JP2013077559A - 電気化学素子用電極の製造方法 - Google Patents

電気化学素子用電極の製造方法 Download PDF

Info

Publication number
JP2013077559A
JP2013077559A JP2012201184A JP2012201184A JP2013077559A JP 2013077559 A JP2013077559 A JP 2013077559A JP 2012201184 A JP2012201184 A JP 2012201184A JP 2012201184 A JP2012201184 A JP 2012201184A JP 2013077559 A JP2013077559 A JP 2013077559A
Authority
JP
Japan
Prior art keywords
roll
electrode
support
layer
long sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012201184A
Other languages
English (en)
Inventor
Yuji Shibata
祐二 柴田
Kazuyuki Onishi
和幸 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2012201184A priority Critical patent/JP2013077559A/ja
Publication of JP2013077559A publication Critical patent/JP2013077559A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 小型の生産設備で、連続的に、電気容量の高い電気化学素子用電極を製造する方法を提供する。
【解決手段】 電極活物質および結着材を含有してなる複合粒子粉末を圧縮して長尺のシート状支持体表面に付着させ、長尺のシート状支持体付圧粉層を形成する圧粉層形成工程、該長尺のシート状支持体付圧粉層を巻回体とせずに、該圧粉層を長尺のシート状集電体に転写する転写工程、および移行と同時に又はその後に加圧する工程を有する電気化学素子用電極の製造方法。
【選択図】図1

Description

本発明は、リチウムイオン二次電池や鉛蓄電池などの二次電池や、電気二重層キャパシタやリチウムイオンキャパシタなどの電気化学素子に用いられる電極(以下、総称して「電気化学素子用電極」と記載することがある。)の製造方法に関する。より詳しくは、小型の生産設備で、連続的に、電気容量の高い電気化学素子用電極を製造する方法に関する。
電気化学素子用電極の製造方法としては、複合粒子を圧縮して電極層を形成する方法が知られている。例えば、特許文献1には、電極組成物層を長尺の支持体表面上に乾式法により形成し、それを巻き取り巻回体とし、該巻回体の電極組成物層を集電体に圧着した後、支持体を電極組成物層から剥離して電気化学素子用電極を製造する方法が開示されている。
特開2010−171366号公報
本発明の目的は、小型の生産設備で、連続的に、電気容量の高い電気化学素子用電極を製造する方法を提供する事である。
本発明者は、上記目的を達成するために検討した結果、長尺のシート状支持体付圧粉層を巻回体とせずに、集電体と貼り合わせれば、小型の生産設備で電気容量の高い電気化学素子用電極を連続的に生産できることを見出した。本発明は、これらの知見に基づいてさらに検討を進め、完成するに至ったものである。
すなわち、本発明は以下の態様を含む。
(1)電極活物質および結着材を含有してなる複合粒子粉末を圧縮して長尺のシート状支持体表面に付着させ、長尺のシート状支持体付圧粉層を形成する圧粉層形成工程、および該長尺のシート状支持体付圧粉層を巻回体とせずに、該圧粉層を長尺のシート状集電体に転写する転写工程、を有する電気化学素子用電極の製造方法、
(2)転写と同時に、又は転写の後に、前記圧粉層を加圧する工程を更に有する、上記(1)に記載の電気化学素子用電極の製造方法、
(3)シート状集電体両面において、前記転写工程を同時に又は相前後して行う、上記(1)または(2)に記載の電気化学素子用電極の製造方法。
(4)圧粉層形成工程後の圧粉層の密度が、圧縮前の複合粒子粉末の密度の130%〜400%である、上記(1)〜(3)のいずれか一つに記載の電気化学素子用電極の製造方法。
(5)圧粉層の復元率が、100%〜5000%である、上記(1)〜(4)のいずれか一つに記載の電気化学素子用電極の製造方法。
(6)シート状支持体がシームレスベルトである、上記(1)〜(5)のいずれか一つに記載の電気化学素子用電極の製造方法。
本発明の製造方法によれば、電気容量の高い電気化学素子用電極を小型の生産設備で連続的に生産することができる。
本発明に係る製造方法に用いられる装置の一例を示す概要図である。 本発明に係る製造方法に用いられる装置の一例を示す概要図である。 本発明に係る製造方法に用いられる装置の一例を示す概要図である。
以下、本発明に係る電気化学素子用電極の製造方法について、図面を参照しながら具体的に説明する。
本発明の製造方法は、電極活物質および結着材を含有してなる複合粒子粉末を圧縮して長尺のシート状支持体表面に付着させ、長尺のシート状支持体付圧粉層を形成する圧粉層形成工程、および該長尺のシート状支持体付圧粉層を巻回体とせずに、該圧粉層を長尺のシート状集電体に転写する転写工程、を有するものである。
(複合粒子)
本発明に用いられる複合粒子は、電極活物質および結着材を含有してなる。本発明でいう複合粒子とは、電極活物質、結着材、及びその他必要に応じて含まれてもよい材料等が集まって一体化した粒子を指す。
(電極活物質)
複合粒子に含有される電極活物質は、電気化学素子用電極内で電子の受け渡しをする物質である。電極活物質には主としてリチウムイオン二次電池用活物質、電気二重層キャパシタ用活物質やリチウムイオンキャパシタ用活物質がある。
又、リチウムイオン二次電池用電極活物質には、正極用、負極用がある。
リチウムイオン二次電池用正極活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能な金属酸化物が挙げられる。かかる金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、燐酸鉄リチウム、燐酸マンガンリチウム、燐酸バナジウムリチウム、バナジン酸鉄リチウム、ニッケル−マンガン−コバルト酸リチウム、ニッケル−コバルト酸リチウム、ニッケル−マンガン酸リチウム、鉄−マンガン酸リチウム、鉄−マンガン− コバルト酸リチウム、珪酸鉄リチウム、珪酸鉄−マンガンリチウム、酸化バナジウム、バナジン酸銅、酸化ニオブ、硫化チタン、酸化モリブデン、硫化モリブデン、等を挙げることができる。さらに、ポリアセチレン、ポリ−p−フェニレン、ポリキノンなどのポリマーが挙げられる。これらのうち、リチウム含有金属酸化物を用いることが好ましい。なお、上記にて例示した正極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。
リチウムイオン二次電池用負極活物質としては、易黒鉛化性炭素、難黒鉛化性炭素、活性炭、熱分解炭素などの低結晶性炭素(非晶質炭素)、グラファイト(天然黒鉛、人造黒鉛)、カーボンナノウォール、カーボンナノチューブ、あるいはこれら物理的性質の異なる炭素の複合化炭素材料、錫やケイ素等の合金系材料、ケイ素酸化物、錫酸化物、バナジウム酸化物、チタン酸リチウム等の酸化物、ポリアセン等が挙げられる。なお、上記に例示した負極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。
リチウムイオン二次電池用電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
リチウムイオン二次電池用電極活物質の体積平均粒子径は、正極用、負極用ともに通常0.1〜100μm、好ましくは0.5〜50μm、より好ましくは0.8〜20μmである。
リチウムイオン二次電池用電極活物質のタップ密度は、特に制限されないが、正極用では2g/cm3以上、負極用では0.6g/cm3以上のものが好適に用いられる。
リチウムイオンキャパシタ用電極活物質には、正極用と負極用がある。
リチウムイオンキャパシタ用正極活物質としては、アニオンおよび/またはカチオンを可逆的にドープ・脱ドープ可能な活性炭、ポリアセン系有機半導体(PAS)、カーボンナノチューブ、カーボンウィスカー、グラファイト等が挙げられる。中でも活性炭、カーボンナノチューブが好ましい。
リチウムイオンキャパシタ用負極活物質としては、リチウムイオン二次電池用負極活物質として例示した材料をいずれも使用することができる。
リチウムイオンキャパシタ用電極活物質の体積平均粒子径は、通常0.1〜100μm、好ましくは0.5〜50μm、更に好ましくは0.8〜20μmである。
リチウムイオンキャパシタ用電極活物質として活性炭を用いる場合、活性炭の比表面積は、通常30m2/g以上、好ましくは500〜3,000m2/g、より好ましくは1,500〜2,600m2/gである。比表面積が約2,000m2/gまでは比表面積が大きくなるほど活性炭の単位重量あたりの静電容量は増加する傾向にあるが、それ以降は静電容量は然程増加せず、かえって電極層の密度が低下し、静電容量密度が低下する傾向にある。また、活性炭が有する細孔のサイズは電解質イオンのサイズに適合していることがリチウムイオンキャパシタとしての特徴である急速充放電特性の面で好ましい。従って、電極活物質を適宜選択することで、所望の容量密度、入出力特性を有する電極層を得ることができる。
電気二重層キャパシタ用電極活物質としては、リチウムイオンキャパシタ用正極活物質として例示された材料を、正極用および負極用として使用することができる。中でも、活性炭が好ましい。
(結着材)
複合粒子に含有される結着材は、電極活物質を相互に結着させる物質である。好適な結着材は、溶媒に分散する性質のある分散型結着材である。分散型結着材としては、溶媒に分散する重合体を用いることができ、そのような重合体としては、例えば、シリコーン系重合体、フッ素系重合体、共役ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、フッ素系重合体、共役ジエン系重合体及びアクリレート系重合体が好ましく、共役ジエン系重合体及びアクリレート系重合体が、耐電圧を高くでき、かつ電気化学素子のエネルギー密度を高くすることができる点でより好ましい。
共役ジエン系重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体混合物における共役ジエンの割合は通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。共役ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。
アクリレート系重合体は、一般式(1):CH2=CR1−COOR2(式中、R1は水素原子またはメチル基を、R2はアルキル基またはシクロアルキル基を表す。R2はさらにエーテル基、水酸基、カルボン酸基、フッ素基、リン酸基、エポキシ基、アミノ基を有していてもよい。)で表される化合物由来の単量体単位を含む重合体、具体的には、一般式(1)で表される化合物の単独重合体、または前記一般式(1)で表される化合物を含む単量体混合物を重合して得られる共重合体である。一般式(1)で表される化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸イソボニル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、および(メタ)アクリル酸トリデシル等の(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシジエチレングリコール、(メタ)アクリル酸メトキシジプロピレングリコール、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸テトラヒドロフルフリル等のエーテル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸−2−ヒドロキシ−3−フェノキシプロピル、2−(メタ)アクリロイロキシエチル−2−ヒドロキシエチルフタル酸等の水酸基含有(メタ)アクリル酸エステル;2−(メタ)アクリロイロキシエチルフタル酸、2−(メタ)アクリロイロキシエチルフタル酸等のカルボン酸含有(メタ)アクリル酸エステル;(メタ)アクリル酸パーフロロオクチルエチル等のフッ素基含有(メタ)アクリル酸エステル;(メタ)アクリル酸リン酸エチル等のリン酸基含有(メタ)アクリル酸エステル;(メタ)アクリル酸グリシジル等のエポキシ基含有(メタ)アクリル酸エステル;(メタ)アクリル酸ジメチルアミノエチル等のアミノ基含有(メタ)アクリル酸エステル;等が挙げられる。
これら(メタ)アクリル酸エステルは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、(メタ)アクリル酸アルキルエステルが好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、および(メタ)アクリル酸n―ブチルやアルキル基の炭素数が6〜12である(メタ)アクリル酸アルキルエステルがより好ましい。これらを選択することにより、電解液に対する膨潤性を低くすることが可能となり、サイクル特性を向上させることができる。
さらに、アクリレート系重合体においては、例えば、2つ以上の炭素−炭素二重結合を有するカルボン酸エステル類、芳香族ビニル系単量体、アミド系単量体、オレフィン類、ジエン系単量体、ビニルケトン類、複素環含有ビニル化合物などの、共重合可能な単量体を共重合させることができる。また、α,β−不飽和ニトリル化合物や酸成分を有するビニル化合物を共重合させることができる。
アクリレート系重合体中における(メタ)アクリル酸エステル単位の含有割合は、好ましくは50〜95重量%であり、より好ましくは60〜90重量%である。(メタ)アクリル酸エステル単位の含有割合を上記範囲とすることにより、電極とした際における柔軟性を向上させることができ、割れに対する耐性を高いものとすることができる。
α,β−不飽和ニトリル化合物としては、アクリロニトリル、メタクリロニトリル、α−クロロアクリロニトリル、α−ブロモアクリロニトリルなどが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、アクリロニトリル、メタクリロニトリルが好ましく、アクリロニトリルがより好ましい。
アクリレート系重合体中におけるα,β−不飽和ニトリル化合物単位の含有割合は、通常0.1〜40重量%、好ましくは0.5〜30重量%、より好ましくは1〜20重量%の範囲である。α,β−不飽和ニトリル化合物単位の含有割合を上記範囲とすることにより、結着材としての結着力をより高めることができる。
酸成分を有するビニル化合物としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、アクリル酸、メタクリル酸、イタコン酸が好ましく、メタクリル酸、イタコン酸がより好ましく、特に、メタクリル酸とイタコン酸とを併用して用いることが好ましい。
アクリレート系重合体中における酸成分を有するビニル化合物単位の含有割合は、好ましくは1.0〜10重量%であり、より好ましくは5.0〜1.5重量%である。酸成分を有するビニル化合物単位の含有割合を上記範囲とすることにより、スラリーとした際における安定性を向上させることができる。
分散型結着材の形状は、特に制限はないが、粒子状であることが好ましい。粒子状であることにより、結着性が良く、また、作製した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができる。粒子状の結着材としては、例えば、ラテックスのごとき結着材の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粒子状のものが挙げられる。
分散型結着材の体積平均粒子径は、好ましくは0.001〜100μm、より好ましくは10〜1000nm、さらに好ましくは50〜500nmである。分散型結着材粒子の平均粒子径を上記範囲とすることにより、スラリーとした際における安定性を良好なものとしながら、得られる電極としての強度及び柔軟性が良好となる。
結着材の量は、電極活物質100重量部に対して、乾燥重量基準で通常は0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜15重量部である。結着材の量がこの範囲にあると、得られる電極層と集電体との密着性が充分に確保でき、かつ、内部抵抗を低くすることができる。
複合粒子は、必要に応じて他の成分を含んでいてもよい。他の成分としては、分散剤、導電材および添加剤などが挙げられる。特に、分散剤、導電材を含んでいることが好ましい。
複合粒子に用いられる分散剤としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩、アルギン酸プロピレングリコールエステルなどのアルギン酸エステル、ならびにアルギン酸ナトリウムなどのアルギン酸塩、ポリアクリル酸、およびポリアクリル酸(またはメタクリル酸)ナトリウムなどのポリアクリル酸(またはメタクリル酸)塩、ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。これらの分散剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。これらの分散剤の使用量は、本発明の効果を損ねない範囲であれば格別な限定はないが、電極活物質100重量部に対して、通常は0.1〜10重量部、好ましくは0.5〜5重量部、より好ましくは0.8〜2重量部の範囲である。
複合粒子に用いられる導電材としては、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびケッチェンブラックが好ましい。
導電材の体積平均粒子径は、電極活物質の体積平均粒子径よりも小さいものが好ましく、その範囲は通常0.001〜10μm、好ましくは0.05〜5μm、より好ましくは0.01〜1μmである。導電材の体積平均粒子径がこの範囲にあると、より少ない使用量で高い導電性が得られる。これらの導電材は、単独で、あるいは二種類以上を組み合わせて用いることができる。
導電材を複合粒子に含有させる場合、導電材の含有割合は、電極活物質100重量部に対して、好ましくは0.1〜50重量部、より好ましくは0.5〜15重量部、さらに好ましくは1〜10重量部である。導電材の含有割合を上記範囲とすることにより、得られる電気化学素子の電気容量を高く保ちながら、内部抵抗を十分に低減することが可能となる。
本発明に用いられる複合粒子は、電極活物質、結着材および必要に応じ含有させる前記導電材等他の成分を用いて造粒することにより得られ、少なくとも電極活物質、結着材を含んでなるが、前記のそれぞれが個別に独立した粒子として存在するのではなく、構成成分である電極活物質、結着材を含む2成分以上によって一粒子を形成するものである。具体的には、前記2成分以上の個々の粒子の複数個が結合して二次粒子を形成しており、複数個(好ましくは数個〜数十個)の電極活物質が、結着材によって結着されて粒子を形成しているものが好ましい。
複合粒子の形状は、流動性の観点から実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をLs、長軸径をLl、La=(Ls+Ll)/2とし、(1−(Ll−Ls)/La)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径Lsおよび長軸径Llは、走査型電子顕微鏡写真像より測定される値である。
複合粒子の体積平均粒子径は、通常0.1〜1000μm、好ましくは1〜200μm、より好ましくは30〜150μmの範囲である。複合粒子の体積平均粒子径をこの範囲にすることにより、所望の厚みの電極層を容易に得ることができるため好ましい。
なお、複合粒子の平均粒子径は、レーザー回折式粒度分布測定装置(例えば、SALD−3100;島津製作所製)にて測定し、算出される体積平均粒子径である。
また、複合粒子としての構造は特に限定されないが、結着材が複合粒子の表面に偏在することなく、複合粒子内に均一に分散する構造が好ましい。
複合粒子の製造方法は特に限定されないが、次に述べる二つの製造方法によって複合粒子を容易に得ることができる。
複合粒子の第一の製造方法は、流動層造粒法である。流動層造粒法は、結着材、および必要に応じて導電材、分散剤やその他の添加剤を含有するスラリーを得る工程、加熱された気流中に電極活物質を流動させ、そこに前記スラリーを噴霧し、電極活物質同士を結着させると共に乾燥する工程を有するものである。以下、流動層造粒法について説明する。
(流動層造粒法)
先ず結着材、および必要に応じて導電材、分散剤やその他の添加剤を含有するスラリーを得る。スラリーを得るために用いる溶媒として、最も好適には水が用いられるが、有機溶媒を用いることもできる。有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコールなどのアルキルアルコール類;アセトン、メチルエチルケトンなどのアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン(以下、NMPということがある。)、ジメチルイミダゾリジノン等のアミド類などが挙げられるが、アルキルアルコール類が好ましい。水よりも沸点の低い有機溶媒を併用すると、流動造粒時に、乾燥速度を上げることができる。また、水よりも沸点の低い有機溶媒を併用すると、結着材の分散性又は溶解型樹脂の溶解性が変わると共に、スラリーの粘度や流動性を溶媒の量又は種類によって調製できるので、生産効率を向上させることができる。
スラリーを調製するときに使用する溶媒の量は、スラリーの固形分濃度が、通常は1〜50重量%、好ましくは5〜50重量%、より好ましくは10〜30重量%の範囲となるような量である。溶媒の量がこの範囲にあるときに、結着材が均一に分散するため好適である。
結着材、必要に応じて導電材、分散剤やその他の添加剤を溶媒に分散又は溶解する方法又は手順は特に限定されず、例えば、溶媒に結着材、導電材、分散剤やその他の添加剤を添加し混合する方法、溶媒に分散剤を溶解した後、溶媒に分散させた結着材(例えば、ラテックス)を添加して混合し、最後に導電材やその他の添加剤を添加して混合する方法、溶媒に溶解させた分散剤に導電材を添加して混合し、それに溶媒に分散させた結着材を添加して混合する方法などが挙げられる。混合の手段としては、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどの混合機器が挙げられる。混合は、通常、室温〜80℃の範囲で、10分〜数時間行う。
次に電極活物質を流動化させ、そこに前記スラリーを噴霧して、流動造粒する。流動造粒としては、流動層によるもの、変形流動層によるもの、噴流層によるものなどが挙げられる。流動層によるものは、熱風で電極活物質を流動化させ、これにスプレー等から前記スラリーを噴霧して凝集造粒を行う方法である。変形流動層によるものは、前記流動層と同様であるが、層内の粉体に循環流を与え、かつ分級効果を利用して比較的大きく成長した造粒物を排出させる方法である。また、噴流層によるものは、噴流層の特徴を利用して粗い粒子にスプレー等からのスラリーを付着させ、同時に乾燥させながら造粒する方法である。本発明における複合粒子の製造方法としては、この3つ方式のうち流動層又は変形流動層によるものが好ましい。
噴霧されるスラリーの温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。流動化に用いる熱風の温度は、通常70〜300℃、好ましくは80〜200℃である。
以上の製造方法によって、電極活物質、結着材および必要に応じて導電材、分散剤やその他の添加剤を含む複合粒子が得られる。
複合粒子の第二の製造方法は、噴霧乾燥造粒法である。以下に説明する噴霧乾燥造粒法によれば、本発明の複合粒子を比較的容易に得ることができるため、好ましい。以下、噴霧乾燥造粒法について説明する。
(噴霧乾燥造粒法)
まず、電極活物質、結着材を含有する複合粒子用スラリーを調製する。複合粒子用スラリーは、電極活物質、結着材、ならびに必要に応じて添加される導電材を、溶媒に分散又は溶解させることにより調製することができる。なお、この場合において、結着材が分散媒としての水に分散されたものである場合には、水に分散させた状態で添加することができる。
複合粒子用スラリーを得るために用いる溶媒としては、通常、水が用いられるが、水と有機溶媒との混合溶媒を用いてもよい。この場合に用いることができる有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルキルアルコール類、アセトン、メチルエチルケトン等のアルキルケトン類、テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類、ジエチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン等のアミド類等が挙げられる。これらの中でも、アルコール類が好ましい。水と、水よりも沸点の低い有機溶媒とを併用することにより、噴霧乾燥時に、乾燥速度を上げることができる。また、これにより、複合粒子用スラリーの粘度や流動性を調整することができ、生産効率を向上させることができる。
また、複合粒子用スラリーの粘度は、室温において、好ましくは10〜3,000mPa・s、より好ましくは30〜1,500mPa・s、さらに好ましくは50〜1,000mPa・sの範囲である。複合粒子用スラリーの粘度がこの範囲にあると、噴霧乾燥造粒工程の生産性を上げることができる。
また、本発明においては、複合粒子用スラリーを調製する際に、必要に応じて、分散剤や界面活性剤を添加してもよい。
界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、ノニオニックアニオン界面活性剤等の両性界面活性剤が挙げられるが、アニオン性又はノニオン性界面活性剤で熱分解しやすいものが好ましい。界面活性剤の配合量は、正極活物質100重量部に対して、好ましくは50重量部以下であり、より好ましくは0.1〜10重量部、さらに好ましくは0.5〜5重量部である。
電極活物質、結着材、ならびに必要に応じて添加される導電材を溶媒に分散又は溶解する方法又は順番は、特に限定されない。また、混合装置としては、たとえば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等を用いることができる。混合は、通常、室温〜80℃の範囲で、10分〜数時間行う。
次いで、得られた複合粒子用スラリーを噴霧乾燥して造粒する。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥する方法である。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーとしては、回転円盤方式と加圧方式との二種類の装置が挙げられる。回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。回転円盤方式において、円盤の回転速度は円盤の大きさに依存するが、通常は5,000〜30,000rpm、好ましくは15,000〜30,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。複合粒子用スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、複合粒子用スラリーを加圧してノズルから霧状にして乾燥する方式である。
噴霧される複合粒子用スラリーの温度は、通常は室温であるが、加温して室温より高い温度としてもよい。また、噴霧乾燥時の熱風温度は、通常80〜250℃、好ましくは100〜200℃である。噴霧乾燥法において、熱風の吹き込み方法は特に制限されず、たとえば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
なお、噴霧方法としては、電極活物質および結着材を含有する複合粒子用スラリーを、一括して噴霧する方法以外にも、結着材および必要に応じてその他添加剤を含有するスラリーを、流動している電極活物質に噴霧する方法も用いることができる。粒子径制御の容易性、生産性、粒子径分布が小さくできる、などの観点から、複合粒子の成分等に応じて最適な方法を適宜選択すればよい。
上記の製造方法で得られた複合粒子には、必要に応じて粒子製造後の後処理を実施することもできる。複合粒子は、単独で又は必要に応じて他の結着材やその他の添加剤を含有させることで、目的の物性を有する電極層を得ることができる。後述する電極層中に含有される複合粒子の含有量は、好ましくは50重量%以上、より好ましくは70重量%以上、さらに好ましくは90重量%以上である。
必要に応じて用いられる他の結着材としては、たとえば、上述した複合粒子に含有される結着材を用いることができる。複合粒子は、すでに結着材を含有しているため、電極層を形成する際に、他の結着材を別途添加する必要はないが、複合粒子同士の結着力をより高めるために他の結着材を添加してもよい。また、他の結着材を添加する場合における該他の結着材の添加量は、複合粒子中の結着材との合計で、電極活物質100重量部に対して、好ましくは0.01〜10重量部、より好ましくは0.1〜5重量部である。また、その他の添加剤としては、水やアルコールなどの成形助剤等が挙げられ、これらは、本発明の効果を損なわない量を適宜選択して加えることができる。
(長尺のシート状支持体)
本発明に用いられる長尺のシート状支持体は、圧粉層を支持するための長尺のシート状のものである。
支持体を構成する材料としては、プラスチックフィルム、紙などが挙げられる。また、上記フィルムを重ねた多層構造のフィルムを用いてもよい。これらの中でも、汎用性や取扱いの観点から、紙や熱可塑性樹脂フィルムが好ましく、熱可塑性樹脂フィルムがより好ましい。熱可塑性樹脂フィルムとしては、ポリテトラフルオロエチレン(PTFE)、PET(ポリエチレンテレフタレート)フィルム、ポリオレフィン系フィルム、PVA(ポリビニルアルコール)フィルム、PVB(ポリビニルブチラールフィルム)、又はPVC(ポリ塩化ビニル)フィルムが挙げられる。中でも、ポリテトラフルオロエチレン(PTFE)が好ましい。
支持体は、粗面化処理、離型処理などの表面処理がされていていることが好ましい。粗面化処理の方法としては、例えば、支持体表面をエンボス処理する方法;支持体表面をサンドブラスト処理する方法;支持体を構成する材料にマット材を練り込む方法;マット材を含む層を支持体表面にコーティングする方法などが挙げられる。中でも、支持体表面を容易に粗面化できるサンドブラスト処理方法が好ましい。
離型処理の方法としては、例えば、アルキド樹脂などの熱硬化性樹脂を支持体上に塗工し、これを硬化する方法;シリコーン樹脂を支持体上に塗工し、これを硬化する方法;フッ素樹脂を支持体上に塗工する方法などが挙げられる。
支持体への表面処理は、片面のみに施してもよく、両面に施してもよい。
支持体の粗面化された面の表面粗さRaは、好ましくは0.1〜5μm、より好ましくは0.2〜3μmの範囲にある。支持体の粗面化された面の表面粗さRaがこの範囲にあることにより、圧粉層と支持体との密着性、及び、支持体付圧粉層を用いて電極を製造する際における支持体の剥離性、の両立が可能となる。
表面粗さRaは、JIS B 0601に準拠して、例えばナノスケールハイブリッド顕微鏡(VN−8010、キーエンス社製)を用いて、粗さ曲線を描き、下式に示す式より算出することができる。下式において、Lは測定長さ、xは平均線から測定曲線までの偏差である。
Figure 2013077559
支持体の厚さは特に限定されないが、10〜200μmが好ましく、20〜150μmがより好ましく、20〜100μmが特に好ましい。支持体の厚さが、上記範囲にあると、長尺のシート状支持体付圧粉層のハンドリング性が向上する。また、幅も特に限定されないが100〜1000mmであると好ましく、100〜500mmであるとより好ましい。
支持体の引っ張り強度は特に限定されないが、30〜500MPaであると好ましく、30〜300MPaであるとより好ましい。支持体の引っ張り強度が、上記範囲であると、長尺のシート状支持体付圧粉層の破断を防ぐことができる。支持体の引っ張り強度は、JIS K 7127に準拠して測定する。
長尺のシート状支持体は、通常、巻回体から引き出され、圧粉層を集電体上に転写させた後にロールなどで巻き取られる。巻き取られた長尺のシート状支持体は、繰り返し使用することも可能であり、電極の生産コストを安くできる。
また、長尺のシート状支持体は、シームレスベルトとすることもできる。
長尺のシート状支持体を繰り返し使用する場合や、シームレスベルトとする場合には、複合粒子粉末を付着させる前にクリーニングすることが好ましい。クリーニングは、例えば、クリーナーロールやバキュームブロアを用いて行うことができる。
(長尺のシート状集電体)
本発明に用いられる集電体は、電極層から電流を取り出すために使用するものであり、長尺のシート状のものである。
集電体を構成する材料の種類としては、例えば、金属、炭素、導電性高分子等が挙げられ、中でも金属が好ましい。より具体的には、正極用集電体としては、アルミニウム、ステンレスなど、負極用集電体としては、ステンレス、銅、ニッケルなどが挙げられる。また、集電体は貫通孔を有しない構造であってもよいが、本発明の方法は、特に貫通孔を有する集電体に適している。貫通孔を有する集電体としては、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、エッチングにより貫通孔を付与したエッチング箔、エンボスロールを用いて突起付与および貫通孔を付与された突起付き集電体などが挙げられる。
貫通孔を有する集電体の開孔部の形状は特に限定されないが、開口率が10〜90%であると好ましく、20〜60%であるとより好ましく、40〜60%であると特に好ましい。開口率は、孔開き集電体の平面観察により求められる。具体的には、孔開き集電体を平面観察し、単位面積当たりの貫通孔の面積を算出することで、開口率を決定する。
長尺のシート状集電体の表面には、導電性接着剤層を形成させてもよい。
導電性接着剤層は、導電性物質を必須成分として含み、必要に応じ成形のための結着材を含む。導電性接着剤層に、結着材を含むことにより、集電体と圧粉層との接着性を高め、電気化学素子の内部抵抗を低減し、出力密度を高めることができる。
導電性接着剤層に用いる導電性物質としては、接着剤層に導電性能を付与することができるものであれば特に制限されないが、導電性フィラー、金属酸化物フィラーが好ましく、導電性フィラーがより好ましい。金属酸化物フィラーとしては、シリカ、酸化鉄、酸化チタンが挙げられるが、中でもシリカが好ましい。導電性フィラーは、導電性を有するものであれば特に限定されないが、中でも、導電性カーボンブラック、黒鉛等が特に好ましい。導電性フィラーの体積平均粒子径は、通常0.001〜10μm、好ましくは0.05〜5μm、より好ましくは0.01〜1μmの範囲である。これらの導電性フィラーは、それぞれ単独または2種以上を組み合わせて用いることができる。
導電性接着剤層に用いる結着材は、電極層と集電体を相互に結着させることができる化合物であれば特に制限はない。中でも、溶媒に分散する性質のある分散型バインダーが好ましい。分散型バインダーとして、例えば、フッ素系重合体、ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン系重合体等の高分子化合物が挙げられる。中でも、フッ素系重合体、ジエン系重合体又はアクリレート系重合体が好ましく、ジエン系重合体又はアクリレート系重合体が、耐電圧を高くでき、電気化学素子のエネルギー密度を高くすることができる点でより好ましい。
本発明において、導電性接着剤層中の結着材の含有量は、導電性物質100質量部に対して、好ましくは0.5〜20質量部、より好ましくは1〜15質量部、特に好ましくは2〜10質量部である。
導電性接着剤層は、導電性物質と、好適に用いられる結着材とを含み、またこれらを均一に分散するための分散剤を含んでいても良い。分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸ナトリウムなどのポリ(メタ)アクリル酸塩;ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。また、カルボキシル基、スルホン酸基、フッ素含有基、水酸基及びリン酸基などの基を、1種以上、好ましくは2種以上含む水溶性のポリマー(特定基含有水溶性ポリマー)も分散剤として用いることができる。
これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。また、前記の特定基含有水溶性ポリマーも好ましく、当該特定基含有水溶性ポリマーとしては、前記の特定基を有し、アクリル酸エステル単量体単位またはメタクリル酸エステル単量体単位を含むアクリル系のポリマーが特に好ましい。
これらの分散剤の使用量は、本発明の効果を損なわない範囲で用いることができ、格別な限定はないが、導電性物質100質量部に対して、通常は0.1〜15質量部、好ましくは0.5〜10質量部、より好ましくは0.8〜5質量部の範囲である。
導電性接着剤層は、導電性物質、好適に用いられる結着材、さらに必要に応じて加えられる分散剤とを、水または有機溶媒中で混練することにより得られる導電性接着剤組成物を、塗布し、乾燥して形成することができる。
導電性接着剤層組成物の製造方法は、特に限定されないが、具体的にはボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、およびホバートミキサーなどを用いることができる。
導電性接着剤層の形成方法は、特に制限されない。例えば、上記導電性接着剤層組成物をドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって、集電体上に形成する。
乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。中でも、遠赤外線の照射による乾燥法が好ましい。乾燥温度と乾燥時間は、塗布した導電性接着剤組成物中の溶媒を完全に除去できる温度と時間が好ましく、乾燥温度は50〜300℃、好ましくは80〜250℃である。乾燥時間は、通常2時間以下、好ましくは5秒〜30分である。
導電性接着剤層の厚みは、通常1〜25μm、好ましくは2〜20μm、より好ましくは2〜10μmである。導電性接着剤層の厚みが、上記範囲であることにより、アンカー効果が良好に発揮され、電子移動抵抗を低減することができる。なお、導電性接着剤層は、集電体の片面のみに形成されていても、両面に形成されていてもよい。
本発明に用いられる集電体は長尺のシート状である。集電体の厚さは特に限定されないが5〜50μmであると好ましく、10〜40μmであるとより好ましい。また、集電体の幅も特に限定されないが、100〜1000mmであると好ましく、200〜500mmであるとより好ましい。
(長尺のシート状支持体付圧粉層を形成する工程)
本発明では、電極活物質および結着材を含有してなる複合粒子粉末を圧縮して長尺のシート状支持体表面に付着させ、長尺のシート状支持体付圧粉層を形成する。
シート状支持体付圧粉層の形成工程においては、ロール加圧、ベルト加圧などの方法を採用できる。このうち、ロール加圧が好ましい。図1では、ロール加圧の方法で圧縮して複合粒子粉末1aを長尺のシート状支持体3表面に付着させて、圧粉層を形成している。
本発明に用いられるロールは、図1に示すロールM1とロールS1のごとく、一対の逆方向に回転するものである。
ロールM1の周速は、通常0.1〜100m/分、好ましくは1〜50m/分である。ロールS1の周速は、通常0.1〜100m/分、好ましくは1〜50m/分である。ロールM1とロールS1の間隔は、通常10〜500μm、好ましくは30〜300μmである。ロールM1のロール表面温度は、通常0〜200℃、好ましくは20〜150℃である。ロールS1のロール表面温度は、通常0〜200℃、好ましくは20〜150℃である。ロールM1とロールS1との間にかける線圧は、通常0.01〜10kN/cm、好ましくは0.02〜5kN/cmである。
ロールM1及びロールS1上には、複合粒子粉末1aを供給するためのフィーダー4が備えられている。複合粒子粉末1aを、該フィーダー4からロールM1,S1間に供給する。
また、長尺のシート状支持体3を、巻回体3aから供給し、ロールM1を抱くようにしてロールM1とロールS1の間に供給する。
ロールM1が反時計回りに、ロールS1が時計回りに回転することによって、ロールM1とシート状支持体3との間に、複合粒子粉末1aを咬み込み、複合粒子粉末1aを圧縮する。これにより、支持体3に複合粒子粉末1aが付着した長尺のシート状支持体付圧粉層が成形される。
ここで、圧粉層1bの密度を複合粒子粉末1aの密度の100〜10000%となるように圧縮することが好ましく、圧粉層1bの密度を複合粒子粉末1aの密度の200〜1000%となるように圧縮することがさらに好ましい。複合粒子粉末1aの密度とは、ゆるめかさ密度である。
次に、長尺のシート状支持体付圧粉層を、ロールS1から離し、ロールM1を抱くようにしてロールの反対側に送る。ロールM1とロールS1との間で一旦圧縮された圧粉層1bは、圧縮力が解放されることによってシート状支持体3上においてその厚さが復元する。圧粉層1bの、圧縮点であるP点およびその近傍における圧縮力印加時の厚さから、解放後の厚さへの復元率は、100%〜5000%であると好ましく、150〜1000%であるとより好ましい。ここで、圧粉層1bの復元率とは、圧縮力を解放した後の圧粉層1bの厚さを、圧縮点であるP点およびその近傍における圧縮力印加時の圧粉層の厚さで割り100を掛けた値である。圧縮点であるP点およびその近傍における圧粉層1bの厚さは、支持体の厚さとロール間隔M1,S1などから推算できる。
復元後の圧粉層1bの密度、即ち圧粉層形成工程後の圧粉層1bの密度は、複合粒子粉末1aの密度の130%〜400%であると好ましく、150%〜300%であるとより好ましい。
ここで、長尺のシート状支持体付圧粉層は、巻回体とせずに、そのまま、次の工程に使用される。巻回体としないことにより、圧粉層1bの密度を低くしたまま、次工程で圧粉層1bを集電体2上に転写させることができる。
なお、図1においては、上記とは別に、集電体2を挟んで反対側に、上記と同様にして、同様の条件にて、長尺のシート状支持体3の表面に圧粉層1bを形成するための構成(すなわち、支持体3の巻回体3a、フィーダー4、および一対のロールM2,S2からなる構成)を備えている。
(圧粉層1bを長尺のシート状集電体2上に転写させる工程)
次に、各支持体3上に形成した圧粉層1bを、長尺のシート状集電体2上に転写させる。具体的には、図1に示すように、各シート状支持体付圧粉層を、ロールM1及びロールM2の回転に沿って搬送しつつ、これらロールM1とロールM2との間に長尺のシート状集電体2を導入し、加圧して、シート状集電体2の両面に圧粉層1bを転写させ、圧粉層1bと集電体2からなる積層体を得る。
ここで、ロールM1の周速は、通常0.1〜100m/分、好ましくは1〜50m/分である。ロールM2の周速は、通常0.1〜100m/分、好ましくは1〜50m/分である。ロールM1とロールM2の間隔は、通常60〜700μm、好ましくは100〜500μmである。ロールM1のロール表面温度は、通常0〜200℃、好ましくは20〜150℃である。ロールM2のロール表面温度は、通常0〜200℃、好ましくは20〜150℃である。ロールM1とロールM2との間にかける線圧は、通常0.01〜10kN/cm、好ましくは0.05〜1kN/cmである。
圧粉層1bを長尺のシート状集電体2上に転写させる方法は、上記のように、圧粉層1bとシート状集電体2を接触させて、ロールで加圧して圧着させる方法の他、赤外線ヒーターや温風などで加温する方法、あるいは、冷風などで冷却する方法を採用できる。例えば、図2に示すように、長尺のシート状支持体付圧粉層の圧粉層1bを長尺のシート状集電体2にロールBで接触させ、その後に赤外線ヒーターや温風などで加温、あるいは、冷風などで冷却する。また、図2に示すように、長尺のシート状支持体付圧粉層が単独で存在する状態とし、金属が存在しない状態とすることで、異物検出、膜厚測定、表面欠陥検査を行うことが容易となる。
(加圧成形)
本発明の電気化学素子用電極の製造方法では、必要により、圧粉層1bと集電体2からなる積層体をさらに加圧成形する。圧粉層1bは、加圧され電極層1cとなる。
図6では、ロールA1とロールA2との間に圧粉層1bと集電体2とからなる積層体を導入し加圧することで、集電体2の両面に、電極層1cを形成している。また、シート状支持体3は、それぞれロール3b,3bによって巻き取られ、圧粉層1bから離れる。
ロールA1の周速は、通常0.1〜100m/分、好ましくは1〜50m/分である。ロールA2の周速は、通常0.1〜100m/分、好ましくは1〜50m/分である。ロールA1とロールA2の間隔は、通常60〜700μm、好ましくは100〜500μmである。ロールA1のロール表面温度は、通常0〜200℃、好ましくは20〜150℃である。ロールA2のロール表面温度は、通常0〜200℃、好ましくは20〜150℃である。ロールA1とロールA2との間にかける線圧は、通常0.01〜10kN/cm、好ましくは0.02〜5kN/cmである。ロールA1及びロールA2のロール径は圧粉層1bを圧縮する際に加える圧力に応じて決めることができるが、通常50〜1000mm、好ましくは100〜500mmである。
ロールA1及びロールA2は、表面処理が施されていてもよい。例えば、ロールA1及びロールA2の外周面に凹凸等の彫刻を設けることにより電気化学素子用電極の表面に模様が形成され、表面の粗さを変更することもできる。
電極層の厚さは、通常10〜1000μm、より好ましくは20〜500μmである。
以下、実施例を示して、本発明を具体的に説明するが、本発明はこれらの実施例に限られるものではない。
(実施例1)
比表面積1,700m2/gの水蒸気賦活活性炭を100部、アセチレンブラックを7.5部、カルボキシメチルセルロースナトリウム塩を1.4部、およびジエン系重合体のラテックス(ガラス転移温度:−19℃)を固形分相当で10部を混合し、さらにイオン交換水を固形分濃度が20%となるように加え、混合分散を行い複合粒子用組成物を得る。この複合粒子用組成物を、スプレー乾燥機を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数16,000rpm、熱風温度150℃、粒子回収出口の温度が85℃で噴霧乾燥造粒を行い、球状複合粒子を得る。この球状複合粒子の球状度は0.12、平均体積粒子径は102μmである。
ここで得られる球状複合粒子、長尺のシート状支持体(粗面化処理として、表面粗さRaが0.4μmとなるようにサンドブラスト処理を施したPETフィルム〔厚み50μm、引っ張り強度200MPa〕)、長尺のシート状集電体(4μmの接着剤塗工済みの厚み30μmのアルミ集電体)を使用し、図3で示される装置(ロール周速10m/分、ロールS3とロールM3の間隔100μm、ロールS3温度25℃、ロールM3温度25℃、ロールS3とロールM3の線圧0.1kN/cm、ロールM3とロールM4の間隔100μm、ロールM4温度25℃、ロールM3とロールM4の線圧0.1kN/cm、ロールA3とロールA4の間隔150μm、ロールA3温度100℃、ロールA4温度100℃、ロールA3とロールA4の線圧1kN/cm)を用いて、集電体の片面に厚み193μmの、電気化学素子用電極を得る。得られる電極の電極層の厚みの精度は全面で4%以内である。
球状複合粒子からなる複合粒子粉末1aのゆるめかさ密度は、0.18g/cc、圧粉層1cの密度は、0.4g/ccである。圧粉層1cの厚さは220μmである。
1a・・・複合粒子粉末
1b・・・圧粉層
1c・・・電極層
2・・・集電体
3・・・長尺のシート状支持体
3a、3c・・・長尺のシート状支持体の巻回体
3b、3d・・・長尺のシート状支持体の巻き取り用ロール
M1、M2、M3、M4、S1、S2、S3・・・ロール
A1、A2、A3、A4・・・加圧成形ロール
B・・・ロール

Claims (6)

  1. 電極活物質および結着材を含有してなる複合粒子粉末を圧縮して長尺のシート状支持体表面に付着させ、長尺のシート状支持体付圧粉層を形成する圧粉層形成工程、および該長尺のシート状支持体付圧粉層を巻回体とせずに、該圧粉層を長尺のシート状集電体に転写する転写工程、を有する電気化学素子用電極の製造方法。
  2. 転写と同時に、又は転写の後に、前記圧粉層を加圧する工程を更に有する、請求項1に記載の電気化学素子用電極の製造方法。
  3. シート状集電体両面において、前記転写工程を同時に又は相前後して行う、請求項1または2に記載の電気化学素子用電極の製造方法。
  4. 圧粉層形成工程後の圧粉層の密度が、圧縮前の複合粒子粉末の密度の130%〜400%である請求項1〜3のいずれか1項に記載の電気化学素子用電極の製造方法。
  5. 圧粉層の復元率が、100%〜5000%である、請求項1〜4のいずれか1項に記載の電気化学素子用電極の製造方法。
  6. シート状支持体がシームレスベルトである、請求項1〜5のいずれか1項に記載の電気化学素子用電極の製造方法。
JP2012201184A 2011-09-14 2012-09-13 電気化学素子用電極の製造方法 Pending JP2013077559A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012201184A JP2013077559A (ja) 2011-09-14 2012-09-13 電気化学素子用電極の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011201153 2011-09-14
JP2011201153 2011-09-14
JP2012201184A JP2013077559A (ja) 2011-09-14 2012-09-13 電気化学素子用電極の製造方法

Publications (1)

Publication Number Publication Date
JP2013077559A true JP2013077559A (ja) 2013-04-25

Family

ID=48480854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012201184A Pending JP2013077559A (ja) 2011-09-14 2012-09-13 電気化学素子用電極の製造方法

Country Status (1)

Country Link
JP (1) JP2013077559A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038889A1 (en) * 2014-09-12 2016-03-17 Toyota Jidosha Kabushiki Kaisha Method of manufacturing lithium-ion secondary battery electrode
JP2016146485A (ja) * 2015-02-06 2016-08-12 コリア・ジェイシーシー・カンパニー・リミテッド 電気二重層コンデンサの高温長寿命電極及びその製造方法
JP2016146483A (ja) * 2014-05-14 2016-08-12 コリア・ジェイシーシー・カンパニー・リミテッド 電気二重層コンデンサの低抵抗電極及びその製造方法
JP2016146484A (ja) * 2015-02-06 2016-08-12 コリア・ジェイシーシー・カンパニー・リミテッド 電気二重層コンデンサの高電圧電極及びその製造方法
JP2016146482A (ja) * 2015-02-06 2016-08-12 コリア・ジェイシーシー・カンパニー・リミテッド 電気二重層コンデンサの高容量電極及びその製造方法
JP2016146481A (ja) * 2014-05-14 2016-08-12 コリア・ジェイシーシー・カンパニー・リミテッド 電気二重層コンデンサの高密度電極及びその製造方法
US10177415B2 (en) 2014-09-29 2019-01-08 Zeon Corporation Adhesive composition for electrochemical device, adhesive layer for electrochemical device, and electrochemical device
JP2020198315A (ja) * 2014-07-22 2020-12-10 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極及び電気化学素子

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146483A (ja) * 2014-05-14 2016-08-12 コリア・ジェイシーシー・カンパニー・リミテッド 電気二重層コンデンサの低抵抗電極及びその製造方法
JP2016146481A (ja) * 2014-05-14 2016-08-12 コリア・ジェイシーシー・カンパニー・リミテッド 電気二重層コンデンサの高密度電極及びその製造方法
JP2020198315A (ja) * 2014-07-22 2020-12-10 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極及び電気化学素子
WO2016038889A1 (en) * 2014-09-12 2016-03-17 Toyota Jidosha Kabushiki Kaisha Method of manufacturing lithium-ion secondary battery electrode
JP2016062654A (ja) * 2014-09-12 2016-04-25 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
US10431807B2 (en) 2014-09-12 2019-10-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing lithium-ion secondary battery electrode
US10177415B2 (en) 2014-09-29 2019-01-08 Zeon Corporation Adhesive composition for electrochemical device, adhesive layer for electrochemical device, and electrochemical device
JP2016146485A (ja) * 2015-02-06 2016-08-12 コリア・ジェイシーシー・カンパニー・リミテッド 電気二重層コンデンサの高温長寿命電極及びその製造方法
JP2016146484A (ja) * 2015-02-06 2016-08-12 コリア・ジェイシーシー・カンパニー・リミテッド 電気二重層コンデンサの高電圧電極及びその製造方法
JP2016146482A (ja) * 2015-02-06 2016-08-12 コリア・ジェイシーシー・カンパニー・リミテッド 電気二重層コンデンサの高容量電極及びその製造方法

Similar Documents

Publication Publication Date Title
JP2013077560A (ja) 電気化学素子用電極の製造方法
WO2013039131A1 (ja) 電気化学素子用電極
JP2013077559A (ja) 電気化学素子用電極の製造方法
JP5423991B2 (ja) リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP6020452B2 (ja) 粉体成形装置及び粉体成形物の製造方法
JP5293383B2 (ja) 支持体付電極組成物層及び電気化学素子用電極の製造方法
WO2007116718A1 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極
JP2008098590A (ja) 電気化学素子用電極およびこれを用いてなる電気化学素子
JP2010097830A (ja) 電気化学素子用電極の製造方法
JP2013045984A (ja) 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
JP2010109354A (ja) 電気化学素子用電極の製造方法
JPWO2013180166A1 (ja) 電気化学素子電極用複合粒子、電気化学素子電極、及び電気化学素子
JP6170149B2 (ja) リチウムイオン電池用電極の製造方法
JP5999237B2 (ja) 粉体圧延装置及び圧延シートの製造方法
WO2013118758A1 (ja) 電気化学素子電極用複合粒子の製造装置及び電気化学素子電極用複合粒子の製造方法
WO2014030735A1 (ja) 鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池、鉛蓄電池用キャパシタ電極の製造方法および鉛キャパシタ蓄電池の製造方法
JP2013077558A (ja) 電気化学素子用電極
JP6569198B2 (ja) 鉛蓄電池用キャパシタ電極および鉛蓄電池用キャパシタ電極の製造方法
JP2013077561A (ja) 電気化学素子用電極の製造方法
JP2010171212A (ja) 電気二重層キャパシタ用電極およびその製造方法
JP2010171213A (ja) 電気二重層キャパシタ用電極
JP6274935B2 (ja) リチウムイオン電池用電極の製造方法
JP5790353B2 (ja) 粉体圧延装置及び圧延シートの製造方法
JP6394203B2 (ja) 鉛蓄電池用キャパシタ電極
JP2010171211A (ja) 電気二重層キャパシタ用電極