アクリロニトリル=75:25(質量比))の40%水分散体を固形分相当8部及びイオン交換水を全固形分濃度が30%となるように混合し、導電性接着剤層形成用スラリーを調整した。
<負極用複合粒子の製造>
 負極活物質としてグラファイトを100部、バインダとしてスチレン・ブタジエン共重合体(BM-480B、ガラス転移温度-15℃;日本ゼオン社製)の40%水分散体を固形分相当で2部、分散剤としてカルボキシメチルセルロースのナトリウム塩の0.8%水溶液(BSH-12;第一工業製薬社製)を固形分相当で0.7部、及び溶媒として水を100部加えて、「TKホモミキサー」(プライミクス社製)で撹拝混合して固形分濃度が35%の負極用スラリーを得た。次いで、得られた負極用スラリーを、スプレー乾燥機(OC-16;大河原化工機社製)を使用し、回転円盤方式のアトマイザー(ベーン型、直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で噴霧乾燥造粒を行い、負極用複合粒子を得た。得られた負極用複合粒子の重量平均粒子径は78μmであり、嵩密度は0.40g/ccであった。
<負極の製造>
 厚さ20μmの銅箔からなる集電体に、上記にて調製した導電性接着剤層形成用スラリーを塗布し、120℃で、10分間乾燥して、銅箔上に厚み4μmの導電性接着剤層を形成した。
 次いで、上記にて得られた負極用複合粒子及び導電性接着剤層を形成した銅箔を用いて、図5に示す電極成形装置2により、導電性接着剤層を形成した銅箔上に、負極活物質層を形成することで、負極を得た。なお、図5に示す電極成形装置2において、プレ成形ロール6を構成するロール6A,6Bのロール径を50mm、ロール間隙を50μm、ロール圧力(線圧)を15kN/mとし、成形ロール8を構成するロール8A,8Bのロール径を250mm、ロール間隙を50μm、ロール圧力(線圧)を350kN/m、ロール温度を100℃とした。得られた負極活物質層の平均密度は1.5g/cmであり、平均厚さは95μmであった。また、プレ成形ロール6を構成するロール6A,6Bを通過した後のシート状のプレ成形体14の平均密度は0.8g/cmであった。
 そして、得られた負極を用いて、電極の微細構造、ピール強度及び電解液濡れ性の各評価を行った。結果を表1に示す。
<正極用複合粒子の製造>
 正極活物質としてLiCoOを100部、バインダとしてアクリレート重合体(アクリル酸ブチル:メタクリル酸メチル:イタコン酸=80:15:5(質量比)、ガラス転移温度-28℃、数平均粒子径0.3μm)の40%水分散体を固形分相当で1部、導電材として平均粒径0.7μmのアセチレンブラック(デンカブラック粉状;電気化学工業社製)を5部、分散剤としてカルボキシメチルセルロールのナトリウム塩の2.0%水溶液(BS‐H;第一工業製薬社製)を固形分相当で0.8部及び溶媒として水を85.0部加えて、「TKホモミキサー」(プライミクス社製)で撹拝混合して固形分濃度が45%の正極用スラリーを得た。そして、得られた正極用スラリーをスプレー乾燥機(OC-16;大河原化工機社製)を使用し、回転円盤方式のアトマイザー(ベーン型、直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で噴霧乾燥造粒を行い、正極用複合粒子を得た。得られた正極用複合粒子の重量平均粒子径は54μmであり、嵩密度は0.90g/ccであった。
<正極の製造>
 厚さ20μmのアルミニウム箔からなる集電体に、上記にて調製した導電性接着剤層形成用スラリーを塗布し、120℃で、10分間乾燥して、アルミニウム箔上に厚み4μmの導電性接着剤層を形成した。
 次いで、上記にて得られた正極用複合粒子及び導電性接着剤層を形成したアルミニウム箔を用いて、図5に示す電極成形装置2により、導電性接着剤層を形成したアルミニウム箔上に、正極活物質層を形成することで、正極を得た。なお、図5に示す電極成形装置2において、プレ成形ロール6を構成するロール6A,6Bのロール径を50mm、ロール間隙を50μm、ロール圧力(線圧)を15kN/mとし、成形ロール8を構成するロール8A,8Bのロール径を250mm、ロール間隙を50μm、ロール圧力(線圧)を400kN/m、ロール温度を100℃とした。得られた負極活物質層の平均密度は3.50g/cmであり、平均厚さは100μmであった。また、プレ成形ロール6を構成するロール6A,6Bを通過した後のシート状のプレ成形体14の平均密度は1.8g/cmであった。
<リチウムイオン二次電池の製造>
 上記にて作製された負極及び正極を、活物質層が形成されていない部分が縦2cm×横2cmであり、かつ、活物質層が形成されている部分が、負極の場合は縦5.2cm×横5.2cm、正極の場合は縦5cm×横5cmとなるように切り抜いた(活物質層が形成されていない部分は、活物質層が形成されている部分の正方形の一辺をそのまま延長するような形状で形成される。)。そして、このように切り抜いた負極に、ニッケルからなるタブ材(縦7cm×横1cm×厚み0.01cm)を、また、正極に、アルミニウムからなるタブ材(縦7cm×横1cm×厚み0.01cm)を、活物質層が形成されていない部分に超音波溶接することで、タブ付き負極及び正極を得た。そして、得られたタブ付き負極及び正極を、200℃で24時間真空乾燥し、セパレータとして厚さ20μmのポリプロピレン製セパレータ「Celgard2400」(Celgard社製)を縦5.3cm×横5.3cmとなるように切り抜き用いたものを間に挟んだ状態で、正極集電体、負極集電体の端子溶接部がそれぞれ重なり合わないよう同方向に配置し積層することで、電極積層体を得た。
 そして、得られた電極積層体を、深絞り外装ラミネートフィルムの内部に配置し、三辺を熱融着後、電解液(溶媒:エチレンカーボネート/エチルメチルカーボネート=3/7(重量比)、電解質:1MのLiPF(キシダ化学社製))を充填し、真空含浸させた後、残り一辺を減圧下で熱融着して密閉することで、リチウムイオン二次電池を得た。
(実施例2)
 負極用複合粒子及び導電性接着剤層を形成した銅箔を用いて、負極を製造する際において、図5に示す電極成形装置2のプレ成形ロール6を構成するロール6A,6Bのロール圧力(線圧)を20kN/mとし、成形ロール8を構成するロール8A,8Bのロール圧力(線圧)を250kN/mとした以外は、実施例1と同様にして、負極を得て、得られた負極を用いて、リチウムイオン二次電池を製造し、同様に評価を行った。結果を表1に示す。
(実施例3)
 負極用複合粒子及び導電性接着剤層を形成した銅箔を用いて、負極を製造する際において、図5に示す電極成形装置2のプレ成形ロール6を構成するロール6A,6Bのロール圧力(線圧)を3kN/mとし、成形ロール8を構成するロール8A,8Bのロール圧力(線圧)を750kN/mとした以外は、実施例1と同様にして、負極を得て、得られた負極を用いて、リチウムイオン二次電池を製造し、同様に評価を行った。結果を表1に示す。
(実施例4)
 負極用スラリー及び正極用スラリーを用いて、スプレー乾燥機により噴霧乾燥造粒を行なう際に、回転円盤方式のアトマイザーとして、ベーン型アトマイザーに代えて、ピン型アトマイザー(回転数25,000rpm)を用いた以外は、実施例1と同様にして、負極及び正極を得て、得られた負極及び正極を用いて、リチウムイオン二次電池を製造し、同様に評価を行った。結果を表1に示す。
(実施例5)
 負極用スラリー及び正極用スラリーを用いて、スプレー乾燥機により噴霧乾燥造粒を行なう際に、回転円盤方式のアトマイザーとしてのベーン型アトマイザーに代えて、加圧二流体ノズル方式(加圧圧力0.3MPa)を用いた以外は、実施例1と同様にして、負極及び正極を得て、得られた負極及び正極を用いて、リチウムイオン二次電池を製造し、同様に評価を行った。結果を表1に示す。
(実施例6)
 負極用複合粒子を得る際に、スチレン・ブタジエン共重合体(BM-480B)の代わりに、ガラス転移温度の異なるスチレン・ブタジエン共重合体(BM-430B、ガラス転移温度-37℃;日本ゼオン社製)を使用した以外は、実施例1と同様にして、負極を得て、得られた負極を用いて、リチウムイオン二次電池を製造し、同様に評価を行った。結果を表1に示す。
(実施例7)
 負極用複合粒子を得る際に、スチレン・ブタジエン共重合体(BM-480B)の代わりに、アクリレート重合体(アクリル酸ブチル:メタクリル酸メチル:イタコン酸=80:15:5(質量比)、ガラス転移温度-28℃、数平均粒子径0.3μm)を使用した以外は、実施例1と同様にして、負極を得て、得られた負極を用いて、リチウムイオン二次電池を製造し、同様に評価を行った。結果を表1に示す。
(実施例8)
 負極用複合粒子を得る際に、まず、負極活物質としてのグラファイトを添加しない以外は、実施例1と同様に、負極用スラリーを得た。次いで、得られた負極用スラリー、及び負極活物質としてのグラファイトを用いて、スプレー乾燥機に代えて、流動層乾燥機(アグロマスター「AGM-PJ」、ホソカワミクロン社製)を使用して、乾燥造粒を行なうことで、負極用複合粒子を得た。なお、この際の乾燥温度は、80℃とした。そして、得られた負極用複合粒子を用いた以外は、実施例1と同様にして、負極を得て、得られた負極を用いて、リチウムイオン二次電池を製造し、同様に評価を行った。結果を表1に示す。
(実施例9)
 負極用複合粒子を得る際に、まず、負極活物質としてのグラファイトを添加しない以外は、実施例1と同様に、負極用スラリーを得た。次いで、得られた負極用スラリー、及び負極活物質としてのグラファイトを用いて、スプレー乾燥機に代えて、攪拌転動流動層造粒装置(ニューグラマシーン「SEG-200」、セイシン企業社製)を使用して、乾燥造粒を行なうことで、負極用複合粒子を得た。なお、この際の乾燥温度は、25℃としたそして、得られた負極用複合粒子を用いた以外は、実施例1と同様にして、負極を得て、得られた負極を用いて、リチウムイオン二次電池を製造し、同様に評価を行った。結果を表1に示す。
(実施例10)
 負極集電体である銅箔に導電性接着剤を形成させなかったこと以外は、実施例1と同様にして負極を得て、得られた負極を用いて、リチウムイオン二次電池を製造し、同様に評価を行った。結果を表1に示す。
(比較例1)
<負極の製造>
 ディスパー付きのプラネタリーミキサー「T.K.ハイビスディスパーミックス」(プライミクス社製)に、負極活物質としてグラファイトを100部、バインダとしてスチレン・ブタジエン共重合体(BM-480B;日本ゼオン社製)の40%水分散体を固形分相当で2部、分散剤としてカルボキシメチルセルロースのナトリウム塩の1.0%水溶液(BSH-12;第一工業製薬社製)を固形分相当で0.7部、及び溶媒として水を30部加えて、撹拝混合した。これを減圧下で脱泡処理して固形分濃度が50%の流動性の良好な負極用スラリーを得た。
 そして、上記にて得られた負極用スラリーを、コンマコーターを用いて、厚さ20μmの銅箔上に、乾燥後の膜厚が95μm程度になるように、5m/分の速度で塗布し、60℃で2分間乾燥し、120℃で2分間加熱処理し、次いで、一対のロールにより、200kN/mの圧力(線圧)で圧縮することにより、負極を得た。そして、得られた負極を用いて、実施例1と同様にして評価を行った。結果を表1に示す。
<正極の製造>
 ディスパー付きのプラネタリーミキサー「T.K.ハイビスディスパーミックス」(プライミクス社製)に、正極活物質としてLiCoOを100部、バインダとしてアクリレート重合体(アクリル酸ブチル:メタクリル酸メチル:イタコン酸=80:15:5(質量比)、ガラス転移温度-28℃、数平均粒子径0.3μm)の40%水分散体を固形分相当で1部、導電材として平均粒径0.7μmのアセチレンブラック(デンカブラック粉状;電気化学工業社製)を5部、分散剤としてカルボキシメチルセルロールのナトリウム塩の2.0%水溶液(BS‐H;第一工業製薬社製)を固形分相当で0.8部、及び溶媒として水を5.0部加えて、撹拝混合した。これを減圧下で脱泡処理して固形分濃度が70%の流動性の良好な正極用スラリーを得た。
 そして、上記にて得られた正極用スラリーを、コンマコーターを用いて、厚さ20μmのアルミニウム箔上に、乾燥後の膜厚が100μm程度になるように、5m/分の速度で塗布し、60℃で2分間乾燥し、120℃で2分間加熱処理し、次いで、一対のロールにより、200kN/mの圧力(線圧)で圧縮することにより、正極を得た。
<リチウムイオン二次電池の製造>
 そして、上記にて得られた負極及び正極を用いて、実施例1と同様にして、リチウムイオン二次電池を得て、実施例1と同様に評価を行った。結果を表1に示す。
(比較例2)
<負極の製造>
 図5に示す電極成形装置2のプレ成形ロール6を構成するロール6A,6B及び成形ロール8を構成するロール8A,8Bを共に、ロール径を250mm、ロール間隙を50μm、ロール圧力(線圧)を200kN/mとした以外は、実施例4と同様にして、負極を得た。そして、得られた負極を用いて、実施例1と同様にして評価を行った。結果を表1に示す。
<正極の製造>
 図5に示す電極成形装置2のプレ成形ロール6を構成するロール6A,6B及び成形ロール8を構成するロール8A,8Bを共に、ロール径を250mm、ロール間隙を50μm、ロール圧力(線圧)を250kN/mとした以外は、実施例4と同様にして、正極を得た。
<リチウムイオン二次電池の製造>
 そして、上記にて得られた負極及び正極を用いて、実施例1と同様にして、リチウムイオン二次電池を得て、実施例1と同様に評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、電極を製造する際に、電極用複合粒子を得て、得られた電極用複合粒子を成形する際に、まず、プレ成形を行い、シート状のプレ成形体14を得て、次いで、プレ成形時の圧力よりも高い圧力にて本成形を行ない、これにより、シート状のプレ成形体14にせん断力をかけながら圧縮することにより製造を行なった実施例1~10においては、得られる電極の電極活物質層の微細構造は、いずれも、図2に示すように、互いに近接する複数の電極活物質210を被覆するバインダ被覆部220同士がバインダ連結部230により連結された構造を有していた。そして、これら実施例1~10において得られた電極は、いずれもピール強度が高く、電解液に対する濡れ性に優れ、電池とした場合における内部抵抗が低く、充放電サイクル特性に優れるものであった。特に、この傾向は、プレ成形時の圧力及び本成形時の圧力を変化させた場合(実施例2,3)、造粒条件を変化させた場合(実施例4,5,8,9)、バインダを変更した場合(実施例6,7)、及び導電性接着剤の有無を変更した場合(実施例1、10)のいずれの場合でも、同様の傾向となった。また、本実施例においては、負極を用いた場合における評価を例示したが、正極の場合も同様の傾向であった。
 一方、塗布法により電極を形成した比較例1、プレ成形時の圧力と本成形時の圧力とを同じとした比較例2においては、得られる電極の電極活物質層の微細構造は、図3、図4に示すように、互いに近接する複数の電極活物質210により形成される空隙が、バインダ220aにより完全に塞がれたような構造となっていた。そして、これら比較例1,2において得られた電極は、電解液の濡れ性が低く、電池とした場合における内部抵抗、及び充放電サイクル特性に劣るものであった。
(実施例11)
 次いで、上述した第2の例に係る実施例である実施例11について説明する。
  比表面積1,700m2/gの水蒸気賦活活性炭を100部、アセチレンブラックを7.5部、カルボキシメチルセルロースナトリウム塩を1.4部、およびジエン系重合体のラテックス(ガラス転移温度:-19℃)を固形分相当で10部を混合し、さらにイオン交換水を固形分濃度が20%となるように加え、混合分散を行い複合粒子用組成物を得る。この複合粒子用組成物を、スプレー乾燥機を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数16,000rpm、熱風温度150℃、粒子回収出口の温度が85℃で噴霧乾燥造粒を行い、球状複合粒子を得る。この球状複合粒子の球状度は0.12、平均体積粒子径は102μmである。
  ここで得られる球状複合粒子、長尺のシート状支持体(粗面化処理として、表面粗さRaが0.4μmとなるようにサンドブラスト処理を施したPETフィルム〔厚み50μm、引っ張り強度200MPa〕)、長尺のシート状集電体(4μmの接着剤塗工済みの厚み30μmのアルミ集電体)を使用し、図8で示される装置(ロール周速10m/分、ロール33Bとロール33Aの間隔100μm、ロール33B温度25℃、ロール33A温度25℃、ロール33Bとロール33Bの線圧0.1kN/cm、ロール33Aとロール38の間隔100μm、ロール38温度25℃、ロール33Aとロール38の線圧0.1kN/cm、ロール33Aとロール38の間隔150μm、ロール35A温度100℃、ロール35B温度100℃、ロール35Aとロール35Bの線圧1kN/cm)を用いて、集電体の片面に厚み193μmの、電気化学素子用電極を得る。得られる電極の電極活物質層の厚みの精度は全面で4%以内である。
  球状複合粒子からなる電極用複合粒子12のゆるめかさ密度は、0.18g/cc、圧粉層400の密度は、0.4g/ccである。圧粉層400の厚さは220μmである。
(実施例12)
 次いで、上述した第4の例に係る実施例である実施例12について説明する。
  比表面積1,700m2/gの水蒸気賦活活性炭を100部、アセチレンブラックを7.5部、カルボキシメチルセルロースナトリウム塩を1.4部、およびジエン系重合体のラテックス(ガラス転移温度:-19℃)を固形分相当で10部を混合し、さらにイオン交換水を固形分濃度が20%となるように加え、混合分散を行い複合粒子用組成物を得る。この複合粒子用組成物を、スプレー乾燥機を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数16,000rpm、熱風温度150℃、粒子回収出口の温度が85℃で噴霧乾燥造粒を行い、球状複合粒子を得る。この球状複合粒子の球状度は0.12、平均体積粒子径は102μmである。
  ここで得られる球状複合粒子、断続的にサンドブラスト処理を施した長尺の支持シート50(粗面化処理として表面粗さRaが0.4μmとなるようにサンドブラスト処理を施したPETフィルム〔厚み50μm、引っ張り強度200MPa〕)、長尺のシート状集電体300(4μmの接着剤塗工済みの厚み30μmのアルミ集電体)を使用し、図16で示される装置(ロール周速10m/分、ロール53B’とロール53A’の間隔100μm、ロール53B’温度25℃、ロール53A’温度25℃、ロール53B’とロール53A’の線圧0.1kN/cm、ロール53A’とロール54A’の間隔100μm、ロール54A’温度25℃、ロール53A’とロール54A’の線圧0.1kN/cm、ロール55Aとロール55Bの間隔150μm、ロール55A温度100℃、ロール55B温度100℃、ロール55Aとロール55Bの線圧1kN/cm)を用いて、集電体300の片面に支持シート50の粗面化処理部分に対応し、断続的に成形された平均厚み193μmの、電気化学素子用電極を得る。得られる電極の電極活物質層200の厚みの精度は全面で4%以内である。なお、図16で示される装置においては、支持シート50は、支持シート50の巻回体51から供給され、ロール56により巻き取られるようになっている。
  球状複合粒子からなる電極用複合粒子12のゆるめかさ密度は、0.18g/cc、圧粉層400の密度は、0.4g/ccである。圧粉層400の厚さは220μmである。
100…電気化学素子用電極
 200…電極活物質層
  210…電極活物質
  220…バインダ被覆部
  230…バインダ連結部
  240…空隙部
 300…集電体

Claims (7)

  1.  電極活物質及びバインダを含有する電極活物質層を備える電気化学素子用電極であって、
     前記電極活物質の表面の少なくとも一部に前記バインダで被覆されてなるバインダ被覆部と、
     複数の前記電極活物質から構成される空隙部内に、前記空隙部を形成する複数の電極活物質の表面に形成されたバインダ被覆部同士を前記バインダにより連結してなるバインダ連結部と、を備える電気化学素子用電極。
  2.  前記空隙部を形成する複数の電極活物質の表面に形成された各バインダ被覆部同士は、一体化されておらず、互いに独立して形成されていることを特徴とする請求項1に記載の電気化学素子用電極。
  3.  前記バインダ連結部の長さが0.01~5μmであることを特徴とする請求項1又は2に記載の電気化学素子用電極。
  4.  前記バインダ連結部は、糸状及び/又は板状の形状を有していることを特徴とする請求項1~3のいずれかに記載の電気化学素子用電極。
  5.  前記バインダが、アクリレート系重合体及び/又は共役ジエン系重合体であることを特徴とする請求項1~4のいずれかに記載の電気化学素子用電極。
  6.  前記電極活物質及びバインダが、複合粒子を形成していることを特徴とする請求項1~5のいずれかに記載の電気化学素子用電極。
  7.  前記電極活物質層は、前記複合粒子を、第1の圧力で加圧することで加圧体とし、前記加圧体を、前記第1の圧力よりも高い第2の圧力で加圧することにより得られたものであることを特徴とする請求項1~6のいずれかに記載の電気化学素子用電極。
PCT/JP2012/073419 2011-09-14 2012-09-13 電気化学素子用電極 WO2013039131A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280051899.9A CN103907226A (zh) 2011-09-14 2012-09-13 电化学元件用电极
US14/344,711 US20140342225A1 (en) 2011-09-14 2012-09-13 Electrode for electrochemical device
KR1020147009517A KR101998658B1 (ko) 2011-09-14 2012-09-13 전기 화학 소자용 전극
EP12832068.6A EP2757620A4 (en) 2011-09-14 2012-09-13 ELECTRODE FOR AN ELECTROCHEMICAL ELEMENT

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-201154 2011-09-14
JP2011-201155 2011-09-14
JP2011201154 2011-09-14
JP2011-201153 2011-09-14
JP2011201155 2011-09-14
JP2011201153 2011-09-14
JP2011-201320 2011-09-15
JP2011201320 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013039131A1 true WO2013039131A1 (ja) 2013-03-21

Family

ID=47884060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073419 WO2013039131A1 (ja) 2011-09-14 2012-09-13 電気化学素子用電極

Country Status (5)

Country Link
US (1) US20140342225A1 (ja)
EP (1) EP2757620A4 (ja)
KR (1) KR101998658B1 (ja)
CN (1) CN103907226A (ja)
WO (1) WO2013039131A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157415A1 (ja) * 2013-03-26 2014-10-02 日産自動車株式会社 非水電解質二次電池
JP2014203515A (ja) * 2013-04-01 2014-10-27 日本ゼオン株式会社 リチウムイオン二次電池電極用シートの製造方法
WO2015029829A1 (ja) * 2013-08-26 2015-03-05 日本ゼオン株式会社 電気化学素子用造粒粒子の製造方法、電気化学素子用電極及び電気化学素子
JP2016042459A (ja) * 2014-08-18 2016-03-31 昭和電工パッケージング株式会社 薄型蓄電デバイス及びその製造方法
CN105794025A (zh) * 2013-12-26 2016-07-20 日本瑞翁株式会社 电化学元件电极用复合粒子
CN106233510A (zh) * 2014-05-20 2016-12-14 日本瑞翁株式会社 电化学元件电极用复合粒子和电化学元件电极用复合粒子的制造方法
JPWO2016013434A1 (ja) * 2014-07-22 2017-04-27 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極、電気化学素子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極の製造方法
WO2019017480A1 (ja) * 2017-07-20 2019-01-24 株式会社大阪ソーダ 電極及び蓄電デバイス
CN106030865B (zh) * 2014-03-19 2019-06-11 日本瑞翁株式会社 电化学元件电极用复合粒子
EP3550637A4 (en) * 2017-07-20 2020-05-27 LG Chem, Ltd. SYSTEM FOR PRODUCING AN ELECTRODE FOR A SECONDARY BATTERY AND MANUFACTURING METHOD THEREFOR

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107672A1 (en) * 2010-10-29 2012-05-03 Medtronic, Inc. Electrode With Interconnection Design for Miniature Electrochemical Cells and Methods of Making
KR102234295B1 (ko) * 2014-01-10 2021-03-31 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
JP6067636B2 (ja) 2014-09-12 2017-01-25 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
JP6283917B2 (ja) 2014-09-18 2018-02-28 パナソニックIpマネジメント株式会社 塗膜物の製造方法および塗膜物の製造装置
JP2016081871A (ja) * 2014-10-22 2016-05-16 トヨタ自動車株式会社 電極の製造方法および製造装置
EP3223348A4 (en) * 2014-11-21 2018-12-05 Zeon Corporation Composite particles for electrochemical element electrodes
JP6179499B2 (ja) * 2014-11-27 2017-08-16 トヨタ自動車株式会社 リチウムイオン二次電池用正極の製造方法
JP6142884B2 (ja) 2015-02-16 2017-06-07 トヨタ自動車株式会社 非水電解質二次電池の製造方法
DE102016208250A1 (de) * 2015-05-19 2016-11-24 Semiconductor Energy Laboratory Co., Ltd. Elektrode, Energiespeichervorrichtung und elektronische Vorrichtung
KR102177507B1 (ko) * 2015-06-19 2020-11-11 삼성에스디아이 주식회사 극판 권취 시스템
JP6341151B2 (ja) * 2015-07-13 2018-06-13 トヨタ自動車株式会社 電極シートの製造方法
JP6323405B2 (ja) 2015-07-13 2018-05-16 トヨタ自動車株式会社 電極シートの製造方法および電極シート
WO2017029902A1 (ja) * 2015-08-14 2017-02-23 旭化成株式会社 電気化学素子用電極
WO2017159803A1 (ja) * 2016-03-18 2017-09-21 国立大学法人信州大学 リチウム複合負極及びハイブリッドキャパシタ並びにそれらの製造方法
CN106128803A (zh) * 2016-08-31 2016-11-16 福建火炬电子科技股份有限公司 扣式电极的制备方法和具有该扣式电极的元器件及制备方法
DE102017208220A1 (de) * 2017-05-16 2018-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines Trockenfilms sowie Trockenfilm und mit dem Trockenfilm beschichtetes Substrat
JP6780601B2 (ja) * 2017-07-31 2020-11-04 トヨタ自動車株式会社 電極シートの製造方法
US20210028458A1 (en) * 2017-08-31 2021-01-28 Zeon Corporation Composition for electrochemical device functional layer, functional layer for electrochemical device, and electrochemical device
JP6992630B2 (ja) * 2018-03-20 2022-01-13 トヨタ自動車株式会社 電極板の製造方法および製造装置
JP7035983B2 (ja) 2018-11-26 2022-03-15 トヨタ自動車株式会社 電極シート製造装置
JP7180343B2 (ja) 2018-12-06 2022-11-30 トヨタ自動車株式会社 電極シート製造装置
CN113363500B (zh) * 2019-05-31 2024-04-30 宁德时代新能源科技股份有限公司 正极集流体、正极极片、电化学装置与包含电化学装置的电动汽车和电子产品
CN114128007A (zh) 2019-08-19 2022-03-01 富士胶片株式会社 电极用成型体的制造方法
US11996540B2 (en) * 2019-12-20 2024-05-28 Intecells, Inc. Method and apparatus for making lithium ion battery electrodes
JP2023517425A (ja) * 2020-03-19 2023-04-26 バイオトロニック エスエー アンド カンパニー カーゲー 導電性接着層を備えたコンデンサ
CN112054164B (zh) * 2020-09-15 2022-02-25 天津市捷威动力工业有限公司 一种锂离子电池用粘结剂添加方法及装置
JP7208281B2 (ja) 2021-02-22 2023-01-18 プライムプラネットエナジー&ソリューションズ株式会社 二次電池用電極の製造方法
KR20220125929A (ko) * 2021-03-08 2022-09-15 현대자동차주식회사 전고체전지용 전극의 제조방법, 및 이에 따라 제조된 전고체전지용 전극
DE102022114431A1 (de) 2022-06-08 2023-12-14 Koenig & Bauer Ag Vorrichtung zum Beschichten eines Trägersubstrates mit einem Trockenfilm sowie Maschine zur Herstellung eines mehrlagigen Produktes mit einem mit einem Trockenfilm beschichteten Trägersubstrat
US11978908B1 (en) * 2023-06-25 2024-05-07 Pixion Batteries, Inc. Methods for producing binder-coated conductor-speckled active battery material agglomerations for electrodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208894A (ja) * 2001-12-18 2003-07-25 Samsung Sdi Co Ltd カソード電極、その製造方法及びこれを採用したリチウムサルファ電池
JP2003217594A (ja) * 2002-01-18 2003-07-31 Nissan Motor Co Ltd イオン電池用電極及びその製造方法
JP3627586B2 (ja) 1999-09-03 2005-03-09 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー、およびその利用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627586A (ja) 1985-07-04 1987-01-14 Rohm Co Ltd 熱転写シリアルプリンタの記録方法
JP4536289B2 (ja) * 2000-08-30 2010-09-01 功 松本 電池用ペースト式薄型電極、その製造方法及び二次電池
EP1207572A1 (en) * 2000-11-15 2002-05-22 Dr. Sugnaux Consulting Mesoporous electrodes for electrochemical cells and their production method
JP4077432B2 (ja) * 2003-07-07 2008-04-16 Tdk株式会社 電気化学素子
TWI258238B (en) * 2003-11-05 2006-07-11 Lg Chemical Ltd Functional polymer film-coated electrode and electrochemical device using the same
JP4173870B2 (ja) * 2004-04-28 2008-10-29 Tdk株式会社 電気化学デバイス用電極の製造方法
JP4778034B2 (ja) * 2008-01-30 2011-09-21 パナソニック株式会社 非水系二次電池の製造方法
JPWO2010150513A1 (ja) * 2009-06-23 2012-12-06 キヤノン株式会社 電極構造体及び蓄電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627586B2 (ja) 1999-09-03 2005-03-09 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー、およびその利用
JP2003208894A (ja) * 2001-12-18 2003-07-25 Samsung Sdi Co Ltd カソード電極、その製造方法及びこれを採用したリチウムサルファ電池
JP2003217594A (ja) * 2002-01-18 2003-07-31 Nissan Motor Co Ltd イオン電池用電極及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2757620A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620782B2 (en) 2013-03-26 2017-04-11 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
WO2014157415A1 (ja) * 2013-03-26 2014-10-02 日産自動車株式会社 非水電解質二次電池
JP2014203515A (ja) * 2013-04-01 2014-10-27 日本ゼオン株式会社 リチウムイオン二次電池電極用シートの製造方法
WO2015029829A1 (ja) * 2013-08-26 2015-03-05 日本ゼオン株式会社 電気化学素子用造粒粒子の製造方法、電気化学素子用電極及び電気化学素子
JPWO2015029829A1 (ja) * 2013-08-26 2017-03-02 日本ゼオン株式会社 電気化学素子用造粒粒子の製造方法、電気化学素子用電極及び電気化学素子
CN105794025B (zh) * 2013-12-26 2020-01-21 日本瑞翁株式会社 电化学元件电极用复合粒子
CN105794025A (zh) * 2013-12-26 2016-07-20 日本瑞翁株式会社 电化学元件电极用复合粒子
CN106030865B (zh) * 2014-03-19 2019-06-11 日本瑞翁株式会社 电化学元件电极用复合粒子
CN106233510B (zh) * 2014-05-20 2018-09-28 日本瑞翁株式会社 电化学元件电极用复合粒子和电化学元件电极用复合粒子的制造方法
CN106233510A (zh) * 2014-05-20 2016-12-14 日本瑞翁株式会社 电化学元件电极用复合粒子和电化学元件电极用复合粒子的制造方法
JPWO2016013434A1 (ja) * 2014-07-22 2017-04-27 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極、電気化学素子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極の製造方法
EP3174139A4 (en) * 2014-07-22 2018-02-14 Zeon Corporation Composite particles for electrochemical element electrode, electrochemical element electrode, electrochemical element, production method for composite particles for electrochemical element electrode, and production method for electrochemical element electrode
JP2016042459A (ja) * 2014-08-18 2016-03-31 昭和電工パッケージング株式会社 薄型蓄電デバイス及びその製造方法
US10756313B2 (en) 2014-08-18 2020-08-25 Showa Denko Packaging Co., Ltd. Thin power storage device and production method thereof
WO2019017480A1 (ja) * 2017-07-20 2019-01-24 株式会社大阪ソーダ 電極及び蓄電デバイス
EP3550637A4 (en) * 2017-07-20 2020-05-27 LG Chem, Ltd. SYSTEM FOR PRODUCING AN ELECTRODE FOR A SECONDARY BATTERY AND MANUFACTURING METHOD THEREFOR
JPWO2019017480A1 (ja) * 2017-07-20 2020-07-16 株式会社大阪ソーダ 電極及び蓄電デバイス
US11495783B2 (en) 2017-07-20 2022-11-08 Lg Energy Solution, Ltd. System and method for reproducible manufacturing of electrode for secondary battery

Also Published As

Publication number Publication date
CN103907226A (zh) 2014-07-02
EP2757620A4 (en) 2015-07-08
KR20140063789A (ko) 2014-05-27
US20140342225A1 (en) 2014-11-20
EP2757620A1 (en) 2014-07-23
KR101998658B1 (ko) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2013039131A1 (ja) 電気化学素子用電極
JP4605467B2 (ja) 電気化学素子の製造方法
KR102125396B1 (ko) 전기 화학 소자 전극용 복합 입자, 전기 화학 소자 전극, 및 전기 화학 소자
JP5549672B2 (ja) 電気化学素子用電極および電気化学素子
JP2013077560A (ja) 電気化学素子用電極の製造方法
KR101455445B1 (ko) 리튬 이온 커패시터용 전극 및 리튬 이온 커패시터
JP5413368B2 (ja) 電気化学素子用電極の製造方法
JP6217741B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
WO2007116718A1 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極
JP6344384B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
JP5293383B2 (ja) 支持体付電極組成物層及び電気化学素子用電極の製造方法
JP6020452B2 (ja) 粉体成形装置及び粉体成形物の製造方法
JP2013077559A (ja) 電気化学素子用電極の製造方法
JP2010109354A (ja) 電気化学素子用電極の製造方法
JP6380526B2 (ja) 電気化学素子電極用複合粒子
JP2010097830A (ja) 電気化学素子用電極の製造方法
JP6485359B2 (ja) 電気化学素子電極用複合粒子
JP2013247050A (ja) 電気化学素子電極用複合粒子、電気化学素子電極、及び電気化学素子
WO2014030735A1 (ja) 鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池、鉛蓄電池用キャパシタ電極の製造方法および鉛キャパシタ蓄電池の製造方法
JP2013077558A (ja) 電気化学素子用電極
WO2019013218A1 (ja) 電気化学素子用部材の製造方法及び電気化学素子用積層体
JP2010171213A (ja) 電気二重層キャパシタ用電極
JP2010171212A (ja) 電気二重層キャパシタ用電極およびその製造方法
JP2013077561A (ja) 電気化学素子用電極の製造方法
WO2009119553A1 (ja) ハイブリッドキャパシタ用電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832068

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14344711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012832068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012832068

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147009517

Country of ref document: KR

Kind code of ref document: A