WO2012172921A1 - 積層コイル部品 - Google Patents

積層コイル部品 Download PDF

Info

Publication number
WO2012172921A1
WO2012172921A1 PCT/JP2012/062758 JP2012062758W WO2012172921A1 WO 2012172921 A1 WO2012172921 A1 WO 2012172921A1 JP 2012062758 W JP2012062758 W JP 2012062758W WO 2012172921 A1 WO2012172921 A1 WO 2012172921A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
magnetic
coil
conductor
component
Prior art date
Application number
PCT/JP2012/062758
Other languages
English (en)
French (fr)
Inventor
山本 篤史
中村 彰宏
裕子 野宮
智之 安久
内藤 修
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to EP12800256.5A priority Critical patent/EP2722857B1/en
Priority to KR1020137033080A priority patent/KR101603827B1/ko
Priority to EP15162012.7A priority patent/EP2911165B1/en
Priority to CN201280029328.5A priority patent/CN103597558B/zh
Priority to JP2013520485A priority patent/JP5991494B2/ja
Priority to TW101119088A priority patent/TWI503851B/zh
Publication of WO2012172921A1 publication Critical patent/WO2012172921A1/ja
Priority to US14/105,062 priority patent/US9490060B2/en
Priority to US15/287,656 priority patent/US9741484B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14716Fe-Ni based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps

Definitions

  • the present invention relates to a multilayer coil component, and more particularly to a multilayer coil component such as a multilayer inductor having a magnetic body portion made of a ferrite material and a coil conductor mainly composed of Cu.
  • This type of laminated coil component has a structure in which a conductor portion wound in a coil shape is embedded in a magnetic body portion, and the conductor portion and the magnetic body portion are usually formed by simultaneous firing.
  • Patent Document 1 a laminated chip skeleton is formed by laminated ceramic sheets, a coil conductor is formed in the laminated chip by an internal conductor, and its start and end are connected to different external electrode terminals, respectively.
  • a multilayer chip inductor wherein the ceramic sheet is a magnetic sheet and the doughnut-shaped non-magnetic region is included in the multilayer chip so as to include the internal conductor excluding the lead portion to the external electrode terminal.
  • a multilayer chip inductor in which is formed has been proposed.
  • Patent Document 1 after a magnetic sheet is produced, a nonmagnetic paste is applied on the magnetic sheet to form a nonmagnetic film having a predetermined pattern. Then, the magnetic paste, the internal conductor paste, In addition, a multilayer chip inductor is obtained by sequentially performing a plurality of printing processes using a non-magnetic paste.
  • laminated coil components such as laminated inductors form a closed magnetic circuit
  • magnetic saturation is likely to occur when a large current is passed through, and the inductance is reduced, making it impossible to obtain desired DC superposition characteristics.
  • Patent Document 2 in a laminated coil component having a conductor pattern in which end portions are connected between magnetic layers and overlap and circulate in the laminating direction, the conductor pattern is in contact with the conductor patterns at both ends in the laminating direction and inside the conductor pattern.
  • a laminated coil component including a layer of a material having a lower magnetic permeability than the magnetic layer.
  • a layer made of a material having a lower magnetic permeability than the magnetic layer (for example, a Ni-Fe ferrite material having a low Ni content or a nonmagnetic material) is provided outside the conductor pattern. This prevents the magnetic flux from concentrating on the inner corner of the conductor pattern at the end and distributes the magnetic flux to the central part of the main magnetic path, thereby preventing the occurrence of magnetic saturation and improving the inductance. Yes.
  • Patent Document 3 discloses a conductor for adjusting a sintering regulator for adjusting the sinterability of a magnetic layer in a laminated bead in which a magnetic layer and a conductor pattern are stacked and an impedance element is formed in the element body. Laminated beads mixed in paste have been proposed.
  • the sintering adjusting agent is composed of SiO 2 covering silver powder, and SiO 2 is contained in an amount of 0.05 to 0.3 wt% in terms of silver weight.
  • a conductor pattern mixed with an agent is printed on the magnetic layer to form a conductor pattern.
  • Japanese Utility Model Publication No. 6-45307 (Claim 2, paragraph number [0024], FIG. 2, FIG. 7) Japanese Patent No. 2694757 (Claim 1, FIG. 1 etc.) JP 2006-237438 A (Claim 1, paragraph number [0007])
  • Patent Document 1 requires a printing process using a plurality of pastes such as a magnetic paste and a non-magnetic paste, in addition to the internal conductor paste, and the manufacturing process is complicated and practical. Lack of sex. In addition, if the component system is different between the magnetic paste and the non-magnetic paste, residual stress is generated when fired simultaneously due to the difference in shrinkage behavior, and defects such as cracks may occur.
  • Patent Document 2 a plurality of magnetic pastes having different compositions or a magnetic paste and a non-magnetic paste must be prepared and printed, and the manufacturing process is complicated as in Patent Document 1. It lacks practicality.
  • An object of the present invention is to provide a laminated coil component having good direct current superposition characteristics.
  • the present inventors have conducted intensive research using Cu for the conductor portion and Ni—Zn-based ferrite material for the magnetic portion. As a result, Cu and the magnetic portion were reduced in a reducing atmosphere in which Cu was not oxidized.
  • Cu diffuses into the ferrite raw material in the vicinity of the conductor portion, whereby the CuO content in the region near the conductor portion (hereinafter referred to as “first region”) is increased. It increased, and it turned out that the sinterability of 1st area
  • the inventors have found that the thermal shock resistance and DC superposition characteristics can be improved.
  • the first region during firing is preferable. It is necessary to suppress the grain growth of crystal grains.
  • the present inventors have made further studies to suppress the grain growth of the crystal grains in the first region at the time of firing, and as a result, the average crystal grain size of the first region is that of the second region.
  • the average crystal grain size of the first region is that of the second region.
  • the laminated coil component according to the present invention includes a magnetic body portion made of a ferrite material and a conductor portion wound in a coil shape, and the conductor
  • the component element body includes a first region in the vicinity of the conductor portion, and a second region other than the first region.
  • the average crystal grain size of the magnetic part in the first region is 0.85 or less in terms of grain size ratio with respect to the average crystal grain size of the magnetic part in the second region,
  • the said conductor part has Cu as a main component, It is characterized by the above-mentioned.
  • the Cu content is suppressed to 6 mol% or less (including 0 mol%) in terms of CuO, and the oxygen partial pressure is reduced to a Cu—Cu 2 O equilibrium oxygen partial pressure or less so that Cu is not oxidized.
  • a laminated coil component having a particle size ratio of 0.85 or less can be easily obtained.
  • the ferrite material has a Cu content of 6 mol% or less (including 0 mol%) in terms of CuO.
  • the grain size ratio in the second region can be easily reduced to 0.85 or less without impairing grain growth in the second region. Therefore, it is possible to obtain a laminated coil component such as a laminated inductor having good thermal shock resistance and direct current superimposition characteristics while securing the properties.
  • the content ratio of Cu in the second region with respect to the first region is converted to CuO and is 0.6 or less (including 0) in terms of weight ratio. It was found that the particle size ratio was 0.85 or less, and a difference in sinterability could be produced between the first region and the second region.
  • the content ratio of Cu in the second region with respect to the first region is preferably 0.6 or less (including 0) in terms of weight ratio in terms of CuO. .
  • the ferrite material contains a Mn component.
  • the Sn component in the ferrite material, it is possible to further improve the direct current superposition characteristics.
  • the ferrite material contains an Sn component.
  • the component element is sintered in an atmosphere having an equilibrium oxygen partial pressure of Cu—Cu 2 O or less.
  • the laminated coil component a laminated body having a magnetic body portion made of a ferrite material and a conductor portion wound in a coil shape, the conductor portion being embedded in the magnetic body portion to form a component body.
  • the component body is divided into a first region in the vicinity of the conductor portion and a second region other than the first region, and the average crystal of the magnetic body portion in the first region
  • the grain size is 0.85 or less in terms of grain size ratio with respect to the average crystal grain size of the magnetic part in the second region, and the conductor part is mainly composed of Cu.
  • grain growth at the time of firing is suppressed in this region, the sinterability is lowered, and the magnetic permeability is also lowered in the first region compared with the second region.
  • the first region in the vicinity of the conductor portion has a lower sinterability than the second region, and the first region has a lower sintered density, so that the internal stress can be reduced. Even if a thermal shock or external stress is applied due to a reflow process at the time of mounting, fluctuations in magnetic characteristics such as inductance can be suppressed. In addition, since the magnetic permeability is reduced in the first region, the DC superimposition characteristic is improved. As a result, the concentration of magnetic flux is greatly relaxed, and the saturation magnetic flux density can be improved.
  • FIG. 1 is a perspective view showing an embodiment (first embodiment) of a laminated inductor as a laminated coil component according to the present invention.
  • FIG. 2 is a cross-sectional view (transverse cross-sectional view) taken along line AA in FIG. It is a disassembled perspective view for demonstrating the manufacturing method of the said multilayer inductor. It is a cross-sectional view showing a second embodiment of the multilayer inductor. It is a figure which shows the crystal grain size and the measurement location of a composition in an Example. It is a figure which shows the relationship between the content amount of CuO, and a particle size ratio. It is a figure which shows the relationship between the content amount of CuO in a thermal shock test, and an inductance change rate. It is a figure which shows the relationship between the content molar amount of CuO and an inductance change rate in a direct current
  • FIG. 1 is a perspective view showing an embodiment of a multilayer inductor as a multilayer coil component according to the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the component body 1 has a magnetic body portion 2 and a coil conductor (conductor portion) 3, and the coil conductor 3 is embedded in the magnetic body portion 2.
  • lead electrodes 4a and 4b are formed on both ends of the coil conductor 3
  • external electrodes 5a and 5b made of Ag or the like are formed on both ends of the component body 1, and the external electrodes 5a and 5b and the lead electrodes are formed. 4a and 4b are electrically connected.
  • the magnetic part 2 is formed of a ferrite material containing as a main component each component of Fe, Ni, Zn, and Cu
  • the coil conductor 3 is a conductive material containing Cu as a main component. Is formed.
  • the magnetic body portion 2 is divided into a first region 6 that is the vicinity of the coil conductor 3 and a second region 7 other than the first region 6.
  • the average crystal grain size D1 of the first region 6 is 0.85 or less with respect to the average crystal grain size D2 of the second region 7.
  • the second region 7 has a high sinterability by promoting grain growth during firing, and forms a high-density region having a high sintered density, while the first region 6 has the second The low density area
  • the first region 6 has an average crystal grain size smaller than that of the second region 7, grain growth is suppressed during firing, the sinterability is inferior, and the sintering density is lowered. Therefore, even if a thermal shock or external stress is applied, the internal stress can be relaxed, and fluctuations in magnetic characteristics such as inductance can be suppressed.
  • the magnetic permeability ⁇ is also reduced, the direct current superimposition characteristics are improved, and thereby the concentration of magnetic flux is greatly relaxed, and magnetic saturation is difficult. Become.
  • the grain size ratio D1 / D2 between the average crystal grain size D1 of the first region 6 and the average crystal grain size D2 of the second region 7 exceeds 0.85, the grain size ratio D1 / D2 is 1 or less. Even if the first region 6 and the second region 7 do not have a sufficient difference in sinterability, and the particle size ratio D1 / D2 exceeds 1, the first region 6 is This is not preferable because the grain growth is promoted and the sinterability is improved as compared with the second region 7.
  • the molar content of Cu in the magnetic part 2 is 6 mol% (including 0 mol%) or less in terms of CuO, and the oxygen partial pressure at which Cu does not oxidize is the Cu—Cu 2 O equilibrium oxygen partial pressure.
  • the particle size ratio D1 / D2 can be easily controlled to 0.85 or less.
  • the coil conductor 3 is mainly composed of Cu, it is necessary to perform simultaneous firing with the magnetic part 2 in a reducing atmosphere in which Cu is not oxidized.
  • the coil conductor 3 contains Cu as a main component, it is necessary to co-fire with the magnetic body portion 2 in a reducing atmosphere in which Cu is not oxidized. In this case, the content of Cu is increased and CuO is increased. If the amount exceeds 6 mol%, the amount of Cu oxide deposited on the crystal grains becomes excessive, and therefore the grain growth of the crystal grains is suppressed even in the second region 7 and desired low-temperature firing is performed. I can't.
  • the coil conductor 3 is formed in the firing process.
  • the contained Cu diffuses into the first region 6.
  • the content of Cu oxide around the coil conductor 3 increases after firing, and as a result, in the first region 6, the sinterability is reduced, grain growth is suppressed, and the average crystal grain size is reduced. , The sintered density decreases.
  • the second region 7 is not affected by Cu diffusion, good sinterability can be maintained.
  • the difference in grain size is caused by the difference in sinterability between the first region 6 and the second region 7, and the average crystal grain size D1 of the first region 6 is the average crystal grain size of the second region 7.
  • the particle size ratio D1 / D2 can be made 0.85 or less.
  • the CuO content x1 in the first region 6 is larger than the content x2 in the second region 7.
  • the content weight of the 2nd field 7 to the 1st field 6 The weight ratio x2 / x1 can be controlled to be 0.6 or less, whereby a multilayer inductor having a particle size ratio D1 / D2 of 0.85 or less can be obtained.
  • the Cu of the coil conductor 3 diffuses into the first region 6 that is the vicinity region in the firing process.
  • the weight content of Cu oxide increases, and as a result, the sinterability decreases in the first region 6 in the magnetic body portion 2.
  • the particle size ratio D1 / D2 0.85 or less.
  • content of each component which forms main components other than Cu in a ferrite composition ie, content of Fe, Ni, and Zn
  • Fe 2 O 3 , NiO, and ZnO are respectively included. In terms of conversion, it is preferably blended so that Fe 2 O 3 is 20 to 48 mol%, ZnO is 6 to 33 mol%, and NiO is the balance.
  • a trivalent compound and a divalent compound are blended in equimolar amounts in the stoichiometric composition, but trivalent Fe 2 O 3 is added in a stoichiometric composition. If the amount of NiO, which is a divalent element compound, is excessively present compared to the stoichiometric composition, the reduction of Fe 2 O 3 is inhibited and generation of Fe 3 O 4 is prevented. Reduction resistance can be improved.
  • Fe 3 O 4 when it can be expressed by Fe 2 O 3 ⁇ FeO, is a divalent Ni compounds NiO is sufficiently present in excess than the stoichiometric composition, with respect to Fe 2 O 3
  • formation of divalent FeO similar to Ni is prevented, and as a result, Fe 2 O 3 is reduced to Fe 3 O 4. Therefore, the state of Fe 2 O 3 can be maintained, the reduction resistance can be improved, and desired insulation can be ensured.
  • Mn is preferably converted to Mn 2 O 3 and contained in the range of 1 to 10 mol%.
  • Mn 2 O 3 is preferentially reduced, so that sintering can be completed before Fe 2 O 3 is reduced, and the equilibrium oxygen of Cu—Cu 2 O Even if firing in an atmosphere having a partial pressure or less, it is possible to avoid a decrease in the specific resistance ⁇ of the ferrite material and to improve the insulation.
  • Mn 2 O 3 becomes a reducing atmosphere at a higher oxygen partial pressure than Fe 2 O 3 . Therefore, at an oxygen partial pressure equal to or lower than the equilibrium oxygen partial pressure of Cu—Cu 2 O, Mn 2 O 3 becomes a strongly reducing atmosphere compared to Fe 2 O 3 , and therefore Mn 2 O 3 is preferentially reduced and burned. The result can be completed.
  • Mn 2 O 3 is preferentially reduced as compared with Fe 2 O 3, it is possible to complete the baking process before the Fe 2 O 3 can be reduced to Fe 3 O 4, reduction resistance As a result, it is possible to ensure better insulation.
  • Fe oxide, Zn oxide, Ni oxide, and Mn oxide and Cu oxide as required are prepared as a ferrite raw material. These ferrite raw materials are converted into Fe 2 O 3 , ZnO, NiO, Mn 2 O 3 , and CuO.
  • Fe 2 O 3 20 to 48 mol%
  • ZnO 6 to 33 mol%
  • Mn 2 O 3 Weigh so that 1 to 10 mol%
  • CuO 6 mol% or less
  • NiO remainder.
  • these weighed materials are put in a pot mill together with pure water and cobblestones such as PSZ (partially stabilized zirconia) balls, thoroughly mixed and pulverized in a wet manner, evaporated and dried, and then temporarily heated at a temperature of 800 to 900 ° C. for a predetermined time. Bake.
  • pure water and cobblestones such as PSZ (partially stabilized zirconia) balls
  • these calcined materials are again put into a pot mill together with an organic binder such as polyvinyl butyral, an organic solvent such as ethanol and toluene, and PSZ balls, and sufficiently mixed and pulverized to prepare a slurry.
  • an organic binder such as polyvinyl butyral
  • an organic solvent such as ethanol and toluene
  • PSZ balls PSZ balls
  • the slurry is formed into a sheet using a doctor blade method or the like, and magnetic sheets 8a to 8h having a predetermined film thickness are produced.
  • via holes are formed at predetermined positions of the magnetic sheets 8b to 8g using a laser processing machine so that the magnetic sheets 8b to 8g can be electrically connected to each other among the magnetic sheets 8a to 8h.
  • a conductive paste for coil conductors containing Cu as a main component is prepared. Then, screen printing is performed using the conductive paste, coil patterns 9a to 9f are formed on the magnetic sheets 8b to 8g, and via holes are filled with the conductive paste to produce via hole conductors 10a to 10e. .
  • the coil patterns 9a and 9f formed on the magnetic sheet 8b and the magnetic sheet 8g are formed with lead portions 9a 'and 9f' so as to be electrically connected to the external electrodes.
  • the magnetic sheets 8b to 8g on which the coil patterns 9a to 9f are formed are laminated, and these are sandwiched between the magnetic sheets 8a and 8h on which the coil pattern is not formed, and are bonded to each other.
  • Crimp blocks in which 9a to 9f are connected via via-hole conductors 10a to 10e are produced. Thereafter, the pressure-bonding block is cut into a predetermined size to produce a laminated molded body.
  • this laminated molded body was sufficiently degreased at a predetermined temperature in an atmosphere in which Cu in the coil pattern was not oxidized, and then the oxygen partial pressure was controlled by a mixed gas of N 2 —H 2 —H 2 O. It is supplied to a firing furnace and fired at 900 to 1050 ° C. for a predetermined time, whereby the component body 1 in which the coil conductor 3 is embedded in the magnetic body portion 2 is obtained. That is, the firing treatment is performed by setting the firing atmosphere to an oxygen partial pressure equal to or lower than the equilibrium oxygen partial pressure of Cu—Cu 2 O within the range of the firing temperature of 900 to 1050 ° C.
  • Cu in the coil patterns 9a to 9f diffuses to the magnetic material sheets 8b to 8g side, so that the magnetic material part 2 has the first region 6 having a low sintered density and the first region 6a.
  • the region other than the region 6 is divided into second regions 7 having good sinterability and high sintered density.
  • the conductive paste for external electrodes containing conductive powder such as Ag powder, glass frit, varnish, and organic solvent is applied to both ends of the component body 1, dried, and then baked at 750 ° C.
  • External electrodes 5a and 5b are formed, whereby a multilayer inductor is manufactured.
  • the component body 1 is divided into the first region 6 in the vicinity of the coil conductor 3 and the second region 7 other than the first region 6.
  • the average crystal grain size of the magnetic body part 2 in the second region 7 is 0.85 or less with respect to the average crystal grain size of the magnetic body part 2 in the second region 7, and the coil conductor 3 is mainly made of Cu.
  • the first region 6 since the first region 6 has a lower sinterability than the second region 7 and the grain growth at the time of firing is suppressed, the first region 6 also has a reduced permeability.
  • the first region 6 in the vicinity of the coil conductor 3 has a low sinterability and a low sintering density, so that internal stress can be relaxed, and thermal shock or Even when stress is applied from the outside, fluctuations in magnetic characteristics such as inductance can be suppressed. Further, since the magnetic permeability is reduced in the first region 6, the direct current superimposition characteristic is improved, and as a result, the concentration of magnetic flux is greatly relaxed, and the saturation magnetic flux density can be improved.
  • the Cu content 6 mol% or less (including 0 mol%) in terms of CuO grain growth in the second region 7 even when firing in a reducing atmosphere in which Cu is not oxidized. It is possible to easily obtain a laminated coil component such as a laminated inductor having a good thermal shock resistance and a good DC superposition characteristic while ensuring a good insulating property without compromising the particle size. Is possible.
  • the content ratio of Cu in the second region 7 with respect to the first region 6 is 0.6 or less (including 0) in terms of a weight ratio in terms of CuO, whereby the particle size ratio D1 / D2 is also 0.85 or less, and desired thermal shock resistance and direct current superposition characteristics can be obtained.
  • the component body 1 is sintered in an atmosphere having an equilibrium oxygen partial pressure of Cu—Cu 2 O or less, so that it is simultaneously fired with the magnetic body portion 2 using the coil conductor 1 mainly composed of Cu.
  • Cu can be sintered without being oxidized.
  • the laminate has a good thermal shock resistance in which magnetic properties such as inductance are suppressed and a good DC superposition property.
  • a coil component can be obtained.
  • FIG. 4 is a cross-sectional view showing a second embodiment of the laminated coil component according to the present invention.
  • a nonmagnetic material layer 11 is provided so as to cross the magnetic path, and the magnetism is opened. It is also preferable to use a path type, and by using the open magnetic path type in this way, it is possible to further improve the direct current superposition characteristics.
  • the nonmagnetic layer 11 a material having similar shrinkage behavior during firing, for example, a Zn—Cu ferrite or a Zn ferrite in which Ni in the Ni—Zn—Cu ferrite is completely replaced with Zn is used. Can do.
  • the magnetic body portion 2 is formed of a ferrite material containing Fe, Ni, Zn, and Cu as main components, but an appropriate amount of Sn component as a subcomponent (for example, In addition, it is also preferable to contain 1 to 3 parts by weight in terms of SnO 2 with respect to 100 parts by weight of the main component, which can further improve the DC superposition characteristics.
  • the firing atmosphere is preferably fired in an atmosphere not exceeding the equilibrium oxygen partial pressure of Cu—Cu 2 O so that Cu as the coil conductor 3 is not oxidized as described above. If the concentration is too low, the specific resistance of the ferrite may decrease. From this viewpoint, it is preferably 1/100 or more of the equilibrium oxygen partial pressure of Cu—Cu 2 O.
  • laminated coil component of the present invention has been described, it goes without saying that it can be applied to a laminated composite component such as a laminated LC component.
  • Fe 2 O 3 , Mn 2 O 3 , ZnO, NiO and CuO were prepared as ferrite raw materials, and these ceramic raw materials were weighed so as to have the composition shown in Table 1. That is, Fe 2 O 3 : 46.5 mol%, Mn 2 O 3 : 2.5 mol%, ZnO: 30.0 mol%, CuO was varied from 0.0 to 8.0 mol%, and the remainder was adjusted with NiO. .
  • the slurry was formed into a sheet shape so as to have a thickness of 25 ⁇ m, and this was punched into a size of 50 mm in length and 50 mm in width to produce a magnetic sheet.
  • Cu paste containing Cu powder, varnish, and organic solvent is screen printed on the surface of the magnetic sheet, and the Cu paste Was filled in the via hole, thereby forming a coil pattern and a via hole conductor having a predetermined shape.
  • Fe 2 O 3 46.5mol%, Mn 2 O 3: 2.5mol%, ZnO: 51.0mol% and so as to Fe 2 O 3, were weighed Mn 2 O 3 and ZnO, similar to the above method ⁇ After calcining in the procedure, slurry is formed, and then using the doctor blade method, the slurry is formed into a sheet shape so as to have a thickness of 25 ⁇ m, and this is punched into a size of 50 mm in length and 50 mm in width, and nonmagnetic A body sheet was prepared.
  • the via hole was filled with Cu paste containing Cu powder, varnish, and organic solvent, thereby forming a via hole conductor.
  • the magnetic sheet on which the coil pattern is formed, the nonmagnetic sheet, and the magnetic sheet on which the coil pattern is formed are sequentially laminated. These were sandwiched between magnetic sheets on which no coil patterns were formed, and were pressure-bonded at a temperature of 60 ° C. and a pressure of 100 MPa to produce a pressure-bonding block. And this crimping
  • this laminated molded body was heated in a reducing atmosphere so that Cu was not oxidized, and sufficiently degreased. Thereafter, the ceramic laminate was put into a firing furnace in which the oxygen partial pressure was controlled to 1.8 ⁇ 10 ⁇ 1 Pa with a mixed gas of N 2 —H 2 —H 2 O, and 1-5 at a firing temperature of 950 ° C.
  • the component bodies of sample numbers 1 to 9 having a nonmagnetic material layer in the substantially central portion and having a coil conductor embedded in the magnetic material portion were produced by maintaining the time and firing.
  • the external dimensions of the sample were length L: 2.0 mm, width W: 1.2 mm, thickness T: 1.0 mm, and the number of turns of the coil was adjusted so that the inductance was about 1.0 ⁇ F.
  • FIG. 5 is a cross-sectional view showing the locations where CuO content and average crystal grain size are measured.
  • the component body 21 of each sample has a non-magnetic layer 22 formed at a substantially central portion and a magnetic body.
  • a coil conductor 24 is embedded in the portion 23.
  • each coil conductor 24 is set as a measurement position, and at this measurement position, The CuO content and average crystal grain size were determined.
  • W ′ corresponding to the center line of the magnetic part 23 having a width W of 1.2 mm is 0.6 mm, and a substantially central part in the thickness direction (X in FIG. 5). And the content weight of CuO and the average crystal grain size at the measurement position were determined.
  • the CuO content is determined by breaking 10 samples of sample numbers 1 to 9 and quantitatively analyzing the composition of each magnetic part 23 using the WDX method (wavelength dispersive X-ray analysis method). Then, the content (average value) of CuO in the magnetic part 23 in the first and second regions 25 and 26 was determined.
  • WDX method wavelength dispersive X-ray analysis method
  • the average crystal grain size of CuO was obtained by breaking the 10 samples, polishing the cross section, further performing chemical etching, and taking SEM photographs at the measurement points described above for each etched sample.
  • the grain sizes in the first and second regions 25 and 26 are measured, and in accordance with the JIS standard (R1670), the average crystal grain size is calculated by converting to the equivalent circle diameter, and the average value of 10 data is obtained. It was.
  • thermal shock test and a DC superimposition test were conducted, and the inductance before and after each test was measured to determine the rate of change, and the thermal shock resistance and DC superimposition characteristics were evaluated.
  • the thermal shock test was repeated 2000 cycles at a predetermined heat cycle in the range of ⁇ 55 ° C. to + 125 ° C. for 50 samples, and the inductance L before and after the test was measured at a measurement frequency of 1 MHz.
  • the inductance change rate was obtained.
  • the DC superimposition test is based on the JIS standard (C2560-2) for 50 samples, and the inductance L when a DC current of 1A is superimposed on the sample is measured at a measurement frequency of 1 MHz, and the inductance change before and after the test The rate ⁇ L was determined.
  • Table 2 shows the measurement results of the samples Nos. 1 to 9.
  • Sample Nos. 8 and 9 have large inductance change rate ⁇ L of +20.7 to + 26.4% in the thermal shock test and large inductance change rate ⁇ L of ⁇ 45.5 to ⁇ 52.4% in the DC superposition test. It was found to be inferior in impact properties and direct current superposition characteristics. This is because the molar amount of CuO is as large as 7.0 to 8.0 mol%, so that a heterogeneous phase of CuO is generated in the crystal particles, and the sinterability is lowered. It seems to have been.
  • Sample Nos. 1 to 7 have a CuO content of 6.0 mol% or less, a particle size ratio D1 / D2 of 0.85 or less, and a weight ratio x2 / x1 of 0.60 or less.
  • the inductance change rate ⁇ L was 15% or less in absolute value
  • the inductance change rate ⁇ L was 40% or less in absolute value, and good results were obtained.
  • Sample numbers 2 to 6 with a CuO content of 1.0 to 5.0 mol% have a particle size ratio D1 / D2 of 0.6 or less, and the inductance change rate in the thermal shock test is 10% or less in absolute value. It was found that even better results were obtained.
  • FIG. 6 is a graph showing the relationship between the molar content of CuO and the particle size ratio, with the horizontal axis indicating the molar content (mol%) and the vertical axis indicating the particle size ratio D1 / D2 ( ⁇ ).
  • the particle size ratio D1 / D2 becomes 1.00, whereas the CuO content molar amount is 6.0 mol% or less. It can be seen that the particle size ratio D1 / D2 is 0.85 or less in the range.
  • FIG. 7 is a graph showing the relationship between the molar content of CuO and the inductance change rate in the thermal shock test, where the horizontal axis indicates the molar content (mol%) and the vertical axis indicates the inductance change rate ⁇ L (%). .
  • the inductance change rate ⁇ L becomes 20% or more, whereas the molar amount of CuO falls within the range of 6.0 mol% or less. It can be seen that the inductance change rate ⁇ L can be suppressed to 15% or less.
  • FIG. 8 is a graph showing the relationship between the molar content of CuO and the inductance change rate in the DC superposition test, where the horizontal axis indicates the molar content (mol%) and the vertical axis indicates the inductance change rate ⁇ L (%). .
  • the inductance change rate ⁇ L exceeds 45% in absolute value, whereas the molar amount of CuO is 6.0 mol% or less. It can be seen that the inductance change rate ⁇ L can be suppressed to 40% or less in absolute value within the range.
  • SnO 2 was prepared as a subcomponent material. Then, Fe 2 O 3: 46.5mol% , Mn 2 O 3: 2.5mol%, ZnO: 30.0mol%, 1.0mol% of CuO, and NiO: were weighed so that 20.0 mol%, Further, SnO 2 was weighed so as to be 0.0 to 3.0 parts by weight with respect to 100 parts by weight of the main component.
  • the CuO content weight and the average crystal grain size were measured, and a thermal shock test and a direct current superposition test were performed.
  • Table 3 shows the measurement results of the samples Nos. 11 to 14.
  • Multilayer coils such as multilayer inductors with good thermal shock resistance and direct current superposition without requiring a complicated process even when the coil conductor is used as a coil conductor and the coil conductor and magnetic part are fired simultaneously Parts can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 Ni-Zn系フェライト材料からなる磁性体部2と、コイル状に巻回されたCuを主成分とするコイル導体3とを有し、コイル導体3が磁性体部2に埋設されて部品素体1が形成されている。部品素体1は、コイル導体3近傍の第1の領域6と、第1の領域6以外の第2の領域7とに区分されている。第1の領域6における磁性体部2の平均結晶粒径D1は、第2の領域7における磁性体部2の平均結晶粒径D2に対し、粒径比D1/D2で0.85以下である。フェライト原料中のCuOの含有モル量を6mol%以下とし、酸素分圧がCu-CuO平衡酸素分圧以下の還元雰囲気で焼成する。煩雑な工程を要することなく、これにより熱衝撃が負荷されたり外部からの応力が負荷されてもインダクタンスの変動が小さく良好な耐熱衝撃性を有し、かつ直流重畳特性が良好な積層コイル部品を得る。

Description

積層コイル部品
 本発明は積層コイル部品に関し、より詳しくは、フェライト材料からなる磁性体部とCuを主成分としたコイル導体とを有する積層インダクタ等の積層コイル部品に関する。
 従来より、スピネル型結晶構造を有するNi-Zn等のフェライト系磁器を使用した積層コイル部品は広く使用されており、フェライト材料の開発も盛んに行なわれている。
 この種の積層コイル部品は、コイル状に巻回された導体部が磁性体部中に埋設された構造を有しており、通常、導体部と磁性体部とは同時焼成により形成される。
 ところで、上記積層コイル部品では、フェライト材料からなる磁性体部と導電性材料を主成分とする導体部とでは線膨張係数が異なることから、両者の線膨張係数の相違に起因し、焼成後の冷却過程で内部に応力歪みが生じる。そして、基板実装時のリフロー処理等で急激な温度変化や外部応力が負荷されると、上述した応力歪みが変化することから、インダクタンス等の磁気特性が変動する。
 そこで、特許文献1には、積層されたセラミックシートによって積層チップの骨格を形成し、内部導体によって積層チップ内にコイル導体を形成し、その始端と終端とがそれぞれ別の外部電極端子に接続してなる積層チップインダクタであって、上記セラミックシートが磁性体シートであり、外部電極端子への引き出し部を除く上記内部導体が包含されるように、積層チップ内にドーナツ状の非磁性体の領域を形成した積層チップインダクタが提案されている。
 この特許文献1では、磁性体シートを作製した後、該磁性体シート上に非磁性体ペーストを塗布して所定パターンの非磁性体膜を形成し、その後、磁性体ペースト、内部導体用ペースト、及び非磁性体ペーストを使用して順次印刷処理を複数回施し、これにより積層チップインダクタを得ている。
 そして、この特許文献1では、コイル導体と接するセラミックを非磁性体とすることにより、同時焼成によって内部に応力歪みが生じ、その後に熱衝撃が負荷されたり外部からの応力が負荷された場合であっても、磁気特性が変動するのを抑制している。
 一方、この種の積層コイル部品では、大電流が通電された場合であっても安定したインダクタンスが得られることが重要であり、そのためには大きな直流電流を通電してもインダクタンスの低下が抑制されるような直流重畳特性を有することが必要となる。
 しかしながら、積層インダクタ等の積層コイル部品は、閉磁路を形成するため、大電流を通電すると磁気飽和が生じ易くなり、インダクタンスが低下して所望の直流重畳特性を得ることができなくなる。
 そこで、特許文献2では、磁性体層間に端部が接続され、積層方向に重畳して周回する導体パターンを具えた積層コイル部品において、積層方向の両端の導体パターンに接し、当該導体パターンの内側に位置する、該磁性体層よりも透磁率の低い材料の層を具えた積層コイル部品が提案されている。
 この特許文献2では、磁性体層よりも透磁率の低い材料(例えば、Ni-Fe系フェライト材料でNi含有量の少ないものや非磁性体材料等)からなる層を導体パターンの外側に設けることにより、端部の導体パターンの内側の角に磁束が集中するのを防止して磁束を主磁路の中央部分に分散させ、これにより磁気飽和の発生を防止し、インダクタンスの向上を図ろうとしている。
 また、特許文献3には、磁性体層と導体パターンを積層し、素体内にインピーダンス素子が形成された積層型ビーズにおいて、磁性体層の焼結性を調整するための焼結調整剤を導体ペーストに混入した積層型ビーズが提案されている。
 この特許文献3では、焼結調整剤が、銀粉末を被覆するSiOによって構成されると共に、SiOが銀の重量換算で0.05~0.3wt%含有しており、該焼結調整剤が混入した導体ペーストを磁性体層に印刷して導体パターンを形成している。
 そして、この特許文献3では、上述した焼結調整剤を導体ペーストに混入することにより、焼結調整剤が磁性体中に適度に拡散することから、導体パターンの近傍の磁性体の焼結状態をそれ以外の部分よりも遅らせることができ、これにより磁気的に不活性な層を傾斜的に形成している。すなわち、導体パターンの近傍の磁性体の焼結状態をそれ以外の部分よりも遅らせることにより、導体パターン間や導体パターンの近傍の磁性体の粒径がそれ以外の部分よりも小さくなって透磁率の低い層を形成することができ、磁気的に不活性な部分を形成している。そしてこれにより高周波帯域において大電流域まで直流重畳特性を向上させ、磁気特性が劣化するのを防止しようとしている。
実開平6-45307号公報(請求項2、段落番号〔0024〕、図2、図7) 特許第2694757号明細書(請求項1、図1等) 特開2006-237438号公報(請求項1、段落番号〔0007〕)
 しかしながら、特許文献1は、内部導体用ペーストの他、磁性体ペーストや非磁性体ペースト等の複数のペーストを交互に使用して印刷処理を行わなければならず、製造工程が煩雑であり、実用性に欠ける。しかも、磁性体ペーストと非磁性体ペーストとで成分系が異なる場合は、収縮挙動の相違から同時焼成した場合に残留応力が発生し、クラック等の欠陥が生じるおそれがある。
 また、特許文献2も、組成の異なる複数の磁性体ペースト、又は磁性体ペーストと非磁性体ペーストを用意して印刷処理を行わなければならず、特許文献1と同様、製造工程が煩雑であり、実用性に欠ける。
さらに、特許文献3の方法では、導体ペーストに焼結調整剤を混入させていることから、導体ペーストを焼結して得られる導体パターンの抵抗が必然的に高くなり、直流抵抗(Rdc)が大きくなるおそれがある。
 本発明はこのような事情に鑑みなされたものであって、煩雑な工程を要することなく、熱衝撃が負荷されたり外部からの応力が負荷されてもインダクタンスの変動が小さく良好な耐熱衝撃性を有し、かつ直流重畳特性が良好な積層コイル部品を提供することを目的とする。
 本発明者らは、導体部にCuを使用し、磁性体部にNi-Zn系フェライト材料を使用して鋭意研究を行ったところ、Cuが酸化しないような還元雰囲気でCuと磁性体部となるべき磁性体シートとを同時焼成させると、Cuが導体部近傍のフェライト原料中に拡散し、これにより導体部の近傍領域(以下、「第1の領域」という。)におけるCuOの含有量が増加し、第1の領域の焼結性が該第1の領域以外の領域(以下、「第2の領域」という。)の焼結性に比べて低下することが分った。そしてこのように第1の領域と第2の領域との間で焼結性に差異を生じさせ、第1の領域の焼結性を第2の領域の焼結性に対して低下させることにより、耐熱衝撃性や直流重畳特性を向上させることができるという知見を得た。
 すなわち、耐熱衝撃性や直流重畳特性を向上させるためには、第1の領域と第2の領域との間で焼結性に差異を生じさせるのが望ましく、そのためには焼成時に第1の領域における結晶粒子の粒成長を抑制する必要がある。
 そこで、本発明者らは、焼成時における第1の領域での結晶粒子の粒成長を抑制すべく、更に鋭意研究を進めたところ、第1の領域の平均結晶粒径が第2の領域の平均結晶粒径に対し、0.85以下となるように、第1の領域における結晶粒子の粒成長を抑制することにより、第1の領域と第2の領域との間で適度な焼結性の差異を生じさせることができ、これにより、耐熱衝撃性や直流重畳特性を向上させることができることが分かった。
 本発明はこのような知見に基づきなされたものであって、本発明に係る積層コイル部品は、フェライト材料からなる磁性体部と、コイル状に巻回された導体部とを有し、該導体部が前記磁性体部に埋設されて部品素体を形成する積層コイル部品において、前記部品素体は、前記導体部近傍の第1の領域と、該第1の領域以外の第2の領域とに区分され、前記第1の領域における前記磁性体部の平均結晶粒径は、前記第2の領域における前記磁性体部の平均結晶粒径に対し、粒径比で0.85以下であり、かつ、前記導体部は、Cuを主成分としていることを特徴としている。
 また、Cuの含有量をCuOに換算して6mol%以下(0mol%を含む。)に抑制し、Cuが酸化しないように酸素分圧がCu-CuO平衡酸素分圧以下の還元雰囲気で焼成することにより、前記粒径比が0.85以下の積層コイル部品を容易に得ることができる。
 すなわち、本発明の積層コイル部品は、前記フェライト材料が、Cuの含有量がCuOに換算して6mol%以下(0mol%を含む。)であるのが好ましい。
 これにより、Cuが酸化しないような還元雰囲気で焼成しても、第2の領域での粒成長を損なうこともなく、容易に粒径比を0.85以下とすることができ、良好な絶縁性を確保しつつ耐熱衝撃性及び直流重畳特性の良好な積層インダクタ等の積層コイル部品を得ることが可能となる。
 また、上述したCuが酸化しないような還元雰囲気では、Cuの含有量がCuOに換算して6mol%を超えると焼結性が低下する。したがって、第1の領域と第2の領域とでCuOの含有重量に差を設けることによって、焼結性に差異が生じさせることができる。
 そして、本発明者らの鋭意研究の結果、第1の領域に対する第2の領域のCuの含有比率を、CuOに換算し重量比で0.6以下(0を含む。)とすることにより、前記粒径比が0.85以下となって第1の領域と第2の領域との間で焼結性に差異を生じさせることができることが分かった。
 すなわち、本発明の積層コイル部品は、前記第1の領域に対する前記第2の領域のCuの含有比率が、CuOに換算し重量比で0.6以下(0を含む。)であるのが好ましい。
 また、フェライト材料中にMn成分を含有させることにより、絶縁性のより一層の向上が可能となる。
 すなわち、本発明の積層コイル部品は、前記フェライト材料が、Mn成分を含有しているのが好ましい。
 また、フェライト材料中にSn成分を含有させることにより、直流重畳特性のより一層の向上が可能となる。
 すなわち、本発明の積層コイル部品は、前記フェライト材料が、Sn成分を含有しているのが好ましい。
 さらに、本発明の積層コイル部品は、前記部品素体が、Cu-CuOの平衡酸素分圧以下の雰囲気で焼結されてなるのが好ましい。
 これにより導体部となるべきCuを主成分とする導電膜と磁性体部となるべき磁性体シートとを同時焼成しても、Cuが酸化されることもなく、焼結させることができる。
 上記積層コイル部品によれば、フェライト材料からなる磁性体部と、コイル状に巻回された導体部とを有し、該導体部が前記磁性体部に埋設されて部品素体を形成する積層コイル部品において、前記部品素体は、前記導体部近傍の第1の領域と、該第1の領域以外の第2の領域とに区分され、前記第1の領域における前記磁性体部の平均結晶粒径は、前記第2の領域における前記磁性体部の平均結晶粒径に対し、粒径比で0.85以下であり、かつ、前記導体部は、Cuを主成分としているので、第1の領域は第2の領域に比べて焼成時の粒成長が抑制されて焼結性が低下し、透磁率も第1の領域は第2の領域に比べて低下する。
 すなわち、導体部近傍の第1の領域は第2の領域に比べて焼結性が低下し、前記第1の領域は焼結密度が低くなることから、内部応力を緩和させることができ、基板実装時のリフロー処理等で熱衝撃や外部から応力が負荷されてもインダクタンス等の磁気特性の変動を抑制することができる。また、第1の領域では透磁率が低下することから、直流重畳特性が改善され、その結果、磁束の集中が大幅に緩和され、飽和磁束密度を向上させることが可能となる。
本発明に係る積層コイル部品としての積層インダクタの一実施の形態(第1の実施の形態)を示す斜視図である。 図1のA-A断面図(横断面図)である。 上記積層インダクタの製造方法を説明するための分解斜視図である。 上記積層インダクタの第2の実施の形態を示す横断面図である。 実施例における結晶粒径及び組成の測定箇所を示す図である。 CuOの含有モル量と粒径比の関係を示す図である。 熱衝撃試験におけるCuOの含有モル量とインダクタンス変化率との関係を示す図である。 直流重畳試験におけるCuOの含有モル量とインダクタンス変化率との関係を示す図である。
 次に、本発明の実施の形態を詳説する。
 図1は、本発明に係る積層コイル部品としての積層インダクタの一実施の形態を示す斜視図であり、図2は図1のA-A断面図(横断面図)である。
 本積層インダクタは、部品素体1が、磁性体部2とコイル導体(導体部)3とを有し、コイル導体3は磁性体部2に埋設されている。また、コイル導体3の両端には引出電極4a、4bが形成されると共に、部品素体1の両端にはAg等からなる外部電極5a、5bが形成され、該外部電極5a、5bと引出電極4a、4bとが電気的に接続されている。
 本実施の形態では、磁性体部2は、Fe、Ni、Zn、及びCuの各成分を主成分として含有したフェライト材料で形成され、コイル導体3は、Cuを主成分とした導電性材料で形成されている。
 磁性体部2は、図2に示すように、コイル導体3の近傍域である第1の領域6と、該第1の領域6以外の第2の領域7とに区分され、数式(1)に示すように、第1の領域6の平均結晶粒径D1は、第2の領域7の平均結晶粒径D2に対し0.85以下とされている。
 D1/D2≦0.85 …(1)
 そして、これにより第2の領域7は、焼成時に粒成長が促進されて良好な焼結性を有し、焼結密度の高い高密度領域を形成する一方、第1の領域6は、第2の領域7に比べて焼結性に劣り、結晶粒子の粒成長が抑制された焼結密度の低い低密度領域を形成する。
 すなわち、第1の領域6は、第2の領域7に比べて平均結晶粒径が小さく、焼成時に粒成長が抑制され焼結性に劣り、焼結密度が低下する。したがって、これにより熱衝撃や外部からの応力が負荷されても内部応力を緩和することができ、インダクタンス等の磁気特性の変動を抑制することが可能となる。
 また、第1の領域6は、上述したように焼結性に劣ることから、透磁率μも低下し、直流重畳特性が改善され、これにより磁束の集中が大幅に緩和され、磁気飽和し難くなる。
 尚、第1の領域6の平均結晶粒径D1と第2の領域7の平均結晶粒径D2との粒径比D1/D2が0.85を超えると、粒径比D1/D2が1以下であっても第1の領域6と第2の領域7との間で焼結性に十分な差異が生じず、また粒径比D1/D2が1を超えると、第1の領域6が第2の領域7よりも粒成長が促進されて焼結性が上がることから好ましくない。
 そして、磁性体部2中のCuの含有モル量をCuOに換算して6mol%(0mol%を含む。)以下とし、Cuが酸化しないような酸素分圧がCu-CuO平衡酸素分圧以下の還元雰囲気で焼成することにより、粒径比D1/D2を0.85以下に容易に制御することが可能となる。
 すなわち、大気雰囲気で焼成する場合、Ni-Zn-Cu系フェライト材料では、融点が1026℃と低いCuOの含有量を減少させると焼結性が低下することから、通常は焼成温度を1050~1250℃程度で行っている。
 一方、コイル導体3がCuを主成分とする場合は、Cuが酸化しないような還元雰囲気で磁性体部2と同時焼成する必要がある。
 しかるに、焼成雰囲気の酸素濃度を低下させると、焼成処理で結晶構造中に酸素欠陥が形成され、結晶中に存在するFe、Ni、Cu、Znの相互拡散が促進され、低温焼結性を向上させることが可能となる。
 ところが、このような酸素濃度の低い還元雰囲気で焼成した場合、大気雰囲気で焼成した場合に比べ、Cu酸化物が結晶粒子中に異相として析出しやすくなる。したがって、フェライト原料中のCuの含有モル量が多くなると、結晶粒子へのCu酸化物の析出量が増大し、このCu酸化物の析出により磁性体部2全体の焼結性が却って低下する。
 すなわち、コイル導体3がCuを主成分とする場合は、Cuが酸化しないような還元雰囲気で磁性体部2と同時焼成する必要があるが、この場合、Cuの含有モル量を増量し、CuOに換算して6mol%を超えてしまうと、結晶粒子へのCu酸化物の析出量が過剰となり、このため第2の領域7でも結晶粒子の粒成長が抑制され、所望の低温焼成を行うことができない。
 一方、Cuの含有モル量をCuOに換算して6mol%以下とし、Cuが酸化しないようなCu-CuO平衡酸素分圧以下の還元雰囲気で焼成を行うと、焼成過程でコイル導体3に含有されているCuが、第1の領域6中に拡散する。このため焼成後にはコイル導体3の周囲のCu酸化物の含有重量が増加し、その結果、第1の領域6では焼結性が低下して粒成長が抑制され、平均結晶粒径は小さくなり、焼結密度が低下する。一方、第2の領域7はCu拡散の影響を受けないことから良好な焼結性を維持することができる。
 このように第1の領域6と第2の領域7との焼結性の相違から粒径差が生じ、第1の領域6の平均結晶粒径D1は第2の領域7の平均結晶粒径D2よりも小さくなり、粒径比D1/D2を0.85以下にすることができる。
 また、この場合、コイル導体3のCuが拡散されることから、第1の領域6のCuOの含有重量x1は第2の領域7の含有重量x2よりも多くなる。そして、上述したCuの含有モル量がCuOに換算して6mol%以下の範囲でCuが酸化しないような還元雰囲気で焼成することにより、第1の領域6に対する第2の領域7の含有重量の重量比率x2/x1が0.6以下となるように制御することができ、これにより粒径比D1/D2が0.85以下の積層インダクタを得ることができる。
 このように本実施の形態では、コイル導体3がCuを主成分とした場合、焼成過程でコイル導体3のCuが近傍域である第1の領域6に拡散する結果、第1の領域6のCu酸化物の含有重量が増加し、これにより磁性体部2中の第1の領域6では焼結性が低下する。そして、第1の領域6と第2の領域7との間で焼結性に差異を設け、粒径比D1/D2を0.85以下とすることにより、第1の領域6では粒成長が抑制されて平均結晶粒径が小さくなり焼結状態が疎密になることから、熱衝撃や外部から応力が負荷されても内部応力が緩和され、インダクタンス等の磁気特性の変動を抑制することが可能となる。また、焼結密度の低い第1の領域6は、透磁率も低下することから、直流重畳特性も改善され、その結果、磁束の集中が大幅に緩和され、磁気飽和し難くなる。
 尚、フェライト組成中のCu以外の主成分を形成する各成分の含有量、すなわちFe、Ni、Znの含有量は特に限定されるものではないが、それぞれFe、NiO、及びZnOに換算してFe:20~48mol%、ZnO:6~33mol%、及びNiO:残部となるように配合されるのが好ましい。
 Ni-Zn系フェライトのようなスピネル型結晶構造を有するフェライトでは、化学量論組成では3価化合物と2価化合物が等モルに配合されるが、3価のFeを化学量論組成よりも適度に減量し、2価の元素化合物であるNiOを化学量論組成よりも過剰に存在させると、Feの還元が阻害されてFeを生成するのが妨げられ、耐還元性を向上させることが可能となる。すなわち、Feは、Fe・FeOで表わすことができるが、2価のNi化合物であるNiOが化学量論組成よりも十分に過剰に存在すると、Feに対しても還元雰囲気となるCu-CuO平衡酸素分圧以下で焼成しても、Niと同様の2価のFeOの生成が妨げられ、その結果、FeがFeに還元されずにFeの状態を維持することが可能となり、耐還元性が向上し、所望の絶縁性を確保することが可能となる。
 また、必要に応じてMnをMnに換算し、1~10mol%の範囲で含有させるのも好ましい。Mnを含有させることで、Mnが優先的に還元されることから、Feが還元される前に焼結を完了させることが可能となり、さらにCu-CuOの平衡酸素分圧以下の雰囲気で焼成しても、フェライト材料の比抵抗ρが低下するのを回避でき、絶縁性を向上させることができる。
 すなわち、800℃以上の温度領域では、MnはFeに比べ、より高い酸素分圧で還元性雰囲気となる。したがって、Cu-CuOの平衡酸素分圧以下の酸素分圧では、MnはFeに比べ強還元性雰囲気となり、このためMnが優先的に還元されて焼結を完了させることが可能となる。つまり、MnがFeに比べて優先的に還元されることから、FeがFeに還元される前に焼成処理を完了させることが可能となり、耐還元性が向上してより一層良好な絶縁性を確保することが可能となる。
 次に、上記積層インダクタの製造方法の一例を、図3を参照しながら詳述する。
 まず、フェライト素原料として、Fe酸化物、Zn酸化物、Ni酸化物、更に必要に応じてMn酸化物、Cu酸化物を用意する。そしてこれら各フェライト素原料をFe、ZnO、NiO、Mn、CuOに換算し、例えば、Fe:20~48mol%、ZnO:6~33mol%、Mn:1~10mol%、CuO:6mol%以下、NiO:残部となるように秤量する。
 次いで、これらの秤量物を純水及びPSZ(部分安定化ジルコニア)ボール等の玉石と共にポットミルに入れ、湿式で十分に混合粉砕し、蒸発乾燥させた後、800~900℃の温度で所定時間仮焼する。
 次いで、これらの仮焼物に、ポリビニルブチラール系等の有機バインダ、エタノール、トルエン等の有機溶剤、及びPSZボールと共に、再びポットミルに投入し、十分に混合粉砕し、スラリーを作製する。
 次に、ドクターブレード法等を使用して前記スラリーをシート状に成形加工し、所定膜厚の磁性体シート8a~8hを作製する。
 次いで、磁性体シート8a~8hのうち、磁性体シート8b~8gが互いに電気的に接続可能となるようにレーザ加工機を使用して磁性体シート8b~8gの所定箇所にビアホールを形成する。
 次に、Cuを主成分としたコイル導体用導電性ペーストを用意する。そして、この導電性ペーストを使用してスクリーン印刷し、磁性体シート8b~8g上にコイルパターン9a~9fを形成し、かつ、ビアホールを前記導電性ペーストで充填しビアホール導体10a~10eを作製する。尚、磁性体シート8b及び磁性体シート8gに形成された各コイルパターン9a、9fには、外部電極と電気的接続が可能となるように引出部9a′、9f′が形成されている。
 次いで、コイルパターン9a~9fの形成された磁性体シート8b~8gを積層し、これらをコイルパターンの形成されていない磁性体シート8a及び磁性体シート8hで挟持して圧着し、これによりコイルパターン9a~9fがビアホール導体10a~10eを介して接続された圧着ブロックを作製する。その後、この圧着ブロックを所定寸法に切断して積層成形体を作製する。
 次に、この積層成形体をコイルパターン中のCuが酸化しないような雰囲気下、所定温度で十分に脱脂した後、N-H-HOの混合ガスにより酸素分圧が制御された焼成炉に供給し、900~1050℃で所定時間焼成し、これにより磁性体部中2にコイル導体3が埋設された部品素体1を得る。すなわち、焼成温度900~1050℃の範囲内でCu-CuOの平衡酸素分圧以下の酸素分圧に焼成雰囲気を設定して焼成処理を行う。
 尚、この焼成処理で、コイルパターン9a~9f中のCuは磁性体シート8b~8g側に拡散し、これにより磁性体部2は、焼結密度の低い第1の領域6と、第1の領域6以外の焼結性が良好で焼結密度の高い第2の領域7に区分される。
 次に、部品素体1の両端部に、Ag粉等の導電性粉末、ガラスフリット、ワニス、及び有機溶剤を含有した外部電極用導電ペーストを塗布し、乾燥させた後、750℃で焼き付けて外部電極5a、5bを形成し、これにより積層インダクタが作製される。
 このように本実施の形態では、部品素体1は、コイル導体3近傍の第1の領域6と、該第1の領域6以外の第2の領域7とに区分され、第1の領域6における磁性体部2の平均結晶粒径は、第2の領域7における磁性体部2の平均結晶粒径に対し、粒径比で0.85以下であり、かつコイル導体3が、Cuを主成分としているので、Cuが酸化しないような還元雰囲気下でコイル導体3と磁性体部2とを同時焼成させると、コイル導体3中のCuが第1の領域6に拡散し、これにより第1の領域6におけるCuOの含有重量x1が増加して第1の領域6の焼結性が第2の領域7の焼結性に比べて低下し、容易に粒径比を0.85以下にすることができる。
 このように第1の領域6は第2の領域7に比べて焼結性が低下し、焼成時の粒成長が抑制されることから、第1の領域6は透磁率も低下する。そして、コイル導体3近傍の第1の領域6は、焼結性が低下して焼結密度が低くなることから、内部応力を緩和させることができ、基板実装時のリフロー処理等で熱衝撃や外部から応力が負荷されてもインダクタンス等の磁気特性の変動を抑制することができる。また、第1の領域6では透磁率が低下することから、直流重畳特性が改善され、その結果、磁束の集中が大幅に緩和され、飽和磁束密度を向上させることが可能となる。
 また、Cuの含有量をCuOに換算して6mol%以下(0mol%を含む。)とすることにより、Cuが酸化しないような還元雰囲気で焼成しても、第2の領域7での粒成長を損なうこともなく、容易に粒径比を0.85以下とすることができ、良好な絶縁性を確保しつつ耐熱衝撃性及び直流重畳特性の良好な積層インダクタ等の積層コイル部品を得ることが可能となる。
 また、前記第1の領域6に対する前記第2の領域7のCuの含有比率をCuOに換算して重量比で0.6以下(0を含む。)とすることにより、前記粒径比D1/D2も0.85以下となり、所望の耐熱衝撃性及び直流重畳特性を得ることができる。
 また、部品素体1が、Cu-CuOの平衡酸素分圧以下の雰囲気で焼結されることにより、Cuを主成分とするコイル導体1を使用して磁性体部2と同時焼成しても、Cuが酸化されることもなく、焼結させることができる。
 このように本実施の形態によれば、熱衝撃や外部からの応力負荷があってもインダクタンス等の磁気特性の抑制された良好な耐熱衝撃性を有し、かつ良好な直流重畳特性を有する積層コイル部品を得ることができる。
 図4は本発明に係る積層コイル部品の第2の実施の形態を示す横断面図であって、この第2の実施の形態では、磁路を横切るよう非磁性体層11を設け、開磁路型とするのも好ましく、このように開磁路型とすることにより、より一層の直流重畳特性の向上を図ることができる。
 ここで、非磁性層11としては、焼成時の収縮挙動が類似する材料、例えば、Ni-Zn-Cu系フェライトのNiをZnで全量置換したZn-Cu系フェライト又はZn系フェライトを使用することができる。
 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、磁性体部2がFe、Ni、Zn、及びCuの各成分を主成分として含有したフェライト材料で形成されているが、副成分としてSn成分をフェライト材料中に適量(例えば、主成分100重量部に対しSnOに換算して1~3重量部)含有させるのも好ましく、これにより、より一層の直流重畳特性の向上を図ることができる。
 また、上記実施の形態では、焼成雰囲気は、上述したようにコイル導体3であるCuが酸化しないように、Cu-CuOの平衡酸素分圧以下の雰囲気で焼成するのが好ましいが、酸素濃度が過度に低くなると、フェライトの比抵抗が低下するおそれがあり、斯かる観点からは、Cu-CuOの平衡酸素分圧の1/100以上であるのが好ましい。
 また、本発明の積層コイル部品について説明したが、積層LC部品のような積層複合部品に適用できるのはいうまでもない。
 次に、本発明の実施例を具体的に説明する。
(試料の作製)
 〔磁性体シートの作製〕
 フェライト素原料として、Fe、Mn、ZnO、NiO、及びCuOを用意し、表1のような組成となるように、これらセラミック素原料を秤量した。すなわち、Fe:46.5mol%、Mn:2.5mol%、ZnO:30.0mol%とし、CuOを0.0~8.0mol%と異ならせ、残部をNiOで調整した。
Figure JPOXMLDOC01-appb-T000001
 次いで、これら秤量物を純水及びPSZボールと共に塩化ビニル製のポットミルに入れ、湿式で十分に混合粉砕し、蒸発乾燥させた後、850℃の温度で仮焼した。
 次いで、これら仮焼物を、ポリビニルブチラール系バインダ(有機バインダ)、エタノール(有機溶剤)、及びPSZボールと共に、再び塩化ビニル製のポットミルに投入し、十分に混合粉砕し、スラリーを得た。
 次に、ドクターブレード法を使用し、厚さが25μmとなるようにスラリーをシート状に成形し、これを縦50mm、横50mmの大きさに打ち抜き、磁性体シートを作製した。
 次いで、レーザ加工機を使用し、磁性体シートの所定位置にビアホールを形成した後、Cu粉末、ワニス、及び有機溶剤を含有したCuペーストを磁性体シートの表面にスクリーン印刷し、かつ前記Cuペーストをビアホールに充填し、これにより所定形状のコイルパターン及びビアホール導体を形成した。
〔非磁性体シートの作製〕
 Fe:46.5mol%、Mn:2.5mol%、ZnO:51.0mol%となるようにFe、Mn及びZnOを秤量し、上述と同様の方法・手順で仮焼した後、スラリー化し、その後ドクターブレード法を使用し、厚さが25μmとなるようにスラリーをシート状に成形し、これを縦50mm、横50mmの大きさに打ち抜き、非磁性体シートを作製した。
 そして、レーザ加工機を使用し、磁性体シートの所定位置にビアホールを形成した後、Cu粉末、ワニス、及び有機溶剤を含有したCuペーストをビアホールに充填し、これによりビアホール導体を形成した。
〔焼結体の作製〕
 非磁性体シートを略中央部に挟み込むような形態で、コイルパターンの形成された上記磁性体シート、上記非磁性体シート、及びコイルパターンの形成された上記磁性体シートを順次積層し、その後、これらをコイルパターンの形成されていない磁性体シートで挟持し、60℃の温度で100MPaの圧力で圧着し、圧着ブロックを作製した。そして、この圧着ブロックを所定のサイズに切断し、積層成形体を作製した。
 次に、この積層成形体を、Cuが酸化しないような還元雰囲気で加熱し、十分に脱脂した。その後、N-H-HOの混合ガスにより酸素分圧を1.8×10-1Paに制御した焼成炉にセラミック積層体を投入し、950℃の焼成温度で、1~5時間保持して焼成し、これにより略中央部に非磁性体層を有し、磁性体部にコイル導体が埋設された試料番号1~9の部品素体を作製した。
 次に、Ag粉、ガラスフリット、ワニス、及び有機溶剤を含有した外部電極用導電ペーストを用意した。そして、この外部電極用導電ペーストをフェライト素体の両端に塗布して乾燥した後、750℃で焼き付けて外部電極を形成し、試料番号1~9の試料(積層インダクタ)を得た。
 尚、試料の外形寸法は長さL:2.0mm、幅W:1.2mm、厚みT:1.0mmであり、コイルのターン数はインダクタンスが約1.0μFとなるように調整した。
〔試料の評価〕
 試料番号1~9の各試料について、CuOの含有重量及び平均結晶粒径を測定した。
 図5は、CuOの含有重量及び平均結晶粒径の測定箇所を示す断面図であって、各試料の部品素体21は、非磁性体層22が略中央部に形成されると共に、磁性体部23にコイル導体24が埋設されている。
 そして、コイル導体24近傍の第1の領域25については、コイル導体24の中心線C上であって、各々コイル導体24からの離間距離T′が5μmの位置を測定位置とし、該測定位置でのCuOの含有重量及び平均結晶粒径を求めた。
 また、第2の領域26については、幅W:1.2mmの磁性体部23の中心線上に相当するW′が0.6mmであって、かつ厚み方向の略中央部(図5中、Xで示す。)を測定位置とし、該測定位置でのCuOの含有重量及び平均結晶粒径を求めた。
 具体的には、CuOの含有重量は、試料番号1~9の各試料10個を破断し、WDX法(波長分散型X線分析法)を使用して各磁性体部23の組成を定量分析し、第1及び第2の領域25、26における磁性体部23中のCuOの含有重量(平均値)を求めた。
 CuOの平均結晶粒径は、各試料10個を破断した後、断面を研磨し、さらに化学エッチングを行い、エッチングした各試料について、上述した測定箇所におけるSEM写真を撮影し、このSEM写真から、第1及び第2の領域25、26における粒径を測定し、JIS規格(R1670)に準拠し、円相当径に換算して平均結晶粒径を算出し、10個のデータの平均値を求めた。
 そしてその後、熱衝撃試験及び直流重畳試験を行い、各々試験前後のインダクタンスを測定してその変化率を求め、耐熱衝撃性及び直流重畳特性を評価した。
 具体的には、熱衝撃試験は、各試料50個について、-55℃~+125℃の範囲で所定のヒートサイクルで2000サイクル繰り返し、試験前後のインダクタンスLを測定周波数1MHzで測定し、試験前後のインダクタンス変化率を求めた。
 また、直流重畳試験は、各試料50個について、JIS規格(C2560-2)に準拠し、1Aの直流電流を試料に重畳した時のインダクタンスLを測定周波数1MHzで測定し、試験前後のインダクタンス変化率ΔLを求めた。
 表2は、試料番号1~9の各試料の測定結果を示している。
Figure JPOXMLDOC01-appb-T000002
 試料番号8、9は、熱衝撃試験でインダクタンス変化率ΔLが+20.7~+26.4%、直流重畳試験でインダクタンス変化率ΔLが-45.5~-52.4%といずれも大きく、耐熱衝撃性及び直流重畳特性に劣ることが分かった。これはCuOの含有モル量が7.0~8.0mol%と多いため、結晶粒子中にCuOの異相が生じて却って焼結性が低下し、粒径比D1/D2が1.00になったものと思われる。
 これに対し試料番号1~7は、CuOの含有モル量が6.0mol%以下であり、粒径比D1/D2が0.85以下、重量比x2/x1が0.60以下であるので、熱衝撃試験でインダクタンス変化率ΔLが絶対値で15%以下、直流重畳試験でインダクタンス変化率ΔLが絶対値で40%以下となり、良好な結果が得られた。
 また、CuO含有量が1.0~5.0mol%の試料番号2~6は、粒径比D1/D2が0.6以下であり、熱衝撃試験でインダクタンス変化率が絶対値で10%以下となり、さらに良好な結果が得られることが分かった。
 図6はCuOの含有モル量と粒径比との関係を示す図であり、横軸が含有モル量(mol%)、縦軸が粒径比D1/D2(-)を示している。
 この図6から明らかなように、CuOの含有モル量が7.0mol%を超えると粒径比D1/D2が1.00となるのに対し、CuOの含有モル量が6.0mol%以下の範囲で粒径比D1/D2が0.85以下になることが分かる。
 図7は熱衝撃試験におけるCuOの含有モル量とインダクタンス変化率との関係を示す図であり、横軸が含有モル量(mol%)、縦軸がインダクタンス変化率ΔL(%)を示している。
 この図7から明らかなように、CuOの含有モル量が7.0mol%を超えるとインダクタンス変化率ΔLが20%以上になるのに対し、CuOの含有モル量が6.0mol%以下の範囲でインダクタンス変化率ΔLが15%以下に抑制できることが分かる。
 図8は直流重畳試験におけるCuOの含有モル量とインダクタンス変化率との関係を示す図であり、横軸が含有モル量(mol%)、縦軸がインダクタンス変化率ΔL(%)を示している。
 この図8から明らかなように、CuOの含有モル量が7.0mol%を超えるとインダクタンス変化率ΔLが絶対値で45%を超えるのに対し、CuOの含有モル量が6.0mol%以下の範囲でインダクタンス変化率ΔLは絶対値で40%以下に抑制できることが分かる。
 フェライト材料の主成分を形成するFe、Mn、ZnO、NiO、及びCuOの他、副成分材料としてSnOを用意した。そして、Fe:46.5mol%、Mn:2.5mol%、ZnO:30.0mol%、CuOを1.0mol%、及びNiO:20.0mol%となるように秤量し、さらに主成分100重量部に対し、0.0~3.0重量部となるようにSnOを秤量した。
 その他は、実施例1と同様の方法・手順で、試料番号11~14の試料を作製した。
 次いで、試料番号11~14の各試料について、CuOの含有重量及び平均結晶粒径を測定し、熱衝撃試験及び直流重畳試験を行なった。
 表3は、試料番号11~14の各試料の測定結果を示している。
Figure JPOXMLDOC01-appb-T000003
 試料番号11~14から明らかなように、熱衝撃試験でのインダクタンス変化率ΔLは殆ど差異がないが、試料番号12~14と試料番号11との対比から明らかなように、フェライト材料中にSnOを含有させることにより直流重畳試験でのインダクタンス変化率ΔLが減少し、直流重畳特性が向上することが分かった。しかも、主成分100重量部に対しSnOの含有量が0.1~3.0重量部の範囲では、SnOの含有量が増量するのに伴い、直流重畳特性がより一層向上することが分かった。
 すなわち、主成分に適量のSnOを含有させることにより、直流重畳特性がより一層向上することが確認された。
 Cuを主成分とする材料をコイル導体に使用し、コイル導体と磁性体部とを同時焼成しても、煩雑な工程を要することなく耐熱衝撃性や直流重畳の良好な積層インダクタ等の積層コイル部品を実現できる。
1 部品素体
2 磁性体部
3 コイル導体(導体部)
6 第1の領域
7 第2の領域
21 部品素体
23 磁性体部
24 コイル導体(導体部)
25 第1の領域
26 第2の領域

Claims (6)

  1.  フェライト材料からなる磁性体部と、コイル状に巻回された導体部とを有し、該導体部が前記磁性体部に埋設されて部品素体を形成する積層コイル部品において、
     前記部品素体は、前記導体部近傍の第1の領域と、該第1の領域以外の第2の領域とに区分され、
     前記第1の領域における前記磁性体部の平均結晶粒径は、前記第2の領域における前記磁性体部の平均結晶粒径に対し、粒径比で0.85以下であり、
     かつ、前記導体部は、Cuを主成分としていることを特徴とする積層コイル部品。
  2.  前記フェライト材料は、Cuの含有量が、CuOに換算して6mol%以下(0mol%を含む。)であることを特徴とする請求項1記載の積層コイル部品。
  3.  前記第1の領域に対する前記第2の領域のCuの含有比率が、CuOに換算して重量比で0.6以下(0を含む。)であることを特徴とする請求項1又は請求項2記載の積層コイル部品。
  4.  前記フェライト材料は、Mn成分を含有していることを特徴とする請求項1乃至請求項3のいずれかに記載の積層コイル部品。
  5.  前記フェライト材料は、Sn成分を含有していることを特徴とする請求項1乃至請求項4のいずれかに記載の積層コイル部品。
  6.  前記部品素体は、Cu-CuOの平衡酸素分圧以下の雰囲気で焼結されてなることを特徴とする請求項1乃至請求項5のいずれかに記載の積層コイル部品。
PCT/JP2012/062758 2011-06-15 2012-05-18 積層コイル部品 WO2012172921A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP12800256.5A EP2722857B1 (en) 2011-06-15 2012-05-18 Multilayer coil part
KR1020137033080A KR101603827B1 (ko) 2011-06-15 2012-05-18 적층 코일 부품
EP15162012.7A EP2911165B1 (en) 2011-06-15 2012-05-18 Laminated coil component
CN201280029328.5A CN103597558B (zh) 2011-06-15 2012-05-18 层叠线圈部件
JP2013520485A JP5991494B2 (ja) 2011-06-15 2012-05-18 積層コイル部品
TW101119088A TWI503851B (zh) 2011-06-15 2012-05-29 Laminated coil parts
US14/105,062 US9490060B2 (en) 2011-06-15 2013-12-12 Laminated coil component
US15/287,656 US9741484B2 (en) 2011-06-15 2016-10-06 Laminated coil component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011133091 2011-06-15
JP2011-133091 2011-06-15

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14105062 A-371-Of-International 2012-05-18
US14/105,062 Continuation US9490060B2 (en) 2011-06-15 2013-12-12 Laminated coil component
US15/287,656 Continuation US9741484B2 (en) 2011-06-15 2016-10-06 Laminated coil component

Publications (1)

Publication Number Publication Date
WO2012172921A1 true WO2012172921A1 (ja) 2012-12-20

Family

ID=47356915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062758 WO2012172921A1 (ja) 2011-06-15 2012-05-18 積層コイル部品

Country Status (7)

Country Link
US (2) US9490060B2 (ja)
EP (2) EP2911165B1 (ja)
JP (2) JP5991494B2 (ja)
KR (1) KR101603827B1 (ja)
CN (1) CN103597558B (ja)
TW (1) TWI503851B (ja)
WO (1) WO2012172921A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165307A (ja) * 2013-02-25 2014-09-08 Murata Mfg Co Ltd フェライト磁器組成物、及びセラミック電子部品
US20150302970A1 (en) * 2014-04-17 2015-10-22 Yen-Wei Hsu Magnetic Core
JP2015214434A (ja) * 2014-05-08 2015-12-03 株式会社村田製作所 フェライト磁器、コイル装置およびフェライト磁器の作製方法
WO2016098628A1 (ja) * 2014-12-17 2016-06-23 株式会社 村田製作所 積層セラミック電子部品およびその製造方法
JP2021027345A (ja) * 2019-07-31 2021-02-22 ウルト エレクトロニク アイソス ゲーエムベーハー ウント コンパニー カーゲー 誘導性部品の製造方法、及び誘導性部品

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6502627B2 (ja) * 2014-07-29 2019-04-17 太陽誘電株式会社 コイル部品及び電子機器
JP6156345B2 (ja) * 2014-12-10 2017-07-05 株式会社村田製作所 電子部品及びその製造方法
JP6345146B2 (ja) * 2015-03-31 2018-06-20 太陽誘電株式会社 コイル部品
KR20160117989A (ko) * 2015-04-01 2016-10-11 삼성전기주식회사 코일 전자부품 및 그 제조방법
US10147533B2 (en) * 2015-05-27 2018-12-04 Samsung Electro-Mechanics Co., Ltd. Inductor
KR101719908B1 (ko) * 2015-07-01 2017-03-24 삼성전기주식회사 코일 전자부품 및 그 제조방법
KR101832587B1 (ko) * 2016-01-11 2018-02-26 삼성전기주식회사 인덕터 및 그 제조방법
EP3406113B1 (en) * 2016-01-20 2020-09-09 Jaquet Technology Group AG Manufacturing method for a sensing element and sensor device
JP6615024B2 (ja) * 2016-03-24 2019-12-04 太陽誘電株式会社 電子部品
US10643781B2 (en) * 2016-05-30 2020-05-05 Tdk Corporation Multilayer coil component
US10777342B2 (en) * 2016-06-15 2020-09-15 Taiyo Yuden Co., Ltd. Coil component and method for manufacturing the same
JP7032039B2 (ja) 2016-06-28 2022-03-08 Tdk株式会社 積層コイル部品
JP2018019062A (ja) * 2016-07-27 2018-02-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. インダクタ
JP6594837B2 (ja) 2016-09-30 2019-10-23 太陽誘電株式会社 コイル部品
US10566129B2 (en) 2016-09-30 2020-02-18 Taiyo Yuden Co., Ltd. Electronic component
JP6752764B2 (ja) * 2016-09-30 2020-09-09 太陽誘電株式会社 コイル部品
JP6489097B2 (ja) * 2016-10-31 2019-03-27 株式会社村田製作所 電子部品
KR20180092668A (ko) * 2017-02-10 2018-08-20 엘지이노텍 주식회사 자성시트 및 이를 포함하는 무선 전력 수신 장치
JP7021459B2 (ja) * 2017-05-02 2022-02-17 Tdk株式会社 インダクタ素子
JP6891623B2 (ja) * 2017-05-02 2021-06-18 Tdk株式会社 インダクタ素子
JP7037294B2 (ja) * 2017-07-24 2022-03-16 太陽誘電株式会社 コイル部品
KR102494352B1 (ko) 2017-10-20 2023-02-03 삼성전기주식회사 코일 전자부품
KR102463333B1 (ko) * 2017-10-24 2022-11-04 삼성전기주식회사 코일 전자 부품
CN109961921A (zh) * 2017-12-23 2019-07-02 乾坤科技股份有限公司 耦合电感器及其制作方法
JP7056437B2 (ja) * 2018-07-25 2022-04-19 株式会社村田製作所 コイルアレイ部品
JP7238511B2 (ja) * 2019-03-19 2023-03-14 株式会社プロテリアル Ni系フェライトおよびそれを用いたコイル部品
JP7226094B2 (ja) * 2019-05-23 2023-02-21 株式会社村田製作所 コイル部品
JP7251395B2 (ja) * 2019-08-05 2023-04-04 株式会社村田製作所 積層コイル部品
JP7099434B2 (ja) * 2019-11-29 2022-07-12 株式会社村田製作所 コイル部品
US11935678B2 (en) * 2020-12-10 2024-03-19 GLOBALFOUNDARIES Singapore Pte. Ltd. Inductive devices and methods of fabricating inductive devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175032A (ja) * 1991-12-20 1993-07-13 Tdk Corp Ni−Cu−Zn系フェライト焼結体、それを用いた積層インダクタ、複合積層部品および磁心
JPH0645307U (ja) 1992-11-20 1994-06-14 太陽誘電株式会社 積層チップインダクタ
JP2694757B2 (ja) 1989-03-30 1997-12-24 東光株式会社 積層インダクタ
JP2003272912A (ja) * 2002-03-15 2003-09-26 Murata Mfg Co Ltd 酸化物磁性材料、及びそれを用いた積層型電子部品
JP2005244183A (ja) * 2004-01-30 2005-09-08 Toko Inc 積層型インダクタ及びその製造方法
JP2006237438A (ja) 2005-02-28 2006-09-07 Toko Inc 積層型ビーズ及びその製造方法
JP2010278075A (ja) * 2009-05-26 2010-12-09 Murata Mfg Co Ltd 磁性体セラミック、セラミック電子部品、及びセラミック電子部品の製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798059A (en) * 1970-04-20 1974-03-19 Rca Corp Thick film inductor with ferromagnetic core
JPH06105646B2 (ja) * 1986-10-20 1994-12-21 太陽誘電株式会社 積層型インダクタの製造方法
JP2832130B2 (ja) * 1993-03-17 1998-12-02 太陽誘電株式会社 セラミックグリーンシートの積層方法
JPH07201570A (ja) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd 厚膜積層インダクタ
JP3621300B2 (ja) * 1999-08-03 2005-02-16 太陽誘電株式会社 電源回路用積層インダクタ
JP4436509B2 (ja) * 1999-12-20 2010-03-24 京セラ株式会社 低損失フェライト材料及びこれを用いたフェライトコア
JP3584439B2 (ja) * 2000-02-08 2004-11-04 ミネベア株式会社 Mn−Znフェライトおよびその製造方法
JP2001244123A (ja) * 2000-02-28 2001-09-07 Kawatetsu Mining Co Ltd 表面実装型平面磁気素子及びその製造方法
JP4683718B2 (ja) * 2000-12-20 2011-05-18 京セラ株式会社 フェライト材料及びこれを用いたフェライトコア
JP3473601B2 (ja) 2000-12-26 2003-12-08 株式会社デンソー プリント基板およびその製造方法
JP4576727B2 (ja) * 2001-02-23 2010-11-10 株式会社村田製作所 酸化物磁性体磁器組成物およびそれを用いたインダクタ部品
JP4302904B2 (ja) * 2001-03-23 2009-07-29 Tdk株式会社 チョークコイル及び電源トランス
US6855222B2 (en) * 2002-06-19 2005-02-15 Murata Manufacturing Co., Ltd. Method for manufacturing laminated multilayer electronic components
JP4475965B2 (ja) * 2004-01-28 2010-06-09 京セラ株式会社 コイル内蔵ガラスセラミック基板
JP5196704B2 (ja) * 2004-03-12 2013-05-15 京セラ株式会社 フェライト焼結体の製造方法
JP4552679B2 (ja) * 2005-02-08 2010-09-29 Tdk株式会社 酸化物磁性材料及び積層型インダクタ
CN102185474B (zh) * 2005-10-28 2013-09-18 日立金属株式会社 Dc-dc转换器
CN101103420B (zh) * 2005-12-29 2011-09-28 株式会社村田制作所 层叠线圈元件
EP1983531B1 (en) * 2006-01-31 2017-10-25 Hitachi Metals, Ltd. Laminate device and module comprising same
CN101473388B (zh) * 2006-06-20 2011-11-16 株式会社村田制作所 层叠线圈器件
CN101668719B (zh) * 2007-02-07 2013-01-02 日立金属株式会社 低损耗铁氧体及使用其的电子零件
JP5841312B2 (ja) * 2007-04-17 2016-01-13 日立金属株式会社 低損失フェライト及びこれを用いた電子部品
JP2009027033A (ja) * 2007-07-20 2009-02-05 Tdk Corp 積層型複合電子部品
WO2009034824A1 (ja) * 2007-09-14 2009-03-19 Murata Manufacturing Co., Ltd. 積層コイル部品およびその製造方法
EP2234126B1 (en) 2007-12-25 2019-09-04 Hitachi Metals, Ltd. Multilayer inductor and power converter comprising it
KR100982639B1 (ko) * 2008-03-11 2010-09-16 (주)창성 연자성 금속분말이 충전된 시트를 이용한 적층형 파워인덕터
TW200941515A (en) * 2008-03-17 2009-10-01 Cyntec Co Ltd Inductor and method for making thereof
KR20100127878A (ko) * 2008-05-09 2010-12-06 다이요 유덴 가부시키가이샤 적층 인덕터 및 그 제조방법
JP4692574B2 (ja) * 2008-05-26 2011-06-01 株式会社村田製作所 電子部品及びその製造方法
CN106935360B (zh) * 2008-07-15 2020-04-14 株式会社村田制作所 电子元器件
JP5325799B2 (ja) 2009-01-22 2013-10-23 日本碍子株式会社 小型インダクタ及び同小型インダクタの製造方法
KR101072784B1 (ko) 2009-05-01 2011-10-14 (주)창성 자성시트를 이용한 적층형 인덕터 및 그 제조방법
TWI407462B (zh) * 2009-05-15 2013-09-01 Cyntec Co Ltd 電感器及其製作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2694757B2 (ja) 1989-03-30 1997-12-24 東光株式会社 積層インダクタ
JPH05175032A (ja) * 1991-12-20 1993-07-13 Tdk Corp Ni−Cu−Zn系フェライト焼結体、それを用いた積層インダクタ、複合積層部品および磁心
JPH0645307U (ja) 1992-11-20 1994-06-14 太陽誘電株式会社 積層チップインダクタ
JP2003272912A (ja) * 2002-03-15 2003-09-26 Murata Mfg Co Ltd 酸化物磁性材料、及びそれを用いた積層型電子部品
JP2005244183A (ja) * 2004-01-30 2005-09-08 Toko Inc 積層型インダクタ及びその製造方法
JP2006237438A (ja) 2005-02-28 2006-09-07 Toko Inc 積層型ビーズ及びその製造方法
JP2010278075A (ja) * 2009-05-26 2010-12-09 Murata Mfg Co Ltd 磁性体セラミック、セラミック電子部品、及びセラミック電子部品の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165307A (ja) * 2013-02-25 2014-09-08 Murata Mfg Co Ltd フェライト磁器組成物、及びセラミック電子部品
US20150302970A1 (en) * 2014-04-17 2015-10-22 Yen-Wei Hsu Magnetic Core
JP2015214434A (ja) * 2014-05-08 2015-12-03 株式会社村田製作所 フェライト磁器、コイル装置およびフェライト磁器の作製方法
WO2016098628A1 (ja) * 2014-12-17 2016-06-23 株式会社 村田製作所 積層セラミック電子部品およびその製造方法
JP2021027345A (ja) * 2019-07-31 2021-02-22 ウルト エレクトロニク アイソス ゲーエムベーハー ウント コンパニー カーゲー 誘導性部品の製造方法、及び誘導性部品
JP7213207B2 (ja) 2019-07-31 2023-01-26 ウルト エレクトロニク アイソス ゲーエムベーハー ウント コンパニー カーゲー 誘導性部品の製造方法、及び誘導性部品

Also Published As

Publication number Publication date
TWI503851B (zh) 2015-10-11
JP2015043459A (ja) 2015-03-05
US9490060B2 (en) 2016-11-08
JPWO2012172921A1 (ja) 2015-02-23
KR20140007959A (ko) 2014-01-20
JP6222618B2 (ja) 2017-11-01
CN103597558A (zh) 2014-02-19
US9741484B2 (en) 2017-08-22
EP2911165A1 (en) 2015-08-26
EP2722857B1 (en) 2017-09-27
US20170025217A1 (en) 2017-01-26
EP2911165B1 (en) 2020-02-12
EP2722857A4 (en) 2015-07-08
JP5991494B2 (ja) 2016-09-14
CN103597558B (zh) 2017-05-03
EP2722857A1 (en) 2014-04-23
TW201310474A (zh) 2013-03-01
US20140097927A1 (en) 2014-04-10
KR101603827B1 (ko) 2016-03-16

Similar Documents

Publication Publication Date Title
JP6222618B2 (ja) 積層コイル部品
JP5748112B2 (ja) 積層コイル部品、及び該積層コイル部品の製造方法
KR101475129B1 (ko) 세라믹 전자 부품 및 세라믹 전자 부품의 제조 방법
WO2009087928A1 (ja) 開磁路型積層コイル部品およびその製造方法
EP2040272A1 (en) Laminated component
US9296659B2 (en) Ferrite ceramic composition, ceramic electronic component, and method for manufacturing ceramic electronic component
JP5900501B2 (ja) 積層コイル部品およびその製造方法
JP2013053041A (ja) フェライト磁器組成物、セラミック電子部品、及びセラミック電子部品の製造方法
WO2009130935A1 (ja) 電子部品
KR101431954B1 (ko) 코일 부품 및 이의 제조방법
US20140085037A1 (en) Multilayered power inductor and method for preparing the same
WO2016072427A1 (ja) 積層コイル部品
JP6011302B2 (ja) 積層コイル部品
WO2014050867A1 (ja) 積層コイル部品およびその製造方法
JP2006182633A (ja) フェライト材料及びインダクタ素子
JP5055688B2 (ja) フェライト材料及びインダクタ素子
JP2014067889A (ja) 積層コイル部品およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800256

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012800256

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013520485

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137033080

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE