WO2013024815A2 - ブロック共重合体、および抗血栓コーティング剤 - Google Patents

ブロック共重合体、および抗血栓コーティング剤 Download PDF

Info

Publication number
WO2013024815A2
WO2013024815A2 PCT/JP2012/070487 JP2012070487W WO2013024815A2 WO 2013024815 A2 WO2013024815 A2 WO 2013024815A2 JP 2012070487 W JP2012070487 W JP 2012070487W WO 2013024815 A2 WO2013024815 A2 WO 2013024815A2
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
monomer
polymer
copolymer
coating
Prior art date
Application number
PCT/JP2012/070487
Other languages
English (en)
French (fr)
Other versions
WO2013024815A3 (ja
Inventor
原口 和敏
和臣 久保田
武久 敢
高田 哲生
典子 山東
Original Assignee
一般財団法人川村理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人川村理化学研究所 filed Critical 一般財団法人川村理化学研究所
Priority to EP12823466.3A priority Critical patent/EP2746308B1/en
Priority to CN201280039648.9A priority patent/CN103781812B/zh
Priority to US14/237,664 priority patent/US9474835B2/en
Publication of WO2013024815A2 publication Critical patent/WO2013024815A2/ja
Publication of WO2013024815A3 publication Critical patent/WO2013024815A3/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/064Use of macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • the present invention relates to a block copolymer comprising a polymer of a (meth) acrylic acid ester monomer and a polymer of a (meth) acrylamide monomer.
  • the present invention also relates to a coating agent having excellent antithrombogenicity using a block copolymer and a medical device coated with this antithrombotic coating agent.
  • Block copolymers composed of different polymer segments are useful as adhesives, polymer surfactants, thermoplastic resins and the like because the properties of each polymer segment appear and function.
  • the main component is a polymer A of a (meth) acrylic acid alkyl ester monomer having an alkyl group having 4 to 12 carbon atoms and at least one selected from vinyl acetate, methyl acrylate, methyl methacrylate, styrene, and acrylonitrile.
  • the pressure-sensitive adhesive composition comprising an AB type block copolymer comprising the polymer B as described above has good adhesion and re-peelability to a smooth substrate, and the pressure-sensitive adhesive upon re-peeling is applied to the substrate. It is disclosed that it does not remain (Patent Document 1).
  • the ABA type block copolymer of poly-N-isopropylacrylamide-poly-N, N-dimethylacrylamide-poly-N-isopropylacrylamide has a phase transition temperature (about 32 ° C.) or higher in water. It has been reported that by heating, the A segment transitions from hydrophilic to hydrophobic, and the copolymer self-aggregates (Non-patent Document 1).
  • the ABA type block copolymer shown above is hydrophilic at the phase transition temperature or lower and does not have adhesiveness with the base material, but when the phase transition temperature is exceeded, the A segment is It appears that it has transferred to hydrophobicity and exhibits high protein adsorption.
  • it is derived from a block composed of repeating units derived from N, N-dimethylacrylamide or N-methylacrylamide, and a (meth) acrylate monomer having a hydroxyl group or a styrene monomer having a hydroxyl group. It has been reported that an amide block copolymer composed of blocks composed of repeating units is effective as a leukocyte removal filter coating agent that permeates platelets in high yield (Patent Document 3).
  • the block copolymer comprising methoxyethyl (meth) acrylate and N-isopropylacrylamide is water-soluble below the phase transition temperature and hydrophobic above the phase transition temperature.
  • a method has been reported in which a low-temperature aqueous solution of a copolymer is applied to a medical device, and then the block copolymer is attached to the medical device by setting the temperature to a temperature higher than the phase transition temperature, and is used as an antithrombotic material. (Patent Document 4).
  • polymers having excellent mechanical properties (high strength, high elastic modulus or flexibility) and moldability eg, polyolefin resins such as polypropylene and polyethylene, polyvinyl chloride, polyurethane, polystyrene) , Polyester, polysulfone, polytetrafluoroethylene, etc.
  • materials such as ceramics and metals have been used as main parts or as connection parts depending on the purpose.
  • medical devices used in direct contact with blood eg, catheters (catheters, balloons for balloon catheters, guide wires, etc.), artificial blood vessels, blood vessel bypass tubes, artificial valves, blood filters, plasma separation devices, artificial devices Reliable blood compatibility, especially blood coagulation in organs (artificial lungs, artificial kidneys, artificial hearts, etc.), blood transfusion devices, blood extracorporeal circuits, blood bags, anti-adhesion membranes, wound dressings, etc. It is essential to have antithrombogenicity to prevent.
  • an anticoagulant eg, heparin
  • an anticoagulant eg, heparin
  • materials exhibiting excellent blood compatibility have been developed.
  • an antithrombotic material such as heparin is fixed to a surface of a medical device that comes into contact with blood. A method is mentioned.
  • a coating agent that imparts antithrombotic properties.
  • One is that the coat surface exhibits excellent antithrombogenicity, and the other is adhesion to the material.
  • the former when platelets and proteins in blood adhere to and activate medical devices, a clot called a thrombus is formed.
  • this thrombus rides on the bloodstream and scatters to the brain and lungs, there is a risk of causing serious cerebral infarction, pulmonary thrombosis, and the like. How to stably suppress such a thrombus formation reaction over a long period of time is a major issue as an antithrombotic coating agent.
  • hydrophilic polymers eg, : Water-soluble copolymer of polyethylene glycol acrylate and acrylic acrylate (Patent Document 5), copolymer of hydrophobic monomer and hydrophilic monomer (eg, hydrophobic silicone (meth) acrylate or alkyl (meth) acrylate) And a (meth) acrylate copolymer consisting of a hydrophilic (meth) acrylate (Patent Document 6)) or a hydrophilic hydrogel (eg, a chemically crosslinked gel of poly (N, N-dimethylacrylamide) (Patent Document 7))
  • leukocytes that permeate platelets in high yield are reported.
  • anti-thrombogenic coating materials that have a synthetic polymer such as methoxyethyl (meth) acrylate that does not contain hydroxyl groups on the surface have suppressed platelet adhesion and activation for a long time.
  • Patent Document 8 Patent Document 9
  • Patent Document 10 Patent Document 11
  • Patent Document 12 an artificial lung
  • those containing such methoxyethyl acrylate repeating units include a block copolymer of methoxyethyl acrylate and N-isopropylacrylamide (Patent Document 4), a block copolymer of methoxyethyl acrylate and glycidyl methacrylate (Patent Document 13), methoxy A copolymer of polyethylene glycol (meth) acrylate and alkyl (meth) acrylate (Patent Document 14) has been reported as a coating agent exhibiting antithrombogenicity.
  • an antithrombotic coating agent that exhibits superior antithrombogenicity as compared with conventional ones and has a property of strongly adhering to various substrates has been desired.
  • the first problem to be solved by the present invention is to provide a copolymer, particularly a block copolymer, which has excellent film forming ability, excellent adhesion to a substrate, and does not adsorb proteins. It is to provide.
  • the second problem to be solved by the present invention is an antithrombotic coating agent exhibiting properties excellent in both antithrombogenicity and adhesion to a substrate as compared with conventional antithrombotic coating agents, and those It is providing the medical device obtained by coating.
  • the present inventors have found that a polymer (A) of a (meth) acrylic acid ester monomer (a) and a polymer of a (meth) acrylamide monomer (B) It is found that the block copolymer comprising is excellent in film-forming ability and has good adhesion to a substrate, and the coating film comprising the block copolymer has a property of not adsorbing protein. It came to complete.
  • the present invention includes a monomer polymer (A) containing a monomer (a) represented by the following general formula (1) and a monomer (b) represented by the following formulas (2) to (7).
  • a block copolymer comprising a monomer polymer (B) is provided.
  • R 0 is an alkyl group having 1 to 3 carbon atoms
  • R 1 is a hydrogen atom or a methyl group
  • R 2 and R 7 are each independently an alkylene having 2 to 3 carbon atoms.
  • Groups R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 2 carbon atoms
  • X is —CO 2 ⁇ , —SO 3 ⁇ , —OSO 3 ⁇ , —OSO 2 ⁇ , —OP ( ⁇ O) (OR 8 ) O ⁇ , —OP ( ⁇ O) (R 8 ) O ⁇ , —P ( ⁇ O) (OR 8 ) O ⁇ , —P ( ⁇ O) (R 8 ) O - monovalent anions
  • R 8 is selected from an alkyl group having a carbon number of 1 ⁇ 3, n is an integer of 1-9).
  • a block copolymer having a specific composition specifically, a (meth) acrylate monomer polymer (A)
  • A a block copolymer comprising a (meth) acrylamide monomer polymer (B) or a copolymer (B * ) exhibits excellent properties in both antithrombogenicity and adhesion to a substrate. It came to complete.
  • the block copolymer of the present invention has a good hydrophilic / hydrophobic balance between the polymer (A) and the polymer (B), and has good solubility or dispersibility in water as well as solubility in solvents. It is easy to produce an aqueous solution or a highly uniform aqueous dispersion. The aqueous solution or aqueous dispersion of the copolymer has little stability change such as precipitation, viscosity change, and discoloration, and high stability.
  • the block copolymer of the present invention has a good film forming ability, and the obtained film has high transparency, good elastic modulus, flexibility and flexibility.
  • the coating film made of the block copolymer of the present invention is not only stably used in the air, but also has the characteristic of exhibiting excellent mechanical properties without swelling in water. Furthermore, since the coating film made of the block copolymer of the present invention is particularly excellent in low protein adsorptivity, it is useful as a surface modifier for cell culture substrates and various biochemical / medical devices.
  • the coating agent of the present invention has a property of strongly adhering to a substrate by coating, and has a feature that the coated substrate surface exhibits excellent antithrombogenicity.
  • a stable solution or dispersion liquid is prepared as a coating agent, and it has a feature that it can uniformly coat various substrates. Therefore, the medical device coated with the coating agent of the present invention exhibits excellent antithrombogenicity because blood coagulation is greatly suppressed even when the blood contact portion has a complicated shape or is in contact for a long time.
  • R 0 is an alkyl group having 1 to 3 carbon atoms
  • R 1 is a hydrogen atom or a methyl group
  • R 2 and R 7 are each independently an alkylene having 2 to 3 carbon atoms.
  • Groups R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, X is —CO 2 ⁇ , —SO 3 ⁇ , —OSO 3 ⁇ , —OSO 2 ⁇ , —OP ( ⁇ O) (OR 8 ) O ⁇ , —OP ( ⁇ O) (R 8 ) O ⁇ , —P ( ⁇ O) (OR 8 ) O ⁇ , —P ( ⁇ O) (R 8 ) O - monovalent anions, R 8 is selected from an alkyl group having a carbon number of 1 ⁇ 3, n is an integer of 1-9). 2.
  • the molar ratio (A: B) of the polymer (A) to the polymer (B) is 1:50 to 50: 1.
  • the polymer (B) is a copolymer of the monomer (b) and the monomer (a), and the ratio of the monomer (b) to the monomer (a) is 99: 1 to 10:90.
  • the molar ratio is 1. Or 2.
  • the block copolymer is a triblock copolymer, a diblock copolymer, or a multi-branched block copolymer. ⁇ 3.
  • the degree of polymerization of the polymer (A) is 30 to 3000, and the degree of polymerization of the polymer (B) is 20 to 20000.
  • the monomer (a) used in the present invention (poly) propylene glycol alkyl ether (meth) acrylate or (poly) ethylene glycol alkyl ether (meth) acrylate is used.
  • the monomer (a) of the following general formula (1) is used.
  • R 0 is an alkyl group having 1 to 3 carbon atoms
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkylene group having 2 to 3 carbon atoms
  • n is an integer of 1 to 9 .
  • monomers (a) represented by the general formula (1) compounds in which n is 1 to 3 are preferable, and 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, methyl carbitol acrylate, ethyl carbitol acrylate, Methoxytriethylene glycol acrylate and ethoxytriethylene glycol acrylate are more preferable, and 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate are particularly preferable.
  • the polymer (A) in the present invention is a polymer of monomers including the monomer (a).
  • a polymer obtained by polymerizing only the monomer (a) is preferred, but other monomers can be used in addition to the monomer (a) as long as the effects of the present invention are not impaired.
  • the polymer (A) is preferably a polymer obtained by polymerizing 65 mol% or more of the monomer (a), and more preferably a polymer obtained by polymerizing 95 mol% or more.
  • Examples of monomers that can be used in addition to the monomer (a) include monomers represented by the following formulas (2) to (7), functional groups such as hydroxyl groups, glycidyl groups, isocyanato groups, carboxyl groups, amino groups, and sulfonic acid groups. There are (meth) acrylic monomers.
  • the monomer (b) used in the present invention is (meth) acrylamide and / or a derivative thereof (N- or N, N-substituted (meth) acrylamide). Particularly preferably, acrylamide monomers of the following formulas (2) to (7) are used.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 and R 7 are each independently an alkylene group having 2 to 3 carbon atoms
  • R 3 , R 4 , R 5 , R 6. Are each independently a hydrogen atom or an alkyl group having 1 to 2 carbon atoms
  • n is an integer of 1 to 9.
  • the resulting block copolymer has good solubility or dispersibility in water, high stability, good copolymer film-forming ability, and a smoother coating film.
  • N, N-dimethylacrylamide is used as the monomer (b)
  • the cells show a very low adhesion to the surface of the resulting coating film, which is suitable for cell culture in a floating state.
  • the polymer (B) is a polymer containing the monomer (b), and the polymer (B) is a polymer comprising the monomer (b) represented by the general formulas (2) to (7). Or the copolymer with another monomer is contained.
  • monomer (a) is preferably used, and the ratio (molar ratio) of monomer (b): monomer (a) is 99: 1 to 10:90, more preferably 95. : 5 to 30:70, more preferably 90:10 to 50:50, particularly preferably 90:10 to 60:40.
  • the copolymer comprising the monomer (b) and the monomer (a) also has a feature that a block copolymer can be synthesized more easily.
  • the balance between the hydrophilicity / hydrophobicity of the block copolymer is adjusted.
  • other copolymerization monomers can be used in combination as necessary.
  • an acrylic monomer having an anionic group such as a sulfone group or a carboxyl group
  • the arrangement of the polymers (A) and (B) is not necessarily limited.
  • the BA type and [BA] p multi-branched type are more preferred, and the AB type and [BA] p multi-branched type are most preferred.
  • [BA] p multi-branch type refers to those shown in the following structural examples.
  • the molar ratio (A: B) of the A component and the B component in the block copolymer of the present invention is preferably in the range of 1:60 to 60: 1, and 1:20 to 20: 1. Is more preferable, and a range of 1:20 to 1: 1 is most preferable.
  • the resulting block copolymer has good solubility or dispersibility in water, high stability, good film-forming ability of the copolymer, and a smoother coating film. can get.
  • the adsorptivity with respect to the protein of the coating-film surface is also low, and cell culture property / peelability is favorable and preferable.
  • the polymerization degree of A is preferably in the range of 30 to 3000
  • the polymerization degree of B is preferably in the range of 20 to 20000
  • the polymerization degree of A is 100 to 1000
  • the polymerization degree of B is The range of 100 to 5000 is more preferable
  • the polymerization degree of A is 100 to 500
  • the polymerization degree of B is particularly preferably 200 to 2000.
  • the resulting block copolymer has good solubility or dispersibility in water, makes it easy to produce water-based paints, has good film-forming ability, and adsorbs protein on the resulting coating surface. Low, cell culture property / peelability is good and preferable.
  • the production method of the block copolymer of the present invention is not particularly limited as long as the monomers (a) and (b) are polymerized to synthesize a block copolymer composed of the polymer (A) and the polymer (B).
  • the first method uses an azo compound and / or an organic peroxide as a radical polymerization initiator in the presence of a chain transfer agent such as trithiocarbonate (hereinafter referred to as RAFT agent).
  • RAFT agent chain transfer agent
  • the monomer (a) is subjected to living radical polymerization
  • the resulting polymer (A) is subjected to living radical polymerization of the monomer (b).
  • the second method is the presence of an organic halide and a transition metal complex, Examples thereof include a method for synthesizing a block copolymer in which monomer (b) is radically polymerized, and then monomer (a) is added and radically polymerized.
  • the following methods (1-1) to (2-2) are preferable among known living radical polymerization methods.
  • (1-1) In the first method, after the RAFT agent and the monomer (a) are polymerized in the presence of a small amount of a polymerization initiator, the macro RAFT agent consisting only of the polymer (A) is isolated and purified. A method of synthesizing and polymerizing the macro RAFT agent and the monomer (b) in the presence of a small amount of a polymerization initiator to obtain a block copolymer.
  • the monomer (b) is polymerized in the presence of the organic halide and the transition metal complex, and then the monomer (a) is added without isolation to obtain a block copolymer.
  • Method In the case of the methods (2-1) and (2-2), it is not necessary to add the next monomer after the first monomer is completely consumed, and the conversion rate of the first monomer is about 65% or more. Then, the next monomer may be added.
  • the polymer obtained in this case is not a complete block copolymer but a so-called Tapered block copolymer in which a part of the monomer (a) and the monomer (b) are mixed. If the ratio of (b) is selected appropriately, a copolymer having a function equivalent to that of a complete block copolymer can be obtained.
  • the above methods (2-1) and (2-2) are used.
  • a method of polymerizing a mixture of the monomer (a) and the monomer (b) can be used.
  • protein adsorption is preferably such that the absorbance at 450 nm is 0.5 or less, more preferably 0.2 or less, when HRP-labeled immunoglobulin G is colored with a TMB color former.
  • the present invention has a feature that various materials can be used as a cell culture substrate.
  • various materials can be used as a cell culture substrate.
  • PS polystyrene
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PU polyurethane
  • PP polypropylene
  • PTFE polytetrafluoroethylene
  • materials such as glass and metal are also preferably used.
  • the coating film can be produced in any shape such as a plate shape, a sheet shape, a straw shape, a thread shape, and a spherical shape.
  • the block copolymer of the present invention is useful as a coating material for coatings, particularly as a water-based coating material, as a cell culture substrate and as a surface modifier for various biochemical / medical devices.
  • an antithrombotic coating agent according to claims 9 to 18 for the second problem of the present invention will be described.
  • a block copolymer having a specific composition specifically, a (meth) acrylate monomer polymer (A), and (meth)
  • the present invention was completed by finding that a block copolymer comprising an acrylamide monomer polymer (B) or a copolymer (B * ) exhibits excellent properties in both antithrombogenicity and adhesion to a substrate. It came to do. That is, the invention for the second problem has the following configuration.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkylene group having 2 to 3 carbon atoms
  • R 3 is an alkyl group having 1 to 3 carbon atoms.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkylene group having 2 to 3 carbon atoms
  • R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom. Or an alkyl group having 1 or 2 carbon atoms.
  • B * An antithrombotic coating agent comprising the block copolymer according to claim 1, 11. 8.
  • the polymer (A) is insoluble in water and the polymer (B) or copolymer (B * ) is water-soluble. Or 10.
  • the monomer (b) / monomer (a) copolymerization ratio is 99/1 to 10/90 molar ratio.
  • the molar ratio (A: B) of the polymer (A) to the polymer (B) or the molar ratio (A: B * ) of the polymer (A) to the copolymer (B * ) in the block copolymer is 1. : 50 to 50: 1 Or 10.
  • the block copolymer is represented by any of a triblock copolymer, a diblock copolymer, and a multi-branched block copolymer. ⁇ 13.
  • the triblock copolymer is ABA or AB * -A
  • the multi-branched block copolymer is [BA] p or [B * -A] p (p is B or B *).
  • p is B or B *
  • the degree of polymerization of the copolymer (A) is 30 to 3000, and the degree of polymerization of the copolymer (B) or the copolymer (B * ) is 20 to 20000.
  • the block copolymer is composed of 0.05 to 10 parts by mass and 99.95 to 90 parts by mass of a solvent mainly containing any one of ethanol, methanol and isopropyl alcohol.
  • propylene glycol alkyl ether (meth) acrylate or ethylene glycol alkyl ether (meth) acrylate represented by the following general formula (8) is used as the monomer (a) used in the present invention.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkylene group having 2 to 3 carbon atoms
  • R 3 is an alkyl group having 1 or 2 carbon atoms.
  • monomers (a) represented by the general formula (8) 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, 2-methoxyethyl methacrylate, 2-ethoxy are preferred from the viewpoint of antithrombogenicity and substrate adhesion.
  • Ethyl methacrylate is more preferable, and 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate are particularly preferable.
  • the polymer (A) in the present invention is a polymer of monomers including the monomer (a).
  • a polymer obtained by polymerizing only the monomer (a) is preferred, but other monomers can be used in addition to the monomer (a) as long as the effects of the present invention are not impaired.
  • the polymer (A) is preferably a polymer obtained by polymerizing 70 mol% or more of the monomer (a), and more preferably a polymer obtained by polymerizing 95 mol% or more.
  • Examples of the monomer (b) used in the present invention include acrylamide monomers represented by the following general formulas (9) to (14), which are (meth) acrylamide or derivatives thereof (N- or N, N-substituted (meth) acrylamide). Used.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkylene group having 2 to 3 carbon atoms
  • R 3, R 4 , R 5 and R 6 are each independently a hydrogen atom. Or an alkyl group having 1 or 2 carbon atoms.
  • the polymer (B) is a polymer containing the monomer (b), and the polymer (B) is a polymer comprising the monomer (b) represented by the general formulas (9) to (14). Alternatively, a copolymer (B * ) with another monomer is included.
  • the monomer (a) is preferably used, and the ratio (molar ratio) of monomer (b): monomer (a) is from 99: 1 to 10:90, More preferably 95: 5 to 30:70, still more preferably 90:10 to 50:50, and particularly preferably 90:10 to 60:40.
  • the copolymer (B * ) composed of the monomer (b) and the monomer (a) also has a feature that a block copolymer can be synthesized more easily.
  • an acrylic monomer having an anionic group such as a sulfone group or a carboxyl group
  • the resulting block copolymer exhibits good solubility or dispersibility in water, and has a high volatility such as ethanol.
  • the solubility to the organic solvent which has the low invasiveness to a material becomes high.
  • the resulting coating agent comprising the block copolymer exhibits high stability and excellent coating performance (high uniformity and smoothness).
  • the polymer (A) of the monomer (a) has an effect of improving the adhesion to the base material when the obtained block copolymer is coated on the base material, and an effect of obtaining a smooth coating surface.
  • the coating agent made of the block copolymer has an excellent antithrombogenic surface. give.
  • the arrangement of the polymer (A) and the polymer (B) (or B * ) is not necessarily limited.
  • a diblock type (A -B) or (AB * ), triblock type (ABAA, BABB) or (AB * -A, B * -AB * ), multi-branched type [ Each block polymer of (B-A] p ) or ([B * -A] p ) (p is the number of branches of B and is 3 to 10) is preferably used.
  • A-B type, A-B-A type, [B-A] p-type or A-B * type, A-B * -A type, [B * -A] p-type is more preferably, A -BA type, [BA] p type or AB * -A type, [B * -A] p type are more preferred, and ABA type or AB * -A type is the most preferable.
  • the multi-branched [BA] p- type refers to those shown in the following structural examples.
  • the molar ratio (A / B) of the A component to the B component in the block copolymer is preferably in the range of 1:50 to 50: 1, and 1:30 to 30: A range of 1 is more preferred, and a range of 1:20 to 1: 1 is most preferred.
  • a range of 1 is more preferred, and a range of 1:20 to 1: 1 is most preferred.
  • the degree of polymerization of the polymer (A) is preferably from 30 to 3000, and the degree of polymerization of the polymer (B) (or copolymer (B * )) is preferably from 20 to 20000. More preferably, the degree of polymerization of the polymer (A) is from 100 to 1000, and the degree of polymerization of the polymer (B) (or copolymer (B * )) is from 100 to 5000, and the degree of polymerization of the polymer (A). Is preferably 100 to 500, and the degree of polymerization of the polymer (B) (or copolymer (B * )) is particularly preferably 200 to 2000. Within this range, the adhesion of the resulting block copolymer to the substrate and the antithrombotic properties are particularly excellent.
  • the manufacturing method is not particularly limited.
  • the first method is a method in which a radical transfer initiator is used as an azo compound and an organic peroxide in the presence of a chain transfer agent such as trithiocarbonate (hereinafter referred to as a raft (RAFT) agent).
  • RAFT a chain transfer agent
  • the monomer (a) is subjected to living radical polymerization, and the resulting polymer (A) is subjected to living radical polymerization.
  • the second method is the presence of an organic halide and a transition metal complex.
  • the synthesis method of the block copolymer which radically polymerizes the monomer (b) and then adds the monomer (a) and performs radical polymerization can be mentioned.
  • the solvent used in the antithrombotic coating agent in the present invention water and an organic solvent or a mixed solvent thereof is used.
  • the type and concentration of the solvent used vary depending on the composition and molecular weight of the block copolymer to be obtained and the type and surface properties of the substrate to be coated, and more preferably, it has excellent volatility and is invasive to the substrate.
  • a low one having any one of ethanol, methanol, and isopropanol as a main component and a solvent concentration of 99.95 to 90% by mass is used.
  • a surfactant when used as an aqueous solution for the antithrombotic coating agent in the present invention, in order to improve the adhesion to the substrate, a surfactant is used together, or the substrate surface is subjected to corona treatment, plasma treatment, etc. It is desirable to perform a hydrophilic treatment.
  • a base material for a medical device
  • a variety of materials can be used.
  • polyolefin resins such as polypropylene and polyethylene, polystyrene, polycarbonate, polyvinyl chloride, polyurethane, polyester, polysulfone, and polytetrafluoroethylene are used, and materials such as glass, ceramic, and metal are preferably used.
  • a uniform coating film can be produced on a base material having an arbitrary shape and form such as a plate, a sheet, a straw, a fiber, a sphere, a nonwoven fabric, and a porous material.
  • a tube made of polyvinyl chloride for blood perfusion and its connection Blood perfusion test using a polycarbonate connector required for the above As one of the typical indicators for evaluating the adhesion of the coating agent to the substrate surface and the antithrombotic effect of the coating agent, a tube made of polyvinyl chloride for blood perfusion and its connection Blood perfusion test using a polycarbonate connector required for the above. It is known that when an antithrombogenic coating is applied, the formation of a thrombus is suppressed even when it comes into contact with blood, and the coating adhesion evaluation of the surface can be performed at the same time.
  • a method of measuring the amount of platelets adsorbed on the surface of the coating substrate is used.
  • this method often uses whole blood or platelet-rich plasma (PRP) that has been anticoagulated with human or animal-derived heparin or the like. Since the conditions differ and there are considerable individual differences in blood at the time of measurement, there is a possibility that the antithrombogenicity is not always accurately evaluated.
  • PRP platelet-rich plasma
  • blood coagulation elasticity measurement and “platelet activation” measurement are effective as new antithrombogenicity evaluation methods to replace this method.
  • evaluation of blood coagulation elasticity is a method that fills the whole blood in the measurement container, activates the blood coagulation by dividing it into an intrinsic system and an extrinsic system. It measures the change in elasticity.
  • platelet activation measurement is to measure the change in impedance due to platelets adhering to the electrode by filling the whole blood in a measurement vessel equipped with an electrode, activating platelets in the presence of various factors. is there. Since fresh blood is used and the behavior when blood coagulation occurs as in the living body is evaluated, it is possible to evaluate in a system close to actual use.
  • the measurement containers used for these “blood coagulation elasticity measurement” and “platelet activation measurement” are all so-called “foreign substances” viewed from blood that may promote blood coagulation.
  • anti-thrombogenic coating When anti-thrombogenic coating is applied, anti-thrombogenicity, that is, blood coagulation and platelet activation will be suppressed, and the measured value will be lower than when using uncoated measuring containers. It is expected.
  • the coating surface using the antithrombotic coating agent in the present invention has a maximum coagulation hardness: MCF (Maximum Clot Firmness) of 40 mm or less, more preferably 20 mm or less, particularly preferably 10 mm or less.
  • MCF Maximum Clot Firmness
  • the area is 150 U or less, more preferably 100 U or less.
  • the theoretical molecular weight of the polymer (A), the polymer (B) and the block copolymer was calculated from the above conversion rate using the following formula (16).
  • the theoretical molecular weight Mn of the polymer (A) is about 32500 (250 mol)
  • the theoretical molecular weight Mn of the polymer (B) is about 143000 (1440 mol)
  • the theory of the block copolymer was about 175500.
  • the block copolymer has good solubility in water, can easily produce a water-based paint, the obtained coating film has high transparency and good adhesion to the substrate. Yes, protein adsorption on the surface of the coating was greatly suppressed. Moreover, it can be understood that the adhesion of the cells to the surface of the coating film of the cells is low and the cells can be cultured in a floating state.
  • the theoretical molecular weight of the polymer (A), the polymer (B) and the block copolymer was calculated from the above conversion rate using the formula (16).
  • the theoretical molecular weight Mn of the polymer (A) is about 32500 (250 mol)
  • the theoretical molecular weight Mn of the polymer (B) is about 148000 (1480 mol)
  • the block copolymer The theoretical molecular weight Mn was about 213,000.
  • a coated petri dish 2 was produced in the same manner as in Example 1 using the obtained block copolymer. When this coat petri dish 2 was visually observed, it had the same transparency as before application.
  • Protein adsorption test Using the coat petri dish 2, a protein adsorption test was performed in the same manner as in Example 1. As a result, the protein adsorption amount (absorbance value) was 0.044. Moreover, when the same test was carried out by changing the base material from polystyrene to glass, polycarbonate, and SUS, the coating film and the base material were in good contact, and the protein adsorption amounts were 0.039, 0.073, and. 076.
  • the block copolymer has good solubility in water, can easily produce a water-based paint, the obtained coating film has high transparency and good adhesion to the substrate. Yes, protein adsorption on the surface of the coating was greatly suppressed. Moreover, it was understood that the adhesiveness of the cells on the coating film surface was low and the cells could be cultured in a floating state.
  • a coated petri dish 3 was produced in the same manner as in Example 1 by using the obtained block copolymer. When this coat petri dish 3 was visually observed, it had the same transparency as before application.
  • Protein adsorption test Using the coat petri dish 3, a protein adsorption test was performed in the same manner as in Example 1. As a result, the protein adsorption amount (absorbance value) was 0.048.
  • the block copolymer has good solubility in water, can easily produce a water-based paint, the obtained coating film has high transparency and good adhesion to the substrate. Yes, protein adsorption on the surface of the coating was greatly suppressed. Moreover, it can be understood that the adhesiveness of the cells on the coating film surface is low and the cells can be cultured in a floating state.
  • Example 4 [Synthesis of block copolymer] An ABA type block copolymer was synthesized in the same manner as in Example 2 except that the polymerization time of the monomer (a) was changed to 5 hours. The conversion rate of the monomer (a) when the polymerization time of the monomer (a) was 5 hours was measured by 1 H-NMR and found to be 81%. Therefore, it was found that the polymer (B) part contained the monomer (a) that did not react in the polymerization time of 5 hours in addition to the monomer (b). After completion of the reaction, the reaction solution was poured into diethyl ether, further washed three times with diethyl ether, and then vacuum dried to synthesize an ABA type block copolymer.
  • the theoretical molecular weight of the polymer (A), the copolymer (B), and the block copolymer was calculated using the conversion rate, the formula (16), and the conversion rate of the monomer (a) (81%).
  • the theoretical molecular weight Mn of the polymer (A) in the ABA block copolymer is about 32500 (200 mol)
  • the theoretical molecular weight Mn of the copolymer (B) is about 159400 (1580 mol)
  • the theoretical molecular weight Mn was about 224400.
  • a coated petri dish 4 was produced in the same manner as in Example 1 using the obtained block copolymer. When this coat petri dish 4 was visually observed, it had transparency equivalent to that before application.
  • Protein adsorption test A protein adsorption test was performed in the same manner as in Example 1 using the above-described petri dish 4. As a result, the protein adsorption amount (absorbance value) was 0.046.
  • the block copolymer has good solubility in water, can easily produce a water-based paint, the obtained coating film has high transparency and good adhesion to the substrate. Yes, protein adsorption on the surface of the coating was greatly suppressed. Moreover, it can be understood that the adhesiveness of the cells on the coating film surface is low and the cells can be cultured in a floating state.
  • Protein adsorption test A protein adsorption test was performed in the same manner as in Example 1 using the above-mentioned coat petri dish 5. As a result, the protein adsorption amount (absorbance value) was 0.069.
  • the block copolymer has good solubility in water, can easily produce a water-based paint, the obtained coating film has high transparency and good adhesion to the substrate. Yes, protein adsorption on the surface of the coating was greatly suppressed. Moreover, it can be understood that the adhesiveness of the cells on the surface of the coating film is low and the cells can be cultured in a floating state.
  • reaction solution was poured into diethyl ether, and the resulting yellow oil was further washed with diethyl ether three times and then vacuum dried to synthesize a macro RAFT agent consisting only of the polymer (A).
  • the theoretical molecular weight of the polymer (A), the polymer (B) and the block copolymer was calculated from the above conversion rate using the formula (16).
  • the theoretical molecular weight Mn of the polymer (A) is about 30000 (230 mol)
  • the theoretical molecular weight Mn of the polymer (B) is about 141000 (1420 mol)
  • the block copolymer The theoretical molecular weight Mn was about 201,000.
  • a coated petri dish 6 was produced in the same manner as in Example 1 by using the obtained block copolymer. When this coat petri dish 6 was visually observed, it had the same transparency as before application.
  • Example 7 [Synthesis of block copolymer]
  • the amount of 2-methoxyethyl acrylate as monomer (a) is 2.92 g, N, N-dimethylacrylamide 6.00 g and N, N-dimethylaminopropylacrylamide (manufactured by Kojin Co., Ltd.) 1.05 g as monomer (b)
  • ABA block copolymer was synthesized in the same manner as in Example 2 except that was added. Subsequently, 1.017 g of the block copolymer was dissolved in 15 mL of acetonitrile, 742 mg of 1,3-propane sultone was added, and the mixture was allowed to stand at room temperature for 7 days.
  • the theoretical molecular weight of the polymer (A), the copolymer (B) and the block copolymer was calculated from the above conversion rate using the formula (16).
  • the theoretical molecular weight Mn of the polymer (A) is about 32500 (250 mol)
  • the theoretical molecular weight Mn of the copolymer (B) is about 162000 (1410 mol)
  • the theoretical molecular weight Mn of the coalescence was about 227,000.
  • a coated petri dish 7 was produced in the same manner as in Example 1 by using the obtained block copolymer. When this coat petri dish 7 was visually observed, it had the same transparency as before application.
  • the block copolymer has good solubility in water, can easily produce a water-based paint, the obtained coating film has high transparency and good adhesion to the substrate. Yes, protein adsorption on the surface of the coating was greatly suppressed. Moreover, it was understood that the adhesiveness of the cells on the coating film surface was low and the cells could be cultured in a floating state.
  • the resulting orange oily product was purified by silica gel column chromatography using hexane / acetone as an eluent to obtain a RAFT agent [tetrakis (3-1S- (1-methoxycarbonyl) ethyltrithiocarbonylpropionic acid) pentaerythritol].
  • a RAFT agent tetrakis (3-1S- (1-methoxycarbonyl) ethyltrithiocarbonylpropionic acid
  • aqueous polymer solution 8 0.5 g of the obtained block copolymer was put in 9.5 g of water to obtain an aqueous polymer solution 8. Next, the aqueous solution 8 was put into a 15 mL centrifuge tube (manufactured by ASONE) made of polypropylene, dried after applying the inner surface. Next, after washing and drying, a coated centrifuge tube 8 was obtained. When this coated centrifuge tube 8 was visually observed, it had the same transparency as before application.
  • the above multi-branched block copolymer has good solubility in water, can easily produce a water-based paint, can be easily applied to a polypropylene substrate, and adheres to the substrate. It was understood that the adsorption of protein on the coating film surface was greatly suppressed.
  • the theoretical molecular weights of the polymer (A), the polymer (B) and the block copolymer were calculated using the conversion rate, the formula (16), and the conversion rate (75%) of the monomer (a).
  • the theoretical molecular weight Mn of the polymer (A) is about 24400 (190 mol)
  • the theoretical molecular weight Mn of the copolymer (B) is about 80100 (790 mol).
  • the theoretical molecular weight Mn of the block copolymer was about 418,000.
  • the above-mentioned multi-branched block copolymer has good solubility in water, can easily produce water-based paints, can be easily applied to a polypropylene substrate, and adheres to the substrate. It was understood that protein adsorption on the coating film surface was greatly suppressed.
  • Example 10 [Synthesis of block copolymer] An ABA type block copolymer was synthesized in the same manner as in Example 2 except that 9.49 g of acryloylmorpholine was used instead of N, N-dimethylacrylamide as the monomer (b).
  • the theoretical molecular weight of the polymer (A), the polymer (B) and the block copolymer was calculated from the above conversion rate using the formula (16).
  • the theoretical molecular weight Mn of the polymer (A) is about 32500 (250 mol)
  • the theoretical molecular weight Mn of the polymer (B) is about 210,000 (1490 mol)
  • the theoretical molecular weight Mn of the coalescence was about 275000.
  • a coated petri dish 10 was produced in the same manner as in Example 1 by using the obtained block copolymer. When this coat petri dish 10 was visually observed, it had transparency equivalent to that before application.
  • Protein adsorption test A protein adsorption test was performed in the same manner as in Example 1 using the coat petri dish 10. As a result, the protein adsorption amount (absorbance value) was 0.102.
  • the block copolymer has good solubility in water, can easily produce a water-based paint, the obtained coating film has high transparency and good adhesion to the substrate. Yes, protein adsorption on the surface of the coating was greatly suppressed. Moreover, it was understood that the adhesiveness of the cells on the coating film surface was low and the cells could be cultured in a floating state.
  • the theoretical molecular weight of the polymer (A), the polymer (B) and the block copolymer was calculated from the above conversion rate using the formula (16).
  • the theoretical molecular weight Mn of the polymer (A) is about 32500 (polymerization degree 250 mol)
  • the theoretical molecular weight Mn of the polymer (B) is about 1381000 (polymerization degree 13940 mol).
  • the theoretical molecular weight Mn of the block copolymer was about 1446000.
  • a coated petri dish 11 was produced in the same manner as in Example 1 by using the obtained block copolymer. When this coat petri dish 11 was visually observed, it had the same transparency as before application.
  • a coated petri dish 12 was produced in the same manner as in Example 1 by using the obtained block copolymer. When this coat petri dish 12 was observed visually, it had the same transparency as before application.
  • Example 13 [Coating on substrate] A colorless and transparent polymer solution was obtained by adding 0.1 g of the block copolymer obtained in Example 2 to 10 g of ethanol and stirring. Next, an appropriate amount of the polymer solution is injected into a 30 cm inside of a 3/8 inch diameter polyvinyl chloride tube (Meraexeline: manufactured by Izumi Kogaku Medical Co., Ltd.) and held for 5 minutes to coat the inside of the tube. It was. Thereafter, the polymer solution was removed from the tube and dried in a hot air dryer at 50 ° C. for 15 minutes. Next, the coated tube was immersed in 50 ° C. sterilized water and kept at 50 ° C. for cleaning.
  • Meraexeline manufactured by Izumi Kogaku Medical Co., Ltd.
  • the tube was again placed in a 50 ° C. hot air dryer and dried for 30 minutes to obtain a coating tube.
  • this coating tube was observed visually and with a microscope, it was confirmed that the coating film was uniform and had high transparency.
  • the polycarbonate connector with the uneven part for the tube (Mera artificial cardiopulmonary connector: manufactured by Izumi Kogaku Medical Co., Ltd.) is immersed in the polymer solution and coated in the same manner as above, A coated connector was obtained.
  • a blood protein adsorption measurement test was performed using the obtained coating tube. 5 mL of venous blood was collected from an adult male cow using a syringe. Immediately thereafter, 100 ⁇ L of heparin sodium injection solution (heparin sodium injection 10,000 units “Tanabe”: manufactured by Mitsubishi Tanabe Pharma Corporation) was added to perform anticoagulation treatment. The coated tube was cut to a length of 3 cm, filled with 1 mL of this anticoagulated blood, and sealed at both ends. Subsequently, it was kept for 30 minutes while shaking in a 37 ° C. incubator. Thereafter, the blood in the coating tube was discarded and gently washed with physiological saline.
  • heparin sodium injection solution heparin sodium injection 10,000 units “Tanabe”: manufactured by Mitsubishi Tanabe Pharma Corporation
  • the washed coating tube was immersed in a 2% glutaraldehyde aqueous solution and kept at room temperature for 1 hour. Thereafter, the coating tube was taken out and cut into a length of 1 cm.
  • the protein adsorption amount on the cut inner surface of the coated tube 1 was measured using Micro BCA Protein Assay Kit (manufactured by Thermo SCIENTIFIC), it was 7.5 ⁇ g / cm 2 and the adsorption amount was very small.
  • a bovine fresh blood perfusion test was performed using the obtained coating tube and coating connector. 5 mL of venous blood was collected from an adult male cow using a syringe. This was immediately filled into a coating tube, and both ends were connected to form a looped tube using the coating connector. The obtained looped tube was immersed in a 37 ° C. constant temperature water bath, and blood was perfused into the tube at a rotation speed of 100 rpm. After 15 minutes, the rotation of the apparatus was stopped and the tube was taken out of the thermostatic water bath. Next, the connectors were removed from both ends of the looped tube, and bovine blood that had filled the inside was collected. The collected bovine blood was not coagulated and had fluidity.
  • the coated tube and the coated connector surface were gently washed with physiological saline, and when the inner surface was observed visually and with a microscope, no thrombus formation was observed. Subsequently, 2 cm of this coating tube was cut out and immersed in a 2% aqueous solution of glutaraldehyde. After 1 hour, the product was taken out and washed with physiological saline to remove glutaraldehyde and dried at room temperature. Thereafter, SEM observation of the inner surface of the coating tube was performed, and blood-derived protein components such as blood cells, platelets, and plasma were not observed.
  • the coating tube and the coating connector are surely coated with the above block copolymer, and it remains attached to the surface of the substrate even during blood perfusion.
  • good adhesion of the block copolymer to the polyvinyl chloride and the polycarbonate substrate was confirmed.
  • the cup and pin are surely coated with the block copolymer, and the anti-thrombotic effect can be obtained without peeling in the state that the block copolymer is adhered to the substrate surface during measurement. As shown, good adhesion of the block copolymer to the polypropylene substrate was confirmed.
  • the polypropylene block and the PTFE stirrer including the metal electrode are reliably coated with the block copolymer, and are peeled off while being attached to the substrate surface during measurement. Since the antithrombotic effect was exhibited, good adhesion to the polypropylene and the PTFE base material including the metal electrode of the block copolymer was confirmed.
  • Example 14 [Coating on substrate] Using the block copolymer obtained in Example 5, a coated tube and a coated connector were produced in the same manner as in Example 13. When the obtained coating tube and coating connector were observed visually and with a microscope, it was confirmed that the coating film was uniform and had high transparency.
  • Example 15 [Coating on substrate] Using the block copolymer obtained in Example 3, a coated tube and a coated connector were produced in the same manner as in Example 13. When the obtained coating tube and coating connector were observed visually and with a microscope, it was confirmed that the coating film was uniform and had high transparency.
  • Example 16 [Coating on substrate] Using the block copolymer obtained in Example 4, a coated tube and a coated connector were produced in the same manner as in Example 13. When the obtained coating tube and coating connector were observed visually and with a microscope, it was confirmed that the coating film was uniform and had high transparency.
  • Example 17 [Coating on substrate] Using the block copolymer obtained in Example 8, a coated tube and a coated connector were produced in the same manner as in Example 13. When the obtained coating tube and coating connector were observed visually and with a microscope, it was confirmed that the coating film was uniform and had high transparency.
  • Example 18 [Coating on substrate] Using the block copolymer obtained in Example 9, a coated tube and a coated connector were produced in the same manner as in Example 13. When the obtained coating tube and coating connector were observed visually and with a microscope, it was confirmed that the coating film was uniform and had high transparency.
  • Example 19 [Coating on substrate] Using the block copolymer obtained in Example 1, a coated tube and a coated connector were produced in the same manner as in Example 13. When the obtained coating tube and coating connector were observed visually and with a microscope, it was confirmed that the coating film was uniform and had high transparency.
  • Example 20 [Coating on substrate] Using the block copolymer obtained in Example 10, a coated tube and a coated connector were produced in the same manner as in Example 13. When the obtained coating tube and coating connector were observed visually and with a microscope, it was confirmed that the coating film was uniform and had high transparency.
  • Example 21 [Coating on substrate] Using the block copolymer obtained in Example 11, a coated tube and a coated connector were produced in the same manner as in Example 13. When the obtained coating tube and coating connector were observed visually and with a microscope, it was confirmed that the coating film was uniform and had high transparency.
  • Example 22 [Coating on substrate] Using the block copolymer obtained in Example 12, a coated tube and a coated connector were produced in the same manner as in Example 13. When the obtained coating tube and coating connector were observed visually and with a microscope, it was confirmed that the coating film was uniform and had high transparency.
  • a coated petri dish 1 ′ was produced in the same manner as in Example 1 using the random copolymer obtained above. When this coat petri dish 1 ′ was visually observed, it had a transparency equivalent to that before application.
  • the AB random copolymer had a high protein adsorption amount and high adhesion of cells to the coating film surface.
  • Example 2 [Protein adsorption test] A protein adsorption test at room temperature was performed in the same manner as in Example 1 using an uncoated 35 mm diameter petri dish made of polystyrene. As a result, the absorbance was 0.624.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Graft Or Block Polymers (AREA)
  • Materials For Medical Uses (AREA)
  • Paints Or Removers (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • External Artificial Organs (AREA)
  • Prostheses (AREA)

Abstract

 本発明では、膜形成能に優れ、且つ基材との接着性にも優れ、且つタンパク質を吸着しない性質を持つ共重合体、特にブロック共重合体を提供することにある。また、従来の抗血栓コーティング剤と比べて、抗血栓性および基材への接着性の両方に優れた特性を示す抗血栓コーティング剤、及びそれらをコーティングして得られる医療用具を提供することである。 (メタ)アクリル酸エステル系モノマー(a)の重合体(A)と(メタ)アクリルアミド系モノマーの重合体(B)からなるブロック共重合体が、皮膜形成能に優れ、且つ基材との接着性が良好であり、該ブロック共重合体の提供により、上記課題を解決する。

Description

ブロック共重合体、および抗血栓コーティング剤
 本発明は、(メタ)アクリル酸エステル系モノマーの重合体と(メタ)アクリルアミド系モノマーの重合体からなるブロック共重合体に関する。
 また、本発明は、ブロック共重合体を用いた優れた抗血栓性を有するコーティング剤およびこの抗血栓コーティング剤がコーティングされた医療用具に関する。
 異なるポリマーセグメントからなるブロック共重合体は、各々のポリマーセグメントの性質が現れ、機能するため、接着剤や高分子界面活性剤、熱可塑性樹脂などとして有用である。例えば、炭素数4~12のアルキル基を有する(メタ)アクリル酸アルキルエステル系モノマーの重合体Aと酢酸ビニル、アクリル酸メチル、メタクリル酸メチル、スチレン、及びアクリロニトリルから選ばれる少なくとも1種を主成分とする重合体BからなるA-B型ブロック共重合体からなる粘着剤組成物が平滑な基材に対して良好な粘着性および再剥離性を有し、再剥離時粘着剤が基材に残らないことが開示されている(特許文献1)。
 また、ガラス転移温度が-60~-20℃のビニル系重合体よりなるAセグメントと、ガラス転移温度が50~130℃のビニル系重合体よりなるBセグメントとから構成され粉状又は粒状のA-B型ブロック共重合体及び熱可塑性樹脂を含有するものが、流動性に優れ、得られる成形体の耐衝撃性及び外観に優れることが開示されている(特許文献2)。
 更に、ポリ-N-イソプピルアクリルアミド-ポリ-N,N-ジメチルアクリルアミド-ポリ-N-イソプロピルアクリルアミドのA-B-A型ブロック共重合体が、水中で相転移温度(約32℃)以上に加熱することにより、Aセグメントが親水性から疎水性へと転移し、共重合体が自己凝集することが報告されている(非特許文献1)。
 上記に示すA-B-A型ブロック共重合体は、相転移温度以下では親水性であり、基材との間に接着性を有していないが、相転移温度以上になると、Aセグメントが疎水性へと転移し、高いタンパク吸着性を示すと思われる。
その他、N,N-ジメチルアクリルアミドやN-メチルアクリルアミドに由来する繰り返し単位からなるブロックと、ヒドロキシル基を有する(メタ)アクリル酸エステル系単量体またはヒドロキシル基を有するスチレン系単量体に由来する繰り返し単位からなるブロックとからなるアミド系ブロック共重合体が血小板を高い収率で透過する白血球除去フィルターコート剤として有効であることが報告されている(特許文献3)。
 更に、メトキシエチル(メタ)アクリレートとN-イソプロピルアクリルアミドからなる星型ブロック共重合体が、相転移温度以下で水溶性であり、相転移温度以上で疎水性であることを利用して、該ブロック共重合体の低温の水溶液を医療器具に塗布し、その後相転移温度以上にすることにより該ブロック共重合体を医療器具に付着させる方法が報告されており、抗血栓性材料に利用されている(特許文献4)。
 また、従来から、医療用具としては、優れた機械物性(高強度、高弾性率または柔軟性)および成形性を有する高分子(例:ポリプロピレン、ポリエチレンといったポリオレフィン系樹脂、ポリ塩化ビニル、ポリウレタン、ポリスチレン、ポリエステル、ポリスルホン、ポリテトラフルオロエチレンなど)及びセラミック、金属などの素材が主要部品として、または接続用部品として、目的に応じて用いられてきた。この内、血液と直接接触して用いられる医療用具(例:カテーテル類(カテーテル、バルーンカテーテルのバルーン、ガイドワイヤーなど)、人工血管、血管バイパスチューブ、人工弁、血液フィルター、血漿分離用装置、人工臓器(人工肺、人工腎臓、人工心臓など)、輸血用具、血液の体外循環回路、血液バッグ、癒着防止膜、創傷被覆材など)においては、信頼性の高い血液適合性、とりわけ、血液の凝固を防ぐ抗血栓性を有することが必要不可欠である。
 しかし、上記材料の多くは血液適合性を示すものでないため、使用に際しては、抗血液凝固剤(例:ヘパリン)との併用が不可欠であった。しかし、人体や血液に対する影響の面から、抗血液凝固剤の連続使用時間に制限があるため、これらの医療用具を用いて行うことのできる医療行為には、時間的制約が課されてしまう問題点があった。こうした問題点を解決するために、優れた血液適合性を示す材料が開発されてきており、その代表的なものとして、医療用具の血液と接触する面にヘパリン等の抗血栓性材料を固定する方法が挙げられる。
 しかし、ヘパリンを用いる場合には、ヘパリンの溶出に起因する抗血栓性の低下や、ヘパリンが一般的に動物由来のため感染症が生じたりする問題が知られている。従って、最も望ましいのは、ヘパリンフリーで優れた抗血栓性を示す材料を開発することである。しかし、医療用具としては各種素材自体の特性を生かすことが必要なため、これらの素材を用いた製品または部品の表面に抗血栓性を与える優れた抗血栓コーティング剤の開発が最も望まれている。
 抗血栓性を与えるコーティング剤として重要な因子として二点がある。一つはコート表面が優れた抗血栓性を示すこと、他の一つは素材との密着性である。前者については、血液中の血小板やタンパク質が医療用具に付着・活性化すると血栓とよばれる凝固塊を形成する。この血栓が、血流に乗って脳や肺に飛散することにより重篤な脳梗塞や肺血栓症などを引き起こす危険性が生じる。このような血栓形成反応をいかに安定して、長期に抑制するかが抗血栓コーティング剤として大きな課題となる。
 一般に血小板等を吸着させない抗血栓性を示す表面としては、高濡れ性(低い水接触角)を示す高エネルギー表面が適しているとされており、例えば、これまでに、親水性高分子(例:ポリエチレングリコールアクリレートとアクリルアクリレートとの水溶性共重合体(特許文献5))、疎水性モノマーと親水性モノマーとの共重合体(例:疎水性のシリコーン(メタ)アクリレートまたはアルキル(メタ)アクリレートと親水性(メタ)アクリレートからなる(メタ)アクリレート共重合体(特許文献6))、または、親水性ヒドロゲル(例:ポリ(N,N-ジメチルアクリルアミドの化学架橋ゲル(特許文献7))からなる表面は、血液成分の付着を抑制する効果があると報告されている。その他、血小板を高い収率で透過する白血球除去フィルターコート剤として、N,N-ジメチルアクリルアミドやN-メチルアクリルアミドに由来する繰り返し単位からなるブロックと、ヒドロキシル基を有する(メタ)アクリル酸エステル系単量体またはヒドロキシル基を有するスチレン系単量体に由来する繰り返し単位からなるブロックとからなるアミド系ブロック共重合体が有効であることが報告されている(特許文献3)。
 一方、抗血栓性を示すコーティング材料として、古くから、ヒドロキシル基を含まないメトキシエチル(メタ)アクリレートのような合成高分子を表面に有するものが血小板の粘着・活性化を抑制し、抗血栓性を示すこと(特許文献8、特許文献9)、また、白血球除去フィルター(特許文献10、特許文献11)や人工肺(特許文献12)として有効であることが報告されている。その他、かかるメトキシエチルアクリレート繰り返し単位を含むものとして、メトキシエチルアクリレートとN-イソプロピルアクリルアミドのブロック共重合体(特許文献4)、メトキシエチルアクリレートとグリシジルメタクリレートのブロック共重合体(特許文献13)、メトキシポリエチレングリコール(メタ)アクリレートとアルキル(メタ)アクリレートの共重合体(特許文献14)などが抗血栓性を示すコーティング剤として報告されている。しかしながら、これらの材料においても、抗血栓コーティング剤としての性能は十分ではなく、いまだ、市場ではヘパリンフリーで使える新しい優れた抗血栓材料の開発が待たれている。特に、従来と比べてより優れた抗血栓性を示し、且つ、種々の基材に強く接着する性質を併せ持抗血栓コーティング剤が切望されていた。
特開平10-251609 特開2011-6555 特開2004-339165 特開2008-194363 特開平11-287802 特開2008-289864 特開2008-220786 特許第2806510号 特許第4746984号 特許第3459836号 特許第4404445号 特許第4317183号 特開2007-289299 特開2008-264268
Macromolecular Chemistry and Physics、209、1389-1403(2008)
 従って、本発明が解決しようとする第一の課題は、皮膜形成能に優れ、且つ基材との接着性にも優れ、且つタンパク質を吸着しない性質を持つ共重合体、特にブロック共重合体を提供することにある。
 さらに、本発明が解決しようとする第二の課題は、従来の抗血栓コーティング剤と比べて、抗血栓性および基材への接着性の両方に優れた特性を示す抗血栓コーティング剤、及びそれらをコーティングして得られる医療用具を提供することである。
 本発明者等は、上記第一の課題を解決すべく鋭意研究した結果、(メタ)アクリル酸エステル系モノマー(a)の重合体(A)と(メタ)アクリルアミド系モノマーの重合体(B)からなるブロック共重合体が、皮膜形成能に優れ、且つ基材との接着性が良好であり、該ブロック共重合体からなる塗膜が、タンパク質を吸着しない性質を有することを見出し、本発明を完成するに至った。
 即ち、本発明は、下記一般式(1)で表されるモノマー(a)を含むモノマーの重合体(A)と、下記式(2)~(7)で表されるモノマー(b)を含むモノマーの重合体(B)からなるブロック共重合体を提供する。
Figure JPOXMLDOC01-appb-C000015
             (1)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
             (6)
Figure JPOXMLDOC01-appb-C000021
(式(1)~(7)中、Rは炭素原子数1~3のアルキル基、Rは水素原子またはメチル基、R、Rはそれぞれ独立に炭素原子数2~3のアルキレン基、R、R、R、Rはそれぞれ独立に水素原子または炭素原子数1~2のアルキル基、Xは-CO 、-SO 、-OSO 、-OSO 、-OP(=O)(OR)O、-OP(=O)(R)O、-P(=O)(OR)O、-P(=O)(R)Oから選ばれる一価のアニオン、Rは炭素原子数1~3のアルキル基であり、nは1~9の整数である。)
 また、本発明は、前記ブロック共重合体の塗膜を提供する。
 また、本発明は、前記塗膜表面を有するタンパク質吸着防止材を提供する。
 また、本発明は、前記塗膜表面を有する細胞培養基材を提供する。
 更に、本発明者等は、上記第二の課題を解決すべく鋭意研究した結果、特定組成からなるブロック共重合体、具体的には、(メタ)アクリレート系モノマー重合体(A)と、(メタ)アクリルアミド系モノマー重合体(B)または共重合体(B)とからなるブロック共重合体が抗血栓性と基材への接着性の両方に優れた特性を示すことを見いだし、本発明を完成するに至った。
 本発明のブロック共重合体は、重合体(A)と重合体(B)の親/疎水バランスが良好で、溶剤に対する溶解性は勿論のこと、水に対しても良好な溶解性または分散性を示し、水溶液または均一性の高い水分散液を作製することが容易である。該共重合体の水溶液または水分散液は、沈殿や粘度変化、変色などの物性変化が小さく安定性が高い。また本発明のブロック共重合体は良好な皮膜形成能を有し、得られた皮膜は、高い透明性と、良好な弾性率と柔軟性、屈曲性を有する。また、本発明のブロック共重合体からなる塗膜は、大気中で安定して用いられるばかりでなく、水中でも膨潤せず優れた力学物性を示す特徴を有する。更に、本発明のブロック共重合体からなる塗膜は、特に低いタンパク吸着性に優れるため、細胞培養基材や、各種生化学・医療用具の表面改質剤として有用である。
 また、本発明のコーティング剤は、コーティングにより基材へ強く接着する性質を有すると共に、コーティングされた基材表面が優れた抗血栓性を示す特徴を有する。また、コーティング剤として安定な溶液または分散液が調製され、各種基材に対して均一にコーティング出来る特徴を有する。従って、本発明のコーティング剤をコーティングされてなる医療用具は、血液接触部が複雑な形状や長時間接触をする場合でも血液凝固が大きく抑制され、優れた抗血栓性を示す。
 本発明の第一の課題に対する請求項1~8に係る発明は以下の構成を有する。
1.下記一般式(1)で表されるモノマー(a)を含むモノマーの重合体(A)と、下記式(2)~(7)で表されるモノマー(b)を含むモノマーの重合体(B)からなるブロック共重合体、
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(式(1)~(7)中、Rは炭素原子数1~3のアルキル基、Rは水素原子またはメチル基、R、Rはそれぞれ独立に炭素原子数2~3のアルキレン基、R、R、R、Rはそれぞれ独立に水素原子または炭素原子数1~2のアルキル基、Xは-CO 、-SO 、-OSO 、-OSO 、-OP(=O)(OR)O、-OP(=O)(R)O、-P(=O)(OR)O、-P(=O)(R)Oから選ばれる一価のアニオン、Rは炭素原子数1~3のアルキル基であり、nは1~9の整数である。)
2.前記重合体(A)と前記重合体(B)のモル比(A:B)が1:50~50:1である1.に記載のブロック共重合体、
3.前記ブロック共重合体において、重合体(B)がモノマー(b)とモノマー(a)の共重合体からなり、且つモノマー(b)とモノマー(a)の比率が99:1~10:90のモル比である1.または2.に記載のブロック共重合体、
4.ブロック共重合体がトリブロック型共重合体、ジブロック型共重合体、または多分岐型ブロック共重合体である1.~3.のいずれかに記載のブロック共重合体、
5.前記ブロック共重合体において、重合体(A)の重合度が30~3000、重合体(B)の重合度が20~20000である1.~4.のいずれかに記載のブロック共重合体、
6.1.~5.のいずれかに記載のブロック共重合体の塗膜、
7.6.記載の塗膜を用いたタンパク質吸着防止材、
8.7.記載の塗膜を用いた細胞培養基材。
 本発明で用いるモノマー(a)としては、(ポリ)プロピレングリコールアルキルエーテル(メタ)アクリレートや(ポリ)エチレングリコールアルキルエーテル(メタ)アクリレートを使用する。好ましくは下記一般式(1)のモノマー(a)が用いられる。
Figure JPOXMLDOC01-appb-C000029
            (1)
(式中、Rは炭素原子数1~3のアルキル基、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基であり、nは1~9の整数である。)
 モノマー(a)の使用により、共重合体の皮膜形成能、並びに基材との接着性がよく、塗膜の厚み制御幅が広く、より平滑な塗膜が得られる。該塗膜表面はタンパク質の吸着性が低い性質を有する。
 前記一般式(1)で表されるモノマー(a)の中でも、nが1~3である化合物が好ましく、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート、メチルカルビトールアクリレート、エチルカルビトールアクリレート、メトキシトリエチレングリコールアクリレート、エトキシトリエチレングリコールアクリレートがより好ましく、2-メトキシエチルアクリレート、2-エトキシエチルアクリレートが特に好ましい。
 本発明における重合体(A)は、前記モノマー(a)を含むモノマーの重合体である。本発明では、前記モノマー(a)のみを重合させた重合体が好ましいが、モノマー(a)以外に本発明の効果を損なわない範囲で他のモノマーを使用することができる。重合体(A)はモノマー(a)を65モル%以上重合させた重合体であることが好ましく、95モル%以上重合させた重合体であることが、より好ましい。
 モノマー(a)以外に使用できるモノマーとしては、下記式(2)~(7)で表されるモノマー、水酸基やグリシジル基、イソシアナト基、カルボキシル基、アミノ基、スルホン酸基などの官能基を有する(メタ)アクリル系モノマーがある。
 本発明で用いるモノマー(b)としては、(メタ)アクリルアミド、および/またはこれらの誘導体(N-またはN,N置換(メタ)アクリルアミド)である。特に好ましくは下記式(2)~(7)のアクリルアミド系モノマーが用いられる。
Figure JPOXMLDOC01-appb-C000030
              (2)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
              (4)
Figure JPOXMLDOC01-appb-C000033
             (5)
Figure JPOXMLDOC01-appb-C000034
             (6)
Figure JPOXMLDOC01-appb-C000035
             (7)
(式(2)~(7)中、Rは水素原子またはメチル基、R、Rはそれぞれ独立に炭素原子数2~3のアルキレン基、R、R、R、Rはそれぞれ独立に水素原子または炭素原子数1~2のアルキル基、Xは-CO 、-SO 、-OSO 、-OSO 、-OP(=O)(OR)O、-OP(=O)(R)O、-P(=O)(OR)O、-P(=O)(R)Oから選ばれる一価のアニオン、Rは炭素原子数1~3のアルキル基であり、nは1~9の整数である。)
 モノマー(b)の使用により、得られるブロック共重合体の水に対する溶解または分散性が良好で安定性も高く、共重合体の皮膜形成能がよく、より平滑な塗膜が得られる。また、モノマー(b)としてN,N-ジメチルアクリルアミドを用いた場合、得られる塗膜表面に対し、細胞が非常に低い接着性を示し、浮遊状態での細胞培養に適している。
 重合体(B)はモノマー(b)を含む重合体であり、重合体(B)としては前記一般式(2)~(7)で表されるモノマー(b)からなる重合体であるか、もしくは他のモノマーとの共重合体が含まれる。共重合体で用いられる他のモノマーとしては、モノマー(a)が好ましく用いられ、モノマー(b):モノマー(a)の比率(モル比)は、99:1~10:90、より好ましくは95:5~30:70、更に好ましくは90:10~50:50、特に好ましくは90:10~60:40である。かかるモノマー(b)とモノマー(a)からなる共重合体はブロック共重合体をより容易に合成できる特徴も有する。
 更に、重合体(B)または共重合体(B)において、前記一般式(1)~(7)で表されるモノマーに加えて、ブロック共重合体の親/疎水性のバランスを調整したり、タンパク質との相互作用を更に低く抑えるための官能基を付与するために、必要に応じてその他の共重合モノマーを併用することができる。例えば、スルホン基やカルボキシル基のようなアニオン基を有するアクリル系モノマー、4級アンモニウム基のようなカチオン基を有するアクリル系モノマー、4級アンモニウム基と燐酸基とを持つ両性イオン基を有するアクリル系モノマー、カルボキシル基とアミノ基とをもつアミノ酸残基を有するアクリル系モノマー、糖残基を有するアクリル系モノマー、また、水酸基を有するアクリル系モノマー、ポリエチレングリコール、ポリプロピレングリコール鎖を有するアクリル系モノマー、更にポリエチレングリコールのような親水性鎖とノニルフェニル基のような疎水基を合わせ持つ両親媒性アクリル系モノマー、ポリエチレングリコールジアクリレート、N,N’-メチレンビスアクリルアミドなどを併用することができる。
 本発明のブロック共重合体は、前記諸性質を示すものであれば、重合体(A)と(B)の並び方は必ずしも限定されず、例えば、A-B型、A-B-A型、B-A-B型、 [B-A]で表される(pはBの分岐数で、3~10である)が好適に使用されるが、この内、A-B型、A-B-A型、 [B-A]多分岐型がより好ましく、A-B-A型、 [B-A]多分岐型が最も好ましい。ここでいう [B-A]多分岐型とは、下記構造例に示すものをいう。
Figure JPOXMLDOC01-appb-C000036
[B-A]
 本発明のブロック共重合体中のA成分とB成分のモル比(A:B)が、1:60~60:1の範囲が好ましく、1:20~20:1の範囲がより好ましく、1:20~1:1の範囲が最も好ましい。AとBのモル比がこの範囲であると、得られるブロック共重合体の水に対する溶解または分散性が良好で安定性も高く、共重合体の皮膜形成能がよく、より平滑な塗膜が得られる。また、塗膜表面のタンパク質に対する吸着性も低く、細胞培養性/剥離性が良好であり、好ましい。
 また、A-B-A型ブロック共重合体において、Aの重合度が30~3000、Bの重合度が20~20000の範囲が好ましく、Aの重合度が100~1000、Bの重合度が100~5000の範囲がより好ましく、Aの重合度が100~500、Bの重合度が200~2000の範囲が特に好ましい。この範囲であると、得られるブロック共重合体の水に対する溶解または分散性が良好で水性塗料の作製が容易であり、また、皮膜形成能がよく、得られる塗膜表面のタンパク質に対する吸着性も低く、細胞培養性/剥離性が良好であり、好ましい。
 本発明のブロック共重合体は、モノマー(a)と(b)がそれぞれ重合し、重合体(A)と重合体(B)からなるブロック共重合体を合成できれば、製造方法は特に限定されない。例えば公知慣用の重合法として、第1の方法は、トリチオカーボネートのような連鎖移動剤(以下RAFT剤という)の存在下に、ラジカル重合開始剤としてアゾ化合物及び/又は有機過酸化物を用いて、先ずモノマー(a)をリビングラジカル重合させ、得られた重合体(A)にモノマー(b)をリビングラジカル重合させる方法、第2の方法は、有機ハロゲン化物と遷移金属錯体の存在下、モノマー(b)をラジカル重合させ、次いで、モノマー(a)を添加し、ラジカル重合させるブロック共重合体の合成方法が挙げられる。
特に、ブロック共重合体の合成法としては、公知のリビングラジカル重合法のうち、次に挙げる(1-1)ないし(2-2)の方法が好ましい。
(1-1)第1の方法において、少量の重合開始剤の存在下、RAFT剤とモノマー(a)を重合させた後、単離精製して重合体(A)のみからなるマクロRAFT剤を合成し、該マクロRAFT剤とモノマー(b)を、少量の重合開始剤存在下重合させてブロック共重合体を得る方法。
(1-2)第2の方法において、有機ハロゲン化物と遷移金属錯体の存在下、モノマー(b)を重合させた後、単離精製して重合体(B)のみからなる高分子末端ハロゲン化物を合成し、該高分子末端ハロゲン化物に遷移金属錯体の存在下、モノマー(a)を重合させてブロック共重合体を得る方法。
(2-1)第1の方法において、少量の重合開始剤の存在下、RAFT剤とモノマー(a)を重合させ、ついで単離することなくモノマー(b)を追加し、ブロック共重合体を得る方法。
(2-2)第2の方法において、有機ハロゲン化物と遷移金属錯体の存在下、モノマー(b)を重合させ、ついで単離することなくモノマー(a)を追加し、ブロック共重合体を得る方法。
 (2-1)、(2-2)の方法の場合、最初のモノマーが完全に消費されるのを待って次のモノマーを添加する必要はなく、最初のモノマーの転化率が約65%以上になった時点で次のモノマーを添加すればよい。この場合に得られる重合体は、完全なブロック共重合体ではなく、一部モノマー(a)とモノマー(b)とが混在した、いわゆるTaperedブロック共重合体となるが、モノマー(a)とモノマー(b)の比率を適切に選べば、完全なブロック共重合体と同等の機能を有する共重合体が得られる。
 本発明において、重合体(B)がモノマー(a)とモノマー(b)の共重合体からなるブロック共重合体を得るためには、上記(2-1)、(2-2)の方法に加えて、モノマー(a)とモノマー(b)の混合物を重合する方法を用いることができる。
本発明において、タンパク質吸着は、HRP標識した免疫グロブリンGをTMB発色剤にて発色させた時、450nmでの吸光度が0.5以下であることが好ましく、0.2以下であるとより好ましい。
本発明では、細胞培養基材として多種の材質を用いることが出来る特徴を有する。例えば、ポリスチレン(PS)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリウレタン(PU)などのほか、ポリプロピレン(PP)や、ポリテトラフルオロエチレン(PTFE)が用いられる。また、ガラス、金属などの素材も好適に用いられる。基材の形状としては板状、シート状、ストロー状、糸状、球状など任意の形状に塗膜を作製することができる。
 本発明のブロック共重合体は、コーティング用塗料特に水性塗料として、細胞培養基材や、各種生化学・医療用具の表面改質剤として有用である。
 次に、本発明の第二の課題に対する請求項9~18に係る抗血栓コーティング剤について説明する。
本発明者等は、上記第二の課題を解決すべく鋭意研究した結果、特定組成からなるブロック共重合体、具体的には、(メタ)アクリレート系モノマー重合体(A)と、(メタ)アクリルアミド系モノマー重合体(B)または共重合体(B)とからなるブロック共重合体が抗血栓性と基材への接着性の両方に優れた特性を示すことを見いだし、本発明を完成するに至った。すなわち、第二の課題に対する発明は以下の構成を有する。
9.下記一般式(8)で表されるモノマー(a)を含むモノマーの重合体(A)と、下記一般式(9)~(14)で表されるモノマー(b)を含むモノマーの重合体(B)から構成されるブロック共重合体からなる抗血栓コーティング剤、
Figure JPOXMLDOC01-appb-C000037
(式(8)中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基、Rは炭素原子数1~3のアルキル基である。)
Figure JPOXMLDOC01-appb-C000038
             (9)
Figure JPOXMLDOC01-appb-C000039
             (10) 
Figure JPOXMLDOC01-appb-C000040
             (11)
Figure JPOXMLDOC01-appb-C000041
             (12)
Figure JPOXMLDOC01-appb-C000042
             (13)
Figure JPOXMLDOC01-appb-C000043
             (14)
(式(9)~(14)中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基、R、R、R、Rはそれぞれ独立に水素原子または炭素原子数1または2のアルキル基である。)
10.前記一般式(8)で表されるモノマー(a)の重合体(A)と、モノマー(a)と前記一般式(9)~(14)で表されるモノマー(b)との共重合体(B)から構成される9.に記載のブロック共重合体からなる抗血栓コーティング剤、
11.前記ブロック共重合体において、重合体(A)が水に不溶性で、重合体(B)または共重合体(B)が水溶性である9.または10.に記載の抗血栓コーティング剤、
12.モノマー(b)/モノマー(a)の共重合比率が99/1~10/90モル比である10.に記載の抗血栓コーティング剤、
13.前記ブロック共重合体における重合体(A)と重合体(B)のモル比(A:B)もしくは重合体(A)と共重合体(B)のモル比(A:B)が1:50~50:1である9.または10.に記載の抗血栓コーティング剤、
14.前記ブロック共重合体がトリブロック型共重合体、ジブロック型共重合体、多分岐型ブロック共重合体のいずれかで表される9.~13.のいずれかに記載の抗血栓コーティング剤、
15.前記トリブロック型共重合体がA-B-A又はA-B-A、多分岐型ブロック共重合体が[B-A]または[B-A](pはBまたはBの分岐数で、3~10の整数である)で表されるブロック共重合体である14.に記載の抗血栓コーティング剤、
16.前記ブロック共重合体において、共重合体(A)の重合度が30~3000、共重合体(B)または共重合体(B)の重合度が20~20000である9.~15.のいずれかに記載の抗血栓コーティング剤、
17.前記ブロック共重合体0.05~10質量部、エタノール、メタノール、イソプロピルアルコールのいずれかを主成分とする溶媒99.95~90質量部からなる9.~15.のいずれかに記載の抗血栓コーティング剤、
18.9.~17.のいずれかに記載の抗血栓コーティング剤がコーティングされた医療用具。
 本発明で用いるモノマー(a)としては、下記一般式(8)で表される、プロピレングリコールアルキルエーテル(メタ)アクリレートやエチレングリコールアルキルエーテル(メタ)アクリレートが用いられる。
Figure JPOXMLDOC01-appb-C000044
(式中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基、Rは炭素原子数1または2のアルキル基である。)
 前記一般式(8)で表されるモノマー(a)の中でも、抗血栓性および基材接着性の点から、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート、2-メトキシエチルメタクリレート、2-エトキシエチルメタクリレートがより好ましく、2-メトキシエチルアクリレート、2-エトキシエチルアクリレートが特に好ましい。
 本発明における重合体(A)は、前記モノマー(a)を含むモノマーの重合体である。本発明では、前記モノマー(a)のみを重合させた重合体が好ましいが、モノマー(a)以外に本発明の効果を損なわない範囲で他のモノマーを使用することができる。好ましくは、重合体(A)はモノマー(a)を70モル%以上重合させた重合体であることが好ましく、95モル%以上重合させた重合体であることが、より好ましい。
 本発明で用いるモノマー(b)としては、(メタ)アクリルアミドまたはこれらの誘導体(N-またはN,N置換(メタ)アクリルアミド)である、下記一般式(9)~(14)のアクリルアミド系モノマーが用いられる。
Figure JPOXMLDOC01-appb-C000045
             (9)
Figure JPOXMLDOC01-appb-C000046
             (10) 
Figure JPOXMLDOC01-appb-C000047
             (11)
Figure JPOXMLDOC01-appb-C000048
             (12)
Figure JPOXMLDOC01-appb-C000049
             (13)
Figure JPOXMLDOC01-appb-C000050
             (14)
(式(9)~(14)中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基、R3、、R5、はそれぞれ独立に水素原子または炭素原子数1または2のアルキル基である。)
 重合体(B)はモノマー(b)を含む重合体であり、重合体(B)としては前記一般式(9)~(14)で表されるモノマー(b)からなる重合体であるか、もしくは他のモノマーとの共重合体(B)が含まれる。共重合体(B)で用いられる他のモノマーとしては、モノマー(a)が好ましく用いられ、モノマー(b):モノマー(a)の比率(モル比)は、99:1~10:90、より好ましくは95:5~30:70、更に好ましくは90:10~50:50、特に好ましくは90:10~60:40である。かかるモノマー(b)とモノマー(a)からなる共重合体(B)はブロック共重合体をより容易に合成できる特徴も有する。
 更に、重合体(B)または共重合体(B)において、前記一般式(8)~(14)で表されるモノマーに加えて、ブロック共重合体の親/疎水性のバランスを調整したり、タンパク質との相互作用を更に低く抑えるための官能基を付与するために、必要に応じてその他の共重合モノマーを併用することができる。
 例えば、スルホン基やカルボキシル基のようなアニオン基を有するアクリル系モノマー、4級アンモニウム基のようなカチオン基を有するアクリル系モノマー、4級アンモニウム基と燐酸基とを持つ両性イオン基を有するアクリル系モノマー、カルボキシル基とアミノ基とをもつアミノ酸残基を有するアクリル系モノマー、糖残基を有するアクリル系モノマー、また、水酸基を有するアクリル系モノマー、ポリエチレングリコール、ポリプロピレングリコール鎖を有するアクリル系モノマー、更にポリエチレングリコールのような親水性鎖とノニルフェニル基のような疎水基を合わせ持つ両親媒性アクリル系モノマー、ポリエチレングリコールジアクリレート、N,N’-メチレンビスアクリルアミドなどを併用することができる。
 本発明におけるブロック共重合体では、重合体(A)が水に不溶性で、重合体(B)または共重合体(B*)が水溶性であるものがより好ましい。
 本発明において、モノマー(a)およびモノマー(b)を使用することで、得られるブロック共重合体は、水に対して良好な溶解性または分散性を示すほか、エタノールなど、高揮発性で基材への低侵襲性を有する有機溶媒への溶解性が高くなる。結果として、得られるブロック共重合体からなるコーティング剤は高い安定性と優れたコーティング性能(高い均一性、平滑性)を示すことになる。特に、モノマー(a)の重合体(A)は、得られるブロック共重合体を基材へコーティングした時に、基材への接着性を高める効果があり、且つ平滑な塗膜面が得られる効果を有する。また、重合体(A)と重合体(B)または重合体(A)と共重合体(B)からなる複合効果により、ブロック共重合体からなるコーティング剤は優れた抗血栓性を示す表面を与える。
 本発明のブロック共重合体は、前記諸性質を示すものであれば、重合体(A)と重合体(B)(またはB)の並び方は必ずしも限定されず、例えば、ジブロック型(A-B)または(A-B)、トリブロック型(A-B-A、B-A-B)または(A-B-A、B-A-B)、多分岐型([B-A])または([B-A])(pはBの分岐数で、3~10である)の各ブロック重合体が好適に使用される。この内、A-B型、A-B-A型、[B-A]型もしくはA-B型、A-B-A型、[B-A]型がより好ましく、A-B-A型、[B-A]型もしくはA-B-A型、[B-A]型がさらに好ましく、A-B-A型もしくはA-B-A型が最も好ましい。ここで多分岐[B-A]型とは、下記構造例に示すものをいう。
Figure JPOXMLDOC01-appb-C000051
[B-A]
 本発明において、ブロック共重合体中のA成分とB成分のモル比(A/B)は、1:50~50:1の範囲が好ましく、1:30~30:1の範囲がより好ましく、1:20~1:1の範囲が最も好ましい。AとBのモル比がこの範囲であると、得られるブロック共重合体のエタノールなど、高揮発性で基材への低侵襲性を有する有機溶媒への溶解性が高くなる。結果として、得られるブロック共重合体からなるコーティング剤は優れたコーティング性能(高い均一性、平滑性)、および優れた抗血栓性を示すことになる。
 また、本発明におけるブロック共重合体において、重合体(A)の重合度が30~3000、重合体(B)(または共重合体(B))の重合度が20~20000の範囲が好ましく、重合体(A)の重合度が100~1000、重合体(B)(または共重合体(B))の重合度が100~5000の範囲がより好ましく、重合体(A)の重合度が100~500、重合体(B)(または共重合体(B))の重合度が200~2000の範囲が特に好ましい。この範囲であると、得られるブロック共重合体の基材への接着性および抗血栓性が特に優れている。
 本発明のブロック共重合体は、モノマー(a)と(b)がそれぞれ重合し、重合体(A)と重合体(B)(または重合体(B))からなるブロック共重合体を合成できれば、製造方法は特に限定されない。例えば公知慣用の重合法として、第1の方法は、トリチオカーボネートのような連鎖移動剤(以下ラフト(RAFT)剤という)の存在下に、ラジカル重合開始剤としてはアゾ化合物及び有機過酸化物を用いて、先ずモノマー(a)をリビングラジカル重合させ、得られた重合体(A)にモノマー(b)をリビングラジカル重合させる方法、第2の方法は、有機ハロゲン化物と遷移金属錯体の存在下、モノマー(b)をラジカル重合させ、次いで、モノマー(a)を添加し、ラジカル重合させるブロック共重合体の合成方法が挙げられる。
 本発明における抗血栓コーティング剤で用いる溶剤としては、水および有機溶剤またはそれらの混合溶媒が用いられる。用いる溶剤の種類や濃度は得られるブロック共重合体の組成や分子量及びコーティング対象となる基材の種類・表面性状によって異なり、より好ましくは、揮発性に優れ、且つ、基材への侵襲性の低い、エタノール、メタノール、イソプロパノールのいずれかを主成分とし、溶媒濃度が99.95~90質量%からなるものが用いられる。また、本発明における抗血栓コーティング剤に対して水溶液として用いる場合は、基材への接着性を向上させるため、界面活性剤を併用するか、基材表面に対して、コロナ処理やプラズマ処理などの親水化処理を行うことが望ましい。
 本発明において、抗血栓コーティングを行う(医療用具の)基材としては、多種の材質を用いることが出来る特徴を有する。例えば、ポリプロピレン、ポリエチレンといったポリオレフィン系樹脂、ポリスチレン、ポリカーボネート、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリスルホン、ポリテトラフルオロエチレンが用いられ、また、ガラス、セラミック、金属などの素材が好適に用いられる。また、基材の形状としては板、シート、ストロー、繊維、球、不織布、多孔質など任意の形状・形態の基材に均一な塗膜を作製することができる。
 本発明のブロック共重合体からなるコーティング剤は、血液と直接接触して用いられる医療用具の抗血栓性を大幅に向上させるために用いられ、具体的には、カテーテル類(カテーテル、バルーンカテーテルのバルーン、ガイドワイヤーなど)、人工血管、血管バイパスチューブ、人工弁、血液フィルター、血漿分離用装置、人工臓器(人工肺、人工腎臓、人工心臓など)、輸血用具、血液の体外循環回路、血液バッグ、癒着防止膜、創傷被覆材などにおいて、その表面の全部または選択された一部を本発明による抗血栓コーティング剤でコーティングして用いられる。
 基材表面へコーティング剤が接着していること、およびそのことによる抗血栓性の効果を評価する代表的な指標の一つとして、血液灌流用のポリ塩化ビニル製チューブや、それを接続するために必要なポリカーボネート製コネクターを利用した血液灌流試験が挙げられる。抗血栓性コーティングが施されていると、血液が接触しても血栓の生成が抑制されることがわかっており、表面のコーティング接着性評価も同時に行うことが可能である。
 また、それ以外の方法としてコーティング基材表面への血小板吸着量を測定する方法が用いられる。但し、この方法では、ヒトまたは動物由来のヘパリン等で抗凝固処理を行った全血や多血小板血漿(PRP)を使用することが多いが、実際の臨床における血液と基材表面との接触とは条件が異なっており、また測定時の血液の個体差もかなりあることから、必ずしも正確な抗血栓性の評価とならない可能性がある。
 そこでこの方法に代わる新たな抗血栓性評価方法として、「血液凝固弾性測定」および「血小板活性化」測定が有効である。「血液凝固弾性評価」は、測定容器内に全血を満たし、血液凝固の内因系および外因系に分けて活性化を行い、それぞれ凝固により血栓が生成したときの基材との付着による血栓の弾性変化を測定するものである。また、「血小板活性化」測定は、電極のついた測定容器に全血を満たし、様々な因子の存在下で血小板の活性化を行い、電極に付着した血小板によるインピーダンスの変化を測定するものである。それぞれ新鮮血を使用し、生体内と同じように血液凝固を起こすときの挙動に対して評価を行うので、実際の使用に近い系での評価が可能となる。これらの「血液凝固弾性測定」および「血小板活性化測定」に用いられる測定容器類は、すべて血液の凝固を促進する可能性のある血液から見たいわゆる「異物」であり、これら測定容器類に抗血栓性コーティングが施されていると、抗血栓性すなわち血液凝固や血小板の活性化が抑制されることとなり、非コーティング測定容器類を使用する場合と比較して、測定値が低値となることが期待される。
 本発明における抗血栓コーティング剤を用いたコーティング表面は、「血液凝固弾性評価」では、凝固堅さ最大値:MCF(Maximum Clot Firmness)が40mm以下、より好ましくは20mm以下、特に好ましくは10mm以下の数値を示し、また「血小板活性化測定」では、面積が150U以下、より好ましくは100U以下の数値を示すものである。
 以下、実施例により本発明を具体的に説明するが、本発明の範囲がこれらの実施例にのみ限定されるものではない。
(実施例1)
[ブロック共重合体の合成]
 モノマー(a)として2-メトキシエチルアクリレート(東亞合成株式会社製)1.46g、RAFT剤として2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid(シグマ-アルドリッチ社)0.0163g、2,2’-アゾビスイソブチロニトリル0.0007g、1,4-ジオキサン10mLを窒素バブリングした後、70℃、13時間攪拌した。次いで、モノマー(b)としてN,N-ジメチルアクリルアミド(株式会社興人製)6.66g、1,4-ジオキサン10mLを添加し、更に70℃、24時間攪拌した。反応終了後、反応液をジエチルエーテルに投入し、更にジエチルエーテルで3回洗浄した後、真空乾燥させ、A-B型ブロック共重合体を合成した。
[ポリマーの同定]
 上記反応液を重クロロホルムに入れ、H-NMR(日本電子(株)製JNM-LA300)測定を行った。その結果、モノマー(a)の転化率は100%、モノマー(b)の転化率は96%であった。また、ブロック共重合体の構造は下記式(15)のように同定された。
Figure JPOXMLDOC01-appb-C000052
                              (15)
 上記転化率より、下記式(16)を用いて、重合体(A)、重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、A-Bブロック共重合体における、重合体(A)の理論分子量Mnは約32500(250mol)、重合体(B)の理論分子量Mnは約143000(1440mol)、ブロック共重合体の理論分子量Mnは約175500であった。
Figure JPOXMLDOC01-appb-M000053
(16)
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体0.5gを、9.5gの水に入れ、ポリマー水溶液1を得た。次いで、直径35mmのポリスチレン製シャーレ(CORNINGサスペンジョンカルチャデイッシュ430588)に薄く塗布した後乾燥させた。次いで、滅菌水によりシャーレを洗浄した後、乾燥させて、コートシャーレ1を得た。このコートシャーレ1を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ1に、HRP標識した免疫グロブリンG(IgG)水溶液を1mL入れ、室温にて静置し、IgGの吸着を行った。次いでPBSバッファーで3回リンスした後、TMB発色剤(KPL社製)を入れ、更に1Nの塩酸を入れた(シャーレ表面にタンパク質が残ると発色)。この溶液を、紫外可視分光光度計(日立株式会社製)を用いて、450nmでの吸光度を測定して、タンパク質の吸着度合いを評価した。その結果、吸光度は0.157であった。
[細胞接着試験]
上記得られたコートシャーレ1に、培地としてHam’s F12/10%FCSを適量入れ、CHO-K1細胞(チャイニーズハムスター卵巣由来繊維芽細胞)を播種して(播種濃度は1×10個/cm)5%二酸化炭素中、37℃で3日間培養を行った。次いで、シャーレ中の培地及び浮遊している細胞を吸い取り、PBSバッファーで3回リンスした後、顕微鏡でシャーレ表面に細胞接着の有無を確認したところ、細胞は全くPBSバッファーで洗い流され、シャーレ表面には接着した細胞は観察されなかった。
一方、上記未コートポリスチレン製シャーレを用いて、同様な培養試験を行ったところ、細胞がかなりの数でシャーレに接着していた。
以上の実施例より、上記ブロック共重合体が水に対し良好な溶解性を有し、容易に水性塗料を作製でき、得られた塗膜の透明度が高く、基材との接着性も良好であり、塗膜表面へのタンパク質の吸着が大きく抑制された。また、細胞の塗膜表面に対する細胞の接着性も低く、細胞を浮遊状態で培養できることが理解できる。
(実施例2)
[RAFT剤の合成]
 非特許文献「Macromolecules、35、6754(2002)」に従い、下記の手順でRAFT剤[2-(1-Carboxy-1-methylethylsulfanylthiocarbonylsulfanyl)-2-methylpropionic acid]を合成した。
アセトン2.62g、トリクロロメタン5.38g、テトラブチルアンモニウム硫酸水素塩0.12g、二硫化炭素1.37g、及びヘキサン6mLに50%水酸化ナトリウムを10.1g入れ、5時間攪拌の後一晩静置し、反応液全体を固化させた。これに水を45mL加え固体を溶解した後、濃塩酸6mLを入れ窒素バブリングして、沈殿を生じさせた。この沈殿を濾別し、水洗した後、乾燥した。60%のアセトン水溶液から再結晶して、淡黄色結晶934mgを得た。
 13C-NMR(日本電子(株)製JNM-LA300)測定により、RAFT剤の構造は下記式(17)のように同定された。
Figure JPOXMLDOC01-appb-C000054
(17)
[ブロック共重合体の合成]
 モノマー(a)として2-メトキシエチルアクリレート(東亞合成株式会社製)2.92g、RAFT剤として上記合成した[2-(1-Carboxy-1-methylethylsulfanylthiocarbonylsulfanyl)-2-methylpropionic acid]0.0127g、2,2’-アゾビスイソブチロニトリル0.0007g、1,4-ジオキサン10mLを窒素バブリングした後、70℃、13時間攪拌した。次いで、モノマー(b)としてN,N-ジメチルアクリルアミド(株式会社興人製)6.66g、1,4-ジオキサン10mLを添加し、更に70℃、24時間攪拌した。なお、(a):(b)=500:1500(モル比)。反応終了後、反応液をジエチルエーテルに投入し、更にジエチルエーテルで3回洗浄した後、真空乾燥させ、A-B-A型ブロック共重合体を合成した。
[ポリマーの同定]
 実施例1と同様にして、H-NMR測定を行った。その結果、モノマー(a)の転化率は100%、モノマー(b)の転化率は99.5%であった。また、ブロック共重合体の構造は下記式(18)のように同定された。
Figure JPOXMLDOC01-appb-C000055
                                  (18)
 上記転化率より、前記式(16)を用いて、重合体(A)、重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、A-B-Aブロック共重合体における、重合体(A)の理論分子量Mnは約32500(250mol)、重合体(B)の理論分子量Mnは約148000(1480mol)、ブロック共重合体の理論分子量Mnは約213000であった。
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体を用いて、実施例1と同様にしてコートシャーレ2を作製した。このコートシャーレ2を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ2を用いて、実施例1と同様にして、タンパク質吸着試験を行った。その結果、タンパク質吸着量(吸光度値)は0.044であった。また、基材をポリスチレンからガラス、ポリカーボネート、SUSに替えて同様の試験を実施したところ、塗膜と基材とは良好に密着し、タンパク質吸着量はそれぞれ0.039、0.073、0.076であった。
[細胞接着試験]
上記得られたコートシャーレ2を用いて、実施例1と同様にして、CHO-K1細胞の培養試験を行った。その結果、コートシャーレ1と同様に、細胞がシャーレ表面に全く接着することなく浮遊状態で培養されていることが観察された。
以上の実施例より、上記ブロック共重合体が水に対し良好な溶解性を有し、容易に水性塗料を作製でき、得られた塗膜の透明度が高く、基材との接着性も良好であり、塗膜表面へのタンパク質の吸着が大きく抑制された。また、細胞の塗膜表面での接着性が低く、細胞を浮遊状態で培養できることが理解できた。
(実施例3)
[ブロック共重合体の合成]
 モノマー(b)の替わりにモノマー(a)の3.50gとモノマー(b)の4.00gの混合物((a):(b)=40:60(モル比))を用いたこと以外は全て実施例2と同様にして、A-B-A型のブロック共重合体を合成した。反応終了後、反応液をジエチルエーテルに投入し、更にジエチルエーテルで3回洗浄した後、真空乾燥させ、A-B-A型ブロック共重合体を合成した。
[ポリマーの同定]
 実施例1と同様にして、1H-NMR測定を行った。その結果、モノマー(a)の転化率は100%、モノマー(b)の転化率は99.1%であった。
 上記転化率より、前記式(16)を用いて、重合体(A)、重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、A-B-Aブロック共重合体における、重合体(A)の理論分子量Mnは約32500(250mol)、共重合体(B)の理論分子量Mnは約166500(1490mol)、ブロック共重合体の理論分子量Mnは約231500であった。
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体を用いて、実施例1と同様にしてコートシャーレ3を作製した。このコートシャーレ3を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ3を用いて、実施例1と同様にして、タンパク質吸着試験を行った。その結果、タンパク質吸着量(吸光度値)は0.048であった。
[細胞接着試験]
上記得られたコートシャーレ3を用いて、実施例1と同様にして、CHO-K1細胞の培養試験を行った。その結果、コートシャーレ1と同様に、細胞がシャーレ表面に全く接着することなく浮遊状態で培養されていることが観察された。
以上の実施例より、上記ブロック共重合体が水に対し良好な溶解性を有し、容易に水性塗料を作製でき、得られた塗膜の透明度が高く、基材との接着性も良好であり、塗膜表面へのタンパク質の吸着が大きく抑制された。また、細胞の塗膜表面での接着性が低く、細胞を浮遊状態で培養できることが理解できる。
(実施例4)
[ブロック共重合体の合成]
 モノマー(a)の重合時間を5時間としたこと以外は全て実施例2と同様にして、A-B-A型のブロック共重合体を合成した。モノマー(a)の重合時間5時間の時点でのモノマー(a)の転化率をH-NMRにて測定したところ、81%であった。従って、重合体(B)部分には、モノマー(b)に加えて、5時間の重合時間で反応しなかったモノマー(a)が含まれることが分かった。反応終了後、反応液をジエチルエーテルに投入し、更にジエチルエーテルで3回洗浄した後、真空乾燥させ、A-B-A型ブロック共重合体を合成した。
[ポリマーの同定]
 実施例1と同様にして、H-NMR測定を行った。その結果、モノマー(a)の転化率は約100%、モノマー(b)の転化率は約99%であった。
 上記転化率、前記式(16)、及びモノマー(a)の転化率(81%)を用いて、重合体(A)、共重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、A-B-Aブロック共重合体における重合体(A)の理論分子量Mnは約32500(200mol)、共重合体(B)の理論分子量Mnは約159400(1580mol)、ブロック共重合体の理論分子量Mnは約224400であった。
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体を用いて、実施例1と同様にしてコートシャーレ4を作製した。このコートシャーレ4を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ4を用いて、実施例1と同様にして、タンパク質吸着試験を行った。その結果、タンパク質吸着量(吸光度値)は0.046であった。
[細胞接着試験]
上記得られたコートシャーレ4を用いて、実施例1と同様にして、CHO-K1細胞の培養試験を行った。その結果、コートシャーレ1と同様に、細胞がシャーレ表面に全く接着することなく浮遊状態で培養されていることが観察された。
以上の実施例より、上記ブロック共重合体が水に対し良好な溶解性を有し、容易に水性塗料を作製でき、得られた塗膜の透明度が高く、基材との接着性も良好であり、塗膜表面へのタンパク質の吸着が大きく抑制された。また、細胞の塗膜表面での接着性が低く、細胞を浮遊状態で培養できることが理解できる。
(実施例5)
[ブロック共重合体の合成]
 モノマー(a)として2-メトキシエチルアクリレートの量が5.83g、モノマー(b)としてN,N-ジメチルアクリルアミドの量が22.21gであり、((a):(b)=1000:5000(モル比))、モノマー(b)添加後の重合時間を48時間とすること、及び溶媒の1,4-ジオキサンを計60mL(20mL+40mL)使用したこと以外は実施例2と同様にして、A-B-A型のブロック共重合体を合成した。
[ポリマーの同定]
 実施例1と同様にして、H-NMR測定を行った。その結果、モノマー(a)の転化率は100%、モノマー(b)の転化率は97.0%であった。また、ブロック共重合体の構造は式(11)のように同定された。
 上記転化率より、前記式(16)を用いて、重合体(A)、重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、A-B-Aブロック共重合体における、重合体(A)の理論分子量Mnは約65000(500mol)、重合体(B)の理論分子量Mnは約480000(4840mol)、ブロック共重合体の理論分子量Mnは約610000であった。
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体を用いて、実施例1と同様にしてコートシャーレ5を作製した。このコートシャーレ5を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ5を用いて、実施例1と同様にして、タンパク質吸着試験を行った。その結果、タンパク質吸着量(吸光度値)は0.069であった。
[細胞接着試験]
上記得られたコートシャーレ5を用いて、実施例1と同様にして、CHO-K1細胞の培養試験を行った。その結果、コートシャーレ1と同様に、細胞がシャーレ表面に全く接着することなく浮遊状態で培養されていることが観察された。
以上の実施例より、上記ブロック共重合体が水に対し良好な溶解性を有し、容易に水性塗料を作製でき、得られた塗膜の透明度が高く、基材との接着性も良好であり、塗膜表面へのタンパク質の吸着が大きく抑制された。また、細胞の塗膜表面での接着性が低く、細胞を浮遊状態で培養できることが理解できる。
(実施例6)
[マクロRAFT剤の合成]
 モノマー(a)として2-メトキシエチルアクリレート(東亞合成株式会社製)5.84g、RAFT剤として上記合成した[2-(1-Carboxy-1-methylethylsulfanylthiocarbonylsulfanyl)-2-methylpropionic acid]0.0254g、2,2’-アゾビスイソブチロニトリル0.0014g、1,4-ジオキサン10mLを窒素バブリングした後、70℃、18時間攪拌し重合させた。反応終了後、反応液をジエチルエーテルに投入し、生成した黄色油状物を、更にジエチルエーテルで3回洗浄した後、真空乾燥させ、重合体(A)のみからなるマクロRAFT剤を合成した。
[マクロRAFT剤を用いたブロック共重合体の合成]
 N,N-ジメチルアクリルアミド(株式会社興人製)6.66g、1段目で得られたマクロRAFT剤2.69g、2,2’-アゾビスイソブチロニトリル0.0007g、1,4-ジオキサン10mLを窒素バブリングした後、70℃、24時間攪拌した。反応終了後、反応液をジエチルエーテルに投入し、更にジエチルエーテルで3回洗浄した後、真空乾燥させ、A-B-A型のブロック共重合体を合成した。
[ポリマーの同定]
 実施例1と同様にして、H-NMR測定を行った。その結果、モノマー(a)の転化率は91.5%、モノマー(b)の転化率は94.8%であった。また、ブロック共重合体の構造は式(18)のように同定された。
 上記転化率より、前記式(16)を用いて、重合体(A)、重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、A-B-Aブロック共重合体における、重合体(A)の理論分子量Mnは約30000(230mol)、重合体(B)の理論分子量Mnは約141000(1420mol)、ブロック共重合体の理論分子量Mnは約201000であった。
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体を用いて、実施例1と同様にしてコートシャーレ6を作製した。このコートシャーレ6を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ6を用いて、実施例1と同様にして、タンパク質吸着試験を行った。その結果、タンパク質吸着量(吸光度値)は0.058であった。
[細胞接着試験]
上記得られたコートシャーレ6を用いて、実施例1と同様にして、CHO-K1細胞の培養試験を行った。その結果、コートシャーレ1と同様に、細胞がシャーレ表面に全く接着することなく浮遊状態で培養されていることが観察された。
(実施例7)
[ブロック共重合体の合成]
 モノマー(a)として2-メトキシエチルアクリレートの量が2.92g、モノマー(b)としてN,N-ジメチルアクリルアミド6.00gとN,N-ジメチルアミノプロピルアクリルアミド(株式会社興人製)1.05gを添加すること以外は実施例2と同様にして、A-B-A型ブロック共重合体を合成した。引き続き、該ブロック共重合体1.017gをアセトニトリル15mLに溶解し、1,3-プロパンスルトン742mgを加え、7日間室温に放置した。得られた溶液をジエチルエーテルに投入し、白色の沈殿を生成させた後、該沈殿を3回ジエチルエーテルにて洗浄した。ついで真空乾燥することにより、3-(N,N-ジメチル-N-(3-スルホプロピル)アンモニオ)プロピル基を有するブロック共重合体の白色粉末746mgを合成した。
[ポリマーの同定]
 実施例1と同様にして、上記A-B-A型ブロック共重合体のH-NMR測定を行った。その結果、モノマー(a)の転化率は100%、モノマーN,N-ジメチルアクリルアミドの転化率は95%、モノマーN,N-ジメチルアミノプロピルアクリルアミドの転化率は85%であった。また、ブロック共重合体の構造は式(19)のように同定された。
 上記転化率より、前記式(16)を用いて、重合体(A)、共重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、A-B-Aブロック共重合体における、重合体(A)の理論分子量Mnは約32500(250mol)、共重合体(B)の理論分子量Mnは約162000(1410mol)、ブロック共重合体の理論分子量Mnは約227000であった。
Figure JPOXMLDOC01-appb-C000056
[ブロック共重合体の塗膜作製]
上記得られたブロック共重合体を用いて、実施例1と同様にしてコートシャーレ7を作製した。このコートシャーレ7を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ7を用いて、実施例1と同様にして、タンパク質吸着試験を行った。その結果、タンパク質吸着量(吸光度値)は0.090であった。
[細胞接着試験]
上記得られたコートシャーレ7を用いて、実施例1と同様にして、CHO-K1細胞の培養試験を行った。その結果、コートシャーレ1と同様に、細胞がシャーレ表面に全く接着することなく浮遊状態で培養されていることが観察された。
以上の実施例より、上記ブロック共重合体が水に対し良好な溶解性を有し、容易に水性塗料を作製でき、得られた塗膜の透明度が高く、基材との接着性も良好であり、塗膜表面へのタンパク質の吸着が大きく抑制された。また、細胞の塗膜表面での接着性が低く、細胞を浮遊状態で培養できることが理解できた。
(実施例8)
[RAFT剤の合成]
 非特許文献「Macromolecules、36、1505(2003)」に従い、下記の手順でRAFT剤[テトラキス(3-1S-(1-メトキシカルボニル)エチルトリチオカルボニルプロピオン酸)ペンタエリスリトール]を合成した。
 ジクロロメタン10mL、ペンタエリスリトール(3-メルカプトプロピオネート)1.22g、二硫化炭素2.00g、トリエチルアミン2.04gを入れ、1時間攪拌した。ついで、2-ブロモプロピオン酸メチル1.94gを入れ、更に5時間攪拌した後、5%KHSO水溶液で洗浄した。更に水洗の後、飽和食塩水で乾燥した。硫酸マグネシウム処理後、エバポレーターを用いてジクロロメタンを除いた。得られた橙色油状生成物を、ヘキサン/アセトンを溶離液とするシリカゲルカラムクロマトグラフィーで精製してRAFT剤[テトラキス(3-1S-(1-メトキシカルボニル)エチルトリチオカルボニルプロピオン酸)ペンタエリスリトール]を得た。H-NMR測定により、該RAFT剤の構造は下記式(20)のように同定された。
Figure JPOXMLDOC01-appb-C000057
(20)
[多分岐型ブロック共重合体の合成]
モノマー(a)として2-メトキシエチルアクリレートの量が2.92g、モノマー(b)としてN,N-ジメチルアクリルアミド6.66g、((a):(b)=250:750(モル比))、RAFT剤として式(20)の化合物を0.0255g使用すること以外は実施例2と同様にして、[B-A]多分岐型ブロック共重合体を合成した。
[ポリマーの同定]
 実施例1と同様にして、H-NMR測定を行った。その結果、モノマー(a)の転化率は100%、モノマー(b)の転化率は99.0%であった。また、ブロック共重合体の構造は式(21)のように同定された。
 上記転化率より、前記式(16)を用いて、重合体(A)、重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、[B-A]多分岐型ブロック共重合体における、重合体(A)の理論分子量Mnは約32500(250mol)、重合体(B)の理論分子量Mnは約73300(740mol)、ブロック共重合体の理論分子量Mnは約423200であった。
Figure JPOXMLDOC01-appb-C000058
                          (21)
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体0.5gを、9.5gの水に入れ、ポリマー水溶液8を得た。次いで、該水溶液8をポリプロピレン製15mL遠沈管(アズワン製)に入れ、内面塗布後、乾燥させた。次いで洗浄後、乾燥させて、コート遠沈管8を得た。このコート遠沈管8を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
上記遠沈管8を用いて、実施例1と同様にして、タンパク質吸着試験を行った。その結果、吸光度は0.056であった。
以上の実施例より、上記多分岐型のブロック共重合体が水に対し良好な溶解性を有し、容易に水性塗料を作製でき、ポリプロピレン基材にも容易に塗布でき、基材との接着性も良好であり、塗膜表面へのタンパク質の吸着が大きく抑制されたことが理解できた。
(実施例9)
[多分岐型ブロック共重合体の合成]
モノマー(a)の重合時間を4時間とすること以外は実施例8と同様にして、[B-A]多分岐型ブロック共重合体を合成した。モノマー(a)の重合時間4時間の時点でのモノマー(a)の転化率を1H-NMRにて測定したところ、75%であった。従って、重合体(B)部分には、モノマー(b)に加えて、4時間の重合時間で反応しなかったモノマー(a)が含まれることが分かった。
[ポリマーの同定]
 実施例1と同様にして、H-NMR測定を行った。その結果、モノマー(a)の転化率は約100%、モノマー(b)の転化率は約97.2%であった。
 上記転化率、前記式(16)、及びモノマー(a)の転化率(75%)を用いて、重合体(A)、重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、[B-A]多分岐型ブロック共重合体における、重合体(A)の理論分子量Mnは約24400(190mol)、共重合体(B)の理論分子量Mnは約80100(790mol)、ブロック共重合体の理論分子量Mnは約418000であった。
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体を用いて、実施例8と同様にしてコート遠沈管9を得た。このコート遠沈管9を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記遠沈管9を用いて、実施例1と同様にして、タンパク質吸着試験を行った。その結果、吸光度は0.060であった。
以上の実施例より、上記多分岐型ブロック共重合体が水に対し良好な溶解性を有し、容易に水性塗料を作製でき、ポリプロピレン基材にも容易に塗布でき、基材との接着性も良好であり、塗膜表面へのタンパク質の吸着が大きく抑制されたことが理解できた。
(実施例10)
[ブロック共重合体の合成]
 モノマー(b)としてN,N-ジメチルアクリルアミドの代わりに、アクリロイルモルホリンを9.49g使用すること以外は実施例2と同様にして、A-B-A型のブロック共重合体を合成した。
[ポリマーの同定]
 実施例1と同様にして、H-NMR測定を行った。その結果、モノマー(a)の転化率は100%、モノマー(b)の転化率は98.5%であった。また、ブロック共重合体の構造は式(22)のように同定された。
 上記転化率より、前記式(16)を用いて、重合体(A)、重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、A-B-A型ブロック共重合体における、重合体(A)の理論分子量Mnは約32500(250mol)、重合体(B)の理論分子量Mnは約210000(1490mol)、ブロック共重合体の理論分子量Mnは約275000であった。
Figure JPOXMLDOC01-appb-C000059
                         (22)
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体を用いて、実施例1と同様にしてコートシャーレ10を作製した。このコートシャーレ10を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ10を用いて、実施例1と同様にして、タンパク質吸着試験を行った。その結果、タンパク質吸着量(吸光度値)は0.102であった。
[細胞接着試験]
上記得られたコートシャーレ10を用いて、実施例1と同様にして、CHO-K1細胞の培養試験を行った。その結果、コートシャーレ1と同様に、細胞がシャーレ表面に全く接着することなく浮遊状態で培養されていることが観察された。
以上の実施例より、上記ブロック共重合体が水に対し良好な溶解性を有し、容易に水性塗料を作製でき、得られた塗膜の透明度が高く、基材との接着性も良好であり、塗膜表面へのタンパク質の吸着が大きく抑制された。また、細胞の塗膜表面での接着性が低く、細胞を浮遊状態で培養できることが理解できた。
(実施例11)
[ブロック共重合体の合成]
 モノマー(a)として2-メトキシエチルアクリレートの量が2.92g、モノマー(b)としてN,N-ジメチルアクリルアミドの量が66.62gであり、((a):(b)=500:15000(モル比))、モノマー(b)添加後の重合時間を72時間とすること、及び溶媒の1,4-ジオキサンを計100mL(20mL+80mL)使用したこと以外は実施例2と同様にして、A-B-A型ブロック共重合体を合成した。
[ポリマーの同定]
 実施例1と同様にして、H-NMR測定を行った。その結果、モノマー(a)の転化率は100%、モノマー(b)の転化率は93.0%であった。また、ブロック共重合体の構造は式(18)のように同定された。
 上記転化率より、前記式(16)を用いて、重合体(A)、重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、A-B-A型ブロック共重合体における、重合体(A)の理論分子量Mnは約32500(重合度250mol)、重合体(B)の理論分子量Mnは約1381000(重合度13940mol)、ブロック共重合体の理論分子量Mnは約1446000であった。
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体を用いて、実施例1と同様にしてコートシャーレ11を作製した。このコートシャーレ11を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ11を用いて、実施例1と同様にして、室温でのタンパク質吸着試験を行った。その結果、タンパク質吸着量(吸光度値)は0.320であった。
[細胞接着試験]
上記得られたコートシャーレ11を用いて、実施例1と同様にして、CHO-K1細胞の培養試験を行った。その結果、細胞が殆どシャーレ表面に接着していないことが観察された。
以上の実施例より、重合体AとBのモル比(A:B)が1:20を超えた場合、細胞の塗膜表面に対する接着性が低いレベルを維持していたが、タンパク質吸着量が増える傾向にあることが観察された。
(実施例12)
[RAFT剤原料の合成]
非特許文献「Polymer、46、8458(2005)」に従い、下記の手順でRAFT剤原料[Sodium S-dodecyltrithiocarbonate]を合成した。
 ジエチルエーテル75mLに、攪拌しながら60%水素化ナトリウム1.18gを投入した。氷冷下ドデシルメルカプタン5.48gを加えた後二硫化炭素2.42gを入れると、ただちに黄色のRAFT剤原料が生成した。冷たいうちにろ過し、冷たいジエチルエーテルで3回洗浄し、真空乾燥し後黄色粉末6.14gを得た。
[RAFT剤の合成]
 1,4-ビスブロモメチルベンゼン226mgをトルエン10mLに溶解し、上記RAFT剤原料662mgを数回に分けて入れた。室温で4時間攪拌し、一晩放置後、ヘキサン5mLを加えた後、炭酸水素ナトリウム飽和水溶液で洗浄した。更に水洗の後、飽和食塩水で乾燥した。硫酸マグネシウム処理後、エバポレーターを用いてトルエンとヘキサンを除いた。得られた黄色粉末をヘキサンから再結晶して、RAFT剤[1,4-Bis(dodecylsulfanylthiocarbonylsulfanylmethyl)benzene]を黄色結晶として得た(式23)。
Figure JPOXMLDOC01-appb-C000060
                              (23)
[ブロック共重合体の合成]
 モノマー(b)としてN,N-ジメチルアクリルアミド0.22g、RAFT剤として上記合成した[1,4-Bis(dodecylsulfanylthiocarbonylsulfanylmethyl)benzene]0.0295g、2,2’-アゾビスイソブチロニトリル0.0007g、1,4-ジオキサン10mLを窒素バブリングした後、70℃、13時間攪拌した。次いで、モノマー(a)として2-メトキシエチルアクリレート2.92g((a):(b)=500:50(モル比))、1,4-ジオキサン10mLを添加し、更に70℃、24時間攪拌した。反応終了後、反応液をジエチルエーテルに投入し、更にジエチルエーテルで3回洗浄した後、真空乾燥させ、A-B-A型ブロック共重合体を合成した。
[ポリマーの同定]
 実施例1と同様にして、H-NMR測定を行った。その結果、モノマー(a)の転化率は100%、モノマー(b)の転化率は97.0%であった。また、ブロック共重合体の構造は式(24)のように同定された。
Figure JPOXMLDOC01-appb-C000061
                                  (24)
 上記転化率より、前記式(16)を用いて、重合体(A)、重合体(B)及びブロック共重合体の理論分子量を算出した。その結果、A-B-A型ブロック共重合体における、重合体(A)の理論分子量Mnは約32500(重合度250mol)、重合体(B)の理論分子量Mnは約4800(重合度48mol)、ブロック共重合体の理論分子量Mnは約70000であった。
[ブロック共重合体の塗膜作製]
 上記得られたブロック共重合体を用いて、実施例1と同様にしてコートシャーレ12を作製した。このコートシャーレ12を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ12を用いて、実施例1と同様にして、室温でのタンパク質吸着試験を行った。その結果、タンパク質吸着量(吸光度値)は0.310であった。
[細胞接着試験]
上記得られたコートシャーレ12を用いて、実施例1と同様にして、CHO-K1細胞の培養試験を行った。その結果、少量の細胞がシャーレ表面に接着していることが観察された。
以上の実施例より、重合体AとBのモル比(A:B)が1:0.5未満の場合、タンパク質吸着量が増える傾向が見られ、細胞の塗膜表面に対する接着性も強くなる傾向が観察された。
(実施例13)
[基材へのコーティング]
 実施例2で得られたブロック共重合体0.1gを、10gのエタノールに入れ、撹拌することにより、無色透明なポリマー溶液を得た。次いで、直径3/8インチのポリ塩化ビニル製チューブ(メラエクセライン:泉工医科工業株式会社製)30cmの内部に該ポリマー溶液を適量注入し、5分間保持して、チューブ内部のコーティングを行った。その後、該ポリマー溶液をチューブから除去し、50℃熱風乾燥器中で15分間乾燥させた。次いで、コーティングを行ったチューブを50℃の滅菌水に浸漬して、50℃で保持することにより洗浄を行った。洗浄後に再度50℃熱風乾燥器に入れて、30分間乾燥することにより、コーティングチューブを得た。このコーティングチューブを目視および顕微鏡にて観察したところ、塗膜は均一であり、高い透明性を有していることが確認された。
 また、上記チューブ用の凹凸部のあるポリカーボネート製コネクター(メラ人工心肺用コネクター:泉工医科工業株式会社製)についても、上記ポリマー溶液に浸漬し、上記と同様の方法でコーティングを行うことにより、コーティングコネクターを得た。
[血液中タンパク質吸着測定試験]
 上記の得られたコーティングチューブを用いて、血液中タンパク質吸着測定試験を行った。オス成ウシより静脈血を5mL、注射器を用いて採血した。これに直ちにヘパリンナトリウム注射液(ヘパリンナトリウム注1万単位「タナベ」:田辺三菱製薬製)を100μL加えて、抗凝固処理を行った。コーティングチューブを3cmの長さに切断し、この抗凝固処理血液を1mL充填して、両端を密封した。次いで、37℃恒温器内で振とうしながら、30分間保持した。その後、コーティングチューブ内の血液を捨てて、生理食塩水で軽く洗浄した。次いで、洗浄後のコーティングチューブを2%グルタルアルデヒド水溶液に浸漬し、室温にて1時間保持した。その後、コーティングチューブを取り出して、1cmの長さに切断した。この切断したコーティングチューブ1内面のタンパク質吸着量を、Micro BCA Protein Assay Kit(Thermo SCIENTIFIC製)を用いて測定したところ、7.5μg/cmであり、非常に吸着量が少なかった。
[血液灌流試験]
 上記の得られたコーティングチューブおよびコーティングコネクターを用いて、ウシ新鮮血灌流試験を行った。オス成ウシより静脈血を5mL、注射器を用いて採血した。これを直ちにコーティングチューブに充填し、上記コーティングコネクターを用いて、ループ状のチューブになるように両端を接続した。得られたループ状チューブを37℃恒温水槽に浸漬し、100rpmの回転速度で血液をチューブ内に灌流させた。15分後、装置の回転を止め、チューブを恒温水槽から取り出した。次いで、ループ状のチューブの両端からコネクターを取り外し、内部に充填してあったウシ血液を回収した。回収したウシ血液は、凝固しておらず流動性を有していた。血液を除去した後の、コーティングチューブおよびコーティングコネクター表面を生理食塩水で軽く洗浄し、その内面を目視および顕微鏡にて観察したところ、血栓の生成は見られなかった。次いで、このコーティングチューブを2cm切り取り、2%グルタルアルデヒド水溶液に浸漬した。1時間後に取り出し、生理食塩水で洗浄を行い、グルタルアルデヒドを除去し、室温にて乾燥させた。その後このコーティングチューブ内面のSEM観察を行ったところ、血球や血小板、及び血漿等の血液由来のタンパク質成分は観察されなかった。また、この結果から、コーティングチューブおよびコーティングコネクターには、上記ブロック共重合体が確実にコーティングされており、血液灌流中もそれが基材表面に付着した状態で、剥離することなく、抗血栓性の効果を示したことから、上記ブロック共重合体のポリ塩化ビニルおよびポリカーボネート基材への良好な接着性が確認された。
[血球数測定]
 上記血液灌流試験にて採血を行ったのと同じオス成ウシより、静脈血を上記と同様の方法により1mL採血した。次いで、この血液を血球測定装置(Laser Cite:IDEXX Laboratories製)にかけることにより、血小板数を測定したところ、535×10個/μLであった。また、上記血液灌流試験で回収したウシ血液についても同様の方法で、血球測定装置にて血液灌流試験後の血液中の血小板数を測定したところ、550×10個/μLであり、血液灌流試験前の血液とほぼ同じであった。
[血液凝固弾性測定]
 全血凝固線溶分析装置トロンボエラストメトリー(ROTEM:フィガルリンク)を用いて、血液の凝固による弾性変化を測定した。ROTEM測定用カップとピンの外面それぞれに、上記ブロック共重合体を、[基材へのコーティング]で記載と同様の方法でコーティングした。このコーティングカップにボランティアにて提供されたヒト新鮮血及び所定の血液凝固促進試薬を加え、装置にセットすることにより、コーティングカップ及びピンを使用したときの、血液凝固挙動を測定した。測定開始3分後くらいから凝固開始の凝固堅さを示すピークが現れ始めたが、そのピークは非常に小さく(得られたピークのMCFは7mm)、またその後2分くらいから凝固を示すピークが小さくなっていき、さらに数分後にはピークが全く見られなくなった。30分後に測定を終え、該カップ内部を確認したところ、内部の血液は凝固しており、測定は正しく行われたことが確認された。このことから、このブロック共重合体コーティングにより、凝固促進試薬によって開始された血液凝固が促進することはなく、また血液凝固によるカップ及びピンへの血栓の付着は大きく抑制された。また、この結果から、カップおよびピンには、上記ブロック共重合体が確実にコーティングされており、測定中もそれが基材表面に付着した状態で、剥離することなく、抗血栓性の効果を示したことから、上記ブロック共重合体のポリプロピレン基材への良好な接着性が確認された。
[血小板活性化測定]
 インピーダンス法による血小板の凝集能を、血小板凝集測定装置(Multiplate:Verum)を用いて測定した。Multiplate用の金属電極を含むポリプロピレン製測定カップの内面、および撹拌用ポリテトラフルオロエチレン(PTFE)撹拌子に上記ブロック共重合体を、[基材へのコーティング]で記載と同様の方法でコーティングした。このコーティングカップおよびコーティング撹拌子に、ボランティアにて提供されたヒト新鮮血及び所定の血小板活性化試薬を加え、装置にセットすることにより、血小板凝集によるインピーダンスの変化を測定した。測定開始からインピーダンスの変化はほとんど見られず、測定15分間の面積は20Uであり、血小板活性化及び凝集が大きく抑制されていることがわかった。また、この結果から、金属電極を含むポリプロピレン製カップおよびPTFE撹拌子には、上記ブロック共重合体が確実にコーティングされており、測定中もそれが基材表面に付着した状態で、剥離することなく、抗血栓性の効果を示したことから、上記ブロック共重合体の金属電極を含むポリプロピレン、およびPTFE基材への良好な接着性が確認された。
(実施例14)
[基材へのコーティング]
 実施例5で得られたブロック共重合体を用いて、実施例13と同様の方法でコーティングチューブおよびコーティングコネクターを作製した。得られたコーティングチューブおよびコーティングコネクターを目視および顕微鏡にて観察したところ、塗膜は均一であり、高い透明性を有していることが確認された。
[抗血栓性評価]
 上記の得られたコーティングチューブおよびコーティングコネクターを用いて、実施例13と同様の方法で、[血液中タンパク質吸着測定試験]、[血液灌流実験]および[血球数測定]の各評価を行った。また、[血液凝固弾性測定]および[白血球活性化測定]についても、実施例13と同様の方法で、各測定容器に上記ブロック共重合体を使用してコーティングを行い、測定を実施した。結果をまとめて表2に示す。
(実施例15)
[基材へのコーティング]
 実施例3で得られたブロック共重合体を用いて、実施例13と同様の方法でコーティングチューブおよびコーティングコネクターを作製した。得られたコーティングチューブおよびコーティングコネクターを目視および顕微鏡にて観察したところ、塗膜は均一であり、高い透明性を有していることが確認された。
[抗血栓性評価]
 上記の得られたコーティングチューブおよびコーティングコネクターを用いて、実施例13と同様の方法で、[血液中タンパク質吸着測定試験]、[血液灌流実験]および[血球数測定]の各評価を行った。また、[血液凝固弾性測定]および[白血球活性化測定]についても、実施例13と同様の方法で、各測定容器に上記ブロック共重合体を使用してコーティングを行い、測定を実施した。結果をまとめて表2に示す。
(実施例16)
[基材へのコーティング]
 実施例4で得られたブロック共重合体を用いて、実施例13と同様の方法でコーティングチューブおよびコーティングコネクターを作製した。得られたコーティングチューブおよびコーティングコネクターを目視および顕微鏡にて観察したところ、塗膜は均一であり、高い透明性を有していることが確認された。
[抗血栓性評価]
 上記の得られたコーティングチューブおよびコーティングコネクターを用いて、実施例13と同様の方法で、[血液中タンパク質吸着測定試験]、[血液灌流実験]および[血球数測定]の各評価を行った。また、[血液凝固弾性測定]および[白血球活性化測定]についても、実施例13と同様の方法で、各測定容器に上記ブロック共重合体を使用してコーティングを行い、測定を実施した。結果をまとめて表2に示す。
(実施例17)
[基材へのコーティング]
 実施例8で得られたブロック共重合体を用いて、実施例13と同様の方法でコーティングチューブおよびコーティングコネクターを作製した。得られたコーティングチューブおよびコーティングコネクターを目視および顕微鏡にて観察したところ、塗膜は均一であり、高い透明性を有していることが確認された。
[抗血栓性評価]
 上記の得られたコーティングチューブおよびコーティングコネクターを用いて、実施例13と同様の方法で、[血液中タンパク質吸着測定試験]、[血液灌流実験]および[血球数測定]の各評価を行った。また、[血液凝固弾性測定]および[白血球活性化測定]についても、実施例13と同様の方法で、各測定容器に上記ブロック共重合体を使用してコーティングを行い、測定を実施した。結果をまとめて表2に示す。
(実施例18)
[基材へのコーティング]
 実施例9で得られたブロック共重合体を用いて、実施例13と同様の方法でコーティングチューブおよびコーティングコネクターを作製した。得られたコーティングチューブおよびコーティングコネクターを目視および顕微鏡にて観察したところ、塗膜は均一であり、高い透明性を有していることが確認された。
[抗血栓性評価]
 上記の得られたコーティングチューブおよびコーティングコネクターを用いて、実施例13と同様の方法で、[血液中タンパク質吸着測定試験]、[血液灌流実験]および[血球数測定]の各評価を行った。また、[血液凝固弾性測定]および[白血球活性化測定]についても、実施例13と同様の方法で、各測定容器に上記ブロック共重合体を使用してコーティングを行い、測定を実施した。結果をまとめて表2に示す。
(実施例19)
[基材へのコーティング]
 実施例1で得られたブロック共重合体を用いて、実施例13と同様の方法でコーティングチューブおよびコーティングコネクターを作製した。得られたコーティングチューブおよびコーティングコネクターを目視および顕微鏡にて観察したところ、塗膜は均一であり、高い透明性を有していることが確認された。
[抗血栓性評価]
 上記の得られたコーティングチューブおよびコーティングコネクターを用いて、実施例13と同様の方法で、[血液中タンパク質吸着測定試験]、[血液灌流実験]および[血球数測定]の各評価を行った。また、[血液凝固弾性測定]および[白血球活性化測定]についても、実施例13と同様の方法で、各測定容器に上記ブロック共重合体を使用してコーティングを行い、測定を実施した。結果をまとめて表2に示す。
(実施例20)
[基材へのコーティング]
 実施例10で得られたブロック共重合体を用いて、実施例13と同様の方法でコーティングチューブおよびコーティングコネクターを作製した。得られたコーティングチューブおよびコーティングコネクターを目視および顕微鏡にて観察したところ、塗膜は均一であり、高い透明性を有していることが確認された。
[抗血栓性評価]
 上記の得られたコーティングチューブおよびコーティングコネクターを用いて、実施例13と同様の方法で、[血液中タンパク質吸着測定試験]、[血液灌流実験]および[血球数測定]の各評価を行った。また、[血液凝固弾性測定]および[白血球活性化測定]についても、実施例13と同様の方法で、各測定容器に上記ブロック共重合体を使用してコーティングを行い、測定を実施した。結果をまとめて表2に示す。
(実施例21)
[基材へのコーティング]
 実施例11で得られたブロック共重合体を用いて、実施例13と同様の方法でコーティングチューブおよびコーティングコネクターを作製した。得られたコーティングチューブおよびコーティングコネクターを目視および顕微鏡にて観察したところ、塗膜は均一であり、高い透明性を有していることが確認された。
[抗血栓性評価]
 上記の得られたコーティングチューブおよびコーティングコネクターを用いて、実施例13と同様の方法で、[血液中タンパク質吸着測定試験]、[血液灌流実験]および[血球数測定]の各評価を行った。また、[血液凝固弾性測定]および[白血球活性化測定]についても、実施例13と同様の方法で、各測定容器に上記ブロック共重合体を使用してコーティングを行い、測定を実施した。結果をまとめて表2に示す。
(実施例22)
[基材へのコーティング]
 実施例12で得られたブロック共重合体を用いて、実施例13と同様の方法でコーティングチューブおよびコーティングコネクターを作製した。得られたコーティングチューブおよびコーティングコネクターを目視および顕微鏡にて観察したところ、塗膜は均一であり、高い透明性を有していることが確認された。
[抗血栓性評価]
 上記の得られたコーティングチューブおよびコーティングコネクターを用いて、実施例13と同様の方法で、[血液中タンパク質吸着測定試験]、[血液灌流実験]および[血球数測定]の各評価を行った。また、[血液凝固弾性測定]および[白血球活性化測定]についても、実施例13と同様の方法で、各測定容器に上記ブロック共重合体を使用してコーティングを行い、測定を実施した。結果をまとめて表2に示す。
(比較例1)
[ランダム共重合体の合成]
 モノマー(a)として2-メトキシエチルアクリレート(東亞合成株式会社製)2.92g、モノマー(b)としてN,N-ジメチルアクリルアミド(株式会社興人製)6.66g、2,2’-アゾビスイソブチロニトリル0.0007g、1,4-ジオキサン10mLを窒素バブリングした後、70℃、24時間攪拌し、モノマー(a)と(b)のランダム重合体を得た。なお、(a):(b)=500:1500(モル比)。反応終了後、反応液をジエチルエーテルに投入し、更にジエチルエーテルで3回洗浄した後、真空乾燥させ、(a)と(b)のモノマー比率が(a):(b)=500:1500である、ABランダム共重合体を合成した。
[ポリマーの同定]
実施例1と同様にして、1H-NMR測定を行った。その結果、モノマー(a)の転化率は100%、モノマー(b)の転化率は99.5%で、モノマー組成((a):(b)=500:1500)に対応したABランダム共重合体が得られたことが確認された。
[ランダム共重合体の塗膜作製]
 上記得られたランダム共重合体を用いて、実施例1と同様にしてコートシャーレ1’を作製した。このコートシャーレ1’を目視で観察したところ、塗布前と同等な透明度を有した。
[タンパク質吸着試験]
 上記コートシャーレ1’を用いて、実施例1と同様にして、室温でのタンパク質吸着試験を行った。その結果、タンパク質吸着量(吸光度値)は0.550であった。
[細胞接着試験]
上記得られたコートシャーレ1’を用いて、実施例1と同様にして、正常ヒト真皮線維芽細胞の培養試験を行った。その結果、未コートシャーレと同等に、細胞がかなりの数でシャーレに接着していたことが観察された。
[基材へのコーティング]
 上記の得られたランダム共重合体を用いて、実施例13と同様の方法で、コーティングチューブおよびコーティングコネクターを得た。このコーティングチューブおよびコーティングコネクターを目視および顕微鏡で観察したところ、いずれも塗膜は均一であり、高い透明性を有していることが確認された。
[抗血栓性評価]
 上記で得られたコーティングチューブおよびコーティングコネクターを用いて、実施例13と同様の方法で、[血液中タンパク質吸着測定試験]、[血液灌流実験]および[血球数測定]の各評価を行った。また、[血液凝固弾性測定]および[白血球活性化測定]についても、実施例1と同様の方法で、各測定容器に上記ランダム共重合体を使用してコーティングを行い、測定を実施した。なお、[血液灌流実験]では、灌流後の血液が凝固してしまい、[血球数測定]の評価を行うことは不可能であった。結果をまとめて表2に示す。
以上の比較例より、上記ABランダム共重合体では、タンパク質吸着量が高く、細胞の塗膜表面に対する接着性も高いことが観察された。
(比較例2)
[タンパク質吸着試験]
未コートの直径35mmポリスチレン製シャーレを用いて、実施例1と同様にして、室温でのタンパク質吸着試験を行った。その結果、吸光度は0.624であった。
(比較例3)
[タンパク質吸着試験]
未コートのポリプロピレン製15mL遠沈管を用いて、実施例1と同様にして、タンパク質吸着試験を行った。その結果、吸光度は1.375であった。
(比較例4)
[抗血栓性評価]
 直径3/8インチの塩化ビニル製チューブ(メラエクセライン:泉工医科工業株式会社製)を処理せずにそのまま使用して、上記[血液中タンパク質吸着測定試験]、[血液灌流試験]、及び[血球数測定]の試験を行った。なお、[血液灌流実験]では、灌流後の血液が凝固してしまい、[血球数測定]の評価を行うことは不可能であった。結果を表2に示す。
 次に、全ての実施例と比較例のタンパク質吸着の結果を示す。
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063

Claims (18)

  1. 下記一般式(1)で表されるモノマー(a)を含むモノマーの重合体(A)と、下記一般式(2)~(7)で表されるモノマー(b)を含むモノマーの重合体(B)からなるブロック共重合体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    (式(1)~(7)中、Rは炭素原子数1~3のアルキル基、Rは水素原子またはメチル基、R、Rはそれぞれ独立に炭素原子数2~3のアルキレン基、R、R、R、Rはそれぞれ独立に水素原子または炭素原子数1~2のアルキル基、Xは-CO 、-SO 、-OSO 、-OSO 、-OP(=O)(OR)O、-OP(=O)(R)O、-P(=O)(OR)O、-P(=O)(R)Oから選ばれる一価のアニオン、Rは炭素原子数1~3のアルキル基であり、nは1~9の整数である。)
  2. 前記重合体(A)と前記重合体(B)のモル比(A:B)が1:50~50:1である請求項1に記載のブロック共重合体。
  3. 前記ブロック共重合体において、重合体(B)がモノマー(b)とモノマー(a)の共重合体からなり、且つモノマー(b)とモノマー(a)の比率が99:1~10:90のモル比である請求項1または2に記載のブロック共重合体。
  4. ブロック共重合体がトリブロック型共重合体、ジブロック型共重合体、または多分岐型ブロック共重合体である請求項1~3のいずれかに記載のブロック共重合体。
  5. 前記ブロック共重合体において、重合体(A)の重合度が30~3000、重合体(B)の重合度が20~20000である請求項1~4のいずれかに記載のブロック共重合体。
  6. 請求項1~5のいずれかに記載のブロック共重合体の塗膜。
  7. 請求項6記載の塗膜を用いたタンパク質吸着防止材。
  8. 請求項7記載の塗膜を用いた細胞培養基材。
  9. 下記一般式(8)で表されるモノマー(a)を含むモノマーの重合体(A)と、下記一般式(9)~(14)で表されるモノマー(b)を含むモノマーの重合体(B)から構成されるブロック共重合体からなる抗血栓コーティング剤。
    Figure JPOXMLDOC01-appb-C000008
    (式(8)中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基、Rは炭素原子数1~3のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000009
                 (9)
    Figure JPOXMLDOC01-appb-C000010
                 (10) 
    Figure JPOXMLDOC01-appb-C000011
                 (11)
    Figure JPOXMLDOC01-appb-C000012
                 (12)
    Figure JPOXMLDOC01-appb-C000013
                 (13)
    Figure JPOXMLDOC01-appb-C000014
                 (14)
    (式(9)~(14)中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基、R、R、R、Rはそれぞれ独立に水素原子または炭素原子数1または2のアルキル基である。)
  10. 前記一般式(8)で表されるモノマー(a)の重合体(A)と、モノマー(a)と前記一般式(9)~(14)で表されるモノマー(b)との共重合体(B)から構成される請求項9に記載のブロック共重合体からなる抗血栓コーティング剤。
  11. 前記ブロック共重合体において、重合体(A)が水に不溶性で、重合体(B)または共重合体(B)が水溶性である請求項9または10に記載の抗血栓コーティング剤。
  12. モノマー(b)/モノマー(a)の共重合比率が99/1~10/90モル比である請求項10に記載の抗血栓コーティング剤。
  13. 前記ブロック共重合体における重合体(A)と重合体(B)のモル比(A:B)もしくは重合体(A)と共重合体(B)のモル比(A:B)が1:50~50:1である請求項9または10に記載の抗血栓コーティング剤。
  14. 前記ブロック共重合体がトリブロック型共重合体、ジブロック型共重合体、多分岐型ブロック共重合体のいずれかで表される請求項9~13のいずれかに記載の抗血栓コーティング剤。
  15. 前記トリブロック型共重合体がA-B-A又はA-B-A、多分岐型ブロック共重合体が[B-A]または[B-A](pはBまたはBの分岐数で、3~10の整数である)で表されるブロック共重合体である請求項14に記載の抗血栓コーティング剤。
  16. 前記ブロック共重合体において、共重合体(A)の重合度が30~3000、共重合体(B)または共重合体(B)の重合度が20~20000である請求項9~15のいずれかに記載の抗血栓コーティング剤。
  17. 前記ブロック共重合体0.05~10質量部、エタノール、メタノール、イソプロピルアルコールのいずれかを主成分とする溶媒99.95~90質量部からなる請求項9~15のいずれかに記載の抗血栓コーティング剤。
  18. 請求項9~17のいずれかに記載の抗血栓コーティング剤がコーティングされた医療用具。
PCT/JP2012/070487 2011-08-15 2012-08-10 ブロック共重合体、および抗血栓コーティング剤 WO2013024815A2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12823466.3A EP2746308B1 (en) 2011-08-15 2012-08-10 Use of block copolymer and antithrombotic coating agent
CN201280039648.9A CN103781812B (zh) 2011-08-15 2012-08-10 嵌段共聚物的涂膜、以及抗血栓涂层剂
US14/237,664 US9474835B2 (en) 2011-08-15 2012-08-10 Block copolymer and antithrombotic coating agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-177589 2011-08-15
JP2011177589 2011-08-15

Publications (2)

Publication Number Publication Date
WO2013024815A2 true WO2013024815A2 (ja) 2013-02-21
WO2013024815A3 WO2013024815A3 (ja) 2013-03-28

Family

ID=47715538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070487 WO2013024815A2 (ja) 2011-08-15 2012-08-10 ブロック共重合体、および抗血栓コーティング剤

Country Status (5)

Country Link
US (1) US9474835B2 (ja)
EP (1) EP2746308B1 (ja)
JP (2) JP5439551B2 (ja)
CN (1) CN103781812B (ja)
WO (1) WO2013024815A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059798A1 (ja) * 2013-10-24 2015-04-30 学校法人東京電機大学 細胞または組織の輸送装置
WO2017155019A1 (ja) * 2016-03-10 2017-09-14 国立大学法人山形大学 蛋白質吸着抑制剤および蛋白質吸着抑制の方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439551B2 (ja) 2011-08-15 2014-03-12 一般財団法人川村理化学研究所 ブロック共重合体の塗膜
JP6052432B2 (ja) * 2013-12-20 2016-12-27 Dic株式会社 温度応答性細胞培養基材及びその製造方法
JP6278731B2 (ja) * 2014-02-24 2018-02-14 テルモ株式会社 抗血栓性医療材料、および該医療材料を利用した医療用具
WO2016133189A1 (ja) * 2015-02-20 2016-08-25 日産化学工業株式会社 生体適合性塗布膜形成用組成物
US10188774B2 (en) * 2015-03-10 2019-01-29 Terumo Kabushiki Kaisha Method for producing antithrombotic coating material
WO2016143787A1 (ja) * 2015-03-10 2016-09-15 国立大学法人山形大学 抗血栓性ブロック共重合体
JP2016193147A (ja) * 2015-04-01 2016-11-17 株式会社パイオラックスメディカルデバイス ステントの製造方法及び該製造方法によって得られるステント
JP2016198426A (ja) * 2015-04-14 2016-12-01 Dic株式会社 抗炎症性コーティング剤およびこれを用いた抗炎症性材料および医療用具
JP6597280B2 (ja) * 2015-12-21 2019-10-30 日立化成株式会社 ダイボンディングフィルム
WO2017217363A1 (ja) * 2016-06-13 2017-12-21 東亞合成株式会社 モールディング樹脂組成物及び成形品
JP2018012811A (ja) * 2016-07-22 2018-01-25 東ソー株式会社 ブロック共重合体
JP6813996B2 (ja) * 2016-08-31 2021-01-13 大塚化学株式会社 ブロック共重合体、および、これを含有する樹脂改質剤、エポキシ樹脂組成物
WO2018116904A1 (ja) 2016-12-22 2018-06-28 Dic株式会社 細胞培養基材
US11427803B2 (en) 2016-12-22 2022-08-30 Fujifilm Corporation Cell culture substrate
KR102373743B1 (ko) 2017-06-26 2022-03-11 마루젠 세끼유가가꾸 가부시키가이샤 단백질 흡착 방지제, 단백질 흡착 방지막 및 이것을 이용하는 의료용구
JP7142541B2 (ja) * 2017-11-29 2022-09-27 大塚化学株式会社 ブロック共重合体を含有する重合生成物の製造方法
WO2020149385A1 (ja) * 2019-01-16 2020-07-23 積水フーラー株式会社 架橋性ブロック共重合体及びコーティング剤
WO2022030440A1 (ja) * 2020-08-07 2022-02-10 東亞合成株式会社 ビニル系重合体及びその製造方法
CN113150225B (zh) * 2021-05-11 2022-01-04 西南石油大学 双功能配体、3d聚合物分子刷及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251609A (ja) 1997-03-14 1998-09-22 Oji Paper Co Ltd 粘着剤組成物、および再剥離性粘着テープまたはシート
JP2806510B2 (ja) 1990-10-18 1998-09-30 テルモ 株式会社 人工臓器用膜または医療用具
JPH11287802A (ja) 1998-04-03 1999-10-19 Nippon Kayaku Co Ltd 表面保護剤
JP3459836B2 (ja) 1992-03-18 2003-10-27 テルモ株式会社 血小板純化用フィルター
JP2004339165A (ja) 2003-05-16 2004-12-02 Asahi Kasei Corp 医療用具用コート材およびこれを用いた白血球除去フィルター
JP2007289299A (ja) 2006-04-24 2007-11-08 Terumo Corp 医療用具
JP2008194363A (ja) 2007-02-15 2008-08-28 National Cardiovascular Center 抗血栓コーティング剤及び医療用具
JP2008220786A (ja) 2007-03-14 2008-09-25 Japan Science & Technology Agency 血管内皮細胞の摩擦抵抗低減材料
JP2008264268A (ja) 2007-04-20 2008-11-06 Daiichi Shokai Co Ltd 遊技機
JP2008289864A (ja) 2007-04-24 2008-12-04 Toyobo Co Ltd 抗血栓性材料
JP4317183B2 (ja) 2005-12-01 2009-08-19 テルモ株式会社 中空糸膜外部血液灌流型人工肺
JP4404445B2 (ja) 2000-05-17 2010-01-27 テルモ株式会社 血液フィルターおよび血液フィルターの製造方法
JP2011006555A (ja) 2009-06-24 2011-01-13 Nof Corp 熱可塑性樹脂組成物及びその製造方法
JP4746984B2 (ja) 2003-03-28 2011-08-10 独立行政法人科学技術振興機構 生体適合性と温度応答性を併せ持つ高分子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923876A (ja) * 1995-07-11 1997-01-28 Kao Corp 細胞培養支持体の製造法
GB9912077D0 (en) * 1999-05-24 1999-07-21 Unilever Plc Polysiloxane block copolymers in topical cosmetic and personal care compositions
US6518343B1 (en) * 1999-06-18 2003-02-11 3M Innovative Properties Company Wet-stick adhesives, articles, and methods
JP4404468B2 (ja) * 2000-09-29 2010-01-27 テルモ株式会社 血液フィルターおよびその製造方法
WO2002028357A1 (en) * 2000-10-03 2002-04-11 Unilever Plc Cosmetic and personal care compositions
GB0130499D0 (en) * 2001-12-20 2002-02-06 Unilever Plc Polymers for laundry cleaning compositions
GB0207742D0 (en) * 2002-04-03 2002-05-15 Unilever Plc Fabric care composition
GB0207744D0 (en) * 2002-04-03 2002-05-15 Unilever Plc Fabric care composition
JP4138538B2 (ja) * 2003-03-07 2008-08-27 旭化成株式会社 アミド系ブロック共重合体からなるコート材料
ATE382377T1 (de) * 2003-09-29 2008-01-15 Hemoteq Ag Biokompatible, biostabile beschichtung von medizinischen oberflächen
JP4780278B2 (ja) * 2004-11-09 2011-09-28 Jsr株式会社 コーティング用組成物およびその使用方法、被膜を有する物品、ならびに被膜の形成方法
FR2883880B1 (fr) * 2005-03-31 2007-05-11 Essilor Int Formulation poly(thio)urethane thermodurcissable comprenant au moins un copolymere a blocs et son application dans l'optique pour la fabrication de verres organiques a tenacite amelioree
JP4162028B2 (ja) * 2005-10-25 2008-10-08 東洋紡績株式会社 (メタ)アクリレート共重合体
WO2008112874A1 (en) 2007-03-15 2008-09-18 The Polymer Technology Group Incorporated Novel pdms-pvp block copolymers
JP4100452B1 (ja) 2007-04-20 2008-06-11 東洋紡績株式会社 医用材料の処理液および医用材料
EP2231207A1 (en) 2007-12-27 2010-09-29 Bausch & Lomb Incorporated Coating solutions comprising segmented interactive block copolymers
JP5907661B2 (ja) * 2011-02-12 2016-04-26 学校法人東京女子医科大学 直鎖型温度応答性高分子が固定化された温度応答性細胞培養基材、及びその製造方法
JP5439551B2 (ja) * 2011-08-15 2014-03-12 一般財団法人川村理化学研究所 ブロック共重合体の塗膜

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2806510B2 (ja) 1990-10-18 1998-09-30 テルモ 株式会社 人工臓器用膜または医療用具
JP3459836B2 (ja) 1992-03-18 2003-10-27 テルモ株式会社 血小板純化用フィルター
JPH10251609A (ja) 1997-03-14 1998-09-22 Oji Paper Co Ltd 粘着剤組成物、および再剥離性粘着テープまたはシート
JPH11287802A (ja) 1998-04-03 1999-10-19 Nippon Kayaku Co Ltd 表面保護剤
JP4404445B2 (ja) 2000-05-17 2010-01-27 テルモ株式会社 血液フィルターおよび血液フィルターの製造方法
JP4746984B2 (ja) 2003-03-28 2011-08-10 独立行政法人科学技術振興機構 生体適合性と温度応答性を併せ持つ高分子
JP2004339165A (ja) 2003-05-16 2004-12-02 Asahi Kasei Corp 医療用具用コート材およびこれを用いた白血球除去フィルター
JP4317183B2 (ja) 2005-12-01 2009-08-19 テルモ株式会社 中空糸膜外部血液灌流型人工肺
JP2007289299A (ja) 2006-04-24 2007-11-08 Terumo Corp 医療用具
JP2008194363A (ja) 2007-02-15 2008-08-28 National Cardiovascular Center 抗血栓コーティング剤及び医療用具
JP2008220786A (ja) 2007-03-14 2008-09-25 Japan Science & Technology Agency 血管内皮細胞の摩擦抵抗低減材料
JP2008264268A (ja) 2007-04-20 2008-11-06 Daiichi Shokai Co Ltd 遊技機
JP2008289864A (ja) 2007-04-24 2008-12-04 Toyobo Co Ltd 抗血栓性材料
JP2011006555A (ja) 2009-06-24 2011-01-13 Nof Corp 熱可塑性樹脂組成物及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 209, 2008, pages 1389 - 1403
MACROMOLECULES, vol. 35, 2002, pages 6754
MACROMOLECULES, vol. 36, 2003, pages 1505
POLYMER, vol. 46, 2005, pages 8458
See also references of EP2746308A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059798A1 (ja) * 2013-10-24 2015-04-30 学校法人東京電機大学 細胞または組織の輸送装置
WO2017155019A1 (ja) * 2016-03-10 2017-09-14 国立大学法人山形大学 蛋白質吸着抑制剤および蛋白質吸着抑制の方法
JPWO2017155019A1 (ja) * 2016-03-10 2019-01-10 国立大学法人山形大学 蛋白質吸着抑制剤および蛋白質吸着抑制の方法

Also Published As

Publication number Publication date
CN103781812B (zh) 2016-08-17
EP2746308B1 (en) 2016-11-30
JP2013056146A (ja) 2013-03-28
WO2013024815A3 (ja) 2013-03-28
JP5439551B2 (ja) 2014-03-12
CN103781812A (zh) 2014-05-07
US9474835B2 (en) 2016-10-25
EP2746308A2 (en) 2014-06-25
EP2746308A4 (en) 2015-03-11
JP5492952B2 (ja) 2014-05-14
JP2013057058A (ja) 2013-03-28
US20140235748A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2013024815A2 (ja) ブロック共重合体、および抗血栓コーティング剤
JP6372544B2 (ja) 細胞接着防止剤
US11441120B2 (en) Cell culture substrate
EP0714417B1 (en) Polymer surface coatings
JP4712924B2 (ja) 医療用材料および製造方法
EP0921139A1 (en) Modified polymers containing poly(2-hydroxyethyl (meth)acrylate) segment in the molecule
TWI712621B (zh) 共聚物及其用途
JP7313900B2 (ja) 抗血栓性材料及びそれを用いた医療用器具
KR20190094149A (ko) 세포 배양 기재
JP2016198426A (ja) 抗炎症性コーティング剤およびこれを用いた抗炎症性材料および医療用具
JPH0311787B2 (ja)
EP3269747B1 (en) Antithrombotic block copolymer
JP7246248B2 (ja) 抗血栓性材料、及び抗血栓性材料の使用方法
JP2004298223A (ja) 生体適合性材料
WO2024018999A1 (ja) ポリマー化合物
WO2023013410A1 (ja) 高分子組成物
JP6828876B2 (ja) 星型ポリマーおよびその設計方法
KR100431245B1 (ko) 항혈전성 삼성분계 공중합체
WO2023190383A1 (ja) ポリマー組成物
ES2241641T3 (es) Nuevos sistemas polimericos biocompatibles portadores de triflusal o htb.
JP2022036820A (ja) 共重合体及びその用途
JPH0454967A (ja) 医療用材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823466

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012823466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012823466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14237664

Country of ref document: US