WO2015093393A1 - 温度応答性細胞培養基材及びその製造方法 - Google Patents

温度応答性細胞培養基材及びその製造方法 Download PDF

Info

Publication number
WO2015093393A1
WO2015093393A1 PCT/JP2014/082861 JP2014082861W WO2015093393A1 WO 2015093393 A1 WO2015093393 A1 WO 2015093393A1 JP 2014082861 W JP2014082861 W JP 2014082861W WO 2015093393 A1 WO2015093393 A1 WO 2015093393A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
cell culture
monomer
culture substrate
cells
Prior art date
Application number
PCT/JP2014/082861
Other languages
English (en)
French (fr)
Inventor
高田 哲生
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to US15/106,470 priority Critical patent/US9951308B2/en
Priority to JP2015553508A priority patent/JP6052432B2/ja
Publication of WO2015093393A1 publication Critical patent/WO2015093393A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2539/00Supports and/or coatings for cell culture characterised by properties
    • C12N2539/10Coating allowing for selective detachment of cells, e.g. thermoreactive coating

Definitions

  • the present invention relates to a cell culture technique, and more specifically, to a cell culture substrate capable of easily peeling and recovering cultured cells only by temperature change without using a drug such as trypsin, and a method for producing the same.
  • plastic (for example, polystyrene) containers have been mainly used as cell culture substrates for animal tissues and the like. These containers are subjected to surface treatment such as plasma treatment or coating of silicon, cell adhesion factor, or the like in order to effectively perform cell culture.
  • surface treatment such as plasma treatment or coating of silicon, cell adhesion factor, or the like in order to effectively perform cell culture.
  • the cultured (growth) cells adhere to the vessel surface, and in order to isolate and recover the cells, trypsin or other protein hydrolase or chemical It was necessary to peel from the container surface using chemicals.
  • the operation of detaching cells with such enzymes and chemicals is not only complicated, but there is a risk that impurities such as bacteria and DNA or RNA may be mixed.
  • impurities such as bacteria and DNA or RNA may be mixed.
  • the binding part of the cell and base material cut but the bond between the cells is also broken, so that the cells cannot be taken out in a proliferating shape (for example, a sheet) or damaged. And the nature
  • a polymer such as poly-N-isopropylacrylamide has low adhesiveness with a plastic surface such as polystyrene, and when applied to water, the applied polymer layer easily peels off. In order to prevent such a polymer layer from being peeled off from the plastic surface even when it is exposed to water, it is necessary to fix the polymer.
  • a solution of N-isopropylacrylamide (monomer) is applied to the surface of a cell culture substrate and graft polymerization is performed by electron beam irradiation (see, for example, Patent Document 3).
  • Graft polymerization by electron beam irradiation always causes a cross-linking reaction between the polymers at the same time as the polymerization, and the temperature response speed of the polymer greatly decreases as the degree of cross-linking progresses, and the low temperature is maintained to make the polymer hydrophilic. There is a problem that it takes a long time, and in the meantime, the cells are also exposed to a low temperature state for a long time and damaged.
  • radiation eg, ⁇ -ray
  • a cell culture substrate containing a polymer (A) of a (meth) acrylic acid ester monomer (a), an inorganic material (C), and a polymer (B) having a lower critical solution temperature is various cells.
  • a polymer (A) of a (meth) acrylic acid ester monomer (a), an inorganic material (C), and a polymer (B) having a lower critical solution temperature is various cells.
  • the polymer (B) having the lower critical solution temperature used in the above invention is a single polymer centered on poly N-isopropylacrylamide, has a single lower critical solution temperature, and can arbitrarily set the lower critical solution temperature. It cannot be changed (controlled).
  • the problem to be solved by the present invention is that a polymer (B) having a lower critical solution temperature contained in a base material is not crosslinked and is a monomer (a) that becomes a hydrophobic polymer in homopolymerization, It is a copolymer with a monomer (b, c, or d) that becomes a hydrophilic polymer upon polymerization, and the lower critical solution temperature of the resulting copolymer (B) can be widely controlled by the type and ratio of both monomers. Furthermore, depending on the type of cultured cells, the type and ratio of both monomers can be changed as appropriate so that cells can be cultured with better cell adhesion and growth properties.
  • the hydrophobicity and hydrophilicity of the culture substrate surface against environmental temperature Rapid changes in sex, without the use of proteolytic enzymes such as trypsin when separating and recovering cultured cells, without damaging the cells, and quickly culturing cells from the surface of the culture substrate Peeling And to provide a recovery can cell culture substrate.
  • the polymer (B) in the cell culture substrate of the present invention has multipoint interaction with the inorganic material (C), it has resistance to radiation sterilization.
  • Another object of the present invention is a method for producing the above cell culture substrate, wherein the polymer (B) having a lower critical solution temperature contained in the substrate is not crosslinked, and Without using a method such as electron beam irradiation, the cell culture substrate can be easily adhered to the surface of a plastic container. Further, depending on the type (adhesiveness) of cells to be cultured, An object of the present invention is to provide a production method using a simple apparatus and process, in which the length and density of the combined body (B) can be easily adjusted.
  • the present inventor has found that the polymer (A) of the (meth) acrylic acid ester monomer (a), one or more kinds selected from a water-swellable clay mineral and silica.
  • a cell culture substrate having an inorganic material (C) and a polymer (B) having a lower critical solution temperature and comprising a monomer (a) and a monomer (b, c, or d) is good for various cells. Cultivatability and the characteristics that the cultured cells can be easily detached by lowering the environmental temperature. Furthermore, by adjusting the type and ratio of the monomer according to the cell type, its cultivability and exfoliation properties are easy. As a result, the present invention has been completed.
  • the present invention is selected from a polymer (A) of a monomer (a) represented by the following formula (1), a polymer (B) having a lower critical solution temperature, a water-swellable clay mineral and silica.
  • One or more inorganic materials (C) The mass ratio ((C) / (A)) between the polymer (A) and the inorganic material (C) is in the range of 0.01 to 3,
  • the polymer (B) is a copolymer (B1) of a monomer (a) and a hydrophilic amide vinyl monomer (b), or a monomer (a) and a monomer (c) represented by the following formula (2)
  • a cell culture substrate in which the content of the polymer (B) in the whole cell culture substrate is 0.1% by mass to 40% by mass.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 3 carbon atoms
  • R 3 represents an alkyl group having 1 to 2 carbon atoms.
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents an alkylene group having 2 to 3 carbon atoms.
  • n an integer of 2 to 20.
  • the hydrophilic amide vinyl monomer (b) is selected from the group consisting of N-substituted (meth) acrylamide derivatives, N, N-disubstituted (meth) acrylamide derivatives, and N-vinylpyrrolidone.
  • a method for producing a cell culture substrate that is at least one monomer The monomer (a), the inorganic material (C), and the concentration of the inorganic material (C) in the aqueous medium (W) are in a range represented by the following formula (4) or formula (5): After mixing the polymerization initiator (D) with the aqueous medium (W), the monomer (a) is polymerized to disperse the complex (X) of the polymer (A) and the inorganic material (C).
  • a method for producing a cell culture substrate comprising sequentially adding a second step of adding the polymer (B) to the dispersion (L), mixing and applying the mixture to a support, followed by drying. provide.
  • Formula (4) When Ra ⁇ 0.19 Concentration (mass%) of inorganic material (C) ⁇ 12.4Ra + 0.05 Formula (5) When Ra ⁇ 0.19 Concentration (mass%) of inorganic material (C) ⁇ 0.87Ra + 2.17 (In the formula, the concentration (% by mass) of the inorganic material (C) is a value obtained by dividing the mass of the inorganic material (C) by the total mass of the aqueous medium (W) and the inorganic material (C) and multiplying by 100, Ra Is a mass ratio ((C) / (A)) between the inorganic material (C) and the polymer (A).)
  • the polymer (B) having a lower critical solution temperature is a monomer (a) that becomes a hydrophobic polymer in homopolymerization and a monomer that becomes a hydrophilic polymer in homopolymerization. (B or c, or d), and the lower critical solution temperature of the resulting copolymer (B) can be widely controlled by the type and ratio of the monomer, and further, depending on the type of cell, The purpose is to be able to culture cells with better cell adhesion and proliferation by appropriately changing the type and ratio of monomers.
  • the lower critical solution temperature of the polymer (B) obtained with the same monomer ratio differs depending on the type of monomer, and the lower critical solution temperature is higher for monomers having higher hydrophilicity and stronger affinity with water. Become hot. Further, as the ratio of the monomer (b, c, or d) is increased with respect to the monomer (a), the lower critical solution temperature of the polymer (B) obtained shifts to the higher temperature side, and this ratio and the lower critical solution temperature are reduced. Are in a linear relationship. Since the cell culture temperature is usually 37 ° C., the monomer species and the copolymerization ratio are adjusted so that the lower critical solution temperature of the polymer B of the present invention is around 20 to 32 ° C.
  • the monomer (a) of the present invention is water-soluble, but the polymer (A) is hydrophobic and does not dissolve in water. Furthermore, the basic feature of the cell culture substrate of the present invention is that the constituent parts of the polymer (A) and the inorganic material (C) are mainly responsible for cell adhesion and proliferation, and the polymer (B ) Is responsible for cell detachment due to temperature changes, and the two parts can be controlled independently according to the cell type.
  • the polymer (B) becomes insoluble in water (hydrophobic), and the cells adhere on the surface of the substrate. ⁇ Proliferates, but when the temperature is lowered below the lower critical solution temperature (for example, 10 ° C.) after culturing, the polymer (B) becomes water-soluble and extends from the substrate surface to an aqueous solution (medium). Along with this, the cells are detached while being detached from the substrate surface.
  • the polymer (A) and the polymer (B) interact and bond with the inorganic material (C) mainly through ionic bonds and hydrogen bonds. This bonding force is strong, and the polymer and the inorganic material (C) cannot be easily separated. Because of the interaction, the polymers (A) and (B) are difficult to crosslink even when exposed to sterilizing radiation ( ⁇ rays, electron beams), and have radiation sterilization resistance.
  • the cell culture substrate of the present invention comprises a thin layer of a composite (X) in which an inorganic material (C) and a polymer (A) have a substantially uniform layered structure, and from the thin layer toward the surface. It is comprised from the extending
  • the cell culture substrate surface is appropriately exposed without being completely covered with the polymer (B), so that good cell adhesion / proliferation and cell detachability are achieved. Can be maintained.
  • the cell culture substrate of the present invention has a rapid change rate of hydrophobicity and hydrophilicity with respect to environmental temperature, and constitutes a polymer (B) having a lower critical solution temperature depending on the type of cell (adhesiveness) to be cultured.
  • a polymer (B) having a lower critical solution temperature depending on the type of cell (adhesiveness) to be cultured Monomer species and ratio, and the content thereof can be easily adjusted, and the cultured cells can be quickly detached and recovered from the surface of the culture substrate without using a drug (trypsin or the like).
  • the production method of the present invention is such that the polymer (B) having a lower critical solution temperature contained in the base material is not cross-linked (a more rapid temperature responsiveness can be maintained), and electron beam irradiation Without using such a polymerization method, the cell culture substrate can be easily adhered to a support (such as a plastic culture vessel), and further, depending on the type of cells to be cultured (adhesiveness). Thus, the composition and content (density) of the polymer (B) can be easily adjusted, and the production apparatus and process are simple.
  • the monomer (a) used in the present invention can be suitably used as long as the polymer interacts with the inorganic material (C) and can form an organic-inorganic composite by polymerization (for example, diacetone acrylamide).
  • the monomer (a) of the following formula (1) is preferably used.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 3 carbon atoms
  • R 3 represents an alkyl group having 1 to 2 carbon atoms.
  • the initial cell adhesion can be easily adjusted, and a cell culture substrate having good cell growth and detachability can be obtained.
  • this cell culture substrate is laminated on the surface of a support made of plastic such as polystyrene, the adhesion between the two is strong and the production can be simplified.
  • the above monomers (a) may be used in combination of one or more depending on the required mechanical properties, surface properties, adhesion to the substrate, and the like.
  • an acrylic monomer having an anion group such as a sulfone group or a carboxyl group, quaternary, etc., as long as it does not affect the culture properties and physical properties of the cell culture substrate.
  • the acrylic monomer here includes an acrylamide monomer.
  • the inorganic material (C) used in the present invention is one or more inorganic materials selected from water-swellable clay minerals and silica.
  • water-swellable clay minerals include water-swellable clay minerals that can be peeled in layers, preferably clay minerals that can swell and uniformly disperse in water or a mixed solution of water and an organic solvent, particularly preferably water.
  • An inorganic clay mineral that can be uniformly dispersed at a molecular level (single layer) or at a level close thereto is used.
  • Specific examples include water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, and water-swellable synthetic mica. You may mix and use these clay minerals.
  • silica (SiO 2 ) used in the present invention examples include colloidal silica, preferably colloidal silica that can be uniformly dispersed in an aqueous solution and has a particle size of 10 nm to 500 nm, and particularly preferably a colloidal particle having a particle size of 10 to 50 nm. Silica is used.
  • the mass ratio ((C) / (A)) between the polymer (A) and the inorganic material (C) is preferably 0.01 to 3, preferably 0.03 to 1 is more preferable, and 0.05 to 0.5 is particularly preferable.
  • the mass ratio ((C) / (A)) is within this range, the particle size of the clay mineral or composite of silica and polymer (A) is more uniform, and the stability of the aqueous dispersion is high.
  • the surface properties (for example, degree of hydrophilicity / hydrophobicity and cell culture property) and physical properties of the coating film are good, a uniform coating film is obtained, adhesion to the support is good, and there is no brittleness.
  • the content of the polymer (B) with respect to the entire substrate is preferably 0.1% by mass to 40% by mass, and more preferably 1-30% by mass. It is particularly preferably 5 to 25% by mass.
  • the content of the polymer (B) is within this range, the cell adhesion and growth of the culture substrate and the peelability when the temperature is lowered are good, the surface smoothness of the culture substrate is good, and the plastic
  • the coating property when laminated on the surface of the substrate made and the adhesion with the substrate surface are good and preferable.
  • the polymer (B) having a lower critical solution temperature used in the present invention is a copolymer of a monomer that is homopolymerized to become a hydrophobic polymer and a monomer that is homopolymerized to become a hydrophilic polymer at a temperature. Any one can be suitably used as long as it can undergo a hydrophilic / hydrophobic transition by change.
  • amide vinyl monomer (b) N-substituted (meth) acrylamide derivatives such as N-methoxymethyl (meth) acrylamide, N, N, N-dimethyl (meth) acrylamide and N, such as (meth) acryloylmorpholine
  • the monomer (c) a monomer represented by the following formula (2) is preferably used.
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents an alkylene group having 2 to 3 carbon atoms.
  • the monomer (d) a monomer represented by the following formula (3) is preferably used.
  • n an integer of 2 to 20.
  • the lower critical solution temperature can be widely controlled by the types and ratios of both monomers, and the types and ratios of both monomers are appropriately selected depending on the type of cultured cells. Can be cultured with better cell adhesion and growth, and the changes in the hydrophobicity and hydrophilicity of the surface of the culture substrate with respect to the environmental temperature are rapid. There is an advantage that cells cultured rapidly can be easily detached and recovered from the surface of the culture substrate without using a protein hydrolase such as trypsin or the like, without damaging the cells. Further, the polymer (B1 or B2 or B3) is preferable since it has a strong interaction with the inorganic material (C), and the cell culture substrate itself is less likely to be detached during cell culture or during the operation of detaching cultured cells.
  • the above-mentioned lower critical solution temperature is a temperature at which the polymer (B) becomes insoluble in water (shows hydrophobicity) when it is higher than this temperature, and becomes water-soluble (shows hydrophilicity) when it is lower than this temperature. That is.
  • the lower limit when the ratio of the two is 80:20 (molar ratio)
  • the critical solution temperature is 15 ° C.
  • the lower critical solution temperature at 70:30 (molar ratio) is 26 ° C.
  • the lower critical solution temperature at 64:36 (molar ratio) is 32 ° C.
  • 60:40 (molar ratio) is 37 ° C.
  • the monomer (a) and the inorganic material (C) are polymerized so that the concentration of the inorganic material (C) in the aqueous medium (W) is in the range represented by the following formula (4) or formula (5).
  • the monomer (a) is polymerized to obtain a dispersion (X) of the composite (X) of the polymer (A) and the inorganic material (C) ( L) the first step of producing
  • the polymer (B) is added to the dispersion liquid (L), mixed uniformly, coated on a support, and then subjected to a second step of drying, in order to produce a cell culture substrate Is the method.
  • Formula (4) When Ra ⁇ 0.19 Concentration (mass%) of inorganic material (C) ⁇ 12.4Ra + 0.05 Formula (5) When Ra ⁇ 0.19 Concentration (mass%) of inorganic material (C) ⁇ 0.87Ra + 2.17 (In the formula, the concentration (% by mass) of the inorganic material (C) is a value obtained by dividing the mass of the inorganic material (C) by the total mass of the aqueous medium (W) and the inorganic material (C) and multiplying by 100, Ra Is a mass ratio ((C) / (A)) between the inorganic material (C) and the polymer (A).)
  • the monomer (a), inorganic material (C), and polymer (B) used in this production method are the same as those described in the description of the cell culture substrate, and will be omitted.
  • the aqueous medium (W) used in the production method of the present invention can contain the monomer (a), the inorganic material (C), etc., and it is sufficient that an organic-inorganic composite dispersion liquid having good physical properties is obtained by polymerization. It is not limited. For example, it may be water or an aqueous solution containing a solvent miscible with water and / or other compounds, and further includes antiseptics and antibacterial agents, coloring agents, fragrances, enzymes, proteins, collagen, sugars, Peptides, amino acids, cells, DNAs, salts, water-soluble organic solvents, surfactants, polymer compounds, leveling agents and the like can be included.
  • the polymerization initiator (D) used in the present invention a known radical polymerization initiator can be appropriately selected and used. Preferably, those having water solubility or water dispersibility and uniformly contained in the entire system are preferably used.
  • a polymerization initiator water-soluble peroxides such as potassium peroxodisulfate and ammonium peroxodisulfate, water-soluble azo compounds such as VA-044, V-50, and V-501 (all of which are Wako Pure Chemical Industries, Ltd.)
  • a mixture of Fe 2+ and hydrogen peroxide is exemplified.
  • a tertiary amine compound such as N, N, N ′, N′-tetramethylethylenediamine is preferably used.
  • the catalyst is not necessarily used.
  • the polymerization temperature is, for example, 0 ° C. to 100 ° C. according to the type of polymerization catalyst and initiator.
  • the polymerization time can also be carried out for several tens of seconds to several tens of hours.
  • the photopolymerization initiator is suitably used as the polymerization initiator (D) because it is hardly affected by oxygen inhibition and has a high polymerization rate.
  • acetophenones such as p-tert-butyltrichloroacetophenone
  • benzophenones such as 4,4′-bisdimethylaminobenzophenone
  • ketones such as 2-methylthioxanthone
  • benzoin ethers such as benzoin methyl ether
  • hydroxy Examples include ⁇ -hydroxy ketones such as cyclohexyl phenyl ketone, phenyl glyoxylates such as methyl benzoyl formate, and metallocenes.
  • the photopolymerization initiator is water-insoluble.
  • water-insoluble as used herein means that the amount of polymerization initiator dissolved in water is 0.5% by mass or less.
  • the initiator is more likely to be present in the vicinity of the clay mineral, the number of initiation reaction points from the vicinity of the clay mineral is increased, and the resulting polymer (A) and inorganic material (C
  • the particle size distribution of the complex (X) with N) is narrow, and the dispersion (L) has high stability, which is preferable.
  • the photopolymerization initiator can be more uniformly dispersed, and a composite (X) having a more uniform particle diameter can be obtained.
  • the mass ratio (D) / (E) of the photopolymerization initiator (D) to the solvent (E) in the solution in which the photopolymerization initiator (D) is dissolved in the solvent (E) is 0.001 to 0.1. Preferably, 0.01 to 0.05 is more preferable. If it is 0.001 or more, a sufficient amount of radicals are generated by irradiation with ultraviolet rays, so that the polymerization reaction can be suitably carried out. If it is 0.1 or less, coloration by an initiator and odor are substantially prevented. The cost can be reduced.
  • the solvent (E) of the present invention a solvent capable of dissolving the photopolymerization initiator (D) and the water-insoluble polymerization initiator (D) and having a certain level of water solubility can be used.
  • the water-soluble solvent mentioned here is preferably a solvent that can dissolve 50 g or more with respect to 100 g of water.
  • the solubility in water is 50 g or more
  • the water-insoluble polymerization initiator (D) has good dispersibility in the aqueous medium (W), and the resulting composite (X) has a uniform particle size.
  • the stability of the dispersion (L) is high and preferable.
  • examples of the water-soluble solvent include amides such as dimethylacetamide and dimethylformamide, alcohols such as methanol, ethanol and 2-propanol, dimethyl sulfoxide and tetrahydrofuran. A mixture of these solvents may be used.
  • the addition amount of the solution obtained by dissolving the photopolymerization initiator (D) in the solvent (E) is monomer (a), inorganic material (C), aqueous medium (W), polymerization initiator (D), and solvent (E).
  • the total mass is preferably 0.1% by mass to 5% by mass, and more preferably 0.2% by mass to 2% by mass.
  • the dispersion amount is 0.1% by mass or more, the polymerization is sufficiently started, and when it is 5% by mass or less, odor is generated due to an increase in the polymerization initiator in the composite (X), and further, once dispersed. This is preferable because problems such as aggregation of the resulting photopolymerization initiator can be reduced and a uniform dispersion (L) of the composite (X) can be obtained.
  • the concentration (mass%) of the inorganic material (C) in the aqueous medium is in the range represented by the formula (4) or the formula (5).
  • concentration (% by mass) of the inorganic material (C) in the aqueous medium is within the above range, a good dispersion (L) of the composite (X) can be obtained, and the coating onto the support is easy and smooth. A uniform thin coating film is obtained, which is preferable.
  • the dispersion (L) produced by the production method of the present invention may be used as it is, or may be used after undergoing a purification step such as washing with water. Further, a leveling agent, surfactant, peptide, protein, collagen, amino acids, peptides, polysaccharides, polymer compounds and the like may be added to the dispersion (L).
  • the polymerization light used in the first step of the production method electron beam, ⁇ -ray, X-ray, ultraviolet light, visible light, etc. can be used.
  • ultraviolet light is used because of the simplicity of apparatus and handling. preferable.
  • the intensity of the irradiated ultraviolet light is preferably 10 to 500 mW / cm 2 and the irradiation time is generally about 0.1 to 200 seconds.
  • oxygen works as an inhibitor of polymerization.
  • the coating method used in the second step of this production method may be a known and commonly used method, such as a method of casting a casting dispersion on a support, a coating method using a bar coater or spin coater, or spraying.
  • the spray method can be used, and when applying in a pattern, the dispersion is applied to the patterned rubber plate and then transferred to the support. Also, the part not applied to the support is shielded in advance and shielded after application. Examples thereof include a method for removing the portion and a coating method by an ink jet printer method.
  • the drying method may be any method as long as the volatile components in the dispersion (L) are volatilized and a thin layer of the composite (X) is formed.
  • room temperature natural drying, room temperature air or heating or hot air drying, far infrared drying, and the like can be mentioned.
  • a method of applying hot air or heating the dispersion while rotating it with a spin coater can also be mentioned.
  • the polymer (B) in this production method preferably has a weight average molecular weight Mw of 1 ⁇ 10 4 to 2 ⁇ 10 7 , more preferably 1 ⁇ 10 5 to 5 ⁇ 10 6 . If it is 1 ⁇ 10 4 or more, sufficient cell detachability can be maintained, and if it is 2 ⁇ 10 7 or less, sufficient cell proliferation can be maintained, and a cell culture substrate with good performance can be produced.
  • the cell growth rate can be widely adjusted, and the kind of the polymer (B), the lower critical solution temperature, In addition, by adjusting the content, the cell peeling rate due to temperature change can be controlled.
  • the surface of the cell culture substrate obtained by this production method is not further covered with the polymer (B), but the polymer (B) extends from the thin layer of the complex (X), The surface of the thin layer is appropriately exposed.
  • the polymer (B) is bonded to the clay mineral or silica from the thin layer of the complex (X) to the surface by ionic bond or hydrogen bond, and the bond does not break even in physical force or water. It has a stable structure.
  • the shape of the cell culture substrate obtained by this production method is not particularly limited as long as it can be cultured and the cultured cells can be easily detached by low-temperature treatment.
  • dish-shaped, bottle-shaped, tube-shaped, bag-shaped, multi-well-plate-shaped, micro-channel-shaped, porous film-shaped or net-shaped (For example, transwell, cell strainer), a spherical particle having a particle size of preferably 10 to 500 ⁇ m, more preferably 100 to 300 ⁇ m.
  • the material of the support used in this production method is such that the culture substrate can be sufficiently adhered, cell culture can be performed on the adhered culture substrate, and the cultured cells can be easily detached by low-temperature treatment.
  • styrene resin such as polystyrene, polyolefin resin such as polypropylene, polyurethane resin, polycarbonate, polyethylene terephthalate (PET), polysulfone resin, fluorine resin, polysaccharide natural polymer such as cellulose, glass, Inorganic materials such as ceramics and metal materials such as stainless steel and titanium are preferably used.
  • the cell culture substrate of the present invention may be used by being integrated with the support, or may be used alone after being peeled off from the support.
  • Example 1 This example is a production example of a cell culture substrate using the polymer (B1).
  • reaction solution containing monomer (a), inorganic material (C) and aqueous medium (W) 0.3254 g of 2-methoxyethyl acrylate (manufactured by Toagosei Co., Ltd.) as monomer (a), and water-swellable clay mineral Laponite XLG (water-swellable hectorite, manufactured by Rockwood Additives Ltd.) as inorganic material (C) 02 g and 10 g of water as an aqueous medium (W) were uniformly mixed to prepare a reaction solution (1).
  • 2-methoxyethyl acrylate manufactured by Toagosei Co., Ltd.
  • water-swellable clay mineral Laponite XLG water-swellable hectorite, manufactured by Rockwood Additives Ltd.
  • a solution (DE) is prepared by uniformly mixing 9.8 g of methanol as a solvent (E) and 0.2 g of 1-hydroxycyclohexyl phenyl ketone “Irgacure 184” (manufactured by Ciba Geigy) as a polymerization initiator (D). did.
  • the mass ratio ((C) / (A)) of the polymer (A) and the inorganic material (C) in the cell culture substrate 1 is 0.061, and the polymer (B) with respect to the entire cell culture substrate The content of was 16.9% by mass.
  • the spontaneously detached cells were collected, reagents Reagent A and Reagent B (manufactured by chemometec) were added, and the number of cells was counted using a nucleome counter manufactured by chemometec. Furthermore, Reagent A and Reagent B were also added to the culture substrate 1 after cell recovery, and the number of remaining undetached cells was counted with a nucleo counter.
  • the number of cells that were naturally detached and collected by the low-temperature treatment was 9.2 ⁇ 10 5 cells, and the number of remaining undetached cells was 1.5 ⁇ 10 5 cells.
  • the cell recovery rate by low-temperature treatment was determined by the following formula (6), the cell recovery rate was about 86%.
  • Cell recovery rate (%) ⁇ number of cells recovered by low-temperature treatment / (number of cells recovered by low-temperature treatment + number of remaining undetached cells) ⁇ ⁇ 100
  • the cell culture substrate containing the polymer (A), the polymer (B) having temperature responsiveness, and the inorganic material (C) has a good culturing property, and at the same time, cells by low-temperature treatment. It can be understood that the recovery rate is high.
  • Example 2 This example is also a production example of a cell culture substrate using the polymer (B1).
  • the mass ratio ((C) / (A)) of the polymer (A) and the inorganic material (C) in the cell culture substrate 2 is 0.061, and the polymer (B) with respect to the entire cell culture substrate The content of was 12.6% by mass.
  • the total number of cells recovered from the culture substrate 2 (14.1 ⁇ 10 5 cells) was obtained using an uncoated petri dish (Treated Cell Culture Dish, product number 430165, Corning Incorporated) (10.8). about 1.31 times the ⁇ 10 5 cells), cell growth activity was higher than uncoated dish.
  • the cell culture substrate containing the polymer (A), the polymer (B) having temperature responsiveness, and the inorganic material (C) has a good culturing property, and at the same time, cells by low-temperature treatment. It can be understood that the recovery rate is high.
  • Example 3 This example is also a production example of a cell culture substrate using the polymer (B1).
  • the mass ratio ((C) / (A)) of the polymer (A) and the inorganic material (C) in the cell culture substrate 3 is 0.061, and the polymer (B) with respect to the entire cell culture substrate The content of was 22.5% by mass.
  • the cell culture substrate containing the polymer (A), the polymer (B) having temperature responsiveness, and the inorganic material (C) has a good culturing property, and at the same time, cells by low-temperature treatment. It can be understood that the recovery rate is high.
  • Example 4 This example is a production example of a cell culture substrate using the polymer (B2).
  • reaction solution containing monomer (a), inorganic material (C) and aqueous medium (W) As monomer (a), 2-ethoxyethyl acrylate (manufactured by Sigma Aldrich Japan Co., Ltd.) 0.3604 g, as inorganic material (C), 0.08 g of water-swellable clay mineral Laponite XLG (manufactured by Rockwood Additives Ltd.), aqueous medium ( A reaction solution (4) was prepared by uniformly mixing 10 g of water as W).
  • the mass ratio ((C) / (A)) of the polymer (A) and the inorganic material (C) in the cell culture substrate 4 is 0.22, and the polymer (B) with respect to the entire cell culture substrate The content of was 13.7% by mass.
  • the cell culture substrate containing the polymer (A), the polymer (B) having temperature responsiveness, and the inorganic material (C) has a good culturing property, and at the same time, cells by low-temperature treatment. It can be understood that the recovery rate is high.
  • Example 5 This example is a production example of a cell culture substrate using the polymer (B3).
  • the mass ratio ((C) / (A)) of the polymer (A) and the inorganic material (C) in the cell culture substrate 5 is 0.49, and the polymer (B) with respect to the whole cell culture substrate The content of was 9.3% by mass.
  • the cell culture substrate containing the polymer (A), the polymer (B) having temperature responsiveness, and the inorganic material (C) has a good culturing property, and at the same time, cells by low-temperature treatment. It can be understood that the recovery rate is high.
  • Example 6 This example is also an example of producing a cell culture substrate using the polymer (B3).
  • the mass ratio ((C) / (A)) of the polymer (A) and the inorganic material (C) in the cell culture substrate 6 is 0.061, and the polymer (B) with respect to the entire cell culture substrate The content of was 9.3% by mass.
  • the total number of cells recovered from the culture substrate 6 (10.8 ⁇ 10 5 cells) was obtained using an uncoated petri dish (Treated Cell Culture Dish, product number 430165, Corning Incorporated) (10.8). ⁇ 10 5 ) and approximately 1.00 times the cell proliferation was almost the same as that of an uncoated petri dish.
  • the cell culture substrate containing the polymer (A), the polymer (B) having temperature responsiveness, and the inorganic material (C) has a good culturing property, and at the same time, cells by low-temperature treatment. It can be understood that the recovery rate is high.
  • Example 7 mesenchymal stem cells were cultured using the culture substrates 1 to 6 prepared in Examples 1 to 6, and a peel recovery test example based on temperature changes.
  • the cell culture substrate containing the polymer (A), the polymer (B) having temperature responsiveness, and the inorganic material (C) has good cultivability even for stem cells. It can be understood that the cell recovery rate by low-temperature treatment is high.
  • Example 8 This example is an example of culturing / recovering a cell thin film using the culture substrate 1 produced in Example 1.
  • CS-C complete medium (Cell Systems medium) is added to the culture substrate 1, seeded with normal human dermal fibroblasts (seeding concentration is 1.2 ⁇ 10 4 cells / cm 2 ), 5% Culturing was performed at 37 ° C. in carbon dioxide. After confirming that the cells had grown sufficiently, the medium (at 37 ° C.) was sucked up, and a 4 ° C. PBS aqueous solution (phosphate buffer) was added and allowed to stand for several minutes. Peeled off.
  • the cell culture substrate containing the polymer (A), the polymer (B) having temperature responsiveness, and the inorganic material (C) has a good culturing property, and at the same time, the thin film is obtained by low-temperature treatment. It can be understood that cell-like cells can be easily obtained.
  • Example 9 This example is an example of producing a culture bag using the coating solution of Example 1.
  • the total number of cells collected from the culture substrate 9 (1.34 ⁇ 10 5 cells / cm 2 ) was determined as uncoated petri dish (Treated Cell Culture Dish, product number 430165, surface area 8 cm 2 , manufactured by Corning Incorporated).
  • uncoated petri dish Teated Cell Culture Dish, product number 430165, surface area 8 cm 2 , manufactured by Corning Incorporated.
  • the cell culture substrate (culture bag) containing the polymer (A), the polymer (B) having temperature responsiveness, and the inorganic material (C) has good cultivability, It can be understood that the cell recovery rate by low-temperature treatment is high.
  • Example 10 This example is a production example of a cell culture substrate using silica as the inorganic material (C).
  • Example 1 “Colloidal silica (trade name: Snowtex 20 (silica concentration 20 wt%, manufactured by Nissan Chemical Industries, Ltd.)) 0.1 g” instead of “water-swellable clay mineral Laponite® XLG® 0.02 g” in Example 1
  • a cell culture substrate 10 was produced in the same manner as in Example 1 except that it was used.
  • the cell culture substrate containing the polymer (A), the polymer (B) having temperature responsiveness, and silica (inorganic material (C)) has good cultivability and at the same time a low temperature. It can be understood that the cell recovery rate by the treatment is high.
  • Example 11 This example is an example showing the sterilization resistance of a cell culture substrate.
  • the cell culture substrate 6 produced in the example was sterilized with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.). Subsequently, after culturing the cells in the same manner as in Example 1, the number of cells that were naturally detached by cold PBS treatment was 10.69 ⁇ 10 5, and the number of remaining undetached cells was 0.33 ⁇ 10 5. It was a piece. When the cell recovery rate by low-temperature treatment was determined according to Equation (6), the cell recovery rate was about 97%.
  • the total number of cells recovered from the culture substrate 6 (11.02 ⁇ 10 5 ) was obtained using an uncoated petri dish (Treated Cell Culture Dish, product number 430165, Corning Incorporated) (10.8). ⁇ 10 5 ) and about 1.02 times the cell proliferation was almost the same as that of the uncoated petri dish.
  • Example 12 This example is an example of producing cultured microcarrier beads using the coating solution of Example 1.
  • a small amount of polystyrene beads having an average particle size of 300 ⁇ m (trade name: PolyBeads, manufactured by Polysciences) is placed in a nylon mesh cell strainer (Cell Strainer, manufactured by BD Falcon) having a 70 ⁇ m hole, An appropriate amount of the prepared coating solution was dropped, and the bead surface was wetted with the coating solution.
  • the cell strainer was placed in a 6-well plate, and the excess coating solution on the bead surface was removed by a centrifuge at 2000 rpm, and dried in a hot air dryer at 70 ° C. for 30 minutes. Next, the coated beads were sufficiently washed with sterilized water at 50 ° C. to obtain cultured microcarrier beads 12.
  • the obtained cultured microcarrier beads 12 are put in a 35 mm polystyrene petri dish (60 mm / Non-Treated Dish, manufactured by Asahi Techno Glass Co., Ltd.), and Doulbecco's modified Eagle's Medium (DMEM) medium (added with 10% FBS) (Nissui) Appropriate amount was added. Subsequently, Balb3T3 cells (mouse tumor fibroblasts) were seeded (seeding concentration was 1.0 ⁇ 10 4 cells / cm 2 ) and cultured at 37 ° C. in 5% carbon dioxide.
  • DMEM Doulbecco's modified Eagle's Medium
  • Comparative Example 1 This comparative example is an example of natural peeling by cell culture and low-temperature treatment using a commercially available cell culture dish.
  • the commercially available culture substrate does not change the cell growth property compared to the culture substrate of the present invention, but has almost no natural detachability of cells by low-temperature treatment.
  • Comparative Example 2 This comparative example is an example of a cell culture substrate that does not contain the polymer (B).
  • Example 5 a cell culture substrate 2 ′ was produced in the same manner as in Example 5 except that the “polymer (B3-2) aqueous solution” in the second step was not added.
  • This comparative example is an example of a cell culture substrate containing an excessive amount of the polymer (B).
  • the content of the polymer (B) with respect to the whole cell culture substrate 3 ' was 41.0% by mass.
  • Comparative Example 4 This comparative example is an example of cell culture using commercially available polystyrene beads.
  • Comparative Example 5 This comparative example is an example in which the concentration of the inorganic material (C) exceeds the range of the formula (5).
  • reaction liquid containing monomer (a), water-swellable inorganic material (C), and aqueous medium (W) Monomer (a) 2methoxyethyl acrylate (manufactured by Toagosei Co., Ltd.) 1.32 g, inorganic material (C) as water swellable clay mineral Laponite XLG (Rockwood Additives Ltd.) 0.32 g, polymerization initiator 50 ⁇ L of the solution (DE) and 10 g of water as an aqueous medium (W) were uniformly mixed to prepare a reaction solution (4 ′).
  • reaction solution (4 ′) when the reaction solution (4 ′) was irradiated with ultraviolet rays having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 180 seconds, the entire reaction solution (4 ′) was gelled. Even when this gel was placed in a large amount of water, it did not dissolve or disperse and remained as a gel.
  • the cell culture substrate of the present invention has good adhesion between the support of other materials, and has excellent cell culture and a natural peeling function due to temperature change. Yes. Further, it was clear that this cell culture substrate can be easily produced in a short time.
  • the cell culture substrate of the present invention can be used for the preparation of colony-like cell groups, two-dimensional sheet-like cells, and three-dimensional three-dimensional cell proliferation in the fields of biochemistry, drug discovery and regenerative medicine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Materials Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 基材中に含まれる下限臨界溶解温度を有する重合体(B)が、架橋せず、且つ単独重合では疎水性重合体となるモノマー(a)と、単独重合で親水性重合体になるモノマー(bまたはc、またはd)との共重合体であり、得られる共重合体(B)の下限臨界溶解温度が、両モノマーの種類や比率により幅広く制御でき、タンパク質加水分解酵素などを使用することなく、細胞へのダメージがなく、迅速に培養した細胞を培養基材表面から容易に剥離、回収できる細胞培養基材を提供する。 当該細胞培養基材は、(メタ)アクリル酸エステル系モノマー(a)の重合体(A)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)と、下限臨界溶解温度を有し、モノマー(a)とモノマー(bまたはc、またはd)からなる重合体(B)とを含有する。

Description

温度応答性細胞培養基材及びその製造方法
 本発明は、細胞培養の技術に関し、具体的には、培養した細胞をトリプシンなどの薬剤を使用せず温度変化のみで容易に剥離、回収できる細胞培養基材、及びその製造方法に関する。
 従来、動物組織等の細胞培養基材としては、主にプラスチック(例えばポリスチレン)製容器が使用されてきた。これら容器は、細胞培養を有効に行わせるために、その表面にプラズマ処理や、シリコンや細胞接着因子等のコーティングなどの表面処理が施されている。これら細胞培養容器を培養基材として用いた場合には、培養(増殖)した細胞が容器表面に接着しており、細胞を単離・回収するためには、トリプシン等のタンパク質加水分解酵素や化学薬品を用いて、容器表面から剥離する必要があった。このような酵素や化学薬品により細胞を剥離する操作は工程が煩雑であるほか、雑菌やDNAあるいはRNA等の不純物が混入する恐れがあった。また、細胞と基材の結合部分が切断されるだけではなく、細胞同士の結合も切断されるため、細胞を増殖している形状(例えばシート状)のままで取り出すことができなかったり、ダメージを受けたり、細胞の性質が変化してしまう問題があった。
 近年、細胞培養容器の表面にポリN-イソプロピルアクリルアミドのような下限臨界溶解温度を有するポリマーを極薄く被覆した基材を使用して、細胞培養温度ではポリマーが疎水性を示し細胞がポリマーに接着し、培養後にポリマーを低温処理して親水性状態にすることにより、細胞とポリマーとの接着性を低下させ、細胞を加水分解酵素や化学薬品を使用せずに基材から細胞をシート状に剥離する技術が報告されている(例えば特許文献1及び2参照)。
 しかし、ポリN-イソプロピルアクリルアミドのようなポリマーはポリスチレンのようなプラスチック表面との間に接着性が低く、水に触れると、塗布されたポリマー層が容易に剥離してしまう。このようなポリマー層を水に触れてもプラスチック表面から剥離させないためには、ポリマーを固定する必要がある。その方法の一つとしては、N-イソプロピルアクリルアミド(モノマー)の溶液を細胞培養基材表面に塗布して電子線照射によるグラフト重合を行う方法がある(例えば、特許文献3参照)。
 電子線照射によるグラフト重合は、重合と同時に、ポリマー間の架橋反応も必ず起こり、ポリマーの温度応答速度が架橋度合の進行につれ大きく低下してしまい、ポリマーを親水性にするために低温を保持する時間を長く要する問題があり、且つ、その間、細胞も低温状態に長時間晒され、ダメージを受ける問題があった。また、この方法で製造された細胞培養基材は、放射線(例えばγ線)滅菌処理を行うと、ポリマーの温度応答性が大きく低下してしまい、本来の細胞の剥離しやすさが無くなる問題があった。
 一方、(メタ)アクリル酸エステル系モノマー(a)の重合体(A)と、無機材料(C)と、下限臨界溶解温度を有する重合体(B)とを含有する細胞培養基材が各種細胞に対する良好な培養性、及び培養された細胞を、環境温度を低下させることにより容易に剥離できる特性、更に、細胞種類に応じて、その培養性と剥離性を容易に調製できる技術が報告されている(例えば特許文献4参照)。
 上記発明で使用された下限臨界溶解温度を有する重合体(B)は、ポリN-イソプロピルアクリルアミドを中心とした単一重合体であり、下限臨界溶解温度も単一で、下限臨界溶解温度を任意に変化させる(制御する)ことはできない。
特公平6-104061公報 特開平5-192138公報 特開平5-192130公報 特許第4430123号
 本発明が解決しようとする課題は、基材中に含まれる下限臨界溶解温度を有する重合体(B)が、架橋せず、且つ単独重合では疎水性重合体となるモノマー(a)と、単独重合で親水性重合体になるモノマー(bまたはc、またはd)との共重合体であり、得られる共重合体(B)の下限臨界溶解温度が、両モノマーの種類や比率により幅広く制御でき、更に、培養細胞の種類により、適宜両モノマーの種類や比率を変え、より良好な細胞接着性と増殖性を持って細胞を培養できること、更に、環境温度に対する培養基材表面の疎水性と親水性の変化が敏速で、培養した細胞を分離回収する際にトリプシン等のタンパク質加水分解酵素などを使用することなく、細胞へのダメージがなく、迅速に培養した細胞を培養基材表面から容易に剥離、回収できる細胞培養基材を提供することにある。
 また、本発明の細胞培養基材中の重合体(B)が、無機材料(C)との間、多点相互作用を有しているため、耐放射線滅菌性を有している。
 また、本発明の他の課題は、上記の細胞培養基材を製造する方法であって、基材中に含まれる下限臨界溶解温度を有する重合体(B)が架橋されることがなく、且つ電子線照射のような方法を使用することなく、該細胞培養基材をプラスチック製容器の表面に容易に接着させることができ、更に、培養される細胞の種類(接着性)に応じて、重合体(B)の長さ、密度も容易に調節することができる、簡便な装置と工程とによる製造方法を提供することにある。
 本発明者は、上記課題を解決すべく鋭意研究した結果、(メタ)アクリル酸エステル系モノマー(a)の重合体(A)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)と、下限臨界溶解温度を有し、モノマー(a)とモノマー(bまたはc、またはd)からなる重合体(B)とを含有する細胞培養基材が各種細胞に対する良好な培養性、及び培養された細胞を、環境温度を低下させることにより容易に剥離できる特性、更に、細胞種類に応じて、モノマーの種類や比率を調整することにより、その培養性と剥離性を容易に調整できることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記式(1)で表されるモノマー(a)の重合体(A)と、下限臨界溶解温度を有する重合体(B)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有し、
 前記重合体(A)と前記無機材料(C)との質量比((C)/(A))が、0.01~3の範囲にあり、
 前記重合体(B)が、モノマー(a)と親水性のアミド系ビニルモノマー(b)との共重合体(B1)、またはモノマー(a)と下記式(2)表されるモノマー(c)との共重合体(B2)、またはモノマー(a)と下記式(3)表されるポリエチレングリコール鎖含有モノマー(d)との共重合体(B3)であり、
 細胞培養基材全体に対する前記重合体(B)の含有率が0.1質量%~40質量%である細胞培養基材を提供する。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基、Rは炭素原子数1~2のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、nは2~20の整数を表す。)
 また、本発明は、上記親水性のアミド系ビニルモノマー(b)が、N-置換(メタ)アクリルアミド誘導体、N,N-ジ置換(メタ)アクリルアミド誘導体及びN-ビニルピロリドンからなる群から選ばれる少なくとも一種のモノマーである細胞培養基材の製造方法であって、
 前記水媒体(W)中の前記無機材料(C)の濃度が下記式(4)又は式(5)で表される範囲となるように、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを水媒体(W)に混合した後、前記モノマー(a)を重合させることにより、重合体(A)と前記無機材料(C)との複合体(X)の分散液(L)を製造する第1工程、
 前記分散液(L)に、前記重合体(B)を添加し、混合して、支持体に塗布した後、乾燥させる第2工程を順次行なうことを特徴とする細胞培養基材の製造方法を提供する。
式(4)  Ra<0.19のとき
      無機材料(C)の濃度(質量%)<12.4Ra+0.05
式(5)  Ra≧0.19のとき
      無機材料(C)の濃度(質量%)<0.87Ra+2.17
(式中、無機材料(C)の濃度(質量%)は、無機材料(C)の質量を水媒体(W)と無機材料(C)の合計質量で除して100を掛けた数値、Raは無機材料(C)と重合体(A)との質量比((C)/(A))である。)
 本発明の細胞培養基材の最大の特徴は、下限臨界溶解温度を有する重合体(B)が、単独重合では疎水性重合体となるモノマー(a)と単独重合で親水性重合体になるモノマー(bまたはc、またはd)との共重合体であり、得られる共重合体(B)の下限臨界溶解温度が、モノマーの種類や比率により幅広く制御でき、更に、細胞の種類に応じて、適宜モノマーの種類や比率を変え、より良好な細胞接着性と増殖性を持って細胞を培養できることにある。例えば、同じモノマー比率で得られる重合体(B)の下限臨界溶解温度が、モノマーの種類により異なり、より親水性が高く、水との親和性の強いモノマーの方が、下限臨界溶解温度がより高温側になる。また、モノマー(a)に対し、モノマー(bまたはc、またはd)の比率を増えるにつれ、得られる重合体(B)の下限臨界溶解温度が高温側へシフトし、この比率と下限臨界溶解温度がほぼ直線関係にある。細胞培養温度は通常37℃であるため、本発明の重合体Bの下限臨界溶解温度は20~32℃付近になるようにモノマー種と共重合比率を調整している。
 また、本発明のモノマー(a)は水溶性であるが、重合体(A)は疎水性で水には溶解しないものである。更に、本発明の細胞培養基材の基本特徴は、上記重合体(A)と無機材料(C)の構成部分が主に細胞の接着と増殖を担い、下限臨界溶解温度を有する重合体(B)は温度変化による細胞の剥離を担い、この二つの部分を細胞の種類に応じてそれぞれ単独に制御できることにある。例えば、培養時、培養温度(37℃)が重合体(B)の下限臨界溶解温度より高いため、重合体(B)が水不溶(疎水性)状態になり、細胞が基材の表面で接着・増殖するが、培養終了後、温度を下限臨界溶解温度以下に下げると(例えば10℃)、重合体(B)が水溶性になり、基材表面から水溶液(培地)へと伸展し、それに伴い細胞が基材表面から脱離しながら剥離していく。
 重合体(A)及び重合体(B)は主にイオン結合や水素結合などにより無機材料(C)と相互作用し結合している。この結合力は強く、容易にポリマーと無機材料(C)を引き離すことはできない。その相互作用のため、滅菌用の放射線(γ線、電子線)に晒されても重合体(A)及び(B)が架橋しにくく、耐放射線滅菌性を有するわけである。
 本発明の細胞培養基材は、無機材料(C)と重合体(A)がほぼ均一な層状構造になっている複合体(X)の薄層と、該薄層の中から表面に向かって伸び出ている重合体(B)とから構成されている。
 重合体(B)の含有量を適宜調整することにより、細胞培養基材表面が重合体(B)に完全に覆われることなく適宜露出することで、良好な細胞接着・増殖性と細胞剥離性を維持できる。
 本発明の細胞培養基材は、環境温度に対する疎水性と親水性の変化速度が速く、培養される細胞の種類(接着性)に応じて、下限臨界溶解温度を有する重合体(B)を構成するモノマー種や比率、及びその含有量を容易に調節することができ、培養した細胞を、薬剤(トリプシン等)を使用することなく、迅速に培養基材表面から剥離、回収できる特徴を有する。
 また、本発明の製造方法は、基材中に含まれる下限臨界溶解温度を有する重合体(B)が架橋されることがなく(より敏速な温度応答性を維持できる)、且つ電子線照射のような重合方法を使用することなく、該細胞培養基材を(プラスチック製培養容器のような)支持体に容易に接着させることができ、更に、培養される細胞の種類(接着性)に応じて、重合体(B)の組成や含有量(密度)も容易に調節することができ、製造装置と工程が簡便である特徴を有する。
 本発明で用いるモノマー(a)は、その重合体が無機材料(C)と相互作用し、重合により有機無機複合体を形成できるものであれば、好適に使用できる(例えば、ジアセトンアクリルアミドが挙げられる)が、好ましくは下記式(1)のモノマー(a)が用いられる。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基、Rは炭素原子数1~2のアルキル基を表す。)
 これらのモノマー(a)の使用により、細胞の初期接着性を容易に調節でき、細胞増殖性と剥離性が良好な細胞培養基材が得られる。また、この細胞培養基材をポリスチレンなどのプラスチック製等の支持体の表面に積層させる場合は、両者間の接着性が強く、製造が簡便にできる。
 上記のモノマー(a)は、要求される力学物性や表面性質、基材との接着性などにより、一種以上を混合して使用してもよい。また、細胞培養基材の培養性や物性に影響を及ぼさない程度に、必要に応じてその他の共重合モノマーとして、例えば、スルホン基やカルボキシル基のようなアニオン基を有するアクリル系モノマー、4級アンモニウム基のようなカチオン基を有するアクリル系モノマー、4級アンモニウム基と燐酸基とを持つ両性イオン基を有するアクリル系モノマー、カルボキシル基とアミノ基とをもつアミノ酸残基を有するアクリル系モノマー、糖残基を有するアクリル系モノマー、また、水酸基を有するアクリル系モノマー、ポリエチレングリコール、ポリプロピレングリコール鎖を有するアクリル系モノマー、更にポリエチレングリコールのような親水性鎖とノニルフェニル基のような疎水基を合わせ持つ両親媒性アクリル系モノマー、ポリエチレングリコールジアクリレート、N-置換(メタ)アクリルアミド誘導体、N,N-ジ置換(メタ)アクリルアミド誘導体、N,N’-メチレンビスアクリルアミドなどを併用することができる。ここでいうアクリル系モノマーとはアクリルアミド系モノマーを含むものである。
 本発明に用いる無機材料(C)は、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料である。水膨潤性粘土鉱物としては、層状に剥離可能な水膨潤性粘土鉱物が挙げられ、好ましくは水または水と有機溶剤との混合溶液中で膨潤し均一に分散可能な粘土鉱物、特に好ましくは水中で分子状(単一層)またはそれに近いレベルで均一分散可能な無機粘土鉱物が用いられる。具体的にはナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリライト、水膨潤性サポナイト、水膨潤性合成雲母、等が挙げられる。これらの粘土鉱物を混合して用いても良い。
 本発明に用いるシリカ(SiO)としては、コロイダルシリカが挙げられ、好ましくは水溶液中で均一に分散可能で、粒径が10nm~500nmのコロイダルシリカ、特に好ましくは粒径が10~50nmのコロイダルシリカが用いられる。
 本発明の細胞培養基材において、重合体(A)と無機材料(C)との質量比((C)/(A))が、0.01~3であることが好ましく、0.03~1がより好ましく、0.05~0.5が特に好ましい。質量比((C)/(A))がこの範囲であると、粘土鉱物またはシリカと重合体(A)との複合体の粒径がより均一で、その水分散液の安定性が高く得られる塗膜の表面特性(例えば親疎水性度合いや細胞培養性)や塗膜物性が良好であり、均一な塗膜が得られ、支持体との接着性が良好で、脆さも無く好ましい。
 また、本発明の細胞培養基材において、基材全体に対する重合体(B)の含有率が0.1質量%~40質量%であることが好ましく、1~30質量%であることがより好ましく、5~25質量%であることが特に好ましい。重合体(B)の含有率がこの範囲であると、培養基材の細胞接着性と増殖性及び温度低下時の剥離性が良好であり、培養基材の表面平滑性もよく、また、プラスチック製基材の表面に積層するときの塗布性や基材表面との接着性がよく、好ましい。
 本発明で用いられる下限臨界溶解温度を有する重合体(B)は、単独重合して疎水性重合体となるモノマーと、単独重合して親水性重合体になるモノマーとの共重合体で、温度変化により親水/疎水転移できるものであれば好適に使用できるが、中でも、モノマー(a)と親水性のアミド系ビニルモノマー(b)との共重合体(B1)、またはモノマー(a)と下記式(2)表されるモノマー(c)との共重合体(B2)、またはモノマー(a)と下記式(3)表されるポリエチレングリコール鎖含有モノマー(d)との共重合体(B3)であることが好ましい。アミド系ビニルモノマー(b)については、N-メトキシメチル(メタ)アクリルアミドのようなN-置換(メタ)アクリルアミド誘導体、N,N-ジメチル(メタ)アクリルアミドや(メタ)アクリロイルモルホリンのようなN,N-ジ置換(メタ)アクリルアミド誘導体、およびN-ビニルピロリドンからなる群から選ばれる少なくとも一種のモノマーであることが好ましい。
 また、モノマー(c)については、下記式(2)に示すモノマーが好適に用いられる。
Figure JPOXMLDOC01-appb-C000008
(式中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基を表す。)
 更に、モノマー(d)については、下記式(3)に示すモノマーが好適に用いられる。
Figure JPOXMLDOC01-appb-C000009
(式中、nは2~20の整数を表す。)
 これらの共重合体(B1またはB2、またはB3)を用いることにより、下限臨界溶解温度が、両モノマーの種類や比率により幅広く制御でき、更に、培養細胞の種類により、適宜両モノマーの種類や比率を変え、より良好な細胞接着性と増殖性を持って細胞を培養できること、更に、環境温度に対する培養基材表面の疎水性と親水性の変化が敏速で、培養した細胞を分離回収する際にトリプシン等のタンパク質加水分解酵素などを使用することなく、細胞へのダメージがなく、迅速に培養した細胞を培養基材表面から容易に剥離、回収できる利点がある。また、該重合体(B1またはB2、またはB3)が無機材料(C)と相互作用が強く、細胞培養中や培養細胞の剥離操作時に、細胞培養基材自身の剥離が起きにくく好ましい。
 上記の下限臨界溶解温度とは、この温度以上になると、該ポリマー(B)が水中で不溶となり(疎水性を示す)、この温度以下になると、水溶性になる(親水性を示す)温度のことである。例えば、2-メトキシエチルアクリレート(モノマー(a))とN,N-ジメチル(メタ)アクリルアミド(モノマー(b))との共重合体について、両者の比率が80:20(モル比)時の下限臨界溶解温度が15℃で、70:30(モル比)時の下限臨界溶解温度が26℃、64:36(モル比)時の下限臨界溶解温度が32℃、そして60:40(モル比)時の下限臨界溶解温度が37℃になる。N,N-ジメチル(メタ)アクリルアミド(モノマー(b))の含有量(mol%)に対し、下限臨界溶解温度をプロットすると、良好な直線関係を示す(相関係数R=0.9991)。
 次いで、本発明の製造方法について説明する。
 水媒体(W)中の前記無機材料(C)の濃度が下記式(4)又は式(5)で表される範囲となるように、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを水媒体(W)に混合した後、モノマー(a)を重合させることにより、重合体(A)と前記無機材料(C)との複合体(X)の分散液(L)を製造する第1工程、
前記分散液(L)に、前記重合体(B)を添加し、均一に混合して、支持体に塗布した後、乾燥させる第2工程を順次行なうことを特徴とする細胞培養基材の製造方法である。
式(4)  Ra<0.19のとき
      無機材料(C)の濃度(質量%)<12.4Ra+0.05
式(5)  Ra≧0.19のとき
      無機材料(C)の濃度(質量%)<0.87Ra+2.17
(式中、無機材料(C)の濃度(質量%)は、無機材料(C)の質量を水媒体(W)と無機材料(C)の合計質量で除して100を掛けた数値、Raは無機材料(C)と重合体(A)との質量比((C)/(A))である。)
 この製造方法に用いられるモノマー(a)と無機材料(C)及び重合体(B)は、前記細胞培養基材の説明で述べたのと同じものを使用できるので、省略する。
 本発明の製造方法に用いる水媒体(W)は、モノマー(a)や無機材料(C)などを含むことができ、重合によって、物性のよい有機無機複合体分散液が得られれば良く、特に限定されない。例えば水、または水と混和性を有する溶剤及び/またはその他の化合物を含む水溶液であってよく、その中には更に、防腐剤や抗菌剤、着色料、香料、酵素、たんぱく質、コラーゲン、糖類、ペプチド類、アミノ酸類、細胞、DNA類、塩類、水溶性有機溶剤類、界面活性剤、高分子化合物、レベリング剤などを含むことができる。
 本発明に用いられる重合開始剤(D)としては、公知のラジカル重合開始剤を適時選択して用いることができる。好ましくは水溶性または水分散性を有し、系全体に均一に含まれるものが好ましく用いられる。具体的には、重合開始剤として、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えばVA-044、V-50、V-501(いずれも和光純薬工業株式会社製)の他、Fe2+と過酸化水素との混合物などが例示される。
 触媒としては、3級アミン化合物であるN,N,N’,N’-テトラメチルエチレンジアミンなどは好ましく用いられる。但し、触媒は必ずしも用いなくてもよい。重合温度は、重合触媒や開始剤の種類に合わせて例えば0℃~100℃が用いられる。重合時間も数十秒~数十時間の間で行うことが出来る。
 一方、光重合開始剤は、酸素阻害の影響を受けにくく、重合速度が速いため、重合開始剤(D)として好適に用いられる。具体的には、p-tert-ブチルトリクロロアセトフェノンなどのアセトフェノン類、4,4’-ビスジメチルアミノベンゾフェノンなどのベンゾフェノン類、2-メチルチオキサントンなどのケトン類、ベンゾインメチルエーテルなどのベンゾインエーテル類、ヒドロキシシクロヘキシルフェニルケトンなどのα-ヒドロキシケトン類、メチルベンゾイルホルメートなどのフェニルグリオキシレート類、メタロセン類などが挙げられる。
 前記光重合開始剤は非水溶性のものである。ここで言う非水溶性とは、重合開始剤の水に対する溶解量が0.5質量%以下であることを意味する。非水溶性の重合開始剤を使用することにより、開始剤がより粘土鉱物の近傍に存在しやすく、粘土鉱物近傍からの開始反応点が多くなり、得られる重合体(A)と無機材料(C)との複合体(X)の粒径分布が狭く、分散液(L)の安定性が高く、好ましい。
 前記光重合開始剤を、水媒体(W)と相溶する溶媒(E)に溶解させた溶液を前記水媒体(W)中に添加することが好ましい。この方法によって光重合開始剤がより均一に分散でき、より粒径の揃った複合体(X)が得られる。
 光重合開始剤(D)を溶媒(E)に溶解させた溶液中における光重合開始剤(D)と溶媒(E)の質量比(D)/(E)は、0.001~0.1であることが好ましく、0.01~0.05が更に好ましい。0.001以上であると、紫外線の照射によるラジカルの発生量が十分に得られるため好適に重合反応を進行させることができ、0.1以下であれば、開始剤による発色や、臭気を実質的に生じることがなく、またコストの低減が可能である。
 本発明の溶媒(E)としては、光重合開始剤(D)と非水溶性重合開始剤(D)を溶解でき、且つ一定以上の水溶性を有する溶剤を用いることができる。ここで言う水溶性を有する溶剤とは、水100gに対し50g以上溶解できる溶剤であることが好ましい。水への溶解性が50g以上であると、非水溶性の重合開始剤(D)の水媒体(W)への分散性が良く、得られる複合体(X)の粒径が揃いやすくなり、分散液(L)の安定性が高く好ましい。
 例えば、水溶性溶剤としては、ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類、メタノール、エタノール、2-プロパノールなどのアルコール類、ジメチルスルホキシド、テトラヒドロフランなどが挙げられる。これらの溶剤を混合して用いても良い
 光重合開始剤(D)を溶媒(E)に溶解させた溶液の添加量が、モノマー(a)、無機材料(C)、水媒体(W)、重合開始剤(D)及び溶媒(E)の総質量に対し、0.1質量%~5質量%であることが好ましく、0.2質量%~2質量%であることが更に好ましい。該分散量が0.1質量%以上であると、重合が十分に開始され、5質量%以下であると、複合体(X)中の重合開始剤の増加による臭気の発生、更には一旦分散された光重合開始剤が再び凝集する等の問題を低減でき、均一な複合体(X)の分散液(L)を得ることができるため好ましい。
 無機材料(C)の水媒体に対する濃度(質量%)は式(4)又は式(5)で表される範囲であることが本発明の細胞培養基材製造法の特徴である。無機材料(C)の水媒体に対する濃度(質量%)が上記範囲内であると、良好な複合体(X)の分散液(L)が得られ、支持体への塗布が容易で、平滑で均一な薄い塗膜が得られ、好ましい。
 本発明の製造方法で製造される分散液(L)は、そのまま使用してもよいし、水洗などによる精製工程を経てから使用してもよい。また該分散液(L)に更にレベリング剤や界面活性剤、ペプチド、たんぱく質、コラーゲン、アミノ酸類、ペプチド類、多糖類、高分子化合物などを添加して使用してもよい。
 本製造方法の第1工程に用いられる重合用光としては、電子線、γ線、X線、紫外線、可視光などを用いることができるが、中でも装置や取り扱いの簡便さから紫外線を用いることが好ましい。照射する紫外線の強度は10~500mW/cmが好ましく、照射時間は一般に0.1秒~200秒程度である。通常の加熱によるラジカル重合においては、酸素が重合の阻害因子として働くが、本発明では、必ずしも酸素を遮断した雰囲気で溶液の調製および紫外線照射による重合を行う必要がなく、空気雰囲気でこれらを行うことが可能である。但し、紫外線照射を不活性ガス雰囲気下で行うことによって、更に重合速度を速めることが可能で、望ましい場合がある。
 本製造方法の第2工程に用いられる塗布方法は、公知慣用の方法でよく、例えば、流延法分散液を支持体に流延させる方法やバーコーターやスピンコーターによる塗布法、または噴霧などのスプレー法が挙げられ、また、パターン状に塗布する場合は、模様のあるゴム版に分散液をつけてから支持体に転写する方法、また支持体に塗布しない部分を予め遮蔽して塗布後遮蔽部分を取り除く方法、インクジェットプリンター方式による塗布方法が挙げられる。
 乾燥方法も、分散液(L)中の揮発成分が揮発し、複合体(X)の薄層ができれば、任意の方法でよい。例えば、室温自然乾燥、室温の風や加熱または熱風による乾燥、遠赤外線乾燥などがあげられる。或いは分散液をスピンコーターで回転しながら熱風を当てたり加熱したりする方法も挙げられる。
 本製造方法における重合体(B)は、その重量平均分子量Mwが1×10~2×10であることが好ましく、1×10~5×10であることが更に好ましい。1×10以上であれば、十分な細胞剥離性が維持でき、また、2×10以下であれば、十分な細胞増殖性が維持でき、性能のよい細胞培養基材を製造できる。
 本製造方法は、モノマー(a)と無機材料(C)の比率を調整することにより、細胞の増殖速度を幅広く調整することができ、また、重合体(B)の種類や下限臨界溶解温度、及び含有量を調整することにより、温度変化による細胞の剥離速度を制御できるという特徴を有する。
 本製造方法で得た細胞培養基材の表面は、重合体(B)が一層覆っているものではなく、複合体(X)の薄層の中から重合体(B)が伸び出て、該薄層の表面も適宜露出しているような構造になっている。重合体(B)は、複合体(X)の薄層中から表面までイオン結合や水素結合などにより粘土鉱物またはシリカに結合しており、物理的な力や水中でもその結合が切れることなく、安定な構造になっている。
 本製造方法で得た細胞培養基材の形状は、細胞培養でき、低温処理により培養細胞を容易に剥離できるものであれば、特に限定されない。例えば、皿状のもの、ボトル(ビン)状のもの、チューブ状のもの、バッグ(袋)状のもの、マルチウエルプレート状のもの、マイクロ流路状のもの、多孔質膜状または網状のもの(例えばトランスウエル、セルストレイナー)、粒径が好ましくは10~500μm、より好ましくは100~300μmの球状のものなどが挙げられる。
 本製造方法で用いられた支持体の材質は、培養基材が十分接着でき、且つ接着された培養基材上で細胞培養ができ、低温処理により培養細胞を容易に剥離できるものであれば、特に限定されない。例えば、ポリスチレンのようなスチレン系樹脂、ポリプロピレンのようなポリオレフィン系樹脂、ポリウレタン系樹脂、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリスルホン系樹脂、フッ素系樹脂、セルロースのような多糖類天然高分子、ガラスやセラミックスのような無機材料、ステンレス、チタンのような金属類材料が好適に用いられる。
 更に、本発明の細胞培養基材が、支持体と一体化して使用されるのは勿論のこと、支持体から剥がして単独に使用してもよい。
 以下、実施例により本発明を具体的に説明するが、本発明の範囲がこれらの実施例にのみ限定されるものではない。
(参考例)
 この参考例は重合体(B1、B2、B3)を合成し、下限臨界溶解温度を測定した例である。
 ガラス容器に、表1に示す量(単位g)のアクリル酸2メトキシエチル(モノマー(a)、東亞合成株式会社製)と、モノマー(b)(株式会社興人製)または(c)(和光純薬工業株式会社製)、または(d)(新中村化学工業株式会社製))、触媒としてN,N,N’,N’-テトラメチルエチレンジアミン(和光純薬工業株式会社製)24μL、熱重合開始剤として、2wt%のペルオキソ二硫酸カリウム(和光純薬工業株式会社製)水溶液300μL、水媒体(W)として水30g、を入れ、窒素置換しながら均一に混合した後、ガラス容器を密封して反応溶液(0)を調製した。
[重合体(B)水溶液の調製]
 上記反応溶液(0)を20℃の恒温水槽に15時間静置して、重合体(B)の水溶液を調製した。重合体(B)の下限臨界溶解温度(LCST)は、重合体(B)水溶液を10mm×10mm×45mm(高さ)のガラスセルに入れ、紫外可視分光光度計V-530(日本分光株式会社製)を用いて、10℃~60℃の温度範囲で、水溶液の光(波長600nm)透過率変化を測定して求めた(LCST以下の温度では水溶液が透明、LCST以上の温度では水溶液白濁、LCSTは透明と白濁の中間点での温度をLCSTとした)。結果を表2に示す。表2の結果より、得られた重合体(B)のLCSTが成分組成(モノマー(bまたはcまたはd))と良好な直線関係を示すことが理解できる。即ち、成分組成より逆に得られる共重合体BのLCSTを容易に推定できることである。
 次に、各反応液のモノマー組成を示す。
Figure JPOXMLDOC01-appb-T000010
 次に、各組成の重合体(B)の下限臨界溶解温度を示す。
Figure JPOXMLDOC01-appb-T000011
(実施例1)
 この実施例は重合体(B1)を用いた細胞培養基材の製造例である。
[モノマー(a)、無機材料(C)、水媒体(W)を含む反応溶液の調製]
 モノマー(a)としてアクリル酸2メトキシエチル(東亞合成株式会社製)0.3254g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(水膨潤性ヘクトライト、Rockwood Additives Ltd.社製)0.02g、水媒体(W)として水10g、を均一に混合して反応溶液(1)を調製した。
[重合開始剤(D)を溶媒(E)に溶解させた溶液の調整]
 溶媒(E)として、メタノール9.8g、重合開始剤(D)として1-ヒドロキシシクロヘキシルフェニルケトン「イルガキュアー184」(チバガイギー社製)0.2gを、均一に混合して溶液(DE)を調製した。
[複合体(X)の分散液(L)の調製(第1工程)]
 上記反応溶液(1)全量に、溶液(DE)を50μL入れ、均一に分散させた後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し淡い乳白色の複合体(X)の分散液(L1)を作製した。
 この反応系のRa=0.061、無機材料(C)の濃度(質量%)=0.20(%)<12.4Ra+0.05=0.81
[細胞培養基材の作製(第2工程)]
 分散液(L1)全量に、上記参考例で得た重合体(B1-3)「MEA(a)/DMAA(b)((b)の含有量=36mol%、LCST=29℃、表2参照)」の水溶液(重合体濃度=2.32重量%)を3.0172g、20重量%ドデシルベンゼンスルホン酸ナトリウム水溶液を150μL入れ、均一に混合した後、35mmポリスチレン製培養シャーレ(Treated Cell Culture  Dish、品番430165、Corning Incorporated社製)に入れ、スピンコーターを用いてシャーレの表面に薄く塗布し、80℃の熱風乾燥器中で30分間乾燥させた。次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時乾燥して、細胞培養基材1を得た。
 該細胞培養基材1中の重合体(A)と無機材料(C)との質量比((C)/(A))が0.061であり、細胞培養基材全体に対する重合体(B)の含有率が16.9質量%であった。
[細胞培養及び温度変化による剥離回収試験]
 上記得られた細胞培養基材1に、10%血清を含有するHam’S F-12培地(和光純薬工業株式会社制)を適量入れ、CHO-K1細胞(チャイニーズハムスター卵巣細胞株)を播種して(播種濃度は2×10個/シャーレ)、5%二酸化炭素中、37℃で三日間培養を行った。次いで、(37℃の)培地を吸い取り、4℃のPBS水溶液(リン酸緩衝液)を入れ、約10分間静置させた後、ピペットで培地を吸ったり出したりするピペッティング操作を数回行ったところ、大部分の細胞が培養基材1の表面から剥離されたことが観察された。自然剥離された細胞を回収し、試薬Reagent AとReagent B(chemometec社製)を加え、chemometec社製のヌクレオカウンターを用いて細胞数を計測した。更に細胞回収後の培養基材1にもReagent AとReagent Bを加え、残存した未剥離の細胞もヌクレオカウンターで細胞数を計測した。低温処理で自然剥離・回収された細胞数は9.2×10個で、残存した未剥離の細胞数は1.5×10個であった。下記式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約86%であった。
式(6) 細胞回収率(%)={低温処理で回収した細胞の数/(低温処理で回収した細胞の数+残存した未剥離細胞の数)}×100
 また、上記培養基材1から回収された細胞の総数(10.7×10個)が、未コートシャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)を用いた場合(10.8×10個)の約0.99倍で、細胞増殖性が未コートシャーレとほぼ同等であった。
 また、上記低温処理による自然剥離及び基材に残存した未剥離の細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材が、良好な培養性を有すると同時に、低温処理による細胞の回収率が高いことが理解できる。
(実施例2)
 この実施例も重合体(B1)を用いた細胞培養基材の製造例である。
 実施例1の第2工程「重合体(B1-3)水溶液(重合体濃度=2.32重量%)3.0172g」の代わりに、「重合体(B1-10)水溶液(重合体濃度=2.45重量%)2.0408g」を用いたこと以外は、実施例1と同様にして、細胞培養基材2を作製した。
 該細胞培養基材2中の重合体(A)と無機材料(C)との質量比((C)/(A))が0.061であり、細胞培養基材全体に対する重合体(B)の含有率が12.6質量%であった。
[細胞培養及び温度変化による剥離回収試験]
 実施例1と同様にして、細胞を培養した後、冷PBS処理により自然剥離した細胞の数は13.1×10個で、残存した未剥離の細胞数は1.0×10個であった。式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約93%であった。 
 また、上記培養基材2から回収された細胞の総数(14.1×10個)が、未コートシャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)を用いた場合(10.8×10個)の約1.31倍で、細胞増殖性が未コートシャーレよりも高かった。
 また、上記低温処理による自然剥離及び基材に残存した未剥離の細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材が、良好な培養性を有すると同時に、低温処理による細胞の回収率が高いことが理解できる。
(実施例3)
 この実施例も重合体(B1)を用いた細胞培養基材の製造例である。
[重合体(B1)水溶液の調製]
 ガラス容器に、アクリル酸2メトキシエチル(モノマー(a)、東亞合成株式会社製)0.7809g、モノマー(b)としてN-メトキシメチルメタクリルアミド(和光純薬工業株式会社製)0.1938g、触媒としてN,N,N’,N’-テトラメチルエチレンジアミン(和光純薬工業株式会社製)24μL、熱重合開始剤として、2wt%のペルオキソ二硫酸カリウム(和光純薬工業株式会社製)水溶液300μL、水媒体(W)として水30g、を入れ、窒素置換しながら均一に混合した後、ガラス容器を密封した。次いで、該ガラス容器を20℃の恒温水槽に15時間静置して、重合体(B1)の水溶液を調製した。重合体(B1)のLCSTは28℃であった。
[細胞培養基材の作製(第2工程)]
 実施例1の第2工程「重合体(B1-3)水溶液(重合体濃度=2.32重量%)3.0172g」の代わりに、「重合体(B1)水溶液(重合体濃度=3.15重量%)3.1746g」を用いたこと以外は、実施例1と同様にして、細胞培養基材3を作製した。
 該細胞培養基材3中の重合体(A)と無機材料(C)との質量比((C)/(A))が0.061であり、細胞培養基材全体に対する重合体(B)の含有率が22.5質量%であった。
[細胞培養及び温度変化による剥離回収試験]
 実施例1と同様にして、細胞を培養した後、冷PBS処理により自然剥離した細胞の数は10.7×10個で、残存した未剥離の細胞数は0.6×10個であった。式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約95%であった。 
 また、上記培養基材3から回収された細胞の総数(11.3×10個)が、未コートシャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)を用いた場合(10.8×10個)の約1.05倍で、細胞増殖性が未コートシャーレとほぼ同等であった。
 また、上記低温処理による自然剥離及び基材に残存した未剥離の細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材が、良好な培養性を有すると同時に、低温処理による細胞の回収率が高いことが理解できる。
(実施例4)
 この実施例は重合体(B2)を用いた細胞培養基材の製造例である。
[モノマー(a)、無機材料(C)、水媒体(W)を含む反応溶液の調製]
 モノマー(a)としてアクリル酸2エトキシエチル(シグマアルドリッチジャパン株式会社製)0.3604g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(Rockwood Additives Ltd.社製)0.08g、水媒体(W)として水10g、を均一に混合して反応溶液(4)を調製した。
[複合体(X)の分散液(L)の調製(第1工程)]
 上記反応溶液(4)全量に、溶液(DE)を50μL入れ、均一に分散させた後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し乳白色の複合体(X)の分散液(L4)を作製した。
 この反応系のRa=0.22、無機材料(C)の濃度(質量%)=0.79(%)<0.87Ra+2.17=2.36
[細胞培養基材の作製(第2工程)]
 分散液(L4)全量に、上記参考例で得た重合体(B2-3)「MEA(a)/HEA(c)((c)の含有量=60mol%、LCST=23℃、表2参照)」の水溶液(重合体濃度=2.95重量%)を2.3729g、20重量%ドデシルベンゼンスルホン酸ナトリウム水溶液を150μL入れ、均一に混合した後、35mmポリスチレン製培養シャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)に入れ、スピンコーターを用いてシャーレの表面に薄く塗布し、80℃の熱風乾燥器中で30分間乾燥させた。次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時乾燥して、細胞培養基材4を得た。
 該細胞培養基材4中の重合体(A)と無機材料(C)との質量比((C)/(A))が0.22であり、細胞培養基材全体に対する重合体(B)の含有率が13.7質量%であった。
[細胞培養及び温度変化による剥離回収試験]
 実施例1と同様にして、細胞を培養した後、冷PBS処理により自然剥離した細胞の数は11.6×10個で、残存した未剥離の細胞数は0.2×10個であった。式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約98%であった。 
 また、上記培養基材3から回収された細胞の総数(11.8×10個)が、未コートシャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)を用いた場合(10.8×10個)の約1.09倍で、細胞増殖性が未コートシャーレとほぼ同等であった。
 また、上記低温処理による自然剥離及び基材に残存した未剥離の細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材が、良好な培養性を有すると同時に、低温処理による細胞の回収率が高いことが理解できる。
(実施例5)
 この実施例は重合体(B3)を用いた細胞培養基材の製造例である。
 実施例1の「無機材料(C)として水膨潤性粘土鉱物Laponite XLG 0.02g」を「0.16g」に変え、また、第2工程「重合体(B1-3)水溶液3.0172g」の代わりに、「重合体(B3-2)水溶液(重合体濃度=3.77重量%)1.3263g」を用いたこと以外は、実施例1と同様にして、細胞培養基材5を作製した。
 該細胞培養基材5中の重合体(A)と無機材料(C)との質量比((C)/(A))が0.49であり、細胞培養基材全体に対する重合体(B)の含有率が9.3質量%であった。
 この反応系のRa=0.49、無機材料(C)の濃度(質量%)=1.57(%)<0.87Ra+2.17=2.60
[細胞培養及び温度変化による剥離回収試験]
 実施例1と同様にして、細胞を培養した後、冷PBS処理により自然剥離した細胞の数は10.9×10個で、残存した未剥離の細胞数は0.3×10個であった。式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約97%であった。 
 また、上記培養基材5から回収された細胞の総数(11.2×10個)が、未コートシャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)を用いた場合(10.8×10個)の約1.04倍で、細胞増殖性が未コートシャーレとほぼ同等であった。
 また、上記低温処理による自然剥離及び基材に残存した未剥離の細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材が、良好な培養性を有すると同時に、低温処理による細胞の回収率が高いことが理解できる。
(実施例6)
 この実施例も重合体(B3)を用いて細胞培養基材を製造する例である。
[重合体(B3)水溶液の調製]
 ガラス容器に、アクリル酸2メトキシエチル(モノマー(a)、東亞合成株式会社製)0.8784g、モノマー(d)としてメトキシポリエチレングリコール400アクリレート(商品名:NKエステルAM90G、新中村化学工業株式会社製)0.3615g、触媒としてN,N,N’,N’-テトラメチルエチレンジアミン(和光純薬工業株式会社製)24μL、熱重合開始剤として、2wt%のペルオキソ二硫酸カリウム(和光純薬工業株式会社製)水溶液300μL、水媒体(W)として水30g、を入れ、窒素置換しながら均一に混合した後、ガラス容器を密封した。次いで、該ガラス容器を20℃の恒温水槽に15時間静置して、重合体(B3)の水溶液を調製した。重合体(B3)のLCSTは23℃であった。
[細胞培養基材の作製(第2工程)]
 実施例1の第2工程「重合体(B1-3)水溶液(重合体濃度=2.32重量%)3.0172g」の代わりに、「重合体(B3)水溶液(重合体濃度=3.97重量%)1.2594g」を用いたこと以外は、実施例1と同様にして、細胞培養基材6を作製した。
 該細胞培養基材6中の重合体(A)と無機材料(C)との質量比((C)/(A))が0.061であり、細胞培養基材全体に対する重合体(B)の含有率が9.3質量%であった。
[細胞培養及び温度変化による剥離回収試験]
 実施例1と同様にして、細胞を培養した後、冷PBS処理により自然剥離した細胞の数は10.4×10個で、残存した未剥離の細胞数は0.4×10個であった。式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約96%であった。 
 また、上記培養基材6から回収された細胞の総数(10.8×10個)が、未コートシャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)を用いた場合(10.8×10個)の約1.00倍で、細胞増殖性が未コートシャーレとほぼ同等であった。
 また、上記低温処理による自然剥離及び基材に残存した未剥離の細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材が、良好な培養性を有すると同時に、低温処理による細胞の回収率が高いことが理解できる。
 実施例1~6で得られた結果を下記表3および4に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 (実施例7)
 この実施例は実施例1~6で作製した培養基材1~6を用いた間葉系幹細胞の培養及び温度変化による剥離回収試験例である。
[細胞培養及び温度変化による剥離回収試験]
 上記実施例1~6で得られた細胞培養基材1~6に、10%血清を含有するMEM-α培地(和光純薬工業株式会社制)を適量入れ、骨髄由来間葉系幹細胞を播種して(播種濃度は1×10個/シャーレ)、5%二酸化炭素中、37℃で三日間培養を行った。次いで、(37℃の)培地を吸い取り、4℃のPBS水溶液(リン酸緩衝液)を入れ、約10分間静置させた後、ピペットで培地を吸ったり出したりするピペッティング操作を数回程行ったところ、大部分の細胞が培養基材(1~6)の表面から剥離されたことが観察された。自然剥離された細胞の回収率及び未コートシャーレとの細胞数の比(細胞増殖性)を表3に示した。
Figure JPOXMLDOC01-appb-T000014
 また、上記低温処理による自然剥離及び基材に残存した未剥離の細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材が、幹細胞に対しても良好な培養性を有すると同時に、低温処理による細胞の回収率が高いことが理解できる。
(実施例8)
 この実施例は実施例1で作製した培養基材1を用いた細胞薄膜の培養・回収例である。
 培養基材1に、CS-C complete medium(Cell Systems社製培地)を適量入れ、正常ヒト真皮線維芽細胞を播種して(播種濃度は1.2×10個/cm)、5%二酸化炭素中、37℃で培養を行った。細胞が十分増殖したのを確認して、その(37℃の)培地を吸い取り、4℃のPBS水溶液(リン酸緩衝液)を入れ、数分間静置させたところ、増殖した薄膜状細胞が自然に剥がれた。
 また、上記低温処理による自然剥離した細胞薄膜を、顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材が、良好な培養性を有すると同時に、低温処理により薄膜状の細胞を容易に得られることが理解できる。
(実施例9)
 この実施例は実施例1の塗布液を用いた培養バッグの作製例である。
[細胞培養基材の作製(第2工程)]
 分散液(L1)全量に、上記参考例で得た重合体(B1-3)(表2参照)の水溶液を3.0172g、20重量%ドデシルベンゼンスルホン酸ナトリウム水溶液を150μL入れ、均一に混合した後、培養バッグ(CultiLife215、内表面積215cm、コージンバイオ株式会社製)に適量入れ、内表面全体を馴染ませた後、余分の液を十分除去し、70℃の熱風乾燥器中で60分間乾燥させた。次いで、滅菌水によりバッグ内部を十分洗浄した後、滅菌袋中でシャーレを40℃、一晩乾燥して、細胞培養基材(培養バッグ)9を得た。
 [細胞培養及び温度変化による剥離回収試験]
 実施例1と同様にして(細胞播種濃度は35mmシャーレ換算で実施例1と同じ濃度)、細胞を培養した後、冷PBS処理により自然剥離した細胞の数は13.1×10個/cmで、残存した未剥離の細胞数は0.04×10個/cmであった。式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約97%であった。
 また、上記培養基材9から回収された細胞の総数(1.34×10個/cm)が、未コートシャーレ(Treated Cell Culture Dish、品番430165、表面積8cm、Corning Incorporated社製)を用いた場合(1.35×10個/cm)の約0.99倍で、細胞増殖性が未コートシャーレとほぼ同等であった。
 また、上記低温処理による自然剥離及び基材に残存した未剥離の細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材(培養バッグ)が、良好な培養性を有すると同時に、低温処理による細胞の回収率が高いことが理解できる。
(実施例10)
 この実施例は無機材料(C)としてシリカを用いた細胞培養基材の製造例である。
 実施例1の「水膨潤性粘土鉱物Laponite XLG 0.02g」の代わりに、「コロイダルシリカ(商品名:スノーテックス20(シリカ濃度20重量%、日産化学工業株式会社製))0.1g」を用いたこと以外は、実施例1と同様にして細胞培養基材10を作製した。
[細胞培養及び温度変化による剥離回収試験]
 実施例1と同様にして、細胞を培養した後、冷PBS処理により自然剥離した細胞の数は9.45×10個で、残存した未剥離の細胞数は1.05×10個であった。式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約90%であった。 また、上記培養基材10から回収された細胞の総数(10.5×10個)が、未コートシャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)を用いた場合(10.8×10個)の約0.97倍で、細胞増殖性が未コートシャーレと同等であった。
 また、上記低温処理による自然剥離及び基材に残存した未剥離の細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及びシリカ(無機材料(C))を含有する細胞培養基材が、良好な培養性を有すると同時に、低温処理による細胞の回収率が高いことが理解できる。
(実施例11)
 この実施例は細胞培養基材の耐滅菌性を示した例である。
 実施例で作製した細胞培養基材6を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)。次いで、実施例1と同様にして、細胞を培養した後、冷PBS処理により自然剥離した細胞の数は10.69×10個で、残存した未剥離の細胞数は0.33×10個であった。式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約97%であった。
 また、上記培養基材6から回収された細胞の総数(11.02×10個)が、未コートシャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)を用いた場合(10.8×10個)の約1.02倍で、細胞増殖性が未コートシャーレとほぼ同等であった。
 また、上記低温処理による自然剥離及び基材に残存した未剥離の細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材が、放射線による滅菌を行っても、良好な培養性と低温処理による細胞の高回収率が変化しないことが理解できる。
(実施例12)
 この実施例は実施例1の塗布液を用いた培養マイクロキャリアビーズの作製例である。
[細胞培養基材の作製(第2工程)]
 分散液(L1)全量に、上記参考例で得た重合体(B1-3)(表2参照)の水溶液を3.0172g、20重量%ドデシルベンゼンスルホン酸ナトリウム水溶液を150μL入れ、均一に混合して、塗布液を得た。
 70μmの孔を有するナイロンメッシュ製セルストレエナー(Cell Strainer、BD Falcon製)に、平均粒径が300μmのポリスチレン製ビーズ(商品名:PolyBeads、ポリサイエンス社製)を少量入れ、その上に上記で調製した塗布液を適量滴下し、ビーズ表面を塗布液で濡らした。次いで該セルストレエナーを6ウエルプレートに入れ、2000rpmの条件で、遠心機によりビーズ表面の過剰な塗布液を落とし、70℃の熱風乾燥器中で30分間乾燥させた。次いで、50℃の滅菌水でコートビーズを十分洗浄して、培養マイクロキャリアビーズ12を得た。
[細胞培養及び温度変化による剥離回収試験]
 上記得られた培養マイクロキャリアビーズ12を35mmポリスチレン製シャーレ(60mm/Non-Treated Dish、旭テクノグラス株式会社製)に入れ、Doulbecco's modified Eagle's Medium(DMEM)培地(FBSを10%添加)(日水製薬株式会社製)を適量添加した。次いで、Balb3T3細胞(マウス腫瘍線維芽細胞)を播種して(播種濃度は1.0×10個/cm)、5%二酸化炭素中、37℃で培養を行った。培養開始4時間後、細胞がビーズの表面に接着しているのが顕微鏡で確認された。更に、培養3日後、ビーズの表面がほぼすべて細胞に覆われていることが観察された。次いで、培養3日後の培養マイクロキャリアビーズの37℃の培地を4℃の培地に交換し、数分静置したところ、一部の細胞がビーズ表面から剥離したことが観察された。更に、ピペットで培地を吸ったり出したりする「ピペッティング」操作を数回行ったところ、ビーズ表面の細胞が全て剥離したことが観察された(細胞の剥離回収率=100%であった)。
 また、上記低温処理及びピペッティング操作により剥離した細胞を、顕微鏡で細胞形態が正常であることを確認した。
 この実施例より、重合体(A)と温度応答性を有する重合体(B)、及び無機材料(C)を含有する細胞培養基材(培養マイクロキャリアビーズ)が、良好な培養性を有すると同時に、低温処理及びピペッティング操作による細胞の回収率が高いことが理解できる。
(比較例1)
 この比較例は市販の細胞培養シャーレを用いた細胞培養・低温処理による自然剥離の例である。
 市販の細胞培養シャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)を用いて、実施例1と同様にして、細胞を培養した後、冷PBS処理により自然剥離した細胞の数は2.2×10個で、残存した未剥離の細胞数は8.6×10個であった。式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約20%であった。
 この比較例から、市販の培養基材は、本発明の培養基材に比べ、細胞増殖性は変わらないが、低温処理による細胞の自然剥離性は殆どないことが理解できる。
(比較例2)
 この比較例は重合体(B)を含有しない細胞培養基材の例である。
 実施例5の製法において、第2工程の「重合体(B3-2)水溶液」を添加しないこと以外は、実施例5と同様にして、細胞培養基材2’を作製した。
[細胞培養及び温度変化による剥離回収試験]
 実施例1と同様にして、細胞を培養した後、冷PBS処理により自然剥離した細胞の数は0.99×10個で、残存した未剥離の細胞数は10.01×10個であった。式(6)により低温処理による細胞の回収率を求めたところ、細胞回収率は約9%であった。
 また、上記培養基材5から回収された細胞の総数(11.0×10個)が、未コートシャーレ(Treated Cell Culture Dish、品番430165、Corning Incorporated社製)を用いた場合(10.8×10個)の約1.02倍で、細胞増殖性が未コートシャーレとほぼ同等であった。
 この比較例から、重合体(B)を含まない場合、細胞の増殖性は変わらないが、細胞回収率は大きく低下したことが理解できる。
(比較例3)
 この比較例は重合体(B)を過剰に含有した細胞培養基材の例である。
[細胞培養基材の作製(第2工程)]
 実施例1の分散液(L1)全量に配合する重合体(B1-3)水溶液の量「3.0172g」の代わりに、「10.3448g」を用いること以外は、実施例1と同様にして細胞培養基材3’を作製した。
 該細胞培養基材3’全体に対する重合体(B)の含有率が41.0質量%であった。
[細胞培養及び温度変化による剥離回収試験]
 実施例8と同様にして、正常ヒト真皮線維芽細胞を培養したところ、細胞が基材に接着せず、播種した細胞が死滅し、増殖は全く見られなかった。
この比較例から、重合体(B)を過剰に含有すると、細胞の接着・増殖が阻害され、細胞培養ができなくなることが理解できる。
(比較例4)
 この比較例は市販のポリスチレン製ビーズを用いた細胞培養の例である。
 市販のポリスチレン製ビーズ(商品名:PolyBeads、ポリサイエンス社製)を用いて、実施例12と同様にして、Balb3T3細胞を培養したところ、培地中で凝集した細胞塊が見られたものの、ビーズ表面には細胞が全く観察されなかった。
 この比較例から、市販のポリスチレン製ビーズは、本発明の培養マイクロキャリアビーズ12に比べ、細胞の接着・増殖性を有しないことが理解できる。
(比較例5)
 この比較例は無機材料(C)の濃度が式(5)の範囲を超えた例である。
[モノマー(a)、水膨潤性無機材料(C)、水媒体(W)を含む反応液の調製]
 モノマー(a)としてアクリル酸2メトキシエチル(東亞合成株式会社製)1.32g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(Rockwood Additives Ltd.社製)0.32g、重合開始剤として溶液(DE)50μL、水媒体(W)として水10gを均一に混合して反応液(4′)を調製した。次いで、該反応液(4′)を365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射したところ、反応液(4′)全体がゲル化した。このゲルを大量の水に入れても溶解や分散せずゲルのままであった。
 この反応系のRa=0.24、無機材料(C)の濃度(質量%)=3.10%>0.87Ra+2.17=2.38
 この比較例から、無機材料(C)の濃度(質量%)が式(5)の範囲を超えると、反応液全体がゲル化してしまい、複合体(X)の分散液(L)が得られず、シャーレへのコーティングによる細胞培養基材の製造ができないことが理解できる。
 上記実施例及び比較例から、本発明の細胞培養基材は、他の材質の支持体との間、良好な接着性を有し、優れた細胞培養と温度変化による自然剥離機能を有している。また、この細胞培養基材は、短時間で、容易に製造できることが明らかであった。
 本発明の細胞培養基材は、生化学、創薬及び再生医療分野で、コロニー状細胞群や2次元のシート状細胞、3次元の立体細胞増殖物の調製に利用できる。

Claims (4)

  1.  下記式(1)で表されるモノマー(a)の重合体(A)と、下限臨界溶解温度を有する重合体(B)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有し、
     前記重合体(A)と前記無機材料(C)との質量比((C)/(A))が、0.01~3の範囲にあり、
     前記重合体(B)が、モノマー(a)と親水性のアミド系ビニルモノマー(b)との共重合体(B1)、またはモノマー(a)と下記式(2)表されるモノマー(c)との共重合体(B2)、またはモノマー(a)と下記式(3)表されるポリエチレングリコール鎖含有モノマー(d)との共重合体(B3)であり、
     細胞培養基材全体に対する前記重合体(B)の含有率が0.1質量%~40質量%である細胞培養基材。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基、Rは炭素原子数1~2のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子またはメチル基、Rは炭素原子数2~3のアルキレン基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、nは2~20の整数を表す。)
  2.  前記親水性のアミド系ビニルモノマー(b)が、N-置換(メタ)アクリルアミド誘導体、N,N-ジ置換(メタ)アクリルアミド誘導体及びN-ビニルピロリドンからなる群から選ばれる少なくとも一種のモノマーである請求項1に記載の細胞培養基材。
  3.  前記水膨潤性粘土鉱物が、水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト及び水膨潤性合成雲母から選択される、水媒体(W)中で1~10層に層状剥離する1種以上の粘土鉱物であり、前記シリカが水分散性のコロイダルシリカである請求項1又は2に記載の細胞培養基材。
  4.  請求項1~3いずれか記載の細胞培養基材の製造方法であって、
     前記水媒体(W)中の前記無機材料(C)の濃度が下記式(4)又は式(5)で表される範囲となるように、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを水媒体(W)に混合した後、前記モノマー(a)を重合させることにより、重合体(A)と前記無機材料(C)との複合体(X)の分散液(L)を製造する第1工程、
     前記分散液(L)に、前記重合体(B)を添加し、混合して、支持体に塗布した後、乾燥させる第2工程を順次行なうことを特徴とする細胞培養基材の製造方法。
    式(4)  Ra<0.19のとき
          無機材料(C)の濃度(質量%)<12.4Ra+0.05
    式(5)  Ra≧0.19のとき
          無機材料(C)の濃度(質量%)<0.87Ra+2.17
    (式中、無機材料(C)の濃度(質量%)は、無機材料(C)の質量を水媒体(W)と無機材料(C)の合計質量で除して100を掛けた数値、Raは無機材料(C)と重合体(A)との質量比((C)/(A))である。)
PCT/JP2014/082861 2013-12-20 2014-12-11 温度応答性細胞培養基材及びその製造方法 WO2015093393A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/106,470 US9951308B2 (en) 2013-12-20 2014-12-11 Temperature-responsive cell culture substrate and method for producing same
JP2015553508A JP6052432B2 (ja) 2013-12-20 2014-12-11 温度応答性細胞培養基材及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-263815 2013-12-20
JP2013263815 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093393A1 true WO2015093393A1 (ja) 2015-06-25

Family

ID=53402740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082861 WO2015093393A1 (ja) 2013-12-20 2014-12-11 温度応答性細胞培養基材及びその製造方法

Country Status (3)

Country Link
US (1) US9951308B2 (ja)
JP (1) JP6052432B2 (ja)
WO (1) WO2015093393A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104618A1 (ja) * 2015-12-16 2017-06-22 日本ゼオン株式会社 接着型細胞の培養方法
WO2017155869A1 (en) * 2016-03-07 2017-09-14 X-Zell Inc. Compositions and methods for identifying rare cells
WO2018116904A1 (ja) * 2016-12-22 2018-06-28 Dic株式会社 細胞培養基材
WO2018116902A1 (ja) * 2016-12-22 2018-06-28 Dic株式会社 細胞培養基材
WO2018116905A1 (ja) * 2016-12-22 2018-06-28 Dic株式会社 細胞培養基材
JP2019033742A (ja) * 2017-08-16 2019-03-07 東ソー株式会社 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP2020014453A (ja) * 2018-07-13 2020-01-30 東ソー株式会社 幹細胞の培養基材及び幹細胞の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192138A (ja) * 1992-01-22 1993-08-03 Kao Corp 皮膚細胞培養法及び培養皮膚
JPH05192130A (ja) * 1992-01-22 1993-08-03 Kao Corp 細胞培養支持体及びその製造法
JPH06104061B2 (ja) * 1989-02-10 1994-12-21 花王株式会社 細胞培養支持体材料
JP4430123B1 (ja) * 2009-02-24 2010-03-10 財団法人川村理化学研究所 細胞培養基材及びその製造方法
JP2013057058A (ja) * 2011-08-15 2013-03-28 Kawamura Institute Of Chemical Research ブロック共重合体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284766A (en) 1989-02-10 1994-02-08 Kao Corporation Bed material for cell culture
US8530564B2 (en) 2008-06-12 2013-09-10 Kawamura Institute Of Chemical Research Organic-inorganic composite dispersion, cell culture substrate manufactured using the same, and methods for preparing the same
JP5460302B2 (ja) * 2009-12-24 2014-04-02 一般財団法人川村理化学研究所 有機無機複合体分散液の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104061B2 (ja) * 1989-02-10 1994-12-21 花王株式会社 細胞培養支持体材料
JPH05192138A (ja) * 1992-01-22 1993-08-03 Kao Corp 皮膚細胞培養法及び培養皮膚
JPH05192130A (ja) * 1992-01-22 1993-08-03 Kao Corp 細胞培養支持体及びその製造法
JP4430123B1 (ja) * 2009-02-24 2010-03-10 財団法人川村理化学研究所 細胞培養基材及びその製造方法
JP2013057058A (ja) * 2011-08-15 2013-03-28 Kawamura Institute Of Chemical Research ブロック共重合体

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017104618A1 (ja) * 2015-12-16 2018-10-04 日本ゼオン株式会社 接着型細胞の培養方法
WO2017104618A1 (ja) * 2015-12-16 2017-06-22 日本ゼオン株式会社 接着型細胞の培養方法
WO2017155869A1 (en) * 2016-03-07 2017-09-14 X-Zell Inc. Compositions and methods for identifying rare cells
US11226271B2 (en) 2016-03-07 2022-01-18 X-Zell Biotech Pte Ltd Systems and methods for identifying rare cells
AU2017229088B2 (en) * 2016-03-07 2021-05-13 X-Zell Inc. Compositions and methods for identifying rare cells
KR20190094149A (ko) * 2016-12-22 2019-08-12 디아이씨 가부시끼가이샤 세포 배양 기재
US11427803B2 (en) 2016-12-22 2022-08-30 Fujifilm Corporation Cell culture substrate
JPWO2018116905A1 (ja) * 2016-12-22 2018-12-20 Dic株式会社 細胞培養基材
JP6447787B2 (ja) * 2016-12-22 2019-01-09 Dic株式会社 細胞培養基材
JPWO2018116902A1 (ja) * 2016-12-22 2019-01-17 Dic株式会社 細胞培養基材
KR102469649B1 (ko) * 2016-12-22 2022-11-21 후지필름 가부시키가이샤 세포 배양 기재
CN110099996A (zh) * 2016-12-22 2019-08-06 Dic株式会社 细胞培养基材
WO2018116905A1 (ja) * 2016-12-22 2018-06-28 Dic株式会社 細胞培養基材
KR20190096968A (ko) * 2016-12-22 2019-08-20 디아이씨 가부시끼가이샤 세포 배양 기재
KR20190096967A (ko) * 2016-12-22 2019-08-20 디아이씨 가부시끼가이샤 세포 배양 기재
US11499136B2 (en) 2016-12-22 2022-11-15 Dic Corporation Cell culture substrate
WO2018116902A1 (ja) * 2016-12-22 2018-06-28 Dic株式会社 細胞培養基材
WO2018116904A1 (ja) * 2016-12-22 2018-06-28 Dic株式会社 細胞培養基材
JPWO2018116904A1 (ja) * 2016-12-22 2018-12-20 Dic株式会社 細胞培養基材
US11441120B2 (en) 2016-12-22 2022-09-13 Fujifilm Corporation Cell culture substrate
KR102464294B1 (ko) * 2016-12-22 2022-11-04 후지필름 가부시키가이샤 세포 배양 기재
KR102465721B1 (ko) * 2016-12-22 2022-11-09 후지필름 가부시키가이샤 세포 배양 기재
JP2019033742A (ja) * 2017-08-16 2019-03-07 東ソー株式会社 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP7271870B2 (ja) 2017-08-16 2023-05-12 東ソー株式会社 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP2020014453A (ja) * 2018-07-13 2020-01-30 東ソー株式会社 幹細胞の培養基材及び幹細胞の製造方法

Also Published As

Publication number Publication date
US9951308B2 (en) 2018-04-24
US20170029763A1 (en) 2017-02-02
JPWO2015093393A1 (ja) 2017-03-16
JP6052432B2 (ja) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6052432B2 (ja) 温度応答性細胞培養基材及びその製造方法
WO2009150931A1 (ja) 有機無機複合体分散液及びそれを用いて製造される細胞培養基材、及びそれらの製造方法
US7993892B2 (en) Production of organic/inorganic composite hydrogel
EP2135940B1 (en) Cell culture support and manufacture thereof
JP6493629B2 (ja) 細胞培養基材
JP4430123B1 (ja) 細胞培養基材及びその製造方法
JP5460302B2 (ja) 有機無機複合体分散液の製造方法
JP2006288251A (ja) 細胞培養基材及び細胞培養方法
JP2011072297A (ja) 細胞培養基材
JP2011225769A (ja) 有機無機複合体分散液の製造方法
JP5935477B2 (ja) 骨髄由来細胞の培養方法
JP5929053B2 (ja) 血液由来単核細胞群からの接着性細胞の選択的培養方法
JP2006288217A (ja) 細胞培養基材及び細胞培養方法
JP5929111B2 (ja) 接着細胞の培養方法及びそれに用いる細胞培養基材
JP6024004B2 (ja) 角膜細胞の製造方法及び角膜細胞シートの製造方法
JP2012050395A (ja) 網膜色素細胞の培養方法及び培養網膜色素細胞
JP6229503B2 (ja) 温度応答性を有する細胞培養基材およびその製造方法
JP2013055908A (ja) 培養床及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15106470

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14871307

Country of ref document: EP

Kind code of ref document: A1