WO2018116904A1 - 細胞培養基材 - Google Patents

細胞培養基材 Download PDF

Info

Publication number
WO2018116904A1
WO2018116904A1 PCT/JP2017/044508 JP2017044508W WO2018116904A1 WO 2018116904 A1 WO2018116904 A1 WO 2018116904A1 JP 2017044508 W JP2017044508 W JP 2017044508W WO 2018116904 A1 WO2018116904 A1 WO 2018116904A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
culture substrate
block polymer
cells
substrate
Prior art date
Application number
PCT/JP2017/044508
Other languages
English (en)
French (fr)
Inventor
大英 中熊
高田 哲生
綾子 一色
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62626609&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018116904(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020197014082A priority Critical patent/KR102469649B1/ko
Priority to CN201780079653.5A priority patent/CN110121552A/zh
Priority to EP17883177.2A priority patent/EP3561043A4/en
Priority to JP2018535906A priority patent/JP6451023B2/ja
Priority to US16/467,520 priority patent/US11441120B2/en
Publication of WO2018116904A1 publication Critical patent/WO2018116904A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/387Esters containing sulfur and containing nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2539/00Supports and/or coatings for cell culture characterised by properties
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a cell culture substrate.
  • Human pluripotent stem cells such as human iPS cells and ES cells have been attracting attention because of their pathological elucidation, new drug development, and potential applications in regenerative medicine.
  • human pluripotent stem cells In order to use human pluripotent stem cells, it is necessary to culture them stably and safely, and after collecting the cultured cells, it is necessary to apply them to drug discovery and medicine.
  • the low culture rate of human pluripotent stem cells has been a problem.
  • a culture method using feeder cells has been tried. However, it is not safe because the used feeder cells are contaminated.
  • Patent Document 1 discloses that human pluripotent stem cells can be cultured even without feeder cells by applying laminin and laminin fragments, which are extracellular matrices, on a cell culture substrate. Has been reported.
  • the collection of cultured cells is not mentioned, and a problem remains in that the cultured cells are used.
  • the cells cultured by the above method have strong adhesion to the extracellular matrix, the cells are recovered by a method of physically scraping the cells with a cell scraper (rubber or resin spatula) after enzymatic treatment.
  • a cell scraper rubber or resin spatula
  • Patent Document 2 discloses a cell culture substrate that can withstand a dry state by coating a protein other than laminin. However, although this can be cultured, the problem of collecting cultured cells has not been solved. .
  • An object of the present invention is to provide a cell culture substrate capable of culturing human pluripotent stem cells with high efficiency and capable of separating and recovering the cultured cells while maintaining a high survival rate. There is to do.
  • a further object is to provide a cell culture substrate that can be detached and can withstand a dry state.
  • the cell culture substrate contains a block polymer of a segment having a lower critical solution temperature and a hydrophobic segment, the cell culture substrate further having an adhesion substrate, It has been found that the above problem can be solved by providing a cell culture substrate characterized in that the adhesion substrate is an extracellular matrix and / or an adhesion synthetic substrate.
  • a cell culture substrate whose extracellular matrix is at least one selected from laminin, fibronectin, vitronectin, cadherin and fragments thereof, or an adhesive synthetic temperament is poly [2- (methacryloyloxy) ethyl dimethyl- (3- (sulfopropyl), ammonium hydroxide] or an oligopeptide-supporting polymer.
  • a cell culture substrate in which the hydrophobic segment is obtained by polymerizing a monomer represented by the following formula (1).
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a phenyl group, a carboxyalkyl group having 1 to 8 alkyl carbon atoms, a carboxyaralkyl group having 7 to 8 aralkyl carbon atoms, It represents any one of the group represented by 2) and the group represented by the following formula (3).
  • n 2 or 3
  • R 3 represents an alkyl group having 1 to 3 carbon atoms.
  • R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and the total carbon number of R 4 and R 5 is 4 or more. .)
  • cell culture substrate that further contains at least one protein selected from gelatin, collagen and albumin on the cell culture substrate.
  • the cell culture substrate of the present invention can cultivate human pluripotent stem cells with high efficiency, and also allows cells after culture to be detached from the substrate with a high survival rate and recovered. Moreover, the base material which can be cultured even if it passes through a dry state and can peel is disclosed.
  • the present invention relates to a cell culture substrate containing a block polymer of a segment having a lower critical solution temperature and a hydrophobic segment, the cell culture substrate further comprising an adhesion substrate, and the adhesion substrate is extracellular.
  • the present invention provides a cell culture substrate characterized by being a matrix and / or an adhesive synthetic substrate.
  • the segment having the lower critical solution temperature in the present invention is a segment in the block polymer, and the segment is a segment composed of a polymer that dissolves in water when the temperature is lower than a certain temperature.
  • the segment having the lower critical solution temperature in the present invention is a polymer that dissolves in water when the temperature falls below a certain temperature as described below.
  • Examples of the polymer having the lower critical solution temperature include the following 1) and 2). 1) A polymer obtained by polymerizing a monomer in which a homopolymer has a lower critical solution temperature. 2) Copolymer of hydrophobic monomer and hydrophilic monomer
  • Monomers having a lower critical solution temperature for homopolymers include, for example, N-isopropyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-cyclopropyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, N -Tetrahydrofurfuryl (meth) acrylamide, N-ethylacrylamide, N-ethyl-N-methylacrylamide, N, N-diethylacrylamide, N-methyl-Nn-propylacrylamide, N-methyl-N-isopropylacrylamide, Examples are N-acryloylpiperidine and N-acryloylpyrrolidine. These monomers may be used alone or in combination of two or more.
  • the segment obtained by polymerizing the monomer having the lower critical solution temperature of the homopolymer (1) can easily produce a polymer having the lower critical solution temperature.
  • these monomers have low adhesion to the plastic surface, and there is a problem that the applied polymer layer is easy to peel off when exposed to water.
  • the cell culture substrate of the present application has a hydrophobic segment. Therefore, the culture substrate can be used without peeling off.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 3 carbon atoms
  • R 3 represents an alkyl group having 1 to 2 carbon atoms.
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents an alkylene group having 2 to 3 carbon atoms.
  • n an integer of 2 to 20.
  • hydrophilic amide monomer (b) examples include dimethylacrylamide, acrylamide, methylacrylamide, and ethylacrylamide.
  • the hydrophobized monomer is a monomer that is water-soluble at the time of monomer but becomes insoluble in an aqueous solvent upon polymerization. When such a monomer is contained in the copolymer, it can be used as a cell culture substrate that is excellent in water resistance and hardly peeled off from the support.
  • the hydrophobic monomer the compound represented by the above formula (1), as the hydrophobic monomer, the compound represented by the above formula (1), diacetone acrylic amide, (meth) acrylic acid polypropylene glycol, Examples thereof include methoxydiethylene glycol acrylate and methoxytriethylene glycol acrylate. These may be used alone or in combination.
  • 2 methoxyethyl acrylate, 2 ethoxyethyl acrylate, and 3 methoxypropyl acrylate are preferable, and 2 methoxyethyl acrylate and 2 ethoxyethyl acrylate are particularly preferable.
  • the lower critical solution temperature of the obtained copolymer segment can be widely controlled by the type and ratio of the monomer. It is preferable because the cells can be cultured with different cell types and ratios and better cell adhesion and proliferation. For example, as the ratio of the monomer (b, c, or d) is increased with respect to the monomer (a), the lower critical solution temperature of the resulting copolymer shifts to the higher temperature side. This ratio and the lower critical solution temperature are in a substantially linear relationship. Since the cell culture temperature is usually 37 ° C., it is preferable to prepare so that the lower critical solution temperature of the obtained copolymer is about 20 to 32 ° C.
  • the segment having the lower critical solution temperature in the present invention includes a monomer not included in the group consisting of a monomer having a lower critical solution temperature, a hydrophilic monomer, and a hydrophobic monomer within the range having the lower critical solution temperature. Can be contained.
  • the polymerization degree of the segment having the lower critical solution temperature is preferably 400 to 10,000. This is because when it is 400 or more, the cell detachability is better, and when it is less than 10,000, it is easier to synthesize the block polymer.
  • the preferred polymerization is 1000 to 8000. Within this range, the balance between cell detachability and culture efficiency is excellent. Particularly preferred is 3000-6000.
  • the block polymer of the present invention is characterized by having a hydrophobic segment.
  • “hydrophobic” in the segment of the block polymer means that the polymer composed of the segment has a solubility in water at 25 ° C. of less than 0.5 g / 100 mL.
  • the hydrophobic segment includes at least a monomer unit of a hydrophobic monomer. Since the block polymer of the present invention has a hydrophobic segment, even if it has a segment having a lower critical solution temperature that is inferior in water resistance, the block polymer has excellent water resistance and excellent adhesion to a support.
  • the hydrophobic monomer is not particularly limited as long as it is a monomer that becomes hydrophobized after polymerization, and preferably includes monomers represented by the following formulas (1) to (3). In addition, these hydrophobic monomers may be used independently or may be used in combination of 2 or more type.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a phenyl group, a carboxyalkyl group having 1 to 8 alkyl carbon atoms, a carboxyaralkyl group having 7 to 8 aralkyl carbon atoms, It represents any one of the group represented by 2) and the group represented by the following formula (3).
  • n 2 or 3
  • R 3 represents an alkyl group having 1 to 3 carbon atoms.
  • R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and the total carbon number of R 4 and R 5 is 5 or more. .)
  • the monomer represented by the above formula (1) is preferable because the obtained polymer segment is hydrophobic and is excellent in water resistance and support adhesion of the cell culture substrate.
  • ethyl acrylate, butyl acrylate, and styrene are preferable, and butyl acrylate is particularly preferable.
  • the degree of polymerization of the hydrophobic segment is preferably 50-1000. When it is 50 or more, the water resistance becomes better, and when it is less than 1000, the cell detachability becomes better.
  • the block polymer of the present invention is a polymer having a segment having the lower critical solution temperature and a hydrophobic segment.
  • the block polymer of the present invention may be an AB diblock type, or an ABA or BAB triblock type polymer having a larger number of segments. It doesn't matter.
  • the diblock type or triblock type is preferable, and the diblock type is particularly preferable.
  • the molecular weight of the block polymer is preferably 50,000 to 1,000,000, more preferably 70,000 to 900,000, and even more preferably 400,000 to 800,000 in terms of weight average molecular weight (Mw).
  • Mw weight average molecular weight
  • a weight average molecular weight of 50,000 or more is preferable because of high cell detachability, and a weight average molecular weight of 1,000,000 or less is preferable because of easy handling.
  • the production method of the block polymer is not particularly limited, and a known method can be adopted. Of these, precision radical polymerization is preferable, and reversible addition-fragmentation chain transfer (RAFT) polymerization, atom transfer radical polymerization (ATRP), and nitroxide-mediated polymerization (NMP) are more preferable, and RAFT polymerization is preferable. Is more preferable.
  • precision radical polymerization is preferable, and reversible addition-fragmentation chain transfer (RAFT) polymerization, atom transfer radical polymerization (ATRP), and nitroxide-mediated polymerization (NMP) are more preferable, and RAFT polymerization is preferable. Is more preferable.
  • a preferable method for forming the cell culture substrate of the present invention includes a method of applying the coating agent containing the block polymer of the present invention on the above-mentioned support.
  • the coating agent includes a block polymer and a solvent. In addition, additives and the like may be included as necessary.
  • the block polymer Since the above-mentioned block polymer is used, the description thereof is omitted here.
  • the block polymer may contain only 1 type and may contain 2 or more types of block polymers which have a different structure.
  • the content of the block polymer is preferably 0.01 to 90% by mass and more preferably 0.1 to 50% by mass with respect to the total mass of the coating agent. It is preferable that the content of the block polymer is 0.01% by mass or more because the obtained coating film easily exhibits surface hydrophilicity. On the other hand, when the content of the block polymer is 90% by mass or less, the viscosity is low, which is preferable because the coating suitability is enhanced.
  • the solvent that can be contained in the coating agent is not particularly limited, and known solvents can be used.
  • the solvent include water or an organic solvent.
  • the organic solvent include alcohol solvents such as methanol, ethanol, isopropyl alcohol, butanol, sec-butanol, iso-butanol and tert-butanol; ether solvents such as tetrahydrofuran and 1,4-dioxane; cyclohexanone and methyl isobutyl ketone.
  • Ketone solvents such as acetonitrile; nitrile solvents such as acetonitrile; amide solvents such as dimethylformamide and dimethylacetamide; dimethyl sulfoxide; dioxirane; pyrrolidone and the like.
  • an alcohol solvent is preferably used, and methanol, ethanol, propanol, isopropyl alcohol, and tert-butanol are more preferably used.
  • the solvent is preferably water or an alcohol solvent, and more preferably methanol, ethanol, propanol, isopropyl alcohol, or tert-butanol.
  • the above-mentioned solvents may be used alone or in combination of two or more.
  • the content of the solvent in the coating agent is preferably 10 to 99.99% by mass, more preferably 50 to 99.9% by mass, and more preferably 80 to 99.9% by mass with respect to the total mass of the coating agent. More preferably, it is 5 mass%.
  • the solvent content is 10% by mass or more, the viscosity of the coating agent solution is lowered, and therefore, it is preferable from the viewpoint of excellent coating suitability.
  • the content of the solvent is 99.99% by mass or less, the thickness of the coated film after coating is preferably not too thin.
  • the coating agent may contain an additive depending on the purpose of use.
  • the additive is not particularly limited, and known ones can be used. Specifically, excipients, Surfactants, plasticizers, antifoaming agents, pigments, antioxidants, antibiotics, ultraviolet absorbers, crystal nucleating agents, crystallization accelerators, stabilizers, antibacterial agents and the like can be mentioned. These additives may be used alone or in combination of two or more.
  • the method for applying the coating agent is not particularly limited, and examples thereof include spray coating, flow coating, and dipping. Moreover, when a base material is tube shape, the method etc. which let a coating agent flow are mentioned. At this time, after the liquid is passed, the solvent is usually passed to remove excess coating agent inside the tube.
  • the drying conditions are not particularly limited, and may be natural drying or heat drying.
  • the drying temperature in the case of heat drying varies depending on the coating agent used, but is preferably 30 to 70 ° C, more preferably 40 to 60 ° C.
  • a coating film in which a part of the solvent remains can be obtained.
  • the cell culture substrate of the present invention has an adhesive substrate in the substrate, thereby improving the culturing properties of human pluripotent stem cells.
  • the adhesion substrate include an extracellular matrix and an adhesive synthetic substrate.
  • the extracellular matrix examples include laminin, fibronectin, vitronectin, cadherin and fragments thereof. Preferred are laminin and vitronectin, and fragments thereof.
  • any animal-derived matrix can be used, but human and mouse-derived extracellular matrices are preferred. More preferably, it is produced as a recombinant protein.
  • Matrigel manufactured by Corning
  • Geltrex manufactured by Thermo Fisher Scientific
  • iMatrix-511 manufactured by Nippi
  • Laminin 521 manufactured by BioLamina
  • ROCK Ra-associated coiled-coil kinase
  • Y-27632 Wired Chemical Industries
  • Fasudil hydrochloride manufactured by Tokyo Chemical Industry Co., Ltd.
  • the adhesive synthetic substrate examples include poly [2- (methacryloyloxy) ethyl dimethyl- (3-sulfopropyl) ammonium hydride] (hereinafter abbreviated as PMEDSAH) or an oligopeptide-supporting polymer.
  • PMEDSAH poly [2- (methacryloyloxy) ethyl dimethyl- (3-sulfopropyl) ammonium hydride]
  • PMEDSAH poly [2- (methacryloyloxy) ethyl dimethyl- (3-sulfopropyl) ammonium hydride]
  • PMEDSAH poly [2- (methacryloyloxy) ethyl dimethyl- (3-sulfopropyl) ammonium hydride]
  • RGD arginine-glycine-aspartic acid
  • the adhesive substrate may be used for the substrate by any method.
  • the adhesive substrate may be mixed in the substrate or applied.
  • an adhesive substrate may be contained in a cell culture medium, and the medium may be brought into contact with the substrate simultaneously with the medium.
  • the adhesive substrate may be present uniformly or non-uniformly in the substrate. Preferably, it exists in the base-material surface.
  • the coating method may be applied by applying a known and commonly used solution of the bonding substrate, and may be applied by spray coating, spin coating, ink jet, or the like, or using a plate You can stamp it.
  • a method may be used in which the solution is poured onto a substrate and allowed to stand for a certain period of time, and then the solution is removed.
  • the amount applied is preferably 0.01 to 5 ⁇ g / cm 2 , more preferably 0.2 to 2 ⁇ g / cm 2 per area of the cell culture substrate. Particularly preferred is 5 to 1 ⁇ g / cm 2 .
  • gelatin, collagen or albumin may be present on the cell culture substrate in order to maintain the activity of the adhesion substrate and increase the cell culture efficiency.
  • Gelatin, collagen, or albumin may be mixed in a cell culture substrate or applied as in the case of the adhesion substrate. In the case of application, it is preferable to apply the adhesion substrate after first applying gelatin, collagen or albumin in terms of maintaining the activity of the adhesion substrate and cell culture efficiency. Further, gelatin, collagen, or albumin may be used alone or in combination of two or more.
  • the coating amount of collagen or albumin preferably 0.5 ⁇ 500 ⁇ g / cm 2, more preferably 5 ⁇ 200 ⁇ g / cm 2, particularly preferably 20 ⁇ 100 ⁇ g / cm 2.
  • the cell culture substrate of the present invention may be used alone, but is preferably formed on a support from the viewpoint of convenience such as transportation and storage. Particularly preferred is a method in which a cell culture substrate is laminated on a support to form a laminate.
  • the cell culture substrate of the present invention may have a formulation in addition to the block polymer, extracellular matrix, gelatin or collagen.
  • a formulation in addition to the block polymer, extracellular matrix, gelatin or collagen.
  • preservatives and antibacterial agents for example, preservatives and antibacterial agents, coloring agents, fragrances, enzymes, sugars, proteins, peptides, amino acids, cells, DNAs, salts, water-soluble organic solvents, surfactants, polymer compounds, leveling agents, etc. But it doesn't matter.
  • the shape of the cell culture substrate of the present invention is not particularly limited as long as cell culture can be performed and cultured cells can be easily detached by low-temperature treatment.
  • the shape of the cell culture substrate of the present invention is not particularly limited as long as cell culture can be performed and cultured cells can be easily detached by low-temperature treatment.
  • the cell culture substrate of the present invention may be used alone, but is preferably used as a cell culture device having a substrate formed on a support. This is because cell culture equipment is excellent in convenience of transportation and storage, and can be used as it is as a culture container or culture carrier.
  • the material of the support used in the present invention is not particularly limited as long as the culture substrate can be sufficiently adhered, cell culture can be performed on the adhered culture substrate, and the cultured cells can be easily detached by low-temperature treatment.
  • styrene resin such as polystyrene, polyolefin resin such as polypropylene, polyurethane resin, polycarbonate, polyethylene terephthalate (PET), polysulfone resin, fluorine resin, polysaccharide natural polymer such as cellulose, glass, Inorganic materials such as ceramics and metal materials such as stainless steel and titanium are preferably used.
  • the shape of the support is not particularly limited as long as it can be a support for the cell culture substrate of the present invention.
  • the shape may be a combination of these, or may be a support having an indefinite shape that does not have a specific shape.
  • the cell culture substrate of the present invention may be used as a cell culture device by being integrated with the support, or may be used alone after being peeled off from the support.
  • the cell culture substrate of the present invention can suitably culture various cells, particularly animal cells.
  • Animal cells may be derived from animals, and examples thereof include humans, mice, monkeys, etc., and may be artificial cells.
  • epithelial cells such as corneal epithelial cells
  • endothelial cells such as human umbilical vein endothelial cells
  • fibroblasts such as human skin fibroblasts, mouse fibroblasts
  • blood cells Contractile cells (skeletal muscle cells, cardiomyocytes, etc.), blood and immune cells (erythrocytes, macrophages, etc.), neurons (neurons, glial cells, etc.), pigment cells (retinal pigment cells, etc.), hepatocytes, chondrocytes, bones
  • blast cells and stem cells ES cells, iPS cells, hematopoietic stem cells, skin stem cells, germ stem cells, EC cells, EG cells, neural stem cells).
  • the cell culture substrate of the present invention can culture human pluripotent stem cells even after being dried. Therefore, since it can withstand long-term storage and transportation, the industrial applicability is very high.
  • a cell culture substrate may be laminated on a support described later and then dried.
  • room temperature drying (18 to 30 ° C., humidity 20% to 60% RH), heat drying (30 to 37 ° C.), drying with a constant temperature dryer or desiccator and the like can be mentioned. From the viewpoint of preventing protein denaturation, room temperature drying is preferred.
  • the film thickness of the cell culture substrate during drying is preferably 1000 nm or less, and more preferably 500 nm or less. This is because cell culture properties are good when the thickness is 1000 nm or less.
  • Cell culture method As a culture method, a known and commonly used method may be used. For example, a predetermined amount of a medium or a culture reagent is put on a culture substrate formed on the bottom surface of a dish-like container, cells are seeded, and a predetermined temperature and CO 2 are inoculated.
  • the culture may be carried out under a concentration condition, or the culture substrate formed into a filamentous shape or a spherical shape may be placed in a commercially available polystyrene container containing a medium, and the cells may be seeded and cultured. In the latter case, the cells do not adhere to the polystyrene container but grow on the surface of the filamentous or spherical culture substrate.
  • the cells proliferate in the length direction of the yarn, so that the cells can be cultured in a controlled shape.
  • a spherical culture substrate when used, there is an advantage that a larger surface area and a larger number of cells can be cultured compared to a normal dish-like container.
  • the method of peeling the cultured cells from the base material is not particularly limited.
  • the medium at 37 ° C. is replaced with a medium at a predetermined temperature (6 ° C. to 30 ° C.), and then the predetermined temperature (6 ° C.-30 ° (° C) and wait for spontaneous detachment of the cells, or “pipetting” operation that gently shakes the culture vessel or sucks and removes the medium with a pipette. Stimulation may be applied to detach the cells.
  • Cell peeling method (enzymatic method)
  • an exfoliation method by enzyme treatment may be used.
  • the type of proteolytic enzyme to be used may be appropriately selected depending on the type of cell. Examples include trypsin, trypsin / EDTA, TrypLE Select (Thermo Fisher Scientific). What is necessary is just to adjust process temperature and time suitably with the kind of cell, and adhesive strength with a base material. For example, after completion of the culture, the culture is removed, the cells are washed with a buffer or the like, an enzyme solution is added, and the mixture is allowed to stand at 37 ° C. for a certain period of time. And a method of detaching cells by standing or “pipetting” operation. Of course, the cells may be detached by combining the low-temperature treatment and the enzyme use.
  • the GPC measurement method is as follows. Equipment: HLC-8220GPC (manufactured by Tosoh Corporation) Solvent: N, N-dimethylformamide (DMF) solution (containing 10 mmol / L LiBr) Column: TSK-gel ⁇ -M column (manufactured by Tosoh Corporation) 2 linked standards: PMMA standard (Shodex M-75)
  • NIPAM N-isopropylacrylamide
  • t-butanol a mixture of 1.68 g of N-isopropylacrylamide (hereinafter referred to as NIPAM, manufactured by KJ Chemical Co., Ltd.), 10.8 g of t-butanol, and 1.2 g of water was sufficiently bubbled with nitrogen, and then added to the above reaction solution. The mixture was stirred at 70 ° C. for 20 hours. After completion of the reaction, 22.9 g of methanol was added to the reaction solution to obtain an AB type temperature-responsive block polymer solution. When conversion of this block polymer was measured by NMR, conversion of butyl acrylate was 100%, and conversion of NIPAM was 100%.
  • NIPAM N-isopropylacrylamide
  • KJ Chemical Co., Ltd. a mixture of 10.53 g of N-isopropylacrylamide (hereinafter referred to as NIPAM, manufactured by KJ Chemical Co., Ltd.), 49.86 g of t-butanol, and 5.54 g of water was sufficiently bubbled with nitrogen, and then added to the above reaction solution. The mixture was stirred at 70 ° C. for 20 hours. After completion of the reaction, 66.7 g of methanol was added to the reaction solution to obtain an AB type temperature-responsive block polymer solution. When the conversion of this block polymer was measured by NMR, the conversion of butyl acrylate was 100%, and the conversion of NIPAM was 99%.
  • Synthesis Example 8 Synthesis of Block Polymer 8 1.45 g of MEA, 0.0156 g of 2- (dodecylthiocarbonothioylthio) propanoic acid as RAFT agent, 0.008 g of Dimethyl 2,2′-azobis (2-methylpropionate), 10.8 g of t-butanol and 1.2 g of water were sufficiently bubbled with nitrogen to remove oxygen, and then stirred at 70 ° C. for 7 hours to obtain a first reaction solution. The MEA conversion at this stage was 98%.
  • Synthetic styrene of block polymer 11 (hereinafter, St, manufactured by Wako Pure Chemical Industries, Ltd.) 5.79 g, 2- (dodecylthiocarbonothioylthio) propanoic acid 0.040 g as a RAFT agent, Dimethyl 2,2 ′ -Azobis (2-methylpropionate) 0.0122g was sufficiently bubbled with nitrogen to remove oxygen, and then stirred at 70 ° C for 7 hours to obtain a first reaction solution. The conversion of St at this stage was 40% and the calculated degree of polymerization was 200.
  • RAFT agent-containing polystyrene was reprecipitated in diisopropyl ether and then vacuum dried at 70 ° C. to remove the monomer. Thereafter, a mixture of 1 g of RAFT agent-containing polystyrene, 8.02 g of NIPAM, 45.2 ethyl acetate, dimethyl 2,2′-azobis (2-methylpropionate) 0.0122 g was sufficiently bubbled with nitrogen, Then, the mixture was further stirred at 70 ° C. for 20 hours to obtain an AB type temperature-responsive block polymer solution. When conversion of this block polymer was measured by NMR, conversion of NIPAM was 98%.
  • Example 1 Block polymer 1 was diluted with methanol to prepare a 0.5% solution, and 60 ul was added to a 35 mm polystyrene petri dish (35 mm / Tissue Culture Disc, manufactured by AGC Techno Glass). Then, the cell culture container 1 which laminated
  • Examples 2 to 13 In the same manner as in Example 1, cell culture vessels 2 to 13 in which cell culture substrates were laminated from block polymers 2 to 13 were prepared. Table 1 shows the results of performing laminin coating on the cell culture substrate by the method described later, and evaluating the iPS cell culturing property and the cell thermal detachability by the test method described later.
  • laminin trade name: iMatrix, manufactured by Nippi Co., Ltd.
  • the medium was exchanged at a 4 ° C. cooling medium, and allowed to stand at room temperature for 10 minutes, and then the “pipetting operation” in which the medium was sucked and taken out with a pipette was performed about 10 times to perform cell detachment.
  • the “Measurement of cell detachment rate and survival rate and cultureability” method the number of detached cells, the number of dead cells in the detached cells, and the total number of cultured cells are measured, and the equations (6) and (7 ) And (8), the peeling rate, the survival rate, and the cultureability were calculated.
  • cell detachment After culturing, cell detachment is performed by temperature control method or enzyme method, and the detached cell suspension is sucked into a special cassette for cell measurement and sucked in.
  • Cell counter NC-100 manufactured by MESTEKNO SYSTEMS CO., LTD.
  • 100 ⁇ L of the detached cells for each medium is transferred to a 1.5 ml tube, and 100 ⁇ l of Reagent A and Reagent B (manufactured by MESTEKNO SYSTEMS Co., Ltd.) are added and mixed by pipetting several times.
  • the solution is sucked up and sucked up with a new cassette, set in the cell counter NC-100, and the number of detached cells is counted.
  • an appropriate amount of Reagent A is added to the petri dish from which all the exfoliated cells have been removed after the exfoliation operation, and left to stand at room temperature (25 ° C.) for 10 minutes. Using a scraper (rubber spatula), the unexfoliated cells remaining in the petri dish are completely removed.
  • an appropriate amount of Reagent B is added, pipetted several times, mixed uniformly, set in the cell counter NC-100, and the number of undetached cells remaining in the petri dish is counted.
  • Cell detachment rate, survival rate, and cultureability are calculated from the following formulas (6), (7), and (8), respectively.
  • Peeling rate [number of peeled cells / (number of peeled cells + number of unpeeled cells)] ⁇ 100 ...
  • Survival rate (1 ⁇ number of dead cells in detached cells / number of detached cells) ⁇ 100 ...
  • Undifferentiated iPS cells are highly stained because they show high alkaline phosphatase activity. Conversely, differentiated cells do not show alkaline phosphatase activity and are not stained.
  • a “Leukocyte Alkaline Phosphatase Kit” manufactured by Sigma-Aldrich was used as a reagent. As an operation procedure, after completion of the culture, the medium in the petri dish is removed, a phosphate buffer is added, the cells are washed, and then the phosphate buffer is removed. Next, the fixative is added, and the mixture is prepared for about 1 minute.
  • the staining solution is added and the mixture is allowed to stand at room temperature (25 ° C.) for 1 hour. Remove the staining solution, wash with water, put the mounting medium, cover with a cover glass, and observe with a microscope. If it shows alkaline phosphatase activity (positive), it is stained red.
  • [Laminin coat] of Examples 14, 26 and 28 500 ⁇ L of laminin (trade name: iMatrix, manufactured by Nippi Co., Ltd.) aqueous solution having a concentration of 10 ⁇ g / mL is placed in the cell culture containers 14, 26, and 28 (corresponding to a coating amount of 0.5 ⁇ g / cm 2) and left at 37 ° C. for 1 hour. The aqueous solution was discarded and allowed to stand at room temperature 25 ° C. (relative humidity 35-55% RH) for 1 day to dry.
  • laminin trade name: iMatrix, manufactured by Nippi Co., Ltd.
  • [Laminin coat] of Example 15 500 ⁇ L of a laminin (trade name: iMatrix, manufactured by Nippi Co., Ltd.) aqueous solution having a concentration of 10 ⁇ g / mL is placed in the cell culture vessel 15 (corresponding to a coating amount of 0.5 ⁇ g / cm 2), and allowed to stand at 37 ° C. for 1 hour.
  • a coating amount of 0.5 ⁇ g / cm 2 aqueous solution having a concentration of 10 ⁇ g / mL
  • [Laminin coat] of Examples 27 and 29 In cell culture containers 27 and 29, 500 ⁇ L of laminin (trade name: iMatrix, manufactured by Nippi Co., Ltd.) aqueous solution having a concentration of 10 ⁇ g / mL was put (corresponding to a coating amount of 0.5 ⁇ g / cm 2), and allowed to stand at 37 ° C. for 1 hour. The aqueous solution was discarded, and the mixture was allowed to stand at room temperature 25 ° C. (relative humidity 35 to 55% RH) for 1 day to dry, and then allowed to stand at room temperature (25 ° C., 40% RH) for 6 days.
  • laminin trade name: iMatrix, manufactured by Nippi Co., Ltd.
  • Example 16 [Coating of laminin / gelatin mixed solution] 500 ⁇ L of an aqueous solution containing gelatin (made by Nitta Gelatin Co., Ltd.) having a concentration of 0.2 mg / ml and laminin having a concentration of 10 ⁇ g / mL is placed in the cell culture container 16 (corresponding to a gelatin coating amount of 10 ⁇ g / cm 2, a laminin coating amount of 0.1 ⁇ m). (Equivalent to 5 ⁇ g / cm 2) and 37 ° C. for 1 hour, the aqueous solution was discarded and dried at room temperature 25 ° C. (relative humidity 35 to 55% RH) for 1 day.
  • Example 17 [Coat of laminin / gelatin mixture] 500 ⁇ L of an aqueous solution containing gelatin (made by Nitta Gelatin Co., Ltd.) at a concentration of 3 mg / ml and laminin at a concentration of 10 ⁇ g / mL is placed in the cell culture container 16 (equivalent to a gelatin coating amount of 150 ⁇ g / cm 2, a laminin coating amount of 0.5 ⁇ g / ml). The solution was allowed to stand at 37 ° C. for 1 hour, and the aqueous solution was discarded and dried at room temperature of 25 ° C. (relative humidity 35 to 55% RH) for 1 day.
  • Example 18 [Coat of laminin / gelatin mixture] 500 ⁇ L of an aqueous solution containing gelatin (made by Nitta Gelatin Co., Ltd.) having a concentration of 3 mg / ml and laminin having a concentration of 1 ⁇ g / mL is placed in the cell culture container 16 (equivalent to a gelatin coating amount of 150 ⁇ g / cm 2, a laminin coating amount of 0.5 ⁇ g / ml). cm.sub.2), after standing at 37.degree. C. for 1 hour, the aqueous solution was discarded, dried at room temperature 25.degree. C. (relative humidity 35-55% RH) for 1 day, and then further room temperature (25.degree. C., 40% RH). And left for 30 days.
  • Example 19 [Collagen and laminin coat] 500 ⁇ L of 0.1 mg / ml collagen (trade name: Cellmatrix Type IC, Nitta Gelatin Co., Ltd.) aqueous solution is placed in the cell culture container 19 (corresponding to a coating amount of 5 ⁇ g / cm 2), and left at 37 ° C. for 1 hour. After placing, the aqueous solution was discarded, and then 500 ⁇ L of laminin (trade name: iMatrix, manufactured by Nippi Co., Ltd.) aqueous solution having a concentration of 10 ⁇ g / mL was put (corresponding to a coating amount of 0.5 ⁇ g / cm 2) and left at 37 ° C. for 1 hour. The aqueous solution was discarded and dried at room temperature of 25 ° C. (relative humidity: 35 to 55% RH) for 1 day.
  • laminin trade name: iMatrix, manufactured by Nippi Co., Ltd.
  • Example 20 [Collagen and laminin coat] Collagen and laminin were coated in the same manner as in Example 19 except that a collagen aqueous solution having a concentration of 1 mg / ml was used instead of the collagen aqueous solution having a concentration of 0.1 mg / ml in Example 19.
  • Example 21 Collagen and laminin coat
  • Collagen and laminin were coated in the same manner as in Example 19 except that a collagen aqueous solution having a concentration of 2 mg / ml was used instead of the collagen aqueous solution having a concentration of 0.1 mg / ml in Example 19.
  • Example 22 [Coat of collagen and laminin] Collagen and laminin were coated in the same manner as in Example 19 except that a collagen aqueous solution having a concentration of 4 mg / ml was used instead of the collagen aqueous solution having a concentration of 0.1 mg / ml in Example 19.
  • Example 23 Collagen and laminin coat] Collagen and laminin were coated in the same manner as in Example 19 except that a collagen aqueous solution having a concentration of 10 mg / ml was used instead of the collagen aqueous solution having a concentration of 0.1 mg / ml in Example 19.
  • Example 24 [Collagen and laminin coat] 500 ⁇ L of collagen (trade name: Cellmatrix Type IC, Nitta Gelatin Co., Ltd.) aqueous solution having a concentration of 1 mg / ml was placed in the cell culture vessel 24 (corresponding to a coating amount of 50 ⁇ g / cm 2) and left at 37 ° C. for 1 hour. Thereafter, the aqueous solution was discarded, and then 500 ⁇ L of a laminin (trade name: iMatrix, manufactured by Nippi Co., Ltd.) aqueous solution having a concentration of 14 ⁇ g / mL was added (corresponding to a coating amount of 0.7 ⁇ g / cm 2) and left at 37 ° C. for 1 hour. The aqueous solution was discarded and dried at room temperature 25 ° C. (relative humidity 35-55% RH) for 1 day.
  • collagen trade name: Cellmatrix Type IC, Nitta Gelatin Co., Ltd.
  • Example 25 [Collagen and laminin coat] Collagen and laminin were coated in the same manner as in Example 24 except that a laminin aqueous solution having a concentration of 20 ⁇ g / mL was used instead of the “laminin aqueous solution having a concentration of 14 ⁇ g / mL” in Example 24.
  • Example 30 A 0.12% solution is prepared by diluting the block polymer 10 with methanol, and after adding 40 ul to a 35 mm polystyrene petri dish (35 mm / Tissue Culture Dish, manufactured by IWAKI), the mixture is allowed to stand at room temperature for 2 hours and dried.
  • stacked the cell culture base material was obtained by rinsing each with a pure water and a sterilized water, and making it dry at 40 degreeC overnight. The film thickness of the obtained cell culture substrate was measured by a spectroscopic ellipsometry method and found to be 35 nm.
  • the medium was exchanged at a 4 ° C. cooling medium, and allowed to stand at room temperature for 10 minutes, and then a “pipetting operation” in which the medium was sucked and taken out with a pipette was performed about 10 times to perform cell detachment.
  • the cell cultureability determined according to the method of “Measurement of cell detachment rate and survival rate and cultureability” was 1.0 (equivalent to TCPS), the cell detachment rate was 95%, and the survival rate of recovered cells was 75%. .
  • Example 5 The iPS cell culture and detachment rate were evaluated in the same manner as in Example 30 except that a 35 mm polystyrene petri dish (35 mm / Tissue Culture Dish, manufactured by IWAKI) was used. As a result, iPS cell culture and detachment rate were evaluated. As a result, the cell culturing property was 1.0, the cell detachment rate was 5%, and the recovered cell survival rate was 20%.
  • a 35 mm polystyrene petri dish 35 mm / Tissue Culture Dish, manufactured by IWAKI
  • the cell culture substrate of the present invention is a cell culture medium that can be cultured with high efficiency even for human pluripotent stem cells, and can be detached and collected while maintaining a high survival rate. To provide materials.
  • a further object is to provide a cell culture substrate that can be detached and can withstand a dry state.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Transplantation (AREA)
  • Graft Or Block Polymers (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、下限臨界溶解温度を有するセグメントと疎水性セグメントとのブロックポリマーを含有する細胞培養基材であって、該細胞培養基材中に更に接着基質を有し、該接着基質が細胞外マトリクス及びまたは接着性合成基質であることを特徴とする細胞培養基材を提供するものである。 また、上記細胞外マトリクスが、ラミニン、フィブロネクチン、ビトロネクチン、カドヘリン及びそれらのフラグメントから選ばれる少なくとも一種である、及びまたは、接着性合成基質が、poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide]またはオリゴペプチド担持ポリマーである細胞培養基材を提供するものである。

Description

細胞培養基材
 本発明は、細胞培養用の基材に関する。
 ヒトiPS細胞やES細胞といったヒト多能性幹細胞は、病理解明や新薬開発並びに再生医療への応用可能性から注目されている。ヒト多能性幹細胞の利用には、安定かつ安全に培養し、さらには培養した細胞を回収したのちに、創薬や医療へ応用する必要がある。
 従来より、ヒト多能性幹細胞はその低い培養率が課題となってきた。解決法のひとつとして、フィーダー細胞を利用した培養法が試みられてきたが、用いたフィーダー細胞がコンタミするという問題があることから、安全とはいえなかった。
 それに対する解決策として、特許文献1では、細胞培養基材上に細胞外マトリクスであるラミニン及びラミニンフラグメントを塗布することで、フィーダー細胞レスであってもヒト多能性幹細胞が培養可能であることが報告されている。
 一方、特許文献1では基材上での培養は可能なものの、培養細胞の回収については言及されておらず、培養細胞を利用すると言う点では課題が残されている。例えば上記方法で培養された細胞は、細胞外マトリクスとの接着が強いことから、酵素処理した後にセルスクレパー(ゴムまたは樹脂製ヘラ)等で物理的に細胞を掻き集める方法で細胞を回収しており、作業効率が低い上に物理的刺激を与えることから細胞の生存率に悪影響を及ぼすという課題があった。
 一方、ラミニン等の細胞外マトリクスをヒト多能性幹細胞に利用するに当たっては、細胞外マトリクスが失活しやすいという課題がある。特に、基材表面が乾燥すると細胞外マトリクスが失活し、ヒト多能性幹細胞の培養効率が低下する。細胞培養基材の保存輸送等を考えると、乾燥状態でも培養効率を維持することが重要である。特許文献2では、ラミニン以外のタンパク質をコーティングすることで乾燥状態に耐えられる細胞培養基材が開示されているが、こちらについても培養は可能なものの、培養細胞の回収という課題は解決されていない。
WO2011/043405 WO2014/199754
 本発明の課題は、ヒト多能性幹細胞であっても高効率で培養可能であり、かつ培養後の細胞を高い生存率を維持したまま剥離させ回収することが可能な細胞培養基材を提供することにある。また、さらには、細胞剥離可能かつ乾燥状態にも耐えうる細胞培養基材を提供することにある。
 発明者らは鋭意検討した結果、下限臨界溶解温度を有するセグメントと疎水性セグメントとのブロックポリマーを含有する細胞培養基材であって、該細胞培養基材中に更に接着基質を有し、該接着基質が細胞外マトリクス及びまたは接着性合成基質であることを特徴とする細胞培養基材を提供することで、前記課題を解決できることを見出した。
 また、細胞外マトリクスが、ラミニン、フィブロネクチン、ビトロネクチン、カドヘリン及びそれらのフラグメントから選ばれる少なくとも一種である細胞培養基材、または接着性合成気質が、poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide]またはオリゴペプチド担持ポリマーである細胞培養基材を提供する。
 また、前記下限臨界溶解温度を有するセグメントの重合度が400-10000である細胞培養基材を提供する。
 また、前記疎水性セグメントが、下記式(1)で表されるモノマーを重合して得られるものである、細胞培養基材を提供する。
Figure JPOXMLDOC01-appb-C000004
              ・・・(1)
(上記式(1)中、Rは水素原子またはメチル基であり、Rはフェニル基、アルキル炭素数1~8のカルボキシアルキル基、アラルキル炭素数7~8のカルボキシアラルキル基、下記式(2)で表される基、下記式(3)で表される基のうちのいずれか1つを表す。
Figure JPOXMLDOC01-appb-C000005
              ・・・(2)
(上記式(2)において、nは2または3を表し、Rは炭素数1~3のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000006
              ・・・(3)
(上記式(2)において、RおよびRは、それぞれ独立して水素原子または炭素数1~6のアルキル基を表し、RおよびRの合計炭素数が4以上であることを表す。))
 また、前記細胞培養基材上に、更にゼラチン、コラーゲンおよびまたはアルブミンから選ばれる少なくとも一種のタンパク質を含有するものである細胞培養基材を提供する。
 本発明の細胞培養基材は、ヒト多能性幹細胞を高効率で培養可能な上、培養後の細胞を高い生存率のまま基材から剥離させ、回収することができる。
 また、乾燥状態を経ても培養可能かつ細胞剥離可能な基材を開示する。
 本発明は、下限臨界溶解温度を有するセグメントと疎水性セグメントとのブロックポリマーを含有する細胞培養基材であって、該細胞培養基材中に更に接着基質を有し、該接着基質が細胞外マトリクス及びまたは接着性合成基質であることを特徴とする細胞培養基材を提供するものである。
[下限臨界溶解温度を有するセグメント]
 本発明における下限臨界溶解温度を有するセグメントとは、ブロックポリマーにおけるセグメントであって、該セグメントは、ある一定温度以下になると水に溶解する重合体で構成されたセグメントのことをいう。
 本発明における下限臨界溶解温度を有するセグメントとは、以下のようなある一定温度以下になると水に溶解する重合体である。下限臨界溶解温度を有する重合体としては、下記1)及び2)が挙げられる。
 1)ホモポリマが下限臨界溶解温度を有するモノマーを重合させて得られる重合体 
 2)疎水化モノマーと親水性モノマーとの共重合体
 1)は、ホモポリマが下限臨界溶解温度を有するモノマーのみを重合させて得られる重合体セグメントである。ホモポリマが下限臨界溶解温度を有するモノマーとしては、例えばN-イソプロピル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-シクロプロピル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-テトラヒドロフルフリル(メタ)アクリルアミド、N-エチルアクリルアミド、N-エチル-N-メチルアクリルアミド、N,N-ジエチルアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-アクリロイルピペリディン及びN-アクリロイルピロリディンが例示される。これらのモノマーは、単独でも複数種を同時に利用してもかまわない。
 1)であるホモポリマが下限臨界溶解温度を有するモノマーを重合させて得られるセグメントは、簡便に下限臨界溶解温度を有する重合体を製造することが可能である。しかしこれらのモノマーは、プラスチック表面との間に接着性が低く、水に触れると、塗布された重合体層が剥離しやすいと言う課題があるが、本願の細胞培養基材は、疎水性セグメントを含有することから、耐水性に優れるため、培養基材が剥離せずに使用することができる。
 2)は、疎水化モノマーと親水性モノマーとの共重合体である。疎水化モノマーと親水性モノマーとの共重合体が下限臨界溶解温度を有するためには、
 2-1)親水性モノマーが、ホモポリマーが下限臨界溶解温度を有するモノマーである場合と、
 2-2)下記式(1)で表されるモノマー(a)と親水性のアミド系ビニルモノマー(b)との共重合体(B1)、前記またはモノマー(a)と下記式(2)表されるモノマー(c)との共重合体(B2)、またはモノマー(a)と下記式(3)表されるポリエチレングリコール鎖含有モノマー(d)との共重合体(B3)、が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基、Rは炭素原子数1~2のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000008
(式中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000009
(式中、nは2~20の整数を表す。)
親水性のアミド系モノマー(b)としては、ジメチルアクリルアミド、アクリルアミド、メチルアクリルアミド、エチルアクリルアミドなどが例示される。
 疎水化モノマーとは、モノマー時は水溶性であるが重合すると水性溶媒に不溶化するモノマーである。このようなモノマーが共重合体に含有されている場合、耐水性に優れ支持体から剥がれにくい細胞培養基材とすることができる。
 疎水化モノマーとしては、前記式(1)で表される化合物や、 疎水化モノマーとしては、前記式(1)で表される化合物や、ジアセトンアクリルアアミド、(メタ)アクリル酸ポリプロピレングリコール、メトキシジエチレングリコールアクリレート、メトキシトリエチレングリコールアクリレートが挙げられる。これらは単独でも複数種を同時に使用してもかまわない。中でも、アクリル酸2メトキシエチル、アクリル酸2エトキシエチル、アクリル酸3メトキシプロピルが好ましく、アクリル酸2メトキシエチル、アクリル酸2エトキシエチルが特に好ましい。
 2-2)で開示される共重合体セグメントの場合、得られる共重合体セグメントの下限臨界溶解温度が、モノマーの種類や比率により幅広く制御でき、更に、細胞の種類に応じて、適宜モノマーの種類や比率を変え、より良好な細胞接着性と増殖性を持って細胞を培養できることから好ましい。例えば、モノマー(a)に対し、モノマー(bまたはc、またはd)の比率を増えるにつれ、得られる共重合体の下限臨界溶解温度が高温側へシフトする。この比率と下限臨界溶解温度がほぼ直線関係にある。細胞培養温度は通常37℃であるため、得られる共重合体の下限臨界溶解温度は20~32℃付近になるように調製することが好ましい。
 また、本発明における下限臨界溶解温度を有するセグメントは、下限臨界溶解温度を有する範囲内で、ホモポリマが下限臨界溶解温度を有するモノマー、親水性モノマー及び疎水化モノマーからなる群に含まれないモノマーを含有することができる。
 本発明のブロックポリマーにおいて、前記下限臨界溶解温度を有するセグメントの重合度は、400-10000であると好ましい。400以上である場合、細胞剥離性がより良好となり、10000より小さい場合は、ブロックポリマーの合成上、より容易であるからである。
 好ましい重合としては1000-8000であり、この範囲であれば細胞剥離性と培養効率のバランスに優れる。特に好ましくは3000―6000である。
[疎水性セグメント]
 本発明のブロックポリマーは、疎水性セグメントを有することを特徴とする。なお、本明細書において、ブロックポリマーのセグメントにおける「疎水性」とは、セグメントからなる重合体について、水中における25℃での溶解度が0.5g/100mL未満であることを意味する。疎水性セグメントは、少なくとも疎水性モノマーのモノマー単位を含む。
 本発明のブロックポリマーは、疎水性セグメントを有することから、耐水性に劣る下限臨界溶解温度を有するセグメントを有していても、耐水性に優れ支持体との密着性に優れる。
 疎水性モノマーとしては、重合後に疎水化するモノマーであれば特に制限はされないが、好ましくは下記式(1)~(3)で表されるモノマーが挙げられる。なお、これらの疎水性モノマーは、単独で用いても、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000010
              ・・・(1)
(上記式(1)中、Rは水素原子またはメチル基であり、Rはフェニル基、アルキル炭素数1~8のカルボキシアルキル基、アラルキル炭素数7~8のカルボキシアラルキル基、下記式(2)で表される基、下記式(3)で表される基のうちのいずれか1つを表す。
Figure JPOXMLDOC01-appb-C000011
              ・・・(2)
(上記式(2)において、nは2または3を表し、Rは炭素数1~3のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000012
              ・・・(3)
(上記式(2)において、RおよびRは、それぞれ独立して水素原子または炭素数1~6のアルキル基を表し、RおよびRの合計炭素数が5以上であることを表す。))
 この中でも、上記式(1)で表されるモノマーであれば、得られる重合体セグメントが疎水性となり、細胞培養基材の耐水性と支持体密着性に優れるため好ましい。
 その中でも好ましくは、エチルアクリレート、ブチルアクリレート、スチレンであり、特に好ましくはブチルアクリレートである。
本発明のブロックポリマーにおいて、前記疎水性セグメントの重合度は、50-1000であると好ましい。50以上である場合、耐水性がより良好となり、1000より小さい場合は、細胞剥離性がより良好となるためである。
[ブロックポリマー]
 本発明のブロックポリマーは、前記下限臨界溶解温度を有するセグメントと、疎水性セグメントとを有するポリマーである。下限臨界溶解温度を有するセグメントをA、疎水性セグメントをBとした時に、本発明のブロックポリマーはABのジブロックタイプでもよく、ABAまたはBABのトリブロックタイプでも、それ以上のセグメント数を有するポリマーであってもかまわない。好ましくは、ジブロックタイプまたはトリブロックタイプであり、特に好ましくはジブロックタイプである。
[ブロックポリマーの分子量]
 ブロックポリマーの分子量は、重量平均分子量(Mw)で、50000~1000000が好ましく、70000~900000がより好ましく、400000~800000がさらに好ましい。重量平均分子量が50000以上であれば、細胞剥離性が高いため好ましく、1000000以下であれば、取扱いが容易であるため好ましい。
[ブロックポリマーの製造方法]
 ブロックポリマーの製造方法は、特に制限されず、公知の方法を採用することができる。このうち、精密ラジカル重合であることが好ましく、可逆的付加-開裂連鎖移動(RAFT)重合、原子移動ラジカル重合(ATRP)、ニトロキシド媒介重合(NMP)であることがより好ましく、RAFT重合であることがさらに好ましい。
〔ブロックポリマーの成形方法〕
 本発明の細胞培養基材を形成させる好ましい方法として、本発明のブロックポリマーを含むコーティング剤を上述した支持体上に塗布する方法が挙げられる。
<コーティング剤>
 前記コーティング剤は、ブロックポリマーと、溶媒と、を含む。その他、必要に応じて、添加剤等を含んでいてもよい。
[ブロックポリマー]
 ブロックポリマーとしては、上述したものが用いられることからここでは説明を省略する。
 なお、ブロックポリマーは1種のみを含んでいてもよいし、異なる構成を有する2種以上のブロックポリマーを含んでいてもよい。
 ブロックポリマーの含有量は、コーティング剤の全質量に対して、0.01~90質量%であることが好ましく0.1~50質量%であることがより好ましい。ブロックポリマーの含有量が0.01質量%以上であると、得られる塗膜が表面親水性を発現しやすいことから好ましい。一方、ブロックポリマーの含有量が90質量%以下であると、粘度が低いことから塗工適性が高まることから好ましい。
 [溶媒]
 コーティング剤に含有されうる溶媒としては、特に制限されず公知のものが使用されうる。
 溶媒の具体例としては、水または有機溶媒が挙げられる。
 前記有機溶媒としては、メタノール、エタノール、イソプロピルアルコール、ブタノール、sec-ブタノール、iso-ブタノール、tert-ブタノール等のアルコール系溶媒;テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;シクロヘキサノン、メチルイソブチルケトン等のケトン系溶媒;アセトニトリル等のニトリル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド;ジオキシラン;ピロリドン等が挙げられる。これらのうち、有機溶媒としてはアルコール系溶媒を用いることが好ましく、メタノール、エタノール、プロパノール、イソプロピルアルコール、tert-ブタノールを用いることがより好ましい。
 上述のうち、溶媒は、水、アルコール系溶媒であることが好ましく、メタノール、エタノール、プロパノール、イソプロピルアルコール、tert-ブタノールであることがより好ましい。
 上述の溶媒は、単独で用いても、2種以上を組み合わせて用いてもよい。
 コーティング剤中の溶媒の含有量は、コーティング剤の全質量に対して、10~99.99質量%であることが好ましく、50~99.9質量%であることがより好ましく、80~99.5質量%であることがさらに好ましい。溶媒の含有量が10質量%以上であると、コーティング剤溶液の粘度が低くなるため、塗工適正に優れることから好ましい。一方、溶媒の含有量が99.99質量%以下であると、コーティング後の塗膜の厚さが薄くなりすぎず好ましい。
 [添加剤]
 コーティング剤は、使用目的に応じて添加剤を含有してもよい。
 当該添加剤としては、特に制限されず、公知のものが使用されうる。具体的には、賦形剤、
界面活性剤、可塑剤、消泡剤、顔料、抗酸化剤、抗生物質、紫外線吸収剤、結晶核剤、結晶化促進剤、安定化剤、抗菌剤等が挙げられる。これらの添加剤は、単独で用いても、2種以上を混合して用いてもよい。
 コーティング剤の塗布方法は、特に制限はなく、スプレーコート法、フローコート法、浸漬法等が挙げられる。
 また、基材がチューブ状である場合には、コーティング剤を通液させる方法等が挙げられる。この際、通液後は、通常、溶媒を通液させてチューブ内部の余分なコーティング剤を除去する。
 乾燥条件についても特に制限されず、自然乾燥であっても加熱乾燥であってもよい。加熱乾燥である場合の乾燥温度は、使用するコーティング剤によっても異なるが、30~70℃であることが好ましく、40~60℃であることがより好ましい。なお、乾燥を制御することで、一部溶媒を残存させた塗膜を得ることができる。
〔接着基質〕
 本発明の細胞培養基材は、接着基質を基材中に有することで、ヒト多能性幹細胞の培養性が向上する。接着基質としては、細胞外マトリクスと接着性合成基質が挙げられる。
 細胞外マトリクスとしては、具体的には、ラミニン、フィブロネクチン、ビトロネクチン、カドヘリン及びそれらのフラグメントが挙げられる。好ましくは、ラミニン及びビトロネクチン、及びそれらのフラグメントが挙げられる。細胞外マトリクスとしては動物由来であれば利用できるが、好ましくはヒト及びマウス由来の細胞外マトリクスである。更に好ましくは組換えタンパク質として製造されたものである。市販品として、マトリゲル(コーニング社製)、ゲルトレックス(サーモフィッシャーサイエンティフィック社製)、iMatrix-511(ニッピ社製)、Laminin521(BioLamina社)等が利用可能である。
 細胞外マトリクスと同時に、ROCK(Rho-associated coiled-coil kinase)阻害剤を使用しても良い。ROCK阻害剤を使用することで、単一細胞に分散したヒト多能性幹細胞の培養がさらに容易になる。Y-27632(和光純薬工業)やFasudil hydrochloride(東京化成工業株式会社製)が挙げられる。
 接着性合成基質としては、poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide](以降PMEDSAHと略)またはオリゴペプチド担持ポリマーが挙げられる。オリゴペプチド担持ポリマーは、細胞接着活性を有するアルギニン-グリシン-アスパラギン酸(RGD)配列を有するオリゴペプチドをポリマーに共有結合させた基質である。市販品としてSynthemax(コーニング社製)が挙げられる。
 接着基質は、基材に対しどのような方法で供してもかまわない。例えば接着基質を基材中に混合してもよいし、塗布してもかまわない。また、細胞培養用の培地に接着剤基質を含有させ、培地と同時に基材と接触させる形で供しても良い。
 当該接着基質は、基材中に均一に存在していても、不均一に存在していてもかまわない。好ましくは、基材表面に存在する場合である。塗布による接着剤基質の供給を行う場合、塗布方法としては接着基質の溶液を公知慣用の方法を用いて塗ればよく、スプレーコート、スピンコート、インクジェット等で塗布してもよいし、版を用いてスタンプしてもかまわない。溶液を基材上に注ぎ、一定期間静置したのちに溶液を除去する方法でもよく、使用方法に応じて適宜選択すればよい。
 接着基質を細胞培養基材表面に塗布する場合、塗布量としては、細胞培養基材の面積あたり、0.01~5μg/cmが好ましく、0.2~2μg/cmが更に好ましく、0.5~1μg/cmが特に好ましい。
〔ゼラチン、コラーゲンまたはアルブミン〕
 更に接着基質の活性維持や細胞培養効率を上げるために、細胞培養基材上にゼラチン、コラーゲンまたはアルブミンを存在させてもかまわない。ゼラチン、コラーゲンまたはアルブミンは、前記接着基質と同様、細胞培養基材中に混合してもよいし、塗布してもかまわない。塗布する場合は、ゼラチン、コラーゲンまたはアルブミンを先に塗布した後に接着基質を塗布するほうが、接着基質の活性維持や細胞培養効率においては好ましい。また、ゼラチン、コラーゲンまたはアルブミンは、1種でもよいし複数種を同時に用いてもかまわない。
 ゼラチン、コラーゲンまたはアルブミンの塗布量としては、0.5~500μg/cmが好ましく、5~200μg/cmが更に好ましく、20~100μg/cmが特に好ましい。
 本発明の細胞培養基材は、単体で用いてもよいが、輸送や保管等の利便性の面から支持体上に形成されることが好ましい。特に好ましくは、支持体に細胞培養基材を積層して積層体とする方法である。
[その他の配合物]
 本発明の細胞培養基材は、ブロックポリマーや細胞外マトリクス、ゼラチンまたはコラーゲンのほかに、配合物を有していても良い。例えば防腐剤や抗菌剤、着色料、香料、酵素、糖類、たんぱく質、ペプチド類、アミノ酸類、細胞、DNA類、塩類、水溶性有機溶剤類、界面活性剤、高分子化合物、レベリング剤などを含んでもかまわない。
[細胞培養基材]
 本発明の細胞培養基材の形状は、細胞培養でき、低温処理により培養細胞を容易に剥離できるものであれば、特に限定されない。例えば、フィルム状のもの、皿状のもの、ボトル(ビン)状のもの、チューブ状のもの、太さ5nm~5mmの糸状または棒状のもの、バッグ(袋)状のもの、マルチウエルプレート状のもの、マイクロ流路状のもの、多孔質膜状または網状のもの(例えばトランスウエル、セルストレイナー)、粒径が好ましくは10~2000μm、より好ましくは100~500μmの球状のものなどが挙げられる。
 本発明の細胞培養基材は、単体で用いてもよいが、支持体上に基材を形成した細胞培養器材として用いる事が好ましい。細胞培養器材とした場合、輸送や保管等の利便性に優れるほか、そのまま培養容器や培養用担体として用いることもできるからである。
 本発明で用いられる支持体の材質は、培養基材が十分接着でき、且つ接着された培養基材上で細胞培養ができ、低温処理により培養細胞を容易に剥離できるものであれば、特に限定されない。例えば、ポリスチレンのようなスチレン系樹脂、ポリプロピレンのようなポリオレフィン系樹脂、ポリウレタン系樹脂、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリスルホン系樹脂、フッ素系樹脂、セルロースのような多糖類天然高分子、ガラスやセラミックスのような無機材料、ステンレス、チタンのような金属類材料が好適に用いられる。
 支持体の形状には特に限定はなく、本発明の細胞培養基材の支持体となりうる形状であればよい。例えばフィルム状のもの、膜状のもの、板状のもの、球状のもの、多角形状のもの、棒状のもの、皿状のもの、ボトル(ビン)状のもの、チューブ状のもの、針・糸状のもの、繊維状のもの、バッグ(袋)状のもの、マルチウエルプレート状のもの、マイクロ流路状のもの、多孔質膜状または網状のもの(例えばトランスウエル、セルストレイナー)等が挙げられる。これらを組み合わせた形状でも良いし、特定の形状を有さない不定形状の支持体であっても良い。
 更に、本発明の細胞培養基材が、支持体と一体化して細胞培養器材として使用されるのは勿論のこと、支持体から剥がして単独に使用してもよい。
〔培養細胞〕
 本発明の細胞培養基材は、様々な細胞、特に動物細胞を好適に培養することが可能である。動物細胞としては、由来は動物であればよく、ヒト、マウス、サル等が挙げられ、人工細胞であっても構わない。細胞種としては特に限定は無いが、上皮細胞(角膜上皮細胞など)、内皮細胞(ヒト臍帯静脈内皮細胞など)、線維芽細胞(ヒト皮膚線維芽細胞、マウス線維芽細胞など)、血球細胞、収縮性細胞(骨格筋細胞、心筋細胞など)、血液と免疫細胞(赤血球、マクロファージなど)、神経細胞(ニューロン、グリア細胞など)、色素細胞(網膜色素細胞など)、肝細胞、軟骨細胞、骨芽細胞、幹細胞(ES細胞、iPS細胞、造血幹細胞、皮膚幹細胞、生殖幹細胞、EC細胞、EG細胞、神経幹細胞)等が挙げられる。中でも、本発明の細胞培養基材は、培養が難しい幹細胞、特にES細胞やiPS細胞に対し好適に利用可能である。
〔乾燥細胞培養基材〕
 本発明の細胞培養基材は、乾燥状態を経てもヒト多能性幹細胞の培養が可能である。それゆえに、長期間保存や輸送に耐えうることから、産業上利用可能性が非常に高い。
 乾燥方法としては特に限定は無く、後述する支持体上に細胞培養基材を積層したのち、乾燥させればよい。例えば室温乾燥(18~30℃、湿度20%~60%RH)、加熱乾燥(30~37℃)、恒温乾燥機やデシケーターによる乾燥等が挙げられる。タンパクの変性を防ぐ観点から、室温乾燥が好ましい。
 乾燥時の細胞培養基材の膜厚は、1000nm以下であることが好ましく、500nm以下であると更に好ましい。1000nm以下であれば、細胞培養性が良好であるためである。
〔細胞の培養方法〕
 培養方法としては、公知慣用の方法を用いればよく、例えば皿状容器の底面に形成させた培養基材に、所定量の培地や培養試薬を入れ、細胞を播種して、所定温度、CO濃度条件で培養してもよいし、糸状や球状に形成させた培養基材を、培地の入った市販ポリスチレン容器に入れ、細胞を播種して培養してもかまわない。後者の場合、細胞はポリスチレン容器に接着せず、糸状や球状培養基材の表面に接着して増殖する。例えば太さ50μmの糸状培養基材を用いた場合、細胞は糸の長さ方向に増殖するため、細胞形状を制御した形で培養することもできる。また、球状培養基材を用いた場合、通常の皿状容器に比べ、表面積が大きく、より多くの細胞を培養できる利点がある。
〔細胞の剥離方法(温調法)〕
培養された細胞を基材から剥がす方法としては特に限定されないが、例えば、培養終了後、所定温度(6℃~30℃)の培地で37℃の培地を置換し、所定温度(6℃~30℃)で静置して、細胞の自然剥離を待っても良いし、培養容器を軽く揺らしたり、ピペットで培地を吸ったり出したりする「ピペッティング」操作で、穏やかな水流で細胞に物理的刺激を与えて、細胞を剥離しても良い。
〔細胞の剥離方法(酵素法)〕
細胞同士の結合を切り、単一細胞にしたい場合は、酵素処理による剥離法を使用してもよい。使用するタンパク分解酵素の種類は、細胞の種類により適宜選択すればよい。例えば、トリプシン、トリプシン/EDTA、TrypLE Select(Thermo Fisher Scientific社)が挙げられる。処理温度や時間は、細胞の種類や基材との接着強さにより適宜調整すればよい。例えば、培養終了後、培養を除去し、緩衝液等で細胞を洗浄して、酵素溶液を加え、37℃一定時間静置した後、酵素溶液を除去し、所定温度(6℃~37℃)の緩衝液または培地を加え、静置または「ピペッティング」操作により細胞を剥離する方法が挙げられる。勿論、低温処理と酵素使用を合わせて細胞を剥離しても良い。
 以下、実施例により本発明を具体的に説明するが、本発明の範囲がこれらの実施例にのみ限定されるものではない。
<GPC>
GPCの測定方法は以下の通り。
装置:HLC-8220GPC(東ソー株式会社製)
溶媒:N,N-ジメチルホルムアミド(DMF)溶液(10mmol/L LiBr含有)
カラム:TSK-gel αーMカラム(東ソー株式会社製) 2本連結
標準物質:PMMA標準(Shodex M-75)
(NMRの測定方法)
1H-NMR:JEOL製 JNM-ECZ400S
磁場強度:400MHz
積算回数:16回
溶媒:重メタノール
試料濃度:10質量%
(AFMの測定方法)
原子間力顕微鏡:Bruker AXS製 NanoScope(R) IIIa
測定モード:DFM、サンプル測定2箇所の平均
[合成例1] ブロックポリマー1の合成
 ブチルアクリレート(和光純薬株式会社製)0.475g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.013g、Dimethyl 2,2’-azobis(2-methylpropionate)0.006g、tブタノール9.0g、水1.0gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるブチルアクリレートのコンバージョンは82%であった。
次いで、N-イソプロピルアクリルアミド(以下NIPAM、株式会社KJケミカル製)1.68g、tブタノール10.8g、水1.2gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌した。反応終了後、反応液にメタノール22.9gを加えて、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、ブチルアクリレートのコンバージョンは100%、NIPAMのコンバージョンは100%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=41000、Mw=74000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
[合成例2] ブロックポリマー2の合成
 ブチルアクリレート 1.19g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.013g、Dimethyl 2,2’-azobis(2-methylpropionate)0.002g、tブタノール8.0g、水1.0gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるブチルアクリレートのコンバージョンは84%であった。
次いで、NIPAM 6.3g、tブタノール20.8g、水2.2gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌して、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、ブチルアクリレートのコンバージョンは100%、NIPAMのコンバージョンは97%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=137000、Mw=277000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。 
[合成例3] ブロックポリマー3の合成
 ブチルアクリレート 0.474g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.013g、Dimethyl 2,2’-azobis(2-methylpropionate)0.006g、tブタノール8.0g、水1.0gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるブチルアクリレートのコンバージョンは87%であった。
次いで、NIPAM 10.5g、tブタノール30.5g、水3.4gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌して、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、ブチルアクリレートのコンバージョンは100%、NIPAMのコンバージョンは99%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=274000、Mw=489000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
[合成例4] ブロックポリマー4の合成
 ブチルアクリレート 0.71g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.0078g、Dimethyl 2,2’-azobis(2-methylpropionate)0.0024g、tブタノール5.4g、水0.6gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるブチルアクリレートのコンバージョンは97%であった。
次いで、NIPAM 7.55g、tブタノール24.3g、水2.7gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌して、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、ブチルアクリレートのコンバージョンは100%、NIPAMのコンバージョンは99%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=200000、Mw=440000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
[合成例5] ブロックポリマー5の合成
 ブチルアクリレート 0.59g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.0065g、Dimethyl 2,2’-azobis(2-methylpropionate)0.0036g、tブタノール9.0g、水1.0gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるブチルアクリレートのコンバージョンは81%であった。
次いで、N-イソプロピルアクリルアミド(以下NIPAM、株式会社KJケミカル製)10・53g、tブタノール49.86g、水5.54gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌した。反応終了後、反応液にメタノール66.7gを加えて、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、ブチルアクリレートのコンバージョンは100%、NIPAMのコンバージョンは99%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=220000、Mw=760000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
[合成例6] ブロックポリマー6の合成
 メトキシエチルアクリレート(以下MEA、大阪有機化学株式会社製)1.21g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.0129g、Dimethyl 2,2’-azobis(2-methylpropionate)0.0054g、tブタノール9.0g、水1.0gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるMEAのコンバージョンは98%であった。
次いで、NIPAM 6.29g、tブタノール18.0g、水2.0gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌した。反応終了後、反応液にメタノール37.5gを加えて、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、MEAのコンバージョンは100%、NIPAMのコンバージョンは98%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=114000、Mw=338000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
[合成例7] ブロックポリマー7の合成
MEA 0.97g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.0104g、Dimethyl 2,2’-azobis(2-methylpropionate)0.0032g、tブタノール7.2g、水0.8gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるMEAのコンバージョンは92%であった。
次いで、NIPAM 8.39g、tブタノール26.5g、水2.9gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌した。反応終了後、反応液にメタノール46.8gを加えて、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、MEAのコンバージョンは100%、NIPAMのコンバージョンは90%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=152000、Mw=430000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
[合成例8] ブロックポリマー8の合成
MEA 1.45g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.0156g、Dimethyl 2,2’-azobis(2-methylpropionate)0.008g、tブタノール10.8g、水1.2gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるMEAのコンバージョンは98%であった。
次いで、NIPAM 15.1g、tブタノール48.8g、水5.4gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌した。反応終了後、反応液にメタノール82.8gを加えて、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、MEAのコンバージョンは100%、NIPAMのコンバージョンは96%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=205000、Mw=576000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
[合成例9] ブロックポリマー9の合成
MEA 1.46g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.0156g、Dimethyl 2,2’-azobis(2-methylpropionate)0.0077g、tブタノール10.8g、水1.2gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるMEAのコンバージョンは98%であった。
次いで、NIPAM 18.8g、tブタノール58.8g、水6.4gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌した。反応終了後、反応液にメタノール72.8gを加えて、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、MEAのコンバージョンは100%、NIPAMのコンバージョンは97%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=234000、Mw=737000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
 [合成例10] ブロックポリマー10の合成
MEA 0.96g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.0105g、Dimethyl 2,2’-azobis(2-methylpropionate)0.0049g、tブタノール9g、水1gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるMEAのコンバージョンは97%であった。
次いで、NIPAM 16.9g、tブタノール54.7g、水6.3gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌した。反応終了後、反応液にメタノール89gを加えて、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、MEAのコンバージョンは100%、NIPAMのコンバージョンは98%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=192000、Mw=772000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
 [合成例11] ブロックポリマー11の合成
スチレン(以下St、和光純薬株式会社製) 5.79g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.040g、Dimethyl 2,2’-azobis(2-methylpropionate)0.0122gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるStのコンバージョンは40%であり、計算される重合度は200であった。
ついで、得られたRAFT剤含有ポリスチレンをジイソプロピルエーテル中で再沈殿後、70℃で真空乾燥させて、モノマーを除去した。その後、RAFT剤含有ポリスチレン1g、NIPAM 8.02g、酢酸エチル45.2、Dimethyl 2,2’-azobis(2-methylpropionate)0.0122gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌して、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、NIPAMのコンバージョンは98%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=62000、Mw=221000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
[調整例1] 4分岐RAFT剤の合成
 非特許文献「Macromolecules、36、1505(2003)」に従い、
下記の手順でRAFT剤「テトラキス(3-1S-(1-メトキシカルボニル)エチルト
リチオカルボニルプロピオン酸)ペンタエリスリトール」を合成した。
 ジクロロメタン10mL、ペンタエリスリトール(3-メルカプトプロピオネート)1
.22g、二硫化炭素2.00g、トリエチルアミン2.04gを入れ、1時間攪拌した
。ついで、2-ブロモプロピオン酸メチル1.94gを入れ、更に5時間攪拌した後、5
%KHSO4水溶液で洗浄した。更に水洗の後、飽和食塩水で乾燥した。硫酸マグネシウ
ム処理後、エバポレーターを用いてジクロロメタンを除いた。得られた橙色油状生成物を
、ヘキサン/アセトンを溶離液とするシリカゲルカラムクロマトグラフィーで精製してR
AFT剤「テトラキス(3-1S-(1-メトキシカルボニル)エチルトリチオカルボニ
ルプロピオン酸)ペンタエリスリトール」を得た。
[合成例12] ブロックポリマー12の合成
MEA 1.48g、RAFT剤として前記テトラキス(3-1S-(1-メトキシカルボニル)エチルトリチオカルボニルプロピオン酸)ペンタエリスリトール 0.013g、Dimethyl 2,2’-azobis(2-methylpropionate)0.0042g、tブタノール7.2g、水0.8gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるMEAのコンバージョンは97%であった。
次いで、NIPAM 12.9g、tブタノール45.7g、水5gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌した。反応終了後、反応液にメタノール60gを加えて、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、MEAのコンバージョンは100%、NIPAMのコンバージョンは98%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=250000、Mw=782000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
[合成例13] ブロックポリマー13の合成
ブチルメタクリレート(以下BMA、和光純薬株式会社製品) 1.92g、RAFT剤として2-(ドデシルチオカルボノチオイルチオ)プロパン酸0.060g、Dimethyl 2,2’-azobis(2-methylpropionate)0.012g、tブタノール10.8g、水1.2gを十分に窒素バブリングして酸素を除去した後、70℃にて7時間攪拌して、第1の反応液を得た。この段階におけるBMAのコンバージョンは83%であった。
次いで、NIPAM 6.1g、tブタノール18g、水2gの混合物を十分に窒素バブリングさせた後に、前述の反応液に添加し、更に70℃にて20時間攪拌して、AB型の温度応答性ブロックポリマー溶液を得た。このブロックポリマーのコンバージョンをNMRで測定したところ、MEAのコンバージョンは100%、NIPAMのコンバージョンは99%であった。また、このブロックポリマーの分子量分布を測定したところ、Mn=34000、Mw=51000であった。コンバージョンから計算した疎水セグメントと下限臨界温度を有するセグメントの重合度は、それぞれ表1のようになった。また、後述する試験法でこのブロックポリマーの水ゲル分率を測定した結果を表1に示す。
(培養基材の作製例)
[実施例1]
 ブロックポリマー1をメタノールで希釈して0.5%溶液を作成し、35mmポリスチレン製シャーレ(35mm/Tissue Culture Dish、AGCテクノグラス製)に60ul添加した。その後、80℃にて30分間乾燥させ、さらに純水に10分間浸漬させる操作を三回繰り返して洗浄し、40℃にて一晩乾燥させることで、細胞培養基材を積層した細胞培養容器1を得た。得られた細胞培養基材の膜厚を原子間力顕微鏡で測定したところ、50nmであった。
この細胞培養基材を後述する方法でラミニンコートを行い、後述する試験法でiPS細胞培養性及び細胞の温感剥離性の評価を行った結果を表1に示す。
[実施例2~13]
 実施例1と同様の方法で、ブロックポリマー2~13からそれぞれ細胞培養基材を積層した細胞培養容器2~13を作成した。この細胞培養基材を後述する方法でラミニンコートを行い、後述する試験法でiPS細胞培養性及び細胞の温感剥離性の評価を行った結果を表1に示す。
[比較例1]
市販の温感剥離培養容器「UPCELL(ポリイソプロピルアクリルアミドホモポリマー固定化細胞培養基材、セルシード株式会社製品)」の35mmシャーレに、後述するラミニンコート法を用いてラミニンコートを行った後、後述する試験法でiPS細胞培養性及びiPS細胞温感剥離性の評価を行った。
 [比較例2]
市販の細胞培養容器35mmポリスチレン製シャーレ(TCPS、35mm/Tissue Culture Dish、AGCテクノグラス製)に、後述するラミニンコート法を用いてラミニンコートを行った後、後述する試験法でiPS細胞培養性及びiPS細胞温感剥離性の評価を行った。
〔実施例1~13、比較例1~2のラミニン塗工方法〕
 実施例1~13、比較例1~2の細胞培養容器に、濃度10ug/mLのラミニン(商品名:iMatrix、株式会社ニッピ製)水溶液を500μL入れ(コート量0.5μg/cm2相当)、37℃、1時間静置した。その後、乾燥させることなく、後述するiPS細胞培養・温感剥離試験を行った。
(水ゲル分率)
 前記乾燥培養基材0.1gを200メッシュのステンレス金網で包み、4℃の水中で20時間放置前後のサンプルを130℃の熱風乾燥機で2時間乾燥させた重量をそれぞれ測定し、冷水中に静置した前後の重量減少率を調べた。この値が高いほど、培養基材の耐水性が高く、培養基材からの水による溶出が起こり難いと言える。
[iPS細胞の培養、剥離率の評価]
 培養容器1にROCK阻害剤Y27632(添加量:0.5μg/mL培地)を加えたStemFit Ak02N培地(味の素株式会社製)を2ml添加し、更にヒトiPS細胞(201B7株、iPSアカデミアジャパン株式会社製)を一定量(約1×10個/cm)入れ、5%CO雰囲気の37℃恒温器内で静置し、5日間培養を行なった。培地は2日に1回の頻度で交換を行った。次いで、温調剥離法で細胞を剥離した。即ち4℃の冷媒地で培地交換をし、室温で10分間静置した後、ピペットで培地を吸ったり出したりする「ピペッティング操作」を約10回行い、細胞剥離を行った。次いで、前記「細胞の剥離率と生存率、及び培養性の測定」方法に従って、剥離した細胞数と剥離細胞中の死細胞数、及び全培養細胞数を計測し、式(6)、(7)、(8)より剥離率、生存率及び培養性を算出した。
(細胞の剥離率と生存率、及び培養性の測定)
培養終了後、温調法または酵素法で細胞剥離操作を行い、剥離された細胞懸濁液を細胞計測専用カセットに吸入しで吸い込み、細胞計数装置NC-100(株式会社エムエステクノシステムズ社製)を用いて細胞懸濁液中剥離細胞中の死細胞数を計測する。また、剥離された細胞を培地ごとに100μLを1.5mlのチューブに移し、ReagentAとReagentB(株式会社エムエステクノシステムズ社製)を100μlずつ加え、数回ピペッティングして均一に混同した後、同様に新たなカセットで液を吸入し吸い上げ、細胞計数装置NC-100にセットし剥離した細胞数を計測する。更に、剥離操作後の剥離細胞を全て除去したシャーレにReagentAを適量加え、室温(25℃)にて10分間静置してスクレーパー(ゴムヘラ)を用いてシャーレに残存した細胞未剥離細胞を完全に剥離・溶解した剥がした後、ReagentBを適量加え、数回ピペッティングして均一に混同して細胞計数装置NC-100にセットしシャーレに残った未剥離の細胞数を計測する。細胞剥離率と生存率及び培養性はそれぞれ下記式(6)、(7)、(8)より算出する。
剥離率=[剥離した細胞数/(剥離した細胞数+未剥離の細胞数)]×100
・・・(6)
生存率=(1-剥離細胞中の死細胞数/剥離した細胞数)×100
・・・(7)
培養性=培養基材で得た細胞総数/TCPS(市販の組織培養用シャーレ)で得た細胞総数*
・・・(8)
*細胞総数=剥離した細胞数+未剥離の細胞数
(アルカリホスファターゼ染色(AP染色)例)
未分化iPS細胞は高いアルカリホスファターゼ活性を示すため、濃く染色される。逆に、分化細胞はアルカリホスファターゼ活性を示さず染色されない。
試薬としてSigma-Aldrich製の「Leukocyte Alkaline Phosphatase Kit」を使用した。操作手順としては、培養終了後、シャーレ中の培地を除いてリン酸緩衝液を加え細胞を洗浄した後リン酸緩衝液を除く。次いで、固定液を加え約1分間製置してから固定液を除き水で洗浄した後、染色液を加え室温(25℃)1時間静置する。染色液を除き、水で洗浄して、封入剤をいれカバーガラスで覆って顕微鏡で観察する。アルカリホスファターゼ活性を示す場合(陽性)、赤く染色される。
Figure JPOXMLDOC01-appb-T000013
<保存安定性試験>
実施例14~29の培養基材は全て下記方法で作製した。
ブロックポリマー12(実施例26、27はブロックポリマー8、実施例28、29はブロックポリマー13)の1質量%メタノール溶液を、35mmポリスチレン製シャーレ(35mm/Tissue Culture Dish、AGCテクノグラス株式会社製)に適量を入れ、スピンコーターを用いてシャーレの表面に薄く塗布し、80℃の恒温器中で20分間乾燥させた。次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時間乾燥して、細胞培養容器14~29を得た。AFM(原子間力顕微鏡)を用いて塗膜の厚みを測定したところ、膜厚は約20nmであった。
実施例14、26、28の[ラミニンコート] 
細胞培養容器14、26、28に、濃度10μg/mLのラミニン(商品名:iMatrix、株式会社ニッピ製)水溶液を500μL入れ(コート量0.5μg/cm2相当)、37℃、1時間静置して、該水溶液を捨て、室温25℃(相対湿度35~55%RH)で1日静置して乾燥させた。
実施例15の[ラミニンコート] 
細胞培養容器15に、濃度10μg/mLのラミニン(商品名:iMatrix、株式会社ニッピ製)水溶液を500μL入れ(コート量0.5μg/cm2相当)、37℃、1時間静置して、該水溶液を捨て、室温25℃(相対湿度35~55%RH)で1日静置して乾燥させた後、更に、室温(25℃、40%RH)で30日間静置した。
実施例27、29の[ラミニンコート] 
細胞培養容器27、29に、濃度10μg/mLのラミニン(商品名:iMatrix、株式会社ニッピ製)水溶液を500μL入れ(コート量0.5μg/cm2相当)、37℃、1時間静置して、該水溶液を捨て、室温25℃(相対湿度35~55%RH)で1日静置して乾燥させた後、更に、室温(25℃、40%RH)で6日間静置した。
実施例16の[ラミニン/ゼラチン混合溶液のコート] 
細胞培養容器16に、濃度0.2mg/mlのゼラチン(新田ゼラチン株式会社製)と濃度10μg/mLのラミニンを含んだ水溶液を500μL入れ(ゼラチンコート量10μg/cm2相当、ラミニンコート量0.5μg/cm2相当)、37℃で1時間静置した後、該水溶液を捨て、室温25℃(相対湿度35~55%RH)で1日乾燥させた。
実施例17の[ラミニン/ゼラチン混合物のコート] 
細胞培養容器16に、濃度3mg/mlのゼラチン(新田ゼラチン株式会社製)と濃度10μg/mLのラミニンを含んだ水溶液を500μL入れ(ゼラチンコート量150μg/cm2相当、ラミニンコート量0.5μg/cm2相当)、37℃で1時間静置した後、該水溶液を捨て、室温25℃(相対湿度35~55%RH)で1日乾燥させた。
実施例18の[ラミニン/ゼラチン混合物のコート] 
細胞培養容器16に、濃度3mg/mlのゼラチン(新田ゼラチン株式会社製)と濃度1μg/mLのラミニンを含んだ水溶液を500μL入れ(ゼラチンコート量150μg/cm2相当、ラミニンコート量0.5μg/cm2相当)、37℃で1時間静置した後、該水溶液を捨て、室温25℃(相対湿度35~55%RH)で1日乾燥させた後、更に、室温(25℃、40%RH)で30日間静置した。
実施例19の[コラーゲンとラミニンのコート] 
細胞培養容器19に、濃度0.1mg/mlのコラーゲン(商品名:Cellmatrix Type I-C、新田ゼラチン株式会社製)水溶液を500μL入れ(コート量5μg/cm2相当)、37℃で1時間静置した後、該水溶液を捨て、次いで、濃度10μg/mLのラミニン(商品名:iMatrix、株式会社ニッピ製)水溶液を500μL入れ(コート量0.5μg/cm2相当)、37℃、1時間静置して、該水溶液を捨て、室温25℃(相対湿度35~55%RH)で1日乾燥させた。
実施例20の[コラーゲンとラミニンのコート] 
 実施例19の濃度0.1mg/mlのコラーゲン水溶液の代わりに、濃度1mg/mlのコラーゲン水溶液を用いること以外は、実施例19と同様にしてコラーゲンとラミニンのコートを行った。
実施例21の[コラーゲンとラミニンのコート] 
 実施例19の濃度0.1mg/mlのコラーゲン水溶液の代わりに、濃度2mg/mlのコラーゲン水溶液を用いること以外は、実施例19と同様にしてコラーゲンとラミニンのコートを行った。
実施例22の[コラーゲンとラミニンのコート] 
実施例19の濃度0.1mg/mlのコラーゲン水溶液の代わりに、濃度4mg/mlのコラーゲン水溶液を用いること以外は、実施例19と同様にしてコラーゲンとラミニンのコートを行った。
実施例23の[コラーゲンとラミニンのコート] 
実施例19の濃度0.1mg/mlのコラーゲン水溶液の代わりに、濃度10mg/mlのコラーゲン水溶液を用いること以外は、実施例19と同様にしてコラーゲンとラミニンのコートを行った。
実施例24の[コラーゲンとラミニンのコート] 
細胞培養容器24に、濃度1mg/mlのコラーゲン(商品名:Cellmatrix Type I-C、新田ゼラチン株式会社製)水溶液を500μL入れ(コート量50μg/cm2相当)、37℃で1時間静置した後、該水溶液を捨て、次いで、濃度14μg/mLのラミニン(商品名:iMatrix、株式会社ニッピ製)水溶液を500μL入れ(コート量0.7μg/cm2相当)、37℃、1時間静置して、該水溶液を捨て、室温25℃(相対湿度35~55%RH)で1日乾燥させた。
実施例25の[コラーゲンとラミニンのコート] 
 実施例24の「濃度14μg/mLのラミニン水溶液」の代わりに、濃度20μg/mLのラミニン水溶液を用いること以外は、実施例24と同様にしてコラーゲンとラミニンのコートを行った。
 [比較例3]
市販の細胞培養容器35mmポリスチレン製シャーレ(TCPS、35mm/Tissue Culture Dish、AGCテクノグラス製)の35mmシャーレに、濃度10μg/mLのラミニン(商品名:iMatrix、株式会社ニッピ製)水溶液を500μL入れ(コート量0.5μg/cm2相当)、37℃、1時間静置して、該水溶液を捨て、室温25℃(相対湿度35~55%RH)で1日静置して乾燥させた。
[比較例4]
市販の細胞培養容器35mmポリスチレン製シャーレ(TCPS、35mm/Tissue Culture Dish、AGCテクノグラス製)に、濃度10μg/mLのラミニン(商品名:iMatrix、株式会社ニッピ製)水溶液を500μL入れ(コート量0.5μg/cm2相当)、37℃、1時間静置して、該水溶液を捨て、室温25℃(相対湿度35~55%RH)で1日静置して乾燥させた後、更に、室温(25℃、40%RH)で6日間静置した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
(実施例30)
ブロックポリマー10をメタノールで希釈して0.12%溶液を作成し、35mmポリスチレン製シャーレ(35mm/Tissue Culture Dish、IWAKI製)に40ul添加した後、室温2時間静置して乾燥させ、更に超純水と滅菌水でそれぞれリンスし、40℃にて一晩乾燥させることで、細胞培養基材を積層した細胞培養容器30を得た。得られた細胞培養基材の膜厚を分光エリプソメトリ法により測定したところ、35nmであった。
[iPS細胞の培養、剥離率の評価]
培養容器30に、濃度0.5ug/ulのラミニン(商品名:iMatrix、株式会社ニッピ製)水溶液を4.8ul、濃度3.4ug/ulのROCK阻害剤Y27632を1.5ul、及び1.3x10個のiPS細胞(201B7株、iPSアカデミアジャパン株式会社製)を加えた培地(StemFit Ak02N、味の素株式会社製)1.5mlを入れ、5%CO雰囲気の37℃恒温器内で静置し、8日間培養を行なった。培養開始日の3日目より連続5日間毎日培地交換を行なった。
 次いで、4℃の冷媒地で培地交換をし、室温で10分間静置した後、ピペットで培地を吸ったり出したりする「ピペッティング操作」を約10回行い、細胞剥離を行った。前記「細胞の剥離率と生存率、及び培養性の測定」方法に従って求めた細胞培養性は1.0(TCPS同等)、細胞剥離率は95%、回収細胞の生存率は75%であった。
(比較例5)
 35mmポリスチレン製シャーレ(35mm/Tissue Culture Dish、IWAKI製)を用いること以外は、実施例30と同様にして、iPS細胞の培養、剥離率の評価を行なった。その結果、iPS細胞の培養、剥離率の評価を行なった。その結果、細胞培養性は1.0、細胞剥離率は5%、回収細胞の生存率は20%であった。
 本発明の細胞培養基材は、ヒト多能性幹細胞であっても高効率で培養可能であり、かつ培養後の細胞を高い生存率を維持したまま剥離させ回収することが可能な細胞培養基材を提供することにある。また、さらには、細胞剥離可能かつ乾燥状態にも耐えうる細胞培養基材を提供することにある。

Claims (12)

  1.  下限臨界溶解温度を有するセグメントと疎水性セグメントとのブロックポリマーを含有する細胞培養基材であって、該細胞培養基材中に更に接着基質を有し、該接着基質が細胞外マトリクス及びまたは接着性合成基質であることを特徴とする細胞培養基材。
  2.  細胞外マトリクスが、ラミニン、フィブロネクチン、ビトロネクチン、カドヘリン及びそれらのフラグメントから選ばれる少なくとも一種である、請求項1に記載の細胞培養基材。
  3.  接着性合成基質が、poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide]またはオリゴペプチド担持ポリマーである、請求項1または2に記載の細胞培養基材。
  4.  前記下限臨界溶解温度を有するセグメントの重合度が400-10000である、請求項1から3のいずれかに記載の細胞培養基材。
  5.  前記疎水性セグメントが、下記式(1)で表されるモノマーを重合して得られるものである、請求項1から4のいずれかに記載の細胞培養基材。
    Figure JPOXMLDOC01-appb-C000001
                  ・・・(1)
    (上記式(1)中、Rは水素原子またはメチル基であり、Rはフェニル基、アルキル炭素数1~8のカルボキシアルキル基、アラルキル炭素数7または8のカルボキシアラルキル基、下記式(2)で表される基、下記式(3)で表される基のうちのいずれか1つを表す。
    Figure JPOXMLDOC01-appb-C000002
                  ・・・(2)
    (上記式(2)において、nは2または3を表し、Rは炭素数1~3のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000003
                  ・・・(3)
    (上記式(2)において、RおよびRは、それぞれ独立して水素原子または炭素数1~6のアルキル基を表し、RおよびRの合計炭素数が5以上であることを表す。))
  6.  前記細胞培養基材上に、更にゼラチン、コラーゲンおよびまたはアルブミンから選ばれる少なくとも一種のタンパク質を含有するものである、請求項1から5のいずれかに記載の細胞培養基材。
  7.  請求項1に記載のブロックポリマー、ゼラチン、コラーゲンおよびまたはアルブミンから選ばれる少なくとも一種のタンパク質、請求項1に記載の接着基質の順に積層されることを特徴とする、請求項6に記載の細胞培養基材。
  8.  乾燥細胞培養基材である、請求項1から7のいずれかに記載の細胞培養基材。
  9.  支持体上に積層されたことを特徴とする、請求項1から8のいずれかに記載の細胞培養基材。
  10.  平均膜厚が1000nm以下である、請求項9に記載の細胞培養基材。
  11.  請求項1に記載のブロックポリマー上に、
    ゼラチン、コラーゲンおよびまたはアルブミンから選ばれる少なくとも一種のタンパク質を含有する溶液を塗布する工程と、
    さらに請求項1に記載の接着基質を含有する溶液を塗布し細胞培養基材とする工程と、
    得られた細胞培養基材を乾燥する工程とを有する、乾燥細胞培養基材の製造方法。
  12.  支持体と請求項1~10のいずれかに記載の細胞培養基材とを有する細胞培養器材。
PCT/JP2017/044508 2016-12-22 2017-12-12 細胞培養基材 WO2018116904A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197014082A KR102469649B1 (ko) 2016-12-22 2017-12-12 세포 배양 기재
CN201780079653.5A CN110121552A (zh) 2016-12-22 2017-12-12 细胞培养基材
EP17883177.2A EP3561043A4 (en) 2016-12-22 2017-12-12 CELL CULTURE SUBSTRATE
JP2018535906A JP6451023B2 (ja) 2016-12-22 2017-12-12 細胞培養基材
US16/467,520 US11441120B2 (en) 2016-12-22 2017-12-12 Cell culture substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016248893 2016-12-22
JP2016-248893 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018116904A1 true WO2018116904A1 (ja) 2018-06-28

Family

ID=62626609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044508 WO2018116904A1 (ja) 2016-12-22 2017-12-12 細胞培養基材

Country Status (6)

Country Link
US (1) US11441120B2 (ja)
EP (1) EP3561043A4 (ja)
JP (1) JP6451023B2 (ja)
KR (1) KR102469649B1 (ja)
CN (1) CN110121552A (ja)
WO (1) WO2018116904A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035436A1 (ja) * 2017-08-16 2019-02-21 東ソー株式会社 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP2019033742A (ja) * 2017-08-16 2019-03-07 東ソー株式会社 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP2020014453A (ja) * 2018-07-13 2020-01-30 東ソー株式会社 幹細胞の培養基材及び幹細胞の製造方法
JP2020015892A (ja) * 2018-07-13 2020-01-30 東ソー株式会社 ブロック共重合体及び培養基材、幹細胞の製造方法
JP2020018193A (ja) * 2018-07-31 2020-02-06 東ソー株式会社 多能性幹細胞の剥離方法
WO2020036096A1 (ja) * 2018-08-17 2020-02-20 東ソー株式会社 細胞懸濁液の製造方法
JP2020062009A (ja) * 2018-10-16 2020-04-23 東ソー株式会社 細胞培養基材、細胞培養基材の製造方法、及びスフェロイドの製造方法
JP2020074704A (ja) * 2018-11-07 2020-05-21 東ソー株式会社 溶出物試験方法
JP2020115787A (ja) * 2019-01-24 2020-08-06 住友ゴム工業株式会社 細胞培養装置及び細胞培養方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427803B2 (en) 2016-12-22 2022-08-30 Fujifilm Corporation Cell culture substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033928A1 (en) * 2007-03-09 2011-02-10 The Regents Of The University Of Michigan Methods and compositions for growth of cells and embryonic tissue on a synthetic polymer matrix
WO2011043405A1 (ja) 2009-10-08 2011-04-14 国立大学法人大阪大学 ヒト多能性幹細胞用培養基材およびその利用
JP2013195399A (ja) * 2012-03-22 2013-09-30 Dainippon Printing Co Ltd 細胞培養基材の検査方法及び検査装置、並びに細胞培養基材の製造方法
JP2014140384A (ja) * 2014-04-30 2014-08-07 Cellseed Inc 培養細胞移動治具、及びその利用方法
WO2014199754A1 (ja) 2013-06-12 2014-12-18 国立大学法人大阪大学 ラミニンフラグメントが乾燥状態でコーティングされている細胞培養器具
WO2015093393A1 (ja) * 2013-12-20 2015-06-25 Dic株式会社 温度応答性細胞培養基材及びその製造方法
WO2016199552A1 (ja) * 2015-06-10 2016-12-15 株式会社日立製作所 細胞培養容器及び細胞培養方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168470A (ja) * 1990-08-08 1993-07-02 W R Grace & Co 複数の細胞種からなる細胞塊状体とシートおよびその製造法
EP0470681A3 (en) 1990-08-08 1992-04-22 W.R. Grace & Co.-Conn. Cell clusters or sheets comprising a plurality of cell species and preparations thereof
EP0529751A1 (en) * 1991-08-09 1993-03-03 W.R. Grace & Co.-Conn. Cell culture substrate, test material for cell culture and preparations thereof
TWI245634B (en) * 2001-12-28 2005-12-21 Ind Tech Res Inst Preparation of a biodegradable thermal-sensitive gel system
JP2007049918A (ja) * 2005-08-17 2007-03-01 Onecell Inc 細胞培養支持体及びその細胞培養法、細胞回収法と細胞
US9132149B2 (en) 2007-11-29 2015-09-15 Case Western Reserve University Toxicity enhancing compounds and methods
CN100480291C (zh) * 2007-06-15 2009-04-22 北京化工大学 一种超分子结构温度敏感性水凝胶的制备方法
AU2008294406A1 (en) * 2007-09-07 2009-03-12 Csir Non-invasive automated cell proliferation apparatus
EP2330182A4 (en) 2008-09-08 2012-04-25 Univ Tokyo Sci Educ Found SPHEROID COMPOSITE, HYDROGEL CONTAINING SPHEROIDS AND METHODS OF MAKING SAME
US20110183418A1 (en) * 2009-07-29 2011-07-28 Arthur Winston Martin Peptide-Polymer Cell Culture Articles and Methods of Making
CN101629162B (zh) * 2009-08-26 2011-05-25 暨南大学 组织工程细胞片及其制备方法
EP2612902B1 (en) * 2010-08-31 2016-10-26 Tokyo Women's Medical University Temperature-responsive substrate for cell culture and method for producing same
US8664463B2 (en) 2010-10-06 2014-03-04 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Reversible adhesives
US20120156777A1 (en) * 2010-12-16 2012-06-21 General Electric Company Cell carrier, associated methods for making cell carrier and culturing cells using the same
US9701939B2 (en) * 2011-04-08 2017-07-11 The University Of Akron Thermoresponsive cell culture supports
JP5439551B2 (ja) * 2011-08-15 2014-03-12 一般財団法人川村理化学研究所 ブロック共重合体の塗膜
JP5880181B2 (ja) * 2012-03-16 2016-03-08 Dic株式会社 有機無機複合ヒドロゲル
RU2585787C2 (ru) * 2013-12-09 2016-06-10 Общество с ограниченной ответственностью "Умные адгезивы" Гидрофильная, термопереключаемая, чувствительная к давлению адгезионная композиция, обратимо отлипающая в водной среде при повышении температуры
US20180127700A1 (en) * 2015-05-21 2018-05-10 University Of South Florida Cell Culture Substrate for Rapid Release and Re-Plating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033928A1 (en) * 2007-03-09 2011-02-10 The Regents Of The University Of Michigan Methods and compositions for growth of cells and embryonic tissue on a synthetic polymer matrix
WO2011043405A1 (ja) 2009-10-08 2011-04-14 国立大学法人大阪大学 ヒト多能性幹細胞用培養基材およびその利用
JP2013195399A (ja) * 2012-03-22 2013-09-30 Dainippon Printing Co Ltd 細胞培養基材の検査方法及び検査装置、並びに細胞培養基材の製造方法
WO2014199754A1 (ja) 2013-06-12 2014-12-18 国立大学法人大阪大学 ラミニンフラグメントが乾燥状態でコーティングされている細胞培養器具
WO2015093393A1 (ja) * 2013-12-20 2015-06-25 Dic株式会社 温度応答性細胞培養基材及びその製造方法
JP2014140384A (ja) * 2014-04-30 2014-08-07 Cellseed Inc 培養細胞移動治具、及びその利用方法
WO2016199552A1 (ja) * 2015-06-10 2016-12-15 株式会社日立製作所 細胞培養容器及び細胞培養方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MELLATI A.: "Influence of polymer molecular weight on the in vitro cytotoxicity of poly (N-isopropylacrylamide)", MATERIALS SCIENCE AND ENGINEERING C, vol. 59, 22 October 2015 (2015-10-22), pages 509 - 513, XP029329711, ISSN: 0928-4931, DOI: 10.1016/j.msec.2015.10.043 *
See also references of EP3561043A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033742A (ja) * 2017-08-16 2019-03-07 東ソー株式会社 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
WO2019035436A1 (ja) * 2017-08-16 2019-02-21 東ソー株式会社 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP7271870B2 (ja) 2017-08-16 2023-05-12 東ソー株式会社 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP2020014453A (ja) * 2018-07-13 2020-01-30 東ソー株式会社 幹細胞の培養基材及び幹細胞の製造方法
JP2020015892A (ja) * 2018-07-13 2020-01-30 東ソー株式会社 ブロック共重合体及び培養基材、幹細胞の製造方法
JP7293683B2 (ja) 2018-07-13 2023-06-20 東ソー株式会社 ブロック共重合体及び培養基材、幹細胞の製造方法
JP7143667B2 (ja) 2018-07-31 2022-09-29 東ソー株式会社 多能性幹細胞の剥離方法
JP2020018193A (ja) * 2018-07-31 2020-02-06 東ソー株式会社 多能性幹細胞の剥離方法
WO2020036096A1 (ja) * 2018-08-17 2020-02-20 東ソー株式会社 細胞懸濁液の製造方法
JP2020062009A (ja) * 2018-10-16 2020-04-23 東ソー株式会社 細胞培養基材、細胞培養基材の製造方法、及びスフェロイドの製造方法
CN112840016A (zh) * 2018-10-16 2021-05-25 东曹株式会社 细胞培养基材、细胞培养基材的制造方法、及球状体的制造方法
WO2020080364A1 (ja) * 2018-10-16 2020-04-23 東ソー株式会社 細胞培養基材、細胞培養基材の製造方法、及びスフェロイドの製造方法
JP7262206B2 (ja) 2018-11-07 2023-04-21 東ソー株式会社 溶出物試験方法
JP2020074704A (ja) * 2018-11-07 2020-05-21 東ソー株式会社 溶出物試験方法
JP2020115787A (ja) * 2019-01-24 2020-08-06 住友ゴム工業株式会社 細胞培養装置及び細胞培養方法

Also Published As

Publication number Publication date
JPWO2018116904A1 (ja) 2018-12-20
EP3561043A4 (en) 2020-09-02
US20190338243A1 (en) 2019-11-07
KR102469649B1 (ko) 2022-11-21
JP6451023B2 (ja) 2019-01-16
CN110121552A (zh) 2019-08-13
KR20190096967A (ko) 2019-08-20
EP3561043A1 (en) 2019-10-30
US11441120B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP6451023B2 (ja) 細胞培養基材
JP6312613B2 (ja) 温度応答性基材、その製造方法及びその評価方法
US11499136B2 (en) Cell culture substrate
EP3868863A1 (en) Cell culture substrate, method for producing cell culture substrate, and method for producing spheroids
JP6447787B2 (ja) 細胞培養基材
JP2010063439A (ja) 細胞培養支持体の製造方法
WO2019035436A1 (ja) 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP5935477B2 (ja) 骨髄由来細胞の培養方法
JP7271870B2 (ja) 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP7293683B2 (ja) ブロック共重合体及び培養基材、幹細胞の製造方法
JP5657744B2 (ja) 細胞培養支持体の製造方法
JP6286947B2 (ja) 細胞凝集塊の製造方法、及び薬剤のスクリーニング方法
JP7183612B2 (ja) 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP6286948B2 (ja) 細胞凝集塊の製造方法、及び薬剤のスクリーニング方法
JP6024796B2 (ja) 細胞培養基材及び細胞培養方法
JP6229503B2 (ja) 温度応答性を有する細胞培養基材およびその製造方法
JP2019104783A (ja) 共重合体、基材用表面処理剤および細胞培養基材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018535906

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014082

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017883177

Country of ref document: EP

Effective date: 20190722