JPWO2016013434A1 - 電気化学素子電極用複合粒子、電気化学素子電極、電気化学素子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極の製造方法 - Google Patents

電気化学素子電極用複合粒子、電気化学素子電極、電気化学素子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極の製造方法 Download PDF

Info

Publication number
JPWO2016013434A1
JPWO2016013434A1 JP2016535881A JP2016535881A JPWO2016013434A1 JP WO2016013434 A1 JPWO2016013434 A1 JP WO2016013434A1 JP 2016535881 A JP2016535881 A JP 2016535881A JP 2016535881 A JP2016535881 A JP 2016535881A JP WO2016013434 A1 JPWO2016013434 A1 JP WO2016013434A1
Authority
JP
Japan
Prior art keywords
electrode
electrochemical element
composite particles
composite
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016535881A
Other languages
English (en)
Other versions
JP6760065B2 (ja
Inventor
琢也 石井
琢也 石井
一道 嶋原
一道 嶋原
梓 増田
梓 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2016013434A1 publication Critical patent/JPWO2016013434A1/ja
Priority to JP2020143079A priority Critical patent/JP6954424B2/ja
Application granted granted Critical
Publication of JP6760065B2 publication Critical patent/JP6760065B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明の目的は、低目付で厚み精度の高い電極を作製することができる電気化学素子電極用複合粒子、この電気化学素子電極用複合粒子を用いた電気化学素子電極及び電気化学素子を提供すること、並びに上記電気化学素子電極用複合粒子の製造方法及び上記電気化学素子電極の製造方法を提供することである。本発明は、電極活物質、および結着樹脂を含んでなるスラリーを噴霧乾燥して得られる電気化学素子電極用複合粒子であって、レーザー光回折法を用いた粒子径測定により得られる個数換算の粒子径分布において40μm以下の粒子が全体の50%以下であり、体積換算の粒子径分布において累積95%径(D95径)が300μm以下である電気化学素子電極用複合粒子に関する。

Description

本発明は、電気化学素子電極用複合粒子、この電気化学素子電極用複合粒子を用いた電気化学素子電極及び電気化学素子、並びに上記電気化学素子電極用複合粒子の製造方法及び上記電気化学素子電極の製造方法に関するものである。
小型で軽量であり、エネルギー密度が高く、さらに繰り返し充放電が可能な特性を活かして、リチウムイオン二次電池、電気二重層キャパシタ及びリチウムイオンキャパシタなどの電気化学素子は、その需要を急速に拡大している。リチウムイオン二次電池は、エネルギー密度が比較的大きいことから、携帯電話やノート型パーソナルコンピュータなどのモバイル分野で利用されている。一方、電気二重層キャパシタは急速な充放電が可能なので、パーソナルコンピュータ等のメモリーバックアップ小型電源として利用されている他、電気二重層キャパシタは電気自動車等の補助電源としての応用が期待されている。さらに、リチウムイオン二次電池と電気二重層キャパシタの長所を生かしたリチウムイオンキャパシタは、電気二重層キャパシタよりエネルギー密度、出力密度ともに高いことから電気二重層キャパシタが適用される用途、および電気二重層キャパシタの性能では仕様を満たせなかった用途への適用が検討されている。これらのうち、特に、リチウムイオン二次電池では近年ハイブリッド電気自動車、電気自動車などの車載用途のみならず、電力貯蔵用途にまでその応用が検討されている。
これら電気化学素子への期待が高まる一方で、これら電気化学素子には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性や生産性の向上など、より一層の改善が求められている。このような状況において、電気化学素子用電極に関してもより生産性の高い製造方法が求められている。
電気化学素子用電極は、通常、電極活物質と、必要に応じて用いられる導電材とを結着樹脂で結着することにより形成された電極活物質層を集電体上に積層してなるものである。電気化学素子用電極には、電極活物質、結着樹脂、導電材等を含む塗布電極用スラリーを集電体上に塗布し、溶剤を熱などにより除去する方法で製造される塗布電極があるが、結着樹脂などのマイグレーションにより、均一な電気化学素子の製造が困難であった。また、この方法はコスト高で作業環境が悪くなり、また、製造装置が大きくなる傾向があった。
それに対して、複合粒子を得て粉体成形することにより均一な電極活物質層を有する電気化学素子を得ることが提案されている。このような電極活物質層を形成する方法として、例えば特許文献1には、電極活物質、結着樹脂及び分散媒を含む複合粒子用スラリーを噴霧、乾燥することにより複合粒子を得て、この複合粒子を用いてプレス成形等の乾式成形を行うことにより電極活物質層を形成する方法が開示されている。
また、特許文献2には、複合粒子に微小粒子を外添し流動性を制御することにより大きな厚みを有する活物質層を形成する方法が開示されている。
ところで、近年高出力用の電気化学素子においては、電極活物質層を形成する際に複合粒子の目付け量を低目付け量とした低目付電極が求められている。この場合に加圧成形装置に少量の複合粒子を安定的に定量供給することが求められる。しかし、特許文献1及び2により得られる複合粒子は成形ロール等の加圧成形部に対して複合粒子を定量供給するための定量フィーダーのホッパー内、あるいは複合粒子製造過程における複合粒子梱包工程の定量フィーダーのホッパー内において時折ブリッジ、ラットホールといった種々のホッパートラブルを起こす虞があるため、低目付で厚み精度の高い電極を作製することが困難であった。
特許4929792号公報 特許5141002号公報
本発明の目的は、低目付で厚み精度の高い電極を作製することができる電気化学素子電極用複合粒子、この電気化学素子電極用複合粒子を用いた電気化学素子電極及び電気化学素子を提供すること、並びに上記電気化学素子電極用複合粒子の製造方法及び上記電気化学素子電極の製造方法を提供することである。
本発明者は、上記課題を解決するために鋭意検討の結果、微粉の少ない複合粒子を製造することにより、上記目的を達成できることを見出し、本発明を完成するに至った。
即ち、本発明によれば、
(1) 電極活物質、および結着樹脂を含んでなるスラリーを噴霧乾燥して得られる電気化学素子電極用複合粒子であって、レーザー光回折法を用いた粒子径測定により得られる個数換算の粒子径分布において40μm以下の粒子が全体の50%以下であり、体積換算の粒子径分布において累積95%径(D95径)が300μm以下である電気化学素子電極用複合粒子、
(2) 圧縮度が15%以下である(1)記載の電気化学素子電極用複合粒子、
(3) (1)または(2)記載の電気化学素子電極用複合粒子の短軸径をls、長軸径をll、la=(ls+ll)/2としたとき、(ll−ls)×100/laで表される球形度(%)が15%以下である電気化学素子電極用複合粒子、
(4) 前記噴霧乾燥の後、分級を行うことで得られる(1)〜(3)の何れかに記載の電気化学素子電極用複合粒子、
(5) 集電体と、この集電体上に形成された電極活物質層とを備え、前記電極活物質層は、(1)〜(4)のいずれかに記載の電気化学素子電極用複合粒子を含んでなる、ことを特徴とする電気化学素子電極、
(6) (5)に記載の電気化学素子電極を備える電気化学素子、
(7) (1)〜(4)のいずれかに記載の電気化学素子電極用複合粒子を製造するための電気化学素子電極用複合粒子の製造方法であって、前記電極活物質、および前記結着樹脂を含んでなる前記スラリーを得る工程と、前記スラリーを噴霧乾燥する工程とを有する電気化学素子電極用複合粒子の製造方法、
(8) 前記噴霧乾燥する工程により得られた造粒物を分級する工程を有する(7)記載の電気化学素子電極用複合粒子の製造方法、
(9) (5)記載の電気化学素子電極を製造するための電気化学素子電極の製造方法であって、前記電気化学素子電極用複合粒子を含む電極材料を前記集電体上に加圧成形することにより、前記電極活物質層を得る工程を有する電気化学素子電極の製造方法
が提供される。
本発明の電気化学素子電極用複合粒子及び電気化学素子電極用複合粒子の製造方法によれば、低目付で厚み精度の高い電極を作製することができる。また、低目付で厚み精度の高い電気化学素子電極及び電気化学素子電極の製造方法を提供することができる。また、この電気化学素子電極を用いた電気化学素子を提供することができる。
本発明に用いるロール加圧成形装置の概略図である。
以下、本発明の電気化学素子電極用複合粒子について説明する。本発明の電気化学素子電極用複合粒子(以下、「複合粒子」ということがある。)は、電極活物質、および結着樹脂を含んでなるスラリーを噴霧乾燥して得られる電気化学素子電極用複合粒子であって、レーザー光回折法を用いた粒子径測定により得られる個数換算の粒子径分布において40μm以下の粒子が全体の50%以下であり、体積換算の粒子径分布において累積95%径(D95径)が300μm以下である。
なお、以下において、「正極活物質」とは正極用の電極活物質を意味し、「負極活物質」とは負極用の電極活物質を意味する。また、「正極活物質層」とは正極に設けられる電極活物質層を意味し、「負極活物質層」とは負極に設けられる電極活物質層を意味する。
(電極活物質)
電気化学素子がリチウムイオン二次電池である場合の正極活物質としては、リチウムイオンをドープ及び脱ドープ可能な活物質が用いられ、無機化合物からなるものと有機化合物からなるものとに大別される。
無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。
遷移金属酸化物としては、MnO、MnO2、V25、V613、TiO2、Cu223、非晶質V2O−P25、MoO3、V25、V613等が挙げられ、中でもサイクル安定性と容量からMnO、V25、V613、TiO2が好ましい。遷移金属硫化物としては、TiS2、TiS3、非晶質MoS2、FeS等が挙げられる。リチウム含有複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
層状構造を有するリチウム含有複合金属酸化物としてはリチウム含有コバルト酸化物(LiCoO2)、リチウム含有ニッケル酸化物(LiNiO2)、Co−Ni−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物等が挙げられる。スピネル構造を有するリチウム含有複合金属酸化物としてはマンガン酸リチウム(LiMn24)やMnの一部を他の遷移金属で置換したLi[Mn 3/21/2]O4(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。オリビン型構造を有するリチウム含有複合金属酸化物としてはLiXMPO4(式中、Mは、Mn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoから選ばれる少なくとも1種、0≦X≦2)であらわされるオリビン型燐酸リチウム化合物が挙げられる。
有機化合物としては、例えば、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた正極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。
電気化学素子がリチウムイオンキャパシタである場合の正極活物質としては、リチウムイオンと、例えばテトラフルオロボレートのようなアニオンとを可逆的に担持できるものであればよい。具体的には、炭素の同素体を好ましく用いることができ、電気二重層キャパシタで用いられる電極活物質が広く使用できる。炭素の同素体の具体例としては、活性炭、ポリアセン(PAS)、カーボンウィスカ、カーボンナノチューブ及びグラファイト等が挙げられる。
また、電気化学素子がリチウムイオン二次電池である場合の負極活物質としては電気化学素子の負極において電子の受け渡しをできる物質が挙げられる。電気化学素子がリチウムイオン二次電池である場合の負極活物質としては、通常、リチウムを吸蔵及び放出できる物質を用いることができる。
リチウムイオン二次電池に好ましく用いられる負極活物質の例としては、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性高分子;ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属又はこれらの合金;前記金属又は合金の酸化物又は硫酸塩;金属リチウム;Li−Al、Li−Bi−Cd、Li−Sn−Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン等が挙げられる。また、負極活物質として、当該負極活物質の粒子の表面に、例えば機械的改質法によって導電材を付着させたものを用いてもよい。また、負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
また、電気化学素子がリチウムイオンキャパシタである場合に好ましく用いられる負極活物質としては、上記炭素で形成された負極活物質が挙げられる。
電極活物質層における電極活物質の含有量は、リチウムイオン二次電池の容量を大きくでき、また、電極の柔軟性、及び、集電体と電極活物質層との結着性を向上させることができる観点から、好ましくは90〜99.9重量%、より好ましくは95〜99重量%である。
電極活物質の体積平均粒子径は、複合粒子用スラリーを調製する際の結着樹脂の配合量を少なくすることができ、電池の容量の低下を抑制できる観点、および、複合粒子用スラリーを噴霧するのに適正な粘度に調製することが容易になり、均一な電極を得ることができる観点から、好ましくは1〜50μm、より好ましくは2〜30μmである。
(結着樹脂)
本発明に用いる結着樹脂としては、上述の電極活物質を相互に結着させることができる物質であれば特に限定はない。結着樹脂としては、溶媒に分散する性質のある分散型結着樹脂を好ましく用いることができる。
分散型結着樹脂として、例えば、シリコン系重合体、フッ素含有重合体、共役ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、好ましくはフッ素含有重合体、共役ジエン系重合体およびアクリレート系重合体、より好ましくは共役ジエン系重合体およびアクリレート系重合体が挙げられる。これらの重合体は、それぞれ単独で、または2種以上混合して、分散型結着樹脂として用いることができる。
フッ素含有重合体は、フッ素原子を含む単量体単位を含有する重合体である。フッ素含有重合体の具体例としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、エチレン・テトラフルオロエチレン共重合体、エチレン・クロロトリフルオロエチレン共重合体、パーフルオロエチレン・プロペン共重合体が挙げられる。中でも、PVDFを含むことが好ましい。
共役ジエン系重合体は、共役ジエン系単量体の単独重合体もしくは共役ジエン系単量体を含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。共役ジエン系単量体として、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3ブタジエン、2−クロル−1,3−ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などを用いることが好ましく、電極とした際における柔軟性を向上させることができ、割れに対する耐性を高いものとすることができる点で1,3−ブタジエンを用いることがより好ましい。また、単量体混合物においてはこれらの共役ジエン系単量体を2種以上含んでもよい。
共役ジエン系重合体が、上述した共役ジエン系単量体と、これと共重合可能な単量体との共重合体である場合、かかる共重合可能な単量体としては、たとえば、α,β−不飽和ニトリル化合物や酸成分を有するビニル化合物などが挙げられる。
共役ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン系単量体単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル系単量体・共役ジエン系単量体共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル系単量体・共役ジエン系単量体共重合体;水素化SBR、水素化NBR等が挙げられる。
共役ジエン系重合体中における共役ジエン系単量体単位の割合は、好ましくは20〜60重量%であり、より好ましくは30〜55重量%である。共役ジエン系単量体単位の割合が多すぎると、結着樹脂を含む複合粒子を用いて電極を製造した場合に、耐電解液性が低下する傾向がある。共役ジエン系単量体単位の割合が少なすぎると、複合粒子と集電体との十分な密着性が得られない傾向がある。
アクリレート系重合体は、一般式(1):CH2=CR1−COOR2(式中、R1は水素原子またはメチル基を、R2はアルキル基またはシクロアルキル基を表す。R2はさらにエーテル基、水酸基、リン酸基、アミノ基、カルボキシル基、フッ素原子、またはエポキシ基を有していてもよい。)で表される化合物〔(メタ)アクリル酸エステル〕由来の単量体単位を含む重合体、具体的には、一般式(1)で表される化合物の単独重合体、または前記一般式(1)で表される化合物を含む単量体混合物を重合して得られる共重合体である。一般式(1)で表される化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸イソボニル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、および(メタ)アクリル酸トリデシル等の(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシジエチレングリコール、(メタ)アクリル酸メトキシジプロピレングリコール、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸テトラヒドロフルフリル等のエーテル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸−2−ヒドロキシ−3−フェノキシプロピル、2−(メタ)アクリロイロキシエチル−2−ヒドロキシエチルフタル酸等の水酸基含有(メタ)アクリル酸エステル;2−(メタ)アクリロイロキシエチルフタル酸等のカルボン酸含有(メタ)アクリル酸エステル;(メタ)アクリル酸パーフロロオクチルエチル等のフッ素基含有(メタ)アクリル酸エステル;(メタ)アクリル酸リン酸エチル等のリン酸基含有(メタ)アクリル酸エステル;(メタ)アクリル酸グリシジル等のエポキシ基含有(メタ)アクリル酸エステル;(メタ)アクリル酸ジメチルアミノエチル等のアミノ基含有(メタ)アクリル酸エステル;等が挙げられる。
なお、本明細書において、「(メタ)アクリル」は「アクリル」及び「メタクリル」を意味する。また、「(メタ)アクリロイル」は「アクリロイル」及び「メタクリロイル」を意味する。
これら(メタ)アクリル酸エステルは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのなかでも、(メタ)アクリル酸アルキルエステルが好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、および(メタ)アクリル酸n−ブチルやアルキル基の炭素数が6〜12である(メタ)アクリル酸アルキルエステルがより好ましい。これらを選択することにより、電解液に対する膨潤性を低くすることが可能となり、サイクル特性を向上させることができる。
また、アクリレート系重合体が、上述した一般式(1)で表される化合物と、これと共重合可能な単量体との共重合体である場合、かかる共重合可能な単量体としては、たとえば、2つ以上の炭素−炭素二重結合を有するカルボン酸エステル類、芳香族ビニル系単量体、アミド系単量体、オレフィン類、ジエン系単量体、ビニルケトン類、及び複素環含有ビニル化合物などのほか、α,β−不飽和ニトリル化合物や酸成分を有するビニル化合物が挙げられる。
上記共重合可能な単量体の中でも、電極を製造した際に変形しにくく強度が強いものとすることができ、また、電極活物質層と集電体との十分な密着性が得られる点で、芳香族ビニル系単量体を用いることが好ましい。芳香族ビニル系単量体としては、スチレン等が挙げられる。
なお、芳香族ビニル系単量体の割合が多すぎると電極活物質層と集電体との十分な密着性が得られない傾向がある。また、芳香族ビニル系単量体の割合が少なすぎると、電極を製造した際に耐電解液性が低下する傾向がある。
アクリレート系重合体中における(メタ)アクリル酸エステル単位の割合は、電極とした際における柔軟性を向上させることができ、割れに対する耐性を高いものとする観点から、好ましくは50〜95重量%であり、より好ましくは60〜90重量%である。
分散型結着樹脂を構成する重合体に用いられる、前記α,β−不飽和ニトリル化合物としては、アクリロニトリル、メタクリロニトリル、α−クロロアクリロニトリル、及びα−ブロモアクリロニトリルなどが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのなかでも、アクリロニトリル及びメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。
分散型結着樹脂中におけるα,β−不飽和ニトリル化合物単位の割合は、好ましくは0.1〜40重量%、より好ましくは0.5〜30重量%、さらに好ましくは1〜20重量%である。分散型結着樹脂中にα,β−不飽和ニトリル化合物単位を含有させると、電極を製造した際に変形しにくく強度が強いものとすることができる。また、分散型結着樹脂中にα,β−不飽和ニトリル化合物単位を含有させると、複合粒子を含む電極活物質層と集電体との密着性を十分なものとすることができる。
なお、α,β−不飽和ニトリル化合物単位の割合が多すぎると電極活物質層と集電体との十分な密着性が得られない傾向がある。また、α,β−不飽和ニトリル化合物単位の割合が少なすぎると、電極を製造した際に耐電解液性が低下する傾向がある。
前記酸成分を有するビニル化合物としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、及びフマル酸などが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、アクリル酸、メタクリル酸、およびイタコン酸が好ましく、接着力が良くなる点でメタクリル酸がより好ましい。
分散型結着樹脂中における酸成分を有するビニル化合物単位の割合は、複合粒子用スラリーとした際における安定性が向上する観点から、好ましくは0.5〜10重量%、より好ましくは1〜8重量%、さらに好ましくは2〜7重量%である。
なお、酸成分を有するビニル化合物単位の割合が多すぎると、複合粒子用スラリーの粘度が高くなり、取扱いが困難になる傾向がある。また、酸成分を有するビニル化合物単位の割合が少なすぎると複合粒子用スラリーの安定性が低下する傾向がある。
分散型結着樹脂の形状は、特に限定はないが、粒子状であることが好ましい。粒子状であることにより、結着性が良く、また、製造した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができる。粒子状の結着樹脂としては、例えば、ラテックスのごとき結着樹脂の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。
分散型結着樹脂の平均粒子径は、複合粒子用スラリーとした際における安定性を良好なものとしながら、得られる電極の強度及び柔軟性が良好となる点から、好ましくは0.001〜10μm、より好ましくは10〜5000nm、さらに好ましくは50〜1000nmである。
また、本発明に用いる結着樹脂の製造方法は特に限定されず、乳化重合法、懸濁重合法、分散重合法または溶液重合法等の公知の重合法を採用することができる。中でも、乳化重合法で製造することが、結着樹脂の粒子径の制御が容易であるので好ましい。また、本発明に用いる結着樹脂は、2種以上の単量体混合物を段階的に重合することにより得られるコアシェル構造を有する粒子であっても良い。
本発明の複合粒子中における結着樹脂の配合量は、得られる電極活物質層と集電体との密着性が十分に確保でき、かつ、電気化学素子の内部抵抗を低くすることができる観点から、電極活物質100重量部に対して、乾燥重量基準で好ましくは0.1〜20重量部、より好ましくは0.5〜10重量部、さらに好ましくは1〜5重量部である。
(水溶性高分子)
本発明の複合粒子は、水溶性高分子を含むことが好ましい。本発明に用いる水溶性高分子とは、25℃において、高分子0.5gを100gの純水に溶解させた場合の未溶解分が10.0重量%未満の高分子をいう。
水溶性高分子の具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩、アルギン酸プロピレングリコールエステルなどのアルギン酸エステル、ならびにアルギン酸ナトリウムなどのアルギン酸塩、ポリアクリル酸、およびポリアクリル酸(またはメタクリル酸)ナトリウムなどのポリアクリル酸(またはメタクリル酸)塩、ポリビニルアルコール、変性ポリビニルアルコール、ポリ−N−ビニルアセトアミド、ポリエチレンオキシド、ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。また、非水溶性多糖高分子と組み合わせて用いてもよく、そうすることで、複合粒子の補強効果が得られる。
ここで、非水溶性多糖高分子繊維としては、多糖高分子のナノファイバーを用いることが好ましく、多糖高分子のナノファイバーのなかでも柔軟性を有し、かつ、繊維の引張強度が大きいため複合粒子の補強効果が高く、粒子強度を向上させることができる観点、および、導電材の分散性が良好となる観点から、セルロースナノファイバー、キチンナノファイバー、キトサンナノファイバーなどの生物由来のバイオナノファイバーから選ばれる単独又は任意の混合物を使用するのがより好ましい。これらのなかでも、セルロースナノファイバーを使用するのがさらに好ましく、竹、針葉樹、広葉樹、綿を原料とするセルロースナノファイバーを使用するのが特に好ましい。
(導電材)
本発明の複合粒子は、必要に応じて導電材を含んでいてもよい。必要に応じて用いられる導電材としては、ファーネスブラック、アセチレンブラック(以下、「AB」と略記することがある。)、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)、カーボンナノチューブ、カーボンナノホーン、グラフェンなどの導電性カーボンが好ましく用いられる。これらの中でも、アセチレンブラックがより好ましい。導電材の平均粒子径は、特に限定されないが、より少ない使用量で十分な導電性を発現させる観点から、電極活物質の平均粒子径よりも小さいものが好ましく、好ましくは0.001〜10μm、より好ましくは0.005〜5μm、さらに好ましくは0.01〜1μmである。
導電材を添加する場合における導電材の配合量は、電極活物質100重量部に対して、好ましくは1〜10重量部、より好ましくは1〜5重量部である。
(その他の添加剤)
本発明の複合粒子は、さらに必要に応じてその他の添加剤を含有していてもよい。その他の添加剤としては、例えば、界面活性剤が挙げられる。界面活性剤としては、アニオン性、カチオン性、ノニオン性、ノニオニックアニオン等の両性の界面活性剤が挙げられるが、中でもアニオン性またはノニオン性界面活性剤が好ましい。界面活性剤の配合量は、特に限定されないが、複合粒子中において、電極活物質100重量部に対して好ましくは0〜50重量部、より好ましくは0.1〜10重量部、さらに好ましくは0.5〜5重量部である。界面活性剤を添加することで、複合粒子用スラリーから得られる液滴の表面張力を調整することができる。
(複合粒子の製造方法)
本発明の複合粒子は、電極活物質、および結着樹脂を含んでなるが、電極活物質および結着樹脂のそれぞれが個別に独立した粒子として存在するのではなく、構成成分である電極活物質、結着樹脂を含む2成分以上によって一粒子を形成するものである。具体的には、前記2成分以上の個々の粒子が実質的に形状を維持した状態で複数個が結合して二次粒子を形成しており、複数個(好ましくは数個〜数千個)の電極活物質が、結着樹脂によって結着されて粒子を形成しているものが好ましい。
また、本発明の複合粒子は、電極活物質、結着樹脂、必要に応じ添加される水溶性高分子及び導電材等のその他の成分を含む複合粒子用スラリーを噴霧乾燥することによって得られる。以下、噴霧乾燥造粒法について説明する。
(噴霧乾燥造粒法)
まず、電極活物質、結着樹脂、必要に応じて添加される水溶性高分子及び導電材を含有する複合粒子用スラリー(以下、「スラリー」ということがある。)を調製する。複合粒子用スラリーは、電極活物質、結着樹脂、必要に応じて添加される水溶性高分子及び導電材を、溶媒に分散又は溶解させることにより調製することができる。なお、この場合において、結着樹脂が溶媒に分散されたものである場合には、溶媒に分散させた状態で添加することができる。
複合粒子用スラリーを得るために用いる溶媒としては、水を用いることが好ましいが、水と有機溶媒との混合溶媒を用いてもよく、有機溶媒のみを単独または数種組み合わせて用いてもよい。この場合に用いることができる有機溶媒としては、たとえば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルコール類;アセトン、メチルエチルケトン等のアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン等のアミド類;等が挙げられる。有機溶媒を用いる場合には、アルコール類が好ましい。水と、水よりも沸点の低い有機溶媒とを併用することにより、噴霧乾燥時に、乾燥速度を速くすることができる。また、これにより、複合粒子用スラリーの粘度や流動性を調整することができ、生産効率を向上させることができる。
また、複合粒子用スラリーの粘度は、噴霧乾燥による複合粒子の造粒の生産性を向上させる観点から、室温において、好ましくは10〜3,000mPa・s、より好ましくは30〜1,500mPa・s、さらに好ましくは50〜1,000mPa・sである。
なお、本明細書において記載する粘度は25℃、せん断速度10s-1における粘度である。ブルックフィールドデジタル粘度計DV−II+Proを用いることで測定が可能である。
スラリーを調製する際に使用する溶媒の量は、スラリー中に結着樹脂を均一に分散させる観点から、スラリーの固形分濃度が、好ましくは1〜70重量%、より好ましくは5〜70重量%、さらに好ましくは10〜65重量%となる量である。
電極活物質、結着樹脂、必要に応じて添加される水溶性高分子及び導電材等を溶媒に分散又は溶解する方法又は順番は、特に限定されず、例えば、溶媒に電極活物質、結着樹脂、水溶性高分子および導電材を添加し混合する方法、溶媒に水溶性高分子を溶解した後、電極活物質及び導電材を添加して混合し、最後に溶媒に分散させた結着樹脂(例えば、ラテックス)を添加して混合する方法、溶媒に分散させた結着樹脂に電極活物質および導電材を添加して混合し、この混合物に溶媒に溶解させた水溶性高分子を添加して混合する方法等が挙げられる。
また、混合装置としては、たとえば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等を用いることができる。混合は、好ましくは室温〜80℃で、10分〜数時間行う。
次いで、得られた複合粒子用スラリーを噴霧乾燥して造粒する。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥する方法である。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーとしては、回転円盤方式、カップ方式、二流体ノズル方式及び加圧方式などの装置が挙げられ、回転円盤方式とカップ方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。回転円盤方式において、円盤の回転速度は円盤の大きさに依存するが、好ましくは5,000〜30,000rpm、より好ましくは15,000〜30,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。複合粒子用スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。
カップ方式に用いるカップ型アトマイザーは、所定の回転数で回転するアトマイザー先端のカップに複合粒子用スラリーを導入し、複合粒子用スラリーに回転力を加えながらカップの端部から吐出させることにより、遠心力で複合粒子用スラリーの噴霧を行い霧状の液滴を得るように構成されている。また、カップの向きは上向き、下向きがあるが、そのいずれか片方に限るものではなく、いずれも良好な霧化が可能である。
回転円盤方式またはカップ方式における円盤またはカップの回転速度は、特に限定されないが、好ましくは5,000〜40,000rpm、さらに好ましくは15,000〜30,000rpmである。円盤またはカップの回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の平均粒子径が大きくなる。
また、加圧方式は、複合粒子用スラリーを加圧してノズルから霧状にして乾燥する方式である。
噴霧される複合粒子用スラリーの温度は、好ましくは室温であるが、加温して室温より高い温度としてもよい。また、噴霧乾燥時の熱風温度は、好ましくは25〜250℃、より好ましくは50〜200℃、さらに好ましくは80〜150℃である。噴霧乾燥法において、熱風の吹き込み方法は特に限定されず、たとえば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
(分級)
本発明においては、噴霧乾燥により得られた造粒粒子をさらに分級することが好ましい。分級の方法としては特に限定されないが、重力分級、慣性分級、および遠心分級などの乾式分級法; 沈降分級、機械式分級、および水力分級などの湿式分級法; 振動篩いや面内運動篩いなどの篩い網を用いた、篩い分け分級法;などの分級法を採用することができる。中でも、篩い分け分級法が好ましい。
(複合粒子の物性)
本発明の複合粒子の形状は、流動性が良好でホッパートラブルを防止できる観点、ホッパーからの複合粒子の供給が良好であり、厚み精度の良い電極を得ることができる観点から実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をls、長軸径をll、la=(ls+ll)/2としたとき、(ll−ls)×100/laで表される球形度(%)が好ましくは15%以下、より好ましくは13%以下、さらに好ましくは12%以下、最も好ましくは10%以下である。ここで、短軸径lsおよび長軸径llは、透過型電子顕微鏡または走査型電子顕微鏡の写真像から測定することができる。球形度が大きすぎると、複合粒子の流動性が悪化し、ホッパートラブルが起きやすくなる。また、電極の目付精度が悪化し、厚み精度のよい電極が得難くなる。
本発明の複合粒子の粒子径は、レーザー光回折法を用いた粒子径測定により得られる個数換算の粒子径分布において40μm以下の粒子が全体の50%以下、好ましくは40%以下、より好ましくは10%以下、さらに好ましくは5%以下である。なお、粒子径分布は、レーザー回折式粒度分布測定装置(たとえば、SALD−3100;島津製作所製、マイクロトラックMT−3200II;日機装株式会社製)にて測定することにより得られる。
個数換算の粒子径分布において40μm以下の粒子が上記範囲であることにより、複合粒子の流動性が良好で、ホッパートラブルが起きにくく、さらに、厚み精度の高い均一な電極を得ることができる。また、個数換算の粒子径分布において40μm以下の粒子の割合が多すぎると、複合粒子の流動性が悪化し、ホッパートラブルが起きやすくなる。また、得られる電極の厚み精度が悪化する。
また、本発明の複合粒子の粒子径は、レーザー光回折法を用いた粒子径測定により得られる体積換算の粒子径分布において累積95%径(D95径)が300μm以下、好ましくは40〜250μm、より好ましくは50〜225μm、さらに好ましくは60〜200μmである。
体積換算の粒子径分布において累積95%径(D95径)が上記範囲であることにより、流動性が良好でホッパートラブルを防止でき、また、ホッパーからの複合粒子の供給が良好であり、厚み精度の良い電極を得ることができる。
体積換算の粒子径分布において累積95%径(D95径)が大きすぎると、複合粒子中の粗大粒子が多いため、電極活物質層を成形する際に厚みムラが生じる。また、体積換算の粒子径分布において累積95%径(D95径)が小さすぎると、複合粒子の流動性が悪化し、ホッパートラブルが起きやすくなる。また、電極活物質層を成形する際に厚みムラが生じる。
また、本発明の複合粒子の粒子径は、レーザー光回折法を用いた粒子径測定により得られる体積換算の粒子径分布において累積50%径(D50径)は、好ましくは50〜160μm、より好ましくは50〜130μm、さらに好ましくは50〜110μmである。
また、本発明の複合粒子の圧縮度は、複合粒子の流動性が良好でホッパートラブルを防止できる観点、ホッパーからの複合粒子の供給が良好であり、厚み精度の良い電極が得ることができる観点から、15%以下であることが好ましい。複合粒子の圧縮度が大きすぎると、複合粒子の流動性が悪くなるため、ホッパートラブルが起きやすくなり、また、得られる電極の厚み精度が悪化する。
ここで、圧縮度は固め嵩密度とゆるめ嵩密度を用いて、次式から算出される。
圧縮度={(固め嵩密度−ゆるめ嵩密度)/固め嵩密度}×100
尚、「ゆるめ嵩密度」とは、疎充填の状態の嵩密度をいい、直径5.03cm、高さ5.03cm(容積100mL)の円筒容器(材質:ステンレス)へ試料をJISの22メッシュ(710μm)のふるいを通して、上方23cmから均一に供給し、上面をすり切って秤量することによって測定される。一方、「固め嵩密度」とは、これにタッピングを加えて密充填にした場合の嵩密度をいう。ここで、タッピングとは、試料を充填した容器を一定高さから繰り返し落下させて底部に軽い衝撃を与え、試料を密充填にする操作をいう。実際には、ゆるめ嵩密度を測定する際、上面をすり切って秤量した後、さらにこの容器の上にキャップ(下記ホソカワミクロン社製パウダテスタの備品)をはめ、この上縁まで粉体を加えてタップ高さ1.8cmのタッピングを180回行う。終了後、キャップを外して容器の上面で粉体をすり切って秤量し、この状態の嵩密度を固め嵩密度とする。これらの操作は、例えばホソカワミクロン社製パウダテスタ(PT−D、PT−S等)を使用することにより測定できる。
(電気化学素子電極)
本発明の電気化学素子電極は、上述の複合粒子を含む電極活物質層を集電体上に積層してなる電極である。集電体の材料としては、たとえば、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。金属としては、通常、銅、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から、銅、アルミニウム又はアルミニウム合金を使用するのが好ましい。また、高い耐電圧性が要求される場合には特開2001−176757号公報等で開示される高純度のアルミニウムを好適に用いることができる。集電体は、フィルム又はシート状であり、その厚みは、使用目的に応じて適宜選択されるが、好ましくは1〜200μm、より好ましくは5〜100μm、さらに好ましくは10〜50μmである。
電極活物質層を集電体上に積層する際には、複合粒子をシート状に成形し、次いで集電体上に積層してもよいが、集電体上で複合粒子を直接加圧成形する方法が好ましい。加圧成形する方法としては、例えば、一対のロールを備えたロール式加圧成形装置を用い、集電体をロールで送りながら、振動フィーダーやスクリューフィーダー等の供給装置で複合粒子をロール式加圧成形装置に供給することで、集電体上に電極活物質層を成形するロール加圧成形法や、複合粒子を集電体上に散布し、複合粒子をブレード等でならして厚みを調整し、次いで加圧装置で成形する方法、複合粒子を金型に充填し、金型を加圧して成形する方法などが挙げられる。これらのなかでも、ロール加圧成形法が好ましい。特に、本発明の複合粒子は、高い流動性を有しているため、その高い流動性により、ロール加圧成形による成形が可能であり、これにより、生産性の向上が可能となる。
ロール加圧成形を行う際のロール温度は、均一な電極を作成するためには、好ましくは10〜100℃、より好ましくは20〜60℃、さらに好ましくは20〜50℃である。また、電極活物質層と集電体との密着性を十分なものとすることができる観点から、好ましくは25〜200℃、より好ましくは50〜150℃、さらに好ましくは80〜120℃である。均一な電極を作成するのに好ましい温度領域と、密着性を高めるために好ましい温度領域とが重なり合わない場合は、多段階でロール加圧することで、それらを両立させることが可能である。また、ロール加圧成形時のロール間のプレス線圧は、電極活物質の破壊を防ぐ観点から、好ましくは10〜1000kN/m、より好ましくは200〜900kN/m、さらに好ましくは300〜600kN/mである。また、ロール加圧成形時の成形速度は、好ましくは0.1〜20m/分、より好ましくは4〜10m/分である。
また、成形した電気化学素子電極の厚みのばらつきを無くし、電極活物質層の密度を上げて高容量化を図るために、必要に応じてさらに後加圧を行ってもよい。後加圧の方法は、ロールによるプレス工程が好ましい。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませることにより加圧する。この際においては、必要に応じて、ロールは加熱又は冷却等、温度調節してもよい。
また、電極活物質層の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよく、中でも、導電性接着剤層を形成するのが好ましい。
電極活物質層の密度は、特に制限されないが、通常は0.30〜10g/cm3、好ましくは0.35〜8.0g/cm3、より好ましくは0.40〜6.0g/cm3である。また、電極活物質層の厚みは、特に制限されないが、通常は5〜1000μm、好ましくは20〜500μm、より好ましくは30〜300μmである。
(電気化学素子)
本発明の電気化学素子は、上述のようにして得られる正極、負極、セパレーターおよび電解液を備え、正極または負極のうちの少なくとも一方に本発明の電気化学素子電極を用いる。電気化学素子としては、例えば、リチウムイオン二次電池、リチウムイオンキャパシタ等が挙げられる。
(セパレーター)
セパレーターとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や、芳香族ポリアミド樹脂を含んでなる微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;などを用いることができる。具体例を挙げると、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜;ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜;ポリオレフィン系の繊維を織ったもの又はその不織布;絶縁性物質粒子の集合体等が挙げられる。これらの中でも、セパレーター全体の膜厚を薄くすることができ、リチウムイオン二次電池内の活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。
セパレーターの厚さは、リチウムイオン二次電池においてセパレーターによる内部抵抗を小さくすることができる観点、および、リチウムイオン二次電池を製造する際の作業性に優れる観点から、好ましくは0.5〜40μm、より好ましくは1〜30μm、さらに好ましくは1〜25μmである。
(電解液)
リチウムイオン二次電池用の電解液としては、例えば、非水溶媒に支持電解質を溶解した非水電解液が用いられる。支持電解質としては、リチウム塩が好ましく用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liが好ましい。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。解離度の高い支持電解質を用いるほど、リチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
電解液における支持電解質の濃度は、支持電解質の種類に応じて、0.5〜2.5モル/Lの濃度で用いることが好ましい。支持電解質の濃度が低すぎても高すぎても、イオン伝導度が低下する可能性がある。
非水溶媒としては、支持電解質を溶解できるものであれば特に限定されない。非水溶媒の例を挙げると、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ−ブチロラクトン、ギ酸メチルなどのエステル類;1,2−ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;支持電解質としても使用されるイオン液体などが挙げられる。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。非水溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。一般に、非水溶媒の粘度が低いほどリチウムイオン伝導度が高くなり、誘電率が高いほど支持電解質の溶解度が上がるが、両者はトレードオフの関係にあるので、溶媒の種類や混合比によりリチウムイオン伝導度を調節して使用するのがよい。また、非水溶媒は全部あるいは一部の水素をフッ素に置き換えたものを併用あるいは全量用いてもよい。
また、電解液には添加剤を含有させてもよい。添加剤としては、例えば、ビニレンカーボネート(VC)などのカーボネート系;エチレンサルファイト(ES)などの含硫黄化合物;フルオロエチレンカーボネート(FEC)などのフッ素含有化合物が挙げられる。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
なお、リチウムイオンキャパシタ用の電解液としては、上述のリチウムイオン二次電池に用いることができる電解液と同様のものを用いることができる。
(電気化学素子の製造方法)
リチウムイオン二次電池やリチウムイオンキャパシタ等の電気化学素子の具体的な製造方法としては、例えば、正極と負極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電を防止してもよい。リチウムイオン二次電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。電池容器の材質は、電池内部への水分の侵入を阻害するものであればよく、金属製、アルミニウムなどのラミネート製など特に限定されない。
本発明によれば、低目付で厚み精度の高い電極を作製することができる電気化学素子電極用複合粒子、この電気化学素子電極用複合粒子を用いた電気化学素子電極及び電気化学素子、並びに上記電気化学素子電極用複合粒子の製造方法及び上記電気化学素子電極の製造方法を提供することができる。
以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨及び均等の範囲を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において量を表す「%」及び「部」は、特に断らない限り、重量基準である。
実施例及び比較例において、粒子径分布の測定、圧縮度の測定及び球形度の測定、並びに電極の外観、目付精度及び電極厚み精度の評価はそれぞれ以下のように行った。
<粒子径分布の測定>
複合粒子の粒子径分布の測定は、乾式レーザー回折・散乱式粒度分布測定装置(日機装株式会社製:マイクロトラックMT−3200II)を用いて行った。
<圧縮度の測定>
実施例及び比較例で得られた複合粒子について、ホソカワミクロン社製パウダテスタPT−S型を用いて、下記の通り圧縮度の測定を行った。
まず、実施例及び比較例で得られた複合粒子を、直径5.03cm、高さ5.03cm(容積100mL)の円筒容器(材質:ステンレス)へ22メッシュ(710μm)のふるいを通して、上方23cmから均一に供給し、上面をすり切って秤量することにより、ゆるめ嵩密度を測定した。
次に、実施例及び比較例で得られた複合粒子を、上記で用いたものと同じ円筒容器へ22メッシュのふるいを通して、上方23cmから均一に供給し、上面をすり切って秤量した。その後、さらにこの容器の上にキャップ(上記ホソカワミクロン社製パウダテスタの備品)をはめ、この上縁まで複合粒子を加えてタップ高さ1.8cmのタッピングを180回行った。その後、キャップを外して容器の上面で複合粒子をすり切って秤量することにより、固め嵩密度を測定した。
得られた固め嵩密度およびゆるめ嵩密度を用いて、次式より圧縮度を求めた。
圧縮度={(固め嵩密度−ゆるめ嵩密度)/固め嵩密度}×100
<球形度の測定>
実施例及び比較例で得られた複合粒子を走査型電子顕微鏡で観察し、画像中に見える粒子30個をランダムに選択して、各々の粒子について短軸径ls、長軸径llを測定した。これらの測定値から各々の粒子について、(ll−ls)×100/laで表される球形度(%)を求め(ここで、la=(ls+ll)/2)、これらの平均値を球形度(%)とした。
<目付精度>
実施例及び比較例において作製した電極(リチウムイオン二次電池負極またはリチウムイオン二次電池正極)を、幅方向(TD方向)10cm、長さ方向(MD方向)1mにカットし、カットした電極について、TD方向に均等に3点、及びMD方向に均等に5点の合計15点(=3点×5点)を円状に2cm2打ち抜き重量測定を行い、打ち抜いた電極から集電箔の重さを差し引いたものを目付とし、その平均値A及び平均値から最も離れた値Bを求めた。そして、平均値A及び最も離れた値Bから、下記式(1)にしたがって、目付ムラを算出し、下記基準にて成形性を評価した。目付ムラが小さいほど電極の均一性に優れ、目付精度に優れていると判断できる。
目付ムラ(%)=(|A−B|)×100/A…(1)
A:目付ムラが5%未満
B:目付ムラが5%以上、10%未満
C:目付ムラが10%以上、15%未満
D:目付ムラが15%以上
E:電極層に穴が開いている
<電極の外観>
実施例及び比較例において作製した電極(リチウムイオン二次電池負極またはリチウムイオン二次電池正極)の外観を検査し、欠け、カスレ等の不良がないか確認した。
<厚み精度>
実施例及び比較例において作製した電極(リチウムイオン二次電池負極またはリチウムイオン二次電池正極)の上記外観検査において、欠け、カスレ等が認められない箇所を長手方向に2mにカットし、幅方向(TD方向)の中央から両端にかけて均等に5cm間隔で3点、長さ方向(MD方向)に均等に10cm間隔で膜厚測定を行い、膜厚の平均値A及び平均値から最も離れた値Bを求めた。そして、平均値A及び最も離れた値Bから、下記式(2)にしたがって、厚みムラを算出し、下記基準にて成形性を評価した。厚みムラが小さいほど、厚みの均一性、即ち、厚み精度に優れていると判断できる。
厚みムラ(%)=(|A−B|)×100/A ・・・(2)
A:厚みムラが2.5%未満
B:厚みムラが2.5%以上、5.0%未満
C:厚みムラが5.0%以上、7.5%未満
D:厚みムラが7.5%以上、10%未満
E:厚みムラが10%以上
(実施例1)
(結着樹脂の製造)
攪拌機付き5MPa耐圧容器に、スチレン62部、1,3−ブタジエン34部、メタクリル酸3部、ドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、連鎖移動剤としてt−ドデシルメルカプタン0.4部および重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状の結着樹脂S(スチレン・ブタジエン共重合体;以下、「SBR」と略記することがある。)を得た。
(複合粒子用スラリーの作製)
負極活物質として人造黒鉛(平均粒子径:24.5μm、黒鉛層間距離(X線回折法による(002)面の面間隔(d値)):0.354nm)を97.7部、上記粒子状の結着樹脂Sを固形分換算量で1.6部、水溶性高分子としてカルボキシメチルセルロース(BSH−12;第一工業製薬社製)(以下、「CMC」ということがある。)を固形分換算量で0.7部を混合し、さらにイオン交換水を固形分濃度が35wt.%となるように加え、混合分散して複合粒子用スラリーを得た。
(複合粒子の製造)
上記複合粒子用スラリーを回転円盤方式のピン型アトマイザー(直径84mm)を用いたスプレー乾燥機(大川原化工機社製)に255mL/分で供給し、回転数17,000rpm、熱風温度150℃、粒子回収出口の温度を90℃の条件で噴霧乾燥造粒を行った。
次に噴霧乾燥により得られた複合粒子について分級を行った。具体的には、目開きが125μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、106μmの篩い網を用いて篩い、篩い網下の粒子を除去した。篩い網上に残った複合粒子の粒子径を測定したところ、個数換算の粒子径分布において40μm以下の粒子は全体の0%、体積換算の粒子径分布において累積95%径(D95径)は150μm、体積換算の粒子径分布において累積50%径(D50径)は110μmであった。また、圧縮度は11%、球形度は5%であった。
(リチウムイオン二次電池負極の作製)
リチウムイオン二次電池負極の製造は、図1に示すロール加圧成形装置を用いて行った。ここで、図1に示すようにロール加圧成形装置2は、ホッパー4と、ホッパー4に定量フィーダー16を介して供給された複合粒子6を導電性接着剤層付集電箔8に圧縮する一対のロール(10A,10B)からなるプレ成形ロール10、プレ成形ロール10により形成されたプレ成形体をさらにプレスする一対のロール(12A,12B)からなる成形ロール12、および一対のロール(14A,14B)からなる成形ロール14を備えている。
まず、ロール加圧成形装置2において50℃に加熱されたロール径50mmφの一対のプレ成形ロール10(ロール10A,10B)上に導電性接着剤層付集電箔8を設置した。ここで、導電性接着剤層付集電箔8は、導電性接着剤を銅集電体上にダイコーターで塗布、乾燥することで得た導電性接着剤層付銅集電箔である。次に、定量フィーダー16を介して、前記プレ成形ロール10の上部に設けられたホッパー4に複合粒子6として上記にて得られた複合粒子を供給した。プレ成形ロール10の上部に設けられたホッパー4内の前記複合粒子6の堆積量がある一定高さになったところで、10m/分の速度でロール加圧成形装置2を稼働させ、前記プレ成形ロール10で複合粒子6を加圧成形し、前記導電性接着剤層付銅集電箔上に負極活物質層のプレ成形体を形成した。その後、前記ロール加圧成形装置2のプレ成形ロール10の下流に設けられ、100℃に加熱された二対の300mmφ成形ロール12、14で前記負極活物質層がプレ成形された電極をプレスし、前記電極の表面を均すとともに電極密度を高めた。このままロール加圧成形装置2を連続して10分間稼働し、リチウムイオン二次電池負極を約100m作製した。
(実施例2)
複合粒子の製造における分級の条件を変更した。即ち、目開きが135μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、75μmの篩い網を用いて篩い、篩い網下の粒子を除去した。分級の条件を変更した以外は、実施例1と同様に複合粒子の製造を行った。この複合粒子の個数換算の粒子径分布において40μm以下の粒子は全体の0%、体積換算の粒子径分布において累積95%径(D95径)は137μm、体積換算の粒子径分布において累積50%径(D50径)は87μmであった。また、圧縮度は12%、球形度は5%であった。この複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例3)
複合粒子の製造における分級の条件を変更した。即ち、目開きが135μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、53μmの篩い網を用いて篩い、篩い網下の粒子を除去した。分級の条件を変更した以外は、実施例1と同様に複合粒子の製造を行った。この複合粒子の個数換算の粒子径分布において40μm以下の粒子は全体の13%、体積換算の粒子径分布において累積95%径(D95径)は94μm、体積換算の粒子径分布において累積50%径(D50径)は61μmであった。また、圧縮度は13%、球形度は7%であった。この複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例4)
複合粒子の製造における分級の条件を変更した。即ち、目開きが135μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、38μmの篩い網を用いて篩い、篩い網下の粒子を除去した。分級の条件を変更した以外は、実施例1と同様に複合粒子の製造を行った。この複合粒子の個数換算の粒子径分布において40μm以下の粒子は全体の38%、体積換算の粒子径分布において累積95%径(D95径)は81μm、体積換算の粒子径分布において累積50%径(D50径)は54μmであった。また、圧縮度は14%、球形度は8%であった。この複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例5)
複合粒子の製造における分級の条件を変更した。即ち、目開きが93μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、75μmの篩い網を用いて篩い、篩い網下の粒子を除去した。分級の条件を変更した以外は、実施例1と同様に複合粒子の製造を行った。この複合粒子の個数換算の粒子径分布において40μm以下の粒子は全体の0%、体積換算の粒子径分布において累積95%径(D95径)は98μm、体積換算の粒子径分布において累積50%径(D50径)は75μmであった。また、圧縮度は13%、球形度は5%であった。この複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例6)
複合粒子の製造における分級の条件を変更した。即ち、目開きが63μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、45μmの篩い網を用いて篩い、篩い網下の粒子を除去した。分級の条件を変更した以外は、実施例1と同様に複合粒子の製造を行った。この複合粒子の個数換算の粒子径分布において40μm以下の粒子は全体の26%、体積換算の粒子径分布において累積95%径(D95径)は78μm、体積換算の粒子径分布において累積50%径(D50径)は52μmであった。また、圧縮度は13%、球形度は8%であった。この複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例7)
実施例1で用いた複合粒子用スラリーを加圧方式の圧力ノズル(OUDT−25、大川原化工機社製)に600mL/分で供給し、アシストエアー圧0.045MPaの条件で噴霧した。また、噴霧されたスラリーを熱風温度150℃、粒子回収出口の温度を90℃の条件で乾燥した。
次に噴霧乾燥により得られた複合粒子について分級を行った。具体的には、目開きが250μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、106μmの篩い網を用いて篩い、篩い網下の粒子を除去した。篩い網上に残った複合粒子の粒子径を測定したところ、個数換算の粒子径分布において40μm以下の粒子は全体の0%、体積換算の粒子径分布において累積95%径(D95径)は260μm、体積換算の粒子径分布において累積50%径(D50径)は125μmであった。また、圧縮度は13%、球形度は3%であった。この複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例8)
カップ型アトマイザーとしてランズバーグインダストリー株式会社製霧化装置MRB−21NV(カップ径50mm)を用い、スプレー乾燥機(大川原化工機社製)に実施例1で用いた複合粒子用スラリーを60mL/分で供給し、回転数20,000rpm、熱風温度60℃、粒子回収出口の温度を45℃の条件で噴霧乾燥造粒を行った。この個数換算の粒子径分布において40μm以下の粒子は全体の3%、体積換算の粒子径分布において累積95%径(D95径)は126μm、体積換算の粒子径分布において累積50%径(D50径)は88μmであった。また、圧縮度は12%、球形度は6%であった。この複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例9)
(結着樹脂の製造)
メカニカルスターラー及びコンデンサを装着した反応器に、窒素雰囲気下、脱イオン水210部及び濃度30%のアルキルジフェニルオキシドジスルホネート(ダウファックス(登録商標)2A1、ダウ・ケミカル社製)を固形分換算量で1.67部仕込み、撹拌しながら70℃に加熱し、1.96%過硫酸カリウム水溶液25.5部を反応器に添加した。次いで、メカニカルスターラーを装着した上記とは別の容器に、窒素雰囲気下、アクリル酸ブチル35部、メタクリル酸エチル62.5部、メタクリル酸2.4部、濃度30%のアルキルジフェニルオキシドジスルホネート(ダウファックス(登録商標)2A1、ダウ・ケミカル社製)を固形分換算量で1.67部、及び脱イオン水22.7部を添加し、これを攪拌し、乳化させて単量体混合液を調製した。そして、この単量体混合液を攪拌し、乳化させた状態にて、2.5時間かけて一定の速度で、脱イオン水210部及び過硫酸カリウム水溶液を仕込んだ反応器に添加し、重合転化率が95%になるまで反応させて、粒子状の結着樹脂A(アクリレート系重合体)の水分散液を得た。
(複合粒子用スラリーの作製)
正極活物質としてのLiCoO2(以下、「LCO」ということがある。)91.5部、導電材としてのアセチレンブラック(HS−100、電気化学工業社製)(以下、「AB」ということがある。)6部、結着樹脂としての粒子状の結着樹脂A(アクリレート系重合体)の水分散液を固形分換算で1.5部、水溶性高分子としてカルボキシメチルセルロース(BSH−12;第一工業製薬社製)を固形分換算量で1部混合し、さらにイオン交換水を適量加え、プラネタリーミキサーにて混合分散して固形分濃度50%の正極用の複合粒子用スラリーを調製した。
(複合粒子の製造)
上記複合粒子用スラリーを回転円盤方式のピン型アトマイザー(直径84mm)を用いたスプレー乾燥機(大川原化工機社製)に255mL/分で供給し、回転数17,000rpm、熱風温度150℃、粒子回収出口の温度を90℃の条件で噴霧乾燥造粒を行った。
次に噴霧乾燥により得られた複合粒子について分級を行った。具体的には、目開きが150μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、53μmの篩い網を用いて篩い、篩い網下の粒子を除去した。篩い網上に残った複合粒子の粒子径を測定したところ、個数換算の粒子径分布において40μm以下の粒子は全体の10%、体積換算の粒子径分布において累積95%径(D95径)は87μm、体積換算の粒子径分布において累積50%径(D50径)は56μmであった。また、圧縮度は9%、球形度は4%であった。
(リチウムイオン二次電池正極の作製)
まず、図1に示すロール加圧成形装置2において50℃に加熱されたロール径50mmφの一対のプレ成形ロール10(ロール10A,10B)上に導電性接着剤層付集電箔8を設置した。ここで、導電性接着剤層付集電箔8は、導電性接着剤をアルミニウム集電体上にダイコーターで塗布、乾燥することで得た導電性接着剤層付アルミニウム集電箔である。次に、定量フィーダー16を介して、前記プレ成形ロール10の上部に設けられたホッパー4に複合粒子6として上記にて得られた複合粒子を供給した。プレ成形ロール10の上部に設けられたホッパー4内の前記複合粒子6の堆積量がある一定高さになったところで、10m/分の速度でロール加圧成形装置2を稼働させ、前記プレ成形ロール10で複合粒子6を加圧成形し、前記導電性接着剤層付アルミニウム集電箔上に正極活物質層のプレ成形体を形成した。その後、前記ロール加圧成形装置2のプレ成形ロール10の下流に設けられ、100℃に加熱された二対の300mmφ成形ロール12、14で前記正極活物質層がプレ成形された電極をプレスし、前記電極の表面を均すとともに電極密度を高めた。このままロール加圧成形装置2を連続して10分間稼働し、リチウムイオン二次電池正極を約100m作製した。
(実施例10)
複合粒子の製造における分級の条件を変更した。即ち、目開きが150μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、45μmの篩い網を用いて篩い、篩い網下の粒子を除去した。分級の条件を変更した以外は、実施例9と同様に複合粒子の製造を行った。この複合粒子の個数換算の粒子径分布において40μm以下の粒子は全体の20%、体積換算の粒子径分布において累積95%径(D95径)は85μm、体積換算の粒子径分布において累積50%径(D50径)は58μmであった。また、圧縮度は11%、球形度は5%であった。この複合粒子を用いた以外は、実施例9と同様にリチウムイオン二次電池正極の作製を行った。
(実施例11)
複合粒子の製造における分級の条件を変更した。即ち、目開きが150μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、38μmの篩い網を用いて篩い、篩い網下の粒子を除去した。分級の条件を変更した以外は、実施例9と同様に複合粒子の製造を行った。この複合粒子の個数換算の粒子径分布において40μm以下の粒子は全体の33%、体積換算の粒子径分布において累積95%径(D95径)は82μm、体積換算の粒子径分布において累積50%径(D50径)は55μmであった。また、圧縮度は13%、球形度は4%であった。この複合粒子を用いた以外は、実施例9と同様にリチウムイオン二次電池正極の作製を行った。
(比較例1)
ピン型アトマイザーの回転数を16,700rpmに変更し、分級を行わなかった以外は、実施例1と同様に複合粒子の製造を行った。この複合粒子の個数換算の粒子径分布において40μm以下の粒子は全体の60%、体積換算の粒子径分布において累積95%径(D95径)は158μm、体積換算の粒子径分布において累積50%径(D50径)は84μmであった。また、圧縮度は20%、球形度は7%であった。この複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(比較例2)
分級を行わなかった以外は、実施例1と同様に複合粒子の製造を行った。この複合粒子の個数換算の粒子径分布において40μm以下の粒子は全体の63%、体積換算の粒子径分布において累積95%径(D95径)は93μm、体積換算の粒子径分布において累積50%径(D50径)は57μmであった。また、圧縮度は10%、球形度は10%であった。この複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(比較例3)
実施例1で用いた複合粒子用スラリーをノズル径200μmのノズルを備える小径粒子製造装置(BRACE社製)に5g/分で供給し、振動数2000Hz、振幅500mVの条件でノズルに振動を与えながらスラリーを霧状にし、噴霧を行った。また、噴霧されたスラリーを熱風温度150℃、粒子回収出口の温度を90℃の条件で乾燥し、複合粒子を得た。この複合粒子の個数換算の粒子径分布において40μm以下の粒子は全体の0%、体積換算の粒子径分布において累積95%径(D95径)は420μm、体積換算の粒子径分布において累積50%径(D50径)は380μmであった。また、圧縮度は8%、球形度は4%であった。この複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
Figure 2016013434
表1に示すように、電極活物質、および結着樹脂を含んでなるスラリーを噴霧乾燥して得られる電気化学素子電極用複合粒子であって、レーザー光回折法を用いた粒子径測定により得られる個数換算の粒子径分布において40μm以下の粒子が全体の50%以下であり、体積換算の粒子径分布において累積95%径(D95径)が300μm以下である電気化学素子電極用複合粒子を用いて得られる電極の目付精度、電極の外観及び厚み精度は良好であった。

Claims (9)

  1. 電極活物質、および結着樹脂を含んでなるスラリーを噴霧乾燥して得られる電気化学素子電極用複合粒子であって、レーザー光回折法を用いた粒子径測定により得られる個数換算の粒子径分布において40μm以下の粒子が全体の50%以下であり、体積換算の粒子径分布において累積95%径(D95径)が300μm以下である電気化学素子電極用複合粒子。
  2. 圧縮度が15%以下である請求項1記載の電気化学素子電極用複合粒子。
  3. 請求項1または2記載の電気化学素子電極用複合粒子の短軸径をls、長軸径をll、la=(ls+ll)/2としたとき、(ll−ls)×100/laで表される球形度(%)が15%以下である電気化学素子電極用複合粒子。
  4. 前記噴霧乾燥の後、分級を行うことで得られる請求項1〜3の何れかに記載の電気化学素子電極用複合粒子。
  5. 集電体と、この集電体上に形成された電極活物質層とを備え、
    前記電極活物質層は、請求項1〜4のいずれかに記載の電気化学素子電極用複合粒子を含んでなる、ことを特徴とする電気化学素子電極。
  6. 請求項5に記載の電気化学素子電極を備える電気化学素子。
  7. 請求項1〜4のいずれかに記載の電気化学素子電極用複合粒子を製造するための電気化学素子電極用複合粒子の製造方法であって、
    前記電極活物質、および前記結着樹脂を含んでなる前記スラリーを得る工程と、
    前記スラリーを噴霧乾燥する工程と
    を有する電気化学素子電極用複合粒子の製造方法。
  8. 前記噴霧乾燥する工程により得られた造粒物を分級する工程を有する請求項7記載の電気化学素子電極用複合粒子の製造方法。
  9. 請求項5記載の電気化学素子電極を製造するための電気化学素子電極の製造方法であって、
    前記電気化学素子電極用複合粒子を含む電極材料を前記集電体上に加圧成形することにより、前記電極活物質層を得る工程
    を有する電気化学素子電極の製造方法。
JP2016535881A 2014-07-22 2015-07-13 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法 Active JP6760065B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020143079A JP6954424B2 (ja) 2014-07-22 2020-08-27 電気化学素子電極用複合粒子、電気化学素子電極及び電気化学素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014148984 2014-07-22
JP2014148984 2014-07-22
PCT/JP2015/069984 WO2016013434A1 (ja) 2014-07-22 2015-07-13 電気化学素子電極用複合粒子、電気化学素子電極、電気化学素子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020143079A Division JP6954424B2 (ja) 2014-07-22 2020-08-27 電気化学素子電極用複合粒子、電気化学素子電極及び電気化学素子

Publications (2)

Publication Number Publication Date
JPWO2016013434A1 true JPWO2016013434A1 (ja) 2017-04-27
JP6760065B2 JP6760065B2 (ja) 2020-09-23

Family

ID=55162961

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016535881A Active JP6760065B2 (ja) 2014-07-22 2015-07-13 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP2020143079A Active JP6954424B2 (ja) 2014-07-22 2020-08-27 電気化学素子電極用複合粒子、電気化学素子電極及び電気化学素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020143079A Active JP6954424B2 (ja) 2014-07-22 2020-08-27 電気化学素子電極用複合粒子、電気化学素子電極及び電気化学素子

Country Status (8)

Country Link
US (1) US20170104205A1 (ja)
EP (1) EP3174139B1 (ja)
JP (2) JP6760065B2 (ja)
KR (1) KR102343370B1 (ja)
CN (1) CN106463709B (ja)
HU (1) HUE051162T2 (ja)
PL (1) PL3174139T3 (ja)
WO (1) WO2016013434A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6372273B2 (ja) * 2014-07-22 2018-08-15 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極、電気化学素子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極の製造方法
WO2016186596A2 (en) * 2015-05-20 2016-11-24 Bayram Edip A production method
JP6278014B2 (ja) * 2015-09-08 2018-02-14 トヨタ自動車株式会社 非水電解液二次電池の製造方法
WO2017195784A1 (ja) 2016-05-13 2017-11-16 日本ゼオン株式会社 電気化学素子電極用バインダー粒子集合体、電気化学素子電極用スラリー組成物、およびそれらの製造方法、並びに、電気化学素子用電極および電気化学素子
EP3780158A4 (en) * 2018-03-29 2022-01-05 Nissan Chemical Corporation ENERGY STORAGE DEVICE ELECTRODE AND ENERGY STORAGE DEVICE
KR102056983B1 (ko) 2018-06-15 2019-12-17 이제권 열경화성 수지를 이용한 벌룬 카테타 제조방법 및 그 장치
JP7261601B2 (ja) * 2019-02-07 2023-04-20 日産自動車株式会社 電池用電極の製造方法
CN111847594B (zh) * 2019-04-30 2022-10-21 中关村至臻环保股份有限公司 纳米电化学电极、电极组件及其制备方法
CN111640914A (zh) * 2020-05-24 2020-09-08 河南新太行电源股份有限公司 一种锂离子电池电极的制作方法
US20220416247A1 (en) * 2021-05-11 2022-12-29 Ocella, Inc. Multilayer and/or multidimensional electrode films for energy storage devices, and methods thereof
WO2024117227A1 (ja) * 2022-11-30 2024-06-06 日本ゼオン株式会社 非水系二次電池電極用複合粒子及びその製造方法、非水系二次電池用負極、並びに、非水系二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055044A (ja) * 2011-08-05 2013-03-21 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子、電気化学素子電極材料、及び電気化学素子電極
WO2013039131A1 (ja) * 2011-09-14 2013-03-21 日本ゼオン株式会社 電気化学素子用電極
WO2013109641A1 (en) * 2012-01-17 2013-07-25 Ballast Energy, Inc. Electrode and battery
JP2013179040A (ja) * 2012-01-30 2013-09-09 Nippon Zeon Co Ltd 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141002B2 (ja) 1972-12-18 1976-11-08
JP2000011998A (ja) * 1998-06-23 2000-01-14 Matsushita Electric Ind Co Ltd リチウム電池用正極の製造方法とリチウム電池
JP2001332227A (ja) * 2000-05-19 2001-11-30 Sony Corp コイン型電池
JP4219705B2 (ja) * 2003-02-17 2009-02-04 パナソニック株式会社 二次電池用電極の製造法
JP4839669B2 (ja) * 2005-04-28 2011-12-21 日本ゼオン株式会社 電気化学素子電極用複合粒子
CN102522220A (zh) * 2005-05-26 2012-06-27 日本瑞翁株式会社 电化学元件电极材料和复合颗粒
JP2006339184A (ja) * 2005-05-31 2006-12-14 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子の製造方法
JP4929792B2 (ja) 2006-03-30 2012-05-09 日本ゼオン株式会社 電気化学素子電極用複合粒子
KR100836515B1 (ko) * 2007-02-27 2008-06-12 한국전기연구원 고전압 전해액을 구비한 리튬 이차 전지
JP5767431B2 (ja) 2008-10-03 2015-08-19 日本ゼオン株式会社 電気化学素子電極形成用材料、その製造方法および電気化学素子電極
EP2426760B1 (en) * 2010-09-03 2017-02-15 Biotronik CRM Patent AG A powder mixture for manufacture of a battery electrode, a respective battery elec-trode and a method for manufacturing same
WO2012165422A1 (ja) * 2011-05-31 2012-12-06 日本ゼオン株式会社 リチウム二次電池正極用複合粒子、リチウム二次電池正極用複合粒子の製造方法、リチウム二次電池用正極の製造方法、リチウム二次電池用正極、及びリチウム二次電池
JP2013077559A (ja) * 2011-09-14 2013-04-25 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法
KR20160023665A (ko) * 2013-06-27 2016-03-03 제온 코포레이션 리튬 이온 전지용 전극의 제조 방법
JP6108166B2 (ja) * 2013-06-28 2017-04-05 トヨタ自動車株式会社 二次電池用電極

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055044A (ja) * 2011-08-05 2013-03-21 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子、電気化学素子電極材料、及び電気化学素子電極
WO2013039131A1 (ja) * 2011-09-14 2013-03-21 日本ゼオン株式会社 電気化学素子用電極
WO2013109641A1 (en) * 2012-01-17 2013-07-25 Ballast Energy, Inc. Electrode and battery
JP2013179040A (ja) * 2012-01-30 2013-09-09 Nippon Zeon Co Ltd 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池

Also Published As

Publication number Publication date
JP6954424B2 (ja) 2021-10-27
EP3174139A1 (en) 2017-05-31
KR102343370B1 (ko) 2021-12-23
CN106463709B (zh) 2019-11-26
US20170104205A1 (en) 2017-04-13
WO2016013434A1 (ja) 2016-01-28
KR20170037885A (ko) 2017-04-05
HUE051162T2 (hu) 2021-06-28
JP2020198315A (ja) 2020-12-10
EP3174139A4 (en) 2018-02-14
PL3174139T3 (pl) 2021-01-25
CN106463709A (zh) 2017-02-22
EP3174139B1 (en) 2020-08-19
JP6760065B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6954424B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極及び電気化学素子
JP6217741B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
JP6344384B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
JP6610559B2 (ja) 電気化学素子電極用複合粒子
JP6540692B2 (ja) 電気化学素子電極用複合粒子および電気化学素子電極用複合粒子の製造方法
JP6380526B2 (ja) 電気化学素子電極用複合粒子
JP6485359B2 (ja) 電気化学素子電極用複合粒子
JP6344143B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6344110B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6344111B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6372273B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極、電気化学素子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極の製造方法
JP6365160B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6344132B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6467808B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極材料の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6398461B2 (ja) 電気化学素子電極用複合粒子の製造方法
JP6347165B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法、および電気化学素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6760065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250