WO2013018179A1 - リチウムイオン二次電池およびその製造方法 - Google Patents
リチウムイオン二次電池およびその製造方法 Download PDFInfo
- Publication number
- WO2013018179A1 WO2013018179A1 PCT/JP2011/067534 JP2011067534W WO2013018179A1 WO 2013018179 A1 WO2013018179 A1 WO 2013018179A1 JP 2011067534 W JP2011067534 W JP 2011067534W WO 2013018179 A1 WO2013018179 A1 WO 2013018179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- electrode active
- material particles
- secondary battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a lithium ion secondary battery and a manufacturing method thereof.
- Patent Document 1 JP 1998-302774A (Japanese Patent Laid-Open No. 10-302774), a paste-like graphite powder is applied to a copper foil and then dried to form a negative electrode. Obtaining an electrode is disclosed. In this publication, an electrode is obtained with the same structure for the positive electrode. Then, a negative electrode, a separator, a positive electrode, and a separator are stacked in this order, and the rolled electrode body is rolled up by stacking the negative electrode, the separator, the positive electrode, and the separator in a cylindrical shape. A battery is made by placing the wound electrode body and the electrolyte in a battery case.
- Patent Document 1 graphite powder having a powder bulk density of 0.5 g / cm 3 or more and an oil absorption of 65 (mL / 100 g) or less is used for the graphite powder used as the negative electrode active material. Proposed.
- Patent Document 2 JP 2004-265754A (Japanese Patent Laid-Open No. 2004-265754) uses, as a negative electrode active material, a composite carbon material in which the surface of carbonaceous particles as a core is coated with amorphous carbon. It is disclosed. Here, it is disclosed that the coating amount of amorphous carbon is 0.1% by mass or more and 15.0% by mass or less with respect to the mass of carbonaceous particles serving as a nucleus. Further, it is disclosed that the content of the composite carbon material is 30% by mass or more with respect to the mass of the negative electrode active material.
- Patent Document 3 JP 2005-294011A (Japanese Patent Application Laid-Open No. 2005-294011) discloses graphite particles whose surface is coated with amorphous carbon and graphite particles whose surface is coated with amorphous carbon. It has been proposed to mix with graphite particles not coated with carbonaceous. Further, it has been proposed that for graphite particles whose surfaces are coated with amorphous carbon, the mass of amorphous carbon in 100 parts by mass of the graphite particles is 0.1 to 10 parts by mass.
- Patent Document 4 JP 2009-21818A (Japanese Patent Laid-Open No. 2009-21118A) discloses that the surface of graphite particles is coated with amorphous carbon, and the coating amount is 0.1 to 10% by mass with respect to graphite. Are used as a negative electrode active material of a non-aqueous electrolyte secondary battery.
- a substance having a specific surface area of 200 to 500 m 2 / g and a molecular weight of 300 to 500 when calcined alone as amorphous carbon it has been proposed to use a substance having a specific surface area of 200 to 500 m 2 / g and a molecular weight of 300 to 500 when calcined alone as amorphous carbon.
- JP 1998-302774A Japanese Patent Laid-Open No. 10-302774
- JP 2004-265754A Japanese Patent Laid-Open No. 2004-265754
- JP 2005-294011A Japanese Patent Laid-Open No. 2005-294011
- JP2009-21118A Japanese Patent Laid-Open No. 2009-21118A
- a negative electrode active material layer containing negative electrode active material particles is coated on a current collector (for example, a copper foil in the negative electrode).
- a paste-like mixture in which negative electrode active material particles and a binder are mixed in a solvent is prepared. Then, the mixture is applied to a current collector, dried, and rolled. At this time, if the ratio of the solvent in the paste-like mixture is large, much time and energy are required in the drying step. In order to keep the manufacturing cost of the lithium ion secondary battery low, it is desirable to reduce the time and energy required for the drying process. For this reason, it is preferable to increase the solid content concentration of the mixture and reduce the proportion of the solvent.
- the active material is a material that is easily adapted to the electrolytic solution, and lithium ions are easily transferred and the resistance is suppressed to a low level.
- the amount of oil absorption is used as an index for evaluating the degree to which the active material is familiar with the electrolyte, and an active material having a high amount of oil absorption is used to keep the resistance of the lithium ion secondary battery low.
- the lithium ion secondary battery according to the present invention includes a negative electrode current collector and a negative electrode active material layer coated on the negative electrode current collector.
- the negative electrode active material layer includes negative electrode active material particles, and the negative electrode active material particles include graphite particles at least partially covered with an amorphous carbon film, and the amorphous carbon film in the negative electrode active material particles
- the weight ratio X is 0.02 ⁇ X ⁇ 0.06.
- the oil absorption amount Y (mL / 100 g) of the linseed oil of the negative electrode active material particles is preferably 35 (mL / 100 g) ⁇ Y ⁇ 70 (mL / 100 g). With such a configuration, the lithium ion secondary battery 100A can achieve both a low resistance and a low manufacturing cost.
- the oil absorption amount Y (mL / 100 g) of the linseed oil of the negative electrode active material particles may be, for example, Y ⁇ 69 (mL / 100 g).
- the oil absorption amount Y (mL / 100 g) of the linseed oil of the negative electrode active material particles may be 54 (mL / 100 g) ⁇ Y.
- the negative electrode active material particles include graphite particles at least partially covered with an amorphous carbon film, and the weight ratio X of the amorphous carbon film in the negative electrode active material particles is such that X ⁇ 0.05. It may be.
- the method for producing a lithium ion secondary battery includes preparing a negative electrode mixture in which negative electrode active material particles and a binder are mixed in a solvent, and preparing the negative electrode mixture prepared in step A as a negative electrode current collector.
- the negative electrode active material particles preferably include graphite particles at least partially covered with an amorphous carbon film.
- the weight ratio X of the amorphous carbon film in the negative electrode active material particles is preferably 0.02 ⁇ X ⁇ 0.06.
- the oil absorption amount Y (mL / 100 g) of the linseed oil of the negative electrode active material particles is preferably 35 (mL / 100 g) ⁇ Y ⁇ 70 (mL / 100 g).
- the solid content concentration N of the negative electrode mixture prepared in the step A is preferably 52 (%) ⁇ N.
- the solid content concentration N of the negative electrode mixture prepared in step A may be N ⁇ 60 (%).
- the negative electrode mixture prepared in step A has a viscosity G1 when the shear rate in the B-type viscometer is 10 (s ⁇ 1 ) and a shear rate in the B-type viscometer is 300 (s ⁇ 1 ).
- the difference in viscosity (G2-G1) from the viscosity G2 in this case may be (G2-G1) ⁇ 0.
- the negative electrode mixture prepared in Step A was allowed to stand for 84 hours in a state where it was placed in a container up to a depth of about 50 mm from the bottom, and then the solid content concentration N1 of the negative electrode mixture collected on the surface layer of the negative electrode mixture and The difference (N2 ⁇ N1) from the solid content concentration N2 of the negative electrode mixture collected at the bottom of the container may be (N2 ⁇ N1) ⁇ 2 (%).
- the viscosity G of the negative electrode mixture prepared in step A may be G ⁇ 7000 (mPa ⁇ s) when the shear rate in the B-type viscometer is 20 (s ⁇ 1 ).
- the viscosity G of the negative electrode mixture prepared in step A may be 1000 (mPa ⁇ s) ⁇ G when the shear rate in the B-type viscometer is 20 (s ⁇ 1 ).
- Step A the amount Z (mL / 100 g) of the solvent mixed per 100 g of the negative electrode active material particles is set to (Y + 1) ⁇ Z ⁇ with respect to the oil absorption amount Y (mL / 100 g) of the linseed oil of the negative electrode active material particles. You may adjust to (Y + 10).
- FIG. 1 is a diagram illustrating an example of the structure of a lithium ion secondary battery.
- FIG. 2 is a view showing a wound electrode body of a lithium ion secondary battery.
- FIG. 3 is a cross-sectional view showing a III-III cross section in FIG.
- FIG. 4 is a cross-sectional view showing the structure of the positive electrode active material layer.
- FIG. 5 is a cross-sectional view showing the structure of the negative electrode active material layer.
- FIG. 6 is a side view showing a welding location between an uncoated portion of the wound electrode body and the electrode terminal.
- FIG. 7 is a diagram schematically illustrating a state of the lithium ion secondary battery during charging.
- FIG. 8 is a diagram schematically showing a state of the lithium ion secondary battery during discharge.
- FIG. 9 is a diagram showing a lithium ion secondary battery according to an embodiment of the present invention.
- FIG. 10 is a cross-sectional view of a negative electrode sheet of a lithium ion secondary battery according to an embodiment of the present invention.
- FIG. 11 is a graph showing a tendency obtained in a high rate deterioration test of a lithium ion secondary battery according to an embodiment of the present invention.
- FIG. 12 is a diagram illustrating a process of applying a negative electrode mixture to a negative electrode current collector and drying it.
- FIG. 13 is a graph showing the trends of viscosity G, viscosity difference (G2-G1), and solid content concentration difference (N2-N1) for the negative electrode mixture.
- FIG. 14 is a diagram showing a tendency of the difference (ZY) between the amount Z of the solvent in the negative electrode mixture and the oil absorption amount Y of the linseed oil of the negative electrode active material particles.
- FIG. 15 is a diagram illustrating a vehicle equipped with a secondary battery.
- FIG. 1 shows a lithium ion secondary battery 100.
- the lithium ion secondary battery 100 includes a wound electrode body 200 and a battery case 300.
- FIG. 2 is a view showing the wound electrode body 200.
- FIG. 3 shows a III-III cross section in FIG.
- the wound electrode body 200 includes a positive electrode sheet 220, a negative electrode sheet 240, and separators 262 and 264.
- the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are respectively strip-shaped sheet materials.
- the positive electrode sheet 220 includes a strip-shaped positive electrode current collector 221 and a positive electrode active material layer 223.
- a metal foil suitable for the positive electrode can be suitably used.
- a strip-shaped aluminum foil having a predetermined width and a thickness of approximately 15 ⁇ m can be used.
- An uncoated portion 222 is set along the edge on one side in the width direction of the positive electrode current collector 221.
- the positive electrode active material layer 223 is held on both surfaces of the positive electrode current collector 221 except for the uncoated portion 222 set on the positive electrode current collector 221 as shown in FIG.
- the positive electrode active material layer 223 contains a positive electrode active material.
- the positive electrode active material layer 223 is formed by applying a positive electrode mixture containing a positive electrode active material to the positive electrode current collector 221.
- FIG. 4 is a cross-sectional view of the positive electrode sheet 220.
- the positive electrode active material particles 610, the conductive material 620, and the binder 630 in the positive electrode active material layer 223 are schematically illustrated so that the structure of the positive electrode active material layer 223 becomes clear.
- the positive electrode active material layer 223 includes positive electrode active material particles 610, a conductive material 620, and a binder 630.
- the positive electrode active material particles 610 a material that can be used as a positive electrode active material of a lithium ion secondary battery can be used.
- the positive electrode active material particles 610 include LiNiCoMnO 2 (lithium nickel cobalt manganese composite oxide), LiNiO 2 (lithium nickelate), LiCoO 2 (lithium cobaltate), LiMn 2 O 4 (lithium manganate), LiFePO And lithium transition metal oxides such as 4 (lithium iron phosphate).
- LiMn 2 O 4 has, for example, a spinel structure.
- LiNiO 2 or LiCoO 2 has a layered rock salt structure.
- LiFePO 4 has, for example, an olivine structure.
- LiFePO 4 having an olivine structure includes, for example, nanometer order particles.
- LiFePO 4 having an olivine structure can be further covered with a carbon film.
- the conductive material 620 examples include carbon materials such as carbon powder and carbon fiber. One kind selected from such conductive materials may be used alone, or two or more kinds may be used in combination.
- the carbon powder various carbon blacks (for example, acetylene black, oil furnace black, graphitized carbon black, carbon black, graphite, ketjen black), graphite powder, and the like can be used.
- the binder 630 binds the positive electrode active material particles 610 and the conductive material 620 included in the positive electrode active material layer 223, or binds these particles and the positive electrode current collector 221.
- a polymer that can be dissolved or dispersed in a solvent to be used can be used as the binder 630.
- a cellulose polymer (carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC), etc.), a fluorine resin (eg, polyvinyl alcohol (PVA), polytetrafluoroethylene, etc.) (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP, etc.), rubbers (vinyl acetate copolymer, styrene butadiene copolymer (SBR), acrylic acid-modified SBR resin (SBR latex), etc.)
- a water-soluble or water-dispersible polymer such as can be preferably used.
- a polymer polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), polyacrylonitrile (PAN), etc.
- PVDF polyvinylidene fluoride
- PVDC polyvinylidene chloride
- PAN polyacrylonitrile
- the positive electrode active material layer 223 is prepared, for example, by preparing a positive electrode mixture in which the above-described positive electrode active material particles 610 and the conductive material 620 are mixed in a paste (slurry) with a solvent, applied to the positive electrode current collector 221, and dried. And is formed by rolling.
- a solvent for the positive electrode mixture either an aqueous solvent or a non-aqueous solvent can be used.
- a preferred example of the non-aqueous solvent is N-methyl-2-pyrrolidone (NMP).
- NMP N-methyl-2-pyrrolidone
- the polymer material exemplified as the binder 630 may be used for the purpose of exhibiting a function as a thickener or other additive of the positive electrode mixture in addition to the function as a binder.
- the mass ratio of the positive electrode active material in the total positive electrode mixture is preferably about 50 wt% or more (typically 50 to 95 wt%), and usually about 70 to 95 wt% (for example, 75 to 90 wt%). It is more preferable. Further, the ratio of the conductive material to the whole positive electrode mixture can be, for example, about 2 to 20 wt%, and is usually preferably about 2 to 15 wt%. In the composition using the binder, the ratio of the binder to the whole positive electrode mixture can be, for example, about 1 to 10 wt%, and usually about 2 to 5 wt%.
- the negative electrode sheet 240 includes a strip-shaped negative electrode current collector 241 and a negative electrode active material layer 243.
- a metal foil suitable for the negative electrode can be suitably used.
- the negative electrode current collector 241 is made of a strip-shaped copper foil having a predetermined width and a thickness of about 10 ⁇ m.
- an uncoated part 242 is set along the edge.
- the negative electrode active material layer 243 is formed on both surfaces of the negative electrode current collector 241 except for the uncoated portion 242 set on the negative electrode current collector 241.
- the negative electrode active material layer 243 is held by the negative electrode current collector 241 and contains at least a negative electrode active material.
- a negative electrode mixture containing a negative electrode active material is applied to the negative electrode current collector 241.
- FIG. 5 is a cross-sectional view of the negative electrode sheet 240 of the lithium ion secondary battery 100.
- the negative electrode active material layer 243 includes negative electrode active material particles 710, a thickener (not shown), a binder 730, and the like.
- the negative electrode active material particles 710 and the binder 730 in the negative electrode active material layer 243 are schematically illustrated so that the structure of the negative electrode active material layer 243 becomes clear.
- the negative electrode active material particles 710 one or two or more materials conventionally used for lithium ion secondary batteries can be used without particular limitation.
- the negative electrode active material is, for example, natural graphite, natural graphite coated with an amorphous carbon material, graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon ( Soft carbon) or a carbon material combining these may be used.
- the negative electrode active material particles 710 are illustrated using so-called scaly graphite, but the negative electrode active material particles 710 are not limited to the illustrated example.
- the negative electrode active material layer 243 is prepared, for example, by preparing a negative electrode mixture in which the negative electrode active material particles 710 and the binder 730 described above are mixed in a paste (slurry) with a solvent, and applied to the negative electrode current collector 241 and dried. It is formed by rolling. At this time, any of an aqueous solvent and a non-aqueous solvent can be used as the solvent for the negative electrode mixture.
- a preferred example of the non-aqueous solvent is N-methyl-2-pyrrolidone (NMP).
- NMP N-methyl-2-pyrrolidone
- the binder 730 the polymer material exemplified as the binder 630 of the positive electrode active material layer 223 (see FIG. 4) can be used.
- the polymer material exemplified as the binder 630 of the positive electrode active material layer 223 may be used for the purpose of exhibiting a function as a thickener or other additive of the positive electrode mixture in addition to the function as a binder. possible.
- the separators 262 and 264 are members that separate the positive electrode sheet 220 and the negative electrode sheet 240 as shown in FIG. 1 or FIG.
- the separators 262 and 264 are made of a strip-shaped sheet material having a predetermined width and having a plurality of minute holes.
- a single layer structure separator or a multilayer structure separator made of a porous polyolefin resin can be used as the separators 262 and 264.
- the width b1 of the negative electrode active material layer 243 is slightly wider than the width a1 of the positive electrode active material layer 223.
- the widths c1 and c2 of the separators 262 and 264 are slightly wider than the width b1 of the negative electrode active material layer 243 (c1, c2>b1> a1).
- the separators 262 and 264 are made of sheet-like members.
- the separators 262 and 264 may be members that insulate the positive electrode active material layer 223 and the negative electrode active material layer 243 and allow the electrolyte to move. Therefore, it is not limited to a sheet-like member.
- the separators 262 and 264 may be formed of a layer of insulating particles formed on the surface of the positive electrode active material layer 223 or the negative electrode active material layer 243, for example, instead of the sheet-like member.
- the particles having insulating properties inorganic fillers having insulating properties (for example, fillers such as metal oxides and metal hydroxides) or resin particles having insulating properties (for example, particles such as polyethylene and polypropylene). ).
- the battery case 300 is a so-called square battery case, and includes a container body 320 and a lid 340.
- the container main body 320 has a bottomed rectangular tube shape and is a flat box-shaped container having one side surface (upper surface) opened.
- the lid 340 is a member that is attached to the opening (opening on the upper surface) of the container body 320 and closes the opening.
- weight energy efficiency battery capacity per unit weight
- lightweight metals such as aluminum and an aluminum alloy
- the battery case 300 has a flat rectangular internal space as a space for accommodating the wound electrode body 200. Further, as shown in FIG. 1, the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200.
- the battery case 300 includes a bottomed rectangular tubular container body 320 and a lid 340 that closes the opening of the container body 320. Electrode terminals 420 and 440 are attached to the lid 340 of the battery case 300. The electrode terminals 420 and 440 pass through the battery case 300 (lid 340) and come out of the battery case 300.
- the lid 340 is provided with a liquid injection hole 350 and a safety valve 360.
- the wound electrode body 200 is flatly pushed and bent in one direction orthogonal to the winding axis WL.
- the uncoated part 222 of the positive electrode current collector 221 and the uncoated part 242 of the negative electrode current collector 241 are spirally exposed on both sides of the separators 262 and 264, respectively.
- the intermediate portions 224 and 244 of the uncoated portions 222 and 242 are gathered together and welded to the tip portions 420 a and 440 a of the electrode terminals 420 and 440.
- ultrasonic welding is used for welding the electrode terminal 420 and the positive electrode current collector 221 due to the difference in materials.
- FIG. 6 is a side view showing a welded portion between the intermediate portion 224 (244) of the uncoated portion 222 (242) of the wound electrode body 200 and the electrode terminal 420 (440), and VI in FIG. It is -VI sectional drawing.
- the wound electrode body 200 is attached to the electrode terminals 420 and 440 fixed to the lid body 340 in a state where the wound electrode body 200 is flatly pushed and bent.
- the wound electrode body 200 is accommodated in a flat internal space of the container body 320 as shown in FIG.
- the container body 320 is closed by the lid 340 after the wound electrode body 200 is accommodated.
- the joint 322 (see FIG. 1) between the lid 340 and the container main body 320 is welded and sealed, for example, by laser welding.
- the wound electrode body 200 is positioned in the battery case 300 by the electrode terminals 420 and 440 fixed to the lid 340 (battery case 300).
- an electrolytic solution is injected into the battery case 300 from a liquid injection hole 350 provided in the lid 340.
- a so-called non-aqueous electrolytic solution that does not use water as a solvent is used.
- an electrolytic solution in which LiPF6 is contained at a concentration of about 1 mol / liter in a mixed solvent of ethylene carbonate and diethyl carbonate (for example, a mixed solvent having a volume ratio of about 1: 1) is used.
- a metal sealing cap 352 is attached (for example, welded) to the liquid injection hole 350 to seal the battery case 300.
- the electrolytic solution is not limited to the electrolytic solution exemplified here.
- non-aqueous electrolytes conventionally used for lithium ion secondary batteries can be used as appropriate.
- the positive electrode active material layer 223 has minute gaps 225 that should also be referred to as cavities, for example, between the positive electrode active material particles 610 and the conductive material 620 (see FIG. 4).
- An electrolytic solution (not shown) can penetrate into the minute gaps of the positive electrode active material layer 223.
- the negative electrode active material layer 243 has minute gaps 245 that should also be referred to as cavities, for example, between the negative electrode active material particles 710 (see FIG. 5).
- the gaps 225 and 245 are appropriately referred to as “holes”.
- the wound electrode body 200 has uncoated portions 222 and 242 spirally wound on both sides along the winding axis WL.
- the electrolytic solution can permeate from the gaps between the uncoated portions 222 and 242. For this reason, in the lithium ion secondary battery 100, the electrolytic solution is immersed in the positive electrode active material layer 223 and the negative electrode active material layer 243.
- the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200 deformed flat.
- gaps 310 and 312 are provided between the wound electrode body 200 and the battery case 300.
- the gaps 310 and 312 serve as a gas escape path.
- the abnormally generated gas moves toward the safety valve 360 through the gaps 310 and 312 between the wound electrode body 200 and the battery case 300 on both sides of the wound electrode body 200, and from the safety valve 360 to the battery case 300. Exhausted outside.
- the positive electrode current collector 221 and the negative electrode current collector 241 are electrically connected to an external device through electrode terminals 420 and 440 that penetrate the battery case 300.
- the operation of the lithium ion secondary battery 100 during charging and discharging will be described.
- FIG. 7 schematically shows the state of the lithium ion secondary battery 100 during charging.
- the electrode terminals 420 and 440 (see FIG. 1) of the lithium ion secondary battery 100 are connected to the charger 290. Due to the action of the charger 290, lithium ions (Li) are released from the positive electrode active material in the positive electrode active material layer 223 to the electrolytic solution 280 during charging. In addition, charges are released from the positive electrode active material layer 223. The discharged electric charge is sent to the positive electrode current collector 221 through a conductive material (not shown), and further sent to the negative electrode sheet 240 through the charger 290. In the negative electrode sheet 240, electric charges are stored, and lithium ions (Li) in the electrolytic solution 280 are absorbed and stored in the negative electrode active material in the negative electrode active material layer 243.
- FIG. 8 schematically shows a state of the lithium ion secondary battery 100 during discharging.
- charges are sent from the negative electrode sheet 240 to the positive electrode sheet 220, and lithium ions stored in the negative electrode active material layer 243 are released to the electrolyte solution 280.
- lithium ions in the electrolytic solution 280 are taken into the positive electrode active material in the positive electrode active material layer 223.
- lithium ions pass between the positive electrode active material layer 223 and the negative electrode active material layer 243 through the electrolytic solution 280.
- electric charge is sent from the positive electrode active material to the positive electrode current collector 221 through the conductive material.
- the charge is returned from the positive electrode current collector 221 to the positive electrode active material through the conductive material.
- the above shows an example of a lithium ion secondary battery.
- the lithium ion secondary battery is not limited to the above form.
- an electrode sheet in which an electrode mixture is applied to a metal foil is used in various other battery forms.
- a cylindrical battery or a laminate battery is known as another battery type.
- a cylindrical battery is a battery in which a wound electrode body is accommodated in a cylindrical battery case.
- a laminate type battery is a battery in which a positive electrode sheet and a negative electrode sheet are stacked with a separator interposed therebetween.
- lithium ion secondary battery according to an embodiment of the present invention will be described. Since the basic structure of the lithium ion secondary battery described here is the same as that of the lithium ion secondary battery 100 described above, the lithium ion secondary battery will be described with reference to the lithium ion secondary battery 100 described above as appropriate. .
- the negative electrode active material layer 243 includes negative electrode active material particles 710.
- the use of the negative electrode active material particles 710 having a high oil absorption makes it easier for the electrolyte solution to become familiar with the negative electrode active material particles 710. If the electrolyte solution is easily adapted to the negative electrode active material particles 710, lithium ions easily come and go. For this reason, the resistance of the lithium ion secondary battery can be kept low.
- the electrolytic solution is easily adapted to the negative electrode active material particles 710, cycle deterioration (the tendency that the resistance of the lithium ion secondary battery increases due to repeated charge and discharge) can be suppressed to a low level.
- by employing graphite particles covered with an amorphous carbon film as the negative electrode active material particles 710 decomposition of the electrolytic solution at the negative electrode can be prevented, and cycle deterioration can be suppressed to a low level.
- the negative electrode mixture prepared when forming the negative electrode active material layer 243 is applied to the negative electrode current collector 241 and then dried through a drying furnace when forming the negative electrode active material layer 243.
- the solid content concentration of the negative electrode mixture is increased, dilatancy tends to occur in the negative electrode mixture.
- the negative electrode active material particles 710 having a high oil absorption amount are employed, dilatancy tends to occur in the negative electrode mixture. For this reason, the negative electrode active material particles 710 having a high oil absorption amount cannot be simply used.
- the lithium ion secondary battery 100 desirably employs the negative electrode active material particles 710 having a high oil absorption in order to keep the resistance and the rate of increase in resistance low.
- the negative electrode active material particles 710 having a high oil absorption amount it is necessary to increase the solid content concentration of the negative electrode mixture, and the manufacturing cost of the lithium ion secondary battery 100 tends to increase.
- FIG. 9 shows a lithium ion secondary battery 100A according to an embodiment of the present invention.
- the structure of the negative electrode sheet 240A is different from the lithium ion secondary battery 100 shown in FIG.
- the uncoated portion of the negative electrode sheet 240A is indicated by reference numeral 242A.
- FIG. 10 is a cross-sectional view of the negative electrode sheet 240A of the lithium ion secondary battery 100A.
- the negative electrode current collector of the negative electrode sheet 240A is denoted by reference numeral 241A.
- the negative electrode active material particles 710A included in the negative electrode active material layer 243A include graphite particles at least partially covered with an amorphous carbon film 750.
- the weight ratio X of the amorphous carbon film 750 in the negative electrode active material particles 710A included in the negative electrode active material layer 243A is 0.02 ⁇ X ⁇ 0.06.
- the oil absorption amount Y of the linseed oil of the negative electrode active material particles 710A included in the negative electrode active material layer 243A is 35 (mL / 100 g) ⁇ Y ⁇ 70 (mL / 100 g).
- graphite particles are used as the nuclei of the negative electrode active material particles 710 ⁇ / b> A covered with the amorphous carbon film 750.
- Examples of such graphite particles include natural graphite.
- the amorphous carbon film 750 is a film made of an amorphous carbon material.
- graphite particles that are at least partially covered with the amorphous carbon film 750 can be obtained by mixing the graphite particles serving as the core of the negative electrode active material particles 710 ⁇ / b> A with pitch and baking.
- the weight ratio X of the amorphous carbon film 750 in the negative electrode active material particles 710A may be measured based on TG measurement in, for example, simultaneous differential thermothermal weight measurement (TG / DTA). That is, the TG is obtained by disposing the negative electrode active material particles 710A in the heating furnace and recording the change in weight of the sample with respect to the increase in the atmospheric temperature of the heating furnace. At this time, the amorphous carbon film 750 in the negative electrode active material particles 710A is burned out at a predetermined temperature, and the weight of the negative electrode active material particles 710A is reduced.
- TG simultaneous differential thermothermal weight measurement
- the weight ratio X may be obtained by dividing the decrease in the weight of the negative electrode active material particles 710A at a predetermined temperature by the weight of the negative electrode active material particles 710A before heating.
- the weight ratio X of the amorphous carbon film 750 indicates the amount of the amorphous carbon film 750 with respect to the negative electrode active material particles 710A, and may also be referred to as a “coat amount”.
- Weight ratio X (Reduction in weight of negative electrode active material particles 710A by TG measurement) / (Weight of negative electrode active material particles 710A before heating);
- graphite particles having a known coating amount are obtained by mixing a predetermined amount of pitch with graphite particles serving as the core of the negative electrode active material particles 710A and baking. Then, the graphite particles having a known coating amount thus obtained are reduced in the weight of the negative electrode active material particles 710A by the TG measurement based on the TG measurement in the simultaneous differential thermothermal weight measurement (TG / DTA). Measure. Thereby, a correlation between the coating amount indicating the amount of the amorphous carbon film 750 with respect to the negative electrode active material particles 710 ⁇ / b> A and the weight reduction amount of the negative electrode active material particles 710 ⁇ / b> A by TG measurement is obtained in advance.
- the amount of decrease in the weight of the negative electrode active material particles 710A by TG measurement per unit weight is measured. Then, the decrease amount may be applied to the correlation obtained in advance to estimate the coating amount of the unknown negative electrode active material particle 710A.
- the oil absorption amount Y (mL / 100g) of the linseed oil of the negative electrode active material particles 710A is determined in accordance with JIS K6217-4 “Carbon black for rubber—Basic characteristics—Part 4: Determination of DBP absorption amount”.
- linseed oil is used as a reagent liquid, and the powder to be inspected is titrated with a constant speed burette, and a change in viscosity characteristics is measured by a torque detector.
- the amount of reagent liquid added per unit weight (here, 100 g) of the powder to be inspected corresponding to 70% of the generated maximum torque is defined as the oil absorption amount of linseed oil.
- Asahi Research Institute S-401 can be used as a measuring device.
- the oil addition rate is preferably 4 ml / min, and is preferably measured at a room temperature of about 20 ° C. to 25 ° C.
- FIG. 11 shows trends in the weight ratio X of the amorphous carbon film 750 in the negative electrode active material particles 710A, the linseed oil absorption Y of the negative electrode active material particles 710A, and the performance of the lithium ion secondary battery 100A. ing.
- ⁇ Evaluation cell ⁇ various negative electrode active material particles 710A having different weight ratios X of the amorphous carbon film 750 in the negative electrode active material particles 710A and the linseed oil absorption Y of the negative electrode active material particles 710A are prepared.
- a predetermined evaluation cell was produced using the substance particles 710A.
- the evaluation cell is an 18650 type battery having a low angular capacity of 250 mAh.
- ⁇ Evaluation cell positive electrode ⁇ As the positive electrode of the evaluation cell, an aluminum foil having a thickness of 15 ⁇ m was used as the positive electrode current collector.
- As the positive electrode active material particles of LiNiCoMnO 2 (lithium nickel cobalt manganese composite oxide) are used, and a common positive electrode active material is used in each evaluation cell. Acetylene black is used as the conductive material.
- As the binder polyvinylidene fluoride (PVDF) is used.
- ⁇ Negative electrode of evaluation cell As the negative electrode of the evaluation cell, a copper foil having a thickness of 10 ⁇ m was used as the negative electrode current collector.
- carboxymethylcellulose (CMC) is used as a thickener.
- SBR styrene-butadiene rubber
- Negative electrode active material particle 710A of evaluation cell As the negative electrode active material particles 710A of the evaluation cell, graphite particles at least partially covered with an amorphous carbon film 750 are used by mixing and baking the graphite particles serving as the core of the negative electrode active material particles 710A. (See FIG. 10). Here, negative electrode active material particles 710A in which the weight ratio X of the amorphous carbon film 750 and the oil absorption amount Y of linseed oil are different are used in each evaluation cell. Each evaluation cell is thus manufactured under the same conditions except for the negative electrode active material particles 710A.
- each evaluation cell using negative electrode active material particles 710A in which the weight ratio X of the amorphous carbon film 750 and the oil absorption amount Y of linseed oil were different was evaluated.
- a high rate deterioration test was performed to evaluate the rate of increase in resistance after repeated charge and discharge at a high rate.
- the evaluation cell is first subjected to predetermined conditioning.
- ⁇ conditioning >> The evaluation cell constructed as described above is allowed to stand for about 10 hours after injecting the electrolytic solution, and conditioning (initial charging) is performed after the battery voltage becomes 2.0 V or higher.
- conditioning is performed by the following procedures 1 and 2.
- Procedure 1 After reaching 4.1 V with a constant current charge of 1 C, pause for 5 minutes.
- Procedure 2 After Procedure 1, charge for 1.5 hours by constant voltage charging and rest for 5 minutes.
- the rated capacity is measured for the evaluation cell.
- the rated capacity is measured by the following procedures 1 to 3.
- Procedure 1 After reaching 3.0V by constant current discharge of 1C, discharge by constant voltage discharge for 2 hours, and then rest for 10 seconds.
- Procedure 2 After reaching 4.1 V by constant current charging at 1 C, charge for 2.5 hours by constant voltage charging, and then rest for 10 seconds.
- Procedure 3 After reaching 3.0 V by constant current discharge of 0.5 C, discharge at constant voltage discharge for 2 hours, and then stop for 10 seconds.
- Rated capacity The discharge capacity (CCCV discharge capacity) in the discharge from the constant current discharge to the constant voltage discharge in the procedure 3 is defined as the rated capacity. In this evaluation cell, the rated capacity is about 1 Ah.
- the SOC adjustment is performed by the following procedures 1 and 2.
- the SOC adjustment may be performed after the conditioning process and the measurement of the rated capacity.
- SOC adjustment is performed in a temperature environment of 25 ° C.
- Procedure 1 Charging at a constant current of 3V to 1C to obtain a charged state (SOC 60%) of about 60% of the rated capacity.
- Procedure 2 After procedure 1, charge at constant voltage for 2.5 hours. Thereby, the cell for evaluation can be adjusted to a predetermined charge state.
- One cycle of charging and discharging at a high rate is as follows (I) to (V).
- (V) The resistance of the evaluation cell against the discharge of (I) is measured for each cycle.
- One charge / discharge cycle consisting of (I) to (V) is repeated 3000 times.
- the evaluation cell is adjusted to SOC 60% as described above every 100 cycles.
- the resistance increase rate of the evaluation cell is calculated based on the ratio ( ⁇ E / ⁇ 1 ) between the resistance ⁇ 1 measured in the first cycle and the resistance ⁇ E measured in the 3000 cycle. .
- FIG. 11 shows the linseed oil absorption amount Y of the negative electrode active material particles 710A on the horizontal axis for an evaluation cell in which graphite particles at least partially covered with the amorphous carbon film 750 are adopted as the negative electrode active material particles 710A.
- natural graphite is used as the graphite particles serving as the core of the negative electrode active material particles 710A.
- the amorphous carbon film 750 is formed by mixing the graphite particles serving as the core of the negative electrode active material particles 710 ⁇ / b> A with a pitch and baking.
- the oil absorption Y of the linseed oil is evaluated for the powder of the negative electrode active material particles 710A before being mixed with the negative electrode mixture when the evaluation cell is produced.
- graphite particles that are at least partially covered with an amorphous carbon film 750 are employed for the negative electrode active material particles 710A.
- the oil absorption amount Y of the linseed oil is the same, the higher the weight ratio X of the amorphous carbon film 750, the lower the resistance increase rate in the high-rate deterioration test tends to be suppressed. .
- the resistance increase rate of the lithium ion secondary battery 100A tends to increase as the oil absorption Y of the linseed oil of the negative electrode active material particles 710A decreases.
- the higher the weight ratio X of the amorphous carbon film 750 in the negative electrode active material particles 710A the smaller the linseed oil absorption amount Y of the negative electrode active material particles 710A tends to decrease.
- the resistance increase rate of the battery 100A tends to increase.
- the graphite particles at least partially covered with the amorphous carbon film 750 employ the negative electrode active material particles 710A, not only the oil absorption amount Y but also the amorphous carbon film for the negative electrode active material particles 710A.
- the negative electrode active material particles 710A may be selected.
- the oil absorption amount Y of the linseed oil of the negative electrode active material particles 710 ⁇ / b> A may be appropriately suppressed.
- the weight ratio X of the amorphous carbon film 750 in the negative electrode active material particles 710A is 0.02 ⁇ X ⁇ 0.06, and the negative electrode active material before heating
- the weight (mL / 100 g) of the particles 710 ⁇ / b> A is 35 (mL / 100 g) ⁇ Y ⁇ 70 (mL / 100 g).
- the oil absorption amount Y of the linseed oil of the negative electrode active material particles 710A may be Y ⁇ 69 (mL / 100 g), for example.
- the solid content concentration of the negative electrode mixture is set to N.I. V. Even if it is increased to about 52 (%), the negative electrode mixture can be applied to the negative electrode current collector 241A without causing dilatancy in the negative electrode mixture.
- the oil absorption amount Y of the linseed oil of the negative electrode active material particles 710A is, for example, 50 (mL / 100 g) ⁇ Y, more preferably 54 (mL / 100 g) ⁇ Y. It is good to be.
- the weight ratio X of the amorphous carbon film 750 in the negative electrode active material particles 710A is more preferably X ⁇ 0.05 (5%), more preferably X ⁇ 0. .04 (4%).
- Step A is a step of preparing a negative electrode mixture in which negative electrode active material particles 710A and a binder are mixed in a solvent (mixture preparation step).
- Step B is a step of applying the negative electrode mixture prepared in Step A to the negative electrode current collector (application step).
- Step C is a step (drying step) of drying the negative electrode mixture applied to the negative electrode current collector in Step B.
- FIG. 12 is a diagram showing a process of applying a negative electrode mixture to the negative electrode current collector 241 and drying it.
- a manufacturing apparatus 10 that embodies such a manufacturing method includes a traveling path 12 that travels a strip-shaped current collector (here, the negative electrode current collector 241 ⁇ / b> A), an electrode material coating apparatus 14, and the like. And a drying furnace 16.
- Negative Electrode Current Collector 241A is a metal foil such as copper (Cu). Further, the negative electrode current collector 241A is not necessarily limited to a metal foil.
- the negative electrode current collector 241A may be a resin having conductivity. For example, a film material obtained by depositing copper on a polypropylene film can be used as the resin having conductivity.
- the travel route 12 is a route on which the negative electrode current collector 241A travels.
- a plurality of guides 12b are arranged on the traveling route 12 along a predetermined route for traveling the negative electrode current collector 241A.
- a supply unit 32 that supplies the negative electrode current collector 241 ⁇ / b> A is provided at the start end of the travel path 12.
- the supply unit 32 is provided with a negative electrode current collector 241A that is previously wound around a winding core 32a.
- An appropriate amount of the negative electrode current collector 241A is appropriately supplied from the supply unit 32 to the travel path 12.
- a collection unit 34 that collects the negative electrode current collector 241A is provided at the end of the traveling path 12.
- the collection unit 34 winds the negative electrode current collector 241A that has been subjected to a predetermined process in the travel path 12 around the winding core 34a.
- the collection unit 34 is provided with, for example, a control unit 34b and a motor 34c.
- the control unit 34b is preset with a program for controlling the rotation of the winding core 34a of the collection unit 34.
- the motor 34c is an actuator that rotationally drives the winding core 34a, and is driven according to a program set in the control unit 34b.
- An electrode material coating device 14 and a drying furnace 16 are sequentially arranged on the traveling path 12.
- the electrode material application device 14 is configured to apply the negative electrode mixture 24 to the negative electrode current collector 241 ⁇ / b> A that travels on the back roll 41 disposed in the travel path 12.
- the electrode material application device 14 includes a flow path 42, a filter 43, a die 44, a tank 45, and a pump 46.
- the tank 45 is a container in which the negative electrode mixture 24 is stored.
- the pump 46 is a device that sends out the negative electrode mixture 24 from the tank 45 to the flow path 42.
- the channel 42 is a channel through which a slurry in which at least graphite particles are dispersed in a solvent can flow.
- the flow path 42 is formed so as to reach from the tank 45 to the die 44.
- the filter 43 is disposed in the flow path 42.
- the filter 43 constitutes a filtering device 50 that filters the slurry in the electrode material coating device 14.
- the filter 43 can be a non-woven fabric filter entangled with resin or metal fibers, a mesh filter knitted with resin or metal fibers, or the like.
- the coarseness of the filter 43 affects the size of particles that can be removed and the viscosity of the negative electrode mixture 24 (slurry). For this reason, in a specific implementation, an appropriate filter may be selected according to the negative electrode mixture 24 (slurry) to be circulated through the flow path 42.
- the negative electrode mixture 24 prepared in step A is applied to the negative electrode current collector 241A through the filter 43 and the die 44 in the application step. For this reason, it is necessary to suppress dilatancy.
- the solid content concentration N of the negative electrode mixture 24 may be lowered. However, if the solid content concentration N of the negative electrode mixture 24 is lowered, it takes energy and time required for drying, and the manufacturing cost increases.
- the negative electrode active material particles 710A include graphite particles at least partially covered with an amorphous carbon film, and the weight ratio of the amorphous carbon film in the negative electrode active material particles 710A.
- X is preferably 0.02 ⁇ X ⁇ 0.06.
- the oil absorption amount Y (mL / 100 g) of the linseed oil of the negative electrode active material particles 710 ⁇ / b> A is 35 (mL / 100 g) ⁇ Y ⁇ 70 (mL / 100 g).
- the solid content concentration N of the negative electrode mixture 24 prepared in the step A may be 52 (%) ⁇ N. As a result, the energy and time required for drying the negative electrode mixture 24 can be reduced, and the manufacturing cost of the lithium ion secondary battery 100A can be reduced.
- the solid content concentration N of the negative electrode mixture 24 is preferably adjusted to such an extent that clogging due to dilatancy is prevented.
- the solid content concentration N of the negative electrode mixture 24 is, for example, N ⁇ 60 (%), and more preferably N ⁇ 56 (%).
- the negative electrode mixture 24 prepared in step A includes the viscosity G1 when the shear rate in the B-type viscometer is 10 (s ⁇ 1 ) and the shear in the B-type viscometer.
- the difference in viscosity (G2 ⁇ G1) from the viscosity G2 is preferably (G2 ⁇ G1) ⁇ 0.
- the viscosity of the negative electrode mixture 24 prepared in the step A is high, the movement of the solvent between the negative electrode active material particles in the negative electrode mixture 24 is transmitted to the nearby negative electrode active material particles, so that dilatancy is likely to occur.
- the viscosity when the shear rate in the B-type viscometer is 10 (s ⁇ 1 ) is G1
- the shear rate in the B-type viscometer is 300 (s ⁇ 1 ).
- the difference in viscosity (G2-G1) is preferably (G2-G1) ⁇ 0.
- the viscosity of the negative electrode mixture 24 is set so that the viscosity difference (G2-G1) becomes (G2-G1) ⁇ 0. It is good to adjust.
- the B-type viscometer for example, a model BH B-type viscometer manufactured by TOKIMEC (currently Tokyo Keiki Co., Ltd.) may be used.
- the negative electrode mixture 24 prepared in the step A is a surface layer of the negative electrode mixture 24 after preparing a 500 ml plastic container and leaving it in the container to a depth of about 50 mm from the bottom for 84 hours.
- the difference (N2-N1) between the solid content concentration N1 of the negative electrode mixture collected in step 1 and the solid content concentration N2 of the negative electrode mixture 24 collected at the bottom of the container is (N2-N1) ⁇ 2 (%) It is good to be.
- the solid content concentration difference (N2-N1) of the negative electrode mixture 24 prepared in Step A indicates the degree to which the dispersion of the negative electrode mixture 24 is maintained.
- FIG. 13 shows the negative electrode mixture 24 having different viscosities prepared in step A, with the horizontal axis representing the viscosity, the leftmost vertical axis representing the viscosity difference (G2-G1), and the rightmost vertical axis representing the solid content concentration difference (N2-N1). ).
- the following tendency was obtained.
- ⁇ indicates the viscosity difference (G2-G1)
- ⁇ indicates the solid content concentration difference (N2-N1).
- the viscosity G of the negative electrode mixture 24 prepared in Step A is 750 (mPa ⁇ s)
- the viscosity difference (G2 ⁇ G1) is ⁇ 150 (mPa ⁇ s)
- the solid content concentration difference (N2 ⁇ N1) is 5 4 (%).
- the viscosity of the negative electrode mixture 24 was 1100 (mPa ⁇ s)
- the viscosity difference (G2-G1) was ⁇ 200 (mPa ⁇ s)
- the solid content concentration difference (N2-N1) was 0.97 (%). It was.
- the viscosity difference (G2-G1) was ⁇ 240 (mPa ⁇ s), and the solid content concentration difference (N2-N1) was 0.71 (%). It was.
- the viscosity of the negative electrode mixture 24 was 4000 (mPa ⁇ s)
- the viscosity difference (G2-G1) was ⁇ 320 (mPa ⁇ s)
- the solid content concentration difference (N2-N1) was 0.73 (%). It was.
- the viscosity difference (G2-G1) was ⁇ 400 (mPa ⁇ s), and the solid content concentration difference (N2-N1) was 0.42 (%). It was.
- the viscosity of the negative electrode mixture 24 was 7250 (mPa ⁇ s)
- the viscosity difference (G2-G1) was 1000 (mPa ⁇ s)
- the solid content concentration difference (N2-N1) was 0.51 (%). .
- the viscosity G of the negative electrode mixture 24 prepared in step A is preferably G ⁇ 7000 (mPa ⁇ s) when the shear rate in a B-type viscometer is 20 (s ⁇ 1 ), for example. More preferably, G ⁇ 6300 (mPa ⁇ s), and even more preferably G ⁇ 6000 (mPa ⁇ s). This can prevent dilatancy from occurring.
- the viscosity G of the negative electrode mixture 24 is preferably, for example, 1000 (mPa ⁇ s) ⁇ G when the shear rate in a B-type viscometer is 20 (s ⁇ 1 ). More preferably, 1200 (mPa ⁇ s) ⁇ G. Thereby, even if left for a predetermined time, the dispersibility of the negative electrode active material particles in the negative electrode mixture 24 is maintained, so that the quality of the lithium ion secondary battery 100A can be improved.
- the amount of the solvent mixed with the negative electrode active material particles during solidification corresponds to the oil absorption Y (mL / 100 g) of linseed oil. Add a little more than you want.
- FIG. 14 is based on adding an amount of solvent corresponding to the oil absorption Y (mL / 100 g) of linseed oil to the negative electrode active material particles, and further to the solvent Z (mL / g for 1 g of the negative electrode active material particles.
- step A when the amount of the solvent is excessively increased at the time of solidification in step A (mixture preparation step), as shown in FIG. Viscosity increases.
- step A mixture preparation step
- an amount corresponding to the oil absorption Y (mL / 100 g) of linseed oil is added to the negative electrode active material particles, and about 0.
- the solvent should be added in the order of 01 mL to 0.1 mL.
- the solvent Z (mL / g) relative to 1 g of the negative electrode active material particles is It is good that about 0.01 mL ⁇ Z ⁇ 0.1 mL.
- a negative electrode mixture having a viscosity G of about 1000 (mPa ⁇ s) ⁇ G ⁇ 7000 (mPa ⁇ s) is obtained.
- step A in addition to the amount corresponding to the oil absorption Y (mL / 100 g) of linseed oil relative to the weight of the negative electrode active material particles, in addition, per 1 g of negative electrode active material particles
- the solvent should be added using the amount of 0.01 mL to 0.1 mL as a guide. More preferably, in addition to the amount corresponding to the oil absorption Y (mL / 100 g) of linseed oil, the amount of the solvent Z added is preferably 0.02 ⁇ Z per 1 g of the negative electrode active material particles. The amount of the solvent Z is preferably Z ⁇ 0.09 per 1 g of the negative electrode active material particles.
- the viscosity G of the negative electrode mixture 24 obtained after solidifying can be more reliably set to 1000 (mPa ⁇ s) ⁇ G ⁇ 7000 (mPa ⁇ s). Thereby, the quality of the lithium ion secondary battery 100A can be improved.
- the lithium ion secondary battery, the powder of active material particles, and the method for producing active material particles according to an embodiment of the present invention have been described.
- the present invention is not limited to any of the embodiments described above.
- the present invention contributes to improving the output characteristics of the lithium ion secondary battery. Therefore, the lithium ion secondary battery according to the present invention is particularly a hybrid vehicle having a high level required for output characteristics or cycle characteristics at a high rate, and more particularly a plug-in hybrid having a high level required for capacity. It is suitable for a secondary battery for a vehicle driving power source such as a driving battery for a car or an electric vehicle.
- a vehicle driving battery 1000 for driving a motor (electric motor) of a vehicle 1 such as an automobile in the form of an assembled battery in which a plurality of secondary batteries are connected and combined.
- a motor electric motor
- the lithium ion secondary battery according to the present invention can stably exhibit a high output even at a low charge amount, and can withstand use at a lower charge amount. Therefore, the battery can be used efficiently, and even when the required level of capacity is high, the number of batteries to be used can be reduced and the cost can be reduced.
- the lithium ion secondary battery 100 according to the present invention is particularly suitable as the vehicle driving battery 1000.
- a lithium ion secondary battery according to an embodiment of the present invention is, for example, a lithium ion secondary battery having a rated capacity of 3.0 Ah or more as a driving battery for a hybrid vehicle (particularly, a plug-in hybrid vehicle) or an electric vehicle. Suitable for batteries.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
正極シート220は、帯状の正極集電体221と正極活物質層223とを備えている。正極集電体221には、正極に適する金属箔が好適に使用され得る。正極集電体221には、例えば、所定の幅を有し、厚さが凡そ15μmの帯状のアルミニウム箔を用いることができる。正極集電体221の幅方向片側の縁部に沿って未塗工部222が設定されている。図示例では、正極活物質層223は、図3に示すように、正極集電体221に設定された未塗工部222を除いて、正極集電体221の両面に保持されている。正極活物質層223には、正極活物質が含まれている。正極活物質層223は、正極活物質を含む正極合剤を正極集電体221に塗工することによって形成されている。
ここで、図4は、正極シート220の断面図である。なお、図4において、正極活物質層223の構造が明確になるように、正極活物質層223中の正極活物質粒子610と導電材620とバインダ630とを大きく模式的に表している。正極活物質層223には、図4に示すように、正極活物質粒子610と導電材620とバインダ630が含まれている。
導電材620としては、例えば、カーボン粉末、カーボンファイバーなどのカーボン材料が例示される。このような導電材から選択される一種を単独で用いてもよく二種以上を併用してもよい。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、オイルファーネスブラック、黒鉛化カーボンブラック、カーボンブラック、黒鉛、ケッチェンブラック)、グラファイト粉末などのカーボン粉末を用いることができる。
また、バインダ630は、正極活物質層223に含まれる正極活物質粒子610と導電材620の各粒子を結着させたり、これらの粒子と正極集電体221とを結着させたりする。かかるバインダ630としては、使用する溶媒に溶解または分散可能なポリマーを用いることができる。例えば、水性溶媒を用いた正極合剤組成物においては、セルロース系ポリマー(カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)など)、フッ素系樹脂(例えば、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)など)、ゴム類(酢酸ビニル共重合体、スチレンブタジエン共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)など)などの水溶性または水分散性ポリマーを好ましく採用することができる。また、非水溶媒を用いた正極合剤組成物においては、ポリマー(ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリアクリルニトリル(PAN)など)を好ましく採用することができる。
正極活物質層223は、例えば、上述した正極活物質粒子610と導電材620を溶媒にペースト状(スラリ状)に混ぜ合わせた正極合剤を作製し、正極集電体221に塗布し、乾燥させ、圧延することによって形成されている。この際、正極合剤の溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適な例としてN-メチル-2-ピロリドン(NMP)が挙げられる。上記バインダ630として例示したポリマー材料は、バインダとしての機能の他に、正極合剤の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
負極シート240は、図2に示すように、帯状の負極集電体241と、負極活物質層243とを備えている。負極集電体241には、負極に適する金属箔が好適に使用され得る。この負極集電体241には、所定の幅を有し、厚さが凡そ10μmの帯状の銅箔が用いられている。負極集電体241の幅方向片側には、縁部に沿って未塗工部242が設定されている。負極活物質層243は、負極集電体241に設定された未塗工部242を除いて、負極集電体241の両面に形成されている。負極活物質層243は、負極集電体241に保持され、少なくとも負極活物質が含まれている。負極活物質層243は、負極活物質を含む負極合剤が負極集電体241に塗工されている。
図5は、リチウムイオン二次電池100の負極シート240の断面図である。負極活物質層243には、図5に示すように、負極活物質粒子710、増粘剤(図示省略)、バインダ730などが含まれている。図5では、負極活物質層243の構造が明確になるように、負極活物質層243中の負極活物質粒子710とバインダ730とを大きく模式的に表している。
負極活物質粒子710としては、従来からリチウムイオン二次電池に用いられる材料の一種または二種以上を特に限定なく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。より具体的には、負極活物質は、例えば、天然黒鉛、非晶質の炭素材料でコートした天然黒鉛、黒鉛質(グラファイト)、難黒鉛化炭素質(ハードカーボン)、易黒鉛化炭素質(ソフトカーボン)、または、これらを組み合わせた炭素材料でもよい。なお、ここでは、負極活物質粒子710は、いわゆる鱗片状黒鉛が用いられた場合を図示しているが、負極活物質粒子710は、図示例に限定されない。
負極活物質層243は、例えば、上述した負極活物質粒子710とバインダ730を溶媒にペースト状(スラリ状)に混ぜ合わせた負極合剤を作製し、負極集電体241に塗布し、乾燥させ、圧延することによって形成されている。この際、負極合剤の溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適な例としてN-メチル-2-ピロリドン(NMP)が挙げられる。バインダ730には、上記正極活物質層223(図4参照)のバインダ630として例示したポリマー材料を用いることができる。また、上記正極活物質層223のバインダ630として例示したポリマー材料は、バインダとしての機能の他に、正極合剤の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
セパレータ262、264は、図1または図2に示すように、正極シート220と負極シート240とを隔てる部材である。この例では、セパレータ262、264は、微小な孔を複数有する所定幅の帯状のシート材で構成されている。セパレータ262、264には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造のセパレータ或いは積層構造のセパレータを用いることができる。この例では、図2および図3に示すように、負極活物質層243の幅b1は、正極活物質層223の幅a1よりも少し広い。さらにセパレータ262、264の幅c1、c2は、負極活物質層243の幅b1よりも少し広い(c1、c2>b1>a1)。
また、この例では、電池ケース300は、図1に示すように、いわゆる角型の電池ケースであり、容器本体320と、蓋体340とを備えている。容器本体320は、有底四角筒状を有しており、一側面(上面)が開口した扁平な箱型の容器である。蓋体340は、当該容器本体320の開口(上面の開口)に取り付けられて当該開口を塞ぐ部材である。
その後、蓋体340に設けられた注液孔350から電池ケース300内に電解液が注入される。電解液は、水を溶媒としていない、いわゆる非水電解液が用いられている。この例では、電解液は、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば、体積比1:1程度の混合溶媒)にLiPF6を約1mol/リットルの濃度で含有させた電解液が用いられている。その後、注液孔350に金属製の封止キャップ352を取り付けて(例えば溶接して)電池ケース300を封止する。なお、電解液は、ここで例示された電解液に限定されない。例えば、従来からリチウムイオン二次電池に用いられている非水電解液は適宜に使用することができる。
ここで、正極活物質層223は、例えば、正極活物質粒子610と導電材620の粒子間などに、空洞とも称すべき微小な隙間225を有している(図4参照)。かかる正極活物質層223の微小な隙間には電解液(図示省略)が浸み込み得る。また、負極活物質層243は、例えば、負極活物質粒子710の粒子間などに、空洞とも称すべき微小な隙間245を有している(図5参照)。ここでは、かかる隙間225、245(空洞)を適宜に「空孔」と称する。また、捲回電極体200は、図2に示すように、捲回軸WLに沿った両側において、未塗工部222、242が螺旋状に巻かれている。かかる捲回軸WLに沿った両側252、254において、未塗工部222、242の隙間から、電解液が浸み込みうる。このため、リチウムイオン二次電池100の内部では、正極活物質層223と負極活物質層243に電解液が浸み渡っている。
また、この例では、当該電池ケース300の扁平な内部空間は、扁平に変形した捲回電極体200よりも少し広い。捲回電極体200の両側には、捲回電極体200と電池ケース300との間に隙間310、312が設けられている。当該隙間310、312は、ガス抜け経路になる。例えば、過充電が生じた場合などにおいて、リチウムイオン二次電池100の温度が異常に高くなると、電解液が分解されてガスが異常に発生する場合がある。この実施形態では、異常に発生したガスは、捲回電極体200の両側における捲回電極体200と電池ケース300との隙間310、312を通して安全弁360の方へ移動し、安全弁360から電池ケース300の外に排気される。
図7は、かかるリチウムイオン二次電池100の充電時の状態を模式的に示している。充電時においては、図7に示すように、リチウムイオン二次電池100の電極端子420、440(図1参照)は、充電器290に接続される。充電器290の作用によって、充電時には、正極活物質層223中の正極活物質からリチウムイオン(Li)が電解液280に放出される。また、正極活物質層223からは電荷が放出される。放出された電荷は、導電材(図示省略)を通じて正極集電体221に送られ、さらに、充電器290を通じて負極シート240へ送られる。また、負極シート240では電荷が蓄えられるとともに、電解液280中のリチウムイオン(Li)が、負極活物質層243中の負極活物質に吸収され、かつ、貯蔵される。
図8は、かかるリチウムイオン二次電池100の放電時の状態を模式的に示している。放電時には、図8に示すように、負極シート240から正極シート220に電荷が送られるとともに、負極活物質層243に貯蔵されたリチウムイオンが、電解液280に放出される。また、正極では、正極活物質層223中の正極活物質に電解液280中のリチウムイオンが取り込まれる。
なお、上記はリチウムイオン二次電池の一例を示すものである。リチウムイオン二次電池は上記形態に限定されない。また、同様に金属箔に電極合剤が塗工された電極シートは、他にも種々の電池形態に用いられる。例えば、他の電池形態として、円筒型電池或いはラミネート型電池などが知られている。円筒型電池は、円筒型の電池ケースに捲回電極体を収容した電池である。また、ラミネート型電池は、正極シートと負極シートとをセパレータを介在させて積層した電池である。
図9は、本発明の一実施形態に係るリチウムイオン二次電池100Aを示している。図9において、本発明の一実施形態では負極シート240Aの構造が、図1に示されるリチウムイオン二次電池100と異なっている。負極シート240Aの未塗工部は、符号242Aで示されている。図10は、リチウムイオン二次電池100Aの負極シート240Aの断面図である。図10において、負極シート240Aの負極集電体は、符号241Aで示されている。
ここで、非晶質炭素膜750によって覆われた負極活物質粒子710Aの核として、黒鉛粒子が用いられている。かかる黒鉛粒子としては、例えば、天然黒鉛が挙げられる。
また、非晶質炭素膜750は、非晶質な炭素材料よりなる膜である。例えば、負極活物質粒子710Aの核となる黒鉛粒子にピッチを混ぜて焼くことによって、少なくとも一部が非晶質炭素膜750によって覆われた黒鉛粒子を得ることができる。
また、負極活物質粒子710A中の非晶質炭素膜750の重量割合Xは、例えば、示差熱熱重量同時測定(TG/DTA)における、TG測定に基づいて測定するとよい。すなわち、TGは、加熱炉中に、負極活物質粒子710Aを配置し、加熱炉の雰囲気温度の上昇に対するサンプルの重量変化を記録して得られる。この際、所定温度にて、負極活物質粒子710A中の非晶質炭素膜750が焼失し、負極活物質粒子710Aの重量が減少する。重量割合Xは、所定温度における負極活物質粒子710Aの重量の減少量を、加熱前の負極活物質粒子710Aの重量で割るとよい。かかる非晶質炭素膜750の重量割合Xは、負極活物質粒子710Aに対する非晶質炭素膜750の量を示しており、「コート量」とも称され得る。
重量割合X=(TG測定による負極活物質粒子710Aの重量の減少量)/(加熱前の負極活物質粒子710Aの重量);
また、負極活物質粒子710Aの亜麻仁油の吸油量Y(mL/100g)は、JIS K6217-4「ゴム用カーボンブラック‐基本特性‐第4部:DBP吸収量の求め方」に準拠して求める。ここでは、試薬液体として亜麻仁油を用い、検査対象粉末に定速度ビュレットで滴定し、粘度特性の変化をトルク検出器によって測定する。そして、発生した最大トルクの70%のトルクに対応する、検査対象粉末の単位重量当り(ここでは、100g当り)の試薬液体の添加量を亜麻仁油の吸油量とする。かかる亜麻仁油の吸油量Yの測定では、測定装置として、株式会社あさひ総研S-401を用いることができる。油添加速度は4ml/minとするとよく、概ね20℃~25℃程度の室温で測定するとよい。
ここでは、負極活物質粒子710A中の非晶質炭素膜750の重量割合Xと、負極活物質粒子710Aの亜麻仁油の吸油量Yとが異なる負極活物質粒子710Aを種々用意し、各負極活物質粒子710Aを用いて所定の評価用セルを作製した。ここで、評価用セルは、低角容量が250mAhの18650型電池である。
ここで、評価用セルの正極は、厚さ15μmのアルミニウム箔を正極集電体に用いた。正極活物質層を形成する際に用意した正極合剤の固形分は、重量割合において正極活物質:導電材:バインダ=87:10:3とした。正極活物質としては、LiNiCoMnO2(リチウムニッケルコバルトマンガン複合酸化物)の粒子が用いられており、各評価用セルにおいて共通の正極活物質が用いられている。導電材としてアセチレンブラックが用いられている。バインダとして、ポリフッ化ビニリデン(PVDF)が用いられている。
評価用セルの負極は、厚さ10μmの銅箔を負極集電体に用いた。負極活物質層を形成する際に用意した負極合剤の固形分は、重量割合において負極活物質:増粘剤:バインダ=98:1:1とした。ここでは、増粘剤としてカルボキシメチルセルロース(CMC)が用いられている。また、バインダとしてスチレン・ブタジエンゴム(SBR)が用いられている。
評価用セルの負極活物質粒子710Aには、負極活物質粒子710Aの核となる黒鉛粒子にピッチを混ぜて焼いて、少なくとも一部が非晶質炭素膜750によって覆われた黒鉛粒子が用いられている(図10参照)。ここでは、各評価用セルにおいて、非晶質炭素膜750の重量割合Xと亜麻仁油の吸油量Yとが異なる負極活物質粒子710Aが用いられている。各評価用セルは、このように負極活物質粒子710Aを除き同じ条件で作製されている。
上記のように構築された評価用セルについて、電解液を注入した後で、10時間程度放置し、電池電圧が2.0V以上になってからコンディショニング(初期充電)が行なわれる。ここでコンディショニングは、次の手順1、2によって行なわれる。
手順1:1Cの定電流充電にて4.1Vに到達した後、5分間休止する。
手順2:手順1の後、定電圧充電にて1.5時間充電し、5分間休止する。
上記コンディショニングの後、評価用セルについて定格容量が測定される。定格容量の測定は、次の手順1~3によって測定されている。なお、ここでは温度による影響を一定にするため、定格容量は温度25℃の温度環境において測定されている。
手順1:1Cの定電流放電によって3.0Vに到達後、定電圧放電にて2時間放電し、その後、10秒間休止する。
手順2:1Cの定電流充電によって4.1Vに到達後、定電圧充電にて2.5時間充電し、その後、10秒間休止する。
手順3:0.5Cの定電流放電によって3.0Vに到達後、定電圧放電にて2時間放電し、その後、10秒間停止する。
定格容量:手順3における定電流放電から定電圧放電に至る放電における放電容量(CCCV放電容量)を定格容量とする。この評価用セルでは、定格容量が凡そ1Ahになる。
SOC調整は、次の1、2の手順によって調整される。ここで、SOC調整は、上記コンディショニング工程および定格容量の測定の後で行なうとよい。また、ここでは、温度による影響を一定にするため、25℃の温度環境下でSOC調整を行なっている。
手順1:3Vから1Cの定電流で充電し、定格容量の凡そ60%の充電状態(SOC60%)にする。
手順2:手順1の後、2.5時間、定電圧充電する。
これにより、評価用セルは、所定の充電状態に調整することができる。
ここで、ハイレート劣化試験は、上記コンディショニングの後、3.0Vまで定電流放電した後、定電流定電圧で充電を行ってSOC(state
of charge)60%(SOC60%:定格容量の60%)に調整する。そして、ハイレートでの充放電を繰り返した後、評価用セルの抵抗上昇率を測定する。ここでは、温度による影響を一定にするため、ハイレート劣化試験は、概ね20℃~25℃の温度環境下で行なっている。
(I)30Cの定電流で10秒間放電する。
(II)10秒間休止する。
(III)5Cの定電流で60秒間(1分間)充電する。
(IV)10分間休止する。
(V)サイクル毎に(I)の放電に対する評価用セルの抵抗を測定する。
以下、リチウムイオン二次電池100Aの製造方法を説明する。このリチウムイオン二次電池100Aでは、製造方法に、以下の工程A、工程B、工程Cが含まれている。
ここで、負極集電体241Aの好ましい一形態は、例えば、銅(Cu)などの金属箔である。また、負極集電体241Aは、必ずしも金属箔に限定されない。例えば、負極集電体241Aは、導電性を持たせた樹脂でもよい。導電性を持たせた樹脂には、例えば、ポリプロピレンフィルムに、銅を蒸着させたフィルム材を用いることができる。
走行経路12は、負極集電体241Aを走行させる経路である。この実施形態では、走行経路12には、負極集電体241Aを走行させる所定の経路に沿って複数のガイド12bが配置されている。走行経路12の始端には、負極集電体241Aを供給する供給部32が設けられている。供給部32には、予め巻き芯32aに巻き取られた負極集電体241Aが配置されている。供給部32からは適宜に適当な量の負極集電体241Aが走行経路12に供給される。また、走行経路12の終端には負極集電体241Aを回収する回収部34が設けられている。回収部34は、走行経路12で所定の処理が施された負極集電体241Aを巻き芯34aに巻き取る。この実施形態では、回収部34には、例えば、制御部34bと、モータ34cとが設けられている。制御部34bは、回収部34の巻き芯34aの回転を制御するためのプログラムが予め設定されている。モータ34cは、巻き芯34aを回転駆動させるアクチュエータであり、制御部34bに設定されたプログラムに従って駆動する。かかる走行経路12には、電極材料塗布装置14と、乾燥炉16とが順に配置されている。
この実施形態では、電極材料塗布装置14は、走行経路12に配設されたバックロール41を走行する負極集電体241Aに対して負極合剤24を塗布するように構成されている。電極材料塗布装置14は、図12に示すように、流路42と、フィルタ43と、ダイ44と、タンク45と、ポンプ46とを備えている。ここで、タンク45は、負極合剤24を貯留した容器である。ポンプ46は、タンク45から流路42に負極合剤24を送り出す装置である。
流路42は、溶媒に少なくとも黒鉛粒子が分散したスラリーが流通し得る流路である。この実施形態では、流路42は、タンク45からダイ44へ至るように形成されている。フィルタ43は、流路42内に配置されている。かかるフィルタ43は、電極材料塗布装置14のうちスラリーを濾過する濾過装置50を構成している。
ここで、フィルタ43は、樹脂や金属の繊維を絡ませた不織布フィルタや、樹脂や金属の繊維を編んだメッシュフィルタなどを用いることができる。フィルタ43の目の粗さは、除去し得る粒子の大きさや、負極合剤24(スラリー)の粘度にも影響する。このため、具体的な実施において、流路42に流通させる負極合剤24(スラリー)に応じた適当なフィルタを選択するとよい。
負極合剤24の粘度が1100(mPa・s)の場合、粘度差(G2-G1)は-200(mPa・s)、固形分濃度差(N2-N1)は0.97(%)であった。
負極合剤24の粘度が2250(mPa・s)の場合、粘度差(G2-G1)は-240(mPa・s)、固形分濃度差(N2-N1)は0.71(%)であった。
負極合剤24の粘度が4000(mPa・s)の場合、粘度差(G2-G1)は-320(mPa・s)、固形分濃度差(N2-N1)は0.73(%)であった。
負極合剤24の粘度が6250(mPa・s)の場合、粘度差(G2-G1)は-400(mPa・s)、固形分濃度差(N2-N1)は0.42(%)であった。
負極合剤24の粘度が7250(mPa・s)の場合、粘度差(G2-G1)は1000(mPa・s)、固形分濃度差(N2-N1)は0.51(%)であった。
10 製造装置
12 走行経路
14 電極材料塗布装置
16 乾燥炉
24 負極合剤
32 供給部
34 回収部
41 バックロール
42 流路
43 フィルタ
44 ダイ
45 タンク
46 ポンプ
50 濾過装置
100、100A リチウムイオン二次電池
200 捲回電極体
220 正極シート
221 正極集電体
222 未塗工部
223 正極活物質層
224 中間部分
225 隙間(空洞)
240、240A 負極シート
241、241A 負極集電体
242、242A 未塗工部
243、243A 負極活物質層
245 隙間(空洞)
262、264 セパレータ
280 電解液
290 充電器
300 電池ケース
310、312 隙間
320 容器本体
322 蓋体と容器本体の合わせ目
340 蓋体
350 注液孔
352 封止キャップ
360 安全弁
420 電極端子
420a 先端部
440 電極端子
440a 先端部
610 正極活物質粒子
620 導電材
630 バインダ
710、710A 負極活物質粒子
730 バインダ
750 非晶質炭素膜
1000 車両駆動用電池
Claims (11)
- 負極集電体と、
前記負極集電体に塗工された負極活物質層と
を備え、
前記負極活物質層は、負極活物質粒子を含み、
前記負極活物質粒子は、少なくとも一部が非晶質炭素膜によって覆われた黒鉛粒子を含み、前記負極活物質粒子中の前記非晶質炭素膜の重量割合Xが、0.02≦X≦0.06であり、
かつ、前記負極活物質粒子の亜麻仁油の吸油量Y(mL/100g)が35(mL/100g)≦Y≦70(mL/100g)である、リチウムイオン二次電池。 - 前記負極活物質粒子の亜麻仁油の吸油量Y(mL/100g)がY≦69(mL/100g)である、請求項1に記載されたリチウムイオン二次電池。
- 前記負極活物質粒子の亜麻仁油の吸油量Y(mL/100g)が54(mL/100g)≦Yである、請求項1又は2に記載されたリチウムイオン二次電池。
- 前記負極活物質粒子は、少なくとも一部が非晶質炭素膜によって覆われた黒鉛粒子を含み、前記負極活物質粒子中の前記非晶質炭素膜の重量割合Xが、X≦0.05である、請求項1から3までの何れか一項に記載されたリチウムイオン二次電池。
- 前記負極活物質粒子とバインダとを溶媒に混合した負極合剤を用意する工程Aと、
前記工程Aで用意された前記負極合剤を、前記負極集電体に塗布する工程Bと、
前記工程Bで前記負極集電体に塗布された前記負極合剤を乾燥させる工程Cと
を含み、
前記負極活物質粒子は、少なくとも一部が非晶質炭素膜によって覆われた黒鉛粒子を含み、前記負極活物質粒子中の前記非晶質炭素膜の重量割合Xが0.02≦X≦0.06、および、
前記負極活物質粒子の亜麻仁油の吸油量Y(mL/100g)は、35(mL/100g)≦Y≦70(mL/100g)であり、
前記工程Aで用意された前記負極合剤の固形分濃度Nは52(%)≦Nである、リチウムイオン二次電池の製造方法。 - 前記工程Aで用意された前記負極合剤の固形分濃度NはN≦60(%)である、請求項5に記載されたリチウムイオン二次電池の製造方法。
- 前記工程Aで用意された前記負極合剤は、B型粘度計におけるせん断速度が10(s-1)の場合の粘度G1と、B型粘度計におけるせん断速度が300(s-1)の場合の粘度G2との粘度差(G2-G1)が、(G2-G1)<0である、請求項6に記載されたリチウムイオン二次電池の製造方法。
- 前記工程Aで用意された前記負極合剤は、底から50mm程度の深さまで容器に入れた状態で84時間放置した後、負極合剤の表層で採取された負極合剤の固形分濃度N1と、前記容器の底で採取された負極合剤の固形分濃度N2との差(N2-N1)が、(N2-N1)<2(%)である、請求項5から7までの何れか一項に記載されたリチウムイオン二次電池の製造方法。
- 前記工程Aで用意された前記負極合剤の粘度Gは、B型粘度計におけるせん断速度が20(s-1)の場合においてG≦7000(mPa・s)である、請求項5から8までの何れか一項に記載されたリチウムイオン二次電池の製造方法。
- 前記工程Aで用意された前記負極合剤の粘度Gは、B型粘度計におけるせん断速度が20(s-1)の場合において1000(mPa・s)≦Gである、請求項9に記載されたリチウムイオン二次電池の製造方法。
- 前記工程Aは、前記負極活物質粒子100g当りに混ぜる溶媒の量Z(mL/100g)を、前記負極活物質粒子の亜麻仁油の吸油量Y(mL/100g)に対し、(Y+1)≦Z≦(Y+10)に調整した、請求項5から10までの何れか一項に記載されたリチウムイオン二次電池の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/235,599 US9929398B2 (en) | 2011-07-29 | 2011-07-29 | Lithium-ion secondary battery and method of manufacturing the same |
JP2013526642A JP5783432B2 (ja) | 2011-07-29 | 2011-07-29 | リチウムイオン二次電池およびその製造方法 |
PCT/JP2011/067534 WO2013018179A1 (ja) | 2011-07-29 | 2011-07-29 | リチウムイオン二次電池およびその製造方法 |
CN201180072629.1A CN103733397B (zh) | 2011-07-29 | 2011-07-29 | 锂离子二次电池及其制造方法 |
KR1020147004786A KR101630997B1 (ko) | 2011-07-29 | 2011-07-29 | 리튬 이온 이차 전지 및 그 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/067534 WO2013018179A1 (ja) | 2011-07-29 | 2011-07-29 | リチウムイオン二次電池およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013018179A1 true WO2013018179A1 (ja) | 2013-02-07 |
Family
ID=47628747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/067534 WO2013018179A1 (ja) | 2011-07-29 | 2011-07-29 | リチウムイオン二次電池およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9929398B2 (ja) |
JP (1) | JP5783432B2 (ja) |
KR (1) | KR101630997B1 (ja) |
CN (1) | CN103733397B (ja) |
WO (1) | WO2013018179A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9219278B2 (en) | 2011-10-20 | 2015-12-22 | Toyota Jidosha Kabushiki Kaisha | Non-aqueous electrolyte secondary battery and use thereof |
JP2017162663A (ja) * | 2016-03-09 | 2017-09-14 | トヨタ自動車株式会社 | 二次電池システム |
JP2018006072A (ja) * | 2016-06-29 | 2018-01-11 | オートモーティブエナジーサプライ株式会社 | リチウムイオン二次電池用負極 |
JP2018006071A (ja) * | 2016-06-29 | 2018-01-11 | オートモーティブエナジーサプライ株式会社 | リチウムイオン二次電池用負極 |
JP2022087649A (ja) * | 2020-12-01 | 2022-06-13 | プライムプラネットエナジー&ソリューションズ株式会社 | 湿潤混合体の製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101586556B1 (ko) | 2013-01-10 | 2016-01-20 | 주식회사 엘지화학 | 탄소 코팅 리튬 인산철 나노분말 제조방법 |
KR101561374B1 (ko) | 2013-01-10 | 2015-10-19 | 주식회사 엘지화학 | 리튬 인산철 나노분말 제조방법 |
KR101561375B1 (ko) | 2013-01-10 | 2015-10-19 | 주식회사 엘지화학 | 리튬 인산철 나노분말 제조방법 |
US9234112B2 (en) * | 2013-06-05 | 2016-01-12 | Korea Institute Of Machinery & Materials | Metal precursor powder, method of manufacturing conductive metal layer or pattern, and device including the same |
JP6874617B2 (ja) * | 2017-09-21 | 2021-05-19 | トヨタ自動車株式会社 | 負極シートの製造方法 |
CN107834105B (zh) * | 2017-12-14 | 2021-04-06 | 清陶(昆山)能源发展有限公司 | 一种新型高安全锂离子电池及其制备工艺 |
JP6994157B2 (ja) * | 2018-02-09 | 2022-01-14 | トヨタ自動車株式会社 | 非水電解液二次電池および電池組立体 |
CN108584922A (zh) * | 2018-04-27 | 2018-09-28 | 华南师范大学 | 一种利用动力电池回收石墨负极材料制备石墨烯的方法 |
CN113405938A (zh) * | 2021-06-21 | 2021-09-17 | 广东凯金新能源科技股份有限公司 | 一种锂电池石墨负极材料表面包覆层含量的检测方法 |
US20240332529A1 (en) * | 2021-12-21 | 2024-10-03 | Lg Energy Solution, Ltd. | Negative electrode active material, and negative electrode and secondary battery which include the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192208A (ja) * | 1999-06-03 | 2001-07-17 | Titan Kogyo Kk | リチウムチタン複合酸化物及びその製造方法、並びにその用途 |
JP2002110250A (ja) * | 2000-09-27 | 2002-04-12 | At Battery:Kk | 非水系電解液二次電池 |
JP2004265754A (ja) * | 2003-03-03 | 2004-09-24 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2009123523A (ja) * | 2007-11-15 | 2009-06-04 | Jsr Corp | 電池電極用バインダー組成物、その製造方法、電池電極用ペースト、電池電極、及び電池電極の製造方法 |
WO2011033707A1 (ja) * | 2009-09-18 | 2011-03-24 | パナソニック株式会社 | 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池 |
JP2011113838A (ja) * | 2009-11-27 | 2011-06-09 | Toyota Motor Corp | 電池用電極ペースト、電池用電極ペーストの製造方法及び電極板の製造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3605256B2 (ja) | 1997-04-23 | 2004-12-22 | 東洋炭素株式会社 | リチウムイオン二次電池負極用炭素材料及びその負極用炭素材料を用いたリチウムイオン二次電池 |
IL134009A (en) * | 2000-01-12 | 2011-07-31 | Bo2 Technologies Ltd | Transplant device |
CA2435980C (en) * | 2001-01-25 | 2008-07-29 | Hitachi Chemical Co., Ltd. | Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell negative electrode and method for manufacturing same, and lithium secondary cell |
JP2002241117A (ja) | 2001-02-13 | 2002-08-28 | Osaka Gas Co Ltd | 黒鉛系炭素材料、その製造方法、リチウム二次電池用負極材料およびリチウム二次電池 |
US20040229041A1 (en) * | 2003-05-16 | 2004-11-18 | Caisong Zou | Graphite granules and their method of fabrication |
JP4748949B2 (ja) | 2004-03-31 | 2011-08-17 | 三洋電機株式会社 | 非水電解質二次電池 |
KR100826890B1 (ko) | 2004-06-30 | 2008-05-06 | 미쓰비시 가가꾸 가부시키가이샤 | 리튬 2차전지용 부극재료 및 그 제조방법, 및 그것을이용한 리튬 2차전지용 부극 및 리튬 2차전지 |
WO2007004728A1 (en) * | 2005-07-04 | 2007-01-11 | Showa Denko K.K. | Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery |
CN101461088B (zh) * | 2006-05-31 | 2011-12-21 | 三洋电机株式会社 | 高电压充电型非水电解质二次电池 |
JP2008016242A (ja) * | 2006-07-04 | 2008-01-24 | Toyota Motor Corp | リチウムイオン二次電池 |
JP5180523B2 (ja) * | 2007-06-25 | 2013-04-10 | 日本カーボン株式会社 | リチウム二次電池用負極活物質及びそれを使用した負極 |
JP2008108689A (ja) * | 2006-09-29 | 2008-05-08 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2009211818A (ja) | 2008-02-29 | 2009-09-17 | Sanyo Electric Co Ltd | 非水電解質二次電池用負極活物質及びこれを用いてなる非水電解質二次電池ならびにこれらの製造方法 |
JP6029200B2 (ja) | 2008-10-06 | 2016-11-24 | 日本カーボン株式会社 | リチウムイオン二次電池用負極活物質の製造方法 |
JP5359490B2 (ja) * | 2009-04-14 | 2013-12-04 | 株式会社豊田中央研究所 | リチウムイオン二次電池 |
JP2011033707A (ja) * | 2009-07-30 | 2011-02-17 | Canon Inc | 画像処理装置及びその制御方法 |
JP2011142066A (ja) | 2009-12-11 | 2011-07-21 | Sanyo Electric Co Ltd | リチウム二次電池 |
JP5492980B2 (ja) | 2010-03-31 | 2014-05-14 | 新日鐵住金株式会社 | 改質天然黒鉛粒子およびその製造方法 |
KR101562724B1 (ko) * | 2011-04-08 | 2015-10-22 | 쥬오 덴끼 고교 가부시키가이샤 | 개질 천연 흑연 입자 |
-
2011
- 2011-07-29 CN CN201180072629.1A patent/CN103733397B/zh active Active
- 2011-07-29 US US14/235,599 patent/US9929398B2/en active Active
- 2011-07-29 JP JP2013526642A patent/JP5783432B2/ja active Active
- 2011-07-29 WO PCT/JP2011/067534 patent/WO2013018179A1/ja active Application Filing
- 2011-07-29 KR KR1020147004786A patent/KR101630997B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192208A (ja) * | 1999-06-03 | 2001-07-17 | Titan Kogyo Kk | リチウムチタン複合酸化物及びその製造方法、並びにその用途 |
JP2002110250A (ja) * | 2000-09-27 | 2002-04-12 | At Battery:Kk | 非水系電解液二次電池 |
JP2004265754A (ja) * | 2003-03-03 | 2004-09-24 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2009123523A (ja) * | 2007-11-15 | 2009-06-04 | Jsr Corp | 電池電極用バインダー組成物、その製造方法、電池電極用ペースト、電池電極、及び電池電極の製造方法 |
WO2011033707A1 (ja) * | 2009-09-18 | 2011-03-24 | パナソニック株式会社 | 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池 |
JP2011113838A (ja) * | 2009-11-27 | 2011-06-09 | Toyota Motor Corp | 電池用電極ペースト、電池用電極ペーストの製造方法及び電極板の製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9219278B2 (en) | 2011-10-20 | 2015-12-22 | Toyota Jidosha Kabushiki Kaisha | Non-aqueous electrolyte secondary battery and use thereof |
JP2017162663A (ja) * | 2016-03-09 | 2017-09-14 | トヨタ自動車株式会社 | 二次電池システム |
JP2018006072A (ja) * | 2016-06-29 | 2018-01-11 | オートモーティブエナジーサプライ株式会社 | リチウムイオン二次電池用負極 |
JP2018006071A (ja) * | 2016-06-29 | 2018-01-11 | オートモーティブエナジーサプライ株式会社 | リチウムイオン二次電池用負極 |
JP2022087649A (ja) * | 2020-12-01 | 2022-06-13 | プライムプラネットエナジー&ソリューションズ株式会社 | 湿潤混合体の製造方法 |
JP7209446B2 (ja) | 2020-12-01 | 2023-01-20 | プライムプラネットエナジー&ソリューションズ株式会社 | 湿潤混合体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140170501A1 (en) | 2014-06-19 |
KR20140041887A (ko) | 2014-04-04 |
CN103733397B (zh) | 2016-08-24 |
US9929398B2 (en) | 2018-03-27 |
CN103733397A (zh) | 2014-04-16 |
JPWO2013018179A1 (ja) | 2015-03-02 |
KR101630997B1 (ko) | 2016-06-15 |
JP5783432B2 (ja) | 2015-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5783432B2 (ja) | リチウムイオン二次電池およびその製造方法 | |
JP5787196B2 (ja) | リチウムイオン二次電池 | |
JP6144626B2 (ja) | リチウムイオン二次電池 | |
KR101500250B1 (ko) | 이차 전지 | |
JP5783433B2 (ja) | リチウムイオン二次電池 | |
KR101503195B1 (ko) | 이차 전지 | |
JP5787194B2 (ja) | 電源システム | |
JP5818068B2 (ja) | 二次電池 | |
JP5598716B2 (ja) | リチウム二次電池及びその製造方法 | |
JP5725351B2 (ja) | リチウムイオン二次電池 | |
JP5713206B2 (ja) | 非水系二次電池 | |
JP5835614B2 (ja) | 非水系二次電池 | |
KR20130070651A (ko) | 이차 전지 | |
JP5787185B2 (ja) | 二次電池 | |
WO2013018181A1 (ja) | リチウムイオン二次電池 | |
JP5871158B2 (ja) | 非水系二次電池 | |
JP6120113B2 (ja) | リチウムイオン二次電池 | |
JP2013137955A (ja) | 非水系二次電池 | |
JP5835612B2 (ja) | 非水系二次電池 | |
JP2013131471A (ja) | 非水電解質二次電池 | |
JP5854267B2 (ja) | 非水系二次電池 | |
JP5783415B2 (ja) | リチウムイオン二次電池 | |
JPWO2013018181A1 (ja) | リチウムイオン二次電池 | |
JP2015149308A (ja) | リチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11870253 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013526642 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14235599 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147004786 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11870253 Country of ref document: EP Kind code of ref document: A1 |