WO2013034628A1 - Oberflächenmontierbares elektronisches bauelement - Google Patents

Oberflächenmontierbares elektronisches bauelement Download PDF

Info

Publication number
WO2013034628A1
WO2013034628A1 PCT/EP2012/067378 EP2012067378W WO2013034628A1 WO 2013034628 A1 WO2013034628 A1 WO 2013034628A1 EP 2012067378 W EP2012067378 W EP 2012067378W WO 2013034628 A1 WO2013034628 A1 WO 2013034628A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
recess
semiconductor substrate
recesses
underside
Prior art date
Application number
PCT/EP2012/067378
Other languages
English (en)
French (fr)
Inventor
Claus MÄHNER
Original Assignee
Vishay Semiconductor Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Semiconductor Gmbh filed Critical Vishay Semiconductor Gmbh
Priority to US14/342,999 priority Critical patent/US10629485B2/en
Publication of WO2013034628A1 publication Critical patent/WO2013034628A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54406Marks applied to semiconductor devices or parts comprising alphanumeric information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02379Fan-out arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05008Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body, e.g.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05569Disposition the external layer being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1451Function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81192Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER

Definitions

  • the present invention relates to a surface-mountable connection-wire-free electronic component with a semiconductor substrate, wherein a plurality of solderable pads are arranged on the underside of the component, and a method for its production.
  • a surface-mountable component as described, for example, in DE 20 2008 005 708 Ul, is typically electrically conductively connected to a printed circuit board (PCB).
  • PCB printed circuit board
  • a surface-mountable device has no connection wires that protrude from the housing of the device or over the housing to be connected to the principle of through-hole mounting to the circuit board.
  • a surface-mountable device has a plurality of solderable pads, by means of which the component is soldered onto the printed circuit board.
  • a corresponding arrangement of contacting surfaces is provided on the circuit board.
  • the contacting surfaces are printed, for example by means of screen / stencil printing with a solder paste. After equipping the circuit board with a plurality of components, they are soldered in the so-called reflow process with the contacting surfaces of the circuit board. Alternatively, it is also known to glue the surface-mountable components first onto the printed circuit board and finally to solder them in the so-called wave or wave bath.
  • the arrangement of the connection surfaces on the underside of the component is precisely defined, so that a corresponding arrangement of contacting surfaces can be provided on the associated printed circuit board.
  • a particular advantage of such trained components is that they require little space on the circuit board. This results in a large population density.
  • the object is achieved by a component having the features of claim 1 and in particular by the fact that at least one recess is formed in the region of the edges surrounding the underside, and that the recess is covered with an insulating layer.
  • the recesses may be provided peripherally circumferentially, ie extend over all the edges bounding the underside, or may be provided only on subsections, for example on those sections that are in the immediate vicinity of pads. If reference is made in the context of the invention to the underside or another side of the component, this statement refers to the position of use of the component, ie when the component is mounted after its manufacture, for example on a printed circuit board.
  • the component preferably has connection surfaces exclusively on its underside and thus differs from components which have further connection surfaces, for example also on the upper side of the component, as is the case, for example, with transistors or other components produced by the so-called mesa process is.
  • the semiconductor substrate is produced by means of a planar process.
  • the semiconductor substrate is undoped in the region of its side surfaces. In particular, there are no p / n transitions in the area of the side surfaces.
  • the maximum depth of the recess is at least 5 ⁇ m and at most 40 ⁇ m, preferably about 10 to 15 ⁇ m.
  • the maximum depth is understood to mean the greatest possible depth of the recess, ie the distance of the deepest point of the recess from the plane defined by the underside of the component. At lower maximum depths than 5 ⁇ m, no improvement in the short-circuit safety during soldering can be achieved, while at maximum depths of more than 40 ⁇ m, only a slight increase in short-circuit safety is to be expected in comparison with the additional production outlay.
  • the maximum depth of the recess is preferably at least 2% and at most 10% of the height of the component, in particular between about 3% to 6% of the height of the component.
  • the respective recess (and preferably also the associated insulation layer) extends only along a small fraction of the height of the component.
  • the respective recess does not have to be particularly deep, but may rather be flat.
  • the said maximum depth may be approximately equal to or even less than the width of the recess.
  • the width of the recess means the maximum lateral extent of the recess, starting from a plane defined by the associated side surface of the component.
  • the maximum depth of the recess may be at most half the width of the trench, which is formed before the separation of adjacent components to produce the respective recess.
  • the recess is formed as a groove, i. as a round recess, which preferably corresponds in cross section to a quarter circle.
  • a groove is also referred to as a U-trench. Due to the coincidence of adjacent components after the formation of such a U-trench, the respective recess naturally has only half a U-shape.
  • the recess may comprise a flat, inclined relative to a plane defined by the underside of the device level flank portion, wherein the degree of inclination is preferably 30 to 80 °, in particular about 60 °.
  • Such a configuration of the recesses is also referred to as a V-trench.
  • U- and V-shaped recesses or trenches This essentially results in a trapezoidal shape of the relevant trench, ie, in comparison to a V-shape, a plateau is additionally provided on the underside of the V-shape.
  • the recess has in this case (after the agreement Teln adjacent components) accordingly the shape of a half of a trapezoid.
  • the recess further comprises a bottom portion adjacent to the inclined flank portion on the one hand and to a side face of the substrate on the other hand, which preferably extends parallel to the plane defined by the underside of the semiconductor substrate.
  • the insulating layer preferably comprises silicon oxide, silicon nitride, lacquer and / or adhesive. Such materials have proven to be particularly suitable for the production of the insulating layer. In particular, these materials are used in the manufacture of electronic components, so that no additional or previously unusual technologies must be handled.
  • the thickness of the insulating layer is less than 2 ⁇ m, preferably less than 1 ⁇ m. So it is sufficient to apply a relatively thin insulating layer on the recesses, with a uniform
  • Layer thickness is not mandatory. However, it should not fall below a minimum thickness of 50 nm, in order to ensure sufficient stability and insulating capacity of the insulating layer.
  • Another object of the invention is to provide a method for producing a connection-wire-free electronic component of the type mentioned, which avoids the disadvantages mentioned above and is inexpensive to perform.
  • the object is achieved by the features of the independent method claim and in particular by a method for producing len of surface mountable connection wire-free electronic components having a respective semiconductor substrate, on the underside of several solderable pads are arranged.
  • the method comprises the steps:
  • the introduction of the recesses and the application of the insulation layer is preferably carried out before the separation of the components.
  • the recesses and the insulation layer can be produced in a particularly simple manner.
  • the separation can be carried out by suitable methods such as sawing or cutting, in particular by laser cutting.
  • the method additionally comprises the application of the connection surfaces, wherein the connection surfaces can be applied temporally both before and after the application of the insulation layer.
  • the insulation layer can also cover further surface sections on the underside of the component, for example areas between the connection areas or those areas which are covered in a subsequent method step with metallization layers, which in turn are in connection with the connection areas.
  • the recesses are produced by means of an etching process.
  • the recesses can also be produced by other methods, for example by means of a laser.
  • the recesses are produced and further structures in the semiconductor substrate material are produced, in particular a marking code is generated on one of the surface areas of the wafer opposite to one another, in the same method step. Since marking codes in the form of indentations on the upper side of the component are usually introduced in the production of generic components anyway, which is also referred to as marking and is carried out, for example, by means of an etching process, no additional method step is required for producing the indentations.
  • the insulating layer is preferably applied by means of chemical or physical vapor deposition. This ensures adequate strength and homogeneity of the insulation layer. In addition, no modification of the production equipment is usually required to carry out the method according to the invention. In principle, depending on the material used for the insulating layer, other coating methods are possible, for example vapor deposition, sputtering, spraying and / or dipping.
  • the insulating layer may have a single-layered or multi-layered structure.
  • active structures are generated in the respective component (eg p / n junctions, the singulation of the components taking place along the separation lines outside the active structures.)
  • active structures there are no active structures in the component Range of (typically uninsulated) side surfaces of the device.
  • the invention further relates to a method for connecting a surface mountable connection-wire-free electronic component according to one of the device claims with a printed circuit board having a plurality of contacting surfaces, which are assigned to respective pads of the device.
  • the method comprises the steps:
  • FIG. 1 shows a schematic cross-sectional view of an electronic component according to the invention according to a first embodiment
  • FIG. 2 shows a schematic cross-sectional illustration of an electronic component according to the invention in accordance with a second exemplary embodiment
  • FIG. 3 is a cross-sectional view of a component mounted on a printed circuit board according to the first embodiment
  • 4 and 5 are perspective views of a device according to the first embodiment.
  • FIGS. 1 to 5 show a surface-mountable electronic component 10 according to the invention that is free of connection wire according to a first or a second exemplary embodiment.
  • the component 10 is a diode, as can be used, for example, as a so-called ESD component in the form of a protective diode for protection against electrostatic charges.
  • the present invention is not limited to diodes, but can basically be used in all conceivable types of electronic components, especially in much more complex integrated circuits.
  • the device 10 includes a semiconductor substrate 12 having a substantially parallelepiped shape. In the interior of the semiconductor substrate 12 are in the present embodiments, two active structures 16, which are formed by known methods in boundary regions of the semiconductor substrate 12 on the underside 14 of the device 10.
  • the active structures 16 are in electrical contact with respective connection sections 18 which are formed on the underside 14 by respective metallization layers.
  • the connecting portions 18 are in turn with respective solderable pads 20 in electrical contact, which are also formed by metallization layers. As can be clearly seen in Fig. 5, the pads 20 have a rectangular shape.
  • the finished component 10 has no housing.
  • the connecting surfaces 20 are provided for forming soldering contacts with corresponding contacting surfaces 34, which are formed on a printed circuit board 32 in the form of copper surfaces (see FIGS. 3 and 4).
  • the electrical and mechanical connection between the component 10 and the printed circuit board 32 is produced by a solder 36.
  • these recesses 22 have the shape of a groove.
  • the recesses 22 in the second embodiment according to FIG. 2 have a plane defined by the underside 14 of the device 10 by an angle of about 60 ° inclined flank portion 28. Furthermore, the recesses 22 here on the one hand on the inclined flank portion 28 and on the other hand the corresponding side surface 25 of the component 10 adjacent bottom portion 30 which is parallel to the plane defined by the bottom 14.
  • the recesses 22 are circumferentially circumferential in the present embodiments, but may alternatively only partially be provided along the bottom 14 of the device 10 bounding edges.
  • the recesses 22 are covered by an insulating layer 24a, which preferably consists of silicon oxide but can also be made of other electrically non-conductive materials such as, for example, silicon nitride, lacquer or adhesive. A combination of different insulating materials is possible.
  • a further insulating layer 24b is provided on the underside 14 of the device and immediately overlies the semiconductor substrate 12 except for the junctions between the active structures 16 and the connecting sections 18. Further, an insulating layer 24c is provided which defines the connecting sections 18 except for the contact points between the connecting sections Covered 18 and the pads 20.
  • an insulating layer 24d is also provided on the upper side 26 of the component 10.
  • FIGS. 1 and 2 are not to scale.
  • the recesses 22 are shown greatly enlarged in relation to the height and the width of the component 10.
  • the different layer thicknesses are not to scale.
  • the component 10 in the generated by means of a scanning electron microscope Fig. 3 to 5 is shown approximately to scale.
  • the dimensions of the device 10 are approximately 0.6mm x 0.3mm x 0.3mm.
  • the maximum depth of the recesses 22 is about 10 to 15 microns.
  • the maximum lateral Ers extension of the recesses 22 is in the embodiment of FIG. 3 to 5 also about 10 to 15 microns, but may fundamentally deviate from the maximum depth.
  • the device 10 according to the invention has dimensions (length, width, height), which are preferably less than 1 mm. Although this makes it possible to achieve a particularly high assembly density on a printed circuit board. However, with such small dimensions of the component 10 there is a particularly high risk of a possible short circuit between the connection surfaces 20 and the non-electrically insulated side surfaces 25 due to the solder 36. Therefore, with such small dimensions, the recesses 22 with the insulation layer 24a are particularly advantageous.
  • a mark code 38 formed by depressions ( Figures 3 and 4).
  • the insulating layers 24a to 24d are not visible in FIGS. 3 to 5 because of their small thickness, which is preferably less than 1 .mu.m.
  • the connecting portions 18 and the pads 20 are also not visible due to the position of the cutting plane.
  • the recesses 22 effectively prevent the non-insulated side surfaces 25 of the device 10 and the semiconductor substrate 12 from attaching the circuit board 32 can come into contact with the solder 36.
  • the solder 36 has a bulge in the region of the recess 22 in the direction of the component 10, as can be clearly seen in the left half of FIG. 3, the recess 22 establishes a distance between the solder 36 and the non-insulated side surface 25 sufficient to avoid electrical contact or short circuit. In the region of the recess 22 itself, the electrical contact is prevented by the insulating layer 24a.
  • the recess 22 and the associated insulation layer 24a thus merely serve to avoid a short circuit between the connection surfaces 20 and the respective conductive side surface 25, and not between the connection surfaces 20 and the active structures 16 of the device 10 respective recess 22 and above all to the associated insulation layer 24a (material and thickness) are made relatively small demands in order to bring about the desired short-circuit safety (in comparison, for example, to the electrical insulation of a p / n junction).
  • components 10 are usually produced by first producing the desired semiconductor structures (active structures 16) in a planar manner for a plurality of components 10 in a wafer in a planar process, and then applying the respective connection surfaces 20 and the associated connection portions 18.
  • the wafer is subsequently by means of suitable Dividing processes, such as sawing, laser cutting or other cutting processes shared to separate the finished devices 10. Further processing of the separated components 10 is generally not required and would be possible, in particular for very small components, if at all, only with great effort.
  • the production method according to the invention additionally provides for the recesses 22 to be introduced into the wafer before the singulation. This can be done, for example, by etching, wherein the inclusions 22 are preferably produced in the same method step as the marking code 38.
  • the recesses 22 are introduced along the later separating points between the components to be separated in the form of, for example, U-shaped trenches (FIG. 1) or V-shaped trenches (FIG. 2).
  • the subsequent separation of the individual components 10 takes place in the region of these trenches, wherein a symmetrical separation of the trench contours is sought in order to ensure uniform dimensions of the recesses 22.
  • each component 10 accounts for approximately one half of a trench while the other half is for a respective adjacent component 10.
  • insulation layer 24a also takes place before the singulation.
  • Insulation layers 24a are applied simultaneously with one or more of the remaining insulation layers 24b to 24d, so that complex masking steps can be omitted.
  • the isolated components 10 are positioned, for example, by means of a placement machine on a respective printed circuit board 32 and soldered there to the contacting surfaces 34. If for this purpose the solder 36 has previously been applied to the contacting surfaces 34 of the printed circuit board 32, the provision of the recesses 22 with the respective insulating layer 24a on the components 10 proves to be particularly advantageous since the contacting surfaces 34 of the printed circuit board 32 (and thus the Lot 36 provided thereon typically protrude beyond the contour of the respective component 10, whereby a particularly high risk of a short circuit exists.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

Ein oberflächenmontierbares anschlussdrahtfreies elektronisches Bauelement umfasst ein Halbleitersubstrat, wobei an der Unterseite des Bauelements mehrere lötfähige Anschlussflächen angeordnet sind. Das Bauelement ist dadurch gekennzeichnet, dass im Bereich der die Unterseite umgrenzenden Kanten wenigstens eine Eintiefung ausgebildet ist, und dass die Eintiefung mit einer Isolationsschicht bedeckt ist. Ein Verfahren zum Herstellen eines derartigen Bauelements umfasst das Erzeugen von entsprechenden Eintiefungen.

Description

Oberflächenmontierbares elektronisches Bauelement
Die vorliegende Erfindung betrifft ein oberflächenmontierbares anschluss- drahtfreies elektronisches Bauelement mit einem Halbleitersubstrat, wobei an der Unterseite des Bauelements mehrere lötfähige Anschlussflächen angeordnet sind, sowie ein Verfahren zu dessen Herstellung. Ein derartiges oberflächenmontierbares Bauelement, wie es beispielsweise in DE 20 2008 005 708 Ul beschrieben ist, wird typischerweise mit einer Leiterplatte ("printed circuit board", PCB) elektrisch leitend verbunden. Zu diesem Zweck besitzt ein solches Bauelement jedoch keine Anschlussdrähte, die aus dem Gehäuse des Bauelements herausragen oder über das Gehäuse überstehen, um nach dem Prinzip der Durchsteckmontage mit der Leiterplatte verbunden zu werden. Stattdessen weist ein oberflächenmontierbares Bauelement mehrere lötfähige Anschlussflächen auf, mittels derer das Bauelement auf die Leiterplatte gelötet wird. Hierfür ist an der Leiterplatte eine entsprechende Anordnung von Kontaktierungsflächen vorgesehen. Die Kontaktierungsflächen werden beispielsweise mittels Sieb -/Schablonendruck mit einer Lotpaste bedruckt. Nach dem Bestücken der Leiterplatte mit mehreren Bauelementen werden diese im sogenannten Reflow- Verfahren mit den Kontaktierungsflächen der Leiterplatte verlötet. Alternativ ist es auch bekannt, die oberflächenmontierbaren Bau- elemente zunächst auf die Leiterplatte aufzukleben und schließlich im sogenannten Wellen- oder Schwallbad zu löten. Die Anordnung der Anschlussflächen an der Unterseite des Bauelements ist genau definiert, damit an der zugeordneten Leiterplatte eine entsprechende Anordnung von Kontaktierungsflächen vorgesehen sein kann. Ein besonderer Vorteil derartig ausgebildeter Bauelemente besteht darin, dass diese nur wenig Platz auf der Leiterplatte beanspruchen. Somit ergibt sich eine große Bestückungsdichte.
Beim Verlöten derartiger oberflächenmontierbarer Bauelemente besteht jedoch die Gefahr, dass überschüssiges Lot mit den in der Regel durch das Halbleitersubstrat gebildeten Seitenflächen des Bauelements in Kontakt kommt und dadurch Kurzschlüsse verursacht. Bedingt durch das Herstellungsverfahren sind die Seitenflächen derartiger oberflächenmontierbarer Bauelemente nämlich typischerweise nicht elektrisch isoliert. Die Gefahr von Kurzschlüssen kann dadurch vermindert werden, dass die Anschlussflächen vom Rand des Bauelements weg nach innen versetzt werden. Dies ist jedoch aus Platzgründen oftmals nicht möglich oder nicht erwünscht. Weiterhin kann der Abstand der Anschlussflächen zu der Unterseite des Bauelements und damit letztlich auch zu den Seitenflächen vergrößert werden, indem zwischen der Unterseite des Bauelements und den Anschlussflächen zusätzliche Schichten in Form von dicken Metallisierungsschichten und/ oder Podesten aus Isolationsschichten vorgesehen werden. Beide Varianten sind jedoch technisch nur eingeschränkt umsetzbar und erfordern zusätzliche, mit hohem Aufwand verbundene Pro- zessschritte bei der Herstellung des Bauelements.
Es ist daher die Aufgabe der Erfindung, ein elektronisches Bauelement der eingangs genannten Art anzugeben, das sicher und zuverlässig an einer Leiterplatte montiert werden kann und kostengünstig herzustellen ist. Die Lösung der Aufgabe erfolgt durch ein Bauelement mit den Merkmalen des Anspruchs 1 und insbesondere dadurch, dass im Bereich der die Unterseite umgrenzenden Kanten wenigstens eine Eintiefung ausgebildet ist, und dass die Eintiefung mit einer Isolationsschicht bedeckt ist. Durch das Einbringen von einer oder mehreren Eintiefungen und das Bedecken dieser Eintiefung(en) mit einer Isolationsschicht wird der effektive Abstand zwischen den Anschlussflächen und den nicht isolierten Seitenflächen des Halbleitersubstrats vergrößert. Dadurch wird auf einfache und zugleich wirksame Weise verhindert, dass während des Verlötens des Bauelements mit einer Leiterplatte überschüssiges Lot, beispielsweise aufgrund der Anpresskraft und/ oder aufgrund von Kapillarkräften, in Kontakt mit den im Wesentlichen unisolierten Seitenflächen des Halbleitersubstrats gelangen kann. Die Eintiefungen können umfänglich umlaufend vorgesehen sein, d.h. sich über alle die Unterseite umgrenzenden Kanten erstrecken, oder auch nur an Teilabschnitten vorgesehen sein, beispielsweise an solchen Teilabschnitten, die sich in unmittelbarer Nähe von Anschlussflächen befinden. Sofern im Zusammenhang mit der Erfindung auf die Unterseite oder eine sonstige Seite des Bauelements Bezug genommen wird, so bezieht sich diese Angabe auf die Gebrauchslage des Bauelements, d.h. wenn das Bauelement nach seiner Herstellung beispielsweise an einer Leiterplatte montiert ist.
Bevorzugt weist das Bauelement ausschließlich auf seiner Unterseite Anschlussflächen auf und unterscheidet sich damit von Bauelementen, die weitere Anschlussflächen, beispielsweise auch auf der Oberseite des Bauelements, besitzen, wie es etwa bei nach dem sogenannten Mesa-Verfah- ren hergestellten Transistoren oder anderen Bauelementen der Fall ist. Gemäß einer weiteren bevorzugten Ausführungsform ist das Halbleitersubstrat mittels eines Planarprozesses hergestellt. Bevorzugt ist das Halbleitersubstrat im Bereich seiner Seitenflächen undotiert. Insbesonde- re befinden sich keine p/n-Übergänge im Bereich der Seitenflächen.
Dadurch ist es nicht erforderlich und insbesondere auch nicht vorgesehen, die Seitenflächen mit einem Passivierungsmaterial zu bedecken, wie dies bei den vorstehend erwähnten Mesa-Strukturen zwingend notwendig ist. Lediglich im Bereich der Eintiefungen sind seitliche, also gegenüber der Unterseite des Bauelements geneigte Flächen mit der Isolationsschicht bedeckt. Dadurch vereinfacht sich die Herstellung der Bauelemente, was nachfolgend noch näher erläutert wird.
Gemäß einer vorteilhaften Ausführungsform beträgt die Maximaltiefe der Eintiefung wenigstens 5 um und höchstens 40 um, bevorzugt etwa 10 bis 15 um. Unter der Maximaltiefe wird die größtmögliche Tiefe der Eintiefung verstanden, also der Abstand des tiefsten Punkts der Eintiefung von der durch die Unterseite des Bauelements definierten Ebene. Bei geringeren Maximaltiefen als 5 um kann keine Verbesserung der Kurzschlusssicher- heit beim Löten erzielt werden, während bei Maximaltiefen von mehr als 40 um im Vergleich zum zusätzlichen Herstellungsaufwand nur noch eine geringe Steigerung der Kurzschlusssicherheit zu erwarten ist.
Relativ betrachtet beträgt die Maximaltiefe der Eintiefung vorzugsweise wenigstens 2 % und höchstens 10 % der Höhe des Bauelements, insbesondere zwischen etwa 3 % bis 6 % der Höhe des Bauelements. Dies bedeutet, dass die jeweilige Eintiefung (und vorzugsweise auch die zugeordnete Isolationsschicht) sich lediglich entlang eines geringen Bruchteils der Höhe des Bauelements erstreckt. Um einen Kurzschluss zwischen den Anschlussflächen und den Seitenflächen des Bauelements durch Lot zuverlässig zu vermeiden, muss die jeweilige Eintiefung nicht besonders tief sein, sondern kann eher flach ausgebildet sein. Gemäß einer vorteilhaften Ausführungsform kann die ge- nannte Maximaltiefe ungefähr der Breite der Eintiefung entsprechen oder sogar geringer sein als diese. Unter der Breite der Eintiefung ist die maximale laterale Erstreckung der Eintiefung zu verstehen, und zwar ausgehend von einer Ebene, die durch die zugeordnete Seitenfläche des Bauelements definiert ist. Insbesondere kann die Maximaltiefe der Eintiefung höchstens die Hälfte der Breite des Grabens betragen, welcher vor dem Vereinzeln benachbarter Bauelemente gebildet wird, um die jeweilige Eintiefung zu erzeugen.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist die Eintiefung als Hohlkehle ausgebildet, d.h. als eine runde Ausnehmung, die im Querschnitt vorzugsweise einem Viertelkreis entspricht. Eine derartige Hohlkehle wird auch als U-Graben bezeichnet. Aufgrund des Vereinzeins benachbarter Bauelemente nach dem Bilden eines derartigen U-Grabens besitzt die jeweilige Eintiefung natürlich nur eine halbe U-Form.
Alternativ kann die Eintiefung einen ebenen, gegenüber einer durch die Unterseite des Bauelements definierten Ebene geneigten Flankenabschnitt umfassen, wobei das Maß der Neigung bevorzugt 30 bis 80°, insbesondere etwa 60° beträgt. Eine derartige Ausgestaltung der Eintiefungen wird auch als V-Graben bezeichnet. Es ist ferner auch eine Kombination von U- und V-förmigen Eintiefungen bzw. Gräben möglich. Hieraus ergibt sich im Wesentlichen eine Trapez-Form des betreffenden Grabens, d.h. im Vergleich zu einer V-Form ist zusätzlich ein Plateau an der Unterseite der V- Form vorgesehen. Die Eintiefung besitzt in diesem Fall (nach dem Verein- zeln benachbarter Bauelemente) dementsprechend die Form einer Hälfte eines Trapezes.
Bevorzugt weist die Eintiefung ferner einen einerseits an den geneigten Flankenabschnitt und andererseits an eine Seitenfläche des Substrats angrenzenden Bodenabschnitt auf, welcher bevorzugt parallel zu der durch die Unterseite des Halbleitersubstrats definierten Ebene verläuft.
Bevorzugt umfasst die Isolationsschicht Siliziumoxid, Siliziumnitrid, Lack und/oder Klebstoff. Derartige Materialien haben sich als besonders geeignet für die Herstellung der Isolationsschicht erwiesen. Insbesondere sind diese Materialien bei der Herstellung von elektronischen Bauelementen gebräuchlich, sodass keine zusätzlichen oder bisher nicht üblichen Technologien gehandhabt müssen.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung beträgt die Dicke der Isolationsschicht weniger als 2 um, bevorzugt weniger als 1 um. Es ist also ausreichend, eine verhältnismäßig dünne Isolationsschicht auf die Eintiefungen aufzubringen, wobei eine gleichmäßige
Schichtdicke nicht zwingend erforderlich ist. Es sollte jedoch eine Mindestdicke von 50 nm nicht unterschritten werden, um eine ausreichende Stabilität und Isolierfähigkeit der Isolationsschicht zu gewährleisten.
Eine weitere Aufgabe der Erfindung besteht darin, ein Verfahren zur Her- Stellung eines anschlussdrahtfreien elektronischen Bauelements der eingangs genannten Art anzugeben, welches die eingangs erwähnten Nachteile vermeidet und kostengünstig durchzuführen ist.
Die Lösung der Aufgabe erfolgt durch die Merkmale des unabhängigen Verfahrensanspruchs und insbesondere durch ein Verfahren zum Herstel- len von oberflächenmontierbaren anschlussdrahtfreien elektronischen Bauelementen, welche ein jeweiliges Halbleitersubstrat aufweisen, an dessen Unterseite mehrere lötfähige Anschlussflächen angeordnet sind. Das Verfahren umfasst die Schritte:
- Erzeugen von Eintiefungen auf einer Fläche eines Wafers aus Halbleitersubstratmaterial, wobei die Eintiefungen entlang von Trennlinien verlaufen, welche ein Bauelement von einem benachbarten Bauelement abgrenzen;
Aufbringen einer zumindest die Eintiefungen überdeckenden Isolati- onsschicht auf den Wafer; und
Vereinzeln der Bauelemente entlang der Trennlinien.
Das Einbringen der Eintiefungen und das Aufbringen der Isolationsschicht erfolgt bevorzugt vor dem Vereinzeln der Bauelemente. Dadurch lassen sich die Eintiefungen und die Isolationsschicht auf besonders einfache Weise erzeugen. Das Vereinzeln kann durch geeignete Verfahren wie beispielsweise durch Sägen oder Schneiden, insbesondere durch Laserschneiden, erfolgen. Gemäß einer vorteilhaften Ausgestaltung umfasst das Verfahren zusätzlich das Aufbringen der Anschlussflächen, wobei die Anschlussflächen zeitlich sowohl vor als auch nach dem Aufbringen der Isolationsschicht aufgebracht werden können. Des Weiteren kann die Isolationsschicht neben den Eintiefungen auch weitere Flächenabschnitte auf der Untersei- te des Bauelements überdecken, etwa Bereiche zwischen den Anschlussflächen oder solche Bereiche, die in einem nachfolgenden Verfahrensschritt mit Metallisierungsschichten überdeckt werden, die wiederum in Verbindung mit den Anschlussflächen stehen. Vorzugsweise werden die Eintiefungen mittels eines Ätzverfahrens erzeugt. Grundsätzlich können die Eintiefungen auch durch andere Verfahren erzeugt werden, beispielsweise mithilfe eines Lasers. Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgen das Erzeugen der Eintiefungen und ein Erzeugen weiterer Strukturen in dem Halbleitersubstratmaterial, insbesondere ein Erzeugen von Markierungscodes auf einer der genannten einen Fläche gegenüber liegenden anderen Fläche des Wafers, in demselben Verfahrensschritt. Da üblicherweise bei der Herstellung von gattungsgemäßen Bauelementen ohnehin Markierungs- codes in Form von Vertiefungen auf der Oberseite des Bauelements eingebracht werden, was auch als Marking bezeichnet und zum Beispiel mittels eines Ätzverfahrens durchgeführt wird, ist für das Erzeugen der Eintiefungen kein zusätzlicher Verfahrensschritt erforderlich.
Bevorzugt wird die Isolationsschicht mittels chemischer oder physikalischer Gasphasenabscheidung aufgebracht. Dadurch wird eine ausreichende Festigkeit und Homogenität der Isolationsschicht gewährleistet. Zudem ist zur Durchführung des erfindungsgemäßen Verfahrens in der Regel keine Modifikation der Produktionsanlagen erforderlich. Grundsätzlich sind, in Abhängigkeit von dem verwendeten Material für die Isolationsschicht, auch andere Beschichtungsverfahren möglich, beispielsweise Bedampfen, Sputtern, Sprühen und/ oder Tauchen. Die Isolationsschicht kann einen einschichtigen oder mehrschichtigen Aufbau aufweisen.
Vorzugsweise werden vor dem Vereinzeln der Bauelemente aktive Strukturen in dem jeweiligen Bauelement erzeugt (z.B. p/n-Übergänge, wobei das Vereinzeln der Bauelemente entlang der Trennlinien außerhalb der aktiven Strukturen erfolgt. Somit befinden sich keine aktiven Strukturen im Bereich der (typischerweise nicht isolierten) Seitenflächen des Bauelements.
Die Erfindung betrifft ferner ein Verfahren zum Verbinden eines oberflä- chenmontierbaren anschlussdrahtfreien elektronischen Bauelements nach einem der Vorrichtungsansprüche mit einer Leiterplatte, welche mehrere Kontaktierungsflächen aufweist, welche jeweiligen Anschlussflächen des Bauelements zugeordnet sind. Das Verfahren umfasst die Schritte:
- Aufbringen eines Lots auf die Anschlussflächen und/ oder auf die
Kontaktierungsflächen ;
Positionieren des Bauelements auf der Leiterplatte; und
Schmelzen des Lots, sodass jede Anschlussfläche mit der zugeordneten Kontaktierungsfläche mittels des Lots verbunden wird.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen, der Beschreibung und den Zeichnungen offenbart.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen mit Bezug auf die Zeichnungen beschrieben. Es zeigen:
Fig. 1 eine schematische Querschnittsdarstellung eines erfindungsgemäßen elektronischen Bauelements gemäß einem ersten Ausführungsbeispiel;
Fig. 2 eine schematische Querschnittsdarstellung eines erfindungsgemäßen elektronischen Bauelements gemäß einem zweiten Ausführungsbeispiel; Fig. 3 eine Querschnittsdarstellung eines auf einer Leiterplatte befestigten Bauelements gemäß dem ersten Ausführungsbeispiel; Fig. 4 und 5 perspektivische Ansichten eines Bauelements gemäß dem ersten Ausführungsbeispiel.
Fig. 1 bis 5 zeigen ein erfindungsgemäßes oberflächenmontierbares an- schlussdrahtfreies elektronisches Bauelement 10 gemäß einem ersten bzw. einem zweiten Ausführungsbeispiel. Das Bauelement 10 ist in den vorliegenden Ausführungsbeispielen eine Diode, wie sie beispielsweise als sogenanntes ESD-Bauelement in Form einer Schutzdiode zum Schutz vor elektrostatischen Aufladungen eingesetzt werden kann. Die vorliegende Erfindung ist jedoch nicht auf Dioden beschränkt, sondern kann grundsätzlich bei allen denkbaren Arten von elektronischen Bauelementen zum Einsatz gelangen, insbesondere auch bei wesentlich komplexeren integrierten Schaltkreisen. Das Bauelement 10 umfasst ein Halbleitersubstrat 12 mit einer im Wesentlichen quaderförmigen Gestalt. Im Inneren des Halbleitersubstrats 12 befinden sich bei den vorliegenden Ausführungsbeispielen zwei aktive Strukturen 16, die mittels bekannter Verfahren in Grenzbereichen des Halbleitersubstrats 12 an der Unterseite 14 des Bauelements 10 ausgebil- det sind.
Die aktiven Strukturen 16 stehen mit jeweiligen Verbindungsabschnitten 18 in elektrischem Kontakt, welche an der Unterseite 14 durch entsprechende Metallisierungsschichten gebildet sind. Die Verbindungsabschnitte 18 stehen wiederum mit jeweiligen lötfähigen Anschlussflächen 20 in elektrischem Kontakt, welche ebenfalls durch Metallisierungsschichten gebildet sind. Wie in Fig. 5 gut zu erkennen ist, haben die Anschlussflächen 20 eine rechteckige Gestalt. Das fertige Bauelement 10 besitzt kein Gehäuse.
Die Anschlussflächen 20 sind zur Ausbildung von Lötkontakten mit korrespondierenden Kontaktierungsflächen 34 vorgesehen, welche an einer Leiterplatte 32 in Form von Kupferflächen ausgebildet sind (siehe Fig. 3 und 4) . Die elektrische und mechanische Verbindung zwischen dem Bau- element 10 und der Leiterplatte 32 wird durch ein Lot 36 hergestellt.
An den die Unterseite 14 des Bauelements 10 umgrenzenden Kanten, d.h. an den Schnittkanten zwischen der die Unterseite 14 des Halbleitersubstrats 12 definierenden Fläche und den vier Seitenflächen 25 des Halb- leitersubstrats 12, sind Ausnehmungen in Form von Eintiefungen 22 ausgebildet.
Beim ersten Ausführungsbeispiel gemäß Fig. 1 und 3 bis 5 weisen diese Eintiefungen 22 die Form einer Hohlkehle auf. Die Eintiefungen 22 beim zweiten Ausführungsbeispiel gemäß Fig. 2 besitzen einen gegenüber einer durch die Unterseite 14 des Bauelements 10 definierten Ebene um einen Winkel von etwa 60° geneigten Flankenabschnitt 28. Ferner besitzen die Eintiefungen 22 hier einen einerseits an den geneigten Flankenabschnitt 28 und andererseits an die entsprechende Seitenfläche 25 des Bauele- ments 10 angrenzenden Bodenabschnitt 30, welcher parallel zu der durch die Unterseite 14 definierten Ebene verläuft.
Die Eintiefungen 22 sind in den vorliegenden Ausführungsbeispielen umfänglich umlaufend, können jedoch alternativ auch nur abschnittsweise entlang der die Unterseite 14 des Bauelements 10 umgrenzenden Kanten vorgesehen sein.
Die Eintiefungen 22 sind von einer Isolationsschicht 24a überdeckt, wel- che bevorzugt aus Siliziumoxid besteht, jedoch auch aus anderen elektrisch nichtleitenden Materialien wie beispielsweise Siliziumnitrid, Lack oder Klebstoff hergestellt sein kann. Auch eine Kombination aus verschiedenen isolierenden Materialien ist möglich. Eine weitere Isolationsschicht 24b ist an der Unterseite 14 des Bauelements vorgesehen und überdeckt unmittelbar das Halbleitersubstrat 12 mit Ausnahme der Verbindungsstellen zwischen den aktiven Strukturen 16 und den Verbindungsabschnitten 18. Ferner ist eine Isolationsschicht 24c vorgesehen, welche die Verbindungsabschnitte 18 mit Ausnahme der Kontaktstellen zwischen den Verbindungsabschnitten 18 und den Anschlussflächen 20 überdeckt.
Schließlich ist auch an der Oberseite 26 des Bauelements 10 eine Isolationsschicht 24d vorgesehen. Die Seitenflächen 25 sind mit Ausnahme der Eintiefungen 22 frei von Isolationsschichten.
Bezüglich der Dimensionen sei angemerkt, dass die schematischen Darstellungen der Fig. 1 und 2 nicht maßstäblich sind. So sind insbesondere die Eintiefungen 22 im Verhältnis zur Höhe und zur Breite des Bauele- ments 10 stark vergrößert dargestellt. Auch die verschiedenen Schichtdicken sind nicht maßstäblich.
Hingegen ist das Bauelement 10 in den mittels eines Rasterelektronenmikroskops erzeugten Fig. 3 bis 5 annähernd maßstäblich dargestellt. Die Abmessungen des Bauelements 10 (Länge x Breite x Höhe) betragen etwa 0,6 mm x 0,3 mm x 0,3 mm. Die Maximaltiefe der Eintiefungen 22 beträgt etwa 10 bis 15 um. Die maximale laterale Ers treckung der Eintiefungen 22 beträgt bei dem Ausführungsbeispiel gemäß Fig. 3 bis 5 ebenfalls etwa 10 bis 15 um, kann grundsätzlich jedoch von der Maximaltiefe abweichen.
Generell besitzt das erfindungsgemäße Bauelement 10 Abmessungen (Länge, Breite, Höhe), die vorzugsweise geringer sind als 1 mm. Hierdurch kann zwar eine besonders hohe Bestückungsdichte an einer Leiterplatte erreicht werden. Allerdings besteht bei derartig geringen Abmessungen des Bauelements 10 eine besonders hohe Gefahr eines möglichen Kurzschlusses zwischen den Anschlussflächen 20 und den nicht elektrisch isolierten Seitenflächen 25 aufgrund des Lots 36. Deshalb sind bei derartig geringen Abmessungen die Eintiefungen 22 mit der Isolationsschicht 24a besonders vorteilhaft.
Auf der Oberseite 26 des Bauelements ist ferner ein durch Vertiefungen gebildeter Markierungscode 38 vorgesehen (Fig. 3 und 4).
Die Isolationsschichten 24a bis 24d sind aufgrund ihrer geringen Stärke, die bevorzugt weniger als 1 um beträgt, in Fig. 3 bis 5 jedoch nicht sichtbar. Ferner sind in Fig. 3 die Verbindungsabschnitte 18 und die Anschlussflächen 20 aufgrund der Lage der Schnittebene ebenfalls nicht sichtbar. Wie in den Fig. 3 und 4, insbesondere in der linken Bildhälfte von Fig. 3, gut zu erkennen ist, verhindern die Eintiefungen 22 auf wirkungsvolle Weise, dass die nicht isolierten Seitenflächen 25 des Bauelements 10 bzw. des Halbleitersubstrats 12 bei der Befestigung auf der Leiterplatte 32 mit dem Lot 36 in Kontakt gelangen können. Obwohl das Lot 36 im Bereich der Eintiefung 22 eine Aufwölbung in Richtung auf das Bauelement 10 aufweist, wie in der linken Bildhälfte von Fig. 3 gut zu erkennen ist, stellt die Eintiefung 22 einen Abstand zwischen dem Lot 36 und der nicht isolierten Seitenfläche 25 her, der ausreichend ist, einen elektrischen Kontakt oder bzw. einen Kurzschluss zu vermeiden. Im Bereich der Eintiefung 22 selbst wird der elektrische Kontakt durch die Isolationsschicht 24a verhindert.
Bezüglich der gezeigten Ausführungsbeispiele ist zu beachten, dass sich keine aktiven Strukturen 16 (z.B. p/n-Übergänge) im Bereich der Seitenflächen 25 des Bauelements 10 befinden. Die Eintiefung 22 und die zugeordnete Isolationsschicht 24a dienen also lediglich dazu, einen Kurzschluss zwischen den Anschlussflächen 20 und der jeweiligen leitfähigen Seitenfläche 25 zu vermeiden, und nicht etwa zwischen den Anschlussflä- chen 20 und den aktiven Strukturen 16 des Bauelements 10. Hierdurch können an die jeweilige Eintiefung 22 und vor allem an die zugeordnete Isolationsschicht 24a (Material und Dicke) relativ geringe Anforderungen gestellt werden, um die erwünschte Kurzschlusssicherheit zu bewirken (im Vergleich beispielsweise zu der elektrischen Isolierung eines p/n- Übergangs).
Nachfolgend wird beispielhaft ein Verfahren beschrieben, mit dem sich erfindungsgemäße Bauelemente 10 herstellen lassen. Üblicherweise erfolgt die Herstellung von gattungsgemäßen Bauelementen 10 dadurch, dass zunächst in einem Planarprozess die gewünschten Halbleiterstrukturen (aktive Strukturen 16) rasterartig für eine Vielzahl von Bauelementen 10 in einem Wafer erzeugt werden und dann die jeweiligen Anschlussflächen 20 sowie die zugehörigen Verbindungsabschnitte 18 aufgebracht werden. Der Wafer wird nachfolgend mittels geeigneter Trennverfahren, wie beispielsweise Sägen, Laserschneiden oder anderer Schneidverfahren geteilt, um die fertiggestellten Bauelemente 10 zu vereinzeln. Eine weitere Bearbeitung der vereinzelten Bauelemente 10 ist in der Regel nicht erforderlich und wäre insbesondere bei sehr kleinen Bau- elementen, wenn überhaupt, nur mit sehr hohem Aufwand möglich.
Das erfindungsgemäße Herstellungsverfahren sieht zusätzlich vor, dass die Eintiefungen 22 bereits vor dem Vereinzeln in den Wafer eingebracht werden. Dies kann beispielsweise durch Ätzen erfolgen, wobei die Eintie- fungen 22 bevorzugt in demselben Verfahrensschritt wie der Markierungs- code 38 erzeugt werden. Die Eintiefungen 22 werden entlang der späteren Trennstellen zwischen den zu vereinzelnden Bauelementen in Form von beispielsweise U-förmigen Gräben (Fig. 1) oder V-förmigen Gräben (Fig. 2) eingebracht. Die spätere Trennung der einzelnen Bauelemente 10 erfolgt im Bereich dieser Gräben, wobei eine symmetrische Trennung der Grabenkonturen angestrebt wird, um gleichmäßige Abmessungen der Eintiefungen 22 sicherzustellen. Somit entfällt, im Querschnitt betrachtet, auf jedes Bauelement 10 ungefähr die eine Hälfte eines Grabens, während die andere Hälfte auf ein jeweiliges benachbartes Bauelement 10 entfällt.
Durch geeignete Maßnahmen, wie zum Beispiel eine ausreichende Dimensionierung des zur Unterseite 14 parallelen Abschnitts der Eintiefung 22 (Fig. 1) bzw. des Bodenabschnitts 30 (Fig. 2) kann sichergestellt werden, dass auch bei gewissen Toleranzen bei der Vereinzelung der Bauelemente 10 keine Trennung im unmittelbaren Bereich der eigentlichen Hohlkehle (Fig. 1) bzw. der Flankenabschnitte 28 (Fig. 2) erfolgt und damit eine ausreichende Maximaltiefe der Eintiefungen 22 gewährleistet ist.
Das Aufbringen der Isolationsschicht 24a erfolgt ebenfalls vor dem Verein- zeln. Beispielsweise können die auf den Eintiefungen 22 vorgesehenen Isolationsschichten 24a gleichzeitig mit einer oder mehreren der übrigen Isolationsschichten 24b bis 24d aufgebracht werden, sodass aufwändige Maskierungsschritte entfallen können. Durch das erfindungsgemäße Verfahren kann auf einfache und kostengünstige Weise ein oberflächenmontierbares anschlussdrahtfreies elektronisches Bauelement hergestellt werden, das auf zuverlässige Weise unter Vermeidung von Kurzschlüssen mittels Verlöten mit einer Leiterplatte 32 verbindbar ist.
Hierfür werden die vereinzelten Bauelemente 10 beispielsweise mittels eines Bestückungsautomaten auf einer jeweiligen Leiterplatte 32 positioniert und dort mit den Kontaktierungsflächen 34 verlötet. Falls hierfür das Lot 36 zuvor auf die Kontaktierungsflächen 34 der Leiterplatte 32 aufge- bracht worden ist, erweist sich das Vorsehen der Eintiefungen 22 mit der jeweiligen Isolationsschicht 24a an den Bauelementen 10 als besonders vorteilhaft, da die Kontaktierungsflächen 34 der Leiterplatte 32 (und somit das hierauf vorgesehene Lot 36) typischerweise über den Umriss des jeweiligen Bauelements 10 überstehen, wodurch eine besonders hohe Ge- fahr eines Kurzschlusses besteht.
Bezugszeichenliste
Bauelement
Halbleitersubstrat
Unterseite
aktive Struktur
Verbindungsabschnitt
Anschlussfläche
Eintiefung
Isolationsschicht
Seitenfläche
Oberseite
Flankenabschnitt
Bodenabschnitt
Leiterplatte
Kontaktierungsfläche
Lot
Markierungscode

Claims

Patentansprüche
Oberflächenmontierbares anschlussdrahtfreies elektronisches Bauelement (10), mit einem Halbleitersubstrat (12), wobei an der Unterseite (14) des Bauelements (10) mehrere lötfähige Anschlussflächen (20) angeordnet sind,
dadurch g e k e n n z e i c h n e t ,
dass im Bereich der die Unterseite (14) umgrenzenden Kanten wenigstens eine Eintiefung (22) ausgebildet ist, und
dass die Eintiefung (22) mit einer Isolationsschicht (24a) bedeckt ist.
Bauelement nach Anspruch 1 ,
dadurch g e k e n n z e i c h n e t ,
dass das Bauelement (10) ausschließlich auf seiner Unterseite (14) Anschlussflächen (20) aufweist.
Bauelement nach Anspruch 1 oder 2,
dadurch g e k e n n z e i c h n e t ,
dass das Halbleitersubstrat (12) mittels eines Planarprozesses hergestellt ist.
Bauelement nach einem der vorhergehenden Ansprüche,
dadurch g e k e n n z e i c h n e t ,
dass die Maximaltiefe der Eintiefung (22) wenigstens 5 um und höchstens 40 um, bevorzugt etwa 10 bis 15 um, beträgt.
5. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch g e k e n n z e i c h n e t ,
dass die Maximaltiefe der Eintiefung (22) wenigstens 2 % und höchstens 10 % der Höhe des Bauelements (10), bevorzugt zwischen etwa 3 % bis 6 % der Höhe des Bauelements (10), beträgt.
6. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch g e k e n n z e i c h n e t ,
dass die Maximaltiefe der Eintiefung (22) der Breite der Eintiefung (22) entspricht oder geringer ist als die Breite.
7. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch g e k e n n z e i c h n e t ,
dass die Eintiefung (22) als Hohlkehle ausgebildet ist.
8. Bauelement nach einem Ansprüche 1 bis 6,
dadurch g e k e n n z e i c h n e t ,
dass die Eintiefung (22) einen ebenen, gegenüber einer durch die Unterseite (14) des Bauelements (10) definierten Ebene geneigten Flankenabschnitt (28) umfasst, wobei das Maß der Neigung bevorzugt 30° bis 80°, insbesondere etwa 60°, beträgt.
9. Bauelement nach Anspruch 8,
dadurch g e k e n n z e i c h n e t ,
dass die Eintiefung (22) ferner einen einerseits an den geneigten Flankenabschnitt (28) und andererseits an eine Seitenfläche (25) des Halbleitersubstrats (12) angrenzenden Bodenabschnitt (30) aufweist, welcher bevorzugt parallel zu der durch die Unterseite des Halbleitersubstrats (12) definierten Ebene verläuft.
10. Bauelement nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t ,
dass die Isolationsschicht (24a) Siliziumoxid, Siliziumnitrit, Lack und/oder Klebstoff umfasst.
Bauelement nach einem der vorhergehenden Ansprüche,
dadurch g e k e n n z e i c h n e t ,
dass die Dicke der Isolationsschicht (24a) weniger als 2 um, bevorzugt weniger als 1 um beträgt.
12. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch g e k e n n z e i c h n e t ,
dass das Bauelement (10) wenigstens eine Seitenfläche (25) aufweist, die sich zwischen der Eintiefung (22) und einer Oberseite (26) des Bauelements (10) erstreckt und die bei dem fertigen Bauelement nicht elektrisch isoliert ist.
13. Verfahren zum Herstellen von oberflächenmontierbaren anschluss- drahtfreien elektronischen Bauelementen (10), welche ein jeweiliges Halbleitersubstrat (12) aufweisen und an deren jeweiliger Unterseite (14) mehrere lötfähige Anschlussflächen (20) angeordnet sind, gekennzeichnet durch die Schritte:
Erzeugen von Eintiefungen (22) auf einer Fläche eines Wafers aus Halbleitersubstratmaterial, wobei die Eintiefungen (22) entlang von Trennlinien verlaufen, welche ein Bauelement (10) von einem be- nachbarten Bauelement (10) abgrenzen;
Aufbringen einer zumindest die Eintiefungen (22) überdeckenden
Isolationsschicht (24a) auf den Wafer; und
Vereinzeln der Bauelemente (10) entlang der Trennlinien.
14. Verfahren nach Anspruch 13, dadurch g e k e n n z e i c h n e t ,
dass die Eintiefungen (22) mittels eines Ätzverfahrens erzeugt werden.
Verfahren nach Anspruch 13 oder 14,
dadurch g e k e n n z e i c h n e t ,
dass das Erzeugen der Eintiefungen (22) und ein Erzeugen weiterer Strukturen in dem Halbleitersubstratmaterial (12), insbesondere ein Erzeugen von Markierungscodes (38) auf einer der genannten einen Fläche gegenüber liegenden anderen Fläche des Wafers, in demselben Verfahrensschritt erfolgen.
Verfahren nach einem der Ansprüche 13 bis 15,
dadurch g e k e n n z e i c h n e t ,
dass die Isolationsschicht (24a) mittels chemischer Gasphasenab- scheidung aufgebracht wird.
Verfahren nach einem der Ansprüche 13 bis 16,
dadurch g e k e n n z e i c h n e t ,
dass vor dem Vereinzeln der Bauelemente (10) aktive Strukturen (16) in dem jeweiligen Bauelement (10) erzeugt werden, wobei das Vereinzeln der Bauelemente (10) entlang der Trennlinien außerhalb der aktiven Strukturen (16) erfolgt.
Verfahren zum Verbinden eines oberflächenmontierbaren an- schlussdrahtfreien elektronischen Bauelements (10) nach einem der Ansprüche 1 bis 12 mit einer Leiterplatte (32), welche mehrere Kon- taktierungsflächen (34) aufweist, welche jeweiligen Anschlussflächen (20) des Bauelements (10) zugeordnet sind, mit den Schritten: Aufbringen eines Lots (36) auf die Anschlussflächen (20) und/ oder auf die Kontaktierungsflächen (34);
Positionieren des Bauelements (10) auf der Leiterplatte (32); und Schmelzen des Lots (36), so dass jede Anschlussfläche (20) mit der zugeordneten Kontaktierungsfläche (34) mittels des Lots (36) ver- bunden wird.
PCT/EP2012/067378 2011-09-06 2012-09-06 Oberflächenmontierbares elektronisches bauelement WO2013034628A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/342,999 US10629485B2 (en) 2011-09-06 2012-09-06 Surface mountable electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011112659.0 2011-09-06
DE102011112659.0A DE102011112659B4 (de) 2011-09-06 2011-09-06 Oberflächenmontierbares elektronisches Bauelement

Publications (1)

Publication Number Publication Date
WO2013034628A1 true WO2013034628A1 (de) 2013-03-14

Family

ID=46826503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/067378 WO2013034628A1 (de) 2011-09-06 2012-09-06 Oberflächenmontierbares elektronisches bauelement

Country Status (4)

Country Link
US (1) US10629485B2 (de)
DE (1) DE102011112659B4 (de)
TW (1) TWI705534B (de)
WO (1) WO2013034628A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112659B4 (de) * 2011-09-06 2022-01-27 Vishay Semiconductor Gmbh Oberflächenmontierbares elektronisches Bauelement
JP7339819B2 (ja) * 2019-09-04 2023-09-06 株式会社東芝 半導体装置の製造方法および半導体装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957476A (ja) * 1982-09-27 1984-04-03 Nec Home Electronics Ltd 半導体装置の製造方法
US20020027257A1 (en) * 2000-06-02 2002-03-07 Kinsman Larry D. Method for fabricating a chip scale package using wafer level processing and devices resulting therefrom
DE10042931A1 (de) * 2000-08-31 2002-03-28 Infineon Technologies Ag Verfahren zum Befestigen eines Halbleiterchips auf einem Substrat und entsprechende Vorrichtung
WO2006075197A1 (en) * 2005-01-12 2006-07-20 Infineon Technologies Ag Flip-chip semiconductor packages and methods for their production
DE202008005708U1 (de) 2008-04-24 2008-07-10 Vishay Semiconductor Gmbh Oberflächenmontierbares elektronisches Bauelement
WO2009156970A1 (en) * 2008-06-26 2009-12-30 Nxp B.V. Packaged semiconductor product and method for manufacture thereof
EP2230688A1 (de) * 2009-03-20 2010-09-22 Nxp B.V. Ausfächerungshalbleitergehäuse und Herstellungsverfahren

Family Cites Families (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535774A (en) * 1968-07-09 1970-10-27 Rca Corp Method of fabricating semiconductor devices
US3735483A (en) * 1970-03-20 1973-05-29 Gen Electric Semiconductor passivating process
US3852876A (en) * 1973-01-02 1974-12-10 Gen Electric High voltage power transistor and method for making
US3972113A (en) * 1973-05-14 1976-08-03 Mitsubishi Denki Kabushiki Kaisha Process of producing semiconductor devices
JPS5631898B2 (de) * 1974-01-11 1981-07-24
JPS5719869B2 (de) * 1974-09-18 1982-04-24
US4179794A (en) * 1975-07-23 1979-12-25 Nippon Gakki Seizo Kabushiki Kaisha Process of manufacturing semiconductor devices
JPS535971A (en) * 1976-07-06 1978-01-19 Mitsubishi Electric Corp Semiconductor device
JPS5378169A (en) * 1976-12-22 1978-07-11 Fujitsu Ltd Manufacture of semiconductor device
US4255757A (en) * 1978-12-05 1981-03-10 International Rectifier Corporation High reverse voltage semiconductor device with fast recovery time with central depression
JPS55133542A (en) * 1979-04-03 1980-10-17 Nec Corp Manufacturing method of mesa-type semiconductor device
JPS6066830A (ja) * 1983-09-22 1985-04-17 Nec Kansai Ltd 半導体装置の製造方法
DE3619212A1 (de) * 1986-06-07 1987-12-10 Philips Patentverwaltung Passives elektrisches bauelement
US4904609A (en) * 1988-05-06 1990-02-27 General Electric Company Method of making symmetrical blocking high voltage breakdown semiconductor device
US4999684A (en) * 1988-05-06 1991-03-12 General Electric Company Symmetrical blocking high voltage breakdown semiconducotr device
DE3826736A1 (de) 1988-08-05 1990-02-08 Siemens Ag Verfahren zum trennen von monolithisch auf einer halbleitersubstratscheibe erzeugten led-chip-anordnungen
US5164218A (en) * 1989-05-12 1992-11-17 Nippon Soken, Inc. Semiconductor device and a method for producing the same
US4974050A (en) 1989-05-30 1990-11-27 Motorola Inc. High voltage semiconductor device and method
US6219908B1 (en) 1991-06-04 2001-04-24 Micron Technology, Inc. Method and apparatus for manufacturing known good semiconductor die
JPH05131622A (ja) * 1991-11-13 1993-05-28 Minolta Camera Co Ltd インクジエツト記録装置
US5801432A (en) 1992-06-04 1998-09-01 Lsi Logic Corporation Electronic system using multi-layer tab tape semiconductor device having distinct signal, power and ground planes
KR940016630A (ko) * 1992-12-23 1994-07-23 프레데릭 얀 스미트 반도체 장치 및 제조방법
US5593927A (en) * 1993-10-14 1997-01-14 Micron Technology, Inc. Method for packaging semiconductor dice
JPH1140797A (ja) * 1997-05-19 1999-02-12 Matsushita Electron Corp 半導体装置及びその製造方法
US6624505B2 (en) * 1998-02-06 2003-09-23 Shellcase, Ltd. Packaged integrated circuits and methods of producing thereof
JP2000164851A (ja) * 1998-11-26 2000-06-16 Rohm Co Ltd メサ型半導体装置
US6245598B1 (en) * 1999-05-06 2001-06-12 Vanguard International Semiconductor Corporation Method for wire bonding a chip to a substrate with recessed bond pads and devices formed
US6420245B1 (en) * 1999-06-08 2002-07-16 Kulicke & Soffa Investments, Inc. Method for singulating semiconductor wafers
US20020163059A1 (en) * 2000-02-17 2002-11-07 Hamerski Roman J. Device with epitaxial base
US6238952B1 (en) 2000-02-29 2001-05-29 Advanced Semiconductor Engineering, Inc. Low-pin-count chip package and manufacturing method thereof
JP2001326295A (ja) 2000-05-15 2001-11-22 Rohm Co Ltd 半導体装置および半導体装置製造用フレーム
US6326698B1 (en) * 2000-06-08 2001-12-04 Micron Technology, Inc. Semiconductor devices having protective layers thereon through which contact pads are exposed and stereolithographic methods of fabricating such semiconductor devices
US6400004B1 (en) 2000-08-17 2002-06-04 Advanced Semiconductor Engineering, Inc. Leadless semiconductor package
US6693358B2 (en) * 2000-10-23 2004-02-17 Matsushita Electric Industrial Co., Ltd. Semiconductor chip, wiring board and manufacturing process thereof as well as semiconductor device
JP3399453B2 (ja) * 2000-10-26 2003-04-21 松下電器産業株式会社 半導体装置およびその製造方法
TW488042B (en) 2000-11-30 2002-05-21 Siliconware Precision Industries Co Ltd Quad flat non-leaded package and its leadframe
JP4308528B2 (ja) 2001-01-31 2009-08-05 株式会社ルネサステクノロジ 半導体装置及びその製造方法
WO2003003445A1 (en) * 2001-06-29 2003-01-09 Fujitsu Limited Sheet for underfill, method for underfilling semiconductor chip, and method for mounting semiconductor chip
KR100407472B1 (ko) * 2001-06-29 2003-11-28 삼성전자주식회사 트렌치가 형성된 상부 칩을 구비하는 칩 적층형 패키지소자 및 그 제조 방법
US20030006055A1 (en) 2001-07-05 2003-01-09 Walsin Advanced Electronics Ltd Semiconductor package for fixed surface mounting
US6759745B2 (en) * 2001-09-13 2004-07-06 Texas Instruments Incorporated Semiconductor device and manufacturing method thereof
US6812548B2 (en) * 2001-11-30 2004-11-02 Intel Corporation Backside metallization on sides of microelectronic dice for effective thermal contact with heat dissipation devices
US20030111720A1 (en) * 2001-12-18 2003-06-19 Tan Lan Chu Stacked die semiconductor device
JP3507059B2 (ja) * 2002-06-27 2004-03-15 沖電気工業株式会社 積層マルチチップパッケージ
US6891276B1 (en) 2002-01-09 2005-05-10 Bridge Semiconductor Corporation Semiconductor package device
US6987034B1 (en) 2002-01-09 2006-01-17 Bridge Semiconductor Corporation Method of making a semiconductor package device that includes singulating and trimming a lead
TWI241028B (en) * 2002-03-08 2005-10-01 Sanken Electric Co Ltd Semiconductor device and its manufacturing method
US6608366B1 (en) 2002-04-15 2003-08-19 Harry J. Fogelson Lead frame with plated end leads
TWI232560B (en) * 2002-04-23 2005-05-11 Sanyo Electric Co Semiconductor device and its manufacture
US7340181B1 (en) * 2002-05-13 2008-03-04 National Semiconductor Corporation Electrical die contact structure and fabrication method
CN1659698A (zh) 2002-06-06 2005-08-24 皇家飞利浦电子股份有限公司 包括半导体器件的四方扁平无引线封装
US7399683B2 (en) * 2002-06-18 2008-07-15 Sanyo Electric Co., Ltd. Manufacturing method of semiconductor device
TWI229435B (en) * 2002-06-18 2005-03-11 Sanyo Electric Co Manufacture of semiconductor device
CN1241253C (zh) * 2002-06-24 2006-02-08 丰田合成株式会社 半导体元件的制造方法
US20060003477A1 (en) * 2002-10-30 2006-01-05 Bert Braune Method for producing a light source provided with electroluminescent diodes and comprising a luminescence conversion element
TWI227550B (en) * 2002-10-30 2005-02-01 Sanyo Electric Co Semiconductor device manufacturing method
JP2004165312A (ja) * 2002-11-12 2004-06-10 Sanyo Electric Co Ltd 半導体集積装置及びその製造方法
US6872599B1 (en) 2002-12-10 2005-03-29 National Semiconductor Corporation Enhanced solder joint strength and ease of inspection of leadless leadframe package (LLP)
TWI239607B (en) * 2002-12-13 2005-09-11 Sanyo Electric Co Method for making a semiconductor device
US7301222B1 (en) * 2003-02-12 2007-11-27 National Semiconductor Corporation Apparatus for forming a pre-applied underfill adhesive layer for semiconductor wafer level chip-scale packages
JP2004288816A (ja) * 2003-03-20 2004-10-14 Seiko Epson Corp 半導体ウエハ、半導体装置及びその製造方法、回路基板並びに電子機器
TWI229890B (en) * 2003-04-24 2005-03-21 Sanyo Electric Co Semiconductor device and method of manufacturing same
JP2004363478A (ja) * 2003-06-06 2004-12-24 Sanyo Electric Co Ltd 半導体装置の製造方法
CN100587962C (zh) * 2003-07-03 2010-02-03 泰塞拉技术匈牙利公司 用于封装集成电路器件的方法和设备
JP4401181B2 (ja) * 2003-08-06 2010-01-20 三洋電機株式会社 半導体装置及びその製造方法
KR100594229B1 (ko) * 2003-09-19 2006-07-03 삼성전자주식회사 반도체 패키지 및 그 제조방법
TWI226090B (en) * 2003-09-26 2005-01-01 Advanced Semiconductor Eng Transparent packaging in wafer level
SG153627A1 (en) * 2003-10-31 2009-07-29 Micron Technology Inc Reduced footprint packaged microelectronic components and methods for manufacturing such microelectronic components
US7088573B2 (en) * 2004-03-02 2006-08-08 Vishay Sprague, Inc. Surface mount MELF capacitor
US7085127B2 (en) * 2004-03-02 2006-08-01 Vishay Sprague, Inc. Surface mount chip capacitor
US6914770B1 (en) * 2004-03-02 2005-07-05 Vishay Sprague, Inc. Surface mount flipchip capacitor
JP4753170B2 (ja) * 2004-03-05 2011-08-24 三洋電機株式会社 半導体装置及びその製造方法
US7129114B2 (en) 2004-03-10 2006-10-31 Micron Technology, Inc. Methods relating to singulating semiconductor wafers and wafer scale assemblies
US7157297B2 (en) * 2004-05-10 2007-01-02 Sharp Kabushiki Kaisha Method for fabrication of semiconductor device
JP3915992B2 (ja) * 2004-06-08 2007-05-16 ローム株式会社 面実装型電子部品の製造方法
US7645635B2 (en) 2004-08-16 2010-01-12 Micron Technology, Inc. Frame structure and semiconductor attach process for use therewith for fabrication of image sensor packages and the like, and resulting packages
JP2006093367A (ja) * 2004-09-24 2006-04-06 Sanyo Electric Co Ltd 半導体装置の製造方法
TWI273682B (en) * 2004-10-08 2007-02-11 Epworks Co Ltd Method for manufacturing wafer level chip scale package using redistribution substrate
WO2006054606A1 (ja) * 2004-11-16 2006-05-26 Rohm Co., Ltd. 半導体装置および半導体装置の製造方法
US7387911B2 (en) * 2004-11-16 2008-06-17 International Business Machines Corporation Application of a thermally conductive thin film to a wafer backside prior to dicing to prevent chipping and cracking
US7675153B2 (en) * 2005-02-02 2010-03-09 Kabushiki Kaisha Toshiba Semiconductor device having semiconductor chips stacked and mounted thereon and manufacturing method thereof
US7265034B2 (en) * 2005-02-18 2007-09-04 Taiwan Semiconductor Manufacturing Company, Ltd. Method of cutting integrated circuit chips from wafer by ablating with laser and cutting with saw blade
EP1880417A2 (de) * 2005-05-11 2008-01-23 STMicroelectronics SA Mit geneigten kontaktstellen ausgestattete siliziumchips und den siliziumchip umfassendes elektronisches modul
CN101807533B (zh) 2005-06-30 2016-03-09 费查尔德半导体有限公司 半导体管芯封装及其制作方法
TWI300141B (en) * 2005-06-30 2008-08-21 Mitsui Chemicals Inc Optical waveguide film and optoelectrical hybrid film
US7943431B2 (en) 2005-12-02 2011-05-17 Unisem (Mauritius) Holdings Limited Leadless semiconductor package and method of manufacture
JP2007194469A (ja) * 2006-01-20 2007-08-02 Renesas Technology Corp 半導体装置の製造方法
US7816186B2 (en) 2006-03-14 2010-10-19 Unisem (Mauritius) Holdings Limited Method for making QFN package with power and ground rings
WO2008044801A1 (fr) * 2006-10-13 2008-04-17 Sanyo Electric Co., Ltd. Dispositif semiconducteur et procédé de fabrication de celui-ci
US7394152B2 (en) * 2006-11-13 2008-07-01 China Wafer Level Csp Ltd. Wafer level chip size packaged chip device with an N-shape junction inside and method of fabricating the same
US7833881B2 (en) 2007-03-02 2010-11-16 Micron Technology, Inc. Methods for fabricating semiconductor components and packaged semiconductor components
US7838424B2 (en) * 2007-07-03 2010-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Enhanced reliability of wafer-level chip-scale packaging (WLCSP) die separation using dry etching
TWI375321B (en) * 2007-08-24 2012-10-21 Xintec Inc Electronic device wafer level scale packages and fabrication methods thereof
JP2009158589A (ja) * 2007-12-25 2009-07-16 Sanyo Electric Co Ltd メサ型半導体装置及びその製造方法
TW200933899A (en) * 2008-01-29 2009-08-01 Sanyo Electric Co Mesa type semiconductor device and method for making the same
CN102037563B (zh) * 2008-05-13 2013-06-05 富士电机株式会社 半导体器件及其制造方法
JP2009302222A (ja) * 2008-06-12 2009-12-24 Sanyo Electric Co Ltd メサ型半導体装置及びその製造方法
US7952176B2 (en) * 2008-12-09 2011-05-31 Stats Chippac Ltd. Integrated circuit packaging system and method of manufacture thereof
US8406004B2 (en) * 2008-12-09 2013-03-26 Stats Chippac Ltd. Integrated circuit packaging system and method of manufacture thereof
JP5707709B2 (ja) * 2009-03-23 2015-04-30 富士電機株式会社 半導体装置の製造方法
KR101046387B1 (ko) * 2009-04-10 2011-07-05 주식회사 하이닉스반도체 반도체 패키지
JP5475363B2 (ja) 2009-08-07 2014-04-16 ラピスセミコンダクタ株式会社 半導体装置およびその製造方法
GB2473200B (en) * 2009-09-02 2014-03-05 Pragmatic Printing Ltd Structures comprising planar electronic devices
KR101060936B1 (ko) * 2010-01-19 2011-08-30 삼성전기주식회사 인터커넥션 구조, 인터포저, 반도체 패키지 및 인터커넥션 구조의 제조 방법
US8329509B2 (en) 2010-04-01 2012-12-11 Freescale Semiconductor, Inc. Packaging process to create wettable lead flank during board assembly
US9418919B2 (en) 2010-07-29 2016-08-16 Nxp B.V. Leadless chip carrier having improved mountability
US8017447B1 (en) 2010-08-03 2011-09-13 Linear Technology Corporation Laser process for side plating of terminals
US8809121B2 (en) 2010-09-29 2014-08-19 Nxp B.V. Singulation of IC packages
DE102011013821B4 (de) * 2011-03-14 2024-05-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung zumindest eines optoelektronischen Halbleiterchips
CN102789994B (zh) 2011-05-18 2016-08-10 飞思卡尔半导体公司 侧面可浸润半导体器件
DE102011112659B4 (de) * 2011-09-06 2022-01-27 Vishay Semiconductor Gmbh Oberflächenmontierbares elektronisches Bauelement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957476A (ja) * 1982-09-27 1984-04-03 Nec Home Electronics Ltd 半導体装置の製造方法
US20020027257A1 (en) * 2000-06-02 2002-03-07 Kinsman Larry D. Method for fabricating a chip scale package using wafer level processing and devices resulting therefrom
DE10042931A1 (de) * 2000-08-31 2002-03-28 Infineon Technologies Ag Verfahren zum Befestigen eines Halbleiterchips auf einem Substrat und entsprechende Vorrichtung
WO2006075197A1 (en) * 2005-01-12 2006-07-20 Infineon Technologies Ag Flip-chip semiconductor packages and methods for their production
DE202008005708U1 (de) 2008-04-24 2008-07-10 Vishay Semiconductor Gmbh Oberflächenmontierbares elektronisches Bauelement
WO2009156970A1 (en) * 2008-06-26 2009-12-30 Nxp B.V. Packaged semiconductor product and method for manufacture thereof
EP2230688A1 (de) * 2009-03-20 2010-09-22 Nxp B.V. Ausfächerungshalbleitergehäuse und Herstellungsverfahren

Also Published As

Publication number Publication date
US20140346642A1 (en) 2014-11-27
DE102011112659B4 (de) 2022-01-27
TW201334125A (zh) 2013-08-16
DE102011112659A1 (de) 2013-03-07
TWI705534B (zh) 2020-09-21
US10629485B2 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
DE112013004223B4 (de) Optoelektronisches Halbleiterbauteil und Verfahren zum Herstellen eines optoelektronischen Halbleiterbauteils
DE102011054891B4 (de) Verfahren zum Durchtrennen eines Halbleiterbauelementverbunds
DE10229182A1 (de) Gestapelte Chip-Packung und Herstellungsverfahren hierfür
DE102011079708B4 (de) Trägervorrichtung, elektrische vorrichtung mit einer trägervorrichtung und verfahren zur herstellung dieser
WO2016173841A1 (de) Optoelektronische bauelementanordnung und verfahren zur herstellung einer vielzahl von optoelektronischen bauelementanordnungen
DE10014620A1 (de) Verfahren zur Herstellung eines Trägerbandes mit einer Vielzahl von elektrischen Einheiten, jeweils aufweisend einen Chip und Kontaktelemente
DE10351028B4 (de) Halbleiter-Bauteil sowie dafür geeignetes Herstellungs-/Montageverfahren
EP3599636B1 (de) Keramischer schaltungsträger und elektronikeinheit
DE102014117246A1 (de) Verfahren zum Herstellen eines Substratadapters, Substratadapter und Verfahren zum Kontaktieren eines Halbleiterelements
EP3036805A1 (de) Laserbauelement und verfahren zum herstellen eines laserbauelements
DE102011112659B4 (de) Oberflächenmontierbares elektronisches Bauelement
DE3931551C2 (de) Verfahren zum Herstellen eines Substrates
EP0710432B1 (de) Verfahren zur herstellung von folienleiterplatten oder halbzeugen für folienleiterplatten sowie nach dem verfahren hergestellte folienleiterplatten und halbzeuge
DE10333840B4 (de) Halbleiterbauteil mit einem Kunststoffgehäuse, das eine Umverdrahrungsstruktur aufweist und Verfahren zu deren Herstellung
WO2019202021A1 (de) Oberflächenmontierbares bauteil
WO2017129697A1 (de) Optoelektronisches bauelement mit seitenkontakten
DE10223203B4 (de) Elektronisches Bauelement-Modul und Verfahren zu dessen Herstellung
WO2016174238A1 (de) Anordnung mit einem substrat und einem halbleiterlaser
EP3611761A1 (de) Verfahren und metallsubstrat zum kontaktieren eines leistungshalbleiters durch ein kontaktierungsmittel mit zumindest einem kontaktierungsfreien bereich als belastungsreduzierende struktur
EP1298723A2 (de) Elektronisches Bauteil mit einem Kunststoffgehäuse und Komponenten eines Systemträgers und Verfahren zu deren Herstellung
DE102004012979B4 (de) Kopplungssubstrat für Halbleiterbauteile, Anordnungen mit dem Kopplungssubstrat, Kopplungssubstratstreifen, Verfahren zur Herstellung dieser Gegenstände und Verfahren zur Herstellung eines Halbleitermoduls
EP2529398A1 (de) Verbesserung der ebenheit durch freischnitte an den prägen
DE102016114478A1 (de) Verfahren zum herstellen eines trägers für ein optoelektronisches bauelement
DE10146854A1 (de) Elektronisches Bauteil mit wenigstens einem Halbleiterchip und Verfahren zu seiner Herstellung
DE10132385A1 (de) Elektronisches Bauteil, einen Nutzen und einen Systemträger für ein derartiges Bauteil mit auf ihren Unterseiten verteilten Außenkontakten, sowie Verfahrnen zur Herstellung derselben

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12756458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14342999

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12756458

Country of ref document: EP

Kind code of ref document: A1