CN103597558B - 层叠线圈部件 - Google Patents

层叠线圈部件 Download PDF

Info

Publication number
CN103597558B
CN103597558B CN201280029328.5A CN201280029328A CN103597558B CN 103597558 B CN103597558 B CN 103597558B CN 201280029328 A CN201280029328 A CN 201280029328A CN 103597558 B CN103597558 B CN 103597558B
Authority
CN
China
Prior art keywords
region
converted
cuo
magnet
multilayer coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280029328.5A
Other languages
English (en)
Other versions
CN103597558A (zh
Inventor
山本笃史
中村彰宏
野宫裕子
安久智之
内藤修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN103597558A publication Critical patent/CN103597558A/zh
Application granted granted Critical
Publication of CN103597558B publication Critical patent/CN103597558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14716Fe-Ni based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps

Abstract

具有由Ni‑Zn系铁氧体材料构成的磁体部2和卷绕为线圈状的以Cu为主成分的线圈导体3,线圈导体3埋设于磁体部2而形成部件主体1。部件主体1被划分为线圈导体3邻近的第1区域6和第1区域6以外的第2区域7。第1区域6中的磁体部2的平均结晶粒径D1相对于第2区域7中的磁体部2的平均结晶粒径D2的粒径比D1/D2是0.85以下。使铁氧体原料中的CuO的摩尔含量为6mol%以下,在氧分压为Cu‑Cu2O平衡氧分压以下的还原环境中烧制。可得到无需复杂工序、即使受到由此带来的热冲击或受到来自外部的应力电感的变动也小而具有良好的耐热冲击性、且直流叠加特性良好的层叠线圈部件。

Description

层叠线圈部件
技术领域
本发明涉及一种层叠线圈部件,更详细而言,涉及一种具有由铁氧体材料形成的磁体部和以Cu为主成分的线圈导体的层叠电感器等层叠线圈部件。
背景技术
以往,使用具有尖晶石型结晶结构的Ni-Zn等铁氧体系磁铁而成的层叠线圈部件被广泛使用,铁氧体材料的开发也积极地进行着。
这种层叠线圈部件,具有卷绕成线圈状的导体部埋设于磁体部中的结构,通常导体部和磁体部通过同时烧制而形成。
然而,在上述层叠线圈部件中,由铁氧体材料构成的磁体部与以导电性材料为主成分的导体部之间的线性膨胀系数不同,所以由于两者的线性膨胀系数的差别,导致在烧制后的冷却过程中内部会产生应力变形。而且,在基板实装时的回流焊处理等中如果施加急剧的温度变化或外部应力,则由于上述的应力变形产生变化,所以电感等磁特性产生变动。
因此,专利文献1中提出了一种层叠芯片电感器,是由层叠的陶瓷片形成层叠芯片的骨架,由内部导体在层叠芯片内形成线圈导体,其起始端和终端分别与另外的外部电极端子连接而成的层叠芯片电感器;上述陶瓷片是磁体片,按照除向外部电极端子引出的引出部以外包含上述内部导体的方式在层叠芯片内形成环状的非磁体区域。
该专利文献1中,制作磁体片后,在该磁体片上涂布非磁体糊料形成规定图案的非磁体膜,然后,使用磁体糊料、内部导体用糊料、以及非磁体糊料依次实施多次印刷处理,由此得到层叠芯片电感器。
另外,在该专利文献1中,通过使与线圈导体连接的陶瓷为非磁体,从而即使在由于同时烧制而在内部产生应力变形,而后受到热冲击或受到来自外部的应力的情形下,也会抑制磁特性的变动。
另一方面,对于这种层叠线圈部件而言,可得到即使在大电流通电的情形下也稳定的电感器是重要的,因此,具有即使在以大的直流电流通电时也可抑制电感降低的直流叠加特性是必要的。
但是,层叠电感器等层叠线圈部件由于形成闭磁路,所以进行大电流通电时容易产生磁饱和,电感降低而不能得到预期的直流叠加特性。
因此,专利文献2中提出了一种层叠线圈部件,是具有端部在磁体层间连接且在层叠方向重叠环绕的导体图案的层叠线圈部件,其具有与层叠方向的两端的导体图案连接、位于该导体图案内侧、且透磁率比该磁体层低的材料层。
在该专利文献2中,通过将由透磁率比磁体层低的材料(例如,Ni-Fe系铁氧体材料中Ni含量少的材料、非磁体材料等)形成的层设置在导体图案的外侧,从而防止磁通集中于端部的导体图案的内侧的角部而将磁通分散于主磁路的中央部分,由此防止磁饱和的发生,实现电感的提高。
另外,专利文献3中提出一种层叠型珠,是将磁体层和导体图案层叠、在主体内形成阻抗元件的层叠型珠,其将用于调整磁体层的烧结性的烧结调整剂混入导体糊料。
在该专利文献3中,烧结调整剂由覆盖银粉末的SiO2构成,而且以银的换算重量计含有0.05~0.3wt%的SiO2,将混入该烧结调整剂的导体糊料印刷于磁体层形成导体图案。
另外,在专利文献3中,通过将上述的烧结调整剂混入导体糊料,从而由于烧结调整剂适度扩散到磁体中,导体图案邻近的磁体的烧结状态比其以外的部分延迟,由此梯度地形成对磁惰性的层。即,通过使导体图案邻近的磁体的烧结状态比其以外的部分延迟,从而能够形成导体图案间或导体图案邻近的磁体的粒径比其以外的部分小而透磁率低的层,形成对磁惰性的部分。由此,在高频区域直到大电流区域也可提高直流叠加特性,防止磁特性的恶化。
现有技术文献
专利文献
专利文献1:日本实开平6-45307号公报(权利要求2,段落号[0024],图2,图7)
专利文献2:日本特许第2694757号说明书(权利要求1,图1等)
专利文献3:日本特开2006-237438号公报(权利要求1,段落号[0007])
发明内容
但是,专利文献1除内部导体用糊料以外,必须交替使用磁体糊料、非磁体糊料等多个糊料进行印刷处理,其制造工序复杂,缺乏实用性。而且,在磁体糊料和非磁体糊料的成分系统不同时,可能因收缩行为不同而在同时烧制时发生应力残留,产生裂纹等缺陷。
另外,专利文献2也必须准备组成不同的多个磁体糊料、或磁体糊料和非磁体糊料进行印刷处理,与专利文献1同样地,其制造工序复杂,缺乏实用性。
另外,在专利文献3的方法中,由于将烧结调整剂混入导体糊料,所以将导体糊料烧结而得到的导体图案的电阻必然升高,直流电阻(Rdc)存在变大的可能。
本发明是鉴于上述事实的发明,本发明的目的在于提供不需要复杂的工序、即使受到热冲击或受到来自外部的应力电感的变动也小而具有良好的耐热冲击性、且直流叠加特性良好的层叠线圈部件。
本发明人等在导体部中使用Cu,在磁体部中使用Ni-Zn系铁氧体材料进行了深入研究之后,发现在Cu不发生氧化的还原环境中,将Cu与成为磁体部的磁体片同时烧制,则Cu扩散到导体部邻近的铁氧体原料中,由此导体部邻近区域(以下称为“第1区域”)中的CuO含量增加,第1区域的烧结性与该第1区域以外的区域(以下称为“第2区域”)的烧结性相比出现降低。另外得到如下见解,即这样在第1区域和第2区域之间烧结性产生差异,通过相对于第2区域的烧结性降低第1区域的烧结性,能够提高耐热冲击性、直流叠加特性。
即,为了提高耐热冲击性、直流叠加特性,优选在第1区域和第2区域之间使烧结性产生差异,因此,在烧制时有必要抑制第1区域中结晶粒子的粒子成长。
因此,本发明人等为了抑制烧制时第1区域中的结晶粒子的粒子成长进行了进一步的深入研究,结果发现通过按照第1区域的平均结晶粒径相对于第2区域的平均结晶粒径为0.85以下的方式抑制第1区域中的结晶粒子的粒子成长,能够在第1区域和第2区域之间产生适度的烧结性差异,由此,能够提高耐热冲击性、直流叠加特性。
本发明是基于上述知识而完成的发明,本发明的层叠线圈部件的特征在于,具有由铁氧体材料构成的磁体部和卷绕成线圈状的导体部,该导体部埋设于上述磁体部形成部件主体,上述部件主体被划分为上述导体部邻近的第1区域和该第1区域以外的第2区域,上述第1区域中的上述磁体部的平均结晶粒径相对于上述第2区域中的上述磁体部的平均结晶粒径的粒径比是0.85以下,且上述导体部以Cu为主成分。
另外,通过以换算成CuO计将Cu含量抑制到6mol%以下(包括0mol%),为了Cu不发生氧化而在氧分压为Cu-Cu2O平衡氧分压以下的还原环境中进行烧制,能够容易地得到上述粒径比为0.85以下的层叠线圈部件。
即,本发明的层叠线圈部件优选上述铁氧体材料的Cu含量换算成CuO为6mol%以下(包括0mol%)。
由此,即使在Cu不发生氧化的还原环境中烧制,也不会损失第2区域中的粒子成长,能够容易地将粒径比控制在0.85以下,能够得到既确保良好的绝缘性而且耐热冲击性以及直流叠加特性也良好的层叠电感器等层叠线圈部件。
另外,在上述的Cu不发生氧化的还原环境中,如果Cu含量换算成CuO为超过6mol%时,则其烧结性降低。因此,通过在第1区域和第2区域之间设置CuO含有重量的差值,能够在烧结性上产生差异。
而且,本发明人等的深入研究的结果表明,通过将第2区域相对于第1区域的Cu含有比例以换算成CuO的重量比计设置为0.6以下(包括0),能够使上述粒径比为0.85以下而在第1区域和第2区域之间烧结性产生差异。
即,本发明的层叠线圈部件优选上述第2区域相对于上述第1区域的Cu的含有比例以换算成CuO的重量比计为0.6以下(包括0)。
另外,通过使铁氧体材料中含有Mn成分,绝缘性能够进一步得到提高。
即,本发明的层叠线圈部件优选上述铁氧体材料含有Mn成分。
另外,通过使铁氧体材料中含有Sn成分,直流叠加特性能够进一步得到提高。
即,本发明层叠线圈部件优选上述铁氧体材料含有Sn成分。
进一步地,本发明的层叠线圈部件优选上述部件主体是在Cu-Cu2O的平衡氧分压以下的环境中进行烧结而成的。
由此,即使将成为导体部的以Cu为主成分的导电膜和成为磁体部的磁体片同时烧制,Cu也没有被氧化,且能够将其烧结。
根据上述层叠线圈部件,在具有由铁氧体材料形成的磁体部和卷绕成线圈状的导体部且该导体部埋设于上述磁体部而形成部件主体的层叠线圈部件中,上述部件主体被划分为上述导体部邻近的第1区域和该第1区域以外的第2区域,上述第1区域中的上述磁体部的平均结晶粒径相对于上述第2区域中的上述磁体部的平均结晶粒径的粒径比是0.85以下,且上述导体部以Cu为主成分,因此第1区域与第2区域相比烧制时的粒子成长受到抑制,其烧结性降低,透磁率也是第1区域比第2区域低。
即,导体部邻近的第1区域与第2区域相比烧结性降低,上述第1区域的烧结密度降低,所以能够缓和内部应力,即使在基板实装时的回流焊处理中受到热冲击或来自外部的应力,也能够抑制电感等磁特性的变动。另外,由于第1区域中透磁率降低,所以直流叠加特性得到改善,其结果,能够大幅缓和磁通的集中,提高饱和磁通密度。
附图说明
图1:示出作为本发明层叠线圈部件的层叠电感器的一个实施方
式(第1实施方式)的立体图。
图2:图1的A-A截面图(横截面图)。
图3:用于说明上述层叠电感器的制造方法的分解立体图。
图4:示出上述层叠电感器的第2实施方式的横截面图。
图5:示出实施例的结晶粒径以及组成的测定部位的图。
图6:示出CuO的摩尔含量和粒径比的关系的图。
图7:示出热冲击试验中CuO的摩尔含量和电感变化率的关系的图。
图8:示出直流叠加试验中CuO的摩尔含量和电感变化率的关系的图。
具体实施方式
接下来,对本发明的实施方式作详细说明。
图1是示出作为本发明层叠线圈部件的层叠电感器的一个实施方式的立体图,图2是图1的A-A截面图(横截面图)。
本层叠电感器的部件主体1具有磁体部2和线圈导体(导体部)3,线圈导体3埋设于磁体部2。另外,在线圈导体3的两端形成引出电极4a、4b,而且在部件主体1的两端形成由Ag等形成的外部电极5a、5b,该外部电极5a、5b与引出电极4a、4b进行电连接。
本实施方式中,磁体部2由含有Fe、Ni、Zn、以及Cu的各成分作为主成分的铁氧体材料形成,线圈导体3由以Cu为主成分的导电性材料形成。
如图2所示,磁体部2被划分为线圈导体3的邻近区域的第1区域6和该第1区域6以外的第2区域7,如数学式(1)所示,第1区域6的平均结晶粒径D1相对于第2区域7的平均结晶粒径D2是0.85以下。
D1/D2≤0.85…(1)
于是,由此第2区域7在烧制时能促进粒子成长而具有良好的烧结性,形成烧结密度高的高密度区域,另一方面,第1区域6与第2区域7相比烧结性差,结晶粒子的粒子成长受到抑制,形成烧结密度低的低密度区域。
即,第1区域6与第2区域7相比平均结晶粒径小,烧制时粒子成长受到抑制,其烧结性差,烧结密度降低。因此,即使受到热冲击或来自外部的应力也能够缓和内部应力,能够抑制电感等磁特性的变动。
另外,由于第1区域6如前文所述烧结性差,所以其透磁率μ也出现降低,直流叠加特性得到改善,由此,磁通的集中大幅得到缓和,难以磁饱和。
应予说明,如果第1区域6的平均结晶粒径D1与第2区域7的平均结晶粒径D2的粒径比D1/D2超过0.85,则即使粒径比D1/D2在1以下,第1区域6和第2区域7之间的烧结性也没有产生足够的差异,另外如果粒径比D1/D2超过1,则第1区域6与第2区域7相比会促进粒子成长,烧结性上升,因此不优选。
另外,通过将磁体部2中的Cu的摩尔含量设置为换算成CuO是6mol%(包括0mol%)以下,在Cu不发生氧化的氧分压为Cu-Cu2O平衡氧分压以下的还原环境中进行烧制,能够将粒径比D1/D2容易地控制在0.85以下。
即,在大气环境中进行烧制的情形下,对于Ni-Zn-Cu系铁氧体材料而言,如果减少熔点低至1026℃的CuO的含量,则烧结性降低,因此通常以烧制温度为1050~1250℃左右进行。
另一方面,在线圈导体3以Cu为主成分的情形下,需要在Cu不氧化的还原环境中与磁体部2同时烧制。
可是,如果降低烧制环境的氧浓度,则在烧制处理中在结晶结构中会形成氧缺陷,促进结晶中存在的Fe、Ni、Cu、Zn的相互扩散,有可能提高低温烧结性。
然而,在这样氧浓度低的还原环境中烧制时,与在大气环境中烧制的情形相比,Cu氧化物在结晶粒子中容易作为异相析出。因此,如果铁氧体原料中的Cu的摩尔含量变多,则Cu氧化物对结晶粒子的析出量会增大,由于Cu氧化物的析出,磁体部2整体的烧结性反而降低。
即,对于线圈导体3以Cu为主成分的情形而言,虽然需要在Cu不氧化的还原环境中与磁体部2同时烧制,但此时,如果增加Cu的摩尔含量,换算成CuO超过6mol%时,则Cu氧化物对结晶粒子的析出量变得过量,因此在第2区域7中结晶粒子的粒子成长也受到抑制,不能进行期望的低温烧制。
另一方面,如果将Cu的摩尔含量设置为换算成CuO是6mol%以下,在Cu不发生氧化的Cu-Cu2O平衡氧分压以下的还原环境中进行烧制,则烧制过程中线圈导体3中含有的Cu扩散到第1区域6中。因此,烧制后线圈导体3周围的Cu氧化物的含有重量增加,其结果,第1区域6中烧结性降低,粒子成长受到抑制,平均结晶粒径变小,烧结密度降低。另一方面,由于第2区域7没有受到Cu扩散的影响,能够维持良好的烧结性。
这样,由于第1区域6和第2区域7之间烧结性的差异而产生粒径差,第1区域6的平均结晶粒径D1比第2区域7的平均结晶粒径D2小,能够使粒径比D1/D2为0.85以下。
另外,此时,由于线圈导体3的Cu发生扩散,所以第1区域6的CuO的含有重量x1比第2区域7的含有重量x2多。另外,通过在上述的Cu的摩尔含量换算成CuO为6mol%以下的范围内、在Cu没有发生氧化的还原环境中进行烧制,能够将第2区域7的含有重量相对于第1区域6的含有重量的重量比例x2/x1控制在0.6以下,由此能够得到粒径比D1/D2为0.85以下的层叠电感器。
这样,在该实施方式中,对于线圈导体3以Cu为主成分的情形而言,烧制过程中线圈导体3的Cu扩散到邻近区域第1区域6,结果导致第1区域6的Cu氧化物的含有重量增加,由此磁体部2中的第1区域6的烧结性降低。另外,通过在第1区域6和第2区域7之间对烧结性设置差异,将粒径比D1/D2设置为0.85以下,从而由于第1区域6中粒子成长受到抑制平均结晶粒径变小,烧结状态变得疏密,所以即使受到热冲击或来自外部的应力,其内部应力也能得到缓和,能够抑制电感等磁特性的变动。另外,由于烧结密度低的第1区域6的透磁率也会降低,所以直流叠加特性也得到了改善,结果磁通的集中得到大幅缓和,难以磁饱和。
应予说明,形成铁氧体组成中Cu以外的主成分的各成分的含量,即Fe、Ni、Zn的含量无特别限制,优选按照以下进行配合,即分别换算成Fe2O3、NiO、以及ZnO为Fe2O3:20~48mol%、ZnO:6~33mol%、以及NiO:剩余部分。
Ni-Zn系铁氧体这样具有尖晶石型结晶结构的铁氧体中,从化学计量组成上看3价化合物和2价化合物等摩尔配合,但如果与化学计量组成相比将3价的Fe2O3进行适度减量,使化学计量组成相比将2价的元素化合物NiO过量存在,则Fe2O3的还原受到抑制,妨碍Fe3O4的生成,能够提高耐还原性。即,Fe3O4能够由Fe2O3·FeO表示,如果与化学计量组成相比2价的Ni化合物NiO过量存在,则即使在对于Fe2O3也为还原环境的Cu-Cu2O平衡氧分压以下进行烧制,也会妨碍与Ni同样的2价的FeO的生成,其结果,Fe2O3不会被还原为Fe3O4,能够维持Fe2O3的状态,耐还原性得到提高,能够确保期望的绝缘性。
另外,根据需要,优选以换算成Mn2O3计在1~10mol%的范围含有Mn。通过含有Mn,从而由于Mn2O3优先被还原,所以能够在Fe2O3被还原前完成烧结,另外,即使在Cu-Cu2O的平衡氧分压以下的环境中烧制,也能够避免铁氧体材料的电阻率ρ降低,使绝缘性得到提高。
即,在800℃以上的温度区域内,Mn2O3与Fe2O3相比,以更高的氧分压成为还原性环境。因此,Cu-Cu2O的平衡氧分压以下的氧分压中,Mn2O3与Fe2O3相比成为强还原性环境,因此,Mn2O3能够优先被还原完成烧结。换言之,由于Mn2O3与Fe2O3相比优先被还原,所以能够在Fe2O3被还原为Fe3O4之前完成烧制处理,其耐还原性得到提高,能够确保更进一步良好的绝缘性。
接下来,参照图3详细说明上述层叠电感器的制造方法的一个例子。
首先,作为铁氧体原料,准备Fe氧化物、Zn氧化物、Ni氧化物,进一步根据需要准备Mn氧化物、Cu氧化物。接下来将这些各铁氧体原料按照换算成Fe2O3、ZnO、NiO、Mn2O3、CuO例如为Fe2O3:20~48mol%、ZnO:6~33mol%、Mn2O3:1~10mol%、CuO:6mol%以下、NiO:剩余部分的方式进行称量。
接下来,将这些称量物与纯水以及PSZ(部分稳定化氧化锆)球等玉石一起放入球磨机,以湿式进行充分混合粉碎,蒸发干燥后,在800~900℃的温度预烧制规定时间。
接下来,将这些预烧制物与聚乙烯醇缩丁醛系等有机粘合剂、乙醇、甲苯等有机溶剂、以及PSZ球一起再次投入球磨机,充分混合粉碎,制作浆料。
接下来,使用刮刀法等将上述浆料成形加工为片状,制作为规定膜厚的磁体片8a~8h。
接下来,为了使磁体片8a~8h中的磁体片8b~8g相互间能够进行电连接,使用激光加工设备在磁体片8b~8g的规定位置形成通孔。
接下来,准备以Cu为主成分的线圈导体用导电性糊料。然后,使用该导电性糊料进行网版印刷,在磁体片8b~8g上形成线圈图案9a~9f,且在通孔中填充上述导电性糊料,制作通孔导体10a~10e。应予说明,在形成于磁体片8b以及磁体片8g的各线圈图案9a、9f形成引出部9a’、9f’使得能够与外部电极进行电连接。
接下来,将形成了线圈图案9a~9f的磁体片8b~8g进行层叠,用未形成线圈图案的磁体片8a以及磁体片8h包夹它们并进行压合,由此制成线圈图案9a~9f介由通孔导体10a~10e连接的压合块。然后,将该压合块按照一定尺寸切断制作为层叠成形体。
接下来,将该层叠成形体在线圈图案中的Cu不氧化的环境中在规定温度充分进行脱脂后,将其供给到利用N2-H2-H2O的混合气体控制氧分压的烧制炉中,在900~1050℃烧制规定时间,由此得到在磁体部2中埋设有线圈导体3的部件主体1。即,在烧制温度900~1050℃的范围内,将烧制环境设定为Cu-Cu2O的平衡氧分压以下的氧分压进行烧制处理。
应予说明,通过该烧制处理,线圈图案9a~9f中的Cu扩散到磁体片8b~8g侧,由此磁体部2被划分为烧结密度低的第1区域6和第1区域6以外的烧结性良好且烧结密度高的第2区域7。
接下来,在部件主体1的两端部,涂布含有Ag粉等导电性粉末、玻璃粉、清漆、以及有机溶剂的外部电极用导电糊料,干燥之后,在750℃烧结形成外部电极5a、5b,由此制成层叠电感器。
这样在该实施方式中,部件主体1被划分为线圈导体3邻近的第1区域6和该第1区域6以外的第2区域7,第1区域6中的磁体部2的平均结晶粒径相对于第2区域7中的磁体部2的平均结晶粒径的粒径比是0.85以下,且由于线圈导体3以Cu为主成分,所以在Cu没有发生氧化的还原环境下将线圈导体3和磁体部2同时烧制时,线圈导体3中的Cu扩散到第1区域6,由此第1区域6中的CuO的含有重量x1增加,第1区域6的烧结性与第2区域7的烧结性相比降低,能够容易地将粒径比设置为0.85以下。
这样,由于第1区域6与第2区域7相比烧结性降低,烧制时的粒子成长受到抑制,所以第1区域6的透磁率也出现降低。而且,由于线圈导体3邻近的第1区域6的烧结性降低,烧结密度降低,所以能够缓和内部应力,即使在基板实装时的回流焊处理等中受到热冲击或受到来自外部的应力,也能够抑制电感等磁特性的变动。另外,由于第1区域6中透磁率降低,所以直流叠加特性得到改善,其结果磁通的集中得到大幅缓和,能提高饱和磁通密度。
另外,通过将Cu含量设置为换算成CuO是6mol%以下(包括0mol%),从而即使在Cu没有发生氧化的还原环境中烧制,也不会损害第2区域7中的粒子成长,能够容易地将粒径比设置为0.85以下,能够得到确保良好的绝缘性的同时耐热冲击性以及直流叠加特性良好的层叠电感器等层叠线圈部件。
另外,通过将上述第2区域7相对于上述第1区域6的Cu的含有比例以换算成CuO的重量比计设置为0.6以下(包括0),从而上述粒径比D1/D2也变为0.85以下,能够得到期待的耐热冲击性以及直流叠加特性。
另外,部件主体1通过在Cu-Cu2O的平衡氧分压以下的环境中烧结,从而即使使用以Cu为主成分的线圈导体1与磁体部2同时烧制,Cu也没有发生氧化,能够实现烧结。
可见,根据本实施方式,能够得到具有即使受到热冲击或来自外部的应力电感等磁特性的变化也受到抑制的良好的耐热冲击性,且具有良好的直流叠加特性的层叠线圈部件。
图4是示出本发明的层叠线圈部件的第2实施方式的横截面图,在该第2实施方式中,还优选设置横切磁路的非磁体层11,成为开磁路型,这样通过成为开磁路型,能够更进一步地提高直流叠加特性。
此处,作为非磁性层11,可以使用烧制时的收缩行为类似的材料,例如,将Ni-Zn-Cu系铁氧体的Ni用Zn全部置换的Zn-Cu系铁氧体或Zn系铁氧体。
应予说明,本发明并不局限于上述实施方式。上述实施方式中,磁体部2是由含有Fe、Ni、Zn、以及Cu各成分作为主成分的铁氧体材料形成的,但也优选在铁氧体材料中适量含有作为副成分的Sn成分(例如,相对于主成分100重量份以换算成SnO2计为1~3重量份),由此,能够更进一步地提高直流叠加特性。
另外,在上述实施方式中,对于烧制环境而言,如上所述,为了线圈导体3的Cu不发生氧化,优选在Cu-Cu2O的平衡氧分压以下的环境下烧制,但是氧浓度过度降低时,铁氧体的电阻率可能降低,从这样的角度来看,优选为Cu-Cu2O的平衡氧分压的1/100以上。
另外,本发明虽然是对层叠线圈部件进行说明,但是当然也适用于层叠LC部件这样的层叠复合部件。
接下来,对本发明的实施例作具体说明。
实施例1
(样品的制作)
[磁体片的制作]
作为铁氧体原料,准备Fe2O3、Mn2O3、ZnO、NiO、以及CuO,按照表1的组成,称量这些陶瓷原料。即,取Fe2O3:46.5mol%、Mn2O3:2.5mol%、ZnO:30.0mol%,CuO在0.0~8.0mol%变化,其余部分由NiO调整。
[表1]
接下来,将这些称量物与纯水以及PSZ球共同放入氯乙烯制的球磨机中,以湿式充分进行混合粉碎,蒸发干燥后,在850℃的温度预烧制。
接下来,将这些预烧制物与聚乙烯醇缩丁醛系粘合剂(有机粘合剂)、乙醇(有机溶剂)、以及PSZ球共同再次投入氯乙烯制的球磨机中,充分混合粉碎,得到浆料。
接下来,使用刮刀法,将浆料成形为厚度是25μm的片状,将其冲压为纵50mm、横50mm大小,制作磁体片。
接下来,使用激光加工设备,在磁体片的规定位置形成通孔后,将含有Cu粉末、清漆、以及有机溶剂的Cu糊料网版印刷于磁体片的表面,且在通孔中填充上述Cu糊料,由此形成规定形状的线圈图案以及通孔导体。
[非磁体片的制作]
以Fe2O3:46.5mol%、Mn2O3:2.5mol%、ZnO:51.0mol%称量Fe2O3、Mn2O3以及ZnO,按照与上述相同的方法·顺序预烧制后,将其浆料化,然后使用刮刀法将浆料成形为厚度是25μm的片状,将其冲压为纵50mm、横50mm大小,制作非磁体片。
接下来,使用激光加工设备,在非磁体片的规定位置形成通孔后,在通孔中填充含有Cu粉末、清漆、以及有机溶剂的Cu糊料,由此形成通孔导体。
[烧结体的制作]
以将非磁体片夹在大致中央部的方式,将形成有线圈图案的上述磁体片、上述非磁体片、以及形成有线圈图案的上述磁体片依次进行层叠,然后,用未形成线圈图案的磁体片包夹它们,在60℃的温度以100MPa的压力压合,制作压合块。接下来,将该压合块以规定的尺寸进行切断,制作为层叠成形体。
接下来,将该层叠成形体在Cu不发生氧化的还原环境中加热,充分脱脂。然后,将陶瓷层叠体投入到利用N2-H2-H2O的混合气体将氧分压控制在1.8×10-1Pa的烧制炉中,在950℃的烧制温度保持1~5小时进行烧制,由此制成在大致中央部具有非磁体层、在磁体部埋设有线圈导体的样品号1~9的部件主体。
接下来,准备含有Ag粉、玻璃粉、清漆、以及有机溶剂的外部电极用导电糊料。然后,将该外部电极用导电糊料涂布于铁氧体元件的两端,干燥后,在750℃烧结形成外部电极,得到样品号1~9的样品(层叠电感器)。
应予说明,样品的外形尺寸是长L:2.0mm、宽W:1.2mm、厚T:1.0mm,调整线圈的圈数使得电感约为1.0μH。
[样品的评价]
关于样品号1~9的各样品,测定CuO的含有重量以及平均结晶粒径。
图5是示出CuO的含有重量以及平均结晶粒径的测定位置的截面图,各样品的部件主体21,非磁体层22在大致中央部形成,而且磁体部23中埋设有线圈导体24。
接下来,关于线圈导体24邻近的第1区域25,将在线圈导体24的中心线C上且与各个线圈导体24的间隔距离T′为5μm的位置作为测定位置,求得该测定位置的CuO的含有重量以及平均结晶粒径。
另外,关于第2区域26,将与宽W:1.2mm的磁体部23的中心线上相当的W′为0.6mm且厚度方向的大致中央部(图5中由X示出)作为测定位置,求得在该测定位置的CuO的含有重量以及平均结晶粒径。
具体地,对于CuO的含有重量,将样品号1~9各样品10个进行破碎,使用WDX法(波长分散型X射线分析法)定量分析各磁体部23的组成,求出第1以及第2区域25、26的磁体部23中的CuO的含有重量(平均值)。
对于CuO的平均结晶粒径,将各样品10个破碎后,研磨截面,进一步地进行化学蚀刻,对于蚀刻的各样品,拍摄上述的测定位置的SEM照片,从该SEM照片,测定第1以及第2区域25、26的粒径,根据JIS标准(R1670),换算为等效圆直径计算平均结晶粒径,求出10个数据的平均值。
然后,进行热冲击试验以及直流叠加试验,测定各个试验前后的电感求出其变化率,评价耐热冲击性以及直流叠加特性。
具体地,对于热冲击试验,对各样品50个,在-55℃~+125℃的范围内以规定热循环重复2000个循环,以测定频率1MHz测定试验前后的电感L,求出试验前后的电感变化率。
另外,对于直流叠加试验,对各样品50个,根据JIS标准(C2560-2),以测定频率1MHz测定对样品叠加1A的直流电流时的电感L,求出试验前后的电感变化率ΔL。
表2示出样品号1~9的各样品的测定结果。
[表2]
对于样品号8、9,可知在热冲击试验中电感变化率ΔL是+20.7~+26.4%,在直流叠加试验中电感变化率ΔL是-45.5~-52.4%,二者均大,耐热冲击性以及直流叠加特性差。认为这是由于CuO的摩尔含量多达7.0~8.0mol%,所以结晶粒子中产生CuO的异相,烧结性反而降低,粒径比D1/D2变为1.00。
与此相对,对于样品号1~7,由于CuO的摩尔含量是6.0mol%以下,粒径比D1/D2在0.85以下,重量比x2/x1在0.60以下,因此得到在热冲击试验中电感变化率ΔL的绝对值在15%以下,在直流叠加试验中电感变化率ΔL的绝对值在40%以下的良好的结果。
另外,对于CuO含量是1.0~5.0mol%的样品号2~6,可知粒径比D1/D2是0.6以下,在热冲击试验中电感变化率的绝对值是10%以下,得到进一步地良好的结果。
图6是示出CuO的摩尔含量和粒径比的关系的图,横轴表示摩尔含量(mol%),纵轴表示粒径比D1/D2(-)。
由图6明显看出,CuO的摩尔含量超过7.0mol%时,粒径比D1/D2是1.00,与此相对,CuO的摩尔含量在6.0mol%以下的范围内粒径比D1/D2是0.85以下。
图7是示出热冲击试验中CuO的摩尔含量和电感变化率关系的图,横轴表示摩尔含量(mol%),纵轴表示电感变化率ΔL(%)。
由图7明显看出,CuO的摩尔含量超过7.0mol%时,电感变化率ΔL是20%以上,与此相对,CuO的摩尔含量在6.0mol%以下的范围内能够将电感变化率ΔL抑制在15%以下。
图8是示出直流叠加试验中CuO的摩尔含量和电感变化率关系的图,横轴表示摩尔含量(mol%),纵轴表示电感变化率ΔL(%)。
由图8明显看出,CuO的摩尔含量超过7.0mol%时,电感变化率ΔL的绝对值超过45%,与此相对,CuO的摩尔含量在6.0mol%以下的范围内,能够将电感变化率ΔL的绝对值抑制在40%以下。
实施例2
准备形成铁氧体材料的主成分的Fe2O3、Mn2O3、ZnO、NiO、以及CuO,此外准备作为副成分材料的SnO2。然后以Fe2O3:46.5mol%、Mn2O3:2.5mol%、ZnO:30.0mol%、CuO:1.0mol%、以及NiO:20.0mol%进行称量,进一步地以相对于主成分100重量份为0.0~3.0重量份地称量SnO2
除此以外,按照与实施例1相同的方法·顺序,制作样品号11~14的样品。
接下来,对于样品号11~14的各样品,测定CuO的含有重量以及平均结晶粒径,并进行热冲击试验以及直流叠加试验。
表3示出样品号11~14的各样品的测定结果。
[表3]
由样品号11~14明显看出,热冲击试验中的电感变化率ΔL基本没有差异,而从样品号12~14与样品号11对比明显看出,通过在铁氧体材料中含有SnO2,从而在直流叠加试验中的电感变化率ΔL减少,直流叠加特性提高。进而可知,在SnO2的含量相对于主成分100重量份在0.1~3.0重量份的范围内,随着SnO2的含量的增量,直流叠加特性更进一步得到提高。
即,确认通过在主成分中含有适量的SnO2,直流叠加特性更进一步提高。
工业上的可利用性
即使将以Cu为主成分的材料用于线圈导体,将线圈导体和磁体部同时烧制,也能够实现不需要复杂的工序,耐热冲击性、直流叠加良好的层叠电感器等层叠线圈部件。
符号的说明
1 部件主体
2 磁体部
3 线圈导体(导体部)
6 第1区域
7 第2区域
21 部件主体
23 磁体部
24 线圈导体(导体部)
25 第1区域
26 第2区域

Claims (7)

1.一种层叠线圈部件,其特征在于,具有由铁氧体材料形成的磁体部和卷绕成线圈状的导体部,该导体部埋设于所述磁体部而形成部件主体,
所述部件主体被划分为所述导体部邻近的第1区域和该第1区域以外的第2区域,
所述第1区域中的所述磁体部的平均结晶粒径相对于所述第2区域中的所述磁体部平均结晶粒径的粒径比是0.85以下,
且所述导体部以Cu为主成分,
所述铁氧体材料含有Fe、Zn、Mn、Ni,Fe以换算成Fe2O3计为20~48mol%,Zn以换算成ZnO计为6~33mol%,Cu以换算成CuO计为6mol%以下且其中包括0mol%,Mn以换算成Mn2O3计为1~10mol%。
2.根据权利要求1所述的层叠线圈部件,其特征在于,所述第2区域相对于所述第1区域的Cu含有比例以换算成CuO的重量比计为0.6以下,其中包括0。
3.根据权利要求1或2所述的层叠线圈部件,其特征在于,所述铁氧体材料含有Sn成分。
4.根据权利要求1或2所述的层叠线圈部件,其特征在于,所述部件主体是在Cu-Cu2O的平衡氧分压以下的环境中烧结而成的。
5.根据权利要求3所述的层叠线圈部件,其特征在于,所述部件主体是在Cu-Cu2O的平衡氧分压以下的环境中烧结而成的。
6.一种层叠线圈部件,其特征在于,具有磁体部和导体部,
所述磁体部至少含有Fe、Mn、Zn和Ni,Fe以换算成Fe2O3计为20~48mol%,Zn以换算成ZnO计为6~33mol%,Cu以换算成CuO计为6mol%以下且其中包括0mol%,Mn以换算成Mn2O3计为1~10mol%,
所述导体部以铜为主成分且为线圈状,
磁体部的中央区域的Cu含量相对于磁体部的导体部邻近区域的Cu含量的比值为0~0.6,其中,所述Cu含量是换算成CuO来表示的。
7.根据权利要求6所述的层叠线圈部件,其中,进一步含有非磁性层。
CN201280029328.5A 2011-06-15 2012-05-18 层叠线圈部件 Active CN103597558B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011133091 2011-06-15
JP2011-133091 2011-06-15
PCT/JP2012/062758 WO2012172921A1 (ja) 2011-06-15 2012-05-18 積層コイル部品

Publications (2)

Publication Number Publication Date
CN103597558A CN103597558A (zh) 2014-02-19
CN103597558B true CN103597558B (zh) 2017-05-03

Family

ID=47356915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280029328.5A Active CN103597558B (zh) 2011-06-15 2012-05-18 层叠线圈部件

Country Status (7)

Country Link
US (2) US9490060B2 (zh)
EP (2) EP2722857B1 (zh)
JP (2) JP5991494B2 (zh)
KR (1) KR101603827B1 (zh)
CN (1) CN103597558B (zh)
TW (1) TWI503851B (zh)
WO (1) WO2012172921A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414376B2 (ja) * 2013-02-25 2018-10-31 株式会社村田製作所 セラミック電子部品
US20150302970A1 (en) * 2014-04-17 2015-10-22 Yen-Wei Hsu Magnetic Core
JP2015214434A (ja) * 2014-05-08 2015-12-03 株式会社村田製作所 フェライト磁器、コイル装置およびフェライト磁器の作製方法
JP6502627B2 (ja) * 2014-07-29 2019-04-17 太陽誘電株式会社 コイル部品及び電子機器
JP6156345B2 (ja) 2014-12-10 2017-07-05 株式会社村田製作所 電子部品及びその製造方法
WO2016098628A1 (ja) * 2014-12-17 2016-06-23 株式会社 村田製作所 積層セラミック電子部品およびその製造方法
JP6345146B2 (ja) * 2015-03-31 2018-06-20 太陽誘電株式会社 コイル部品
KR20160117989A (ko) * 2015-04-01 2016-10-11 삼성전기주식회사 코일 전자부품 및 그 제조방법
US10147533B2 (en) * 2015-05-27 2018-12-04 Samsung Electro-Mechanics Co., Ltd. Inductor
KR101719908B1 (ko) * 2015-07-01 2017-03-24 삼성전기주식회사 코일 전자부품 및 그 제조방법
KR101832587B1 (ko) * 2016-01-11 2018-02-26 삼성전기주식회사 인덕터 및 그 제조방법
WO2017124200A2 (en) * 2016-01-20 2017-07-27 Jaquet Technology Group Ag Manufacturing method for a sensing element and sensor device
JP6615024B2 (ja) * 2016-03-24 2019-12-04 太陽誘電株式会社 電子部品
US10643781B2 (en) * 2016-05-30 2020-05-05 Tdk Corporation Multilayer coil component
US10777342B2 (en) * 2016-06-15 2020-09-15 Taiyo Yuden Co., Ltd. Coil component and method for manufacturing the same
JP7032039B2 (ja) 2016-06-28 2022-03-08 Tdk株式会社 積層コイル部品
JP2018019062A (ja) * 2016-07-27 2018-02-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. インダクタ
US10566129B2 (en) 2016-09-30 2020-02-18 Taiyo Yuden Co., Ltd. Electronic component
JP6594837B2 (ja) * 2016-09-30 2019-10-23 太陽誘電株式会社 コイル部品
JP6752764B2 (ja) * 2016-09-30 2020-09-09 太陽誘電株式会社 コイル部品
JP6489097B2 (ja) * 2016-10-31 2019-03-27 株式会社村田製作所 電子部品
KR20180092668A (ko) * 2017-02-10 2018-08-20 엘지이노텍 주식회사 자성시트 및 이를 포함하는 무선 전력 수신 장치
JP7021459B2 (ja) * 2017-05-02 2022-02-17 Tdk株式会社 インダクタ素子
JP6891623B2 (ja) * 2017-05-02 2021-06-18 Tdk株式会社 インダクタ素子
JP7037294B2 (ja) * 2017-07-24 2022-03-16 太陽誘電株式会社 コイル部品
KR102494352B1 (ko) 2017-10-20 2023-02-03 삼성전기주식회사 코일 전자부품
KR102463333B1 (ko) * 2017-10-24 2022-11-04 삼성전기주식회사 코일 전자 부품
CN115148476A (zh) * 2017-12-23 2022-10-04 乾坤科技股份有限公司 耦合电感器及其制作方法
JP7056437B2 (ja) * 2018-07-25 2022-04-19 株式会社村田製作所 コイルアレイ部品
JP7238511B2 (ja) * 2019-03-19 2023-03-14 株式会社プロテリアル Ni系フェライトおよびそれを用いたコイル部品
JP7226094B2 (ja) * 2019-05-23 2023-02-21 株式会社村田製作所 コイル部品
DE102019211439A1 (de) * 2019-07-31 2021-02-04 Würth Elektronik eiSos Gmbh & Co. KG Verfahren zur Herstellung eines induktiven Bauteils sowie induktives Bauteil
JP7251395B2 (ja) * 2019-08-05 2023-04-04 株式会社村田製作所 積層コイル部品
JP7099434B2 (ja) * 2019-11-29 2022-07-12 株式会社村田製作所 コイル部品
US11935678B2 (en) * 2020-12-10 2024-03-19 GLOBALFOUNDARIES Singapore Pte. Ltd. Inductive devices and methods of fabricating inductive devices

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798059A (en) * 1970-04-20 1974-03-19 Rca Corp Thick film inductor with ferromagnetic core
JPH06105646B2 (ja) * 1986-10-20 1994-12-21 太陽誘電株式会社 積層型インダクタの製造方法
JP2694757B2 (ja) 1989-03-30 1997-12-24 東光株式会社 積層インダクタ
JP3367683B2 (ja) * 1991-12-20 2003-01-14 ティーディーケイ株式会社 Ni−Cu−Zn系フェライト焼結体の製造方法、ならびに積層インダクタ、複合積層部品および磁心の製造方法
JPH0645307U (ja) 1992-11-20 1994-06-14 太陽誘電株式会社 積層チップインダクタ
JP2832130B2 (ja) * 1993-03-17 1998-12-02 太陽誘電株式会社 セラミックグリーンシートの積層方法
JPH07201570A (ja) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd 厚膜積層インダクタ
JP3621300B2 (ja) * 1999-08-03 2005-02-16 太陽誘電株式会社 電源回路用積層インダクタ
JP4436509B2 (ja) * 1999-12-20 2010-03-24 京セラ株式会社 低損失フェライト材料及びこれを用いたフェライトコア
JP3584439B2 (ja) * 2000-02-08 2004-11-04 ミネベア株式会社 Mn−Znフェライトおよびその製造方法
JP2001244123A (ja) * 2000-02-28 2001-09-07 Kawatetsu Mining Co Ltd 表面実装型平面磁気素子及びその製造方法
JP4683718B2 (ja) * 2000-12-20 2011-05-18 京セラ株式会社 フェライト材料及びこれを用いたフェライトコア
JP3473601B2 (ja) * 2000-12-26 2003-12-08 株式会社デンソー プリント基板およびその製造方法
JP4576727B2 (ja) * 2001-02-23 2010-11-10 株式会社村田製作所 酸化物磁性体磁器組成物およびそれを用いたインダクタ部品
JP4302904B2 (ja) * 2001-03-23 2009-07-29 Tdk株式会社 チョークコイル及び電源トランス
JP2003272912A (ja) * 2002-03-15 2003-09-26 Murata Mfg Co Ltd 酸化物磁性材料、及びそれを用いた積層型電子部品
US6855222B2 (en) * 2002-06-19 2005-02-15 Murata Manufacturing Co., Ltd. Method for manufacturing laminated multilayer electronic components
JP4475965B2 (ja) * 2004-01-28 2010-06-09 京セラ株式会社 コイル内蔵ガラスセラミック基板
JP4659463B2 (ja) * 2004-01-30 2011-03-30 東光株式会社 積層型インダクタ及びその製造方法
JP5196704B2 (ja) * 2004-03-12 2013-05-15 京セラ株式会社 フェライト焼結体の製造方法
JP4552679B2 (ja) * 2005-02-08 2010-09-29 Tdk株式会社 酸化物磁性材料及び積層型インダクタ
JP4694860B2 (ja) 2005-02-28 2011-06-08 東光株式会社 積層型ビーズの製造方法
KR101296238B1 (ko) * 2005-10-28 2013-08-13 히타치 긴조쿠 가부시키가이샤 Dc―dc 컨버터
KR100820025B1 (ko) * 2005-12-29 2008-04-08 가부시키가이샤 무라타 세이사쿠쇼 적층 코일부품
JP4509186B2 (ja) 2006-01-31 2010-07-21 日立金属株式会社 積層部品及びこれを用いたモジュール
EP2031609A4 (en) * 2006-06-20 2012-08-22 Murata Manufacturing Co FELT COIL PART
EP2112126B1 (en) * 2007-02-07 2013-10-16 Hitachi Metals, Ltd. Low-loss ferrite and electronic component using the same
CN101652336B (zh) * 2007-04-17 2013-01-02 日立金属株式会社 低损耗铁氧体及使用它的电子部件
JP2009027033A (ja) * 2007-07-20 2009-02-05 Tdk Corp 積層型複合電子部品
WO2009034824A1 (ja) * 2007-09-14 2009-03-19 Murata Manufacturing Co., Ltd. 積層コイル部品およびその製造方法
CN101889319B (zh) * 2007-12-25 2013-01-02 日立金属株式会社 叠层电感器以及使用该叠层电感器的功率转换装置
KR100982639B1 (ko) * 2008-03-11 2010-09-16 (주)창성 연자성 금속분말이 충전된 시트를 이용한 적층형 파워인덕터
TW200941515A (en) * 2008-03-17 2009-10-01 Cyntec Co Ltd Inductor and method for making thereof
KR20100127878A (ko) * 2008-05-09 2010-12-06 다이요 유덴 가부시키가이샤 적층 인덕터 및 그 제조방법
JP4692574B2 (ja) * 2008-05-26 2011-06-01 株式会社村田製作所 電子部品及びその製造方法
CN106935360B (zh) * 2008-07-15 2020-04-14 株式会社村田制作所 电子元器件
JP5325799B2 (ja) 2009-01-22 2013-10-23 日本碍子株式会社 小型インダクタ及び同小型インダクタの製造方法
KR101072784B1 (ko) 2009-05-01 2011-10-14 (주)창성 자성시트를 이용한 적층형 인덕터 및 그 제조방법
TWI407462B (zh) * 2009-05-15 2013-09-01 Cyntec Co Ltd 電感器及其製作方法
JP5126616B2 (ja) * 2009-05-26 2013-01-23 株式会社村田製作所 磁性体セラミック、セラミック電子部品、及びセラミック電子部品の製造方法

Also Published As

Publication number Publication date
EP2911165A1 (en) 2015-08-26
US9490060B2 (en) 2016-11-08
EP2722857A1 (en) 2014-04-23
EP2911165B1 (en) 2020-02-12
TWI503851B (zh) 2015-10-11
US9741484B2 (en) 2017-08-22
EP2722857B1 (en) 2017-09-27
JP6222618B2 (ja) 2017-11-01
JP2015043459A (ja) 2015-03-05
KR20140007959A (ko) 2014-01-20
US20170025217A1 (en) 2017-01-26
EP2722857A4 (en) 2015-07-08
JPWO2012172921A1 (ja) 2015-02-23
WO2012172921A1 (ja) 2012-12-20
US20140097927A1 (en) 2014-04-10
JP5991494B2 (ja) 2016-09-14
TW201310474A (zh) 2013-03-01
CN103597558A (zh) 2014-02-19
KR101603827B1 (ko) 2016-03-16

Similar Documents

Publication Publication Date Title
CN103597558B (zh) 层叠线圈部件
KR100811731B1 (ko) 비자성 Zn 페라이트 및 이를 이용한 복합 적층형 전자부품
KR101475129B1 (ko) 세라믹 전자 부품 및 세라믹 전자 부품의 제조 방법
CN103608876B (zh) 层叠线圈部件及该层叠线圈部件的制造方法
US9296659B2 (en) Ferrite ceramic composition, ceramic electronic component, and method for manufacturing ceramic electronic component
JP5900501B2 (ja) 積層コイル部品およびその製造方法
JP6065919B2 (ja) 積層コイル部品
KR101431954B1 (ko) 코일 부품 및 이의 제조방법
WO2016072427A1 (ja) 積層コイル部品
WO2014050867A1 (ja) 積層コイル部品およびその製造方法
CN107077948A (zh) 层叠线圈部件
JP2014067889A (ja) 積層コイル部品およびその製造方法
JP2012169446A (ja) 積層コイル部品及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant