WO2022030440A1 - ビニル系重合体及びその製造方法 - Google Patents

ビニル系重合体及びその製造方法 Download PDF

Info

Publication number
WO2022030440A1
WO2022030440A1 PCT/JP2021/028600 JP2021028600W WO2022030440A1 WO 2022030440 A1 WO2022030440 A1 WO 2022030440A1 JP 2021028600 W JP2021028600 W JP 2021028600W WO 2022030440 A1 WO2022030440 A1 WO 2022030440A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
vinyl
compound
meth
Prior art date
Application number
PCT/JP2021/028600
Other languages
English (en)
French (fr)
Inventor
晃嗣 柴田
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2022541530A priority Critical patent/JPWO2022030440A1/ja
Publication of WO2022030440A1 publication Critical patent/WO2022030440A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • C08F2/40Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation using retarding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms

Definitions

  • This disclosure relates to a vinyl polymer and a method for producing the same.
  • the living radical polymerization method includes a reversible addition-cleaving chain transfer polymerization method (RAFT method), a nitroxy radical method (NMP method), an atom transfer radical polymerization method (ATRP method), and a polymerization method using an organic tellurium compound (TERP method). ), A polymerization method using an organic antimony compound (SBRP method), a polymerization method using an organic bismuth compound (BIRP method), an iodine transfer polymerization method and the like are known.
  • SBRP method organic antimony compound
  • BIRP method organic bismuth compound
  • iodine transfer polymerization method and the like are known.
  • the RAFT method, the NMP method and the ATRP method are industrially used from the viewpoint of controllability of polymerization and ease of implementation.
  • the RAFT method is attracting attention as a metal-free polymerization method that can be applied to the widest range of vinyl monomers. Vinyl-based polymers obtained by the RAFT method are
  • RAFT agent polymerization control agent having a thiocarbonylthio group, such as a dithioester compound, a xanthate compound, a trithiocarbonate compound, a dithiocarbamate compound, etc.
  • RAFT agent polymerization control agent having a thiocarbonylthio group
  • a polymerization control agent such as a dithioester compound, a xanthate compound, a trithiocarbonate compound, a dithiocarbamate compound, etc.
  • Patent Document 1 describes a compound having two dithioester groups as a RAFT agent having two thiocarbonylthio groups (1,4-bis (phenylthio).
  • a polyacrylic acid ester produced by living radical polymerization using carbonylsulfanylmethyl) benzene) is disclosed.
  • Non-Patent Document 1 uses a compound having two trithiocarbonate groups (1,4-bis (n-butylsulfanylthiocarbonylsulfanylmethyl) benzene) as a RAFT agent having two thiocarbonylthio groups.
  • the polyacrylic acid ester produced by living radical polymerization was disclosed.
  • Patent Document 1 and Non-Patent Document 1 do not have sufficient heat resistance (particularly, heat resistance under conditions higher than 150 ° C.), and there is room for further improvement.
  • the present disclosure has been made in view of the above circumstances, and an object thereof is to provide a vinyl-based polymer having excellent heat resistance.
  • the vinyl-based polymer obtained by living radical polymerization using a RAFT agent contains a polymer having a specific structural formula. It was also found that the inclusion of a polymer having this specific structural formula in an amount exceeding a predetermined amount causes a decrease in heat resistance when the vinyl-based polymer is subjected to high temperature conditions. Based on this finding, the inventor has completed the present disclosure. Specifically, according to the present disclosure, the following means are provided.
  • the polymer (P1) represented by the following formula (1) and the polymer (P2) represented by the following formula (2) are contained, and the polymer (P1) and the polymer (P2) are contained.
  • R 1 and R 3 are independently hydrogen atom, chlorine atom, alkyl group, aryl group, aralkyl group, heterocyclyl group, alkoxy group, alkylthio group and dialkoxy.
  • Phosphino group alkoxycarbonyl group, "-O-Ar 1 ", “-S-Ar 1 " or “-NR 4 R 5 " (where Ar 1 indicates an aryl group or an aralkyl group, R 4 and R 5 independently indicates a monovalent hydrocarbon group), and any hydrogen atom bonded to the carbon atom may be substituted.
  • R 2 is a substituted or unsubstituted divalent aromatic hydrocarbon. Indicates a hydrogen group.
  • A indicates a polymer chain having a structural unit derived from a vinyl monomer.
  • the vinyl monomer is the vinyl polymer of [1] or [2], which contains a (meth) acrylic compound.
  • a method for producing a vinyl-based polymer by a living radical polymerization method wherein a compound (R1) represented by the following formula (3) and a compound (R2) represented by the following formula (4) are used.
  • the step of polymerizing a vinyl monomer using the contained RAFT agent is included, and the content of the compound (R2) in the RAFT agent is 10 mol with respect to the total amount of the compound (R1) and the compound (R2). % Or less, a method for producing a vinyl-based polymer.
  • R 1 and R 3 are independently hydrogen atom, chlorine atom, alkyl group, aryl group, aralkyl group, heterocyclyl group, alkoxy group, alkylthio group and dialkoxy. It indicates a phosphino group, an alkoxycarbonyl group, "-O-Ar 1 ", “-S-Ar 1 " or "-NR 4 R 5 " (where Ar 1 is an aryl group or an aralkyl group, R 4 and R 5 is an independently monovalent hydrocarbon group), and any hydrogen atom bonded to the carbon atom may be substituted.
  • R 2 is a substituted or unsubstituted divalent aromatic hydrocarbon. Indicates a hydrogen group.
  • a vinyl-based polymer having excellent heat resistance can be obtained.
  • (meth) acrylic means acrylic and / or methacrylic
  • (meth) acrylate means acrylate and / or methacrylate
  • (meth) acrylo means acrylo and / or methacrylo.
  • the vinyl-based polymer of the present disclosure (hereinafter, also referred to as "vinyl-based polymer (P)") is a polymer (P1) which is a vinyl-based polymer represented by the following formula (1) and the following formula (2). Includes a polymer (P2) which is a vinyl-based polymer represented by.
  • the content of the polymer (P2) is 10 mol% or less with respect to the total amount (100 mol%) of the polymer (P1) and the polymer (P2).
  • R 1 and R 3 are independently hydrogen atom, chlorine atom, alkyl group, aryl group, aralkyl group, heterocyclyl group, alkoxy group, alkylthio group and dialkoxy. It indicates a phosphino group, an alkoxycarbonyl group, "-O-Ar 1 ", “-S-Ar 1 " or “-NR 4 R 5 " (where Ar 1 is an aryl group or an aralkyl group, R 4 and R 5 is an independently monovalent hydrocarbon group), and any hydrogen atom bonded to the carbon atom may be substituted.
  • R 2 is a substituted or unsubstituted divalent aromatic hydrocarbon. Indicates a hydrogen group.
  • A indicates a polymer chain having a structural unit derived from a vinyl monomer.
  • R 1 and R 3 include, as an alkyl group, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, and the like.
  • Examples thereof include an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group and a nonadecil group. These may be linear or branched.
  • Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the heterocyclyl group include 1-pyrrolyl group, 1-imidazolyl group, 2-oxo-1-pyrrolidinyl group, phthalimide group and the like.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group and the like.
  • alkylthio group methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, undecylthio group, dodecylthio group, tetradecylthio group, hexadecylthio group, Examples thereof include an octadecylthio group and a nonadecylthio group.
  • dialkoxyphosphino group examples include a dimethoxyphosphino group, a diethoxyphosphino group, a methoxyethoxyphosphino group and the like.
  • alkoxycarbonyl group examples include a methoxycarbonyl group and an ethoxycarbonyl group.
  • Examples of the group represented by "-O-Ar 1 " include a phenoxy group and a benzyloxy group.
  • Examples of the group represented by “-S-Ar 1 " include a phenyl sulfide group and a benzyl sulfide group.
  • Examples of the group represented by "-NR 4 R 5 " include N, N-dimethylamino group, N, N-diethylamino group, N-methyl-N-ethylamino group, N-phenyl-N-methylamino group, and the like. Examples thereof include an N-phenyl-N-ethylamino group.
  • examples of the substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom and the like), a cyano group and the like.
  • R 1 and R 3 are preferably monovalent groups having 1 to 20 carbon atoms. Among these, at least one of R 1 and R 3 is preferably a substituted or unsubstituted alkyl thio group, and R 1 and R 3 are preferable because they have a high transfer constant and are excellent in controllability of polymerization. Is more preferably a substituted or unsubstituted alkylthio group.
  • R2 is preferably a divalent group having 6 to 20 carbon atoms.
  • R 2 include a substituted or unsubstituted phenylene group and a group represented by "-R 6 -B 1 -R 7- " (however, R 6 and R 7 have independent carbon atoms. 1 to 5 alkylene groups, B 1 is a substituted or unsubstituted phenylene group).
  • substituents include an alkyl group (for example, a methyl group, an ethyl group, etc.), a halogen atom, and the like.
  • R2 is preferably "-CH 2 -phenylene group-CH 2- ", “-CH (CH 3) -phenylene group-CH (CH 3 ) -", or “-C (". CH 3 ) 2 -Phenylene group-C (CH 3 ) 2- ".
  • a in the above formulas (1) and (2) is a polymerized chain having a structural unit derived from a vinyl monomer.
  • the polymer chains of the vinyl-based polymer (P) (that is, the polymer chains of the polymer (P1) and the polymer (P2)) are formed by A in the above formulas (1) and (2).
  • the vinyl monomer constituting the polymerized chain various vinyl monomers having radical polymerizable properties can be used.
  • the vinyl monomer include (meth) acrylic acid ester compounds, aromatic vinyl compounds, unsaturated carboxylic acids, unsaturated acid anhydrides, hydroxy group-containing vinyl compounds, amino group-containing vinyl compounds, and amide group-containing vinyls. Examples thereof include compounds, alkoxy group-containing vinyl compounds, nitrile group-containing vinyl compounds, maleimide compounds and the like.
  • the vinyl monomer one of these may be used alone, or two or more thereof may be used in combination.
  • vinyl monomer examples include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, and isopropyl (meth) acrylic acid as the (meth) acrylic acid ester compound.
  • aromatic vinyl compounds examples include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, vinylxylene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene and p-ethyl.
  • Styrene pn-butyl styrene, p-isobutyl styrene, pt-butyl styrene, o-methoxy styrene, m-methoxy styrene, p-methoxy styrene, o-chloro styrene, m-chloro styrene, p-chloro styrene , P-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol, o-vinyl benzoic acid, m-vinyl benzoic acid, p-vinyl benzoic acid Examples thereof include styrene-based compounds such as acid and divinylbenzene, and vinylnaphthalene.
  • unsaturated carboxylic acids examples include (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, cinnamon acid, and monoalkyl esters of unsaturated dicarboxylic acids (maleic acid, fumaric acid, itaconic acid, and citraconic acid). Monoalkyl esters such as acids) and the like.
  • unsaturated acid anhydride examples include maleic anhydride, itaconic anhydride, citraconic anhydride and the like.
  • hydroxy group-containing vinyl compound examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and (meth).
  • Hydroxyalkyl compounds of (meth) acrylate such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylate; polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate and polyethylene glycol-polypropylene glycol mono
  • Polyalkylene glycol mono (meth) acrylate compound such as (meth) acrylate; unsaturated alcohol such as allyl alcohol; N-substituted maleimide compound such as N- (4-hydroxyphenyl) maleimide; o-hydroxystyrene, m-hydroxystyrene And hydroxyl group-containing styrene compounds such as p-hydroxystyrene.
  • amino group-containing vinyl compound examples include dimethylaminomethyl (meth) acrylate, diethylaminomethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, and (meth) acrylic.
  • 2- (Di-n-propylamino) ethyl acid 2-dimethylaminopropyl (meth) acrylate, 2-diethylaminopropyl (meth) acrylate, 2- (di-n-propylamino) propyl (meth) acrylate , (Meta) acrylate 3-dimethylaminopropyl, (meth) acrylate 3-diethylaminopropyl, (meth) acrylate 3- (di-n-propylamino) propyl and the like.
  • Examples of the amide group-containing vinyl compound include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N-methylol (meth) acrylamide and the like.
  • Examples of the alkoxy group-containing vinyl compound include 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2- (n-propoxy) ethyl (meth) acrylate, and 2 (meth) acrylate.
  • nitrile group-containing vinyl compound examples include cyanomethyl (meth) acrylate, 1-cyanoethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, 1-cyanopropyl (meth) acrylate, and 2-cyanopropyl (meth) acrylate.
  • Examples thereof include acid 8-cyanooctyl, (meth) acrylonitrile, ⁇ -ethylacrylonitrile, ⁇ -isopropylacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -fluoroacrylonitrile and the like.
  • maleimide compound examples include maleimide and N-substituted maleimide compounds.
  • N-substituted maleimide compound include N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, N-isobutylmaleimide, and N-tert-butylmaleimide.
  • N-alkyl-substituted maleimide compounds such as N-pentylmaleimide, N-hexylmaleimide, N-heptylmaleimide, N-octylmaleimide, N-laurylmaleimide, and N-stearylmaleimide; N-cyclopentylmaleimide, N-cyclohexylmaleimide, etc.
  • N-Cycloalkyl-substituted maleimide compounds N-aralkyl-substituted maleimide compounds such as N-benzylmaleimide; N-phenylmaleimide, N- (4-hydroxyphenyl) maleimide, N- (4-acetylphenyl) maleimide, N- ( Examples thereof include N-aryl substituted maleimide compounds such as 4-methoxyphenyl) maleimide, N- (4-ethoxyphenyl) maleimide, N- (4-chlorophenyl) maleimide, and N- (4-bromophenyl) maleimide.
  • unsaturated dicarboxylic acid dialkyl esters, vinyl ester compounds, vinyl ether compounds and the like can also be used in the production of the vinyl polymer (P).
  • the monomer constituting the polymer chain of the vinyl-based polymer (P) can be relatively easily produced by the living radical polymerization method, and the degree of freedom in selecting the monomer is high.
  • it is preferable to include a (meth) acrylic compound and it is particularly preferable to include a compound represented by the following formula (5).
  • R 8 represents a hydrogen atom or a methyl group
  • R 9 represents a linear or branched alkylene group having 2 to 6 carbon atoms
  • R 10 represents a hydrogen atom or a carbon number of carbon atoms.
  • N represents an integer of 0 to 100.
  • the compound represented by the above formula (5) include the (meth) acrylic acid ester compound, the alkoxy group-containing vinyl compound, the (meth) acrylic acid hydroxyalkyl compound, and the polyalkylene glycol mono (meth) exemplified above. )
  • An acrylate compound can be mentioned.
  • the group “-(R 9 O) n-R 10 " in the above formula (5) preferably has 2 or more carbon atoms, and preferably 3 or more carbon atoms. Is more preferable.
  • the upper limit of the carbon number of the group "-(R 9 O) n-R 10 " is preferably 10 or less, more preferably 8 or less, from the viewpoint of maintaining the polymerization controllability.
  • the amount of the (meth) acrylic compound among the monomers constituting the polymerized chain of the vinyl-based polymer (P) is preferably 50 mol% or more with respect to the total amount of the monomers constituting the polymerized chain. Yes, more preferably 70 mol% or more, further preferably 80 mol% or more, still more preferably 90 mol% or more.
  • the vinyl-based polymer (P) is a mixture of the polymer (P1) and the polymer (P2). More specifically, the vinyl-based polymer (P) contains the polymer (P1) as a main component and the polymer (P2) as an impurity.
  • the content of the polymer (P2) is 10 mol% or less with respect to the total amount (100 mol%) of the polymer (P1) and the polymer (P2).
  • a vinyl-based polymer having excellent heat resistance under more severe high temperature conditions can be obtained. From this point of view, the content of the polymer (P2) in the vinyl-based polymer (P) is preferably 9.5 mol% or less with respect to the total amount of the polymer (P1) and the polymer (P2).
  • the lower limit of the content of the polymer (P2) is not particularly limited, but from the viewpoint of ease of production, it is, for example, 0.01 mol% or more with respect to the total amount of the polymer (P1) and the polymer (P2). , 0.05 mol% or more, more preferably 0.1 mol% or more.
  • impurities contained in the vinyl-based polymer (P) can be identified by the methods shown below.
  • the vinyl-based polymer (P) is subjected to gel permeation chromatography (GPC) fractionation under the conditions described in Examples described later, and the obtained high molecular weight fraction is concentrated to obtain a concentrate.
  • GPC gel permeation chromatography
  • 1 H-NMR measurement of this concentrate was carried out, and the proton peaks derived from R1 , R2 and R3 in the above formulas (1) and (2), and the polymerization next to the thiocarbonylthio group were carried out.
  • the integral value of the proton peaks derived from R1 and R3 is 0.5 times that of the integral value of the proton peaks derived from R2 , respectively.
  • the integral value of the proton peak on the carbon of the polymer chain next to the carbonylthio group is observed at the same magnification. Utilizing this, it can be confirmed that the structure of the compound in the fraction on the high molecular weight side obtained by GPC fractionation is the structure of the polymer (P2).
  • the "structural unit derived from the vinyl monomer" of the vinyl-based polymer (P) can be analyzed by a pyrolysis gas chromatograph / mass spectrometry (pyrolysis GC / MS).
  • the "RAFT agent” used for the synthesis of the vinyl polymer (P) can be analyzed by pyrolysis GC / MS) and a matrix-assisted laser desorption / ionization method (MALDI-TOF / MS).
  • the content of the polymer (P2) in the vinyl-based polymer (P) can be calculated by the method shown below.
  • GPC measurement of the vinyl-based polymer (P) is performed under the conditions described in Examples described later, and a GPC chart in which the peak intensity is plotted against LogM (M is the molecular weight) is obtained.
  • the peak start point is A
  • the end point is B
  • the peak on the high molecular weight side and the peak on the low molecular weight side appearing on the GPC chart are vertically divided (each LogM when vertically divided is X), and the peak intensity for each LogM is taken.
  • the content (mol%) of the polymer (P2) in the vinyl-based polymer (P) is calculated from the following formula (6).
  • Y (n) / M (n) represents the number of molecules (mol).
  • the vinyl-based polymer (P) can be obtained by polymerizing a vinyl monomer by a living radical polymerization method.
  • the target vinyl-based polymer (P) is obtained by charging an organic solvent and a monomer into a reactor, adding a radical polymerization initiator, and preferably heating and copolymerizing.
  • the method of charging each raw material may be a batch-type initial batch charging in which all the raw materials are collectively charged, or a semi-continuous charging in which at least a part of the raw materials is continuously supplied into the reactor, and all the raw materials are continuously supplied.
  • a continuous polymerization method may be used in which the product is continuously extracted from the reactor.
  • the polymerization method used to obtain the vinyl-based polymer (P) the reversible addition-fragment chain transfer polymerization method (RAFT method) is particularly preferable.
  • RAFT agent polymerization control agent
  • free radical polymerization initiator RAFT agent
  • RAFT agent a polymerization control agent
  • R1 , R 2 and R 3 are synonymous with R 1 , R 2 and R 3 in the above formulas (1) and (2).
  • R 1 , R 2 , and R 3 in the above equations (3) and (4) the description of R 1 , R 2 , and R 3 of the above equations (1) and (2) will be described.
  • the compound (R1) and the compound (R2) include compounds having a structural formula obtained by arbitrarily combining the above-mentioned examples of R 1 , R 2 , and R 3 .
  • the compound (R1) and the compound (R2) are preferably trithiocarbonate compounds in that they have a high migration constant and are excellent in the controllability of polymerization.
  • a RAFT agent containing the compound (R1) as a main component and the compound (R2) as an impurity can be used as the RAFT agent.
  • the content of the compound (R2) in the RAFT agent is the same as that of the compound (R1) from the viewpoint of obtaining a vinyl-based polymer having excellent heat resistance. It is preferably 10 mol% or less with respect to the total amount (100 mol%) with the compound (R2).
  • the content of the compound (R2) is more preferably 9.5 mol% or less, and more preferably 9.2 mol% or less, based on the total amount of the compound (R1) and the compound (R2). It is even more preferably 9.0 mol% or less, still more preferably 8.5 mol% or less, and particularly preferably 8.5 mol% or less.
  • the lower limit of the content of the compound (R2) in the RAFT agent is not particularly limited, but from the viewpoint of the availability of the RAFT agent, for example, 0.01 mol with respect to the total amount of the compound (R1) and the compound (R2). % Or more, preferably 0.05 mol% or more, and more preferably 0.1 mol% or more.
  • the content of the compound (R2) in the RAFT agent can be adjusted, for example, by subjecting a mixture of the compound (R1) and the compound (R2) to a purification treatment.
  • the purification method is not particularly limited, and examples thereof include recrystallization, reprecipitation, extraction, sublimation, chromatography, and column adsorption.
  • the content of the compound (R2) in the RAFT agent can be adjusted by appropriately selecting the number of purifications and the purification method. From the viewpoint of obtaining a vinyl-based polymer having excellent heat resistance under higher temperature conditions (for example, conditions higher than 150 ° C.), the number of purifications for purifying the mixture of the compound (R1) and the compound (R2) is multiple. It is preferable to set the number of times. When the purification is performed a plurality of times, the purification method for each purification method may be the same or different.
  • the compound (R2) contained in the RAFT agent can be identified and the content can be calculated by 1 H-NMR measurement. That is, since 1 H-NMR measurement can observe only the proton peaks derived from R 1 , R 2 and R 3 in the above equations (3) and (4), these proton peaks can be used.
  • the structure of the RAFT agent and compound (R2) can be determined.
  • the content of the compound ( R2 ) in the RAFT agent is the proton peak ( b) derived from R1 and R3 when the integral value of the proton peak (a) derived from R2 is normalized to 1. It can be calculated from the integral value of. Specifically, when the RAFT agent contains the compound (R2) as an impurity , the protons derived from R1 and R3 with respect to the integrated value of the proton peak (a) derived from R2 in the above formula (4). The integral value of the peak (b) is observed at 0.5 times that of the compound (R1).
  • radical polymerization initiator used for the polymerization by the RAFT method known radical polymerization initiators such as azo compounds, organic peroxides and persulfates can be used.
  • azo compounds are preferable because they are easy to handle for safety and side reactions during radical polymerization are unlikely to occur.
  • the azo compound examples include 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2, 4-Dimethylvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1- Carbonitrile), 2,2'-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2'-azobis (N-butyl-2-methylpropionamide) and the like.
  • the radical polymerization initiator only one type may be used, or two or more types may be used in combination.
  • the amount of the radical polymerization initiator used is not particularly limited, but is preferably 0.5 mol or less, preferably 0.2 mol or less, with respect to 1 mol of the RAFT agent, from the viewpoint of obtaining a polymer having a smaller molecular weight distribution. Is more preferable. Further, from the viewpoint of stably performing the polymerization reaction, the lower limit of the amount of the radical polymerization initiator used is preferably 0.01 mol or more, more preferably 0.05 mol or more with respect to 1 mol of the RAFT agent. preferable. The amount of the radical polymerization initiator used with respect to 1 mol of the RAFT agent is preferably 0.01 to 0.5 mol, more preferably 0.05 to 0.2 mol.
  • the polymerization reaction is preferably carried out in a solvent using a polymerization solvent known in living radical polymerization.
  • the polymerization solvent used is preferably an organic solvent capable of dissolving the monomer, and for example, aromatic compounds such as benzene, toluene, xylene and anisole; ester compounds such as methyl acetate, propyl acetate and butyl acetate; acetone, methyl ethyl ketone and Examples thereof include ketone compounds such as cyclohexanone.
  • the polymerization solvent one type may be used alone, or two or more types may be used in combination. When a hydrophilic monomer is used, alcohol, water or the like can be used as the polymerization solvent.
  • the amount of the polymerization solvent used is preferably 5 to 200 parts by mass, more preferably 10 to 100 parts by mass, based on 100 parts by mass of the total amount of the monomers used in the reaction.
  • the amount of the polymerization solvent used is 100 parts by mass or less, a high polymerization rate can be obtained in a short time, which is preferable.
  • the reaction temperature is preferably 40 ° C. or higher and 100 ° C. or lower, more preferably 45 ° C. or higher and 90 ° C. or lower, and further preferably 50 ° C. or higher and 80 ° C. or lower.
  • the reaction temperature is 40 ° C. or higher, it is preferable that the polymerization reaction can proceed smoothly, and when the reaction temperature is 100 ° C. or lower, side reactions can be suppressed and restrictions on the initiators and solvents that can be used are relaxed. It is preferable in that it is done.
  • the reaction time can be appropriately set depending on the monomer to be used and the like, but is preferably 1 hour or more and 48 hours or less, and more preferably 2 hours or more and 24 hours or less. If necessary, the polymerization reaction may be carried out in the presence of a chain transfer agent such as an alkylthiol compound having 2 to 20 carbon atoms.
  • a chain transfer agent such as an alkylthiol compound having 2 to 20 carbon atoms.
  • the polystyrene-equivalent number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is preferably in the range of 2,000 to 1,000,000. ..
  • Mn is 2,000 or more, it is preferable in that the desired property can be expressed in the vinyl-based polymer (P). Further, when Mn is 1,000,000 or less, it is preferable in that processability such as coatability and handleability can be sufficiently ensured.
  • the Mn of the vinyl polymer (P) is more preferably 5,000 or more, still more preferably 8,000 or more, and particularly preferably 10,000 or more.
  • the upper limit of Mn of the vinyl polymer (P) is more preferably 800,000 or less, further preferably 700,000 or less, still more preferably 600,000 or less, and particularly preferably 500, It is 000 or less.
  • the preferable range of Mn of the vinyl-based polymer (P) can be determined by appropriately combining the above-mentioned upper limit and lower limit.
  • the Mn of the vinyl polymer (P) is more preferably 5,000 to 800,000, still more preferably 8,000 to 700,000, and even more preferably 10,000 to 600,000. ..
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by GPC of the vinyl-based polymer (P) is preferably in the range of 2,000 to 1,000,000.
  • the Mw of the vinyl-based polymer (P) is more preferably 5,000 or more, still more preferably 8,000 or more, and particularly preferably 10,000 or more.
  • the upper limit of Mw of the vinyl-based polymer (P) is more preferably 800,000 or less, further preferably 700,000 or less, still more preferably 600,000 or less, and particularly preferably 500, It is 000 or less.
  • the range of Mw of the vinyl-based polymer (P) is more preferably 5,000 to 800,000, still more preferably 8,000 to 700,000, and even more preferably 10,000 to 600,000. Is.
  • the molecular weight distribution (Mw / Mn) of the vinyl-based polymer (P) is preferably 3.0 or less from the viewpoint of making the heat resistance more excellent.
  • the molecular weight distribution (Mw / Mn) is more preferably 2.5 or less, still more preferably 2.0 or less.
  • the lower limit of the molecular weight distribution (Mw / Mn) is not particularly limited, but is, for example, 1.01 or more from the viewpoint of ease of manufacture.
  • the vinyl-based polymer (P) obtained by this production method can be used in a wide range of applications. Specifically, it can be applied to various uses such as dispersants, industrial rubbers, binders, adhesives, paints, coating agents, and surfactants. In addition, examples of applicable fields include automobile parts, home appliances / OA equipment parts, medical equipment parts, packaging materials, civil engineering and construction materials, electric wires, miscellaneous goods, and the like.
  • the method for measuring the molecular weight of the polymer is as follows. ⁇ Molecular weight measurement> The obtained vinyl-based polymer was subjected to gel permeation chromatography (GPC) measurement under the following conditions to obtain a number average molecular weight (Mn) and a weight average molecular weight (Mw) in terms of polystyrene. Further, the molecular weight distribution (Mw / Mn) was calculated from the obtained Mn and Mw values.
  • GPC gel permeation chromatography
  • the vinyl polymer is obtained.
  • the impurities contained were identified. That is, if the concentrate (impurity) of the fraction on the high molecular weight side has the structure of the following polymer (1), the ratio of the integrated values of (A) / (B) / (C) is 6/2/4. In the case of the structure of the polymer (2), the ratio of (A) / (B) / (C) is 6/4/8. (In the formula, n is an integer.)
  • the above polymerization solution was reprecipitated and purified from methanol and vacuum dried to obtain a vinyl polymer I.
  • the molecular weights of the obtained vinyl-based polymer I were Mn68,000, Mw76,000, and Mw / Mn1.12 as measured by GPC (in terms of polystyrene).
  • the ratio of the integrated values of the concentrates (A) / (B) / (C) of the polymer fraction was 6/4/8. there were. From this result, it was found that the impurity has the structure of the polymer (2). Further, when the content of the polymer (2) in the vinyl-based polymer I was calculated, it was calculated to be 5.0 mol% with respect to the total amount of the polymer (1) and the polymer (2) of 100 mol%.
  • the vinyl-based polymers I and II in which the content of the polymer (2) is 10 mol% or less with respect to the total amount of the polymer (1) and the polymer (2) is 100 mol%. , 170 ° C., excellent heat resistance under high temperature conditions of 500 hours.
  • the vinyl-based polymers III and IV having a polymer (2) content of more than 10 mol% were inferior in heat resistance to the vinyl-based polymers I and II.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

式(1)で表される重合体(P1)と、式(2)で表される重合体(P2)とを含み、重合体(P1)及び重合体(P2)の合計量に対して、重合体(P2)の含有量が10mol%以下であるビニル系重合体を提供する。式中、R及びRは、水素原子、塩素原子、アルキル基、アリール基、アラルキル基、ヘテロシクリル基、アルコキシ基、アルキルチオ基等を示し、炭素原子に結合する任意の水素原子が置換されていてもよい。Rは、置換又は無置換の2価の芳香族炭化水素基を示す。Aは、ビニル単量体に由来する構造単位を有する重合鎖を示す。

Description

ビニル系重合体及びその製造方法 関連出願の相互参照
 本出願は、2020年8月7日に出願された日本特許出願番号2020-134917号に基づくもので、ここにその記載内容を援用する。
 本開示は、ビニル系重合体及びその製造方法に関する。
 リビングラジカル重合法としては、可逆的付加-開裂連鎖移動重合法(RAFT法)、ニトロキシラジカル法(NMP法)、原子移動ラジカル重合法(ATRP法)、有機テルル化合物を用いる重合法(TERP法)、有機アンチモン化合物を用いる重合法(SBRP法)、有機ビスマス化合物を用いる重合法(BIRP法)及びヨウ素移動重合法等の各種重合方法が知られている。これらの中でも、重合の制御性及び実施の簡便さの観点から、RAFT法、NMP法及びATRP法が工業的に利用されている。特にRAFT法は、最も広範囲なビニル単量体に適用でき、また、金属フリーである重合方法として注目されている。RAFT法により得られたビニル系重合体は、塗料、粘着剤等の種々の用途向けに検討が進められている。
 RAFT法では、ジチオエステル化合物、キサンテート化合物、トリチオカーボネート化合物、ジチオカーバメート化合物等といった、チオカルボニルチオ基を有する重合制御剤(RAFT剤)と、一般的なフリーラジカル重合開始剤との存在下、可逆的な連鎖移動反応を介して制御されて、重合が進行する。
 RAFT法により得られたビニル系重合体としては、例えば、特許文献1には、チオカルボニルチオ基を2個有するRAFT剤として、ジチオエステル基を2個有する化合物(1,4-ビス(フェニルチオカルボニルスルファニルメチル)ベンゼン)を用いたリビングラジカル重合により製造されたポリアクリル酸エステルが開示されている。
 また、非特許文献1には、チオカルボニルチオ基を2個有するRAFT剤として、トリチオカーボネート基を2個有する化合物(1,4-ビス(n-ブチルスルファニルチオカルボニルスルファニルメチル)ベンゼン)を用いたリビングラジカル重合により製造されたポリアクリル酸エステルが開示されている。
特開2003-48921号公報
「J. Polym. Sci. Part A. Polym.   Chem.」、2007年、45巻、p.588-604
 特許文献1及び非特許文献1に開示されたポリアクリル酸エステルは、耐熱性(特に、150℃よりも高温条件下の耐熱性)が十分でなく、更なる改善の余地がある。
 本開示は、上記事情に鑑みてなされたものであり、その目的は、耐熱性に優れたビニル系重合体を提供することである。
 本発明者は、上記課題を解決するために鋭意検討した結果、RAFT剤を用いたリビングラジカル重合により得られたビニル系重合体中に、特定の構造式の重合体が含有されていること、及びこの特定の構造式の重合体を所定量よりも多く含むことが、当該ビニル系重合体を高温条件下においた場合の耐熱性の低下の原因になっていることを突き止めた。この知見に基づき、本発明者は本開示を完成したものである。具体的には、本開示によれば以下の手段が提供される。
〔1〕 下記式(1)で表される重合体(P1)と、下記式(2)で表される重合体(P2)とを含み、前記重合体(P1)及び前記重合体(P2)の合計量に対して、前記重合体(P2)の含有量が10mol%以下である、ビニル系重合体。
Figure JPOXMLDOC01-appb-C000003
(式(1)及び式(2)中、R及びRは、それぞれ独立して、水素原子、塩素原子、アルキル基、アリール基、アラルキル基、ヘテロシクリル基、アルコキシ基、アルキルチオ基、ジアルコキシホスフィノ基、アルコキシカルボニル基、「-O-Ar」、「-S-Ar」又は「-NR」を示し(ただし、Arはアリール基又はアラルキル基を示し、R及びRは、それぞれ独立して1価の炭化水素基を示す)、炭素原子に結合する任意の水素原子が置換されていてもよい。Rは、置換又は無置換の2価の芳香族炭化水素基を示す。Aは、ビニル単量体に由来する構造単位を有する重合鎖を示す。)
〔2〕 前記R及び前記Rのうち少なくとも一方は、置換又は無置換のアルキルチオ基である、〔1〕のビニル系重合体。
〔3〕 前記ビニル単量体は、(メタ)アクリル系化合物を含む、〔1〕又は〔2〕のビニル系重合体。
〔4〕 ビニル系重合体をリビングラジカル重合法により製造する方法であって、下記式(3)で表される化合物(R1)と、下記式(4)で表される化合物(R2)とを含むRAFT剤を用いて、ビニル単量体を重合する工程を含み、前記RAFT剤における前記化合物(R2)の含有量が、前記化合物(R1)及び前記化合物(R2)の合計量に対して10mol%以下である、ビニル系重合体の製造方法。
Figure JPOXMLDOC01-appb-C000004
(式(3)及び式(4)中、R及びRは、それぞれ独立して、水素原子、塩素原子、アルキル基、アリール基、アラルキル基、ヘテロシクリル基、アルコキシ基、アルキルチオ基、ジアルコキシホスフィノ基、アルコキシカルボニル基、「-O-Ar」、「-S-Ar」又は「-NR」を示し(ただし、Arはアリール基又はアラルキル基であり、R及びRは、それぞれ独立して1価の炭化水素基である)、炭素原子に結合する任意の水素原子が置換されていてもよい。Rは、置換又は無置換の2価の芳香族炭化水素基を示す。)
 本開示によれば、耐熱性に優れたビニル系重合体を得ることができる。
 以下、本開示について詳しく説明する。なお、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロ」とは、アクリロ及び/又はメタクリロを意味する。
《ビニル系重合体》
 本開示のビニル系重合体(以下「ビニル系重合体(P)」ともいう)は、下記式(1)で表されるビニル系重合体である重合体(P1)と、下記式(2)で表されるビニル系重合体である重合体(P2)とを含む。ビニル系重合体(P)において、重合体(P2)の含有量は、重合体(P1)と重合体(P2)との合計量(100mol%)に対して10mol%以下である。
Figure JPOXMLDOC01-appb-C000005
(式(1)及び式(2)中、R及びRは、それぞれ独立して、水素原子、塩素原子、アルキル基、アリール基、アラルキル基、ヘテロシクリル基、アルコキシ基、アルキルチオ基、ジアルコキシホスフィノ基、アルコキシカルボニル基、「-O-Ar」、「-S-Ar」又は「-NR」を示し(ただし、Arはアリール基又はアラルキル基であり、R及びRは、それぞれ独立して1価の炭化水素基である)、炭素原子に結合する任意の水素原子が置換されていてもよい。Rは、置換又は無置換の2価の芳香族炭化水素基を示す。Aは、ビニル単量体に由来する構造単位を有する重合鎖を示す。)
 上記式(1)及び式(2)において、R及びRの具体例としては、アルキル基として、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、ノナデシル基等が挙げられる。これらは、直鎖状であってもよく、分岐状であってもよい。
 アリール基としては、フェニル基、トリル基、キシリル基、1-ナフチル基、2-ナフチル基等が挙げられる。アラルキル基としては、ベンジル基、フェネチル基等が挙げられる。ヘテロシクリル基としては、1-ピロリル基、1-イミダゾリル基、2-オキソ-1-ピロリジニル基、フタルイミド基等が挙げられる。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。
 アルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、へプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ウンデシルチオ基、ドデシルチオ基、テトラデシルチオ基、ヘキサデシルチオ基、オクタデシルチオ基、ノナデシルチオ基等が挙げられる。
 ジアルコキシホスフィノ基としては、ジメトキシホスフィノ基、ジエトキシホスフィノ基、メトキシエトキシホスフィノ基等が挙げられる。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基等が挙げられる。
 「-O-Ar」で表される基としては、フェノキシ基、ベンジルオキシ基等が挙げられる。「-S-Ar」で表される基としては、フェニルスルフィド基、ベンジルスルフィド基等が挙げられる。「-NR」で表される基としては、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N-メチル-N-エチルアミノ基、N-フェニル-N-メチルアミノ基、N-フェニル-N-エチルアミノ基等が挙げられる。R及びRが置換基を有する場合、当該置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基等が挙げられる。
 R及びRは、炭素数1~20の一価基であることが好ましい。高い移動定数を有し、また重合の制御性に優れる点で、これらの中でも、R及びRのうち少なくとも一方は、置換又は無置換のアルキルチオ基であることが好ましく、R及びRが共に置換又は無置換のアルキルチオ基であることがより好ましい。
 Rは、炭素数6~20の二価基であることが好ましい。Rの具体例としては、置換又は無置換のフェニレン基、「-R-B-R-」で表される基(ただし、R及びRは、それぞれ独立して、炭素数1~5のアルキレン基であり、Bは置換又は無置換のフェニレン基である)が挙げられる。フェニレン基に置換基が導入されている場合、当該置換基としては、アルキル基(例えば、メチル基やエチル基等)、ハロゲン原子等が挙げられる。Rは、重合活性の観点から、好ましくは、「-CH-フェニレン基-CH-」、「-CH(CH)-フェニレン基-CH(CH)-」、又は「-C(CH-フェニレン基-C(CH-」である。
 上記式(1)及び式(2)中のAは、ビニル単量体に由来する構造単位を有する重合鎖である。上記式(1)及び式(2)中のAにより、ビニル系重合体(P)の重合鎖(すなわち、重合体(P1)及び重合体(P2)の重合鎖)が構成されている。重合鎖を構成するビニル単量体としては、ラジカル重合性を有する種々のビニル単量体を使用することができる。当該ビニル単量体としては、例えば、(メタ)アクリル酸エステル化合物、芳香族ビニル化合物、不飽和カルボン酸、不飽和酸無水物、ヒドロキシ基含有ビニル化合物、アミノ基含有ビニル化合物、アミド基含有ビニル化合物、アルコキシ基含有ビニル化合物、ニトリル基含有ビニル化合物、マレイミド化合物等が挙げられる。ビニル単量体としては、これらのうちの1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ビニル単量体の具体例としては、(メタ)アクリル酸エステル化合物として、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸エチルヘキシル、(メタ)アクリル酸n-ドデシル、(メタ)アクリル酸n-オクタデシル等の(メタ)アクリル酸アルキルエステル化合物;
(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸tert-ブチルシクロヘキシル、(メタ)アクリル酸シクロドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸の脂肪族環式エステル化合物;
メタクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシメチル、(メタ)アクリル酸2-フェノキシエチル、(メタ)アクリル酸3-フェノキシプロピル等の(メタ)アクリル酸の芳香族エステル化合物等が挙げられる。
 芳香族ビニル化合物としては、スチレン、α-メチルスチレン、β-メチルスチレン、ビニルキシレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、p-n-ブチルスチレン、p-イソブチルスチレン、p-t-ブチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール、o-イソプロペニルフェノール、o-ビニル安息香酸、m-ビニル安息香酸、p-ビニル安息香酸及びジビニルベンゼン等のスチレン系化合物、並びに、ビニルナフタレン等が挙げられる。
 不飽和カルボン酸としては、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、桂皮酸、不飽和ジカルボン酸のモノアルキルエステル(マレイン酸、フマル酸、イタコン酸、シトラコン酸等のモノアルキルエステル)等が挙げられる。不飽和酸無水物としては、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。
 ヒドロキシ基含有ビニル化合物としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル及び(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル化合物;ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート及びポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート化合物;アリルアルコール等の不飽和アルコール;N-(4-ヒドロキシフェニル)マレイミド等のN-置換マレイミド化合物;o-ヒドロキシスチレン、m-ヒドロキシスチレン及びp-ヒドロキシスチレン等の水酸基含有スチレン系化合物等が挙げられる。
 アミノ基含有ビニル化合物としては、(メタ)アクリル酸ジメチルアミノメチル、(メタ)アクリル酸ジエチルアミノメチル、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸2-(ジ-n-プロピルアミノ)エチル、(メタ)アクリル酸2-ジメチルアミノプロピル、(メタ)アクリル酸2-ジエチルアミノプロピル、(メタ)アクリル酸2-(ジ-n-プロピルアミノ)プロピル、(メタ)アクリル酸3-ジメチルアミノプロピル、(メタ)アクリル酸3-ジエチルアミノプロピル、(メタ)アクリル酸3-(ジ-n-プロピルアミノ)プロピル等が挙げられる。
 アミド基含有ビニル化合物としては、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等が挙げられる。アルコキシ基含有ビニル化合物としては、例えば、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-(n-プロポキシ)エチル、(メタ)アクリル酸2-(n-ブトキシ)エチル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸3-エトキシプロピル、(メタ)アクリル酸2-(n-プロポキシ)プロピル、(メタ)アクリル酸2-(n-ブトキシ)プロピル等が挙げられる。
 ニトリル基含有ビニル化合物としては、(メタ)アクリル酸シアノメチル、(メタ)アクリル酸1-シアノエチル、(メタ)アクリル酸2-シアノエチル、(メタ)アクリル酸1-シアノプロピル、(メタ)アクリル酸2-シアノプロピル、(メタ)アクリル酸3-シアノプロピル、(メタ)アクリル酸4-シアノブチル、(メタ)アクリル酸6-シアノヘキシル、(メタ)アクリル酸2-エチル-6-シアノヘキシル、(メタ)アクリル酸8-シアノオクチル、(メタ)アクリロニトリル、α-エチルアクリロニトリル、α-イソプロピルアクリロニトリル、α-クロロアクリロニトリル、α-フルオロアクリロニトリル等が挙げられる。
 マレイミド化合物としては、マレイミド及びN-置換マレイミド化合物が挙げられる。N-置換マレイミド化合物としては、例えば、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-イソプロピルマレイミド、N-n-ブチルマレイミド、N-イソブチルマレイミド、N-tert-ブチルマレイミド、N-ペンチルマレイミド、N-ヘキシルマレイミド、N-ヘプチルマレイミド、N-オクチルマレイミド、N-ラウリルマレイミド、及びN-ステアリルマレイミド等のN-アルキル置換マレイミド化合物;N-シクロペンチルマレイミド及びN-シクロヘキシルマレイミド等のN-シクロアルキル置換マレイミド化合物;N-ベンジルマレイミド等のN-アラルキル置換マレイミド化合物;N-フェニルマレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-(4-アセチルフェニル)マレイミド、N-(4-メトキシフェニル)マレイミド、N-(4-エトキシフェニル)マレイミド、N-(4-クロロフェニル)マレイミド、及びN-(4-ブロモフェニル)マレイミド等のN-アリール置換マレイミド化合物等が挙げられる。なお、ビニル系重合体(P)の製造では、上記化合物以外に、不飽和ジカルボン酸のジアルキルエステル、ビニルエステル化合物、ビニルエーテル化合物等を用いることもできる。
 ビニル系重合体(P)の重合鎖を構成する単量体は、リビングラジカル重合法によりビニル系重合体(P)を比較的簡便に製造できる点、及び単量体の選択の自由度が高い点で、これらの中でも、(メタ)アクリル系化合物を含むことが好ましく、下記式(5)で表される化合物を含むことが特に好ましい。
 CH=CR-C(=O)-O-(RO)n-R10  …(5)
(式(5)中、Rは、水素原子又はメチル基を示し、Rは、炭素数2~6の直鎖状又は分岐状のアルキレン基を示し、R10は、水素原子、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、又は炭素数7~20のアラルキル基を示す。nは0~100の整数を示す。)
 上記式(5)で表される化合物の具体例としては、上記で例示した(メタ)アクリル酸エステル化合物、アルコキシ基含有ビニル化合物、(メタ)アクリル酸ヒドロキシアルキル化合物、及びポリアルキレングリコールモノ(メタ)アクリレート化合物が挙げられる。これらのうち、耐熱性等の各種特性が良好なビニル系重合体(P)を得ることができる点で、(メタ)アクリル酸エステル化合物を含むことがより好ましい。上記式(5)で表される化合物は、上記式(5)中の基「-(RO)n-R10」が、炭素数2以上であることが好ましく、炭素数3以上であることがより好ましい。基「-(RO)n-R10」の炭素数の上限については、重合制御性を維持する観点から、好ましくは10以下であり、より好ましくは8以下である。
 ビニル系重合体(P)の重合鎖を構成する単量体のうち、(メタ)アクリル系化合物の量は、当該重合鎖を構成する単量体の全量に対して、好ましくは50mol%以上であり、より好ましくは70mol%以上であり、更に好ましくは80mol%以上であり、より更に好ましくは90mol%以上である。
 ビニル系重合体(P)は、重合体(P1)と重合体(P2)との混合物である。より具体的には、ビニル系重合体(P)は、重合体(P1)を主成分とし、重合体(P2)を不純物として含む。ビニル系重合体(P)において、重合体(P2)の含有量が、重合体(P1)と重合体(P2)との合計量(100mol%)に対して、10mol%以下であることにより、より厳しい高温条件下における耐熱性に優れたビニル系重合体を得ることができる。こうした観点から、ビニル系重合体(P)における重合体(P2)の含有量は、重合体(P1)及び重合体(P2)の合計量に対して、9.5mol%以下であることが好ましく、9.2mol%以下であることがより好ましく、9.0mol%以下であることが更に好ましく、8.5mol%以下であることがより更に好ましい。重合体(P2)の含有量の下限については特に限定されないが、製造容易性の観点から、重合体(P1)及び重合体(P2)の合計量に対して、例えば0.01mol%以上であり、0.05mol%以上であることが好ましく、0.1mol%以上であることがより好ましい。
 本明細書において、ビニル系重合体(P)に含まれる不純物(すなわち、重合体(P2))は、以下に示す方法により同定することができる。まず、ビニル系重合体(P)につき、後述の実施例に記載の条件でゲルパーミエーションクロマトグラフィー(GPC)分取を行い、得られた高分子量側のフラクションを濃縮して濃縮物を得る。続いて、この濃縮物のH-NMR測定を行い、上記式(1)及び式(2)中のR、R及びR由来のプロトンピーク、並びに、チオカルボニルチオ基の隣の重合鎖炭素上のプロトンピーク(すなわち、重合鎖Aに由来するプロトンピーク)の積分値の比から同定する。重合体(P2)の場合、R由来のプロトンピークの積分値に対する、R及びR由来のプロトンピークの積分値は、重合体(P1)と比較して、それぞれ0.5倍、チオカルボニルチオ基の隣の重合鎖炭素上のプロトンピークの積分値は等倍で観測される。このことを利用して、GPC分取により得られた高分子量側のフラクション中の化合物の構造が重合体(P2)の構造であることを確認することができる。
 なお、ビニル系重合体(P)の「ビニル単量体に由来する構造単位」については、熱分解ガスクロマトグラフ/質量分析法(熱分解GC/MS)により分析することができる。ビニル系重合体(P)の合成に使用された「RAFT剤」については、熱分解GC/MS)及びマトリックス支援レーザー脱離イオン化法(MALDI-TOF/MS)により分析することができる。
 ビニル系重合体(P)中の重合体(P2)の含有量は、以下に示す方法により算出することができる。まず、後述の実施例に記載の条件でビニル系重合体(P)のGPC測定を行い、LogM(Mは分子量)に対してピーク強度がプロットされたGPCチャートを得る。ピーク開始点をA、終了点をBとし、GPCチャートに現れる高分子量側のピークと低分子量側のピークを垂直分割(垂直分割したときの各LogMをXとする)し、各LogMに対するピーク強度Y(n)及び分子量M(n)から、下記数式(6)より、ビニル系重合体(P)における重合体(P2)の含有量(mol%)を算出する。なお、「Y(n)/M(n)」は分子数(mol)を表す。
Figure JPOXMLDOC01-appb-M000006
<ビニル系重合体(P)の製造>
 ビニル系重合体(P)は、リビングラジカル重合法により、ビニル単量体を重合して得ることができる。例えば、溶液重合法による場合、有機溶媒及び単量体を反応器に仕込み、ラジカル重合開始剤を添加して、好ましくは加熱して共重合することにより、目的とするビニル系重合体(P)を得ることができる。各原料の仕込み方法は、全ての原料を一括して仕込むバッチ式の初期一括仕込みでもよく、少なくとも一部の原料を連続的に反応器中に供給するセミ連続仕込みでもよく、全原料を連続供給し、同時に反応器から連続的に生成物を抜き出す連続重合方式でもよい。ビニル系重合体(P)を得るために用いる重合法は、中でも、可逆的付加-開裂連鎖移動重合法(RAFT法)が好ましい。
 RAFT法においては、重合制御剤(RAFT剤)及びフリーラジカル重合開始剤の存在下、可逆的な連鎖移動反応を介して重合が進行する。RAFT法によりビニル系重合体(P)を製造する場合、下記式(3)で表される化合物(R1)と、下記式(4)で表される化合物(R2)とを含むRAFT剤を用いて、ビニル単量体を重合する工程を含む方法によりビニル系重合体(P)を製造することができる。
Figure JPOXMLDOC01-appb-C000007
(式(3)及び式(4)中、R、R及びRは、上記式(1)及び式(2)中のR、R及びRと同義である。)
 なお、上記式(3)及び式(4)中のR、R、Rの具体例については、上記式(1)及び式(2)のR、R、Rの説明を援用することができる。化合物(R1)及び化合物(R2)の具体例としては、上記のR、R、Rのそれぞれの例示を任意に組み合わせてなる構造式の化合物を挙げることができる。化合物(R1)及び化合物(R2)は、高い移動定数を有する点、及び重合の制御性に優れる点で、トリチオカーボネート化合物であることが好ましい。
 ビニル系重合体(P)の製造に際し、RAFT剤として具体的には、化合物(R1)を主成分とし、化合物(R2)を不純物として含むRAFT剤を用いることができる。化合物(R1)と化合物(R2)との混合物をRAFT剤として用いる場合、RAFT剤における化合物(R2)の含有量は、耐熱性に優れたビニル系重合体を得る観点から、化合物(R1)と化合物(R2)との合計量(100mol%)に対して、好ましくは10mol%以下である。上記観点から、化合物(R2)の含有量は、化合物(R1)及び化合物(R2)の合計量に対して、9.5mol%以下であることがより好ましく、9.2mol%以下であることが更に好ましく、9.0mol%以下であることがより更に好ましく、8.5mol%以下であることが特に好ましい。RAFT剤において、化合物(R2)の含有量の下限については特に限定されないが、RAFT剤の入手容易性の観点から、化合物(R1)及び化合物(R2)の合計量に対して、例えば0.01mol%以上であり、0.05mol%以上であることが好ましく、0.1mol%以上であることがより好ましい。
 RAFT剤中の化合物(R2)の含有量は、例えば、化合物(R1)と化合物(R2)との混合物に対して精製処理を施すことにより調整することができる。精製方法は特に限定されず、例えば、再結晶、再沈殿、抽出、昇華、クロマトグラフィー、カラム吸着等を挙げることができる。このとき、精製回数や精製方法を適宜選択することにより、RAFT剤中の化合物(R2)の含有量を調整することができる。より高温の条件下(例えば、150℃よりも高温条件下)における耐熱性に優れたビニル系重合体を得る観点から、化合物(R1)と化合物(R2)との混合物を精製する精製回数は複数回とすることが好ましい。精製を複数回行う場合には、各回の精製方法は同一であってもよく、異なっていてもよい。
 なお、RAFT剤に含まれる化合物(R2)の同定及び含有量の算出は、H-NMR測定より行うことができる。すなわち、H-NMR測定によれば、上記式(3)及び式(4)中のR、R及びRに由来するプロトンピークのみを観測できることから、これらのプロトンピークを用いることによりRAFT剤及び化合物(R2)の構造を決定することができる。
 また、RAFT剤中の化合物(R2)の含有量は、Rに由来するプロトンピーク(a)の積分値を1に規格化した場合における、R及びRに由来するプロトンピーク(b)の積分値から計算することができる。具体的には、RAFT剤が不純物として化合物(R2)を含有する場合、上記式(4)中のRに由来するプロトンピーク(a)の積分値に対する、R及びRに由来するプロトンピーク(b)の積分値は、化合物(R1)の場合の0.5倍で観測される。すなわち、Rに由来するプロトンピーク(a)の積分値を1に規格化した場合、R及びRに由来するプロトンピーク(b)の積分値をIbとし、RAFT剤中の化合物(R1)のmol割合をα、化合物(R2)のmol割合をβとした場合、下記の2つの数式で表される関係が成立する。
α+β=1(1に規格化した(a)の積分値)
α+0.5β=Ib((a)の積分値を1に規格化したときの(b)の積分値)
したがって、この連立方程式を解いてα、βを求めることにより、RAFT剤における化合物(R2)の含有量を算出することができる。
 RAFT法による重合に用いるラジカル重合開始剤としては、アゾ化合物、有機過酸化物及び過硫酸塩等の公知のラジカル重合開始剤を使用することができる。これらの中でも、安全上取り扱いやすく、ラジカル重合時の副反応が起こりにくい点で、アゾ化合物が好ましい。アゾ化合物の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)等が挙げられる。ラジカル重合開始剤としては、1種類のみ使用してもよく、2種以上を併用してもよい。
 ラジカル重合開始剤の使用量は、特に制限されないが、分子量分布がより小さい重合体を得る点から、RAFT剤1molに対して、0.5mol以下とすることが好ましく、0.2mol以下とすることがより好ましい。また、重合反応を安定的に行う観点から、ラジカル重合開始剤の使用量の下限については、RAFT剤1molに対して、0.01mol以上とすることが好ましく、0.05mol以上とすることがより好ましい。RAFT剤1molに対するラジカル重合開始剤の使用量は、0.01~0.5molが好ましく、0.05~0.2molがより好ましい。
 重合反応は、リビングラジカル重合において公知の重合溶媒を用い、溶媒中で行うことが好ましい。使用する重合溶媒は、単量体を溶解可能な有機溶媒が好ましく、例えば、ベンゼン、トルエン、キシレン及びアニソール等の芳香族化合物;酢酸メチル、酢酸プロピル及び酢酸ブチル等のエステル化合物;アセトン、メチルエチルケトン及びシクロヘキサノン等のケトン化合物、等が挙げられる。なお、重合溶媒は、1種が単独で使用されてもよく、2種以上が組み合わされて使用されてもよい。また、親水性モノマーを使用する場合には、重合溶媒としてアルコール、水等を使用することができる。重合溶媒の使用量は、反応に使用する単量体の合計量100質量部に対して、5~200質量部となる量が好ましく、10~100質量部となる量がより好ましい。重合溶媒の使用量を100質量部以下とすると、短時間で高い重合率とすることができる点で好ましい。
 RAFT法による重合反応において、反応温度は、好ましくは40℃以上100℃以下であり、より好ましくは45℃以上90℃以下であり、更に好ましくは50℃以上80℃以下である。反応温度が40℃以上であると、重合反応を円滑に進めることができる点で好ましく、反応温度が100℃以下であると、副反応を抑制できるとともに、使用できる開始剤や溶剤に関する制限が緩和される点で好ましい。また、反応時間は、使用する単量体等に応じて適宜設定され得るが、1時間以上48時間以下であることが好ましく、2時間以上24時間以下であることがより好ましい。重合反応は、必要に応じて、例えば炭素数2~20のアルキルチオール化合物等の連鎖移動剤の存在下で実施してもよい。上記重合によりビニル系重合体(P)を含む重合体溶液を得た場合、この重合体溶液に対して公知の脱溶媒処理を行うことによりビニル系重合体(P)を単離することができる。
 得られたビニル系重合体(P)につき、ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の数平均分子量(Mn)は、2,000~1,000,000の範囲であることが好ましい。Mnが2,000以上あると、所望とする特性をビニル系重合体(P)に発現させることが可能となる点で好ましい。また、Mnが1,000,000以下であると、塗工性等の加工性及び取扱い性を十分に確保できる点で好ましい。ビニル系重合体(P)のMnは、より好ましくは5,000以上であり、更に好ましくは8,000以上であり、特に好ましくは10,000以上である。ビニル系重合体(P)のMnの上限については、より好ましくは800,000以下であり、更に好ましくは700,000以下であり、より更に好ましくは600,000以下であり、特に好ましくは500,000以下である。ビニル系重合体(P)のMnの好ましい範囲は、既述の上限及び下限を適宜組み合わせることにより定めることができる。ビニル系重合体(P)のMnは、より好ましくは5,000~800,000であり、更に好ましくは8,000~700,000であり、より更に好ましくは10,000~600,000である。
 ビニル系重合体(P)のGPCにより測定したポリスチレン換算の重量平均分子量(Mw)は、2,000~1,000,000の範囲であることが好ましい。ビニル系重合体(P)のMwは、より好ましくは5,000以上であり、更に好ましくは8,000以上であり、特に好ましくは10,000以上である。ビニル系重合体(P)のMwの上限については、より好ましくは800,000以下であり、更に好ましくは700,000以下であり、より更に好ましくは600,000以下であり、特に好ましくは500,000以下である。ビニル系重合体(P)のMwの範囲は、より好ましくは5,000~800,000であり、更に好ましくは8,000~700,000であり、より更に好ましくは10,000~600,000である。
 ビニル系重合体(P)の分子量分布(Mw/Mn)は、耐熱性をより優れたものとする観点から、3.0以下であることが好ましい。分子量分布(Mw/Mn)は、より好ましくは2.5以下であり、更に好ましくは2.0以下である。分子量分布(Mw/Mn)の下限は特に限定されないが、製造容易性の観点から、例えば1.01以上である。
 本製造方法により得られるビニル系重合体(P)は、幅広い用途において使用することができる。具体的には、例えば、分散剤、工業用ゴム、バインダー、粘接着剤、塗料、コーティング剤、界面活性剤等の種々の用途に適用することができる。また、適用分野としては、自動車部品、家電・OA機器部品、医療用機器部品、包装用資材、土木建築用資材、電線、雑貨等が挙げられる。
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、以下において「部」及び「%」は、特に断らない限り「質量部」及び「質量%」をそれぞれ意味する。
 重合体の分子量測定方法は以下の通りである。
<分子量測定>
 得られたビニル系重合体について、以下の条件にてゲルパーミエーションクロマトグラフィー(GPC)測定を行い、ポリスチレン換算による数平均分子量(Mn)及び重量平均分子量(Mw)を得た。また、得られたMn及びMwの値から分子量分布(Mw/Mn)を算出した。
○測定条件
 カラム:東ソー製TSKgel SuperMultiporeHZ-M×4本
 溶媒:テトラヒドロフラン
 温度:40℃
 検出器:RI
 流速:600μL/min
 実施例及び比較例におけるビニル系重合体の評価方法は以下の通りである。
<ビニル系重合体に含まれる不純物の同定>
 ビニル系重合体に含まれる不純物は、以下に示す方法により同定した。まず、以下の条件でGPC分取を行い、得られた高分子量側のフラクションを濃縮した。
○GPC分取条件
 カラム:島津製作所製Shim-pack GPC-2001C×1本+Shim-pack GPC-20025C×1本 (20mmID×30cm)
 溶媒:クロロホルム
 温度:40℃
 検出器:RI
 流速:3.0mL/min
 次に、得られた濃縮物のH-NMR測定を行い、ラウリル基の末端メチル基由来のプロトンピーク(下記式中の(A)、0.9ppm)、チオカルボニルチオ基の隣の重合鎖炭素上のプロトンピーク(下記式中の(B)、4.9ppm)、及びベンゼン環由来のプロトンピーク(下記式中の(C)、7.2ppm)の各積分値から、ビニル系重合体に含まれる不純物を同定した。すなわち、高分子量側のフラクションの濃縮物(不純物)が下記の重合体(1)の構造であれば、(A)/(B)/(C)の積分値の比は6/2/4となり、重合体(2)の構造であれば、(A)/(B)/(C)の比は6/4/8となる。
Figure JPOXMLDOC01-appb-C000008
(式中、nは整数である。)
<ビニル系重合体における重合体(2)の含有量>
 得られたビニル系重合体の上記分子量測定におけるGPC測定結果より、LogMに対してピーク強度がプロットされたGPCチャートを得た。ピーク開始点をA、ピーク終了点をBとし、高分子量側のピークと低分子量側のピークを垂直分割(このときの各LogMをXとする)した。各LogMに対するピーク強度Y及び分子量Mから、下記数式より、ビニル系重合体中のビニル系重合体(2)の含有量(mol%)を算出した。下記数式中、分母は、ピーク開始点Aと終了点B間ピークの分子数を表し、分子は、高分子量ピークの分子数を表す。
Figure JPOXMLDOC01-appb-M000009
<耐熱性>
 得られたビニル系重合体30mlをスクリュー管瓶に入れ、170℃の防爆型乾燥機に投入し、500時間経過後に試料を取り出した。GPC測定より重量平均分子量を求め、下記数式により算出される重量平均分子量の変化率により耐熱性を評価した。変化率の値が1.0に近いほど、耐熱性に優れているといえる。
変化率=〔熱負荷の付与開始から500時間経過後のMw〕/〔熱負荷付与前のMw〕
[合成例1](RAFT剤1の合成)
 ナス型フラスコに1-ドデカンチオール(42.2g)、20%KOH水溶液(63.8g)、トリオクチルメチルアンモニウムクロリド(1.5g)を加えて氷浴で冷却し、二硫化炭素(15.9g)、テトラヒドロフラン(以下「THF」ともいう)(38ml)を加え20分攪拌した。α、α’-ジクロロ-p-キシレン(16.6g)のTHF溶液(170ml)を30分かけて滴下した。室温で1時間反応させた後、クロロホルムから抽出し、純水で洗浄、無水硫酸ナトリウムで乾燥し、ロータリーエバポレータで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製した。得られた化合物(RAFT剤1)をLC/MS測定により同定した結果、下記の構造式(1)の化合物と構造式(2)の化合物との混合物であることが分かった。
Figure JPOXMLDOC01-appb-C000010
 H-NMR測定より、RAFT剤1中の構造式(1)の化合物及び構造式(2)の化合物の定量を行った。具体的には、ベンゼン環に由来するプロトンピーク(構造式(1)及び構造式(2)中の(a)、7.2ppm)の積分値、及びメチレン基に由来するプロトンピーク(構造式(1)及び構造式(2)中の(b)、3.4ppm)の積分値につき、(a)の積分値を1に規格化し、(a)の積分値を1に規格化した場合の(b)の積分値を用いることにより計算した。RAFT剤1のH-NMR測定より得られた各プロトンピークの積分値の比は、(a)/(b)=1/0.85であった。
 また、RAFT剤1における構造式(1)の化合物のmol割合をα、構造式(2)の化合物のmol割合をβとすると、下記数式(6)及び数式(7)が成立する。
α+β=1 …(6)
α+0.5β=0.85 …(7)
なお、数式(6)は、1に規格化した(a)の積分値を表し、数式(7)は、(a)の積分値を1に規格化したときの(b)の積分値を表す。この連立方程式を解いてα、βを求めることにより、構造式(2)の化合物の含有量は30mol%と算出された。
[精製例1](RAFT剤2の調製)
 上記合成例1と同じ操作にて得られた生成物(RAFT剤1)に対し30ml/gの量となるよう酢酸エチルを加え、60℃に加熱し、生成物を完全に溶解した後、室温で一晩静置することで再結晶による精製を行い、構造式(2)の化合物の含有量が15mol%のRAFT剤2を得た。
[精製例2](RAFT剤3の調製)
 精製例1と同様の操作で、RAFT剤2を酢酸エチルから再結晶を1回行うことで、構造式(2)の化合物の含有量が10mol%のRAFT剤3を得た。
[精製例3](RAFT剤4の調製)
 精製例1と同様の操作で、RAFT剤3を酢酸エチルから再結晶を1回行うことで、構造式(2)の化合物の含有量が6.0mol%のRAFT剤4を得た。
[製造例1](ビニル系重合体Iの製造)
 攪拌機、温度計を装着した1LフラスコにRAFT剤4(2.15g)、2,2’-アゾビス(2-メチルブチロニトリル)(以下「ABN-E」ともいう)(0.13g)、アクリル酸n-ブチル(以下「BA」ともいう)(417.7g)及びアニソール(280.0g)を仕込み、窒素バブリングで十分脱気し、70℃の恒温槽で重合を開始した。4時間後、室温まで冷却し反応を停止した。上記重合溶液を、メタノールから再沈殿精製、真空乾燥することでビニル系重合体Iを得た。得られたビニル系重合体Iの分子量は、GPC測定(ポリスチレン換算)より、Mn68,000、Mw76,000、Mw/Mn1.12であった。
 また、ビニル系重合体Iに含まれる不純物を上記の方法により同定したところ、高分子フラクションの濃縮物の(A)/(B)/(C)の積分値の比は6/4/8であった。この結果から、不純物は重合体(2)の構造を有することが分かった。更に、ビニル系重合体I中の重合体(2)の含有量を計算したところ、重合体(1)及び重合体(2)の合計量100mol%に対して5.0mol%と算出された。
[製造例2及び比較製造例1、2](ビニル系重合体II,III,IVの製造)
 RAFT剤4を、それぞれRAFT剤3,2,1に変更した以外は、製造例1と同様の操作を行い、ビニル系重合体II,III,IVを得た。各ビニル系重合体の分子量及びビニル系重合体中の重合体(2)の含有量を表1に示した。
Figure JPOXMLDOC01-appb-T000011
 表1に示された化合物の詳細は以下の通りである。
BA:アクリル酸n-ブチル
ABN-E:2,2’-アゾビス(2-メチルブチロニトリル)
[実施例1、2及び比較例1、2]
 各製造例にて得られたビニル系重合体I,II,III,IVの耐熱性を評価した。その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000012
 評価結果から明らかなように、重合体(1)及び重合体(2)の合計量100mol%に対して、重合体(2)の含有量が10mol%以下であるビニル系重合体I,IIは、170℃、500時間の高温条件下における耐熱性に優れていた。これに対して、重合体(2)の含有量が10mol%超であるビニル系重合体III,IVは、ビニル系重合体I,IIよりも耐熱性に劣っていた。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (4)

  1.  下記式(1)で表される重合体(P1)と、下記式(2)で表される重合体(P2)とを含み、
     前記重合体(P1)及び前記重合体(P2)の合計量に対して、前記重合体(P2)の含有量が10mol%以下である、ビニル系重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)及び式(2)中、R及びRは、それぞれ独立して、水素原子、塩素原子、アルキル基、アリール基、アラルキル基、ヘテロシクリル基、アルコキシ基、アルキルチオ基、ジアルコキシホスフィノ基、アルコキシカルボニル基、「-O-Ar」、「-S-Ar」又は「-NR」を示し(ただし、Arはアリール基又はアラルキル基を示し、R及びRは、それぞれ独立して1価の炭化水素基を示す)、炭素原子に結合する任意の水素原子が置換されていてもよい。Rは、置換又は無置換の2価の芳香族炭化水素基を示す。Aは、ビニル単量体に由来する構造単位を有する重合鎖を示す。)
  2.  前記R及び前記Rのうち少なくとも一方は、置換又は無置換のアルキルチオ基である、請求項1に記載のビニル系重合体。
  3.  前記ビニル単量体は、(メタ)アクリル系化合物を含む、請求項1又は2に記載のビニル系重合体。
  4.  ビニル系重合体をリビングラジカル重合法により製造する方法であって、
     下記式(3)で表される化合物(R1)と、下記式(4)で表される化合物(R2)とを含むRAFT剤を用いて、ビニル単量体を重合する工程を含み、
     前記RAFT剤における前記化合物(R2)の含有量が、前記化合物(R1)及び前記化合物(R2)の合計量に対して10mol%以下である、ビニル系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(3)及び式(4)中、R及びRは、それぞれ独立して、水素原子、塩素原子、アルキル基、アリール基、アラルキル基、ヘテロシクリル基、アルコキシ基、アルキルチオ基、ジアルコキシホスフィノ基、アルコキシカルボニル基、「-O-Ar」、「-S-Ar」又は「-NR」を示し(ただし、Arはアリール基又はアラルキル基であり、R及びRは、それぞれ独立して1価の炭化水素基である)、炭素原子に結合する任意の水素原子が置換されていてもよい。Rは、置換又は無置換の2価の芳香族炭化水素基を示す。)
PCT/JP2021/028600 2020-08-07 2021-08-02 ビニル系重合体及びその製造方法 WO2022030440A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022541530A JPWO2022030440A1 (ja) 2020-08-07 2021-08-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020134917 2020-08-07
JP2020-134917 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022030440A1 true WO2022030440A1 (ja) 2022-02-10

Family

ID=80117991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028600 WO2022030440A1 (ja) 2020-08-07 2021-08-02 ビニル系重合体及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2022030440A1 (ja)
WO (1) WO2022030440A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050096440A1 (en) * 2003-10-31 2005-05-05 Yih-Hsing Lo Chain transfer reagent, free radical polymerization employing the same and resulting polymers
JP2011518347A (ja) * 2008-03-17 2011-06-23 ボーシュ アンド ローム インコーポレイティド 両親媒性マルチブロックコポリマーを含むレンズ
JP2013057058A (ja) * 2011-08-15 2013-03-28 Kawamura Institute Of Chemical Research ブロック共重合体
WO2019208386A1 (ja) * 2018-04-27 2019-10-31 東亞合成株式会社 硬化性樹脂組成物、並びに、ブロック共重合体及びその製造方法
WO2020153024A1 (ja) * 2019-01-24 2020-07-30 東亞合成株式会社 末端官能基化ポリマーの製造方法、硬化性樹脂組成物の製造方法、及び硬化物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050096440A1 (en) * 2003-10-31 2005-05-05 Yih-Hsing Lo Chain transfer reagent, free radical polymerization employing the same and resulting polymers
JP2011518347A (ja) * 2008-03-17 2011-06-23 ボーシュ アンド ローム インコーポレイティド 両親媒性マルチブロックコポリマーを含むレンズ
JP2013057058A (ja) * 2011-08-15 2013-03-28 Kawamura Institute Of Chemical Research ブロック共重合体
WO2019208386A1 (ja) * 2018-04-27 2019-10-31 東亞合成株式会社 硬化性樹脂組成物、並びに、ブロック共重合体及びその製造方法
WO2020153024A1 (ja) * 2019-01-24 2020-07-30 東亞合成株式会社 末端官能基化ポリマーの製造方法、硬化性樹脂組成物の製造方法、及び硬化物の製造方法

Also Published As

Publication number Publication date
JPWO2022030440A1 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
Lai et al. Controlled radical polymerization by carboxyl‐and hydroxyl‐terminated dithiocarbamates and xanthates
EP3239192B1 (en) Novel bromine-containing polymers and methods for producing the same
CN110312775B (zh) 粘合剂组合物及其制造方法
JP7131007B2 (ja) 重合体組成物
WO2022030440A1 (ja) ビニル系重合体及びその製造方法
WO2015163321A1 (ja) ブロックポリマ
WO2015162609A1 (en) Process for the polymerization of pentabromobenzyl (meth) acrylate, the polymer obtained and uses thereof
JP6863456B2 (ja) 2−シアノアクリレート系接着剤組成物
US5136006A (en) Carbodiimide compounds, polymers containing same and coating compositions containing said polymers
CN106661304B (zh) 热板非接触熔接用甲基丙烯酸系树脂组合物、成型体及其制造方法
JP6193094B2 (ja) 熱可塑性樹脂の製造方法
WO2021095739A1 (ja) 重合体微粒子の製造方法及び分散安定剤
JP2017500412A (ja) アクリレート単量体をベースとする短鎖マクロ分子の製造方法
JP4083959B2 (ja) 樹脂組成物、これから得られる成形体、シート又はフィルムおよび光学用レンズ
Jana et al. Cyclic‐Amine‐Based Dithiocarbamate Chain Transfer Agents for the RAFT Polymerization of Less Activated Monomers
US6720429B2 (en) Thiocarbonylthio compound and living free radical polymerization using the same
JP7354335B2 (ja) 重合体粒子
JP2014141611A (ja) 主鎖に環構造を有するグラフトポリマーおよびその製法
JPH0848725A (ja) 耐熱性に優れた光学材料用高屈折率樹脂
JP3891177B2 (ja) 疑似架橋型樹脂組成物、これから得られる成形材、シート又はフィルム及び光学用部品
Shukla Synthesis, kinetics and characterization of environment friendly waterborne acrylate copolymers
WO2023195378A1 (ja) 連鎖移動剤、重合体の製造方法、重合体、粘着剤組成物、及び重合体粒子
JP4688697B2 (ja) ジチオエステル誘導体及び連鎖移動剤並びにこれを用いたラジカル重合性重合体の製造方法
JP2006117942A (ja) 疑似架橋型樹脂組成物、これから得られる成形材、シート又はフィルムおよび光学用部品
Bindushree et al. p-cumylphenyl methacrylate: Synthesis, polymerization, and copolymerization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21854471

Country of ref document: EP

Kind code of ref document: A1