WO2012114403A1 - 有機el表示パネルおよび有機el表示装置 - Google Patents

有機el表示パネルおよび有機el表示装置 Download PDF

Info

Publication number
WO2012114403A1
WO2012114403A1 PCT/JP2011/006448 JP2011006448W WO2012114403A1 WO 2012114403 A1 WO2012114403 A1 WO 2012114403A1 JP 2011006448 W JP2011006448 W JP 2011006448W WO 2012114403 A1 WO2012114403 A1 WO 2012114403A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole injection
layer
injection layer
organic
electrode
Prior art date
Application number
PCT/JP2011/006448
Other languages
English (en)
French (fr)
Inventor
大内 暁
小松 隆宏
隆太 山田
藤田 浩史
慎也 藤村
西山 誠司
健一 年代
恒 菅野
矢田 修平
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013500714A priority Critical patent/JP5809234B2/ja
Priority to US14/000,977 priority patent/US8981361B2/en
Publication of WO2012114403A1 publication Critical patent/WO2012114403A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes

Definitions

  • the present invention relates to an organic EL display panel and an organic EL display device using an organic electroluminescent element (hereinafter referred to as “organic EL element”) which is an electroluminescent element.
  • organic EL element organic electroluminescent element
  • the organic EL element is a current-driven light emitting element and has a configuration in which a functional layer including a light emitting layer made of an organic material is provided between a pair of electrodes made of an anode and a cathode. Then, a voltage is applied between the electrode pair to recombine holes injected from the anode into the functional layer and electrons injected from the cathode into the functional layer, and light is emitted by the electroluminescence phenomenon generated thereby.
  • Organic EL elements are self-luminous and have high visibility and are completely solid elements, so they are excellent in impact resistance. Therefore, their use as light emitting elements and light sources in various organic EL display panels and organic EL display devices has attracted attention. ing.
  • an organic substance such as copper phthalocyanine or PEDOT (conductive polymer), or a metal oxide such as molybdenum oxide or tungsten oxide is used for the hole injection layer disposed between the functional layer and the anode.
  • an organic substance such as a metal complex or oxadiazole, or a metal such as barium is used for the electron injection layer disposed between the functional layer and the cathode.
  • Patent Document 1 Regard an organic EL element using a metal oxide such as molybdenum oxide or tungsten oxide as a hole injection layer, improvement of hole injection efficiency and improvement of life have been reported (Patent Document 1, Non-Patent Document 1). There is a report that the improvement is influenced by the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer (Non-patent Document 2).
  • Patent Document 2 discloses an organic EL element having a wiring portion having a structure in which a second electrode (common electrode) is connected to an auxiliary wiring as a top emission type organic EL element. This realizes a wiring part that suppresses the use of a common electrode with high resistance.
  • the auxiliary wiring is a low resistance wiring having a structure for supplying electrons from the power source to the common electrode.
  • the auxiliary wiring is preferably provided in the non-light emitting part so as not to block the light emitting part.
  • the auxiliary wiring when the auxiliary wiring is provided in the non-light-emitting portion, it may be provided on either the upper part or the lower part of the common electrode, but the structure provided on the lower part simultaneously forms the auxiliary wiring by using a formation process of a thin film transistor or a pixel electrode. Therefore, it can be said that the structure is more preferable.
  • an adsorbate mainly containing carbon derived from molecules contained in the atmosphere such as carbon dioxide, water, and organic substances and molecules of impurities generated during the process will be a problem. It is done. Specifically, in the stacking process of each layer constituting the organic EL element such as the electrode and the hole injection layer, when the upper layer is stacked on the lower layer surface with the adsorbed material adsorbed, the adsorbed material is interposed between these layers. As a result, the drive voltage of the element may increase or the lifetime may decrease.
  • an organic EL element having an auxiliary wiring under the common electrode patterning is generally performed after the pixel electrode (anode) and the auxiliary wiring are formed of the same film. Thereafter, a hole injection layer is laminated.
  • a hole injection layer such as copper phthalocyanine or PEDOT is not formed on the auxiliary wiring. This is because these hole injection layers generally have high resistance, and if formed on the auxiliary wiring, the supply of electrons from the auxiliary wiring to the common electrode is hindered.
  • these hole injection layers are designed so that the binding energy of the highest occupied orbit is close to the Fermi level such as ITO generally used for the anode, and conversely the binding energy of the lowest empty orbit. Is far from the Fermi level. For this reason, although hole injection from the anode to these hole injection layers is relatively easy, electron injection is difficult. This works favorably in the light emitting part, but in the connection part between the auxiliary wiring and the common electrode, the electron from the auxiliary wiring using the same material as the anode to the common electrode through these hole injection layers. Supply cannot be performed, causing high resistance in the wiring section.
  • a patterning film forming method 1) a method of selectively forming a film on a pixel electrode using mask vapor deposition, screen printing, ink jet printing, or the like; There is a method of selectively removing only the auxiliary wiring using etching or the like.
  • an increase in the number of steps increases the manufacturing cost, and also leads to an increase in particles, resulting in a decrease in yield.
  • resist residues and the like at the time of patterning may remain as resistance components on the auxiliary wiring, leading to a further increase in resistance of the wiring portion.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an organic EL display panel and an organic EL display device which can be driven at a low voltage and can realize excellent luminous efficiency.
  • an organic EL display panel includes a substrate, a first electrode formed on or in the substrate, and the first electrode on or in the substrate.
  • An auxiliary wiring formed apart from the electrode, a functional layer formed above the first electrode and including at least a light-emitting layer, and interposed between the functional layer and the first electrode.
  • the second electrode and the auxiliary wiring are electrically connected via the hole injection layer, the hole injection layer contains tungsten oxide, and in a UPS spectrum based on UPS measurement, Valence band
  • the ratio of the number density of other atoms other than the tungsten atom and the oxygen atom to the tungsten atom of the tungsten oxide, based on XPS measurement, has a shape raised near the Fermi surface in the lower binding energy region than the upper end. 0.83 or less.
  • the hole injection layer includes tungsten oxide
  • the Fermi surface in the UPS spectrum based on the UPS measurement, has a binding energy region lower than the upper end of the valence band. Since the ratio of the number density of other atoms other than the tungsten atom and the oxygen atom to the tungsten atom of the tungsten oxide based on XPS measurement is 0.83 or less based on the XPS measurement. It is possible to drive with excellent light emission efficiency.
  • the hole injection barrier between the hole injection layer and the functional layer of the pixel portion can be reduced, and the pixel electrode and the hole injection layer of the pixel portion, In addition, carriers can be exchanged with almost no barrier between the auxiliary wiring in the wiring portion and the hole injection layer, or between the hole injection layer and the common electrode. Further, since the number density ratio is 0.83 or less, the adsorbate is removed from the surface of the hole injection layer. From the above, it is possible to drive with a low voltage and realize excellent light emission efficiency.
  • FIG. 3 is an interfacial energy diagram between a tungsten oxide layer and an ⁇ -NPD layer of the present invention. It is a figure for demonstrating the effect of the injection site of a hole injection layer and a functional layer. 3 is an interfacial energy diagram between a tungsten oxide layer and an ⁇ -NPD layer under film formation conditions C. It is an interfacial energy diagram of an IZO anode cleaned with pure water and a functional layer.
  • FIG. 10 is a process diagram illustrating a method for manufacturing an organic EL display panel according to Embodiment 2.
  • FIG. 10 is a process diagram illustrating a method for manufacturing an organic EL display panel according to Embodiment 2.
  • FIG. 10 is a process diagram illustrating a method for manufacturing an organic EL display panel according to Embodiment 2.
  • FIG. 10 is a process diagram illustrating a method for manufacturing an organic EL display panel according to Embodiment 2.
  • FIG. 10 is a process diagram illustrating a method for manufacturing an organic EL display panel according to Embodiment 2.
  • FIG. 10 is a process diagram illustrating a method for manufacturing an organic EL display panel according to a modification of the second embodiment.
  • FIG. 10 is a process diagram illustrating a method for manufacturing an organic EL display panel according to a modification of the second embodiment.
  • An organic EL display panel is formed with a substrate, a first electrode formed on or in the substrate, and spaced apart from the first electrode on or in the substrate.
  • Auxiliary wiring a functional layer formed at least above the first electrode and including at least a light emitting layer, and a hole injection layer interposed between the functional layer and the first electrode to inject holes into the functional layer
  • a second electrode formed above the functional layer, wherein each of the hole injection layer and the second electrode is formed continuously above the first electrode and above the auxiliary wiring.
  • the second electrode and the auxiliary wiring are electrically connected via the hole injection layer, and the hole injection layer contains tungsten oxide, and in the UPS spectrum based on UPS measurement, is higher than the upper end of the valence band.
  • Low bond energy The ratio of the number density of atoms other than the tungsten atoms and oxygen atoms to the tungsten atoms of the tungsten oxide based on XPS measurement is 0.83 or less, having a shape raised near the Fermi surface in the region. is there.
  • the hole injection layer includes tungsten oxide. Further, the hole injection layer has a shape raised in the vicinity of the Fermi surface in the binding energy region lower than the upper end of the valence band in the UPS spectrum based on the UPS measurement, and the tungsten atom of the tungsten oxide based on the XPS measurement. The ratio of the number density of other atoms other than the tungsten atom and oxygen atom is 0.83 or less.
  • the presence of the raised shape in the vicinity of the Fermi surface makes it possible to reduce the hole injection barrier between the hole injection layer and the functional layer in the pixel portion, and to reduce the pixel electrode, hole injection layer, and wiring in the pixel portion. Between the auxiliary wiring and the hole injection layer, and between the hole injection layer and the common electrode, carriers can be exchanged with almost no barrier. Further, the adsorbate on the surface of the hole injection layer is removed while maintaining the raised shape near the Fermi surface. As a result, the hole injection efficiency is high, it can be driven at a low voltage, and an excellent luminous efficiency can be realized.
  • carriers can be exchanged with almost no barrier between the auxiliary wiring and the hole injection layer of the wiring portion, and between the hole injection layer and the common electrode, so there is no problem even if the hole injection layer is formed on the auxiliary wiring.
  • the hole injection layer patterning step is not required, not only the process can be reduced, but also a stable mass production process can be realized.
  • the hole injection layer is composed of chemically stable tungsten oxide
  • the hole injection layer may be altered or decomposed by an alkaline solution, water, an organic solvent, or the like in the bank formation process. It is suppressed. Therefore, even after the device is completed, the shape of the hole injection layer, the hole injection efficiency from the hole injection layer to the functional layer in the pixel portion, and the transfer of carriers between the hole injection layer and the common electrode in the wiring portion are well maintained. it can. This makes it possible to manufacture an organic EL element that can withstand a mass production process of an organic EL display panel.
  • the light emitting layer of the organic EL element is laminated after the hole injection layer is formed.
  • the light emitting layer is separately applied for each light emission color (for example, R, G, B).
  • a partition wall hereinafter referred to as a bank).
  • a photolithography method is generally used.
  • a bank material made of a photosensitive resist material is applied to the surface of the hole injection layer, pre-baked, and then exposed to light using a pattern mask. Excess bank material is washed out with a developer composed of an alkaline solution or the like, and finally washed with pure water.
  • an alkaline solution, water, an organic solvent, or the like is used.
  • the hole injection layer is formed of an organic material, the material is altered, decomposed, etc. to inject holes. Since the layer is damaged, there arises a problem that a desired hole injection efficiency cannot be obtained.
  • the hole injection layer is formed using tungsten oxide, so that the hole injection layer is hardly deteriorated and decomposed by the solution, and thus such a problem hardly occurs.
  • the second electrode is a transparent electrode.
  • the transparent electrode is made of ITO or IZO.
  • the common electrode As described above, in the top emission type organic EL element, it is necessary to use a transparent electrode material such as ITO or IZO for the common electrode (second electrode), but they have higher resistivity than the metal material. For this reason, when the common electrode is frequently used in the wiring portion, the larger the display panel is, the more the wiring length of the common electrode varies among the light emitting pixels, and the larger the voltage between the end of the power supply portion and the center of the display panel. A descent occurs and the brightness varies accordingly, so the center becomes dark. That is, there is a problem that the voltage varies depending on the arrangement position of the organic EL elements on the display panel surface, and the display quality is deteriorated. For this reason, as described above, a low-resistance auxiliary wiring is used together to form a wiring portion that suppresses the use of the common electrode as much as possible.
  • a transparent electrode material such as ITO or IZO
  • the resistance of the wiring portion is increased even if it is formed between the auxiliary wiring and the transparent electrode material. Does not cause. That is, carriers can be exchanged with almost no barrier between the auxiliary wiring and the hole injection layer, and between the hole injection layer and the common electrode made of ITO, IZO or the like. As a result, the organic EL display panel of one embodiment of the present invention can be driven at a low voltage and can be expected to exhibit excellent luminous efficiency.
  • the second electrode contains Al (aluminum) or Ag (silver) as a main component.
  • the organic EL display panel includes a metal layer formed continuously above the first electrode and above the auxiliary wiring, Above the first electrode is interposed between the second electrode and the light emitting layer, and above the auxiliary wiring is interposed between the second electrode and the hole injection layer.
  • the metal layer is an electron injection layer that injects electrons from the second electrode to the light emitting layer above the first electrode. is there.
  • the metal layer includes Ba (barium).
  • a metal layer such as Ba may be provided as an electron injection layer between the light emitting layer of the organic EL element and the common electrode. Further, in the bottom emission type organic EL element, a metal material having a high reflectance such as Ag or Al is used as a common electrode.
  • the tungsten oxide having predetermined physical properties according to the present invention is in Schottky ohmic connection with these metals, so that even if formed on the auxiliary wiring, the resistance of the wiring portion is not increased. That is, carriers can be exchanged with almost no barrier between the auxiliary wiring and the hole injection layer, and between the hole injection layer and the metal layer made of Ba, Al, Ag, or the like or the common electrode. As a result, the organic EL display panel of one embodiment of the present invention can be driven at a low voltage and can be expected to exhibit excellent luminous efficiency.
  • the auxiliary wiring is made of ITO or IZO.
  • the organic EL display panel of this embodiment can be driven at a low voltage and can be expected to exhibit excellent luminous efficiency.
  • a hole injection layer that is the same layer as the hole injection layer formed above the first electrode is formed above the auxiliary wiring. Yes.
  • the thickness of the hole injection layer formed on at least the auxiliary wiring is 4 nm or more.
  • a Schottky ohmic connection is stably formed between the auxiliary wiring of the wiring portion and the hole injection layer, and between the hole injection layer and the metal layer, and stable carrier transfer can be expected. More preferred. That is, it is preferable to secure 2 nm or more for stable Schottky ohmic connection between the auxiliary wiring and the hole injection layer and 2 nm or more for stable Schottky ohmic connection between the hole injection layer and the metal layer. Therefore, it can be said that a total of 4 nm or more is more preferable.
  • a partition wall having an opening above the first electrode is formed on the hole injection layer, and the functional layer is formed of the partition wall. It is formed in the opening.
  • a plurality of the first electrodes are arranged in a pixel unit, and the opening of the partition wall corresponds to each of the plurality of first electrodes. Is formed.
  • a plurality of the first electrodes are arranged in pixel units, and the opening of the partition wall is provided for each line of the plurality of arranged first electrodes. , Correspondingly formed.
  • the raised shape in the UPS spectrum, has a binding energy region that is 1.8 to 3.6 eV lower than an upper end of the valence band. Located in.
  • the lower limit value and the upper limit value are also included in the numerical range.
  • the lower limit value and the upper limit value are also included in the numerical range.
  • 1.8 to 3.6 eV is described, 1.8 eV and 3.6 eV are included in the numerical range.
  • the ratio of the number density of the other atoms to the tungsten atoms of the tungsten oxide is 0.62 or less. In this case, since the adsorbate removal effect is considered to be saturated, a sufficient adsorbate removal effect can be expected.
  • the other atoms are carbon atoms.
  • the hole injection layer is raised in the vicinity of the Fermi surface in a binding energy region lower than the upper end of the valence band in the UPS spectrum based on the UPS measurement. And irradiated with ultraviolet rays so that the ratio of the number density of atoms other than tungsten atoms and oxygen atoms to tungsten atoms of tungsten oxide based on XPS measurement is 0.83 or less. Configured.
  • a substrate a first electrode formed on the substrate or in the substrate, and the first electrode on the substrate or in the substrate.
  • a wiring formed separately from the first electrode, an organic layer including an organic material, and a tungsten oxide layer including tungsten oxide interposed between the organic layer and the first electrode.
  • a second electrode formed above the organic layer, wherein each of the tungsten oxide layer and the second electrode is continuously formed above the first electrode and above the wiring.
  • the second electrode and the wiring are electrically connected via the tungsten oxide layer, and the tungsten oxide layer has a lower binding energy than the upper end of the valence band in the UPS spectrum based on the UPS measurement.
  • the ratio of the number density of other atoms other than the tungsten atom and the oxygen atom to the tungsten atom of the tungsten oxide is 0.83 or less based on XPS measurement. .
  • a substrate a first electrode formed on the substrate or in the substrate, and the first electrode on the substrate or in the substrate.
  • An auxiliary wiring formed apart from the first electrode, a functional layer formed at least above the first electrode and including at least a light emitting layer, and a hole to the functional layer interposed between the functional layer and the first electrode.
  • a hole injection layer for injecting and a second electrode formed above the functional layer, wherein each of the hole injection layer and the second electrode is above the first electrode and the auxiliary wiring.
  • the second electrode and the auxiliary wiring are electrically connected via the hole injection layer, and the hole injection layer contains tungsten oxide.
  • the second electrode and the auxiliary wiring are electrically connected.
  • Above the electronic band It has a raised shape on the Fermi surface near the lower binding energy region than, and binding energy in 4.5 ⁇ 5.4 eV, has a peak shape.
  • the raised shape in the UPS spectrum, has a binding energy region that is 1.8 to 3.6 eV lower than an upper end of the valence band. Located in.
  • the hole injection layer is raised in the vicinity of the Fermi surface in a binding energy region lower than the upper end of the valence band in the UPS spectrum based on the UPS measurement.
  • it is configured to be irradiated with ultraviolet rays so as to have a peak shape at a binding energy of 4.5 to 5.4 eV.
  • a substrate a first electrode formed on the substrate or in the substrate, and the first electrode on the substrate or in the substrate.
  • a wiring formed separately from the first electrode, an organic layer including an organic material, and a tungsten oxide layer including tungsten oxide interposed between the organic layer and the first electrode.
  • a second electrode formed above the organic layer, wherein each of the tungsten oxide layer and the second electrode is continuously formed above the first electrode and above the wiring.
  • the second electrode and the wiring are electrically connected via the tungsten oxide layer, and the tungsten oxide layer has a lower binding energy than the upper end of the valence band in the UPS spectrum based on the UPS measurement.
  • An organic EL display device includes any one of the organic EL display panels described above.
  • the present inventor provides a process for removing adsorbate on the surface of each layer by washing after the formation of each layer in the manufacturing process in order to prevent an increase in driving voltage of the organic EL element and a decrease in the lifetime of the element. I was inspired by that.
  • the present inventors As a process for removing the adsorbate, the present inventors have focused on UV ozone cleaning and oxygen plasma cleaning, which are widely used for cleaning glass substrates and electrodes, because they have a strong cleaning power. As a result of the present inventors diligently examining these methods, in an organic EL element having a hole injection layer made of a metal oxide such as molybdenum oxide or tungsten oxide, UV ozone cleaning and oxygen plasma cleaning are performed for cleaning the hole injection layer. I found that it is not suitable.
  • UV ozone cleaning and oxygen plasma cleaning utilize the strong oxidizing action of the generated oxygen radicals by decomposing oxygen molecules, and this oxidizing action compensates for oxygen atoms in the structure similar to the oxygen defect. Therefore, in the hole injection layer made of a metal oxide, it is considered that the electron level formed by the structure similar to the oxygen defect disappears and the hole injection efficiency may be lowered. Specifically, it was confirmed by experiments as will be described later that the electron levels formed by the structure similar to oxygen defects disappeared by UV ozone cleaning.
  • the present inventor prevents an increase in driving voltage of an organic EL element or a decrease in the lifetime of the element in an organic EL element having a hole injection layer made of a metal oxide.
  • the adsorbed material In order to prevent the adsorbed material from being removed from the surface of the hole injection layer without annihilation of the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer. Recognized that there is.
  • Non-Patent Document 1 in which UV ozone cleaning is performed after a hole injection layer made of tungsten oxide is formed.
  • This non-patent document 1 does not mention the influence of device characteristics on UV ozone cleaning, and does not describe that the conditions for UV ozone cleaning are optimized.
  • Non-Patent Document 1 describes what the inventor has clarified through specific examination, and is not suitable for cleaning a hole injection layer made of tungsten oxide as it is, and its technical reason. It has not been.
  • the adsorbate removing effect and the electron level increasing effect by the sputter etching process last only in the vacuum vessel. This is because the surface of the hole injection layer that has been sputter-etched in a vacuum is extremely unstable because the bonds between atoms are forcibly cut by an ion beam, and it is easy to get out of the vacuum vessel once. This is because the surrounding gas molecules are adsorbed and stabilized. Thereby, the structure similar to the oxygen defect of the metal oxide forcibly formed in vacuum is complemented in an instant, and the removed adsorbate is adsorbed again in an instant.
  • a part or all of the processes after the sputter etching process may be performed continuously in a vacuum vessel.
  • the process in the vacuum vessel can be applied to a small organic EL display panel, but for a large-sized organic EL display panel of, for example, 50 inches, a vacuum vessel adapted to the size is available. It is very difficult to apply because it is necessary. Also, the process in the vacuum vessel is not suitable for mass production because of its low throughput.
  • a method of blocking the adsorption of the adsorbate itself can be considered. For example, if some or all of the steps after the formation of each layer are continuously performed in a vacuum container so that each layer is not exposed to the atmosphere or impurity molecules after the formation, the adsorbate is not adsorbed. However, since a vacuum container is required as described above, it is extremely difficult to apply to a large organic EL display panel.
  • a method of performing the process in a container filled with an inert gas is also conceivable.
  • application to a large organic EL display panel is also possible.
  • impurity molecules and the like are still present in the container, and it is difficult to completely remove them.
  • the organic level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer has not disappeared, and the adsorbate is removed from the surface of the hole injection layer. It is very difficult to obtain an element.
  • the organic EL element according to one embodiment of the present invention functions from the anode (pixel electrode) because the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer has not disappeared. Holes can be efficiently injected into the layer, and as a result, it is possible to drive at a low voltage and realize excellent luminous efficiency.
  • the adsorbate is removed from the surface of the hole injection layer, the adsorbate is not buried between the hole injection layer and the functional layer, and as a result, the driving voltage of the device is not increased and the adsorption is not performed. Since carrier traps such as impurities derived from objects are not formed, the device has a long life and good device characteristics.
  • the present inventors have said hole injection layer, functional layer, It was confirmed by experiments as will be described later that the difference between the lowest binding energy at the occupied level near the Fermi surface and the binding energy of the highest occupied orbit of the functional layer becomes small.
  • the hole injection layer has an occupied level in the vicinity of the Fermi surface
  • the occupied level in the vicinity of the Fermi surface is the most at the interface with the electrode such as the anode, cathode, and auxiliary wiring.
  • the difference between the low binding energy and the Fermi level of the electrode is reduced, leading to the idea that good carriers can be exchanged.
  • a hole injection layer made of a metal oxide having an occupied level near the Fermi surface has a relatively low resistance, and an electrode made of a metal material such as Al, or a relatively high resistance such as ITO or IZO.
  • the present inventors also examined a material for forming a hole injection layer that is difficult to be altered or decomposed in the bank formation process.
  • metal oxide which is an inorganic material
  • molybdenum oxide is actually used as the hole injection layer.
  • the hole injection layer may be altered or decomposed by an alkaline solution, water, an organic solvent, or the like used in the bank forming process. If problems such as alteration or decomposition of the hole injection layer occur, the hole injection layer inherently has a problem with the hole injection layer on the pixel electrode of the light emitting part, and on the auxiliary wiring of the wiring part.
  • the organic EL element In addition to causing the wiring portion to have a high resistance, the organic EL element cannot be driven normally, and it is difficult to withstand the mass production process of the organic EL element and the organic EL display panel using the organic EL element. Therefore, it is not always preferable to form the hole injection layer using molybdenum oxide that may cause alteration or decomposition.
  • the present inventors have focused on tungsten oxide, which is less likely to be altered or decomposed, and if the tungsten oxide has predetermined physical properties, it is soluble or decomposable in the solution or the like. And the hole injection ability is high.
  • FIG. 1 is a diagram for explaining an organic EL display panel according to one embodiment of the present invention.
  • FIG. 1A is a partial plan view for explaining a main part of the organic EL display panel, and
  • FIG. ) Is a cross-sectional view of the principal part taken along the line AA ′ in FIG.
  • a plurality of light emitting pixels 95A having light emitting portions 95 are arranged in a matrix, and an anode (pixel electrode, first electrode).
  • a plurality of pixels 20 are arranged for each pixel, and auxiliary wirings 30 (corresponding to wirings) 30 are arranged for each light emitting pixel column along each light emitting unit 95.
  • the organic EL display panel 110 includes a substrate 10, an anode 20 and an auxiliary wiring 30 formed on the substrate 10, and a hole injection layer formed on the anode 20 and the auxiliary wiring 30.
  • a bank 50 formed on the hole injection layer 40 and having a pixel opening 45 above the anode 20 and a connection opening 35 above the auxiliary wiring 30, and a bank 50 A buffer layer 60 formed in the pixel opening 45, a light emitting layer (corresponding to an organic layer) 70 formed on the buffer layer 60 in the pixel opening 45 of the bank 50, and an upper surface thereof.
  • the cathode 90 (common electrode, second electrode) formed on the electron injection layer 80, and the like.
  • the hole injection layer 40 the same hole injection layer as the hole injection layer formed above the anode 20 is formed above the auxiliary wiring 30. That is, the hole injection layer 40 is formed over the entire surface of the partial plan view shown in FIG. Further, the electron injection layer 80 and the cathode 90 are also formed over the entire surface of the partial plan view shown in FIG.
  • the auxiliary wiring 30 and the cathode 90 are electrically connected to each other through the hole injection layer 40 and the electron injection layer 80 in the connection opening 35 provided along the auxiliary wiring 30 and connected from the cathode 90 to the power source.
  • the layer structure between the cathode 90 and the auxiliary wiring 30 in the connection opening 35 is not limited to the above structure.
  • layers other than the hole injection layer 40 and the electron injection layer 80 may be included, or the electron injection layer 80 may not be provided.
  • a layer structure that does not block the flow of electrons from the auxiliary wiring 30 to the cathode 90 may be used, and an organic EL display panel having such a multilayer structure is also included in the present invention, and the organic EL display panel 110 according to the present embodiment is included. Has the same effect.
  • the light emitting unit 95 is composed of a hole injection layer 40, a buffer layer 60, a light emitting layer 70, and an electron injection layer 80 provided in the pixel opening 45, and is generated by recombination of electrons and holes injected into the light emitting layer 70.
  • the emitted light is emitted from the cathode 90 side.
  • the anode 20 is provided for each pixel so as to correspond to the light emitting unit 95. That is, in the case where the light emitting unit is composed of subpixels such as R, G, and B, the light emitting unit 95 and the anode 20 corresponding to each subpixel are provided separately for each subpixel.
  • the substrate 10 is a portion that becomes a base material of the organic EL element.
  • a base material of the organic EL element for example, alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, borate glass, quartz, acrylic resin, styrene resin, polycarbonate resin , Epoxy resin, polyethylene, polyester, silicon resin, or an insulating material such as alumina.
  • a TFT thin film transistor for driving the organic EL element is formed on the surface of the substrate 10.
  • the anode 20 is configured by, for example, laminating a 20 nm thick transparent conductive film made of ITO on a 400 nm thick metal film made of Al.
  • the configuration of the anode 20 is not limited to this.
  • a transparent conductive film such as ITO or IZO, a metal film such as Al or Ag, an APC (alloy of silver, palladium, copper), ARA (silver, rubidium, gold) Alloy), MoCr (molybdenum-chromium alloy), NiCr (nickel-chromium alloy), or other alloy film.
  • a plurality of films selected from these transparent conductive films, metal films, and alloy films can be laminated.
  • the auxiliary wiring 30 is configured by, for example, laminating a 20 nm thick transparent conductive film made of ITO on a 400 nm thick metal film made of Al.
  • the configuration of the auxiliary wiring 30 is not limited to this.
  • a transparent conductive film such as ITO or IZO, a metal film such as Al or Ag, APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold) Alloy), MoCr (alloy of molybdenum and chromium), NiCr (alloy of nickel and chromium), or a single layer of an alloy film.
  • a plurality of films selected from these transparent conductive films, metal films, and alloy films can be laminated.
  • the hole injection layer 40 is configured, for example, as a layer having a thickness of at least 2 nm (here, 30 nm as an example) using tungsten oxide (in the compositional formula WOx, x is a real number in the range of 2 ⁇ x ⁇ 3). Is done. If the film thickness is less than 2 nm, it is difficult to form a uniform film and it is difficult to form a Schottky ohmic connection between the anode 20 and the hole injection layer 40 in the pixel portion, which is not preferable.
  • the Schottky ohmic connection is stably formed when the film thickness of tungsten oxide is 2 nm or more, if the hole injection layer 40 is formed with a film thickness larger than this, the anode 20 in the pixel portion is connected to the hole injection layer 40. Stable hole injection efficiency can be expected.
  • the film thickness of tungsten oxide is 4 nm or more, Schottky ohmic connection is stable between the auxiliary wiring 30 and the hole injection layer 40 in the wiring section and between the hole injection layer 40 and the electron injection layer 80. It is more suitable because it is formed and stable carrier transfer can be expected.
  • the hole injection layer 40 is preferably made of tungsten oxide as much as possible, but may contain a trace amount of impurities as long as it can be mixed at a normal level.
  • the hole injection layer 40 has an electron level formed by a structure similar to an oxygen defect of a metal oxide when formed under predetermined film formation conditions. Due to the presence of this electron level, good hole injection from the anode 20 in the pixel portion to the hole injection layer 40 and from the hole injection layer 40 to the buffer layer 60, and the auxiliary wiring 30 and hole injection layer 40 in the wiring portion, and the hole injection layer. Good carrier transfer between 40 and the electron injection layer 80 is possible.
  • the hole injection layer 40 is irradiated with ultraviolet light having a predetermined wavelength in the atmosphere after film formation.
  • the adsorbate is removed from the surface of the hole injection layer 40 while maintaining the electron level formed by the structure similar to the oxygen defect of the metal oxide, and the amount thereof is smaller than that before irradiation. Furthermore, the irradiation time and irradiation intensity of ultraviolet light are set so that changes in the shape of a predetermined binding energy region in the photoelectron spectrum of the hole injection layer 40 converge. Thereby, the adsorbate is removed to the maximum under the minimum irradiation conditions.
  • the above-mentioned “having an electron level formed by a structure similar to an oxygen defect” indicates that the hole injection layer 40 has the highest valence band in its electronic state, that is, the highest in the valence band. Occupied levels exist in a binding energy region that is 1.8 to 3.6 eV lower than the low binding energy. This occupied level is the highest occupied level of the hole injection layer 40, and its binding energy range is closest to the Fermi level (Fermi surface) of the hole injection layer 40. Therefore, hereinafter, this occupied level is referred to as “occupied level near the Fermi surface”.
  • a so-called interface level connection is made at the stacked interface between the hole injection layer 40 and the functional layer (here, the buffer layer 60), and the highest occupied orbit of the buffer layer 60. Is substantially equal to the binding energy of the occupied levels in the vicinity of the Fermi surface of the hole injection layer 40.
  • substantially equal and “interface state connection was made” here means that the lowest binding energy at the occupied level near the Fermi surface at the interface between the hole injection layer 40 and the buffer layer 60. This means that the difference from the lowest binding energy in the highest occupied orbit is within a range of ⁇ 0.3 eV.
  • the “interface” here refers to a region including the surface of the hole injection layer 40 and the buffer layer 60 at a distance within 0.3 nm from the surface.
  • the hole injection layer 40 has a so-called Schottky ohmic connection at the interface with the anode 20, the auxiliary wiring 30, and the electron injection layer 80 as a feature thereof.
  • “Schottky ohmic connection” refers to the Fermi level of the anode 20, the auxiliary wiring 30 and the electron injection layer 80, and the lowest binding energy at the occupied level near the Fermi surface of the hole injection layer 40 described above. This difference is a connection in which the distance from the surface of the anode 20, the auxiliary wiring 30 and the electron injection layer 80 to the hole injection layer 40 side is small within ⁇ 0.3 eV at a position of 2 nm.
  • the “interface” here refers to a region including the surface of the anode 20, the auxiliary wiring 30, and the electron injection layer 80 and a Schottky barrier formed on the hole injection layer 40 side from the surface.
  • the occupied level in the vicinity of the Fermi surface is preferably present in the entire hole injection layer 40, but may be present at least at the interface between the buffer layer 60, the anode 20, the auxiliary wiring 30, and the electron injection layer 80. Note that such an occupied level in the vicinity of the Fermi surface is not possessed by all tungsten oxides.
  • a predetermined film formation described later is performed at the inside of the hole injection layer and at the interface with the buffer layer 60. It is a unique level that can be formed for the first time depending on conditions.
  • the bank 50 is made of, for example, an insulating organic material (for example, acrylic resin, polyimide resin, novolac-type phenol resin, etc.), and the pixel opening 45 is formed corresponding to each of the plurality of anodes 20.
  • the pixel openings 45 are formed so as to have a stripe structure formed corresponding to each line of the anode 20 in which a plurality of pixel openings 45 are arranged.
  • the bank 50 is not essential for the present invention, and is not necessary when the organic EL element is used alone.
  • the buffer layer 60 may be, for example, TFB (poly (9,9-di-n-octylfluorene-alt- (1,4-phenylene-((4-sec-butylphenyl) imino), which is an amine organic polymer having a thickness of 20 nm. ) -1,4-phenylene)).
  • TFB poly (9,9-di-n-octylfluorene-alt- (1,4-phenylene-((4-sec-butylphenyl) imino
  • the light emitting layer 70 is made of, for example, F8BT (poly (9,9-di-n-octylfluorene-alt-benzothiazole)) which is an organic polymer having a thickness of 70 nm.
  • F8BT poly (9,9-di-n-octylfluorene-alt-benzothiazole)
  • the light emitting layer 70 is not limited to the structure made of this material, and can be configured to include a known organic material.
  • the functional layer in the present invention includes any one of a hole transport layer that transports holes, a light emitting layer that emits light by recombination of injected holes and electrons, a buffer layer that is used for optical property adjustment or electronic block application, etc. Or a combination of two or more layers, or all layers.
  • the organic EL element has layers that perform the required functions, such as the hole transport layer and the light emitting layer described above, in addition to the hole injection layer.
  • the functional layer means a layer necessary for the organic EL element other than the hole injection layer which is an object of the present invention.
  • the electron injection layer 80 is composed of, for example, a barium layer having a thickness of 5 nm, and has a function of injecting electrons from the cathode 90 to the light emitting layer 70.
  • the electron injection layer 80 is continuously formed above the anode 20 and above the auxiliary wiring 30.
  • the electron injection layer 80 is interposed between the cathode 90 and the light emitting layer 70 above the anode 20 and above the auxiliary wiring 30. 90 and the hole injection layer 40.
  • the electron injection layer 80 in the method of extracting light upward (top emission method), the electron injection layer 80 needs to be light transmissive, and the electron injection layer is barium having a thickness of 5 nm as described above. When it is composed of layers, it has optical transparency. Note that, in the method of extracting light downward (bottom emission method), the electron injection layer does not necessarily require light transmittance, although it depends on the element structure.
  • the cathode 90 is configured by laminating, for example, a 35 nm thick transparent conductive film made of ITO.
  • the configuration of the cathode 90 is not limited to this, and other transparent conductive films such as IZO, metals such as Al and Ag, APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold alloy) ), MoCr (alloy of molybdenum and chromium), NiCr (alloy of nickel and chromium), or a thin film made of an alloy. Further, a plurality of films selected from these transparent conductive films, metal films, and alloy films can be laminated.
  • a direct current power source is connected to the anode 20 and the auxiliary wiring 30, and power is supplied to the organic EL display panel 110 from the outside.
  • FIG. 2 is a diagram illustrating an overall configuration of an organic EL display device according to one embodiment of the present invention.
  • the organic EL display device 100 includes an organic EL display panel 110 according to one embodiment of the present invention and a drive control unit 120 connected thereto, and is used for a display, a television, a mobile phone, and the like. It is done.
  • the drive control unit 120 is composed of four drive circuits 121 to 124 and a control circuit 125. In the actual organic EL display device 100, the arrangement and connection relationship of the drive control unit 120 with respect to the display panel 110 are not limited thereto.
  • 3 and 4 are cross-sectional views illustrating a method for manufacturing an organic EL display panel according to one embodiment of the present invention.
  • a substrate 10 having a drive circuit (not shown) composed of, for example, a TFT (Thin Film Transistor) and a capacitor is prepared.
  • a metal film made of Al and a transparent conductive film made of ITO are sequentially formed on the entire surface of the substrate 10 by using, for example, a vacuum deposition method or a sputtering method.
  • the metal film and the transparent conductive film are etched using a photolithography method to form the anode 20 at a predetermined position and the auxiliary wiring 30 at a predetermined position electrically insulated from the anode 20.
  • the anodes 20 are individually formed corresponding to the light emitting portions, and the auxiliary wirings 30 are arranged one-dimensionally along, for example, rows or columns of the light-emitting pixels arranged in a two-dimensional matrix. Formed.
  • a planarization layer may be provided on the substrate 10 as necessary, and the anode 20 and the auxiliary wiring 30 may be formed thereon.
  • a hole injection layer 40 is formed on the anode 20 and the auxiliary wiring 30 by reactive sputtering.
  • the target is metallic tungsten and a reactive sputtering method is performed.
  • Argon gas is introduced into the chamber as a sputtering gas, and oxygen gas is introduced into the chamber as a reactive gas.
  • argon is ionized by a high voltage and collides with the target.
  • metallic tungsten released by the sputtering phenomenon reacts with oxygen gas to become tungsten oxide, and the hole injection layer 40 is formed continuously on the anode 20 and the auxiliary wiring 30 of the substrate 10, and the intermediate product 110A is formed. Is obtained.
  • the film formation conditions are as follows: the substrate temperature is not controlled, the gas pressure (total pressure) is 4.8 Pa, the ratio of the oxygen gas partial pressure to the total pressure is 50%, and the input power per unit unit area (input power density) Of 1.4 W / cm 2 .
  • the hole injection layer 40 made of tungsten oxide formed under these conditions has an electron level formed on the surface thereof by a structure similar to an oxygen defect.
  • the intermediate product 110A is taken out from the chamber to the atmosphere.
  • gas molecules and the like are adsorbed on the surface.
  • impurity molecules in the chamber are adsorbed after film formation and before removal.
  • an ultraviolet light irradiation apparatus 200 including a metal halide lamp (model number UVL-3000M2-N) manufactured by USHIO INC. As a light source 201 was used. Details of the ultraviolet light irradiation apparatus 200 will be described later. Irradiation conditions are separately determined by another experiment using photoelectron spectroscopy, which will be described later, so that changes in the shape of a predetermined binding energy region in the photoelectron spectrum converge. In the present embodiment, the irradiation intensity is 155 mW / cm 2 and the irradiation time is 10 minutes.
  • the ultraviolet light irradiation can be applied in various gas atmospheres such as a reduced pressure atmosphere, an inert gas atmosphere, and a vacuum in addition to the air.
  • a reduced pressure atmosphere such as a reduced pressure atmosphere, an inert gas atmosphere, and a vacuum in addition to the air.
  • the cleaning method uses ultraviolet light having a wavelength that does not generate oxygen radicals.
  • performing in the atmosphere is advantageous in the manufacture of large panels as described above.
  • a negative photoresist 50A is applied to the entire surface.
  • a photomask 51 having a light-shielding portion at a position corresponding to the light-emitting portion and the connecting portion is placed on and placed on the negative photoresist 50A. Then, the photoresist 50A is exposed through the mask 51 using a photolithography method.
  • the ultraviolet light irradiation can also be applied to a hole injection layer made of a metal oxide that has undergone such a bank formation process.
  • the surface of the hole injection layer after the bank formation is irradiated with ultraviolet light, and organic molecules that are residues of the bank and the developer adsorbed on the surface of the hole injection layer are mainly removed.
  • the contact angle with the organic solvent applied as the upper layer changes.
  • the contact angle and bank shape may be adjusted based on the irradiation conditions.
  • a composition ink containing an amine-based organic molecular material is dropped onto the pixel opening 45 by, for example, a wet process using a spin coating method or an inkjet method, and the solvent is volatilized and removed. Thereby, the buffer layer 60 is formed.
  • a composition ink containing an organic light emitting material is dropped onto the pixel opening 45 on the surface of the buffer layer 60 by the same method to volatilize and remove the solvent. Thereby, the light emitting layer 70 is formed.
  • the formation method of the buffer layer 60 and the light emitting layer 70 is not limited to this, Methods other than a spin coat method and an inkjet method, for example, gravure printing method, dispenser method, nozzle coating method, intaglio printing, relief printing, etc. are well-known.
  • the ink may be dropped and applied by a method.
  • the electron injection layer 80 is continuously formed on the light emitting layer 70 and the hole injection layer 40 of the connection opening 35 by, for example, a vacuum deposition method.
  • a cathode 90 is formed on the electron injection layer 80 by the same method.
  • a sealing layer is further provided on the surface of the cathode 90 or the entire element is spatially isolated from the outside.
  • Sealing cans can be provided.
  • the sealing layer can be formed of a material such as SiN (silicon nitride) or SiON (silicon oxynitride), for example, and is provided so as to internally seal the element.
  • the sealing can can be formed of the same material as that of the substrate 10, for example, and a getter that adsorbs moisture and the like is provided in the sealed space.
  • the organic EL display panel 110 is completed through the above steps.
  • the manufacturing method of the organic EL display panel 110 described above includes a step of irradiating ultraviolet light having a predetermined wavelength after the formation of the hole injection layer 40 made of tungsten oxide. Thereby, the adsorbate can be removed from the surface of the hole injection layer 40 of the pixel portion and the wiring portion while maintaining the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer.
  • the period from the cleaning of the hole injection layer 40 in the pixel portion to the step of forming the buffer layer 60 and the step of cleaning the hole injection layer 40 from the cleaning in the wiring portion to the step of forming the electron injection layer 80 are concerned.
  • the level is continuously maintained in the atmosphere. Therefore, the hole injection capability to the buffer layer 60 is stably maintained in the pixel portion, and the ohmic connection capability to the electron injection layer 80 is stably maintained in the wiring portion. Is done. As a result, it is possible to stably manufacture the organic EL display panel 110 having a low driving voltage and a long lifetime.
  • the irradiation time and irradiation intensity of the ultraviolet light in the above-described ultraviolet light irradiation step are obtained from the condition that the change in the shape of the predetermined binding energy region in the photoelectron spectrum of the hole injection layer 40 converges, and the minimum necessary It is set to remove adsorbate to the maximum under the limited irradiation conditions. Thereby, it is possible to realize very stable hole injection efficiency of the pixel portion and Schottky ohmic connection of the wiring portion with a minimum cleaning process.
  • An ultraviolet light irradiation apparatus 200 shown in FIG. 5 is an apparatus for irradiating the intermediate product 110A of the organic EL display panel 110 with ultraviolet light, and emits ultraviolet light having a wavelength range of more than 184.9 nm and not more than 380 nm.
  • a control unit 204 that controls lighting.
  • the intermediate product 110A is obtained by, for example, forming the anode 20, the auxiliary wiring 30, and the hole injection layer 40 on the substrate 10, and the bank 50 and the buffer layer 60 are not formed.
  • the light source 201 is, for example, a straight tube type metal halide lamp, and is arranged so that the longitudinal direction thereof is the horizontal width direction of the intermediate product 110A.
  • the organic light source 201 can be driven at a low voltage and can realize excellent luminous efficiency.
  • the irradiation conditions such as the irradiation time and irradiation intensity of the ultraviolet light are the film formation conditions of the hole injection layer 40 such as the type of metal oxide, and the convergence of the shape of the photoelectron spectrum of the hole injection layer 40 described in this embodiment. Is set based on The irradiation conditions are set by the operator.
  • the setting of irradiation conditions may be automatically performed by the control unit 204.
  • the control unit 204 stores a database in which film formation conditions, irradiation time, and irradiation intensity are related, and the control unit 204 refers to the database based on film formation conditions input by an operator. Set the irradiation time and irradiation intensity.
  • the conveyance of the intermediate product 110A to the ultraviolet light irradiation target position is performed by, for example, the transfer conveyor 205.
  • the intermediate product 110A carried on the transport conveyor 205 from the transport upstream side (right side) is transported on the transport conveyor 205 and passes through the ultraviolet light irradiation target position.
  • a predetermined amount of ultraviolet light is irradiated onto the upper surface of the intermediate product 110A, that is, the upper surface of the hole injection layer 40.
  • the intermediate product 110A that has been irradiated with the ultraviolet light is carried out to the downstream side (left side).
  • the light source 201 is not limited to a metal halide lamp, and can emit ultraviolet light whose wavelength region is mainly greater than 184.9 nm and less than or equal to 380 nm (desirably greater than 253.7 nm and less than or equal to 380 nm). If it is.
  • an anode made of ITO and a hole injection layer made of tungsten oxide were laminated in a chamber of a sputter deposition apparatus. Then, it took out to air
  • the irradiation intensity was 155 mW / cm 2 .
  • non-irradiated sample a sample that is not irradiated with ultraviolet light
  • irradiated n-minute sample a sample that has been irradiated for n minutes
  • XPS X-ray photoelectron spectroscopy
  • the XPS spectrum generally reflects the elemental composition from the surface of the measurement object to a depth of several nanometers, and the electronic state such as the bonding state and valence. For this reason, if an element that is not originally contained in tungsten oxide is observed, there is a high possibility that it is an adsorbate.
  • molecules adsorbed by exposure to the atmosphere or adsorbed during the manufacturing process are mainly molecules containing carbon in addition to water molecules and oxygen molecules. Therefore, the adsorbate removal effect can be known by observing a change in the concentration of carbon on the surface of the hole injection layer due to ultraviolet light irradiation.
  • XPS measurement conditions are as follows. During the measurement, no charge up occurred.
  • Table 1 shows the composition ratio of W and C of each sample.
  • the UPS (ultraviolet photoelectron spectroscopy) measurement was performed on the aforementioned non-irradiated sample, irradiated 1 minute sample, and irradiated 10 minute sample.
  • the UPS spectrum reflects the electronic state from the valence band to the Fermi surface (Fermi level) from the surface of the measurement object to a depth of several nm.
  • tungsten oxide or molybdenum oxide has a structure similar to oxygen vacancies on the surface, a raised spectral shape near the Fermi surface on the side of lower binding energy than the upper end of the valence band (hereinafter referred to as “protrusion near the Fermi surface”).
  • Non-Patent Document 2 (Referred to as “structure”) (Non-Patent Document 2). Therefore, by observing the change of the raised structure in the vicinity of the Fermi surface due to ultraviolet light irradiation, it is possible to investigate the influence of the ultraviolet light irradiation on the structure similar to the surface oxygen defect.
  • the raised structure in the vicinity of the Fermi surface is in a binding energy region 1.8 to 3.6 eV lower than the upper end of the valence band (the lowest binding energy in the valence band). To position.
  • UPS measurement conditions are as follows. Note that no charge-up occurred during the measurement.
  • FIG. 6 shows a UPS spectrum in the vicinity of the Fermi surface of each sample.
  • the origin of the binding energy on the horizontal axis was taken at the Fermi level of the measuring device (corresponding to the Fermi level of the anode), and the left direction was taken as a positive direction.
  • the raised structure near the Fermi surface shown by (I) in the figure can be clearly confirmed. Therefore, it can be seen that a structure similar to an oxygen defect that affects the hole injection capability is maintained even when irradiated with ultraviolet light.
  • UV ozone cleaning was performed. Specifically, an anode made of ITO and a hole injection layer made of tungsten oxide are laminated on the substrate in the chamber of the sputter deposition apparatus, and then taken out from the chamber to the atmosphere, and the hole injection layer is made by the UV ozone apparatus. The surface was subjected to UV ozone cleaning, and the presence of a raised structure near the Fermi surface was confirmed by UPS measurement.
  • FIG. 7 shows a UPS spectrum in the vicinity of the Fermi surface of the hole injection layer made of tungsten oxide that has been subjected to UV ozone cleaning for 3 minutes.
  • the UPS spectrum of the non-irradiated sample in FIG. 6 is also shown.
  • the raised structure near the Fermi surface cannot be confirmed at all. That is, it can be seen that the structure similar to the oxygen defect on the surface of the hole injection layer was almost lost by the UV ozone cleaning.
  • the structure similar to the oxygen defect is not lost like the UV ozone cleaning, that is, the oxygen defect acting on the hole injection ability and the Schottky ohmic connection ability. It is clear that a similar structure is maintained even when irradiated with ultraviolet light.
  • the intensities of the C1s spectra are almost the same in the samples with an irradiation time of 1 minute or more, and therefore, it is considered that the adsorbate removal effect is almost saturated after the irradiation time of 1 minute or more.
  • the C1s spectrum of the adsorbed material has a low absolute intensity as shown in FIG. Therefore, there is a possibility that it is not very suitable for determining the saturation of the adsorbate removal effect. Therefore, another method for judging the saturation of the adsorbate removal effect using a relatively strong spectrum will be described.
  • the first method is to make a determination based on a change in the shape of the region corresponding to the vicinity of the upper end of the valence band in the UPS spectrum, that is, a change in the shape of the region having a binding energy of 4.5 to 5.4 eV in the UPS spectrum.
  • the peak or shoulder structure present in this region corresponds to a 2p orbital unshared electron pair of oxygen atoms constituting tungsten oxide.
  • FIG. 9 shows the UPS spectrum. UPS measurement was performed on each of the non-irradiated sample, the irradiated 1 minute sample, and the irradiated 10 minute sample. The photoelectron intensity was normalized with a gentle peak near a binding energy of 6.5 eV. According to FIG. 9, the irradiation 1 minute sample and the irradiation 10 minute sample have clear peaks as shown by (II) in the figure that do not exist in the region of the binding energy of 4.5 to 5.4 eV. Is recognized. Further, the peak shapes of the irradiated 1 minute sample and the irradiated 10 minute sample are substantially the same.
  • the second is a change in the shape of the W4f spectrum of XPS measurement due to irradiation with ultraviolet light.
  • FIG. 10 shows W4f spectra of the non-irradiated sample, the irradiated 1 minute sample, the irradiated 10 minute sample, the irradiated 60 minute sample, and the irradiated 120 minute sample. It is standardized by the maximum and minimum values of the spectrum.
  • the peak shape is sharper (the half width of the peak is narrower) in the irradiated sample than in the non-irradiated sample. Furthermore, the peak shape is slightly sharper for the irradiated 10 minute sample than for the irradiated 1 minute sample, whereas the irradiated 10 minute sample, irradiated 60 minute sample, and irradiated 120 minute sample are almost completely overlapped. It can be seen that the change in the shape of the spectrum almost converged after 10 minutes of irradiation.
  • the change in the shape of the W4f spectrum depending on the irradiation time can be explained as follows, for example.
  • W4f of the inner shell orbit shifts accordingly to the low binding energy side.
  • a part of hexavalent tungsten atoms in the surface layer of tungsten oxide is changed to a low valence such as pentavalent by the influence of adsorbate.
  • the irradiation conditions when the metal oxide is tungsten oxide can be determined as follows.
  • the irradiation intensity is arbitrarily determined until the change in the shape of the narrow scan spectrum of W4f or O1s by XPS measurement or the shape of the binding energy 4.5 to 5.4 eV in the UPS spectrum converges. Time is measured and this time is defined as the irradiation time.
  • the electron level formed by the structure similar to the oxygen defect acting on the hole injection capability and the Schottky ohmic connection capability is continuously at least after the surface cleaning until the upper layer is stacked on the surface. Maintained.
  • the grounds are as follows.
  • the UPS spectrum shown in FIG. 6 was measured two days after the irradiation with ultraviolet light. That is, there is no difference in the raised structure in the vicinity of the Fermi surface in the UPS spectrum between the non-irradiated sample and the sample of each irradiation time that passed in the atmosphere for 2 days after irradiation, and the raised structure is clear in both cases. .
  • the measurement was performed 2 hours and 1 day after the irradiation with ultraviolet light, and in this case, the raised structure near the Fermi surface was clear as in FIG. That is, it was confirmed that an electron level formed by a structure similar to an oxygen defect was maintained in the atmosphere for at least two days after irradiation.
  • This period of 2 days is sufficiently longer than the period (usually within a few hours) from the cleaning of the hole injection layer by ultraviolet light irradiation until the buffer layer or electron injection layer is laminated on the surface (usually within a few hours).
  • the buffer layer and the electron injection layer cannot be formed after this period.
  • the organic EL element constituting the organic EL display panel according to the present embodiment in which the hole injection layer is cleaned by ultraviolet light irradiation has better characteristics than the organic EL element constituting the organic EL display panel produced without irradiation. . This was confirmed by the following experiment.
  • a hole-only device was fabricated as an evaluation device.
  • the carriers for forming a current are both holes and electrons, and the electric current of the organic EL element is reflected in addition to the hole current.
  • the hole-only device since the injection of electrons from the cathode is inhibited, the electron current hardly flows, the total current is composed only of the hole current, and the carrier can be regarded as only the hole. Therefore, the hole-only element is suitable for evaluating the hole injection efficiency.
  • the hole-only element 1 ⁇ / b> B produced was formed by depositing an anode 2 made of an ITO thin film having a thickness of 50 nm on a substrate 9 by a sputtering film forming method, and forming a thickness of 30 nm on the anode 2.
  • the hole injection layer 4 made of tungsten oxide is formed by a predetermined sputtering film formation method so as to have an electron level formed by a structure similar to an oxygen defect on the surface, and an amine-based organic polymer having a thickness of 20 nm.
  • the ultraviolet light irradiation As the hole injection layer, after the film is formed and taken out from the chamber of the sputtering film forming apparatus to the atmosphere (at this time, the adsorbed material is already adsorbed), the ultraviolet light irradiation according to the present embodiment is performed. Two types, one for performing irradiation time (10 minutes) and one for not performing ultraviolet light irradiation, were prepared, and each produced a hole-only element 1B.
  • the former hole-only element 1B is referred to as “irradiated HOD”
  • the latter hole-only element 1B is referred to as “irradiation-less HOD”.
  • Each produced hole-only element 1B was connected to DC power supply DC, and the voltage was applied.
  • the applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • the “drive voltage” here is an applied voltage at a current density of 0.4 mA / cm 2 .
  • Table 2 shows drive voltage values of the respective hole-only devices 1B obtained by the experiment.
  • FIG. 12 is a current density-applied voltage curve of each hole-only device 1B.
  • the vertical axis represents current density (mA / cm 2 )
  • the horizontal axis represents applied voltage (V).
  • the HOD with irradiation has a lower driving voltage and the rise of the current density-applied voltage curve is faster than the HOD without irradiation, and a high current density is obtained with a low applied voltage. Yes. That is, the HOD with irradiation has better hole injection efficiency than the HOD without irradiation.
  • the above is the verification regarding the hole injection efficiency from the hole injection layer to the buffer layer in the hole-only device 1B.
  • the effect of the removal of the adsorbate by the ultraviolet light irradiation on the hole injection efficiency from the hole injection layer to the buffer layer. Is essentially the same as the hole-only device 1B in the organic EL device constituting the organic EL display panel.
  • an organic EL element 1 was produced as an evaluation device.
  • the organic EL element 1 has an anode 2 made of an ITO thin film having a thickness of 50 nm formed on a substrate 10, and a hole injection layer 4 made of tungsten oxide having a thickness of 30 nm on the anode 2.
  • Buffer layer 6A made of TFB, which is an amine organic polymer having a thickness of 20 nm
  • light emitting layer 6B made of F8BT which is an organic polymer having a thickness of 70 nm
  • electron injection layer 8A made of barium having a thickness of 5 nm, and aluminum having a thickness of 100 nm
  • the cathode 8B made from the above was sequentially laminated.
  • an organic EL element 1 was produced using a hole injection layer that was irradiated with ultraviolet light and a hole injection layer that was not irradiated with ultraviolet light.
  • the former organic EL element 1 is referred to as “irradiated BPD”
  • the latter organic EL element 1 is referred to as “irradiated BPD”.
  • the manufacturing method is the same except that the hole injection layer of the non-irradiated BPD is not irradiated with ultraviolet light.
  • Each produced organic EL element 1 was connected to a DC power source, and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • the “drive voltage” here is an applied voltage at a current density of 10 mA / cm 2 .
  • Table 3 shows drive voltage values of the organic EL elements 1 obtained by the experiment.
  • FIG. 14 is a current density-applied voltage curve of each organic EL element 1.
  • the vertical axis represents current density (mA / cm 2 )
  • the horizontal axis represents applied voltage (V).
  • the irradiated BPD has a lower driving voltage, the current density-applied voltage curve rises faster, and a higher current density can be obtained at a lower applied voltage than the non-irradiated BPD. Yes. This is the same tendency as HOD with irradiation and HOD without irradiation.
  • the effect of the removal of the adsorbate by the ultraviolet light irradiation on the surface of the hole injection layer on the hole injection efficiency from the hole injection layer to the buffer layer is similar to the case of the hole-only device 1B in the organic EL device 1 as well. It was confirmed that it was the same.
  • the organic EL element 1 when predetermined ultraviolet light irradiation is performed after the formation of the hole injection layer according to the present embodiment, the adsorbate on the surface of the hole injection layer is removed to the maximum, and oxygen The electron levels formed by the defect-like structure are not lost by irradiation, and therefore, adsorbates that cause an increase in driving voltage and a decrease in lifetime can be removed without impairing the hole injection capability. It was confirmed that the hole injection efficiency was improved, and thereby excellent device characteristics were realized.
  • the adsorbate of the hole injection layer is removed by irradiating ultraviolet light having a predetermined wavelength in the atmosphere after the hole injection layer is formed, and the removed hole injection layer is used.
  • the organic EL display panel 110 can be driven at a lower voltage than an organic EL display panel that is not removed.
  • the wavelength of the ultraviolet light was defined by the following consideration.
  • the wavelength of ultraviolet light for generating ozone (O 3 ) in a gas atmosphere containing oxygen molecules (O 2 ) such as in the air is 184.9 nm.
  • Oxygen molecules are decomposed by ultraviolet light having a wavelength of 184.9 nm by the following reaction, and the generated oxygen radicals (O) and other oxygen molecules are combined to generate ozone.
  • the wavelength of ultraviolet light for further decomposition of ozone and generation of oxygen radicals is 253.7 nm.
  • UV ozone cleaning oxygen radicals are generated by ultraviolet light having these wavelengths of 184.9 nm and 253.7 nm, and their strong oxidizing action is used to remove adsorbates. For this reason, there is a possibility that the electron levels formed by a structure similar to oxygen defects, like the hole injection layer that has been subjected to UV ozone cleaning in the above-described experiment, may disappear.
  • ultraviolet light having a wavelength region of more than 184.9 nm is used, which has a low possibility of decomposing oxygen molecules and generating oxygen radicals. Furthermore, in order to prevent generation of oxygen radicals due to decomposition of a slight amount of ozone present in the atmosphere, it is desirable to use ultraviolet light having a wavelength range of more than 253.7 nm.
  • the actually used metal halide lamp has a spectral distribution as shown in FIG.
  • ramp which does not contain the wavelength below 253.7nm as much as possible was employ
  • the intensity of a wavelength of 253.7 nm or less with respect to the maximum intensity of this metal halide lamp (wavelength of around 380 nm) is suppressed to a few percent level at most.
  • the energy of ultraviolet light with a wavelength of 184.9 nm corresponds to 647 kJ / mol
  • the energy of ultraviolet light with a wavelength of 253.7 nm corresponds to 472 kJ / mol. Comparing these values with Table 4, it can be seen that the ultraviolet light in the wavelength region of the present embodiment can break many interatomic bonds found in the adsorbate. In particular, as will be described later, in the case of chemical adsorption, the adsorbate is considered to be mainly a single bond with the oxygen atom of tungsten oxide.
  • the removal efficiency of adsorbate by ultraviolet light irradiation of the present embodiment is essentially worse than that by UV ozone cleaning. This is because in the UV ozone cleaning, the adsorbed material whose bond has been broken is immediately oxidized to oxygen radicals and easily released as molecules such as CO 2 and H 2 O. However, as described above, UV ozone cleaning is not suitable for cleaning a hole injection layer made of a metal oxide such as tungsten oxide.
  • the possibility that the interatomic bond of the metal oxide is broken by the energy of ultraviolet light in the wavelength region of the present embodiment is low.
  • the binding energy between oxygen atoms and tungsten atoms in tungsten oxide is 672 kJ / mol (corresponding to a wavelength of 178 nm), and it is difficult to cut with ultraviolet light in the wavelength region of this embodiment. .
  • This is in contrast to the aforementioned sputter etching with argon ions in vacuum. That is, if the ultraviolet light of this embodiment is used, it remains in a chemically stable state without breaking and chemically activating the interatomic bond of the hole injection layer made of a metal oxide such as tungsten oxide. The adsorbate can be removed.
  • ultraviolet light having a wavelength of more than 184.9 nm, preferably, a wavelength of more than 253.7 nm is used.
  • ultraviolet light (wavelength of 380 nm or less) is used instead of visible light.
  • the electron level formed by the structure similar to oxygen defects on the surface of the hole injection layer is continuously maintained even after irradiation with ultraviolet light, and thus the hole injection capability to the buffer layer is also stably maintained.
  • the Schottky ohmic connection capability with the electron injection layer can be stably maintained, and the organic EL display panel 110 with a low driving voltage can be stably manufactured. This maintainability is considered below.
  • the 5d orbitals of these tungsten atoms may be expected to be more stable when the adsorbate is chemically adsorbed than when they exist as bonding orbitals between 5d orbitals or as 5d orbitals of single atoms. Not, but not always.
  • a raised structure near the Fermi surface corresponding to the electron level is confirmed.
  • Non-Patent Document 4 reports that when a tungsten trioxide single crystal is cleaved in a vacuum to produce a clean (001) plane, some of the outermost oxygen atoms are released into the vacuum. . Further, in Non-Patent Document 4, by the first principle calculation, in the (001) plane, rather than all tungsten atoms on the outermost surface are terminated with oxygen atoms, some tungsten atoms are periodically formed as shown in FIG. The structure in which (a) is not terminated is more stable in terms of energy. This is because when all the outermost tungsten atoms are terminated with oxygen atoms, the electrical repulsive force between the terminal oxygen atoms becomes large, which is rather unfavorable. It is reported that it is stabilized. That is, in the (001) plane, the surface having a structure (a) similar to an oxygen defect is more stable.
  • an octahedral structure having six oxygen atoms coordinated to one tungsten atom as a vertex is shown in an orderly arrangement like rhenium trioxide.
  • the octahedrons are arranged slightly distorted.
  • the reason why the electron level formed by the structure similar to the oxygen defect on the surface of the hole injection layer is continuously maintained after the ultraviolet light irradiation of this embodiment is, for example, the following mechanism: Conceivable.
  • the hole injection layer made of tungsten oxide of this embodiment has a (001) facet on the surface at least locally immediately after film formation, and is surrounded by the terminal oxygen atom (b) and it as shown in FIG. It is thought to have an unterminated tungsten atom (a). This is because the (001) plane is a stable structure. Then, this surface is exposed to impurity molecules in the chamber in the sputter deposition apparatus and molecules in the atmosphere after film formation.
  • an unsaturated coordination metal atom such as (a) when an unsaturated coordination metal atom such as (a) exists on the surface, it may be terminated by a chemical adsorption reaction with a water molecule or an organic molecule.
  • the peak that should be located near the binding energy of 31 to 33 eV derived from the bond between the tungsten atom and the carbon atom is not confirmed. Since only the peak derived from the bond with the atom is confirmed, it is highly possible that the atom of the adsorbed molecule directly chemically bonded to the tungsten atom in (a) is an oxygen atom.
  • oxygen molecules (b) which are the peripheral terminals, are chemically adsorbed by water molecules and organic molecules by causing an addition reaction.
  • This adsorption itself is relatively easy because there are almost no obstruction factors such as repulsive force around it.
  • a terminal group of an organic molecule consisting of several atoms or more exists in the immediate vicinity of (a). It can be a barrier. For this reason, it is expected that even when molecules are adsorbed to (b), molecular adsorption to (a) is still relatively difficult to occur.
  • the hole injection layer made of tungsten oxide according to the present embodiment has a local structure made up of terminal oxygen atoms (b) and unterminated tungsten atoms (a) surrounded by them as shown in FIG.
  • a terminal oxygen atoms
  • sucked with respect to (b) is liberated by irradiating an ultraviolet light, and only a hydroxyl group remains after that.
  • the electronic state which acts on the hole injection capability formed by the structure (a) similar to the oxygen defect on the surface is continuously maintained without being influenced by the ultraviolet light irradiation of the present embodiment after the film formation.
  • only the adsorbate is removed by ultraviolet light irradiation.
  • tungsten oxide constituting the hole injection layer is formed under predetermined film formation conditions so that the hole injection layer has the occupied level in the vicinity of the Fermi surface, and the hole injection layer and the buffer layer And the organic EL display panel 110 can be driven at a low voltage.
  • a DC magnetron sputtering apparatus As a tungsten oxide film forming method for obtaining such performance, a DC magnetron sputtering apparatus is used, the target is metallic tungsten, the gas in the chamber is composed of argon gas and oxygen gas, and the gas pressure (total pressure) is More than 2.7 Pa and not more than 7.0 Pa, and the ratio of the oxygen gas partial pressure to the total pressure is 50% or more and 70% or less, and the input power (input power density) per target unit area is 1 W / cm 2. It is considered that it is preferable to set the film forming conditions to 2.8 W / cm 2 or less and form the film by the reactive sputtering method.
  • the hole-only element 1B shown in FIG. 11 was used as an evaluation device.
  • the hole injection layer was formed by a reactive sputtering method using a DC magnetron sputtering apparatus.
  • the gas in the chamber was composed of at least one of argon gas and oxygen gas, and metallic tungsten was used as the target.
  • the substrate temperature was not controlled, and the argon gas partial pressure, oxygen gas partial pressure, and total pressure were adjusted by the flow rate of each gas.
  • the film formation conditions are such that the total pressure, the oxygen gas partial pressure, and the input power are changed, whereby a hole-only layer including a hole injection layer formed under each film formation condition.
  • Element 1B (element Nos. 1 to 14) was obtained.
  • the oxygen gas partial pressure is expressed as a ratio (%) to the total pressure.
  • Table 6 shows the relationship between input power and input power density of the DC magnetron sputtering apparatus.
  • Each produced hole-only element 1B was connected to DC power supply DC, and the voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • the “drive voltage” is an applied voltage at a current density of 10 mA / cm 2 .
  • the hole conduction efficiency of the hole injection layer influences the element characteristics in each experiment of the present embodiment in addition to the hole injection efficiency from the hole injection layer to the buffer layer.
  • the evaluation result of the energy diagram described later that at least the hole injection barrier between the hole injection layer and the buffer layer is strongly reflected in the characteristics of the element.
  • Table 7 shows the values of the driving voltage for each film-forming condition of the total pressure, oxygen gas partial pressure, and input power of each hole-only device 1B obtained by the experiment.
  • element No. of each hole-only element 1B. Is indicated by a boxed number.
  • FIG. 17A to 17C are graphs summarizing the film formation condition dependence of the drive voltage of each hole-only element 1B.
  • Each point in FIG. 17A corresponds to the element No. from left to right.
  • the drive voltages of 4, 10, and 2 are represented.
  • Each point in FIG. 17B is an element No. from left to right.
  • the drive voltage of 13, 10, 1 is represented.
  • each point in FIG. The drive voltages of 14, 2, and 8 are represented.
  • the dependence of the driving voltage on the total pressure is within the range where the total pressure is at least 2.7 Pa and not more than 4.8 Pa under the conditions of 50% oxygen gas partial pressure and 500 W input power.
  • FIG. 5 a clear reduction in drive voltage was confirmed. It was found by another experiment that this tendency continues at least until the total pressure is 7.0 Pa or less. Therefore, it can be said that the total pressure is desirably set in the range of more than 2.7 Pa and 7.0 Pa or less.
  • the dependency of the driving voltage on the oxygen gas partial pressure is at least an oxygen gas partial pressure of 50% to 70% under the conditions of a total pressure of 2.7 Pa and an input power of 500 W.
  • the driving voltage decreased with the increase of the oxygen gas partial pressure.
  • the oxygen gas partial pressure is preferably 50% or more and the upper limit is preferably suppressed to about 70%.
  • element No. 14 satisfies all the desirable conditions of the total pressure, oxygen gas partial pressure, and input power described above. On the other hand, element No. 1 and 7 do not partially satisfy the above desirable conditions.
  • the element No. No. 14 film forming conditions are film forming conditions A and element no. No. 1 film formation condition B, element No.
  • the film formation condition 7 is referred to as film formation condition C.
  • element no. 1 is HOD-B
  • element no. 7 was also described as HOD-C.
  • HOD-A has the fastest rise in current density-applied voltage curve compared to HOD-B and HOD-C, and a high current density is obtained at the lowest applied voltage. Accordingly, it is estimated that HOD-A is superior in hole injection efficiency from the hole injection layer to the buffer layer compared to HOD-B and HOD-C. Note that HOD-A is an element having the lowest drive voltage among the hole-only elements 1B.
  • each organic EL element 1 shown in FIG. 13 was produced using the hole injection layer of film-forming conditions A, B, and C.
  • the produced organic EL elements 1 under the film forming conditions A, B, and C were connected to a DC power source DC, and a voltage was applied.
  • a current density-applied voltage curve at this time is shown in FIG.
  • the vertical axis represents current density (mA / cm 2 )
  • the horizontal axis represents applied voltage (V).
  • the organic EL element 1 under the film forming condition A is BPD-A
  • the organic EL element 1 under the film forming condition B is BPD-B
  • the organic EL element 1 under the film forming condition C is used.
  • BPD-C the organic EL element 1 under the film forming condition
  • BPD-A has the fastest rise of the current density-applied voltage curve compared to BPD-B and BPD-C, and a high current density is obtained at the lowest applied voltage. .
  • This is the same tendency as HOD-A, HOD-B, and HOD-C, which are hole-only elements having the same film forming conditions.
  • a light emission intensity-current density curve showing the relationship of the light emission intensity according to the change in current density is shown in FIG.
  • the vertical axis represents emission intensity (cd / A)
  • the horizontal axis represents current density (mA / cm 2 ). From this, it can be seen that the emission intensity of BPD-A is the highest in the range of the measured current density.
  • tungsten oxide constituting the hole injection layer is made of a DC magnetron sputtering apparatus, the target is metallic tungsten, the substrate temperature is not controlled, and the gas in the chamber is argon gas and oxygen gas.
  • the total pressure is more than 2.7 Pa and 7.0 Pa or less, the ratio of the oxygen gas partial pressure to the total pressure is 50% or more and 70% or less, and the input power density is 1 W / cm 2 or more and 2
  • the ratio of the oxygen gas partial pressure to the total pressure is 50% or more and 70% or less
  • the input power density is 1 W / cm 2 or more and 2
  • the conditions of input electric power were again expressed by input electric power density based on Table 6.
  • the input power is adjusted so that the input power density satisfies the above conditions according to the target size.
  • a hole injection layer that realizes the organic EL element 1 having excellent low voltage driving and high luminous efficiency can be obtained. Note that the total pressure and oxygen partial pressure do not depend on the size of the apparatus or the target.
  • the substrate temperature is not intentionally set in a sputtering apparatus arranged in a room temperature environment. Therefore, the substrate temperature is room temperature at least before film formation. However, the substrate temperature may increase by several tens of degrees Celsius during film formation.
  • the organic EL display panel 110 of the present embodiment has a hole injection layer produced under the film forming condition A, and has an occupied level near the Fermi surface described above. This will be discussed later.
  • the tungsten oxide constituting the hole injection layer of the organic EL display panel 110 of the present embodiment has an occupied level near the Fermi surface.
  • the occupied level in the vicinity of the Fermi surface is formed by adjusting the film forming conditions shown in the previous experiment. Details are described below.
  • the sample for photoelectron spectroscopy measurement was produced on each film-forming condition.
  • a tungsten oxide layer 12 (corresponding to a hole injection layer) having a thickness of 10 nm is formed on a conductive silicon substrate 11 by the reactive sputtering method.
  • a film was formed.
  • the sample 1A under the film formation condition A will be referred to as sample A
  • the sample 1A under the film formation condition B as sample B
  • sample 1A under the film formation condition C as sample C.
  • Samples A, B, and C were all deposited in a sputtering apparatus and then transferred into a glove box connected to the sputtering apparatus and filled with nitrogen gas, and kept in a state where they were not exposed to the atmosphere. . And it enclosed with the transfer vessel in the said glove box, and mounted
  • UPS ultraviolet photoelectron spectroscopy
  • the UPS spectrum reflects the state of the occupied level such as the valence band from the surface of the measurement object to a depth of several nm. Therefore, in this experiment, the state of the occupied level in the surface layer of the tungsten oxide layer 12 was observed using UPS.
  • UPS measurement conditions are as follows. In Samples A, B, and C, since the conductive silicon substrate 11 was used, no charge-up occurred during measurement.
  • FIG. 22 shows a UPS spectrum of the tungsten oxide layer 12 of Sample A.
  • the origin of the binding energy on the horizontal axis is the Fermi level of the conductive silicon substrate 11, and the left direction is the positive direction.
  • the UPS spectrum shown by tungsten oxide the largest and steep rise is uniquely determined.
  • a tangent line passing through the rising inflection point is defined as a line (i), and an intersection with the horizontal axis is defined as a point (iii).
  • the UPS spectrum of tungsten oxide is divided into a region (x) located on the high bond energy side from the point (iii) and a region (y) located on the low bond energy side.
  • the ratio of the number of tungsten atoms to oxygen atoms in samples A, B, and C is approximately 1: 3.
  • This composition ratio was determined by X-ray photoelectron spectroscopy (XPS). Specifically, using the photoelectron spectrometer, as in the UPS measurement, the tungsten oxide layer 12 is subjected to XPS measurement without exposure to the atmosphere, and tungsten and oxygen at a depth of several nm from the surface of the tungsten oxide layer 12 are measured. The composition ratio was estimated. In Table 8, the film forming conditions for the tungsten oxide layer 12 are also shown.
  • the tungsten oxide layer 12 has an atomic arrangement based on tungsten trioxide, that is, six oxygen atoms are 1 in at least a range of several nm from the surface. It is considered that the basic structure has a structure in which octahedron bonds to two tungsten atoms and the octahedrons share an apex oxygen atom. Therefore, the region (x) in FIG. 22 has the above basic structure that the tungsten trioxide crystal or the amorphous structure in which the order of the crystal is disordered (however, the bond is not broken and the above basic structure is maintained). Is an area corresponding to a so-called valence band. In addition, this inventor measured the X-ray absorption fine structure (XAFS) of the tungsten oxide layer 12, and confirmed that the said basic structure was formed in any of the samples A, B, and C.
  • XAFS X-ray absorption fine structure
  • the region (y) in FIG. 22 corresponds to the band gap between the valence band and the conduction band, but as this UPS spectrum shows, this region is different from the valence band in tungsten oxide. It is known that there may be a number of occupied levels. This is a level derived from another structure different from the above basic structure, and is a so-called inter-gap level (in-gap state or gap state).
  • FIG. 23 shows UPS spectra in the region (y) of each tungsten oxide layer 12 in Samples A, B, and C.
  • the spectrum intensity shown in FIG. 23 was normalized by the peak top value of the peak (ii) located 3-4 eV higher than the point (iii) in FIG.
  • FIG. 23 also shows the point (iii) at the same horizontal axis position as the point (iii) in FIG.
  • the horizontal axis is expressed as a relative value (relative binding energy) with respect to the point (iii), and the binding energy decreases from left to right.
  • tungsten oxide having a structure that is raised (not necessarily having a peak shape) in a region of a binding energy that is about 1.8 to 3.6 eV lower than the point (iii) in the UPS spectrum is formed as a hole.
  • the organic EL display panel 110 can exhibit excellent hole injection efficiency.
  • a region having a binding energy lower by about 2.0 to 3.2 eV from the point (iii) is a region where the raised structure is relatively easy to confirm and the raised portion is relatively steep. It can be said that it is particularly important.
  • the raised structure in the UPS spectrum is referred to as “a raised structure near the Fermi surface”.
  • the occupied level corresponding to the raised structure in the vicinity of the Fermi surface is the aforementioned “occupied level in the vicinity of the Fermi surface”.
  • the UPS spectrum shown in FIG. 23 is subjected to two-term smoothing (with a smoothing factor of 1) 11 times, and thereafter, differential processing by the central difference method is performed. went. This is to smooth the variation factors such as background noise during UPS measurement, to smooth the differential curve, and to clarify the following discussion.
  • the differential value is 0 in the region (v) from the binding energy measurable by the photoelectron spectrometer to the point (iv).
  • the differential value increases almost at the rate of increase toward the high binding energy side. It only increases gradually.
  • the shapes of the differential curves of the samples B and C in the regions (v) and (vi) are almost similar to the UPS spectra of the samples B and C shown in FIG. Therefore, it can be said that the shape of the UPS spectrum and its differential curve in the regions (v) and (vi) of the samples B and C are exponential shapes.
  • the tungsten oxide layer 12 of the sample A shows a steep rise from the vicinity of the point (iv) toward the high binding energy side, and the shape of the differential curve in the regions (v) and (vi) is exponential.
  • the shape of the curve is clearly different. It is confirmed that such a sample A has a raised structure in the vicinity of the Fermi surface, which begins to rise near the point (iv) in the spectrum before differentiation in FIG. 23 and is different from the exponential spectrum shape. it can.
  • the characteristic of Sample A is that, in other words, the occupied level near the Fermi surface exists in the range of about 1.8 to 3.6 eV lower than the lowest binding energy in the valence band. In the range of approximately 2.0 to 3.2 eV lower than the lowest binding energy, the raised structure near the Fermi surface corresponding to this range can be clearly confirmed by the UPS spectrum.
  • the raised structure in the vicinity of the Fermi surface of the tungsten oxide layer 12 of Sample A is less clear than before exposure to the atmosphere, which is considered to be because a large amount of impurity molecules were adsorbed during the process of taking out into the atmosphere. .
  • the adsorbate is removed from the surface of the tungsten oxide layer 12 of the sample A, and thereafter the raised structure in the vicinity of the Fermi surface is satisfactorily maintained. Is as already described.
  • the raised structure near the Fermi surface became clear as before the exposure to the atmosphere, and remained clear after that. confirmed.
  • FIG. 26 is an XPS spectrum of the tungsten oxide layer 12 of sample A after the atmospheric exposure.
  • the UPS spectrum (same as FIG. 22) of the tungsten oxide layer 12 of Sample A was overwritten.
  • XPS measurement conditions are the same as the UPS measurement conditions described above, except that the light source is Al K ⁇ rays. However, the interval between measurement points was set to 0.1 eV.
  • the point (iii) in the figure is the same horizontal axis position as that in FIG. 22, and the horizontal axis indicates the relative binding energy with respect to the point (iii) as in FIG. Further, the line corresponding to (i) of FIG. 22 in the XPS spectrum is indicated by (i) ′ in FIG.
  • the raised structure in the vicinity of the Fermi surface in the tungsten oxide layer 12 of Sample A is approximately 1.8 lower than the lowest binding energy in the valence band in the XPS spectrum as in the case of the UPS spectrum. Within the range of ⁇ 3.6 eV, the existence of a considerably large raised structure can be clearly confirmed. In another experiment, a raised structure near the Fermi surface was also confirmed in the spectrum of hard X-ray photoelectron spectroscopy.
  • the configuration of the organic EL element 1 shown in FIG. 13 (a configuration in which an anode made of ITO and a hole injection layer made of tungsten oxide are sequentially laminated on one surface of the substrate 10).
  • UPS and XPS measurement was performed using the sample having the above, charge-up occurred during the measurement of the tungsten oxide layer under the deposition conditions B and C.
  • the absolute value of the binding energy indicated by each occupied level of the hole injection layer (for example, the value of the binding energy when the Fermi level of the photoelectron spectrometer itself is used as the origin) ) May differ from that of the tungsten oxide layer 12 of the sample 1A, but at least in the range from the band gap to the lowest binding energy in the valence band, a spectrum having the same shape as the sample 1A is obtained. Yes.
  • the bond trajectory between 5d orbitals of adjacent tungsten atoms formed by depletion of oxygen atoms, or the 5d orbital of tungsten atoms alone existing in the film surface or in the film without being terminated by oxygen atoms It is presumed that the occupied level near the Fermi surface is derived. If these 5d orbitals are in a semi-occupied or non-occupied state, it is assumed that when they come into contact with organic molecules, electrons can be extracted from the highest occupied orbitals of organic molecules for mutual energy stabilization. Is done.
  • tungsten oxide a semi-occupied 5d orbital of a single tungsten atom having a lower binding energy than the bonding orbital between adjacent 5d orbitals of tungsten atoms or a structure similar thereto occupies near the Fermi surface. I think that it corresponds to a level.
  • FIG. 27 is an energy diagram at the interface between the ⁇ -NPD layer and the tungsten oxide layer having an occupied level near the Fermi surface of the present invention.
  • the lowest binding energy in the valence band (denoted as “the upper end of the valence band” in the figure) and the occupancy quasi near the Fermi surface.
  • the lowest binding energy (denoted as “in-gap state upper end” in the figure) at the occupied level in the vicinity of the Fermi surface, corresponding to the rising position of the position.
  • the upper end of the valence band corresponds to the point (iii) in FIG. 22
  • the upper end of the in-gap state corresponds to the point (iv) in FIG.
  • the binding energy of the highest occupied orbit of ⁇ -NPD is the binding energy at the peak rising position by the highest occupied orbit in the UPS spectrum, in other words, the lowest in the highest occupied orbit of ⁇ -NPD. Binding energy.
  • the tungsten oxide layer formed on the ITO substrate is moved back and forth between the photoelectron spectrometer and the ultra-high vacuum deposition apparatus connected to the apparatus, and UPS measurement and ⁇ -NPD are performed.
  • the energy diagram of FIG. 27 was obtained by repeating ultra-high vacuum deposition. Since no charge-up was confirmed during the UPS measurement, in FIG. 27, the binding energy on the vertical axis is expressed as an absolute value with the Fermi level of the ITO substrate as the origin.
  • FIG. 27 shows that the interface state connection is realized by the interaction between tungsten oxide and ⁇ -NPD, not by chance.
  • the change in vacuum level (vacuum level shift) at the interface is that the electric double layer is formed at the interface with the tungsten oxide layer side negative and the ⁇ -NPD layer side positive based on the direction of the change.
  • the magnitude of the vacuum level shift is as large as 2 eV, it is appropriate that the electric double layer is formed not by physical adsorption but by an action similar to a chemical bond. That is, it should be considered that the interface state connection is realized by the interaction between tungsten oxide and ⁇ -NPD.
  • the inventor of the present application infers the following mechanism as a specific interaction.
  • the occupied level in the vicinity of the Fermi surface is derived from the 5d orbit of a tungsten atom constituting a structure similar to an oxygen defect as described above. This is hereinafter referred to as “the raised W5d trajectory”.
  • the raised structure When the highest occupied orbit of the ⁇ -NPD molecule approaches the W5d orbit of the raised structure on the surface of the tungsten oxide layer, the raised structure is separated from the highest occupied orbit of the ⁇ -NPD molecule for mutual energy stabilization. Move to the W5d orbit. As a result, an electric double layer is formed at the interface, and vacuum level shift and interface level connection as shown in FIG. 27 occur.
  • the highest occupied orbitals of amine organic molecules such as ⁇ -NPD are generally distributed with the electron density biased toward the nitrogen atom of the amine structure, and the unshared electron pair of the nitrogen atom is mainly used. It has been reported many as a result of the first principle calculation that it is configured as a component. From this, it is presumed that electrons move from the unshared electron pair of the nitrogen atom of the amine structure to the W5d orbit of the raised structure, particularly at the interface between the tungsten oxide layer and the amine organic molecule layer.
  • the excellent hole injection efficiency for the functional layer of the hole injection layer of the organic EL display panel of the present invention can be explained by the above interface state connection. That is, an interface state connection occurs between a hole injection layer made of tungsten oxide having an occupied level near the Fermi surface and an adjacent functional layer, and the binding energy at the rising position of the occupied level near the Fermi surface The binding energy at the rising position of the highest occupied orbit of the functional layer becomes almost equal. Hole injection occurs between the connected levels. Therefore, there is almost no hole injection barrier between the hole injection layer and the functional layer of the present invention.
  • the highest occupied orbital of the organic molecules constituting the functional layer interacts with the occupied level near the Fermi surface of the tungsten oxide layer.
  • Sites with high electron density of the highest occupied orbital for example, nitrogen atom of amine structure in amine organic molecule; indicated by “injection site (y)” in the figure
  • injection site (x) structure similar to oxygen defect on the surface of tungsten oxide layer
  • the tungsten oxide layer having a raised structure near the Fermi surface such as the sample A described above, has abundant injection sites (y). Therefore, it is highly likely that the injection site (y) is in contact with the injection site (x), and the hole injection efficiency from the hole injection layer to the functional layer is high.
  • the ⁇ -NPD layer is also applied to the tungsten oxide layer under the film formation condition C in which the raised structure in the vicinity of the Fermi surface cannot be confirmed at all, similarly to FIG. The energy diagram at the interface was measured.
  • FIG. 29 shows the result.
  • the upper end of the in-gap state corresponding to the raised structure near the Fermi surface could not be confirmed. Therefore, as another candidate of the level used for hole injection, a structure different from the raised structure (see (z in FIG. 22), which is found on the higher binding energy side than the position of the raised structure near the Fermi surface in the UPS spectrum. )) Rising position (denoted as "second in-gap state upper end") and the valence band upper end are shown in FIG.
  • the highest occupied orbit of ⁇ -NPD in FIG. 29 is completely different from that in FIG. 27, and is not approaching the upper end of the second in-gap state or the upper end of the valence band at all, that is, there is no interface state connection. Not happening. This means that neither the second in-gap state nor the valence band interacts with the highest occupied orbital of ⁇ -NPD. Even if holes are injected into the highest occupied orbit of ⁇ -NPD from the upper end of the second in-gap state, the injection barrier is 0.75 eV, which is very large compared to the case of FIG.
  • This difference in the injection barrier is considered to have a great influence on the driving voltage and luminous efficiency of the hole-only element 1B and the organic EL element 1 under the respective film forming conditions described above. That is, the difference in characteristics between the hole-only element 1B and the organic EL element 1 under the film forming conditions A, B, and C is that the organic EL display panel 110 of the present invention has excellent hole injection efficiency from the hole injection layer to the functional layer. It is thought that it strongly suggests having.
  • the organic EL display panel 110 of the present invention has excellent hole injection efficiency as follows.
  • a hole injection layer made of tungsten oxide has a raised structure near the Fermi surface in its photoelectron spectroscopy spectrum. This means that a structure similar to an oxygen defect and an occupied level in the vicinity of the Fermi surface derived therefrom are present at least on the surface of the hole injection layer.
  • the occupied level itself in the vicinity of the Fermi surface has the effect of connecting the interface state with the highest occupied orbital of the organic molecule by taking electrons from the organic molecule constituting the adjacent functional layer.
  • ⁇ -NPD was used as the functional layer.
  • the binding energy on the vertical axis in the figure is expressed in absolute value with the Fermi level of the anode as the origin.
  • the anode is made of IZO as shown in FIGS. 30 and 31, the surface of the anode is subjected only to pure water cleaning (FIG. 30), and further subjected to dry etching after pure water cleaning ( In FIG. 31), the hole injection barrier between the Fermi level of the anode and the highest occupied orbit of the functional layer is a considerable size of more than 1 eV, and the size of the barrier for the treatment on the IZO surface is high. It can be seen that there is a large fluctuation due to the difference.
  • the hole injection barrier between the anode and the functional layer varies considerably depending on the type of the anode material and the surface state of the anode, and the barrier itself is large. It can be confirmed that there is room for improvement in terms of drive voltage.
  • FIGS. 34 to 38 show energy diagrams in the vicinity of the interface between the anode and the hole injection layer of the present invention when the anode and the hole injection layer made of tungsten oxide of the present invention are stacked.
  • FIGS. 34 and 35 show the case where the anode is made of IZO. Similar to FIGS. 30 and 31, the surface of the anode was cleaned only with pure water (FIG. 34), and further subjected to dry etching after pure water cleaning (FIG. 35), respectively. A hole injection layer of the present invention is laminated thereon.
  • FIGS. 36 and 37 show a case where the anode is made of ITO. Similar to FIGS. 32 and 33, the surface of the anode was subjected only to IPA cleaning (FIG. 36), and further treated with oxygen plasma after IPA cleaning (FIG. 37).
  • the hole injection layer of the present invention is laminated.
  • FIG. 38 shows a case where the anode is made of Al.
  • the hole injection layer of the present invention is laminated without being exposed to the atmosphere so that the surface is not naturally oxidized.
  • the binding energy at the top of the in-gap state which is the rising position of the occupied level in the vicinity of the Fermi surface, changes relatively steeply. However, it is almost constant at a film thickness of 2 nm or more.
  • the constant binding energy value is very close to the Fermi level of the anode, and the difference is within ⁇ 0.3 eV.
  • a good Schottky ohmic connection with a Schottky barrier width of about 2 nm is realized between the anode and the hole injection layer of the present invention. means.
  • the difference in binding energy between the Fermi level of the anode and the upper end of the in-gap state when the hole injection layer thickness is 2 nm or more is Regardless of the surface state, the values are almost the same (a shift of 0.02 eV at most).
  • the anode and the hole injection layer of the present invention are in Schottky ohmic connection if the thickness of the hole injection layer is 2 nm or more. Furthermore, even if the surface state of the anode has undergone at least any of the above-described treatments, this connection is not only kept good, but also the degree of connection (the above-mentioned bond energy difference) depends on the surface state of the anode. It maintains a very stable and constant situation without depending on the difference.
  • the hole injection layer made of tungsten oxide of the present invention various operations for making the work function and surface state of the anode constant, that is, the anode material is strictly selected, or just before the hole injection layer is formed. Even without special considerations such as maintaining the surface state of the anode at a high level, good hole injection efficiency from the anode to the hole injection layer can be expected.
  • the hole injection layer made of tungsten oxide in the present invention has an occupied level in the vicinity of the Fermi surface, and is hardly affected by the work function and surface state of the anode due to the action of the level. Realizes Schottky ohmic connection with the anode. Specifically, when the distance from the anode surface to the hole injection layer side is 2 nm, the difference in binding energy between the anode Fermi level and the occupied level is ⁇ 0.3 eV. Is within. As a result, the hole injection barrier between the anode and the hole injection layer can be considerably relaxed.
  • the hole injection layer of the present invention has a very small hole injection barrier between the functional layer due to the action of the occupied level. Therefore, holes can be injected from the anode to the hole injection layer and from the hole injection layer to the functional layer with almost no barrier. In this way, not only the hole injection barrier between the hole injection layer and the functional layer but also the hole injection barrier between the anode and the hole injection layer is relaxed, thereby further improving the low voltage driving of the device. realizable. Furthermore, if the hole injection efficiency is improved, the load applied to the element during driving is reduced, so that the driving life of the element can be expected to be extended.
  • the hole injection layer made of tungsten oxide of the present invention can form a stable Schottky ohmic connection with the anode as long as the film thickness is 2 nm or more. This was also confirmed by the characteristics of the element.
  • the hole injection layer of the hole-only element 1B was formed under the above-described film formation condition A, and the film thickness was in the range of 5 to 30 nm.
  • an element in which the hole injection layer was omitted that is, an anode and a buffer layer were directly laminated (hereinafter referred to as “film thickness 0 nm”) was also produced.
  • the configuration of each of the other layers is the same as described in “(About improvement of element characteristics by ultraviolet light irradiation)”.
  • the hole-only element 1B except for an element having a thickness of 0 nm, all the hole injection layers are formed under the film formation condition A. Therefore, the hole injection efficiency from the hole injection layer to the buffer layer is considered to be the same. . Further, the configuration other than the film thickness of the hole injection layer is the same. Therefore, the characteristics of the hole-only element 1B should be mainly influenced by the thickness of the hole injection layer and the degree of formation of the Schottky ohmic connection between the anode and the hole injection layer.
  • the influence of the electrical resistance of the hole injection layer is considered.
  • the resistance of the hole injection layer increases as the thickness of the hole injection layer increases.
  • the resistivity of the hole injection layer under the film formation condition A was 1/100 or less of the buffer layer and the light emitting layer 6B. Therefore, the difference in resistance due to the difference in film thickness of the hole injection layer hardly contributes to the characteristics of the hole-only element 1B.
  • all of the hole-only devices 1B should have the same characteristics as long as a constant Schottky ohmic connection can be formed between the anode and the hole injection layer, except for devices having a thickness of 0 nm.
  • Each hole-only element 1B having a film thickness of the prepared hole injection layer of 0 nm, 5 nm, and 30 nm was connected to a DC power source, and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • the “drive voltage” is an applied voltage at a current density of 10 mA / cm 2 .
  • Table 9 shows the driving voltage of each Hall-only element 1B.
  • the driving voltage of the element with a film thickness of 0 nm is considerably high. This is presumably because a large hole injection barrier is formed between the anode and the buffer layer because the hole injection layer of the present invention is not provided.
  • the driving voltage is suppressed low, and it can be seen that the value does not depend on the film thickness and is almost the same.
  • the thickness of the hole injection layer is at least 5 nm or more, a substantially constant Schottky ohmic connection is formed between the anode and the hole injection layer of the present invention, and a good transfer from the anode to the hole injection layer is achieved. It is considered that hole injection efficiency has been realized.
  • the thickness of the hole injection layer was in the range of 2 to 30 nm.
  • the organic EL element 1 Since the organic EL element 1 has the same configuration except for the thickness of the hole injection layer, all the characteristics are the same as long as a constant Schottky ohmic connection can be formed between the anode and the hole injection layer. Should be.
  • Each organic EL element 1 having a film thickness of the produced hole injection layer of 2 nm, 5 nm, 15 nm, 20 nm, and 30 nm was connected to a DC power source, and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted into a value (current density) per unit area of the element 1.
  • the “drive voltage” is an applied voltage at a current density of 10 mA / cm 2 .
  • Table 10 shows the driving voltage of each organic EL element 1.
  • the drive voltage is low and good. In consideration of variations in the thickness of each layer, which are inevitably generated in the production of the element, these driving voltages do not depend on the film thickness and can be regarded as sufficiently equal.
  • these driving voltages do not depend on the film thickness and can be regarded as sufficiently equal.
  • the thickness of the hole injection layer is 2 nm or more, a substantially constant shot is formed between the anode and the hole injection layer of the present invention. It is thought that a key ohmic connection is formed.
  • the organic EL element 1 was used to evaluate the relationship between the film thickness of the hole injection layer of the present invention and the driving life of the element.
  • the organic EL element 1 was the same as that used in Table 10
  • the thickness of the hole injection layer was in the range of 2 to 30 nm, and for comparison, an element 1 having a thickness of 0 nm was prepared without the hole injection layer.
  • Each element 1 has the same configuration except for the thickness of the hole injection layer. Therefore, if a constant Schottky ohmic connection can be formed between the anode and the hole injection layer, the same life can be expected.
  • Each element 1 having a film thickness of the prepared hole injection layer of 0 nm, 2 nm, 5 nm, and 30 nm was connected to a DC power source and driven at a constant current with a current density of 10 mA / cm 2 . .
  • Table 11 shows the luminance reduction time until the luminance decreases to 60% at the start of driving in each element 1.
  • the element 1 having a film thickness of 0 nm has a rapid decrease in luminance, that is, a short lifetime. This is because the hole injection layer of the present invention is not provided, so that a large hole injection barrier is generated between the anode and the buffer layer, and it is necessary to increase the driving voltage in order to pass a constant current. It is thought that the high load has a great influence.
  • each of the elements 1 having a thickness of 2 nm, 5 nm, and 30 nm has a slower luminance drop than the element 1 having a thickness of 0 nm, that is, has a long lifetime. This is presumably because the hole injection layer of the present invention effectively relaxes the hole injection barrier, lowers the driving voltage, and reduces the burden on the device 1.
  • Each of the elements 1 having a film thickness of 2 nm, 5 nm, and 30 nm is good and shows a similar decrease in luminance. Therefore, if the thickness of the hole injection layer is 2 nm or more, a substantially constant Schottky ohmic connection is formed between the anode and the hole injection layer of the present invention. Therefore, the thickness of the hole injection layer is 2 nm or more. It is considered that the device 1 has the same driving voltage and the same life.
  • the hole injection layer made of tungsten oxide of the present invention can form a stable Schottky ohmic connection with the anode if the film thickness is 2 nm or more.
  • the Schottky ohmic connection of the present invention is made between the anode and the hole injection layer regardless of the film formation conditions of the hole injection layer. This is formed by surface treatment of the ITO anode. Details are described below.
  • the film formation of the hole injection layer under the respective film formation conditions on the ITO anode and the UPS measurement were repeated, the film formation was performed when the film thickness of the hole injection layer was within about 2 nm. Regardless of the conditions, a raised structure near the Fermi surface was confirmed, forming a Schottky ohmic connection with the anode. However, as the film thickness increased, as shown in FIG. 23, the presence or absence of a raised structure near the Fermi surface varied depending on the film formation conditions.
  • the Schottky ohmic connection of the present invention is formed between the anode and the hole injection layer.
  • the film thickness becomes several nm or more after the start of film formation of the hole injection layer, the film is uniformly formed with the film quality determined by each film formation condition, and therefore the film thickness of the hole injection layer is 30 nm.
  • the characteristics shown in FIGS. 17 to 20 depend on the film forming conditions.
  • the occupied level in the vicinity of the Fermi surface is due to the electrons of the 5d orbit of the tungsten atom not bonded to the oxygen atom in the structure similar to the oxygen defect, which is an electron in the valence band, Unlike electrons of organic molecules, it is a carrier that can move relatively freely.
  • the occupied level in the vicinity of the Fermi surface is an n-type semiconductor donor level in which electrons are easily taken in or out, or a metallic level. Therefore, the exchange of electrons with the electrodes (also referred to as the exchange of holes) is easy in both directions, and the Schottky ohmic connection is realized because it is easy.
  • the present inventors have confirmed by another experiment that a current flows in an ohmic manner bi-directionally in a two-layer structure of ITO, IZO, Al, Ba and the hole injection layer of the present invention.
  • the Schottky ohmic connection as described above between the electrode and the hole injection layer of the present invention is naturally formed between the auxiliary wiring and the hole injection layer, and also between the hole injection layer and the electron injection layer, It is easy to give and receive carriers between these layers.
  • the hole injection layer of the present invention located between the auxiliary wiring and the electron injection layer prevents the injection of electrons from the hole injection layer to the electron injection layer, or the electrons from the auxiliary wiring to the hole injection layer. It does not interfere with the injection.
  • the hole injection layer according to the present invention is greatly different from a hole injection layer such as copper phthalocyanine or PEDOT in which injection of electrons from the auxiliary wiring is difficult.
  • the resistance of the connection portion itself increases because the hole injection layer of the present invention is interposed between the auxiliary wiring and the electron injection layer.
  • the hole injection layer of the present invention has a sufficiently low resistivity as compared with a general functional layer made of an organic material, and the film thickness is at most several tens of nm in the configuration of a normal organic EL element.
  • the contribution of the resistance of the hole injection layer of the present invention to the resistance of the entire organic EL display panel including the wiring portion is extremely small. Therefore, even if the hole injection layer of the present invention is interposed in the connection portion, the resistance of the wiring portion is not substantially increased.
  • an auxiliary There is no need for a process for preventing the hole injection layer from being formed on the wiring.
  • the adsorbate on the surface of the hole injection layer of the present invention is sufficiently removed by the ultraviolet light irradiation of the present invention, the adsorbate that causes the increase in resistance is also present in the connection portion. It is suppressed to be buried between the electron injection layer and a stable good low resistance can be realized.
  • the electron injection layer is stacked on the hole injection layer of the present invention in the connection portion, but the electron injection layer in the connection portion is not necessarily required and can be omitted. In this case, since the hole injection layer and the common electrode are directly in Schottky ohmic connection, the resistance of the wiring portion is not increased.
  • an electron transport layer mainly made of an organic material or an inorganic material may be continuously formed on the light emitting portion and the connecting portion.
  • the hole injection layer of the present invention and the electron transport layer are adjacent to each other in the connection portion.
  • the hole injection layer of the present invention has properties as an n-type semiconductor or metal due to the occupied level in the vicinity of the Fermi surface. Therefore, an interface with a small energy barrier can be formed without causing a so-called pn junction at the interface with the electron transport layer, and injection of electrons from the hole injection layer of the present invention into the electron transport layer is relatively easy. is there.
  • the hole injection layer of the present invention is greatly different from hole injection layers such as copper phthalocyanine and PEDOT, which are difficult to exchange electrons with the electron transport layer.
  • the anode (first electrode) 20 and the auxiliary wiring 30 provided above the substrate 10 are juxtaposed via the hole injection layer 40. Since there is a gap of several tens of ⁇ m between the auxiliary wiring 30 and the auxiliary wiring 30, there is no problem that the anode 20 and the auxiliary wiring 30 having different polarities cause a short circuit through the same hole injection layer 40.
  • FIG. 39A is a schematic cross-sectional view showing a configuration of an organic EL display panel 110C according to the present embodiment.
  • FIG. 39 (b) is a partially enlarged view near the hole injection layer 40C.
  • the organic EL display panel 110C is, for example, a coating type in which a functional layer is applied by a wet process to form a film, and a hole injection layer 40C and various functional layers including an organic material having a predetermined function are stacked on each other. In this state, it has a configuration interposed between an electrode pair composed of the anode 20C and the cathode 90C.
  • the organic EL display panel 110C has an anode 20C, ITO layer 25C, hole injection layer 40C, buffer layer 60C, light emitting layer 70C, electron injection layer 85C, cathode 90C, sealing,
  • the stop layer 95C is laminated in the same order.
  • An auxiliary wiring 30C is formed on the one-side main surface of the substrate 10C at a position separated from the anode 20C.
  • the ITO layer 25C, the hole injection layer 40C, the cathode 90C, and the sealing layer are also formed on the auxiliary wiring 30C. 95C is laminated.
  • the difference from the organic EL display panel 110 will be mainly described.
  • a plurality of anodes 20C are arranged in a matrix for each pixel unit, and the auxiliary wiring 30C is provided along each anode 20C for each pixel column.
  • the ITO (indium tin oxide) layer 25C is interposed between the anode 20C and the hole injection layer 40C, and has a function of improving the bonding property between the layers.
  • the ITO layer 25C is separated from the anode 20C, but the ITO layer 25C can also be regarded as a part of the anode 20C.
  • the ITO layer 25C is also interposed between the auxiliary wiring 30C and the hole injection layer 40C.
  • the ITO layer 25C is separated from the auxiliary wiring 30C.
  • the ITO layer 25C can be regarded as a part of the auxiliary wiring 30C.
  • the hole injection layer 40C is formed of a tungsten oxide layer having a thickness of at least 2 nm (here, 30 nm as an example) formed under predetermined film formation conditions. ing. Thereby, in the pixel portion (left side of the omitted wavy line in FIG.
  • the hole injection layer 40C and the buffer layer 60C are interface state connected, and the ITO layer 25C and the hole injection layer 40C are Schottky ohmic connections. is doing.
  • the ITO layer 25C and the hole injection layer 40C, and the hole injection layer 40C and the cathode 90C are in Schottky ohmic connection. More specifically, these Schottky ohmic connections are the most in the Fermi level of the ITO layer 25C and the cathode 90C and the occupied level in the vicinity of the Fermi surface when the distance from the surface to the hole injection layer 40C side is 2 nm.
  • the difference from the low binding energy is within ⁇ 0.3 eV.
  • the hole injection barrier between the ITO layer 25C and the hole injection layer 40C and between the hole injection layer 40C and the buffer layer 60C is relaxed in the pixel portion as compared with the conventional configuration.
  • carriers can be easily transferred between the ITO layer 25C and the hole injection layer 40C, and between the hole injection layer 40C and the cathode 90C, and good low voltage driving is possible.
  • the tungsten oxide constituting the hole injection layer 40C is a real number in the range of 2 ⁇ x ⁇ 3 in the composition formula WOx.
  • the hole injection layer 40C is preferably made of tungsten oxide with as high a purity as possible, but may contain a trace amount of impurities that can be mixed at a normal level.
  • the tungsten oxide layer constituting the hole injection layer 40C is formed under the predetermined film formation conditions, so that the tungsten oxide crystal 13C is formed as shown in FIG. Contains many.
  • the grain size of each crystal 13C is on the order of nanometers.
  • the hole injection layer 40C has a thickness of about 30 nm, whereas the crystal 13C has a grain size of about 3 to 10 nm.
  • the crystal 13C having a particle size of the order of nanometers is referred to as “nanocrystal 13C”
  • the structure of the layer made of nanocrystal 13C is referred to as “nanocrystal structure”.
  • the hole injection layer 40C may include an amorphous structure in addition to the nanocrystal structure.
  • the tungsten atoms constituting the tungsten oxide are distributed so as to have a state of a maximum valence that the tungsten oxide can take and a state of a valence lower than the maximum valence. is doing.
  • a structure similar to an oxygen defect may exist in the tungsten oxide layer.
  • the valence of the tungsten atom not included in the structure similar to the oxygen defect is hexavalent, while the valence of the tungsten atom included in the structure similar to the oxygen defect is lower than the hexavalence.
  • the organic EL display panel 110C in addition to relaxing the hole injection barrier and facilitating carrier exchange in the pixel portion and the wiring portion described above, pentavalent tungsten atoms are distributed in the hole injection layer 40C, which is similar to an oxygen defect. It is desired to further improve the conduction efficiency of holes and electrons by forming the structure. That is, by providing the hole injection layer 40C made of tungsten oxide with a nanocrystal structure, in the pixel portion, holes injected from the ITO layer 25C into the hole injection layer 40C exist at the crystal grain boundaries of the nanocrystal 13C. Since oxygen defects are conducted, the number of paths through which holes are conducted can be increased, leading to an improvement in hole conduction efficiency.
  • the hole injection layer 40C is made of tungsten oxide having high chemical resistance, that is, hardly causing unnecessary chemical reaction. Therefore, even when the hole injection layer 40C is in contact with a solution or the like used in a process performed after the formation of the same layer, damage to the hole injection layer 40C due to alteration, decomposition, or the like can be suppressed. As described above, since the hole injection layer 40C is made of a material having high chemical resistance, it is possible to prevent a decrease in the conduction efficiency of holes and electrons in the hole injection layer 40C.
  • the hole injection layer 40C made of tungsten oxide in this embodiment includes both a case where the hole injection layer 40C is composed of only a nanocrystal structure and a case where it is composed of both a nanocrystal structure and an amorphous structure.
  • the nanocrystal structure is preferably present in the whole hole injection layer 40C, but in the pixel portion, the interface between the ITO layer 25C and the hole injection layer 40C is in contact with the hole injection layer 40C and the buffer layer 60C. If the grain boundary is connected at one point between the holes, the holes can be efficiently conducted from the lower end to the upper end of the hole injection layer 40C, and the ITO layer 25C and the hole injection layer 40C are in contact with each other in the wiring portion. If a grain boundary is connected to the interface between the hole injection layer 40C and the cathode 90C from one interface, electrons can be efficiently conducted from the lower end to the upper end of the hole injection layer 40C.
  • Non-Patent Document 1 suggests that hole conduction efficiency is improved by crystallizing a tungsten oxide layer by annealing at 450 ° C.
  • Non-Patent Document 1 does not describe the conditions for forming a tungsten oxide layer having a large area and the influence of tungsten oxide formed as a hole injection layer on the substrate on other layers on the substrate. Practical mass productivity of organic EL display panels is not shown. Further, it is not shown that a tungsten oxide nanocrystal having a structure similar to an oxygen defect is positively formed in the hole injection layer.
  • the hole injection layer according to one embodiment of the present invention includes a tungsten oxide layer that hardly causes a chemical reaction, is stable, and can withstand a mass production process of a large organic EL display panel. Furthermore, the present invention is greatly different from the prior art in that excellent conductivity of holes and electrons is realized by making the tungsten oxide layer have a structure similar to oxygen defects.
  • the electron injection layer 85C has a function of injecting electrons from the cathode 90C to the light emitting layer 70C.
  • barium with a thickness of about 5 nm, lithium fluoride with a thickness of about 1 nm, sodium fluoride, or a combination thereof Is preferably formed.
  • the cathode 90C is composed of, for example, an ITO layer having a thickness of about 100 nm.
  • a DC power source is connected to the anode 20C and the auxiliary wiring 30C, and power is supplied to the organic EL display panel 110C from the outside.
  • the sealing layer 95C has a function of suppressing exposure of the organic EL display panel 110C to moisture and air, and is formed of a material such as SiN (silicon nitride) or SiON (silicon oxynitride), for example.
  • a top emission type organic EL element it is preferably formed of a light transmissive material.
  • a thin film made of silver for example, is formed on the substrate 10C by, for example, sputtering, and the thin film is patterned by, for example, photolithography, thereby forming the anode 20C and the auxiliary wiring 30C in a matrix (FIG. 40A).
  • the thin film may be formed by a vacuum evaporation method or the like.
  • an ITO thin film is formed by, for example, sputtering, and the ITO thin film is patterned by, for example, photolithography to form an ITO layer 25C on the anode 20C and the auxiliary wiring 30C.
  • a thin film 40X containing tungsten oxide is formed under predetermined film forming conditions to be described later (FIG. 40B).
  • a bank material layer 50X is formed on the thin film 40X using a bank material made of an organic material, and a part of the bank material layer 50X is removed to expose a part of the thin film 40X (FIG. 40C).
  • the bank material layer 50X can be formed by coating or the like, for example.
  • the removal of the bank material layer 50X can be performed by patterning using a predetermined developer (tetramethylammonium hydroxide (TMAH) solution or the like).
  • TMAH tetramethylammonium hydroxide
  • the tungsten oxide constituting the thin film 40X has good chemical resistance, but has a property of being slightly soluble in the TMAH solution. Therefore, when the bank residue adhering to the surface of the thin film 40X is washed with the developer, the thin film 40X As a result, the exposed portion is eroded and a recessed structure is formed (FIG. 41A). As a result, a hole injection layer 40C having a recess 40a corresponding to the anode 20C and a recess 40b corresponding to the auxiliary wiring 30C is formed.
  • the surface of the bank material layer 50X is subjected to a liquid repellency treatment using, for example, fluorine plasma to form the bank 50C.
  • a composition ink containing an organic material is dropped, for example, by an ink jet method into a region defined by the bank 50C so as to correspond to the anode 20C, and the ink is dried to form the buffer layer 60C and the light emitting layer 70C. (FIG. 41 (b)).
  • the buffer layer 60C and the light emitting layer 70C are not formed in the region corresponding to the auxiliary wiring 30C and defined by the bank 50C.
  • the ink may be dropped by a dispenser method, a nozzle coating method, a spin coating method, intaglio printing, letterpress printing, or the like.
  • a barium thin film to be the electron injection layer 85C is formed on the light emitting layer 70C by, for example, vacuum deposition (FIG. 42A).
  • an ITO thin film serving as the cathode 90C is formed over the entire surface by, eg, sputtering (FIG. 42B).
  • a sealing layer 95C is formed on the cathode 90C (FIG. 42 (c)).
  • the hole injection layer 40C (thin film 40X) is preferably formed by a reactive sputtering method. Specifically, metallic tungsten is used as a target, argon gas is used as a sputtering gas, and oxygen gas is used as a reactive gas in the chamber. In this state, argon is ionized by a high voltage and collides with the target. At this time, metallic tungsten released by the sputtering phenomenon reacts with oxygen gas to become tungsten oxide, and a tungsten oxide layer is formed on the ITO layer 25C.
  • the film forming conditions will be described in detail.
  • (1) The total pressure of the gas in the chamber is 2.3 Pa to 7.0 Pa, and (2) the ratio of the oxygen gas partial pressure to the total pressure is 50% or more. is 70% or less, and (3) input power (input power density) per unit area of the target is at 1.5 W / cm 2 or more 6.0 W / cm 2 or less, and (4) total pressure It is preferable to set the total pressure / power density, which is a value divided by the input power density, to be greater than 0.7 Pa ⁇ cm 2 / W. Under such film formation conditions, a hole injection layer 40C made of tungsten oxide having a nanocrystal structure is formed.
  • the planarizing film 17C is formed on the substrate 10C using an insulating resin material such as polyimide or acrylic.
  • an insulating resin material such as polyimide or acrylic.
  • Three layers of an Al alloy thin film 20X, an IZO thin film 25X, and a thin film (tungsten oxide film) 40X are sequentially formed on the planarizing film 17C based on the vapor deposition method (FIG. 43A).
  • an ACL (aluminum cobalt lanthanum alloy) material can be used as the Al alloy material.
  • a resist pattern R is formed by photolithography in a region where the anode 20C, the IZO layer 25D, the hole injection layer 40D, and the auxiliary wiring 30C, the IZO layer 25D, and the hole injection layer 40D are to be formed. This is formed (FIG. 43B).
  • the region of the thin film 40X not covered with the resist pattern R is subjected to dry etching (D / E) processing and patterned (FIG. 43C).
  • dry etching in order to selectively etch only the thin film 40X, either a mixed gas of F-based gas and N 2 gas or a mixed gas of F-based gas and O 2 gas is used.
  • Specific conditions for setting the dry etching process can be determined as follows as an example.
  • regions of the IZO thin film 25X and the Al alloy thin film 20X that are not covered with the resist pattern R are patterned by wet etching (FIG. 43D).
  • a mixed solution of nitric acid, phosphoric acid, acetic acid, and water is used, and the two layers of the IZO thin film 25X and the Al alloy thin film 20X are wet etched together.
  • Specific conditions for setting the wet etching process can be determined as follows as an example.
  • Treatment target IZO thin film and Al alloy thin film
  • Etchant Mixed aqueous solution of phosphoric acid, nitric acid, acetic acid
  • Solvent mixing ratio Arbitrary (can be mixed under general conditions)
  • Etching temperature lower than room temperature.
  • a film thickness of the upper IZO thin film 25X 20 nm or less is preferable. This is because when the film thickness exceeds 20 nm, the amount of side etching increases.
  • the hole injection layer 40D is formed at positions corresponding to the two layers of the anode 20C and the IZO layer 25D and the two layers of the auxiliary wiring 30C and the IZO layer 25D.
  • a bank material layer 50X (not shown) is formed on the exposed surface of the planarizing film 17C, and this is patterned to form the bank 50C (FIG. 44B).
  • a predetermined ink is prepared by the above-described method, and this is sequentially dropped and dried in an area defined in the bank 50C, whereby the buffer layer 60C and the light emitting layer 70C can be formed respectively (FIG. 44). (C)).
  • the organic EL display panel according to one embodiment of the present invention may have a so-called top emission type configuration or a so-called bottom emission type configuration.
  • the top emission type can take a configuration in which the pixel electrode and the auxiliary wiring are only metal films.
  • the configuration of the light emitting portion is, for example, a pixel electrode (metal film) / hole injection layer / buffer layer / light emitting layer / electron injection layer / common electrode (transparent conductive film) from the substrate side.
  • An auxiliary wiring (metal film) / hole injection layer / electron injection layer / common electrode (transparent conductive film) is formed from the substrate side.
  • the pixel electrode and the auxiliary wiring are made of a transparent conductive film
  • the common electrode is made of a metal film
  • the configuration of the light emitting portion is, for example, a pixel electrode (transparent conductive film) / hole injection layer /
  • the buffer layer / light-emitting layer / electron injection layer / common electrode (metal film) is formed, and the connection portion has, for example, an auxiliary wiring (transparent conductive film) / hole injection layer / electron injection layer / common electrode (metal film) from the substrate side. It becomes.
  • the present invention can also be applied to a double-sided light emission mode.
  • the configuration of the light-emitting portion is, for example, pixel electrode (transparent conductive film) / hole injection layer / buffer layer / light-emitting layer / electron injection layer / A common electrode (transparent conductive film) is formed, and the configuration of the connection portion is, for example, auxiliary wiring (transparent conductive film) / hole injection layer / electron injection layer / common electrode (transparent conductive film) from the substrate side.
  • a metal film may be partially provided as an auxiliary wiring.
  • the electron injection layer under the common electrode is not limited to a metal layer, and may be composed of an electron injection layer mainly composed of an organic material or an inorganic material, an electron transport layer, or both.
  • the organic EL element manufactured by the method for manufacturing an organic EL element according to one embodiment of the present invention can be used for a display element for a mobile phone display, a television, and various light sources.
  • it can be applied as an organic EL element that is driven at a low voltage in a wide luminance range from low luminance to high luminance such as a light source. With such high performance, it can be widely used as various display devices for home or public facilities, or for business use, television devices, displays for portable electronic devices, illumination light sources, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 低電圧で駆動できるとともに優れた発光効率を実現できる有機EL表示パネル110および有機EL表示装置100を提供することを目的として、基板10、第1電極20、補助配線30、ホール注入層40、機能層および第2電極90を具備し、前記ホール注入層40および前記第2電極90の各々は、前記第1電極20の上方および前記補助配線30の上方に連続して形成され、前記第2電極90と前記補助配線30とは、前記ホール注入層40を介して電気接続された有機EL表示パネル110において、前記ホール注入層40は、酸化タングステンを含み、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下である構成とする。

Description

有機EL表示パネルおよび有機EL表示装置
 本発明は、電気的発光素子である有機電界発光素子(以下「有機EL素子」と称する)を用いた有機EL表示パネルおよび有機EL表示装置に関する。
 近年、有機半導体を用いた各種機能素子の研究開発が進められており、代表的な機能素子として有機EL素子が挙げられる。有機EL素子は、電流駆動型の発光素子であり、陽極および陰極とからなる一対の電極対の間に有機材料からなる発光層を含む機能層を設けた構成を有する。そして、電極対間に電圧を印加し、陽極から機能層に注入されるホールと陰極から機能層に注入される電子とを再結合させ、これにより発生する電界発光現象によって発光する。有機EL素子は、自己発光を行うため視認性が高くかつ完全固体素子であるため耐衝撃性に優れることから、各種有機EL表示パネルおよび有機EL表示装置における発光素子や光源としての利用が注目されている。
 有機EL素子の発光光率を向上させるためには、電極から機能層へキャリア(ホールおよび電子)を効率よく注入することが重要である。一般に、キャリアを効率よく注入するためには、それぞれの電極と機能層との間に注入の際のエネルギー障壁を低くするための注入層を設けるのが有効である。このうち機能層と陽極との間に配設されるホール注入層には、銅フタロシアニンやPEDOT(導電性高分子)などの有機物、酸化モリブデンや酸化タングステンなどの金属酸化物が用いられている。また、機能層と陰極との間に配設される電子注入層には、金属錯体やオキサジアゾールなどの有機物、バリウムなどの金属が用いられている。
 中でも、酸化モリブデンや酸化タングステンなどの金属酸化物をホール注入層として用いた有機EL素子に関しては、ホール注入効率の改善や寿命の改善が報告されており(特許文献1、非特許文献1)、その改善にはホール注入層表面における金属酸化物の酸素欠陥に類する構造により形成される電子準位が影響しているとの報告がある(非特許文献2)。
 一方、有機EL表示パネルの大判化に伴い、パネルを構成する各有機EL画素の、電極から電源に繋がる配線部の低抵抗化が必要とされている。特に、トップエミッション型のアクティブマトリクス有機EL表示パネルにおいては、ITO、IZO等の透明電極材料を共通電極に用いる必要があるが、これらは比較的高抵抗のため、配線部としてはなるべく多用しないのが望ましい。
 これについて、例えば、特許文献2には、トップエミッション型の有機EL素子として、第2電極(共通電極)が補助配線に接続された構造の配線部を有する有機EL素子が開示されており、比較的高抵抗の共通電極の使用をなるべく抑えた配線部を実現している。ここで、補助配線とは、電源から共通電極へ電子を供給する構造を有する低抵抗配線のことである。
 補助配線は、発光部を遮らないよう非発光部に設けるのが好ましい。また、補助配線を非発光部に設ける場合、共通電極の上部と下部のどちらに設けてもよいが、下部に設ける構造は、薄膜トランジスタや画素電極などの形成工程を利用して補助配線も同時に形成できるため、より好ましい構造であると言える。
特開2005-203339号公報 特開2002-318556号公報
Jingze Li et al.,Synthetic Metals 151,141(2005). Kaname Kanai et al.,Organic Electronics 11,188(2010). J.B.Pedley et al.,Journal of Physical and Chemical Reference Data 12,967(1984). I.N.Yakovkin et al.,Surface Science 601,1481(2007). 渡邊寛己 他,有機EL討論会第7回例会予稿集 17(2008). Hyunbok Lee et al.、 Applied Physics Letters 93、 043308(2008). 中山泰生 他、 有機EL討論会第7回例会予稿集 5(2008).
 ところで、有機EL素子の製造工程においては、二酸化炭素、水、有機物などの大気中に含まれる分子および工程中に発生する不純物の分子などに由来する主に炭素を含む吸着物が問題になると考えられる。具体的には、電極やホール注入層など有機EL素子を構成する各層の積層工程において、下層の表面に吸着物が吸着した状態でその上に上層が積層されると、それら層間に吸着物が埋設されてしまい、素子の駆動電圧が増大したり寿命が低下したりするおそれがある。
 一方、共通電極の下部に補助配線を有する有機EL素子においては、一般には画素電極(陽極)と補助配線を同一膜で形成した後パターニングを行う。その後、ホール注入層を積層する。
 ここで、銅フタロシアニンやPEDOTなどのホール注入層は、補助配線の上には形成しないことが望まれる。なぜなら、これらのホール注入層は一般に高抵抗であるばかりでなく、補助配線の上に形成すると、補助配線から共通電極への電子の供給を阻害するからである。
 具体的には、これらのホール注入層は、その最高被占軌道の結合エネルギーが、一般に陽極に使われるITOなどのフェルミレベルに近接するように設計されており、逆に最低空軌道の結合エネルギーは、当該フェルミレベルからは相当離れている。このため、陽極からこれらのホール注入層へは、ホール注入は比較的容易であるものの、電子注入は困難である。このことは発光部においては有利に働くが、補助配線と共通電極の接続部においては、陽極と同一の材料を用いた補助配線から、これらのホール注入層を介しての共通電極への電子の供給が出来ず、配線部の高抵抗化の原因となる。
 またホール注入層に用いられる材料の中には、電子に対して化学的に不安定で、長時間電子を流し続けるとそれ自身が分解、劣化するものも多く、結果としてパネル特性の低下を招く恐れがある。
 そこで、これらのホール注入層は、パターニング成膜により、補助配線の上には形成されないようにする必要がある。このようなパターニング成膜の方法としては、1)マスク蒸着やスクリーン印刷、インクジェット印刷等を用いて、画素電極上に選択成膜する方法と、2)全面成膜形成した後に、フォトリソグラフィーやドライエッチング等を用いて、補助配線上のみを選択除去する方法とがある。しかしながら、いずれの方法によっても、工程数の増加は製造コストを増大させ、またパーティクルの増加などに繋がり歩留まりの低下を招く。さらにパターニングの際のレジスト残渣等が補助配線上に抵抗成分として残り、配線部の更なる高抵抗化に繋がる恐れがある。
 本発明は、以上の課題に鑑みてなされたものであって、低電圧で駆動できるとともに優れた発光効率を実現できる有機EL表示パネルおよび有機EL表示装置を提供することを目的とする。
 上記目的を達成するため、本発明の一態様に係る有機EL表示パネルは、基板と、前記基板上または前記基板内に形成された第1電極と、前記基板上または前記基板内に前記第1電極と離間して形成された補助配線と、前記第1電極の上方に形成され、少なくとも発光層を含む機能層と、前記機能層と前記第1電極との間に介在し前記機能層へのホール注入を行うホール注入層と、前記機能層の上方に形成された第2電極と、を具備し、前記ホール注入層および前記第2電極の各々は、前記第1電極の上方および前記補助配線の上方に連続して形成され、前記第2電極と前記補助配線とは、前記ホール注入層を介して電気接続され、前記ホール注入層は、酸化タングステンを含み、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下である。
 本発明の一態様に係る有機EL表示パネルおよび有機EL表示装置は、ホール注入層が、酸化タングステンを含み、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下であるため、低電圧で駆動できるとともに優れた発光効率を実現できる。
 すなわち、前記フェルミ面近傍に隆起した形状が存在することから、画素部のホール注入層と機能層との間のホール注入障壁を小さく抑えることができると共に、画素部の画素電極とホール注入層、および配線部の補助配線とホール注入層、ホール注入層と共通電極の間においては、ほとんど障壁なくキャリアの授受ができる。また、前記数密度の比が、0.83以下であることから、ホール注入層表面から吸着物が除去された構成となっている。以上のことから、低電圧で駆動できるとともに優れた発光効率を実現できる。
本発明の一態様に係る有機EL表示パネルを説明するための図である。 本発明の一態様に係る有機EL表示装置の全体構成を示す図である。 本発明の一態様に係る有機EL表示パネルの製造方法を説明する断面図である。 本発明の一態様に係る有機EL表示パネルの製造方法を説明する断面図である。 実施の形態に係る有機EL素子の製造方法の要部を説明するための図である。 酸化タングステンのUPSスペクトルを示す図である。 酸化タングステンのUPSスペクトルを示す図である。 酸化タングステンのXPSスペクトルを示す図である。 酸化タングステンのUPSスペクトルを示す図である。 酸化タングステンのXPSスペクトルを示す図である。 ホールオンリー素子の構成を示す模式的な断面図である。 ホールオンリー素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 評価デバイスとしての有機EL素子の構成を示す模式的な断面図である。 作製した有機EL素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 実施の形態に係るメタルハライドランプの分光分布を示す図である。 酸化タングステン表面の構造を説明するための図である。 ホール注入層の成膜条件に対するホールオンリー素子の駆動電圧の依存性を示すグラフである。 ホールオンリー素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 有機EL素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 有機EL素子の電流密度と発光強度の関係曲線を示すデバイス特性図である。 光電子分光測定用のサンプルの構成を示す模式的な断面図である。 酸化タングステン層のUPSスペクトルを示す図である。 酸化タングステン層のUPSスペクトルを示す図である。 図23のUPSスペクトルの微分曲線を示す図である。 大気曝露した酸化タングステン層のUPSスペクトルを示す図である。 本発明の酸化タングステン層のUPSスペクトルおよびXPSスペクトルを併せて示す図である。 本発明の酸化タングステン層とα-NPD層の界面エネルギーダイアグラムである。 ホール注入層と機能層の注入サイトの効果を説明するための図である。 成膜条件Cの酸化タングステン層とα-NPD層の界面エネルギーダイアグラムである。 純水洗浄したIZO陽極と機能層の界面エネルギーダイアグラムである。 純水洗浄後ドライエッチング処理したIZO陽極と機能層の界面エネルギーダイアグラムである。 IPA洗浄したITO陽極と機能層の界面エネルギーダイアグラムである。 IPA洗浄後酸素プラズマ処理したITO陽極と機能層の界面エネルギーダイアグラムである。 純水洗浄したIZO陽極と本発明のホール注入層の界面エネルギーダイアグラムである。 純水洗浄後ドライエッチング処理したIZO陽極と本発明のホール注入層の界面エネルギーダイアグラムである。 IPA洗浄したITO陽極と本発明のホール注入層の界面エネルギーダイアグラムである。 IPA洗浄後酸素プラズマ処理したITO陽極と本発明のホール注入層の界面エネルギーダイアグラムである。 アルミニウム陽極と本発明のホール注入層の界面エネルギーダイアグラムである。 実施の形態2に係る有機EL表示パネルの構成を示す模式的な断面図(a)と、ホール注入層付近の部分拡大図(b)である。 実施の形態2に係る有機EL表示パネルの製造方法を説明する工程図である。 実施の形態2に係る有機EL表示パネルの製造方法を説明する工程図である。 実施の形態2に係る有機EL表示パネルの製造方法を説明する工程図である。 実施の形態2の変形例に係る有機EL表示パネルの製造方法を説明する工程図である。 実施の形態2の変形例に係る有機EL表示パネルの製造方法を説明する工程図である。
 [本発明の一態様の概要]
 本発明の一態様に係る有機EL表示パネルは、基板と、前記基板上または前記基板内に形成された第1電極と、前記基板上または前記基板内に前記第1電極と離間して形成された補助配線と、前記第1電極の上方に形成され、少なくとも発光層を含む機能層と、前記機能層と前記第1電極との間に介在し前記機能層へのホール注入を行うホール注入層と、前記機能層の上方に形成された第2電極と、を具備し、前記ホール注入層および前記第2電極の各々は、前記第1電極の上方および前記補助配線の上方に連続して形成され、前記第2電極と前記補助配線とは、前記ホール注入層を介して電気接続され、前記ホール注入層は、酸化タングステンを含み、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下である。
 本態様によると、ホール注入層が酸化タングステンを含んで構成されている。さらに、このホール注入層は、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下である。
 このフェルミ面近傍に隆起した形状が存在することで、画素部のホール注入層と機能層との間のホール注入障壁を小さく抑えることができると共に、画素部の画素電極とホール注入層、および配線部の補助配線とホール注入層、ホール注入層と共通電極の間においては、ほとんど障壁なくキャリアの授受ができる。また、このフェルミ面近傍の隆起した形状を維持したまま、ホール注入層の表面の吸着物が除去されている。その結果、ホール注入効率が高く、低電圧で駆動できるとともに優れた発光効率を実現できる。
 また、本態様によると、配線部の補助配線とホール注入層、ホール注入層と共通電極の間はほとんど障壁なくキャリアの授受ができることから、補助配線上にホール注入層を形成してもなんら問題がなく、ホール注入層のパターニング工程が不要となることから、工程削減を可能とするだけでなく、安定した量産プロセスを実現できる。
 さらに、本態様によると、ホール注入層を、化学的に安定な酸化タングステンで構成しているので、バンク形成工程において、アルカリ溶液や水、有機溶媒等によりホール注入層が変質、分解することが抑制される。したがって、素子完成後も、ホール注入層の形態、ならびに画素部におけるホール注入層から機能層へのホール注入効率、および配線部におけるホール注入層と共通電極の間のキャリアの授受を、良好に保持できる。これにより、有機EL表示パネルの量産プロセスに耐えることのできる有機EL素子の製造を行うことが可能となる。
 有機EL素子の発光層は、ホール注入層形成後に積層される。一般的に発光層は発光色毎(例えばR、G、B)に塗り分けられるが、画素間の混色を防ぎ高精細化を実現するため、画素間には、例えば、隔壁(以下、バンクと称する)が配置される。バンク形成工程では、一般的にフォトリソグラフィー法を用い、例えば、ホール注入層表面に、感光性のレジスト材料からなるバンク材料を塗布し、プリベークした後、パターンマスクを用いて感光させ、未硬化の余分なバンク材料をアルカリ溶液等で構成される現像液で洗い出し、最後に純水で洗浄する。このように、バンク形成工程では、アルカリ溶液、水、有機溶媒等を用いるが、例えばホール注入層が有機系の材料で形成されている場合は、それらによって材料が変質、分解などしてホール注入層が損なわれるため、所望のホール注入効率が得られないという問題が生ずる。これに対して、本発明の一態様に係るホール注入層の場合は、酸化タングステンで形成されているため、前記溶液によってホール注入層が変質、分解し難いため、そのような問題が生じ難い。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記第2電極は、透明電極である。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記透明電極は、ITOまたはIZOからなる。
 前述のように、トップエミッション型の有機EL素子においては、共通電極(第2電極)にITO、IZO等の透明電極材料を用いる必要があるが、それらは金属材料より抵抗率が高い。そのため、配線部に共通電極を多用すると、表示パネルが大面積化されるほど、発光画素間で共通電極の配線長に差異が生じ、電源供給部の端と表示パネルの中央の間で大きな電圧降下が発生し、それに応じて輝度に差が出るため、中央が暗くなる。つまり、表示パネル面の有機EL素子の配置位置によって電圧がばらつき、表示品質の低下を生じるという課題がある。このため、前述のように低抵抗の補助配線を併用し、共通電極の使用を極力抑えた配線部を形成する。
 ここで、本発明における所定の物性を備えた酸化タングステンは、これらの透明電極材料ともショットキーオーミック接続するので、補助配線と透明電極材料との間に形成されても配線部の高抵抗化を引き起こさない。すなわち、補助配線とホール注入層、ホール注入層とITO、IZO等からなる共通電極との間は、ほとんど障壁なくキャリアの授受ができる。その結果、本発明の一態様の有機EL表示パネルは、低電圧で駆動できるとともに優れた発光効率の発揮を期待することができる。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記第2電極は、Al(アルミニウム)またはAg(銀)を主成分とする。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記第1電極の上方および前記補助配線の上方に連続して形成された金属層を有し、前記金属層は、前記第1電極の上方では、前記第2電極と前記発光層との間に介在し、前記補助配線の上方では、前記第2電極と前記ホール注入層との間に介在する。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記金属層は、前記第1電極の上方にて、前記第2電極から前記発光層に電子を注入する電子注入層である。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記金属層がBa(バリウム)を含んでなる。
 有機EL素子の発光層と共通電極の間には、電子注入層としてBaなどの金属層が設けられることがある。また、ボトムエミッション型の有機EL素子においては、共通電極としてAgやAlなどの高反射率の金属材料を用いる。
 ここで、本発明における所定の物性を備えた酸化タングステンは、これらの金属ともショットキーオーミック接続するので、補助配線上に形成されても配線部の高抵抗化を引き起こさない。すなわち、補助配線とホール注入層、ホール注入層とBa、Al、Ag等からなる金属層や共通電極との間は、ほとんど障壁なくキャリアの授受ができる。その結果、本発明の一態様の有機EL表示パネルは、低電圧で駆動できるとともに、優れた発光効率の発揮を期待することができる。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記補助配線は、ITOまたはIZOからなる。
 前述のように、ITO、IZOからなる補助配線とホール注入層との間は、ほとんど障壁なくキャリアの授受ができる。したがって、本態様の有機EL表示パネルは、低電圧で駆動できるとともに優れた発光効率の発揮を期待することができる。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記第1電極の上方に形成されたホール注入層と同一層のホール注入層が、前記補助配線の上方に形成されている。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、少なくとも前記補助配線上に形成されるホール注入層の膜厚が4nm以上である。
 本態様によれば、配線部の補助配線とホール注入層の間、およびホール注入層と金属層の間に、ショットキーオーミック接続が安定して形成され、安定したキャリアの授受を期待できるため、一層好適である。すなわち、補助配線とホール注入層の間の安定なショットキーオーミック接続のために2nm以上、ホール注入層と金属層の間の安定なショットキーオーミック接続のために2nm以上を確保することが好ましいことから、計4nm以上であれば一層好適であるといえる。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記第1電極の上方に開口部を有する隔壁が、前記ホール注入層上に形成され、前記機能層は、前記隔壁の開口部内に形成されている。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記第1電極は画素単位に複数配置され、前記隔壁の開口部は、前記複数の第1電極の各々に対応して形成されている。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記第1電極は画素単位に複数配置され、前記隔壁の開口部は、前記複数配置された第1電極のラインごとに、対応して形成されている。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記UPSスペクトルにおいて、前記隆起した形状は、前記価電子帯の上端に対し、1.8~3.6eV低い結合エネルギー領域内に位置する。
 なお、本願において数値範囲を「~」を用いて記載した場合は、その下限値および上限値もその数値範囲に含むものとする。例えば、1.8~3.6eVと記載した場合は、その数値範囲に1.8eVおよび3.6eVが含まれる。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記酸化タングステンのタングステン原子に対する、前記その他の原子の数密度の比は、0.62以下である。この場合は、吸着物除去効果が飽和していると考えられるため、十分な吸着物除去効果を期待できる。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記その他の原子は炭素原子である。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記ホール注入層は、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下となるように、紫外線が照射されて構成されている。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、基板と、前記基板上または前記基板内に形成された第1電極と、前記基板上または前記基板内に前記第1電極と離間して形成された配線と、前記第1電極の上方に形成され、有機材料を含む有機層と、前記有機層と前記第1電極との間に介在し、酸化タングステンを含む酸化タングステン層と、前記有機層の上方に形成された第2電極と、を具備し、前記酸化タングステン層および前記第2電極の各々は、前記第1電極の上方および前記配線の上方に連続して形成され、前記第2電極と前記配線とは、前記酸化タングステン層を介して電気接続され、前記酸化タングステン層は、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下である。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、基板と、前記基板上または前記基板内に形成された第1電極と、前記基板上または前記基板内に前記第1電極と離間して形成された補助配線と、前記第1電極の上方に形成され、少なくとも発光層を含む機能層と、前記機能層と前記第1電極との間に介在し前記機能層へのホール注入を行うホール注入層と、前記機能層の上方に形成された第2電極と、を具備し、前記ホール注入層および前記第2電極の各々は、前記第1電極の上方および前記補助配線の上方に連続して形成され、前記第2電極と前記補助配線とは、前記ホール注入層を介して電気接続され、前記ホール注入層は、酸化タングステンを含み、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、かつ、結合エネルギーが4.5~5.4eVにおいて、ピーク形状を有する。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記UPSスペクトルにおいて、前記隆起した形状は、前記価電子帯の上端に対し、1.8~3.6eV低い結合エネルギー領域内に位置する。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、前記ホール注入層は、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、かつ、結合エネルギーが4.5~5.4eVにおいて、ピーク形状を有するように、紫外線が照射されて構成されている。
 また、本発明の一態様に係る有機EL表示パネルの特定の局面では、基板と、前記基板上または前記基板内に形成された第1電極と、前記基板上または前記基板内に前記第1電極と離間して形成された配線と、前記第1電極の上方に形成され、有機材料を含む有機層と、前記有機層と前記第1電極との間に介在し、酸化タングステンを含む酸化タングステン層と、前記有機層の上方に形成された第2電極と、を具備し、前記酸化タングステン層および前記第2電極の各々は、前記第1電極の上方および前記配線の上方に連続して形成され、前記第2電極と前記配線とは、前記酸化タングステン層を介して電気接続され、前記酸化タングステン層は、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、かつ、結合エネルギーが4.5~5.4eVにおいて、ピーク形状を有する。
 本発明の一態様に係る有機EL表示装置は、上記いずれかに記載の有機EL表示パネルを備える。
 [本発明に至った経緯]
 第1に、本発明者は、有機EL素子の駆動電圧の増大や素子の寿命の低下を防止するため、製造工程において各層の形成後に、洗浄により各層の表面の吸着物を除去するプロセスを設けることを着想した。
 そして、吸着物を除去するプロセスとして、強力な洗浄力を有する点から、ガラス基板や電極などの洗浄に汎用されているUVオゾン洗浄および酸素プラズマ洗浄に着眼した。
本発明者がこれらの方法について鋭意検討した結果、酸化モリブデンや酸化タングステンなどの金属酸化物からなるホール注入層を有する有機EL素子において、UVオゾン洗浄および酸素プラズマ洗浄は、前記ホール注入層の洗浄には適していないことを見出した。
 なぜなら、UVオゾン洗浄および酸素プラズマ洗浄は、酸素分子を分解して、発生させた酸素ラジカルの強力な酸化作用を利用するものであり、この酸化作用によって前記酸素欠陥に類する構造に酸素原子が補填されてしまうため、金属酸化物からなるホール注入層において、酸素欠陥に類する構造が形成する電子準位が消滅し、ホール注入効率が低下するおそれがあると考えられるからである。具体的には、UVオゾン洗浄によって酸素欠陥に類する構造が形成する電子準位がほとんど消滅してしまうことを、後述するような実験により確認した。
 上記した知見を得たことにより、本発明者は、金属酸化物からなるホール注入層を有する有機EL素子において、有機EL素子の駆動電圧の増大を防止したり、素子の寿命の低下を防止したりするためには、ホール注入層表面における金属酸化物の酸素欠陥に類する構造が形成する電子準位が消滅することなく、かつ、ホール注入層表面から吸着物が除去されていることが重要であることを認識した。
 なお、上記した本発明の特徴に関する一連の研究・考察を行った後、酸化タングステンからなるホール注入層を成膜した後にUVオゾン洗浄が行われている非特許文献1の存在が判明した。この非特許文献1には、UVオゾン洗浄により素子特性が受ける影響については言及されておらず、UVオゾン洗浄の条件を最適化したとの記述もない。さらには、非特許文献1には、本発明者が具体的な検討を通して解明した、そのままでは酸化タングステンからなるホール注入層の洗浄には適していない点や、その技術的理由については、何ら記述されていない。
 ところで、吸着物を除去する別の方法としては、成膜後に真空容器中にてアルゴンイオンスパッタなどを施すスパッタエッチング処理が挙げられる。このスパッタエッチング処理は、吸着物の除去だけでなく、酸素欠陥に類する構造が形成する電子準位を増大させることも報告されており、一見優れた洗浄方法のようにも受け取れる。
 しかし、スパッタエッチング処理による吸着物除去効果および電子準位増大効果は、真空容器中でのみ持続する。なぜなら、真空中でスパッタエッチング処理されたホール注入層の表面は原子同士の結合がイオンビームにより強制的に切断された状態であるため極めて不安定であり、一旦真空容器から外に出せば容易に周囲の気体分子などを吸着して安定化してしまうからである。これにより、真空中で強制的に形成された金属酸化物の酸素欠陥に類する構造は瞬く間に補完され、除去された吸着物が瞬く間に再吸着してしまう。
 このような再吸着を避けるには、スパッタエッチング処理以降の工程の一部あるいは全てを、連続して真空容器中で行えばよい。しかしながら、真空容器中での工程は、小型の有機EL表示パネルに対しては適用が可能なものの、例えば50インチ級の大型の有機EL表示パネルに対してはその大きさに合わせた真空容器が必要になるため適用が極めて困難である。また、真空容器中での工程は、スループットが小さいため量産化には不向きである。
 一方、吸着物を除去するのではなく、吸着物の吸着自体を阻止する方法も考えられる。例えば、各層が形成後に大気や不純物分子に曝露されないように、各層の形成以降の工程の一部あるいは全てを、連続して真空容器中で行えば、吸着物が吸着することがない。しかしながら、上述したように真空容器が必要になるため大型の有機EL表示パネルに対しては適用が極めて困難である。
 また、不活性ガスを充填した容器内にて工程を行う方法も考えられる。この方法の場合、大型の有機EL表示パネルへの適用も可能である。しかしながら、大気中よりは少ないとは言え、容器内には依然として不純物の分子などが存在しており、それらを完全に除去することは困難である。
 以上に説明したように、ホール注入層表面における金属酸化物の酸素欠陥に類する構造が形成する電子準位が消滅しておらず、かつ、ホール注入層表面から吸着物が除去されている有機EL素子を得ることは非常に困難である。
 これに対し、本発明の一態様に係る有機EL素子は、ホール注入層表面における金属酸化物の酸素欠陥に類する構造が形成する電子準位が消滅していないため、陽極(画素電極)から機能層へホールを効率よく注入することができ、その結果、低電圧で駆動できるとともに優れた発光効率を実現できる。また、ホール注入層表面から吸着物が除去されているため、ホール注入層と機能層との層間に吸着物が埋設されておらず、その結果、素子の駆動電圧が増大しておらず、吸着物に由来する不純物などのキャリアトラップも形成されていないため素子の寿命も長く、素子特性が良好である。
 第2に、本発明者らは、金属酸化物からなるホール注入層の表面に、酸素欠陥に類する構造が形成するフェルミ面近傍の占有準位が存在すれば、当該ホール注入層と機能層との界面において、当該フェルミ面近傍の占有準位で最も低い結合エネルギーと、機能層の最高被占軌道の結合エネルギーとの差が小さくなることを、後述するような実験により確認した。
 さらに、この点に着目し、当該ホール注入層にフェルミ面近傍の占有準位が存在すれば、陽極、陰極、補助配線等の電極との界面においても、当該フェルミ面近傍の占有準位で最も低い結合エネルギーと、電極のフェルミレベルとの差が小さくなり、良好なキャリアの授受が可能であるとの着想に至った。
 そして、フェルミ面近傍の占有準位を有する、金属酸化物からなるホール注入層は、比較的低抵抗であり、かつ、Al等の金属材料からなる電極や、ITO、IZO等の比較的高抵抗の透明電極材料からなる電極との間に、ショットキーオーミック接続を実現できるという理由によって、補助配線上に形成されても配線部の高抵抗化を引き起こさない、という知見を得るに至った。
 第3に、本発明者らは、バンク形成工程において変質、分解され難いホール注入層を形成するための材料についても検討を行った。
 上記のように、有機EL素子の駆動電圧や寿命の改善を実現するホール注入層用の材料としては、無機材料である金属酸化物が好適であったが、実際に酸化モリブデンをホール注入層に用いて有機EL素子を製造してみると、バンク形成工程で用いられるアルカリ溶液、水、有機溶媒等によりホール注入層が変質、分解する可能性が示唆された。もしも、ホール注入層の変質、分解等の問題が発生すれば、発光部の画素電極上においてはホール注入層が本来有しているホール注入能力に支障を来たし、配線部の補助配線上においては配線部の高抵抗化を引き起こすなどして、正常な有機EL素子の駆動が行えない原因となるほか、有機EL素子およびこれを用いた有機EL表示パネルの量産プロセスに耐えることが難しくなる。したがって、変質、分解を生じる可能性がある酸化モリブデンを用いてホール注入層を形成することは、必ずしも好ましいとは言えない。
 そこで、本発明者らは、変質、分解が生じる可能性がより低い酸化タングステンに着目し、しかも、酸化タングステンの中でも所定の物性を備えたものであれば、前記溶液等に対する溶解性または分解性が低く且つホール注入能力が高い、ことを突き止めた。
 [実施の形態1]
 以下、本発明の一態様に係る有機EL表示パネルおよび有機EL表示装置を説明し、続いて各性能確認実験の結果と考察を述べる。なお、各図面における部材縮尺は、実際のものとは異なる。
 <有機EL表示パネルの構成>
 図1は、本発明の一態様に係る有機EL表示パネルを説明するための図であって、図1(a)は、有機EL表示パネルの要部を説明する部分平面図、図1(b)は、図1(a)におけるA-A’線に沿って切断した要部断面図である。
 図1(a)に示すように、本実施の形態に係る有機EL表示パネル110では、発光部95を有する発光画素95Aがマトリクス状に複数配置されており、陽極(画素電極、第1電極)20は画素単位に複数配置され、補助配線(配線にも該当する)30は各発光部95に沿って発光画素列ごとに配置して設けられている。
 図1(b)に示すように、有機EL表示パネル110は、基板10と、基板10上に形成された陽極20および補助配線30と、陽極20および補助配線30上に形成されたホール注入層(酸化タングステン層にも該当する)40と、ホール注入層40上に形成され、陽極20の上方に画素開口部45、および補助配線30の上方に接続開口部35を有するバンク50と、バンク50の画素開口部45内に形成されたバッファ層60と、バンク50の画素開口部45内のバッファ層60上に形成された発光層(有機層にも該当する)70と、それらの上面に形成された電子注入層80と、電子注入層80上に形成された陰極90(共通電極、第2電極)と、等から構成されている。
 ホール注入層40については、陽極20の上方に形成されたホール注入層と同一のホール注入層が補助配線30の上方に形成されている。すなわち、ホール注入層40は、図1(a)に記載された部分平面図の全面に亘って形成されている。また、電子注入層80および陰極90も、図1(a)に記載された部分平面図の全面に亘って形成されている。
 補助配線30と陰極90とは、補助配線30に沿って設けられた接続開口部35において、ホール注入層40と電子注入層80を介して電気的に接続され、陰極90から電源へと繋がる配線部を構成している。なお、接続開口部35における陰極90と補助配線30との間の層構造は、上記構造に限定されない。例えば、ホール注入層40および電子注入層80以外の層が含まれていても、あるいは電子注入層80がなくても良い。補助配線30から陰極90への電子の流れを阻止しない層構造であれば良く、このような多層構造を有する有機EL表示パネルも本発明に含まれ、本実施の形態に係る有機EL表示パネル110と同様の効果を有する。
 発光部95は、画素開口部45に設けられた、ホール注入層40、バッファ層60、発光層70および電子注入層80から構成され、発光層70に注入された電子とホールの再結合により発生する光を陰極90側から放出する。なお、陽極20は、発光部95に対応して画素ごとに離間して設けられている。すなわち、発光部がR、G、Bなどのサブ画素から構成されている場合には、各サブ画素に対応した発光部95および陽極20がサブ画素ごとに離間して設けられている。
 (基板)
 基板10は、有機EL素子の基材となる部分であり、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコン系樹脂、またはアルミナ等の絶縁性材料のいずれかで形成することができる。
 図示していないが、基板10の表面には有機EL素子を駆動するためのTFT(薄膜トランジスタ)が形成されている。
 (陽極) 
 陽極20は、例えば、Alからなる厚さ400nmの金属膜に、ITOからなる厚さ20nmの透明導電膜を積層させて構成される。なお、陽極20の構成はこれに限定されず、例えばITO、IZOなどの透明導電膜、Al、Agなどの金属膜、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)などの合金膜の単層から構成されていてもよい。また、それら透明導電膜、金属膜および合金膜の中から選択した複数の膜を積層させて構成することもできる。
 (補助配線)
 補助配線30は、例えば、Alからなる厚さ400nmの金属膜に、ITOからなる厚さ20nmの透明導電膜を積層させて構成される。なお、補助配線30の構成はこれに限定されず、例えばITO、IZOなどの透明導電膜、Al、Agなどの金属膜、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)などの合金膜の単層から構成されていてもよい。また、それら透明導電膜、金属膜および合金膜の中から選択した複数の膜を積層させて構成することもできる。
 (ホール注入層)
 ホール注入層40は、例えば、酸化タングステン(組成式WOxにおいて、xは概ね2<x<3の範囲における実数)を用いた、少なくとも膜厚が2nm以上(ここでは一例として30nm)の層として構成される。膜厚が2nm未満であると、均一な成膜を行いにくく、また、画素部の陽極20とホール注入層40の間のショットキーオーミック接続を形成しにくいので、好ましくない。前記ショットキーオーミック接続は酸化タングステンの膜厚が2nm以上で安定して形成されるため、これ以上の膜厚でホール注入層40を形成すれば、画素部の陽極20からホール注入層40への安定したホール注入効率を期待できる。
 さらに、酸化タングステンの膜厚が4nm以上であれば、配線部の補助配線30とホール注入層40の間、およびホール注入層40と電子注入層80の間も、ショットキーオーミック接続が安定して形成され、安定したキャリアの授受を期待できるため、一層好適である。
 ホール注入層40はできるだけ酸化タングステンのみで構成されることが望ましいが、通常レベルで混入し得る程度であれば、極微量の不純物が含まれていてもよい。
 ここで、ホール注入層40は、所定の成膜条件で成膜することにより、金属酸化物の酸素欠陥に類する構造が形成する電子準位を持つ。この電子準位の存在により、画素部の陽極20からホール注入層40、ホール注入層40からバッファ層60への良好なホール注入、および配線部の補助配線30とホール注入層40、ホール注入層40と電子注入層80の間の良好なキャリア授受が可能となっている。また、ホール注入層40は、成膜後に、所定の波長の紫外光が、大気中にて照射されている。これにより、金属酸化物の酸素欠陥に類する構造が形成する電子準位を維持したまま、前記ホール注入層40の表面から吸着物が除去され、照射前に比べてその量が少なくなっている。さらに、紫外光の照射時間や照射強度は、ホール注入層40の光電子スペクトルにおける所定の結合エネルギー領域の形状の変化が収束するように設定されている。これにより、最小限の照射条件により、最大限に吸着物が除去されている。
 前記の「酸素欠陥に類する構造が形成する電子準位を持つ」ということをより具体的に書くと、ホール注入層40は、その電子状態において、価電子帯の上端、すなわち価電子帯で最も低い結合エネルギーよりも、1.8~3.6eV低い結合エネルギー領域内に占有準位が存在している。この占有準位がホール注入層40の最高占有準位であり、その結合エネルギー範囲はホール注入層40のフェルミレベル(フェルミ面)に最も近い。したがって、以降では、この占有準位を「フェルミ面近傍の占有準位」と称する。
 このフェルミ面近傍の占有準位が存在することで、ホール注入層40と機能層(ここではバッファ層60)との積層界面では、いわゆる界面準位接続がなされ、バッファ層60の最高被占軌道の結合エネルギーが、ホール注入層40の前記フェルミ面近傍の占有準位の結合エネルギーと、ほぼ等しくなる。
 なお、ここで言う「ほぼ等しくなる」および「界面準位接続がなされた」とは、ホール注入層40とバッファ層60との界面において、前記フェルミ面近傍の占有準位で最も低い結合エネルギーと、前記最高被占軌道で最も低い結合エネルギーとの差が、±0.3eV以内の範囲にあることを意味している。
 さらに、ここで言う「界面」とは、ホール注入層40の表面と、当該表面から0.3nm以内の距離におけるバッファ層60とを含む領域を指す。
 さらに、ホール注入層40は、その特徴として陽極20や補助配線30、電子注入層80との界面において、いわゆるショットキーオーミック接続を形成している。
 なお、ここで言う「ショットキーオーミック接続」とは、陽極20や補助配線30、電子注入層80のフェルミレベルと、前述したホール注入層40のフェルミ面近傍の占有準位で最も低い結合エネルギーとの差が、陽極20や補助配線30、電子注入層80の表面からホール注入層40側への距離が2nmの位置において、±0.3eV以内に小さく収まっている接続を言う。また、ここで言う「界面」とは、陽極20や補助配線30、電子注入層80の表面と、当該表面からホール注入層40側に形成されるショットキーバリアを含む領域を指す。
 前記フェルミ面近傍の占有準位は、ホール注入層40の全体に存在することが望ましいが、少なくともバッファ層60および陽極20、補助配線30、電子注入層80との界面に存在すればよい。なお、このようなフェルミ面近傍の占有準位は、全ての酸化タングステンが有しているものではなく、特にホール注入層の内部や、バッファ層60との界面においては、後述する所定の成膜条件によって初めて形成できる、特有の準位である。
 (バンク)
 バンク50は、例えば、絶縁性の有機材料(例えばアクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等)からなり、画素開口部45が複数の陽極20の各々に対応して形成された井桁構造、または、画素開口部45が複数配置された陽極20のラインごとに対応して形成されたストライプ構造をなすように形成されている。なお、バンク50は、本発明に必須の構成ではなく、有機EL素子を単体で使用する場合等には不要である。
 (バッファ層)
 バッファ層60は、例えば、厚さ20nmのアミン系有機高分子であるTFB(poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-((4-sec-butylphenyl)imino)-1,4-phenylene))で構成されている。
 (発光層)
 発光層70は、例えば、厚さ70nmの有機高分子であるF8BT(poly(9,9-di-n-octylfluorene-alt-benzothiadiazole))で構成される。しかしながら、発光層70はこの材料からなる構成に限定されず、公知の有機材料を含むように構成することが可能である。たとえば特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物およびアザキノロン化合物、ピラゾリン誘導体およびピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質等を挙げることができる。
 (機能層)
 本発明における機能層は、ホールを輸送するホール輸送層、注入されたホールと電子とが再結合することで発光する発光層、光学特性の調整または電子ブロックの用途に用いられるバッファ層等のいずれか、もしくはそれらの2層以上の組み合わせ、または全ての層を指す。本発明はホール注入層を対象としているが、有機EL素子はホール注入層以外に上記したホール輸送層、発光層等のそれぞれ所要機能を果たす層が存在する。機能層とは、本発明の対象とするホール注入層以外の、有機EL素子に必要な層を意味している。
 (電子注入層)
 電子注入層80は、例えば、厚さ5nmのバリウム層で構成されており、陰極90から発光層70に電子を注入する機能を有する。電子注入層80は、陽極20の上方および補助配線30の上方に連続して形成されており、陽極20の上方では陰極90と発光層70との間に介在し、補助配線30の上方では陰極90とホール注入層40との間に介在する。本実施の形態のように、光を上方に取り出す方式(トップ・エミッション方式)においては、電子注入層80は光透過性を有する必要があり、電子注入層を上記したように厚さ5nmのバリウム層で構成する場合には、光透過性を有する。なお、光を下方に取り出す方式(ボトムエミッション方式)においては、素子構造にも依存するが、電子注入層は必ずしも光透過性は求められない。
 (陰極)
 陰極90は、例えば、ITOからなる厚さ35nmの透明導電膜を積層させて構成される。なお、陰極90の構成はこれに限定されず、IZOなどの他の透明導電膜や、Al、Agなどの金属やAPC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)などの合金からなる薄膜で構成されていてもよい。また、それら透明導電膜、金属膜および合金膜の中から選択した複数の膜を積層させて構成することもできる。
 陽極20および補助配線30には直流電源が接続され、外部より有機EL表示パネル110に給電されるようになっている。
 <有機EL表示装置の構成>
 図2に基づいて、本発明の一態様に係る有機EL表示装置について説明する。図2は、本発明の一態様に係る有機EL表示装置の全体構成を示す図である。
 図2に示すように、有機EL表示装置100は、本発明の一態様に係る有機EL表示パネル110と、これに接続された駆動制御部120とを備え、ディスプレイ、テレビ、携帯電話等に用いられる。駆動制御部120は、4つの駆動回路121~124と制御回路125とから構成されている。なお、実際の有機EL表示装置100では、表示パネル110に対する駆動制御部120の配置や接続関係については、これに限られない。
 <有機EL表示パネルの製造方法>
 以下に、本実施の形態に係る有機EL表示パネルの製造方法について、図面を参照しながら詳細に説明する。
 図3および図4は、本発明の一態様に係る有機EL表示パネルの製造方法を説明する断面図である。
 まず、図3(a)に示すように、例えばTFT(Thin Film Transistor)とコンデンサなどで構成された駆動回路(図示せず)を備えた基板10を用意する。そして、例えば真空蒸着法やスパッタリング法を用いて、Alからなる金属膜およびITOからなる透明導電膜を、順次基板10上の全面に形成する。その後、フォトリソグラフィー法を用いて、金属膜および透明導電膜をエッチングして、所定の位置に陽極20を、また陽極20と電気的に絶縁された所定の位置に補助配線30を形成する。
 このとき、陽極20は、発光部に対応して個別に形成され、補助配線30は、二次元のマトリクス状に配列された発光画素の、例えば行または列に沿って、一次元的に配置して形成される。なお、基板10には、例えば、駆動回路などによる凹凸を解消するために、必要に応じて、平坦化層を設け、その上に陽極20と補助配線30とを形成してもよい。
 次に、図3(b)に示すように、ホール注入層40を、反応性スパッタ法で、陽極20上および補助配線30上に成膜する。具体的には、ターゲットを金属タングステンとし、反応性スパッタ法を実施する。スパッタガスとしてアルゴンガスを、反応性ガスとして酸素ガスを、それぞれチャンバー内に導入する。この状態で高電圧によりアルゴンをイオン化しターゲットに衝突させる。このとき、スパッタリング現象により放出された金属タングステンが酸素ガスと反応して酸化タングステンとなり、基板10の陽極20上および補助配線30上に連続した状態でホール注入層40が成膜され、中間製品110Aが得られる。
 上記の成膜条件は、基板温度は制御せず、ガス圧(全圧)を4.8Pa、酸素ガス分圧の全圧に対する比を50%、ターゲット単位面積当たりの投入電力(投入電力密度)を1.4W/cmとした。この条件で成膜した酸化タングステンからなるホール注入層40は、その表面に酸素欠陥に類する構造が形成する電子準位を有する。
 次に、中間製品110Aをチャンバーから大気に取り出す。なお、この時点で、ホール注入層40は大気に曝露されるため、表面に気体分子などが吸着する。また、成膜後、取り出す前においても、チャンバー内の不純物分子などが吸着すると思われる。
 次に、大気中において、紫外光を、ホール注入層40の表面に照射する。ここでは、ウシオ電機株式会社製のメタルハライドランプ(型番UVL-3000M2-N)を光源201として備える本発明の一態様に係る紫外光照射装置200を使用した。紫外光照射装置200の詳細は後述する。照射条件は、後述する光電子分光測定を用いた別の実験により、光電子スペクトルにおける所定の結合エネルギー領域の形状の変化が収束するように別途定めるものである。本実施の形態では、照射強度を155mW/cmとし、照射時間は10分と求まった。
 なお、紫外光照射は、大気中以外にも、減圧雰囲気、不活性ガス雰囲気、真空など、様々なガス雰囲気内で適用できる。これは、酸素ラジカルが発生しない波長の紫外光による洗浄方法だからである。しかしながら、大気中で行うことは、前述のように、大型パネルの製造において有利である。
 次に、図3(c)に示すように、ネガ型のフォトレジスト50Aを全面に塗布する。
 次に、図3(d)に示すように、ネガ型のフォトレジスト50Aの上に、発光部と接続部に相当する位置に遮光部を有するフォトマスク51を位置合わせして載置する。そして、このマスク51を介して、フォトリソグラフィー法を用いてフォトレジスト50Aを露光する。
 次に、図3(e)に示すように、現像処理をして、画素開口部45と接続開口部35を構成するバンク50を形成する。
 なお、紫外光照射は、このようなバンク形成工程を経た金属酸化物からなるホール注入層にも適用可能である。この場合は、バンク形成後のホール注入層表面に紫外光を照射し、ホール注入層表面に吸着した、バンクや現像液の残渣である有機分子を主に除去することになる。ここで、一般にバンクに紫外光を照射すると、上層として塗布する有機溶媒との接触角が変化するが、本発明では紫外光照射条件を一意に定めることが容易であるから、その定まった紫外光照射条件をもとに、当該接触角やバンク形状を調整すればよい。
 次に、図4(a)に示すように、例えばスピンコート法やインクジェット法によるウェットプロセスにより、アミン系有機分子材料を含む組成物インクを画素開口部45に滴下し、溶媒を揮発除去させる。これによりバッファ層60が形成される。
 次に、図4(b)に示すように、バッファ層60の表面に、同様の方法で、有機発光材料を含む組成物インクを画素開口部45に滴下し、溶媒を揮発除去させる。これにより、発光層70が形成される。
 なお、バッファ層60、発光層70の形成方法はこれに限定されず、スピンコート法やインクジェット法以外の方法、例えばグラビア印刷法、ディスペンサー法、ノズルコート法、凹版印刷、凸版印刷等の公知の方法によりインクを滴下・塗布してもよい。
 続いて、図4(c)に示すように、例えば真空蒸着法により、電子注入層80を、発光層70上および接続開口部35のホール注入層40上に連続した状態で成膜する。
 さらに、図4(d)に示すように、同様の方法により、電子注入層80上に陰極90を成膜する。
 なお、図1には図示しないが、有機EL素子が完成後に大気曝露されるのを抑制する目的で、陰極90の表面にさらに封止層を設けるか、あるいは素子全体を空間的に外部から隔離する封止缶を設けることができる。封止層は例えばSiN(窒化シリコン)、SiON(酸窒化シリコン)等の材料で形成でき、素子を内部封止するように設ける。封止缶を用いる場合は、封止缶は例えば基板10と同様の材料で形成でき、水分などを吸着するゲッターを密閉空間内に設ける。
 以上の工程を経ることで、有機EL表示パネル110が完成する。
 以上の有機EL表示パネル110の製造方法では、酸化タングステンからなるホール注入層40の成膜後、所定の波長の紫外光を照射する工程を含む。これにより、ホール注入層表面における金属酸化物の酸素欠陥に類する構造が形成する電子準位を維持したまま、画素部および配線部のホール注入層40の表面から吸着物を除去することができる。
 また、画素部においてホール注入層40の洗浄後からバッファ層60を形成する工程までの間、配線部においてホール注入層40の洗浄後から電子注入層80を形成する工程までの間は、当該電子準位は、大気中において継続的に維持され、したがって、画素部ではバッファ層60へのホール注入能力が安定して維持され、配線部では電子注入層80とのオーミック接続能力が安定して維持される。これにより、低駆動電圧で長寿命の有機EL表示パネル110の製造を、安定して行うことが可能となる。
 また、前記の紫外光照射の工程における紫外光の照射時間や照射強度は、ホール注入層40の光電子スペクトルにおける所定の結合エネルギー領域の形状の変化が収束する条件から求めたものであり、必要最小限の照射条件で、吸着物を最大限に除去するように設定されている。これにより、最小限の洗浄プロセスで、非常に安定した画素部のホール注入効率と配線部のショットキーオーミック接続を実現することができる。
 <紫外光照射装置>
 次に、紫外光照射装置について説明する。図5に示す紫外光照射装置200は、有機EL表示パネル110の中間製品110Aに対し紫外光を照射するための装置であって、波長域が主として184.9nm超380nm以下である紫外光を出射する光源201と、当該光源201から出射した紫外光を前記中間製品110Aに向けて集光する反射鏡202と、それら光源201および反射鏡202を覆いかつ保持する筐体203と、前記光源201を点灯制御する制御部204とを備える。
 中間製品110Aは、例えば基板10に陽極20、補助配線30およびホール注入層40を成膜したものであって、バンク50およびバッファ層60は未成膜の状態である。
 光源201は、例えば、直管形のメタルハライドランプであって、その長手方向が中間製品110Aの搬送横幅方向となるように配置されており、低電圧で駆動できるとともに優れた発光効率を実現できる有機EL表示パネル110を効率よく製造するために好適な照射条件で点灯される。紫外光の照射時間や照射強度などの照射条件は、金属酸化物の種類などのホール注入層40の成膜条件、および本実施の形態で述べるホール注入層40の光電子分光スペクトルの形状の収束などに基づいて設定される。照射条件の設定は操作者により行われる。なお、照射条件の設定は制御部204により自動で行われてもよい。例えば、制御部204には成膜条件、照射時間、照射強度が関係付けられたデータベースが格納されており、操作者が入力する成膜条件に基づいて、前記制御部204が前記データベースを参照して照射時間、照射強度を設定する。
 中間製品110Aの紫外光照射対象位置への搬送は、例えば搬送コンベア205によって行われる。図中において、搬送上流側(右側)から搬送コンベア205上に搬入された中間製品110Aは、搬送コンベア205上を搬送されて紫外光照射対象位置を通過する。この通過の際に中間製品110Aの上面、すなわちホール注入層40の上面に紫外光が所定量照射される。紫外光照射が完了した中間製品110Aは搬送下流側(左側)に搬出される。
 以上に説明した紫外光照射装置200において、光源201はメタルハライドランプに限定されず、波長域が主として184.9nm超380nm以下(望ましくは253.7nm超380nm以下)である紫外光を出射可能なものであればよい。
 <各種実験と考察>
 (紫外光照射による吸着物の除去効果について)
 本実施の形態では、酸化タングステンからなるホール注入層の成膜後、所定の条件で紫外光を照射することにより、ホール注入層表面の吸着物を除去している。この吸着物除去効果については以下の実験で確認された。
 基板の上に、ITOからなる陽極、酸化タングステンからなるホール注入層を、スパッタ成膜装置のチャンバー内で積層した。その後、大気に取り出し、紫外光照射を行わないサンプル、1分照射したサンプル、10分照射したサンプルをそれぞれ作製した。照射強度は155mW/cmとした。
 なお、以降、本実施の形態においては、紫外光照射を行わないサンプルを「照射なしサンプル」、n分照射したサンプルを「照射n分サンプル」のように記述する。
 各サンプルを、アルバック・ファイ社製の光電子分光装置(PHI 5000 VersaProbe)に装着し、XPS(X線光電子分光)測定を実施した。ここで、一般にXPSスペクトルは、測定対象物の表面から深さ数nmまでにおける元素の組成や、結合状態および価数などの電子状態を反映する。このため、酸化タングステンに本来含まれない元素が観測されれば、それが吸着物である可能性が高い。さらに、一般に、大気曝露により吸着する或いは製造工程中に吸着する分子は、水分子や酸素分子の他は、炭素を含む分子が主であることが広く知られている。したがって、ホール注入層表層の炭素の、紫外光照射による濃度変化を観測すれば、吸着物除去効果を知ることができる。
 XPS測定条件は以下の通りである。なお、測定中、チャージアップは発生しなかった。
  光源  :Al Kα線
  バイアス:なし
  出射角 :基板法線方向
 まず、各サンプルをワイドスキャン測定したところ、観測された元素はいずれのサンプルもタングステン(W)、酸素(O)、および炭素(C)のみであった。そこで、Wの4f軌道(W4f)、およびCの1s軌道(C1s)のナロースキャンスペクトルの測定を行い、酸化タングステンからなるホール注入層の表層数nmにおける、タングステン原子の数密度に対する炭素原子の数密度の相対値、すなわち、WとCとの組成比を求めた。なお、スペクトルから組成比を求めるためには、測定に使用した光電子分光装置に付属のXPS解析ソフトウェア「MultiPak」の組成比算出機能を使用した。
 各サンプルのWとCの組成比を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、照射なしサンプルに比べて、照射1分サンプル、照射10分サンプルと、照射時間が長くなるにしたがって、明らかにタングステン原子に対する炭素原子の数が減っていることがわかる。すなわち、本実施の形態の紫外光照射により、酸化タングステンからなるホール注入層表面の吸着物が減少していることが明らかである。
 (紫外光照射のホール注入能力への影響について)
 本実施の形態では、酸化タングステンからなるホール注入層表面の吸着物を、紫外光照射で除去する際、ホール注入層からバッファ層へのホール注入能力、およびホール注入層と各電極の間のショットキーオーミック接続能力に作用する、酸素欠陥に類する構造が形成する電子準位は、照射の影響はほとんど受けずに維持されている。この維持性については、以下の実験で確認された。
 前述の照射なしサンプル、照射1分サンプル、照射10分サンプルに対し、UPS(紫外光電子分光)測定を実施した。ここで、一般にUPSスペクトルは、測定対象物の表面から深さ数nmまでにおける、価電子帯からフェルミ面(フェルミ準位)にかけての電子状態を反映する。特に、酸化タングステンや酸化モリブデンでは、表面に酸素欠陥に類する構造が存在すると、価電子帯の上端よりも低結合エネルギー側のフェルミ面近傍に、隆起したスペクトル形状(以下、「フェルミ面近傍の隆起構造」と称する)が確認される(非特許文献2)。したがって、このフェルミ面近傍の隆起構造の紫外光照射による変化を観測することで、紫外光照射が表面の酸素欠陥に類する構造に及ぼす影響を調べることができる。なお、酸化タングステンでは、詳しくは後述するが、このフェルミ面近傍の隆起構造は、価電子帯の上端(価電子帯で最も低い結合エネルギー)より1.8~3.6eV低い結合エネルギー領域内に位置する。
 UPS測定条件は以下の通りである。なお、測定中にチャージアップは発生しなかった。
  光源  :He I線
  バイアス:なし
  出射角 :基板法線方向
 図6に、各サンプルのフェルミ面近傍のUPSスペクトルを示す。なお、以降、光電子分光(UPS、XPS)スペクトルは、横軸の結合エネルギーの原点は測定装置のフェルミレベル(陽極のフェルミレベルに一致する)に採り、左方向を正の向きとした。照射なしサンプル、照射1分サンプル、照射10分サンプルのいずれも、図中に(I)で示したフェルミ面近傍の隆起構造が明確に確認できる。したがって、ホール注入能力に作用する酸素欠陥に類する構造が、紫外光の照射を受けても維持されていることがわかる。
 比較として、UVオゾン洗浄を行った。具体的には、基板の上に、ITOからなる陽極および酸化タングステンからなるホール注入層をスパッタ成膜装置のチャンバー内で積層した後、チャンバー内から大気中に取り出し、UVオゾン装置によりホール注入層表面のUVオゾン洗浄を行い、UPS測定によりフェルミ面近傍の隆起構造の有無を確認した。
 図7に、UVオゾン洗浄を3分行った酸化タングステンからなるホール注入層のフェルミ面近傍のUPSスペクトルを示す。なお、比較のために、図6の照射なしサンプルのUPSスペクトルも併記した。図6の本実施の形態の紫外光照射の場合とは異なり、フェルミ面近傍の隆起構造が全く確認できない。すなわち、UVオゾン洗浄によりホール注入層の表面の酸素欠陥に類する構造がほとんど失われてしまったことがわかる。
 以上のように、本実施の形態の紫外光照射による洗浄では、UVオゾン洗浄のように酸素欠陥に類する構造が失われないこと、すなわち、ホール注入能力やショットキーオーミック接続能力に作用する酸素欠陥に類する構造が紫外光の照射を受けても維持されていることが明らかである。
 (紫外光照射条件の規定方法について)
 本実施の形態の紫外光照射による、酸化タングステンからなるホール注入層の表面の洗浄では、ある程度以上の照射時間において、その吸着物除去効果が飽和することが、以下の実験で確認された。
 前述と同様の方法で、再度、照射なしサンプル、照射1分サンプル、照射10分サンプルを作成し、加えて、照射60分サンプル、照射120分サンプルも作成した。そして、XPS測定によって、各サンプルのW4fおよびC1sのナロースキャンスペクトルの測定を行い、それぞれバックグラウンド成分を引き算した後、W4fのナロースキャンスペクトルの面積強度で光電子強度を規格化した。このときの各サンプルのC1sのナロースキャンスペクトルを図8に示す。図8のC1sスペクトルの面積強度は、酸化タングステンからなるホール注入層の表層数nmにおける、タングステン原子に対する炭素原子の数密度の割合に比例する。
 図8によれば、照射時間1分以上のサンプルでC1sスペクトルの強度がほぼ一致しており、したがって、照射時間1分以上で吸着物除去効果がほぼ飽和してきていると考えられる。
 しかしながら、一般に、吸着物のC1sスペクトルはそもそも吸着する絶対量が少ないことから、図8のように強度が低く荒いスペクトルになることが多い。したがって、吸着物除去効果の飽和の判断にはあまり適さないおそれがある。そこで、強度が比較的強いスペクトルを用いて吸着物除去効果の飽和を判断する別の方法も述べる。
 一つ目は、UPSスペクトルにおける価電子帯の上端付近に該当する領域の形状の変化、すなわちUPSスペクトルにおける結合エネルギー4.5~5.4eVの領域の形状の変化で判断する方法である。この領域に存在するピークあるいは肩構造は、酸化タングステンを構成する酸素原子の2p軌道の非共有電子対に相当する。
 図9に、そのUPSスペクトルを示す。照射なしサンプル、照射1分サンプル、照射10分サンプルの各サンプルに対し、UPS測定を行った。光電子強度は結合エネルギー6.5eV付近の緩やかなピークで規格化した。図9によれば、照射1分サンプルおよび照射10分サンプルは、結合エネルギー4.5~5.4eVの領域に、照射なしサンプルでは存在しない図中の(II)で示すような明確なピークが認められる。さらに、照射1分サンプルと照射10分サンプルとはピーク形状がほぼ一致している。すなわち、照射時間1分以上で、UPSスペクトルにおける結合エネルギー4.5~5.4eVの領域の形状の変化はほぼ収束している。これらはC1sで見られた挙動と同じであり、C1sと同様に、紫外光照射で吸着物除去効果が得られていること、および、照射時間1分以上でその効果が飽和していることを示していると考えられる。
 二つ目は、XPS測定のW4fスペクトルの、紫外光照射による形状の変化である。図10に、照射なしサンプル、照射1分サンプル、照射10分サンプル、照射60分サンプル、照射120分サンプルの各サンプルの、W4fスペクトルを示す。スペクトルの最大値と最小値で規格化している。
 図10によれば、照射なしサンプルに比べ、照射を行ったサンプルでは、ピーク形状が鋭くなっている(ピークの半値幅が狭くなっている)ことがわかる。さらに、照射1分サンプルよりも照射10分サンプルの方がピーク形状が若干鋭いのに対して、照射10分サンプル、照射60分サンプル、照射120分サンプルは、スペクトル自体がほぼ完全に重なっており、照射10分でスペクトルの形状の変化がほぼ収束していることがわかる。
 この、W4fのスペクトルの照射時間による形状の変化は、例えば次のように説明できる。吸着物の構造にも依存するが、吸着物が表面のタングステン原子に負電荷を寄与する場合、内殻軌道のW4fはそれに応じて低結合エネルギー側にシフトする。化学的には、酸化タングステンの表層において6価のタングステン原子の一部が吸着物の影響で5価などの低価数に変化するということである。これは、W4fのXPSスペクトルにおいては、主成分である6価のタングステン原子によるスペクトルと、少数の低価数のタングステン原子によるスペクトルが重なることで、スペクトルの形状がブロードになることに対応する。
 上記を考慮すると、図10においては、紫外光照射を行うことで吸着物が除去され、5価のタングステン原子が6価に戻ることで、ピーク形状が鋭くなると考えられる。このことから、照射1分で大部分の吸着物が除去され、照射10分以上では吸着物の除去効果がほぼ飽和していると解釈できる。これは、C1sで見られた挙動とやはり同様である。
 また、図示はしていないが、酸素原子のO1s軌道においても、紫外光の照射時間に対するスペクトルの形状の変化が、照射10分以上でほぼ収束することが確認された。
 以上より、本実施の形態の紫外光照射における吸着物除去効果は、ある程度以上の照射時間で飽和することがわかる。ここで、金属酸化物が酸化タングステンの場合の照射条件は次のように定めることができる。例えば、照射時間については、照射強度を任意に定め、XPS測定によるW4fまたはO1sのナロースキャンスペクトルの形状、または、UPSスペクトルにおける結合エネルギー4.5~5.4eVの形状の変化が収束するまでの時間を測定し、この時間を照射時間として定める。具体的には、例えば照射時間n分のスペクトルと照射時間n+1分のスペクトルを比較し、各測定点における2つのスペクトルの、規格化強度の差の二乗平均がある値以下になったときに、照射時間n分で照射時間によるスペクトルの形状の変化が収束し、最大限の吸着物の除去が完了した、と判断すればよい。本実施の形態では、図9および図10から、照射時間10分で吸着物除去効果が飽和した、と判断した。
 (紫外光照射後の電子状態の維持について)
 本実施の形態では、ホール注入能力およびショットキーオーミック接続能力に作用する酸素欠陥に類する構造が形成する電子準位が、少なくとも表面洗浄後からその表面に上層が積層されるまでの間において継続的に維持される。その根拠は以下の通りである。
 前述の図6のUPSスペクトルは、紫外光の照射から2日後に測定したものである。すなわち、照射なしサンプルと、照射後に大気中で2日経過した各照射時間のサンプルとの間において、UPSスペクトルにおけるフェルミ面近傍の隆起構造に相違は見られず、いずれも隆起構造は明確である。また、図示は省略するが、紫外光の照射から2時間後、1日後の場合についても測定を行っており、その場合もフェルミ面近傍の隆起構造は図6と同様に明確であった。すなわち、少なくとも照射後から2日間の間は、大気中で酸素欠陥に類する構造が形成する電子準位が維持されていることを確認した。
 この2日間という期間は、紫外光照射によるホール注入層の洗浄後、その表面にバッファ層や電子注入層が積層される工程までの期間(通常は数時間以内)に比べ充分に長く、意図的にバッファ層や電子注入層の形成時期を遅らせることでもしない限り、この期間を過ぎてもバッファ層や電子注入層が形成されないということはありえない。
 (紫外光照射による素子特性の向上について)
 紫外光照射によりホール注入層を洗浄した本実施の形態に係る有機EL表示パネルを構成する有機EL素子は、照射をしないで作製した有機EL表示パネルを構成する有機EL素子に比べて特性がよい。これに関しては、以下の実験で確認された。
 まず、紫外光照射によるホール注入層の表面からの吸着物の除去がホール注入層からバッファ層へのホール注入効率に及ぼす効果を確実に評価するために、評価デバイスとしてホールオンリー素子を作製した。
 有機EL素子においては、電流を形成するキャリアはホールと電子の両方であり、有機EL素子の電気特性にはホール電流以外にも電子電流が反映されている。しかし、ホールオンリー素子では、陰極からの電子の注入が阻害されるため、電子電流はほとんど流れず、全電流はほぼホール電流のみから構成され、キャリアはほぼホールのみと見なせる。したがって、ホールオンリー素子は、ホール注入効率の評価に好適である。
 具体的に作製したホールオンリー素子1Bは、図11に示すように、基板9上に厚さ50nmのITO薄膜からなる陽極2をスパッタ成膜法にて成膜し、陽極2上に厚さ30nmの酸化タングステンからなるホール注入層4を、表面に酸素欠陥に類する構造が形成する電子準位を持つように、所定のスパッタ成膜法にて成膜し、厚さ20nmのアミン系有機高分子であるTFBからなるバッファ層6A、厚さ70nmの有機高分子であるF8BTからなる発光層6B、厚さ100nmのAu(金)からなる陰極8Cを順次積層した構成とした。
 ここで、ホール注入層としては、成膜してスパッタ成膜装置のチャンバー内から大気中に取り出した後(この時点で既に吸着物が吸着している)、本実施の形態に係る紫外光照射(照射時間は10分)を行うもの、また紫外光照射を行わないものの2つを用意し、それぞれホールオンリー素子1Bを作製した。以降、前者のホールオンリー素子1Bを「照射ありHOD」、後者のホールオンリー素子1Bを「照射なしHOD」と称す。
 作製した各ホールオンリー素子1Bを直流電源DCに接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。なお、ここでの「駆動電圧」とは、電流密度0.4mA/cmのときの印加電圧とする。
 この駆動電圧が小さいほど、ホール注入層のホール注入効率は高いと言える。なぜなら、各ホールオンリー素子1Bにおいて、ホール注入層表面以外の各部位の作製方法は同一であるから、ホール注入層とバッファ層の界面を除く、隣接する2つの層の間のホール注入障壁は一定と考えられる。したがって、ホール注入層表面への紫外光照射の有無による駆動電圧の違いは、ホール注入層からバッファ層へのホール注入効率の違いを強く反映したものになる。
 表2は、当該実験によって得られた、各ホールオンリー素子1Bの駆動電圧の値である。
Figure JPOXMLDOC01-appb-T000002
 また、図12は、各ホールオンリー素子1Bの電流密度―印加電圧曲線である。図中縦軸は電流密度(mA/cm)、横軸は印加電圧(V)である。
 表2および図12に示されるように、照射ありHODは照射なしHODと比較して、駆動電圧が低く、電流密度―印加電圧曲線の立ち上がりが早く、低い印加電圧で高い電流密度が得られている。すなわち、照射ありHODは照射なしHODと比較し、ホール注入効率が優れている。
 以上は、ホールオンリー素子1Bにおけるホール注入層からバッファ層へのホール注入効率に関する検証であったが、紫外光照射による吸着物の除去が、ホール注入層からバッファ層へのホール注入効率に及ぼす効果は、有機EL表示パネルを構成する有機EL素子においても、本質的にホールオンリー素子1Bと同じである。
 このことを確認するために、評価デバイスとして有機EL素子1を作製した。有機EL素子1は、図13に示すように、基板10上に厚さ50nmのITO薄膜からなる陽極2を形成し、さらに陽極2上に厚さ30nmの酸化タングステンからなるホール注入層4、厚さ20nmのアミン系有機高分子であるTFBからなるバッファ層6A、厚さ70nmの有機高分子であるF8BTからなる発光層6B、厚さ5nmのバリウムからなる電子注入層8Aおよび厚さ100nmのアルミニウムからなる陰極8Bを順次積層した構成とした。
 そして、紫外光照射を行ったホール注入層、また紫外光照射を行わないホール注入層を用いて、それぞれ有機EL素子1を作製した。以降、前者の有機EL素子1を「照射ありBPD」、後者の有機EL素子1を「照射なしBPD」と称す。作製方法は、照射なしBPDのホール注入層が紫外光照射されないことを除き、全て同じである。
 作製した各有機EL素子1を直流電源に接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。なお、ここでの「駆動電圧」とは、電流密度10mA/cmのときの印加電圧とする。
 表3は、当該実験によって得られた、各有機EL素子1の駆動電圧の値である。
Figure JPOXMLDOC01-appb-T000003
 また、図14は、各有機EL素子1の電流密度―印加電圧曲線である。図中縦軸は電流密度(mA/cm)、横軸は印加電圧(V)である。
 表3および図14に示されるように、照射ありBPDは照射なしBPDと比較して、駆動電圧が低く、電流密度―印加電圧曲線の立ち上がりが早く、低い印加電圧で高い電流密度が得られている。これは、照射ありHODおよび照射なしHODと同様の傾向である。
 以上の結果により、ホール注入層表面への紫外光照射による吸着物の除去が、ホール注入層からバッファ層へのホール注入効率に及ぼす効果は、有機EL素子1においても、ホールオンリー素子1Bの場合と同様であることが確認された。
 以上の諸実験により、有機EL素子1において、本実施の形態に基づきホール注入層の成膜後に所定の紫外光照射を行うと、ホール注入層表面の吸着物が最大限に除去され、かつ酸素欠陥に類する構造が形成する電子準位は照射によって失われず、したがって、ホール注入能力を損なわずに、駆動電圧の増加や寿命の低下を引き起こす吸着物を除去できるため、ホール注入層からバッファ層へのホール注入効率が改善され、それにより優れた素子特性が実現されることが確認された。
 (紫外光の波長について)
 本実施の形態では、ホール注入層の成膜後に所定の波長の紫外光を大気中にて照射することで、ホール注入層の吸着物が除去されており、除去されたホール注入層を用いた有機EL表示パネル110は、除去を行わない有機EL表示パネルよりも低電圧駆動を実現する。この紫外光の波長については、以下の考察により規定された。
 まず、大気中などの酸素分子(O)を含むガス雰囲気中において、オゾン(O)が発生するための紫外光の波長は184.9nmである。以下の反応により、酸素分子が波長184.9nmの紫外光で分解され、生成した酸素ラジカル(O)と他の酸素分子が結合し、オゾンが生成される。
 O → O + O
 O + O → O
 また、さらにオゾンが分解し、再び酸素ラジカルが発生するための紫外光の波長は253.7nmである。
 UVオゾン洗浄では、これらの波長184.9nmおよび253.7nmの紫外光で酸素ラジカルを発生させ、その強力な酸化作用を吸着物の除去に用いている。このため、前述の実験でUVオゾン洗浄を行ったホール注入層のように、酸素欠陥に類する構造が形成する電子準位がほとんど消滅してしまうおそれがある。
 そこで、本実施の形態では、酸素分子を分解して酸素ラジカルを発生させる可能性が低い184.9nm超の波長域の紫外光を用いる。さらに、大気中に存在する僅かな量のオゾンの分解による酸素ラジカルの発生をも防ぐために、253.7nm超の波長域の紫外光を用いることが望ましい。
 本実施の形態で、実際に用いたメタルハライドランプは、図15のような分光分布を持つ。このように、253.7nm以下の波長を極力含まないランプを採用した。このメタルハライドランプの最大の強度(波長380nm付近)に対する253.7nm以下の波長の強度は、高々数%台に抑えられている。
 次に、一般的な吸着物における、原子間の結合エネルギーを表4に示す。「=」は二重結合、「-」は単結合である。吸着物を除去するには、まず、この結合エネルギー以上のエネルギーの光を照射し、結合を切る必要がある。
Figure JPOXMLDOC01-appb-T000004
 ここで、光子1モルあたりの光のエネルギーEと、波長λとの間には、次の反比例の関係がある。
 E=Nhc/λ(N:アボガドロ数、h:プランク定数、c:光速、λ:波長 )
上式より、波長184.9nmの紫外光のエネルギーは647kJ/mol、波長253.7nmの紫外光のエネルギーは472kJ/molに相当する。これらの値を表4と比較すると、本実施の形態の波長域の紫外光は、吸着物に見られる多くの原子間結合を切断できることがわかる。特に、後述するように、化学吸着の場合は、吸着物は酸化タングステンの酸素原子と主に単結合すると考えられるが、この吸着物との単結合のエネルギーは、大きくてもO-H結合の463kJ/mol(波長258nmに相当)程度であるから、本実施の形態の波長域の紫外光で切断が可能であることがわかる。また、物理吸着の場合は、化学吸着よりもはるかに結合が弱いため、これも紫外光照射で容易に除去される。
 以上が、本実施の形態で用いた紫外光が、吸着物を除去できる理由である。
 本実施の形態の紫外光照射による吸着物の除去効率は、UVオゾン洗浄によるものよりも本質的に悪い。これは、UVオゾン洗浄では、結合を切られた吸着物がすぐさま酸素ラジカルに酸化されてCO、HOなどの分子として容易に遊離するからである。しかしながら、前述のように、UVオゾン洗浄は、酸化タングステンのような金属酸化物からなるホール注入層の洗浄には不適である。
 次に、一般に、金属酸化物の原子間結合が本実施の形態の波長域の紫外光のエネルギーで切断される可能性は低い。例えば非特許文献3によれば、酸化タングステンにおける酸素原子とタングステン原子の結合エネルギーは672kJ/mol(波長178nmに相当)であり、本実施の形態の波長域の紫外光での切断は困難である。これは、前述の真空中のアルゴンイオンによるスパッタエッチングとは対照的である。すなわち、本実施の形態の紫外光を用いれば、酸化タングステンなどの金属酸化物からなるホール注入層の原子間結合を破壊して化学的に活性化させることなく、化学的に安定した状態のまま吸着物を除去できる。
 以上の理由により、本発明では、波長184.9nm超、望ましくは波長253.7nm超の紫外光を用いる。なお、可視光による化学吸着の結合の切断は一般に困難であるから、本実施の形態では、可視光ではなく紫外光(波長380nm以下)を用いる。
 (紫外光照射後も、ホール注入能力およびショットキーオーミック接続能力に作用する電子準位が維持される理由)
 本実施の形態では、紫外光の照射後も、ホール注入層表面の酸素欠陥に類する構造が形成する電子準位が継続的に維持され、したがって、バッファ層へのホール注入能力も安定して維持され、電子注入層とのショットキーオーミック接続能力も安定して維持でき、低駆動電圧の有機EL表示パネル110の製造を安定して行うことが可能である。この維持性に関して以下に考察する。
 酸化タングステンの薄膜や結晶に見られる前記電子準位は、酸素欠陥に類する構造に由来することが、実験および第一原理計算の結果から多数報告されている。具体的には、酸素原子の欠乏により形成される隣接したタングステン原子の5d軌道同士の結合性軌道、および、酸素原子に終端されることなく膜表面や膜内に存在するタングステン原子単体の5d軌道に由来するものと推測されている。
 ここで、これらのタングステン原子の5d軌道は、5d軌道同士の結合性軌道や原子単体の5d軌道として存在するよりは、吸着物が化学吸着した方が安定化するのではないかと予想されるかもしれないが、必ずしもそうではない。実際、大気中に2日間置いた酸化タングステンにおいて、本実施の形態の図6のUPSスペクトルが示すように、当該電子準位に該当する、フェルミ面近傍の隆起構造が確認されるからである。
 真空中において、三酸化タングステン単結晶を劈開して清浄な(001)面を出すと、最表面の酸素原子の一部が真空中に放出されることが、非特許文献4で報告されている。さらに、非特許文献4では、第一原理計算により、(001)面では、全ての最表面のタングステン原子が酸素原子で終端されるよりも、図16のように周期的に一部のタングステン原子(a)が終端されない構造の方がエネルギー的に安定し、この理由として、全ての最表面のタングステン原子が酸素原子で終端されると終端酸素原子同士の電気的な斥力が大きくなり、かえって不安定化するからであると報告している。つまり、(001)面においては、表面に酸素欠陥に類する構造(a)がある方が安定するのである。
 なお、図16では、単純化のために、1つのタングステン原子に配位する6つの酸素原子を頂点とする8面体構造が、三酸化レニウムのように整然と並んだ絵で示しているが、実際は8面体同士がやや歪んで配置している。
 以上から類推し、ホール注入層表面の酸素欠陥に類する構造が形成する電子準位が、本実施の形態の紫外光照射後も継続的に維持される理由としては、例えば以下のような機構が考えられる。
 本実施の形態の酸化タングステンからなるホール注入層は、成膜直後は少なくとも局所的にはその表面に(001)面ファセットを持ち、図16のように、終端酸素原子(b)とそれに囲まれた終端されていないタングステン原子(a)とを持つと考えられる。これは、(001)面が安定構造だからである。そして、この表面が、成膜後にスパッタ成膜装置内のチャンバー内の不純物分子や大気中の分子に曝露される。
 ここで、一般に金属酸化物においては、表面に(a)のような不飽和な配位の金属原子が存在すると、水分子や有機分子などと化学吸着反応し終端されることがある。本実施の形態においては、図10のW4fのスペクトルを見る限り、タングステン原子と炭素原子との結合に由来する、結合エネルギー31~33eV付近に位置するはずのピークが確認されず、タングステン原子と酸素原子との結合に由来するピークのみが確認されることから、(a)のタングステン原子と直接化学結合する吸着分子の原子は、酸素原子である可能性が高い。
 しかしながら、例えば(a)に水分子が化学吸着して水酸基を形成する場合、あるいは(a)に有機分子が化学吸着して有機分子の持つ酸素原子が結合する場合などは、一般に負に帯電している吸着基の酸素原子と、同じく負に帯電している周囲の終端酸素原子(a)との間に斥力が働く。このため、真空中で(a)に終端酸素原子が存在しにくい理由と同様に、(a)への分子吸着も比較的起こりにくいと予想される。
 一方、(a)ではなく、その周囲の終端である酸素原子(b)に対しては、水分子や有機分子が付加反応を起こすなどして化学吸着する。この吸着自体は周囲に斥力などの阻害要因がほぼないため比較的容易である。そして、この(b)への吸着により場合によっては(a)の直近に数原子以上からなる有機分子の終端基が存在することになり、(a)への分子の吸着に対して立体的な障壁となり得る。このため、(b)に分子が吸着することによっても(a)への分子吸着がやはり比較的起こりにくくなると予想される。
 以上より、図16のような、終端酸素原子(b)と、それに囲まれた終端されていないタングステン原子(a)からなる構造を持つ表面に対しては、(a)への分子の化学吸着は起こりにくく、不純物分子や大気中の気体分子は主に(a)の周囲の(b)に対して化学吸着すると考えられる。なお、このときの化学吸着は、終端酸素を介する結合となるから一般に単結合である。
 そして、本実施の形態の紫外光が照射されると、(b)に対して化学吸着した分子のみが結合を切断され遊離する。そして、(b)は再びもとの終端酸素原子に戻るか、あるいは、今度は水分子と吸着反応し、本実施の形態の紫外光では比較的切断されにくい安定した水酸基などとして残ると予想される。
 以上をまとめると、本実施の形態の酸化タングステンからなるホール注入層は、図16のような、終端酸素原子(b)とそれに囲まれた終端されていないタングステン原子(a)とからなる局所構造を表面に有し、まず、この構造自体の持つ特性により(a)に対し分子の吸着が起こりにくい。また、(b)に対して吸着した分子は、紫外光が照射されることで遊離され、その後には主に水酸基が残るのみである。これにより、表面の酸素欠陥に類する構造(a)が形成する、ホール注入能力に作用する電子状態が、成膜後の本実施の形態の紫外光照射の影響を受けずに継続して維持され、一方で、吸着物のみが紫外光照射により除去されるのである。
 (酸化タングステンの成膜条件について)
 本実施の形態では、ホール注入層を構成する酸化タングステンを所定の成膜条件で成膜することで、ホール注入層に前記したフェルミ面近傍の占有準位を存在させ、ホール注入層とバッファ層との間のホール注入障壁を低減して、有機EL表示パネル110を低電圧駆動できるようにしている。
 このような性能を得るための酸化タングステンの成膜方法としては、DCマグネトロンスパッタ装置を用い、ターゲットは金属タングステンとし、チャンバー内ガスはアルゴンガスと酸素ガスで構成し、ガス圧(全圧)が2.7Pa超7.0Pa以下であり、かつ酸素ガス分圧の全圧に対する比が50%以上70%以下であって、さらにターゲット単位面積当たりの投入電力(投入電力密度)が1W/cm以上2.8W/cm以下となる成膜条件に設定して、反応性スパッタ法で成膜することが好適であると考えられる。
 上記成膜条件の有効性は以下の諸実験で確認された。
 まず、ホール注入層からバッファ層へのホール注入効率の、成膜条件依存性の評価を確実にするために、評価デバイスとして図11に示すホールオンリー素子1Bを用いた。
 この作製工程において、ホール注入層は、DCマグネトロンスパッタ装置を用い、反応性スパッタ法で成膜した。チャンバー内ガスは、アルゴンガスおよび酸素ガスの少なくともいずれかから構成し、ターゲットは金属タングステンを用いた。基板温度は制御せず、アルゴンガス分圧、酸素ガス分圧、全圧は各ガスの流量で調節するものとした。成膜条件は以下の表5に示すように、全圧、酸素ガス分圧、および投入電力の各条件を変化させるものとし、これにより各成膜条件で成膜したホール注入層を備えるホールオンリー素子1B(素子No.1~14)を得た。なおこれ以降、酸素ガス分圧は、全圧に対する比(%)として表す。
Figure JPOXMLDOC01-appb-T000005
 上記DCマグネトロンスパッタ装置の、投入電力と投入電力密度の関係を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 作製した各ホールオンリー素子1Bを直流電源DCに接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。以降、「駆動電圧」とは、電流密度10mA/cmのときの印加電圧とする。
 この駆動電圧が小さいほど、ホール注入層からバッファ層へのホール注入効率は高いと推測される。なぜなら、各ホールオンリー素子1Bにおいて、ホール注入層以外の各部位の作製方法は同一であるから、ホール注入層を除く、隣接する2つの層の間のホール注入障壁は一定と考えられる。また、後述のように、当該実験で用いた陽極2とホール注入層は、ショットキーオーミック接続をしていることが、別の実験により確認されている。したがって、ホール注入層の成膜条件による駆動電圧の違いは、ホール注入層からバッファ層へのホール注入効率、およびホール注入層自体のホール伝導効率を強く反映したものになる。
 ここで、本実施の形態の各実験における素子の特性には、ホール注入層からバッファ層へのホール注入効率の他に、ホール注入層のホール伝導効率も影響していると考えられる。しかしながら、当該素子の特性において、少なくともホール注入層とバッファ層との間のホール注入障壁が強く反映されていることは、後述するエネルギーダイアグラムの評価結果からも明確である。
 表7は、当該実験によって得られた、各ホールオンリー素子1Bの、全圧、酸素ガス分圧、投入電力の各成膜条件に対する、駆動電圧の値である。表7中、各ホールオンリー素子1Bの素子No.は囲み数字で示している。
Figure JPOXMLDOC01-appb-T000007
 また、図17の(a)~(c)は、各ホールオンリー素子1Bの駆動電圧の成膜条件依存性をまとめたグラフである。図17(a)中の各点は、左から右に向かって、素子No.4、10、2の駆動電圧を表す。図17(b)中の各点は、左から右に向かって、素子No.13、10、1の駆動電圧を表す。さらに図17(c)中の各点は、左から右に向かって、素子No.14、2、8の駆動電圧を表す。
 なお当該実験では、全圧が2.7Paで酸素ガス分圧が100%の場合、全圧が4.8Paで酸素ガス分圧が30%の場合、全圧が4.8Paで酸素ガス分圧が70%の場合、全圧が4.8Paで酸素ガス分圧が100%の場合は、いずれもガス流量などのスパッタ装置の制約で成膜を行えなかった。
 まず、駆動電圧の全圧依存性は、図17(a)からわかるように、酸素ガス分圧50%、投入電力500Wの条件下では、少なくとも全圧が2.7Pa超4.8Pa以下の範囲において、駆動電圧の明確な低減が確認できた。この傾向は、少なくとも全圧が7.0Pa以下の範囲まで続くことが別の実験により分かった。したがって、全圧は2.7Pa超7.0Pa以下の範囲に設定することが望ましいと言える。
 次に、駆動電圧の酸素ガス分圧依存性は、図17(b)からわかるように、全圧2.7Pa、投入電力500Wの条件下では、少なくとも酸素ガス分圧が50%以上70%以下の範囲において、酸素ガス分圧の上昇とともに駆動電圧の低下が確認できた。ただし、これ以上に酸素ガス分圧が上昇すると、別の実験により逆に駆動電圧の上昇が確認された。したがって、酸素ガス分圧は50%以上で上限を70%程度に抑えることが望ましいと言える。
 次に、駆動電圧の投入電力依存性は、図17(c)からわかるように、全圧4.8Pa、酸素ガス分圧50%の条件下では、投入電力が500W超で、急激に駆動電圧が上昇することが確認された。したがって、投入電力は500W以下に抑えるのが望ましいと考えられる。なお、表7の素子No.1、3を見ると、投入電力が500Wであっても、全圧が2.7Pa以下であれば、駆動電圧が上昇するという結果が確認できる。
 次に、各ホールオンリー素子1Bのうち、代表して素子No.14、1、7の電流密度―印加電圧曲線を図18に示した。図中縦軸は電流密度(mA/cm)、横軸は印加電圧(V)である。素子No.14は、上記した全圧、酸素ガス分圧、投入電力の望ましい条件をすべて満たしている。一方、素子No.1、7は、上記望ましい条件を一部満たしていない。
 ここで、以降の説明のために、ホール注入層(および後述の酸化タングステン層12)の成膜条件に関しては、素子No.14の成膜条件を成膜条件A、素子No.1の成膜条件を成膜条件B、素子No.7の成膜条件を成膜条件Cと呼ぶことにする。また、それに倣い、図18では、素子No.14をHOD-A、素子No.1をHOD-B、素子No.7をHOD-Cとも記述した。
 図18に示されるように、HOD-AはHOD-B、HOD-Cと比較して、最も電流密度―印加電圧曲線の立ち上がりが早く、また最も低い印加電圧で高い電流密度が得られている。これにより、HOD-AはHOD-B、HOD-Cと比較し、ホール注入層からバッファ層へのホール注入効率が優れていることが推測される。なお、HOD-Aは、各ホールオンリー素子1Bの中で最も駆動電圧が低い素子である。
 以上は、ホールオンリー素子1Bにおけるホール注入層からバッファ層へのホール注入効率に関する検証であったが、有機EL素子1においても、ホール注入層からバッファ層へのホール注入効率の成膜条件依存性は、本質的にホールオンリー素子1Bと同じである。このことを確認するために、成膜条件A、B、Cのホール注入層を用いて、図13に示す各有機EL素子1を作製した。
 作製した成膜条件A、B、Cの各有機EL素子1を直流電源DCに接続し、電圧を印加した。このときの電流密度―印加電圧曲線を図19に示した。図中、縦軸は電流密度(mA/cm)、横軸は印加電圧(V)である。
 なお、以降の説明のために、図19では、成膜条件Aの有機EL素子1をBPD-A、成膜条件Bの有機EL素子1をBPD-B、成膜条件Cの有機EL素子1をBPD-Cと記述した。
 図19に示されるように、BPD-AはBPD-B、BPD-Cと比較して、最も電流密度―印加電圧曲線の立ち上がりが早く、また最も低い印加電圧で高い電流密度が得られている。これは、それぞれ同じ成膜条件のホールオンリー素子であるHOD-A、HOD-B、HOD-Cと同様の傾向である。
 さらに、上記の各有機EL素子1について、電流密度の変化に応じた発光強度の関係を表す、発光強度―電流密度曲線を図20に示した。図中、縦軸は発光強度(cd/A)、横軸は電流密度(mA/cm)である。これより、少なくとも測定した電流密度の範囲では、BPD-Aの発光強度が最も高いことがわかる。
 以上の結果により、ホール注入層からバッファ層へのホール注入効率の成膜条件依存性が、有機EL素子1においても、ホールオンリー素子1Bの場合と同様に作用していることが推測される。すなわち、当該実験の有機EL素子1において、ホール注入層を構成する酸化タングステンを、DCマグネトロンスパッタ装置を用い、ターゲットは金属タングステンとし、基板温度は制御せず、チャンバー内ガスはアルゴンガスと酸素ガスで構成し、全圧が2.7Pa超7.0Pa以下であり、かつ酸素ガス分圧の全圧に対する比が50%以上70%以下であって、さらに投入電力密度が1W/cm以上2.8W/cm以下となる成膜条件下で、反応性スパッタ法で成膜すると、ホール注入層からバッファ層へのホール注入効率が良く、それにより優れた低電圧駆動と高い発光効率が実現されることが推測される。
 なお、上記においては、投入電力の条件は、表6をもとに改めて投入電力密度で表した。本実験で用いたDCマグネトロンスパッタ装置とは異なるDCマグネトロンスパッタ装置を用いる場合は、ターゲットのサイズに合わせて、投入電力密度が上記条件になるように投入電力を調節することにより、本実験と同様に、優れた低電圧駆動と高い発光効率の有機EL素子1を実現するホール注入層が得られる。なお、全圧、酸素分圧については、装置やターゲットのサイズに依存しない。
 また、ホール注入層の反応性スパッタ法による成膜時は、室温環境下に配置されるスパッタ装置において、基板温度を意図的には設定していない。したがって、少なくとも成膜前は基板温度は室温である。ただし、成膜中に基板温度は数10℃程度上昇する可能性がある。
 本実施の形態の有機EL表示パネル110は、成膜条件Aでホール注入層を作製しており、前記したフェルミ面近傍の占有準位を持つ。これについては、以降で考察する。
 (ホール注入層の電子状態について)
 本実施の形態の有機EL表示パネル110のホール注入層を構成する酸化タングステンには、前記フェルミ面近傍の占有準位が存在している。このフェルミ面近傍の占有準位は、先の実験で示した成膜条件の調整により形成されるものである。詳細を以下に述べる。
 前述の成膜条件A、B、Cで成膜した酸化タングステンにおける、前記フェルミ面近傍の占有準位の存在を確認する実験を行った。
 各成膜条件で、光電子分光測定用のサンプルを作製した。当該サンプルの構成としては、図21に示す1Aのように、導電性シリコン基板11の上に、厚さ10nmの酸化タングステン層12(ホール注入層に該当する)を、前記の反応性スパッタ法により成膜した。以降、成膜条件Aのサンプル1AをサンプルA、成膜条件Bのサンプル1AをサンプルB、成膜条件Cのサンプル1AをサンプルCと記述する。
 サンプルA、B、Cは、いずれもスパッタ装置内において酸化タングステン層12を成膜した後、当該スパッタ装置に連結され窒素ガスが充填されたグローブボックス内に移送し、大気曝露しない状態を保った。そして、当該グローブボックス内でトランスファーベッセルに封入し、光電子分光装置に装着した。これにより、酸化タングステン層12を成膜後に大気曝露することなく、紫外光電子分光(UPS)測定を実施した。
 ここで、一般にUPSスペクトルは、測定対象物の表面から深さ数nmまでにおける、価電子帯などの占有準位の状態を反映したものになる。そこで本実験では、UPSを用いて酸化タングステン層12の表層における占有準位の状態を観察するものとした。
 UPS測定条件は以下の通りである。なお、サンプルA、B、Cでは導電性シリコン基板11を用いたため、測定中チャージアップは発生しなかった。
 光源   :He I線
 バイアス :なし
 出射角  :基板法線方向
 測定点間隔:0.05eV
 図22に、サンプルAの酸化タングステン層12のUPSスペクトルを示す。横軸の結合エネルギーの原点は導電性シリコン基板11のフェルミレベルとし、左方向を正の向きとした。
 以下、図22を用いて、酸化タングステン層12の各占有準位について説明する。
 一般に酸化タングステンが示すUPSスペクトルにおいて、最も大きく急峻な立ち上がりは一意に定まる。この立ち上がりの変曲点を通る接線を線(i)、その横軸との交点を点(iii)とする。これにより、酸化タングステンのUPSスペクトルは、点(iii)から高結合エネルギー側に位置する領域(x)と、低結合エネルギー側に位置する領域(y)に分けられる。
 ここで、以下の表8に示した酸化タングステン層12の組成比によれば、サンプルA、B、Cとも、タングステン原子と酸素原子の数の比率がほぼ1:3である。なお、この組成比は、X線光電子分光(XPS)により求めた。具体的には、当該光電子分光装置を用い、前記UPS測定と同様に、酸化タングステン層12を大気曝露することなくXPS測定し、酸化タングステン層12の表面から深さ数nmまでにおけるタングステンと酸素の組成比を見積もった。なお、表8には、酸化タングステン層12の成膜条件も併記してある。
Figure JPOXMLDOC01-appb-T000008
 この組成比から、サンプルA、B、Cのいずれにおいても、酸化タングステン層12は少なくとも表面から深さ数nm以内の範囲において、三酸化タングステンを基本とする原子配置、つまり6つの酸素原子が1つのタングステン原子に対し8面体配位で結合し、8面体が互いに頂点の酸素原子を共有する構造を基本構造に持つと考えられる。したがって、図22における領域(x)は、三酸化タングステン結晶、あるいはその結晶の秩序が乱れた(ただし結合は切れておらず、上記基本構造が保たれている)アモルファス構造が持つ、上記基本構造に由来する占有準位であり、いわゆる価電子帯に対応する領域である。なお、本願発明者は酸化タングステン層12のX線吸収微細構造(XAFS)測定を行い、サンプルA、B、Cのいずれにおいても、上記基本構造が形成されていることを確認した。
 したがって、図22における領域(y)は、価電子帯と伝導帯の間のバンドギャップに対応するが、本UPSスペクトルが示すように、酸化タングステンにはこの領域にも、価電子帯とは別の占有準位が存在することがあることが知られている。これは上記基本構造とは異なる別の構造に由来する準位であり、いわゆるバンドギャップ間準位(in-gap stateあるいはgap state)である。
 続いて図23に、サンプルA、B、Cにおける各酸化タングステン層12の、領域(y)におけるUPSスペクトルを示す。図23に示すスペクトルの強度は、図22における点(iii)よりも3~4eVほど高結合エネルギー側に位置するピーク(ii)のピークトップの値で規格化した。図23にも図22の点(iii)と同じ横軸位置に点(iii)を示している。横軸は点(iii)を基準とした相対値(相対結合エネルギー)として表し、左から右に向かって結合エネルギーが低くなるように示している。
 図23に示されるように、サンプルAの酸化タングステン層12では、点(iii)からおおよそ3.6eV低い結合エネルギーの位置から、点(iii)からおおよそ1.8eV低い結合エネルギーの位置までの領域に、ピークの存在が確認できる。このピークの明瞭な立ち上がり位置を図中に点(iv)で示した。このようなピークは、サンプルB、Cでは確認できない。
 本発明はこのように、UPSスペクトルにおいて点(iii)から1.8~3.6eV程度低い結合エネルギーの領域内に隆起(ピーク形状を持つとは限らない)した構造を持つ酸化タングステンを、ホール注入層として用いることにより、有機EL表示パネル110において優れたホール注入効率が発揮できるようになっている。
 ここで、当該隆起の程度が急峻であるほど、ホール注入効率が高くなる傾向があることが分かっている。したがって、図23に示すように、点(iii)から2.0~3.2eV程度低い結合エネルギーの領域は、比較的当該隆起構造を確認しやすく、かつ、その隆起が比較的急峻である領域として、特に重要であると言える。
 なお、以降、UPSスペクトルにおける当該隆起構造を、「フェルミ面近傍の隆起構造」と称する。このフェルミ面近傍の隆起構造に対応する占有準位が、前記した「フェルミ面近傍の占有準位」である。
 次に、上記フェルミ面近傍の隆起構造をより明確にするために、図23に示したサンプルA、B、CのUPSスペクトルにおける規格化強度の微分を計算した。
 具体的には、グラフ解析ソフトウェア「IGOR Pro 6.0」を用い、図23に示すUPSスペクトルについて2項スムージング(スムージングファクターは1とした)を11回行い、その後に中心差分法による微分処理を行った。これはUPS測定時のバックグラウンドノイズなどのばらつき要因を平滑化し、微分曲線をスムーズにし、下記の議論を明快にするためである。
 この処理により得られた微分曲線を図24に示した。図24中の点(iii)、(iv)は図23と同一の横軸位置である。
 図24に示す微分曲線によれば、サンプルB、Cの酸化タングステン層12では、光電子分光装置で測定可能な結合エネルギーから点(iv)に至るまでの領域(v)においては、微分値は0付近をほぼ前後するのみであり、さらに点(iv)から高結合エネルギー側におおよそ1.2eVまでの領域(vi)では、微分値は高結合エネルギー側に向かって、ほぼその増加率を増しながら漸増していくのみである。そして、この領域(v)、(vi)におけるサンプルB、Cの各微分曲線の形状は、当該各微分曲線の元である図23に示したサンプルB、CのUPSスペクトルとほぼ相似である。したがって、サンプルB、Cの領域(v)、(vi)におけるUPSスペクトルとその微分曲線の形状は、指数関数的な形状であると言える。
 一方、サンプルAの酸化タングステン層12では、点(iv)付近から高結合エネルギー側に向かって急峻な立ち上がりを見せており、領域(v)、(vi)における微分曲線の形状は指数関数的な曲線の形状とは明らかに異なっている。このようなサンプルAについては、図23の微分前のスペクトルにおいても、点(iv)付近から隆起し始め、また指数関数的なスペクトル形状とは異なる、フェルミ面近傍の隆起構造を持つことが確認できる。
 このようなサンプルAの特性は、言い換えると、価電子帯で最も低い結合エネルギーよりおおよそ1.8~3.6eV低い範囲内にフェルミ面近傍の占有準位が存在し、特に、価電子帯で最も低い結合エネルギーよりおおよそ2.0~3.2eV低い範囲内にて、この範囲に対応するフェルミ面近傍の隆起構造が、UPSスペクトルで明瞭に確認できるものである。
 次に、成膜後大気曝露せずに図23のUPSスペクトルを測定したサンプルA、B、Cの酸化タングステン層12に対し、常温にて大気曝露を1時間行った。そして、再びUPS測定を行い、これによるスペクトルの変化を確認した。その前記領域(y)におけるUPSスペクトルを図25に示す。横軸の取り方は図23と同様であり、図中の点(iii)、(iv)は図23と同一の横軸位置である。
 図25に示したUPSスペクトルによれば、サンプルB、Cの酸化タングステン層12では、大気曝露前と同様にフェルミ面近傍の隆起構造は確認できない。これに対し、サンプルAの酸化タングステン層12では、大気曝露後には強度やスペクトル形状に変化はみられるものの、依然としてフェルミ面近傍の隆起構造の存在を確認できる。これにより、サンプルAについては、一定時間大気曝露を行っても、大気曝露前の特性が維持でき、周辺雰囲気に対して一定の安定性を有することがわかる。なお、サンプルAの酸化タングステン層12のフェルミ面近傍の隆起構造は、大気曝露前に比べ不明瞭となっているが、これは大気中に取り出す過程などにおいて、不純物分子が多く吸着したためと考えられる。この状態のサンプルAに対して本発明の紫外光照射を行うと、サンプルAの酸化タングステン層12の表面から吸着物が除去され、かつその後、フェルミ面近傍の隆起構造が良好に維持されることは、既に述べた通りである。実際、大気曝露後のサンプルAに対して本発明の紫外光照射を行ったところ、フェルミ面近傍の隆起構造は大気曝露前と同様に明瞭になり、かつその後も明瞭なまま維持されることを確認した。
 以上では、サンプルA、B、Cについて測定したUPSスペクトルに対して議論を行ったが、上記フェルミ面近傍の隆起構造は、XPSや硬X線光電子分光測定で得たスペクトルでも同様に確認することができる。
 図26は、サンプルAの酸化タングステン層12の、前記大気曝露後のXPSスペクトルである。なお、比較のため、サンプルAの酸化タングステン層12のUPSスペクトル(図22と同一のもの)を重ね書きした。
 XPS測定条件は、光源がAl Kα線であること以外は、前述のUPS測定条件と同様である。ただし測定点の間隔は0.1eVとした。図26において、図中の点(iii)は図22と同一の横軸位置であり、横軸は図23と同様に、点(iii)を基準とした相対結合エネルギーで示している。また、XPSスペクトルにおける図22の(i)に該当する線を、図26中で(i)’で示した。
 図26に示すように、サンプルAの酸化タングステン層12におけるフェルミ面近傍の隆起構造は、XPSスペクトルにおいても、UPSスペクトルの場合と同様に、価電子帯で最も低い結合エネルギーよりもおおよそ1.8~3.6eV低い範囲内にて、相当の大きさの隆起構造として、存在を明確に確認することができる。なお、別の実験により、硬X線光電子分光のスペクトルでも同様にフェルミ面近傍の隆起構造が確認できた。
 なお、上記測定においては、光電子分光測定用のサンプルとして、図13に示す有機EL素子1の構造とは別に、導電性シリコン基板11の上に酸化タングステン層12を形成してなるサンプル1A(図21)を用いた。これは単に、測定中のチャージアップを防ぐための措置であり、本発明の有機EL表示パネル110の構造を当該構成に限定するものではない。
 本願発明者が行った別の実験によれば、図13に示す有機EL素子1の構成(基板10の片面にITOからなる陽極、および酸化タングステンからなるホール注入層を、順次積層した構成)を有するサンプルを用い、UPS、XPS測定を行った場合は、成膜条件B、Cの酸化タングステン層の測定中にチャージアップが発生した。
 しかしながら、チャージアップをキャンセルする中和銃を併用すれば、ホール注入層の各占有準位の示す結合エネルギーの絶対値(例えば、光電子分光装置自体のフェルミレベルを原点とするときの結合エネルギーの値)は、サンプル1Aの酸化タングステン層12のものとは異なることがあるものの、少なくともバンドギャップから価電子帯で最も低い結合エネルギーに至る範囲においては、サンプル1Aと同様の形状のスペクトルが得られている。
 (ホール注入層から機能層へのホール注入効率に関する考察)
 酸化タングステンからなるホール注入層において、UPSスペクトル等でフェルミ面近傍の隆起構造として確認できるフェルミ面近傍の占有準位が、ホール注入層から機能層へのホール注入効率に作用する原理は、以下のように考えることができる。
 酸化タングステンの薄膜や結晶に見られる、前記フェルミ面近傍の占有準位は、酸素欠陥に類する構造に由来することが、実験および第一原理計算の結果から多数報告されている。
 具体的には、酸素原子の欠乏により形成される隣接したタングステン原子の5d軌道同士の結合軌道や、酸素原子に終端されることなく膜表面や膜内に存在するタングステン原子単体の5d軌道に、前記フェルミ面近傍の占有準位が由来するものと推測されている。これらの5d軌道は、半占あるいは非占状態であれば、有機分子と接触したとき、相互のエネルギー安定化のために、有機分子の最高被占軌道から電子を引き抜くことが可能であると推測される。
 実際、酸化タングステンと、触媒作用やエレクトロクロミズム、フォトクロミズムなど、多くの共通した物性を持つ酸化モリブデンにおいては、その薄膜上に有機低分子のα-NPDからなる層を積層すると、α-NPD分子から酸化モリブデン薄膜に電子が移動するとの報告がある(非特許文献5参照)。
 なお、本願発明者は、酸化タングステンにおいては、隣接したタングステン原子の5d軌道同士の結合軌道よりも結合エネルギーが低い、タングステン原子単体の半占5d軌道あるいはそれに類似した構造が、フェルミ面近傍の占有準位に該当するものと考える。
 図27は、本発明のフェルミ面近傍の占有準位を持つ酸化タングステン層と、α-NPD層との界面における、エネルギーダイアグラムである。
 図27中では、まず、当該酸化タングステン層(ホール注入層に該当する)における、価電子帯で最も低い結合エネルギー(図中「価電子帯上端」と表記した)と、フェルミ面近傍の占有準位の立ち上がり位置に相当する、フェルミ面近傍の占有準位で最も低い結合エネルギー(図中「in-gap state上端」と表記した)を示している。UPSスペクトルにおいては、価電子帯上端は図22の点(iii)に該当し、in-gap state上端は図23の点(iv)に該当する。
 そして、さらに当該酸化タングステン層の上に、α-NPD(機能層に該当する)を積層したときの、α-NPD層の膜厚と、α-NPDの最高被占軌道の結合エネルギー、また真空準位との関係も示している。ここで、α-NPDの最高被占軌道の結合エネルギーとは、UPSスペクトルにおける、当該最高被占軌道によるピークの立ち上がり位置の結合エネルギーであり、言い換えればα-NPDの最高被占軌道で最も低い結合エネルギーである。
 具体的には、ITO基板上に成膜した当該酸化タングステン層を、光電子分光装置と当該装置に連結された超高真空蒸着装置との間で基板を往復させながら、UPS測定とα-NPDの超高真空蒸着とを繰り返すことで、図27のエネルギーダイアグラムを得た。UPS測定中にチャージアップは確認されなかったので、図27では、縦軸の結合エネルギーをITO基板のフェルミレベルを原点とした絶対値表記にしている。
 図27から、α-NPD層の厚さが少なくとも0~0.3nmの範囲、つまり当該酸化タングステン層とα-NPD層との界面付近においては、当該酸化タングステン層のin-gap state上端と、α-NPDの最高被占軌道の結合エネルギーはほぼ等しく、言わば互いの準位が接続した状態(前述の界面準位接続の状態)になっていることがわかる。なお、ここで言う「等しい」とは、実際上多少の差を含んでおり、具体的には±0.3eV以内の範囲を指す。
 さらに、図27は、前記界面準位接続が、偶然によるものではなく、酸化タングステンとα-NPDとの相互作用により実現しているものであることを示している。
 例えば、界面における真空準位の変化(真空準位シフト)は、その変化の向きから、界面に電気二重層が、酸化タングステン層側を負、α-NPD層側を正として形成されていることを示す。また、その真空準位シフトの大きさが2eV近くと非常に大きいため、当該電気二重層は、物理吸着等ではなく、化学結合に類する作用により形成されたと考えるのが妥当である。すなわち、前記界面準位接続は、酸化タングステンとα-NPDとの相互作用により実現していると考えるべきである。
 本願発明者は、具体的な相互作用として、以下のメカニズムを推察している。
 まず、フェルミ面近傍の占有準位は、上述のとおり、酸素欠陥に類する構造を構成しているタングステン原子の5d軌道に由来するものである。これを、以下「隆起構造のW5d軌道」と称する。
 当該酸化タングステン層の表面において、隆起構造のW5d軌道に、α-NPD分子の最高被占軌道が近づくと、相互のエネルギー安定化のために、α-NPD分子の最高被占軌道から、隆起構造のW5d軌道に電子が移動する。これにより、界面に電気二重層が形成され、図27に見られるような真空準位シフト、界面準位接続が起こる。
 さらに具体的には、α-NPD等のアミン系有機分子の最高被占軌道は、一般にその電子密度がアミン構造の窒素原子に偏って分布しており、当該窒素原子の非共有電子対を主成分として構成されていることが、第一原理計算による結果として多数報告されている。このことから、特に、当該酸化タングステン層と、アミン系有機分子の層との界面においては、アミン構造の窒素原子の非共有電子対から、隆起構造のW5d軌道に電子が移動すると推察される。
 上記の推察を支持するものとしては、前述のように酸化タングステンと共通の物性を持つ酸化モリブデンの蒸着膜と、α-NPD、F8BTとの各界面において、図27で示した酸化タングステン層とα-NPD層の界面準位接続と同様の界面準位接続の報告がある(非特許文献2、6、7参照)。
 本発明の有機EL表示パネルのホール注入層が持つ、機能層に対する優れたホール注入効率は、以上の界面準位接続により説明することができる。すなわち、フェルミ面近傍の占有準位を持つ酸化タングステンからなるホール注入層と、隣接した機能層との間で、界面準位接続が起こり、フェルミ面近傍の占有準位の立ち上がり位置の結合エネルギーと、機能層の最高被占軌道の立ち上がり位置の結合エネルギーがほぼ等しくなる。ホール注入は、この接続された準位間で起こる。したがって、本発明のホール注入層と機能層との間のホール注入障壁は、ほぼ無いに等しい。
 しかしながら、フェルミ面近傍の占有準位を形成する要因である酸素欠陥に類する構造が全く無い酸化タングステンというものが、現実に存在するとは考えにくい。例えば、前述のサンプルB、C等、光電子分光スペクトルにおけるフェルミ面近傍の隆起構造がない酸化タングステンにおいても、酸素欠陥に類する構造が、極めてわずかにでも存在はしていると考えるのが妥当である。
 これに対し、先の実験が示すように、サンプルAの酸化タングステン層12に該当するホール注入層を持つホールオンリー素子HOD-Aおよび有機EL素子BPD-Aが優れた低電圧駆動を示す理由を、図28を用いて説明する。
 酸化タングステン層に機能層を積層するとき、機能層を構成する有機分子の最高被占軌道と、酸化タングステン層のフェルミ面近傍の占有準位とが相互作用するには、その界面において、有機分子の最高被占軌道の電子密度が高い部位(例えば、アミン系有機分子におけるアミン構造の窒素原子。図中「注入サイト(y)」で示す)と、酸化タングステン層表面の酸素欠陥に類する構造(図中「注入サイト(x)」で示す)が、相互作用する距離まで接近(接触)する必要がある。
 しかし、図28(b)に示すように、前述のサンプルB、C等、フェルミ面近傍の隆起構造が存在しない酸化タングステン層には、注入サイト(x)が存在するとしても、その数密度は、UPSスペクトルにおいてフェルミ面近傍の隆起構造を発現するまでに至らないほど小さい。したがって、注入サイト(y)が注入サイト(x)と接触する可能性が非常に低い。注入サイト(x)と注入サイト(y)が接触するところにおいてホールが注入されるのであるから、サンプルB、Cはその効率が極めて悪いことがわかる。
 これに対し、図28(a)に示すように、前述のサンプルA等、フェルミ面近傍の隆起構造を持つ酸化タングステン層には、注入サイト(y)が豊富に存在する。したがって、注入サイト(y)が注入サイト(x)と接触する可能性が高く、ホール注入層から機能層へのホール注入効率が高いことがわかる。
 ここまでの一連の考察をより確実にするために、さらに、フェルミ面近傍の隆起構造が全く確認できない、成膜条件Cの酸化タングステン層に対しても、図27と同様に、α-NPD層との界面におけるエネルギーダイアグラムを測定した。
 図29にその結果を示す。ここで、上記のように、当該酸化タングステン層では、フェルミ面近傍の隆起構造に該当するin-gap state上端が全く確認できなかった。そこで、ホール注入に使われる準位の別の候補として、UPSスペクトルにおいてフェルミ面近傍の隆起構造の位置よりも高結合エネルギー側に見られる、当該隆起構造とは別の構造(図22の(z))の立ち上がり位置(「第2in-gap state上端」と表記した)と、価電子帯上端とを、図29中に示した。
 しかしながら、図29のα-NPDの最高被占軌道は図27とは全く異なり、第2in-gap state上端にも、価電子帯上端にも、全く近づいておらず、つまり全く界面準位接続が起こっていない。これは、第2in-gap stateも、価電子帯も、α-NPDの最高被占軌道とはほとんど相互作用していないことを意味する。そして、仮に第2in-gap state上端からα-NPDの最高被占軌道にホールが注入されるとしても、その注入障壁は0.75eVと、ほぼ0であった図27の場合に比べ極めて大きい。
 この注入障壁の差は、前述の各成膜条件のホールオンリー素子1B、有機EL素子1の駆動電圧や発光効率に大きく影響していると考えられる。すなわち、成膜条件A、B、Cの各ホールオンリー素子1B、有機EL素子1の特性の違いは、本発明の有機EL表示パネル110が、ホール注入層から機能層への優れたホール注入効率を持つことを強く示唆するものと考えられるのである。
 以上をまとめると、本発明の有機EL表示パネル110が優れたホール注入効率を持つことは、次のように説明できる。
 まず、酸化タングステンからなるホール注入層が、その光電子分光スペクトルにおいて、フェルミ面近傍の隆起構造を持つ。これは、酸素欠陥に類する構造、そしてそれに由来するフェルミ面近傍の占有準位が、当該ホール注入層の表面に少なからず存在することを意味する。
 そして、フェルミ面近傍の占有準位自体は、隣接する機能層を構成する有機分子から電子を奪うことで、有機分子の最高被占軌道と界面準位接続する作用を持つ。
 したがって、ホール注入層の表面に、少なからず酸素欠陥に類する構造が存在すれば、フェルミ面近傍の占有準位と、有機分子の最高被占軌道の電子密度が高い部位とが接触する確率が高く、界面準位接続の作用が効率的に起こり、ホール注入層から機能層への優れたホール注入効率が発現することになる。
 (陽極からホール注入層へのホール注入効率に関する考察)
 次に、陽極と、本発明の酸化タングステンからなるホール注入層との間に形成される、ショットキーオーミック接続、およびその安定性(陽極の材料や表面状態に対する依存性)について説明する。
 1.陽極とホール注入層との間のホール注入障壁について
 まず、陽極と機能層を直接積層した従来構成の有機EL素子における、陽極と機能層との界面付近におけるエネルギーダイアグラムを、図30~33にそれぞれ示す。なお、ここでは機能層としてα-NPDを用いた。また、図中の縦軸の結合エネルギーは、陽極のフェルミレベルを原点とした絶対値表記にしている。
 図30,31のように、陽極をIZOで構成する場合、当該陽極の表面に対し、純水洗浄のみを行ったもの(図30)、また純水洗浄後さらにドライエッチング処理を行ったもの(図31)とで、陽極のフェルミレベルと機能層の最高被占軌道との間のホール注入障壁は、いずれも1eV超という相当な大きさであり、しかもその大きさが、IZO表面に対する処理の違いで大きく変動していることが分かる。
 また、図32,33のように、陽極をITOで構成する場合においても、当該陽極の表面に対し、IPA(イソプロパノール)洗浄のみを行ったもの(図32)、またIPA洗浄後さらに酸素プラズマで処理したもの(図33)とも、やはり相当な高さのホール注入障壁が存在することが分かる。
 これらの図30~33に示すように、従来の有機EL素子では、陽極材料の種類や陽極の表面状態によって、陽極と機能層との間ホール注入障壁が相当に変動するほか、障壁自体も大きく、駆動電圧の面において改善の余地があったことを確認できる。
 一方、陽極と、本発明の酸化タングステンからなるホール注入層を積層した場合の、陽極と本発明のホール注入層との界面付近におけるエネルギーダイアグラムを、図34~38にそれぞれ示す。
 図34,35は、陽極をIZOで構成する場合である。図30,31と同様に、当該陽極の表面に対し、純水洗浄のみを行ったもの(図34)、また純水洗浄後さらにドライエッチング処理を行ったもの(図35)をそれぞれ作製し、その上に本発明のホール注入層を積層している。
 図36、37は、陽極をITOで構成する場合である。図32,33と同様に、当該陽極の表面に対し、IPA洗浄のみを行ったもの(図36)、またIPA洗浄後さらに酸素プラズマで処理したもの(図37)をそれぞれ作製し、その上に本発明のホール注入層を積層している。
 さらに、図38は、陽極をAlで構成する場合である。当該陽極を成膜した後、その表面が自然酸化されないように、大気曝露することなく本発明のホール注入層を積層している。
 これらの図34~38に示される結果から、次のことがわかる。
 まず、図34~38のすべてにおいて、ホール注入層の膜厚がおよそ2nm未満においては、フェルミ面近傍の占有準位の立ち上がり位置であるin-gap state上端の結合エネルギーは比較的急峻に変化しているが、膜厚2nm以上においては、ほぼ一定である。そして、その一定となった結合エネルギーの値は、陽極のフェルミレベルに非常に近く、差は±0.3eV以内に収まっている。これは、言い換えれば、図34~38のすべてにおいて、陽極と本発明のホール注入層の間では、ショットキーバリアの幅が2nm程度の良好なショットキーオーミック接続が実現されている、ということを意味する。
 さらに、図34、35のIZO陽極、また図36、37のITO陽極においては、ホール注入層の膜厚が2nm以上における陽極のフェルミレベルとin-gap state上端との結合エネルギー差は、陽極の表面状態に依存せず、ほぼ同じ値(高々0.02eVのずれ)となっている。
 したがって、次のことが言える。まず、陽極の材料がIZO、ITO、Alのいずれでも、陽極と本発明のホール注入層は、ホール注入層の膜厚が2nm以上であれば、ショットキーオーミック接続する。さらに、陽極の表面状態が少なくとも上記したいずれの処理を経た場合のものでも、この接続は依然良好に保たれるばかりでなく、その接続の程度(上記の結合エネルギー差)も、陽極の表面状態の違いに依存することなく、極めて安定した一定の状況を維持しているのである。
 これらの結果から、本発明の酸化タングステンからなるホール注入層を用いれば、陽極の仕事関数や表面状態を一定にするための諸作業、つまり陽極材料を厳密に選択したり、ホール注入層形成直前の陽極の表面状態を高度に一定に維持したりするなどの特別な配慮を行わなくても、陽極からホール注入層への良好なホール注入効率を期待できる。
 以上をまとめると、本発明における酸化タングステンからなるホール注入層は、フェルミ面近傍に占有準位を有することで、当該準位の作用により、陽極の仕事関数や表面状態にほとんど影響を受けずに陽極とショットキーオーミック接続を実現し、具体的には、陽極の表面からホール注入層側への距離が2nmの位置において、陽極のフェルミレベルと当該占有準位の結合エネルギー差が±0.3eV以内に収まっている。その結果、陽極とホール注入層との間のホール注入障壁を相当に緩和することができる。
 ここで、本発明のホール注入層は、前述のように当該占有準位の作用により、機能層との間のホール注入障壁も極めて小さい。したがって、陽極からホール注入層へ、またホール注入層から機能層へと、ほとんど障壁を受けることなくホールを注入することができる。このように、ホール注入層と機能層との間のホール注入障壁のみならず、陽極とホール注入層との間のホール注入障壁をも緩和することで、一層、良好な素子の低電圧駆動を実現できる。さらに、ホール注入効率の向上を図れば、駆動時に素子にかかる負荷が軽減されるため、素子の駆動寿命を延ばすことも期待できる。
 2.ショットキーオーミック接続の安定性の確認
 上記のように、本発明の酸化タングステンからなるホール注入層は、膜厚が2nm以上であれば、陽極との間に安定したショットキーオーミック接続を形成できる。このことを素子の特性によっても確認した。
 まず、前述のホールオンリー素子1Bを用いて、本発明のホール注入層における、陽極からホール注入層へのホール注入効率の膜厚依存性を評価した。
 ここでのホールオンリー素子1Bのホール注入層は、前述の成膜条件Aで成膜し、膜厚は5~30nmの範囲とした。また、比較のために、ホール注入層を省略した、すなわち陽極とバッファ層を直接積層した素子も作製した(以降「膜厚0nm」と称す)。他の各層の構成は「(紫外光照射による素子特性の向上について)」にて述べたものと同じである。
 当該ホールオンリー素子1Bは、膜厚0nmの素子を除き、ホール注入層がいずれも成膜条件Aで成膜されているため、ホール注入層からバッファ層へのホール注入効率は全て同等と考えられる。さらに、ホール注入層の膜厚以外の構成も同一である。したがって、当該ホールオンリー素子1Bの特性には、ホール注入層の膜厚、および陽極とホール注入層との間のショットキーオーミック接続の形成の程度が主に影響するはずである。
 ここで、まず、ホール注入層の電気抵抗の影響が考えられる。ホール注入層の膜厚が大きいほどホール注入層の抵抗は増加する。しかしながら、成膜条件Aのホール注入層の抵抗率は、バッファ層や発光層6Bの100分の1以下であることが、別の実験により確認された。したがって、当該ホールオンリー素子1Bの特性には、ホール注入層の膜厚の違いによる抵抗の違いはほとんど寄与しない。
 したがって、当該ホールオンリー素子1Bは、膜厚0nmの素子を除き、陽極とホール注入層との間に一定のショットキーオーミック接続を形成できていれば、全て同等の特性になるはずである。
 作製したホール注入層の膜厚が0nm、5nm、30nmの各ホールオンリー素子1Bを直流電源に接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。以降、「駆動電圧」とは、電流密度10mA/cmのときの印加電圧とする。
 各ホールオンリー素子1Bの駆動電圧を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 膜厚0nmの素子の駆動電圧は相当に高くなっている。これは、本発明のホール注入層を持たないために、陽極とバッファ層との間に大きなホール注入障壁が生じているためと考えられる。一方、膜厚5nm、30nmの各素子1Bでは、駆動電圧が低く抑えられており、その値も膜厚に依存せず、ほぼ同じであることがわかる。これより、ホール注入層の膜厚が少なくとも5nm以上であるとき、陽極と本発明のホール注入層の間には、ほぼ一定のショットキーオーミック接続が形成され、陽極からホール注入層への良好なホール注入効率が実現していると考えられる。
 次に、有機EL素子1においても、本発明のホール注入層における、陽極からホール注入層へのホール注入効率の膜厚依存性を評価した。ホール注入層の膜厚は2~30nmの範囲とした。
 当該有機EL素子1も、ホール注入層の膜厚以外の構成は全て同一であるから、陽極とホール注入層との間に一定のショットキーオーミック接続を形成できていれば、全て同等の特性になるはずである。
 作製したホール注入層の膜厚が2nm、5nm、15nm、20nm、30nmの各有機EL素子1を直流電源に接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子1の単位面積当たりの値(電流密度)に換算した。以降、「駆動電圧」とは、電流密度10mA/cmのときの印加電圧とする。
 各有機EL素子1の駆動電圧を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 駆動電圧はいずれも低く、良好である。素子の作製上必然的に生じる各層の膜厚のばらつきなどを考慮すれば、これらの駆動電圧は、膜厚に依存せず、十分に同等と見なせる。これより、ホールオンリー素子1Bの場合と同様に、当該有機EL素子1においても、ホール注入層の膜厚が2nm以上であるとき、陽極と本発明のホール注入層の間に、ほぼ一定のショットキーオーミック接続が形成されていると考えられる。
 続いて、有機EL素子1を用いて、本発明のホール注入層の膜厚と、素子の駆動寿命との関係についても評価を行った
 当該有機EL素子1は、表10で用いたものと同じ構成であり、ホール注入層の膜厚は2~30nmの範囲とし、また、比較のために、ホール注入層を省略した膜厚0nmの素子1も作製した。
 各素子1ともホール注入層の膜厚以外の構成は同一であり、したがって、陽極とホール注入層との間に一定のショットキーオーミック接続を形成できていれば、同程度の寿命が期待できる。
 作製したホール注入層の膜厚が0nm、2nm、5nm、30nmの各素子1を直流電源に接続し、電流密度10mA/cmの定電流で駆動し、発光輝度の駆動時間による変化を測定した。
 各素子1において、輝度が駆動開始時の60%に低下するまでの輝度低下時間を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 これより、まず、膜厚0nmの素子1は輝度の低下が速く、つまり寿命が短いことがわかる。これは、本発明のホール注入層を持たないために、陽極とバッファ層との間に大きなホール注入障壁が生じ、定電流を流すためには駆動電圧を高くする必要があり、素子1への負荷が高くなることが大きく影響していると考えられる。
 一方、膜厚2nm、5nm、30nmの各素子1は、膜厚0nmの素子1に比べ輝度低下が遅く、つまり寿命が長い。これは、本発明のホール注入層により、ホール注入障壁が効果的に緩和され、駆動電圧が低くて済み、素子1への負担が軽減されたためであると考えられる。
 そして、膜厚2nm、5nm、30nmの各素子1は、いずれも良好で同程度の輝度低下を示している。したがって、やはりホール注入層の膜厚が2nm以上であれば、陽極と本発明のホール注入層の間に、ほぼ一定のショットキーオーミック接続が形成され、このためホール注入層の膜厚が2nm以上の素子1は駆動電圧が同程度となり、同程度の寿命を示すと考えられる。
 以上の実験により、本発明の酸化タングステンからなるホール注入層は、膜厚が2nm以上であれば、陽極との間に安定したショットキーオーミック接続を形成できることが、素子特性によっても確認された。
 なお、表5および図17~20で用いた素子1においては、ホール注入層の成膜条件に関わらず、陽極とホール注入層の間は、本発明のショットキーオーミック接続がなされている。これは、ITO陽極の表面処理により形成したものである。詳細を以下に述べる。
 図27で用いた方法と同様に、当該ITO陽極上への各成膜条件のホール注入層の成膜とUPS測定とを繰り返したところ、ホール注入層の膜厚がおよそ2nm以内では、成膜条件に関わらずフェルミ面近傍の隆起構造が確認され、陽極とショットキーオーミック接続を形成していた。しかし、膜厚が大きくなると、図23に示したように、成膜条件によってフェルミ面近傍の隆起構造の有無が異なるものとなった。
 これは、ホール注入層の成膜前に、当該ITO陽極の表面に対してアルゴンイオンスパッタ処理を行い、当該ITO陽極の洗浄をするとともに、その表面に酸素欠陥を形成したことによると考えられる。
 すなわち、当該ITO陽極の表面に酸素欠陥を形成することにより、ホール注入層の成膜開始直後においては、酸化タングステンの酸素原子が当該ITO側に奪われやすくなり、このため界面近傍のみにおいては、ホール注入層に酸素欠陥に類する構造が多くなる。このため、陽極とホール注入層の間に、本発明のショットキーオーミック接続が形成される。
 ホール注入層の成膜開始後、膜厚が数nm以上になれば、以降は各成膜条件で決まる膜質で一様に成膜されるため、ホール注入層の膜厚が30nmである表5および図17~20の特性は、成膜条件に依存するものになる。
 (補助配線、電子注入層とホール注入層の間のショットキーオーミック接続に関する考察)
 上記では、有機EL素子における陽極とホール注入層に関して考察するという観点から、キャリアとしてはホールと表現し、また電流は陽極からホール注入層への方向のみを議論した。しかしながら、陽極等の電極と本発明のホール注入層の間のショットキーオーミック接続は、電流の方向を電極からホール注入層のみに限定するものではない。
 前述のように、フェルミ面近傍の占有準位は、酸素欠陥に類する構造における、酸素原子と結合していないタングステン原子の5d軌道が持つ電子によるものであり、これは価電子帯の電子や、有機分子の持つ電子とは異なり、比較的自由に動けるキャリアである。言わば、フェルミ面近傍の占有準位は、電子の出し入れが容易なn型半導体のドナー準位、あるいは金属的な準位である。したがって、電極との電子の授受(ホールの授受とも言い換えられる)は双方向に容易であり、容易であるからこそショットキーオーミック接続を実現しているのである。実際、本発明者らは、別の実験により、ITO、IZO、Al、Baと本発明のホール注入層の2層構造において、双方向にオーミックに電流が流れることを確認した。
 電極と本発明のホール注入層の間の、上記のようなショットキーオーミック接続は、当然ながら補助配線とホール注入層の間、またホール注入層と電子注入層の間においても形成されており、これらの層の間ではキャリアの授受が容易である。このため、補助配線と電子注入層の間に位置している本発明のホール注入層が、ホール注入層から電子注入層への電子の注入を妨げたり、補助配線からホール注入層への電子の注入を妨げたりすることはない。この点において、本発明のホール注入層は、例えば補助配線からの電子の注入が困難な銅フタロシアニンやPEDOT等のホール注入層とは、大きく異なるものである。
 ここで、補助配線と電子注入層が直接接続する場合に比べれば、本発明のホール注入層が補助配線と電子注入層の間に介在することで、接続部の抵抗自体は大きくなる。しかしながら、本発明のホール注入層は、有機物からなる一般の機能層に比べ充分に抵抗率が低く、また膜厚も通常の有機EL素子の構成においては高々数十nm以内であるから、画素部、配線部を含めた有機EL表示パネル全体の抵抗に対する本発明のホール注入層の抵抗の寄与は極めて小さい。したがって、本発明のホール注入層が接続部に介在していても、実質的な配線部の高抵抗化を引き起こすことはなく、本発明のホール注入層を用いた有機EL表示パネルにおいては、補助配線上にホール注入層を形成しないようにする工程は必要がない。
 さらに、本発明のホール注入層は、本発明の紫外光照射によりその表面の吸着物が充分に除去されているため、接続部においても、高抵抗化の要因となる吸着物がホール注入層と電子注入層との間に埋設されることが抑制され、安定した良好な低抵抗を実現できる。
 なお、本実施の形態では、接続部においては本発明のホール注入層に電子注入層が積層されているが、接続部の電子注入層は必ずしも必要ではなく、省略することができる。この場合は、ホール注入層と共通電極が直接ショットキーオーミック接続するから、やはり配線部の高抵抗化を引き起こすことはない。
 また、発光層を形成した後、主に有機材料や無機材料からなる電子輸送層を、発光部と接続部に連続して形成しても良い。この場合、接続部においては本発明のホール注入層と当該電子輸送層が隣接することになる。ここで、前述の通り、本発明のホール注入層は、そのフェルミ面近傍の占有準位により、n型半導体や金属としての性質を持つ。したがって、当該電子輸送層との界面において、いわゆるpn接合を起こすことがなく、エネルギー障壁の小さい界面を形成でき、本発明のホール注入層から当該電子輸送層への電子の注入は比較的容易である。本発明のホール注入層は、この点においても、当該電子輸送層との電子の授受が困難な銅フタロシアニンやPEDOT等のホール注入層とは、大きく異なるものである。
 なお、実施の形態1の有機EL表示パネル110では、基板10の上方に設けられた陽極(第1電極)20と補助配線30がホール注入層40を介して並設されているが、陽極20と補助配線30の間は数十μmの隔たりがあるため、同じホール注入層40を介して極性の異なる陽極20と補助配線30とが短絡を起こす問題はない。
 [実施の形態2]
 <有機EL表示パネルの全体構成>
 図39(a)は、本実施の形態に係る有機EL表示パネル110Cの構成を示す模式的な断面図である。図39(b)はホール注入層40C付近の部分拡大図である。
 有機EL表示パネル110Cは、例えば、機能層をウェットプロセスにより塗布して成膜する塗布型であって、ホール注入層40Cと、所定の機能を有する有機材料を含んでなる各種機能層が互いに積層された状態で、陽極20Cおよび陰極90Cからなる電極対の間に介設された構成を有する。
 具体的には、有機EL表示パネル110Cは、基板10Cの片側主面に対し、陽極20C、ITO層25C、ホール注入層40C、バッファ層60C、発光層70C、電子注入層85C、陰極90C、封止層95Cを同順に積層して構成される。また、基板10Cの前記片側主面には、陽極20Cと離間した位置に補助配線30Cが形成されており、補助配線30C上にも、ITO層25C、ホール注入層40C、陰極90C、封止層95Cが積層されている。以下、有機EL表示パネル110との違いを中心に説明する。
(陽極・補助配線)
 陽極20Cは、画素単位ごと複数マトリックス状に配置されており、補助配線30Cは、画素列ごとに各陽極20Cに沿って配置して設けられている。
(ITO層)
 ITO(酸化インジウムスズ)層25Cは、陽極20Cとホール注入層40Cの間に介在し、各層間の接合性を良好にする機能を有する。有機EL表示パネル110Cでは、ITO層25Cを陽極20Cと分けているが、ITO層25Cを陽極20Cの一部とみなすこともできる。
 また、ITO層25Cは、補助配線30Cとホール注入層40Cの間にも介在する。有機EL表示パネル110Cでは、ITO層25Cを補助配線30Cと分けているが、ITO層25Cを補助配線30Cの一部とみなすこともできる。
(ホール注入層)
 ホール注入層40Cは、実施の形態1のホール注入層40と同様に、所定の成膜条件で成膜された、少なくとも2nm以上の膜厚(ここでは一例として30nm)の酸化タングステン層で構成されている。これにより、画素部(図39(a)の省略波線の左側)においては、ホール注入層40Cとバッファ層60Cは界面準位接続しており、ITO層25Cとホール注入層40Cはショットキーオーミック接続している。また、配線部(図39(a)の省略波線の右側)においては、ITO層25Cとホール注入層40C、ホール注入層40Cと陰極90Cがショットキーオーミック接続している。これらのショットキーオーミック接続を具体的に言えば、ITO層25Cおよび陰極90Cのフェルミレベルと、それらの表面からホール注入層40C側への距離が2nmの位置におけるフェルミ面近傍の占有準位で最も低い結合エネルギーとの差が、±0.3eV以内に収まっている。これにより有機EL表示パネル110Cでは、画素部においては従来構成に比べてITO層25Cとホール注入層40Cの間、ホール注入層40Cとバッファ層60Cの間のホール注入障壁が緩和され、配線部においてはITO層25Cとホール注入層40Cの間、ホール注入層40Cと陰極90Cの間のキャリアの授受が容易であり、良好な低電圧駆動が可能となっている。
 ホール注入層40Cを構成する酸化タングステンは、その組成式WOxにおいて、xが概ね2<x<3の範囲における実数である。ホール注入層40Cは可能な限り高純度の酸化タングステンで構成することが望ましいが、通常レベルで混入し得る程度の微量の不純物が含まれていてもよい。
 なお、ホール注入層40Cの所定の成膜条件についての詳細は後述する。
 ここで実施の形態2では、ホール注入層40Cを構成する酸化タングステン層が上記所定の成膜条件で成膜されていることにより、図39(b)に示すように、酸化タングステンの結晶13Cを多数含んでいる。各々の結晶13Cの粒径はナノメートルオーダーである。例示するとホール注入層40Cが厚さ30nm程度であるのに対し、結晶13Cの粒径は3~10nm程度である。以下、粒径がナノメートルオーダーの大きさの結晶13Cを「ナノクリスタル13C」と称し、ナノクリスタル13Cからなる層の構造を「ナノクリスタル構造」と称する。なお、ホール注入層40Cには、ナノクリスタル構造以外に、アモルファス構造が含まれていてもよい。
 上記のようなナノクリスタル構造を有するホール注入層40Cでは、酸化タングステンを構成するタングステン原子は、自らが取り得る最大価数の状態および当該最大価数よりも低い価数の状態を有するように分布している。一般に、酸化タングステン層には酸素欠陥に類する構造が存在することがある。酸素欠陥に類する構造に含まれていないタングステン原子の価数は6価であり、一方、酸素欠陥に類する構造に含まれているタングステン原子の価数は6価よりも低い状態である。また、一般に、酸素欠陥に類する構造は結晶の表面に多く存在する。
 したがって、有機EL表示パネル110Cでは、上記した画素部や配線部におけるホール注入障壁の緩和やキャリア授受の容易化に加え、ホール注入層40C中に5価のタングステン原子を分布させ、酸素欠陥に類する構造を形成させることによって、さらなるホールや電子の伝導効率の向上が望まれる。すなわち、酸化タングステンからなるホール注入層40Cにナノクリスタル構造を持たせることで、画素部においては、ITO層25Cからホール注入層40Cに注入されたホールは、ナノクリスタル13Cの結晶粒界に存在する酸素欠陥を伝導するので、ホールが伝導する経路を増やすことができ、ホール伝導効率の向上につながる。また、配線部においては、ITO層25Cからホール注入層40Cに注入された電子は、この結晶粒界の酸素欠陥を容易に伝導できるため、配線部のホール注入層が配線全体の抵抗に及ぼす影響はほとんどない。これにより有機EL表示パネル110Cでは、駆動電圧の低減を効率よく図れる。
 また、ホール注入層40Cは化学的耐性が高い、すなわち、不要な化学反応を起こしにくい酸化タングステンで構成されている。したがって、ホール注入層40Cが、同層の形成後に行われる工程等において用いられる溶液等と触れた場合であっても、変質、分解等によるホール注入層40Cの損傷を抑制することができる。このように、ホール注入層40Cが、化学的耐性が高い材料で構成されていることにより、ホール注入層40Cのホールや電子の伝導効率の低下を防ぐことができる。
 本実施の形態における酸化タングステンからなるホール注入層40Cは、ナノクリスタル構造のみから構成されている場合と、ナノクリスタル構造とアモルファス構造の両方から構成されている場合の双方を含むものとする。また、ナノクリスタル構造は、ホール注入層40Cの全体に存在することが望ましいが、画素部においては、ITO層25Cとホール注入層40Cが接する界面から、ホール注入層40Cとバッファ層60Cが接する界面との間に、一箇所でも粒界が繋がっていれば、ホール注入層40Cの下端から上端へホールを効率よく伝導させることができ、配線部においては、ITO層25Cとホール注入層40Cが接する界面から、ホール注入層40Cと陰極90Cが接する界面との間に、一箇所でも粒界が繋がっていれば、ホール注入層40Cの下端から上端へ電子を効率よく伝導させることができる。
 なお、酸化タングステン結晶を含む層をホール注入層として用いる例自体は、過去にも報告されている。例えば、非特許文献1からは、酸化タングステン層を450℃のアニーリングで結晶化することにより、ホール伝導効率が向上することが示唆される。しかしながら、非特許文献1には、大面積の酸化タングステン層の成膜条件や、基板上にホール注入層として成膜された酸化タングステンが基板上の他層に与える影響等に関して記載がなく、大型有機EL表示パネルの実用的な量産性が示されていない。さらに、ホール注入層に積極的に酸素欠陥に類する構造を有する酸化タングステンのナノクリスタルを形成することも示されていない。本発明の一態様に係るホール注入層は、化学反応を起こしにくく、安定であり、大型有機EL表示パネルの量産プロセスにも耐える酸化タングステン層で構成されている。さらに、酸化タングステン層に積極的に酸素欠陥に類する構造を存在させることにより、優れたホールおよび電子の伝導効率を実現している点で、従来技術と大きく異なるものである。
(電子注入層・陰極・封止層)
 電子注入層85Cは、電子を陰極90Cから発光層70Cへ注入する機能を有し、例えば、膜厚5nm程度のバリウム、厚さ1nm程度のフッ化リチウム、フッ化ナトリウム、あるいはこれらを組み合わせた層で形成されることが好ましい。
 陰極90Cは、例えば、膜厚100nm程度のITO層から構成される。
陽極20Cおよび補助配線30Cには直流電源が接続され、外部より有機EL表示パネル110Cに給電されるようになっている。
 封止層95Cは、有機EL表示パネル110Cが水分や空気に晒されることを抑制する機能を有し、例えば、SiN(窒化シリコン)、SiON(酸窒化シリコン)等の材料で形成される。トップエミッション型の有機EL素子の場合は、光透過性の材料で形成されることが好ましい。
 <有機EL表示パネルの製造方法>
 次に、図40~42を用いて、有機EL表示パネル110Cの全体的な製造方法を例示する。
 まず、基板10C上に例えばスパッタ法により銀からなる薄膜を形成し、当該薄膜を例えばフォトリソグラフィでパターニングすることにより、マトリックス状に陽極20Cおよび補助配線30Cを形成する(図40(a))。なお、当該薄膜は真空蒸着法等で形成しても良い。
 引き続き、例えばスパッタ法によりITO薄膜を形成し、当該ITO薄膜を例えばフォトリソグラフィによりパターニングすることにより、陽極20Cおよび補助配線30C上にITO層25Cを形成する。続いて、後述する所定の成膜条件で、酸化タングステンを含む薄膜40Xを形成する(図40(b))。
 次に、薄膜40X上に有機材料からなるバンク材料を用いてバンク材料層50Xを形成し、バンク材料層50Xの一部を除去して薄膜40Xの一部を露出させる(図40(c))。バンク材料層50Xの形成は、例えば塗布等により行うことができる。バンク材料層50Xの除去は、所定の現像液(テトラメチルアンモニウムハイドロオキサイド(TMAH)溶液等)を用いてパターニングをすることにより行うことができる。
 このとき、薄膜40Xを構成する酸化タングステンは、化学耐性は良好ではあるものの、TMAH溶液には少し溶ける性質をもつので、前記現像液により薄膜40Xの表面に付着するバンク残渣を洗浄すると、薄膜40Xの露出部分が浸食され、凹入構造が形成される(図41(a))。この結果、陽極20Cに対応した凹部40a、および補助配線30Cに対応した凹部40bを具備するホール注入層40Cが形成される。
 次に、バンク材料層50Xの表面に例えばフッ素プラズマ等による撥液処理を施して、バンク50Cを形成する。続いて、陽極20Cに対応するようバンク50Cで規定された領域内に、例えばインクジェット法により有機材料を含む組成物インクを滴下し、そのインクを乾燥させてバッファ層60C、発光層70Cを形成する(図41(b))。補助配線30Cに対応しバンク50Cで規定された領域内には、バッファ層60C、発光層70Cを形成しない。なお、ディスペンサー法、ノズルコート法、スピンコート法、凹版印刷、凸版印刷等によりインクを滴下しても良い。
 次に、例えば真空蒸着法により、電子注入層85Cとなるバリウム薄膜を発光層70C上に形成する(図42(a))。
 次に、例えばスパッタ法により、陰極90CとなるITO薄膜を全面に亘って形成する(図42(b))。
 次に、陰極90Cの上に対して、封止層95Cを形成する(図42(c))。
 以上で有機EL表示パネル110Cが完成する。
 次に、ホール注入層40C(薄膜40X)の成膜条件について述べる。ホール注入層40C(薄膜40X)は、反応性スパッタ法で成膜することが好適である。具体的には、金属タングステンをターゲットとし、アルゴンガスをスパッタガスとし、酸素ガスを反応性ガスとしてチャンバー内に導入する。この状態で高電圧によりアルゴンをイオン化し、ターゲットに衝突させる。このとき、スパッタリング現象により放出された金属タングステンが酸素ガスと反応して酸化タングステンとなり、ITO層25C上に酸化タングステン層が成膜される。
 この成膜条件の詳細について述べると、(1)チャンバー内のガスの全圧が2.3Pa以上7.0Pa以下であり、かつ、(2)全圧に対する酸素ガス分圧の割合が50%以上70%以下であり、かつ、(3)ターゲットの単位面積当たりの投入電力(投入電力密度)が1.5W/cm以上6.0W/cm以下であり、かつ、(4)全圧を投入電力密度で割った値である全圧/電力密度が0.7Pa・cm/Wより大きくなるように設定することが好適である。このような成膜条件により、ナノクリスタル構造を有する酸化タングステンからなるホール注入層40Cが形成される。
(陽極および補助配線形成工程からバンク形成工程までの別の工程例)
 次に図43、44を用いて、陽極および補助配線形成工程からバンク形成工程までのプロセスの別例を説明する。なお、当該プロセスでは、基板10Cの表面に平坦化膜17Cを形成する構成を例示している。
 まず、基板10C上にポリイミドやアクリル等の絶縁性樹脂材料を用いて平坦化膜17Cを形成する。当該平坦化膜17Cの上に、蒸着法に基づき、Al合金薄膜20X、IZO薄膜25X、薄膜(酸化タングステン膜)40Xの3層を順次形成する(図43(a))。Al合金材料としては、例えばACL(アルミコバルトランタン合金)材料を利用できる。
 次に、陽極20C、IZO層25D、ホール注入層40Dの3層、および、補助配線30C、IZO層25D、ホール注入層40Dの3層を形成させたい領域に、フォトリソグラフィー法によりレジストパターンRを形成する(図43(b))。
 続いて、レジストパターンRに覆われていない薄膜40Xの領域をドライエッチング(D/E)処理し、パターニングする(図43(c))。このドライエッチング処理では、薄膜40Xのみを選択的にエッチングするため、F系ガスとNガスの混合ガス、もしくはF系ガスとOガスの混合ガスのいずれかを用いる。具体的なドライエッチング処理の設定条件は一例として以下の通りに定めることができる。
[ドライエッチング条件]
 処理対象;酸化タングステン膜
 エッチングガス;フッ素系ガス(SF、CFCHF
 混合ガス;O、N
 混合ガス比;CF:O=160:40
 供給パワー;Source 500W、Bias 400W
 圧力;10~50mTorr
 エッチング温度;室温
 上記ドライエッチング処理を実施後、ホール注入層40Dが形成される。その後はOガスでアッシング処理を行うことで、次のウェットエッチング(W/E)処理におけるレジストパターンRの剥離を容易にしておく。
 次に、ウェットエッチング処理により、レジストパターンRに覆われていないIZO薄膜25X、Al合金薄膜20Xの領域をパターニングする(図43(d))。エッチャントとして、硝酸、リン酸、酢酸、水の混合液を用い、IZO薄膜25X、Al合金薄膜20Xの2層を一括してウェットエッチングする。
 具体的なウェットエッチング処理の設定条件は一例として以下の通りに定めることができる。
[ウェットエッチング条件]
 処理対象;IZO薄膜及びAl合金薄膜
 エッチャント;リン酸、硝酸、酢酸の混合水溶液
 溶剤の混合比率;任意(一般的な条件で混合可能)
 エッチング温度;室温よりも低くする。
 なお、当該ウェットエッチング処理を良好に行うため、上層のIZO薄膜25Xの膜厚としては20nm以下が好ましい。膜厚が20nmを超えると、サイドエッチング量が多くなるからである。
 また、IZO薄膜を用いてIZO層を形成する代わりに、ITO薄膜を用いてITO層を形成することも勿論可能である。
 以上のプロセスを経ると、陽極20CとIZO層25Dの2層、および、補助配線30CとIZO層25Dの2層が形成される。その後、レジスト剥離工程を実施してレジストパターンRを除去することで、パターニングされた陽極20C、IZO層25D、ホール注入層40Dの3層構造、および、補助配線30C、IZO層25D、ホール注入層40Dの3層構造を得ることができる(図44(a))。このプロセスでは、ホール注入層40Dは、陽極20CとIZO層25Dの2層、および、補助配線30CとIZO層25Dの2層に対応する位置に合わせて形成される。
 次に、露出している平坦化膜17Cの表面にバンク材料層50X(不図示)を形成し、これをパターニングすることで、バンク50Cが形成される(図44(b))。
 なお、その後は上記した方法で所定のインクを調整し、これをバンク50Cに規定された領域に順次滴下・乾燥することで、バッファ層60C、発光層70Cをそれぞれ形成することができる(図44(c))。
 <その他>
 以上、本発明の一態様に係る有機EL表示パネル、および、有機EL表示装置を具体的に説明してきたが、上記実施の形態は、本発明の構成および作用・効果を分かり易く説明するために用いた例であって、本発明の内容は、上記の実施の形態に限定されない。例えば、理解を容易にするために挙げた各部のサイズや材料などは、あくまでも典型的な一例に過ぎず、本発明がそれらサイズや材料などに限定されるものではない。
 本発明の一態様に係る有機EL表示パネルは、いわゆるトップエミッション型の構成でもよく、いわゆるボトムエミッション型の構成でもよい。
 トップエミッション型では図1に示す態様以外に、画素電極および補助配線を金属膜のみとした構成を採ることもできる。この場合、発光部の構成は、例えば基板側から画素電極(金属膜)/ホール注入層/バッファ層/発光層/電子注入層/共通電極(透明導電膜)となり、接続部の構成は、例えば基板側から補助配線(金属膜)/ホール注入層/電子注入層/共通電極(透明導電膜)となる。
 また、ボトムエミッション型では、例えば画素電極および補助配線を透明導電膜で、共通電極を金属膜で構成し、発光部の構成は、例えば基板側から画素電極(透明導電膜)/ホール注入層/バッファ層/発光層/電子注入層/共通電極(金属膜)となり、接続部の構成は、例えば基板側から補助配線(透明導電膜)/ホール注入層/電子注入層/共通電極(金属膜)となる。
 さらに、本発明は両面発光方式の態様も可能であり、この場合の発光部の構成は、例えば基板側から画素電極(透明導電膜)/ホール注入層/バッファ層/発光層/電子注入層/共通電極(透明導電膜)となり、接続部の構成は、例えば基板側から補助配線(透明導電膜)/ホール注入層/電子注入層/共通電極(透明導電膜)となる。このとき、さらに補助配線として、部分的に金属膜を設ける構成としてもよい。
 以上の態様において、共通電極下の電子注入層は、金属層に限定されず、主に有機材料や無機材料からなる電子注入層、電子輸送層、あるいはその両方から構成されたものでも良い。
 本発明の一態様に係る有機EL素子の製造方法で製造される有機EL素子は、携帯電話用のディスプレイやテレビなどの表示素子、各種光源などに利用可能である。いずれの用途においても、低輝度から光源用途等の高輝度まで幅広い輝度範囲で低電圧駆動される有機EL素子として適用できる。このような高性能により、家庭用もしくは公共施設、あるいは業務用の各種ディスプレイ装置、テレビジョン装置、携帯型電子機器用ディスプレイ、照明光源等として、幅広い利用が可能である。
 10,10C 基板
 20,20C 第1電極
 30,30C 補助配線(配線)
 40,40C ホール注入層(酸化タングステン層)
 45 開口部
 50,50C 隔壁
 70,70C 発光層(有機層)
 80 金属層(電子注入層)
 90,90C 第2電極
 100 有機EL表示装置
 110,110C 有機EL表示パネル

Claims (23)

  1.  基板と、
     前記基板上または前記基板内に形成された第1電極と、
     前記基板上または前記基板内に前記第1電極と離間して形成された補助配線と、
     前記第1電極の上方に形成され、少なくとも発光層を含む機能層と、
     前記機能層と前記第1電極との間に介在し前記機能層へのホール注入を行うホール注入層と、
     前記機能層の上方に形成された第2電極と、を具備し、
     前記ホール注入層および前記第2電極の各々は、前記第1電極の上方および前記補助配線の上方に連続して形成され、
     前記第2電極と前記補助配線とは、前記ホール注入層を介して電気接続され、
     前記ホール注入層は、酸化タングステンを含み、
     UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
    XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下である、
     有機EL表示パネル。
  2.  前記第2電極は、透明電極である、
     請求項1記載の有機EL表示パネル。
  3.  前記透明電極は、ITOまたはIZOからなる、
     請求項2記載の有機EL表示パネル。
  4.  前記第2電極は、AlまたはAgを主成分とする、
     請求項1に記載の有機EL表示パネル。
  5.  前記第1電極の上方および前記補助配線の上方に連続して形成された金属層を有し、
     前記金属層は、
     前記第1電極の上方では、前記第2電極と前記発光層との間に介在し、
     前記補助配線の上方では、前記第2電極と前記ホール注入層との間に介在する、
     請求項1から請求項4のいずれか1項に記載の有機EL表示パネル。
  6.  前記金属層は、前記第1電極の上方にて、前記第2電極から前記発光層に電子を注入する電子注入層である、
     請求項5に記載の有機EL表示パネル。
  7.  前記金属層がBaを含んでなる、
     請求項6に記載の有機EL表示パネル。
  8.  前記補助配線は、ITOまたはIZOからなる、
     請求項1から請求項7のいずれか1項に記載の有機EL表示パネル。
  9.  前記第1電極の上方に形成されたホール注入層と同一層のホール注入層が、前記補助配線の上方に形成されている、
     請求項1から請求項8のいずれか1項に記載の有機EL表示パネル。
  10.  少なくとも前記補助配線上に形成されるホール注入層の膜厚が4nm以上である、
     請求項1から請求項9のいずれか1項に記載の有機EL表示パネル。
  11.  前記第1電極の上方に開口部を有する隔壁が、前記ホール注入層上に形成され、
     前記機能層は、前記隔壁の開口部内に形成されている、
     請求項1から請求項10のいずれか1項に記載の有機EL表示パネル。
  12.  前記第1電極は画素単位に複数配置され、
     前記隔壁の開口部は、前記複数の第1電極の各々に対応して形成されている、
     請求項11に記載の有機EL表示パネル。
  13.  前記第1電極は画素単位に複数配置され、
     前記隔壁の開口部は、前記複数配置された第1電極のラインごとに、対応して形成されている、
     請求項11に記載の有機EL表示パネル。
  14.  前記UPSスペクトルにおいて、前記隆起した形状は、前記価電子帯の上端に対し、1.8~3.6eV低い結合エネルギー領域内に位置する、
     請求項1から請求項13のいずれか1項に記載の有機EL表示パネル。
  15.  前記酸化タングステンのタングステン原子に対する、前記その他の原子の数密度の比は、0.62以下である、
     請求項1から請求項13のいずれか1項に記載の有機EL表示パネル。
  16.  前記その他の原子は炭素原子である、
     請求項1から請求項13のいずれか1項に記載の有機EL表示パネル。
  17.  前記ホール注入層は、
    UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
    XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下となるように、紫外線が照射されて構成されている、
     請求項1から請求項13のいずれか1項に記載の有機EL表示パネル。
  18.  基板と、
     前記基板上または前記基板内に形成された第1電極と、
     前記基板上または前記基板内に前記第1電極と離間して形成された配線と、
     前記第1電極の上方に形成され、有機材料を含む有機層と、
     前記有機層と前記第1電極との間に介在し、酸化タングステンを含む酸化タングステン層と、
     前記有機層の上方に形成された第2電極と、を具備し、
     前記酸化タングステン層および前記第2電極の各々は、前記第1電極の上方および前記配線の上方に連続して形成され、
     前記第2電極と前記配線とは、前記酸化タングステン層を介して電気接続され、
     前記酸化タングステン層は、
     UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
    XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下である、
     有機EL表示パネル。
  19.  基板と、
     前記基板上または前記基板内に形成された第1電極と、
     前記基板上または前記基板内に前記第1電極と離間して形成された補助配線と、
     前記第1電極の上方に形成され、少なくとも発光層を含む機能層と、
     前記機能層と前記第1電極との間に介在し前記機能層へのホール注入を行うホール注入層と、
     前記機能層の上方に形成された第2電極と、を具備し、
     前記ホール注入層および前記第2電極の各々は、前記第1電極の上方および前記補助配線の上方に連続して形成され、
     前記第2電極と前記補助配線とは、前記ホール注入層を介して電気接続され、
     前記ホール注入層は、酸化タングステンを含み、
     UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
     かつ、
     結合エネルギーが4.5~5.4eVにおいて、ピーク形状を有する、
    有機EL表示パネル。
  20.  前記UPSスペクトルにおいて、前記隆起した形状は、前記価電子帯の上端に対し、1.8~3.6eV低い結合エネルギー領域内に位置する、
     請求項19記載の有機EL表示パネル。
  21.  前記ホール注入層は、
    UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
     かつ、
     結合エネルギーが4.5~5.4eVにおいて、ピーク形状を有するように、
    紫外線が照射されて構成されている、
    請求項19記載の有機EL表示パネル。
  22.  基板と、
     前記基板上または前記基板内に形成された第1電極と、
     前記基板上または前記基板内に前記第1電極と離間して形成された配線と、
     前記第1電極の上方に形成され、有機材料を含む有機層と、
     前記有機層と前記第1電極との間に介在し、酸化タングステンを含む酸化タングステン層と、
     前記有機層の上方に形成された第2電極と、を具備し、
     前記酸化タングステン層および前記第2電極の各々は、前記第1電極の上方および前記配線の上方に連続して形成され、
     前記第2電極と前記配線とは、前記酸化タングステン層を介して電気接続され、
     前記酸化タングステン層は、
    UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
     かつ、
     結合エネルギーが4.5~5.4eVにおいて、ピーク形状を有する、
     有機EL表示パネル。
  23.  請求項1から請求項22のいずれか1項に記載の有機EL表示パネルを備える有機EL表示装置。
PCT/JP2011/006448 2011-02-25 2011-11-18 有機el表示パネルおよび有機el表示装置 WO2012114403A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013500714A JP5809234B2 (ja) 2011-02-25 2011-11-18 有機el表示パネルおよび有機el表示装置
US14/000,977 US8981361B2 (en) 2011-02-25 2011-11-18 Organic electroluminescence display panel with tungsten oxide containing hole injection layer that electrically connects electrode to auxiliary wiring, and organic electroluminescence display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-040760 2011-02-25
JP2011040760 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012114403A1 true WO2012114403A1 (ja) 2012-08-30

Family

ID=46720225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006448 WO2012114403A1 (ja) 2011-02-25 2011-11-18 有機el表示パネルおよび有機el表示装置

Country Status (3)

Country Link
US (1) US8981361B2 (ja)
JP (1) JP5809234B2 (ja)
WO (1) WO2012114403A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103438A (ja) * 2013-11-26 2015-06-04 ソニー株式会社 表示装置、表示装置の製造方法および電子機器
WO2015198605A1 (ja) * 2014-06-26 2015-12-30 株式会社Joled 表示装置
JP2016115905A (ja) * 2014-12-18 2016-06-23 株式会社ジャパンディスプレイ 有機el表示装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699119B1 (ko) 2011-07-15 2017-01-23 가부시키가이샤 제이올레드 유기 발광 소자의 제조 방법
WO2013011537A1 (ja) 2011-07-15 2013-01-24 パナソニック株式会社 有機発光素子
JP5793569B2 (ja) 2011-07-15 2015-10-14 株式会社Joled 有機発光素子の製造方法
KR20130024029A (ko) * 2011-08-30 2013-03-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
JP6387547B2 (ja) 2012-03-02 2018-09-12 株式会社Joled 有機el素子とその製造方法、および金属酸化物膜の成膜方法
WO2013161166A1 (ja) 2012-04-27 2013-10-31 パナソニック株式会社 有機el素子、およびそれを備える有機elパネル、有機el発光装置、有機el表示装置
KR102046157B1 (ko) * 2012-12-21 2019-12-03 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
WO2014136150A1 (ja) 2013-03-04 2014-09-12 パナソニック株式会社 El表示装置
KR102273654B1 (ko) * 2014-10-08 2021-07-06 삼성디스플레이 주식회사 유기 발광 표시 장치
JP2017168397A (ja) * 2016-03-18 2017-09-21 株式会社ジャパンディスプレイ 表示装置
JP6640034B2 (ja) * 2016-06-17 2020-02-05 株式会社ジャパンディスプレイ 有機el表示装置の製造方法
KR20180075918A (ko) * 2016-12-27 2018-07-05 엘지디스플레이 주식회사 전계발광 표시장치
CN106941111A (zh) * 2017-03-14 2017-07-11 合肥鑫晟光电科技有限公司 阵列基板、阵列基板的制造方法以及显示装置
CN112234088B (zh) * 2017-04-21 2023-04-18 群创光电股份有限公司 显示装置
KR102577233B1 (ko) * 2017-12-28 2023-09-08 엘지디스플레이 주식회사 전계발광 표시 장치
KR102659437B1 (ko) * 2018-07-24 2024-04-23 삼성디스플레이 주식회사 디스플레이 장치 제조 방법 및 디스플레이 장치 제조 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073499A (ja) * 2005-08-08 2007-03-22 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2009277788A (ja) * 2008-05-13 2009-11-26 Panasonic Corp 有機エレクトロルミネッセント素子およびその製造方法
WO2010070798A1 (ja) * 2008-12-18 2010-06-24 パナソニック株式会社 有機エレクトロルミネッセンス表示装置及びその製造方法
JP2011040167A (ja) * 2008-11-12 2011-02-24 Panasonic Corp 表示装置およびその製造方法

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
US5294869A (en) 1991-12-30 1994-03-15 Eastman Kodak Company Organic electroluminescent multicolor image display device
US5688551A (en) 1995-11-13 1997-11-18 Eastman Kodak Company Method of forming an organic electroluminescent display panel
JPH10162959A (ja) 1996-11-29 1998-06-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
DE69727987T2 (de) 1996-11-29 2005-01-20 Idemitsu Kosan Co. Ltd. Organische elektrolumineszente Vorrichtung
JP3782245B2 (ja) 1998-10-28 2006-06-07 Tdk株式会社 有機el表示装置の製造装置及び製造方法
US6309801B1 (en) 1998-11-18 2001-10-30 U.S. Philips Corporation Method of manufacturing an electronic device comprising two layers of organic-containing material
JP4198253B2 (ja) 1999-02-02 2008-12-17 出光興産株式会社 有機エレクトロルミネッセンス素子およびその製造方法
US7153592B2 (en) 2000-08-31 2006-12-26 Fujitsu Limited Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material
JP2002075661A (ja) 2000-08-31 2002-03-15 Fujitsu Ltd 有機el素子及び有機el表示装置
TWI257496B (en) 2001-04-20 2006-07-01 Toshiba Corp Display device and method of manufacturing the same
JP2002318556A (ja) 2001-04-20 2002-10-31 Toshiba Corp アクティブマトリクス型平面表示装置およびその製造方法
EP1388180A2 (en) 2001-05-18 2004-02-11 Cambridge University Technical Services Limited Electroluminescent device
JP2003007460A (ja) 2001-06-22 2003-01-10 Sony Corp 表示装置の製造方法および表示装置
JP3823916B2 (ja) 2001-12-18 2006-09-20 セイコーエプソン株式会社 表示装置及び電子機器並びに表示装置の製造方法
JP2003264083A (ja) 2002-03-08 2003-09-19 Sharp Corp 有機led素子とその製造方法
JP4165173B2 (ja) 2002-10-15 2008-10-15 株式会社デンソー 有機el素子の製造方法
JP2004228355A (ja) 2003-01-23 2004-08-12 Seiko Epson Corp 絶縁膜基板の製造方法、絶縁膜基板の製造装置及び絶縁膜基板並びに電気光学装置の製造方法及び電気光学装置
JP2004234901A (ja) 2003-01-28 2004-08-19 Seiko Epson Corp ディスプレイ基板、有機el表示装置、ディスプレイ基板の製造方法および電子機器
EP1629544B1 (en) 2003-05-12 2008-11-19 Cambridge Enterprise Limited Polymer transistor
ATE401672T1 (de) 2003-05-12 2008-08-15 Cambridge Entpr Ltd Herstellung einer polymeren vorrichtung
JP2005012173A (ja) 2003-05-28 2005-01-13 Seiko Epson Corp 膜パターン形成方法、デバイス及びデバイスの製造方法、電気光学装置、並びに電子機器
JP2004363170A (ja) 2003-06-02 2004-12-24 Seiko Epson Corp 導電パターンの形成方法、電気光学装置、電気光学装置の製造方法および電子機器
EP1695396B1 (en) 2003-12-16 2009-06-03 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
JP2005203340A (ja) 2003-12-16 2005-07-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子
JP2005203339A (ja) 2003-12-16 2005-07-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
US20090160325A1 (en) 2003-12-16 2009-06-25 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
JP4857521B2 (ja) 2004-01-09 2012-01-18 セイコーエプソン株式会社 電気光学装置の製造方法、電気光学装置、及び電子機器
JP4002949B2 (ja) 2004-03-17 2007-11-07 独立行政法人科学技術振興機構 両面発光有機elパネル
JP2005268099A (ja) 2004-03-19 2005-09-29 Mitsubishi Electric Corp 有機el表示パネル、有機el表示装置、および有機el表示パネルの製造方法
JP4645064B2 (ja) 2004-05-19 2011-03-09 セイコーエプソン株式会社 電気光学装置の製造方法
US7541099B2 (en) 2004-05-21 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative and light emitting element and light emitting device using the same
JP4161956B2 (ja) 2004-05-27 2008-10-08 セイコーエプソン株式会社 カラーフィルタ基板の製造方法、電気光学装置の製造方法、電気光学装置、電子機器
US7211456B2 (en) 2004-07-09 2007-05-01 Au Optronics Corporation Method for electro-luminescent display fabrication
JP2006185869A (ja) 2004-12-28 2006-07-13 Asahi Glass Co Ltd 有機電界発光素子及びその製造方法
JP2006253443A (ja) 2005-03-11 2006-09-21 Seiko Epson Corp 有機el装置、その製造方法および電子機器
JP2006294261A (ja) 2005-04-05 2006-10-26 Fuji Electric Holdings Co Ltd 有機el発光素子およびその製造方法
TWI307612B (en) 2005-04-27 2009-03-11 Sony Corp Transfer method and transfer apparatus
JP2006344459A (ja) 2005-06-08 2006-12-21 Sony Corp 転写方法および転写装置
US7994711B2 (en) 2005-08-08 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US7635858B2 (en) 2005-08-10 2009-12-22 Au Optronics Corporation Organic light-emitting device with improved layer conductivity distribution
GB0517195D0 (en) 2005-08-23 2005-09-28 Cambridge Display Tech Ltd Molecular electronic device structures and fabrication methods
JP2007095606A (ja) 2005-09-30 2007-04-12 Seiko Epson Corp 有機el装置、その製造方法、及び電子機器
JP4318689B2 (ja) 2005-12-09 2009-08-26 出光興産株式会社 n型無機半導体、n型無機半導体薄膜及びその製造方法
JP2007214066A (ja) 2006-02-13 2007-08-23 Seiko Epson Corp 有機エレクトロルミネセンス装置の製造方法
JP2007287353A (ja) 2006-04-12 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子の製造方法およびそれを用いて作成された有機エレクトロルミネッセント素子
US20070241665A1 (en) 2006-04-12 2007-10-18 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent element, and manufacturing method thereof, as well as display device and exposure apparatus using the same
JP2007288074A (ja) 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP2007288071A (ja) 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法、それを用いた表示装置、露光装置
JP2008041747A (ja) 2006-08-02 2008-02-21 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント発光装置およびその製造方法
US20070290604A1 (en) 2006-06-16 2007-12-20 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device and method of producing the same
JP4915650B2 (ja) 2006-08-25 2012-04-11 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP2008091072A (ja) 2006-09-29 2008-04-17 Seiko Epson Corp 電気光学装置、およびその製造方法
JP4915913B2 (ja) 2006-11-13 2012-04-11 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP2008140724A (ja) 2006-12-05 2008-06-19 Toppan Printing Co Ltd 有機el素子の製造方法および有機el素子
WO2008075615A1 (en) 2006-12-21 2008-06-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
JP5326289B2 (ja) 2007-03-23 2013-10-30 凸版印刷株式会社 有機el素子およびそれを備えた表示装置
WO2008120714A1 (ja) 2007-03-29 2008-10-09 Dai Nippon Printing Co., Ltd. 有機エレクトロルミネッセンス素子及びその製造方法
JP2009004347A (ja) 2007-05-18 2009-01-08 Toppan Printing Co Ltd 有機el表示素子の製造方法及び有機el表示素子
EP2151867B1 (en) 2007-05-30 2016-08-03 Joled Inc. Organic el display panel
JP4280301B2 (ja) 2007-05-31 2009-06-17 パナソニック株式会社 有機el素子、およびその製造方法
US20080312437A1 (en) 2007-06-04 2008-12-18 Semiconductor Energy Labratory Co., Ltd. Organometallic Complex, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Organometallic Complex
CN101765929B (zh) 2007-07-31 2012-10-24 住友化学株式会社 有机电致发光元件及其制造方法
JP5001745B2 (ja) 2007-08-10 2012-08-15 住友化学株式会社 有機エレクトロルミネッセンス素子及び製造方法
JP2009048960A (ja) 2007-08-23 2009-03-05 Canon Inc 電極洗浄処理方法
JP2009058897A (ja) 2007-09-03 2009-03-19 Hitachi Displays Ltd 表示装置
JP4410313B2 (ja) 2007-12-10 2010-02-03 パナソニック株式会社 有機elデバイスおよびelディスプレイパネル、ならびにそれらの製造方法
WO2009084209A1 (ja) 2007-12-28 2009-07-09 Panasonic Corporation 有機elデバイスおよび有機elディスプレイパネル、ならびにそれらの製造方法
EP2270896B1 (en) 2008-02-28 2014-12-24 Panasonic Corporation Organic el display panel
JP2009218156A (ja) 2008-03-12 2009-09-24 Casio Comput Co Ltd Elパネル及びelパネルの製造方法
JP5267246B2 (ja) 2008-03-26 2013-08-21 凸版印刷株式会社 有機エレクトロルミネッセンス素子及びその製造方法並びに有機エレクトロルミネッセンス表示装置
JP2009239180A (ja) 2008-03-28 2009-10-15 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP4678421B2 (ja) 2008-05-16 2011-04-27 ソニー株式会社 表示装置
JP4975064B2 (ja) 2008-05-28 2012-07-11 パナソニック株式会社 発光装置及びその製造方法
JP2008241238A (ja) 2008-05-28 2008-10-09 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調装置の制御方法
JP2010021138A (ja) 2008-06-09 2010-01-28 Panasonic Corp 有機エレクトロルミネッセント装置およびその製造方法
GB0811199D0 (en) 2008-06-18 2008-07-23 Cambridge Entpr Ltd Electro-optic diode devices
JP5199773B2 (ja) 2008-07-30 2013-05-15 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
JP4723693B2 (ja) 2008-09-19 2011-07-13 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP5138542B2 (ja) 2008-10-24 2013-02-06 パナソニック株式会社 有機エレクトロルミネッセンス素子及びその製造方法
JP2010123716A (ja) 2008-11-19 2010-06-03 Fujifilm Corp 有機電界発光素子
JP4856753B2 (ja) 2008-12-10 2012-01-18 パナソニック株式会社 光学素子および光学素子を具備する表示装置の製造方法
JP2010161185A (ja) 2009-01-08 2010-07-22 Ulvac Japan Ltd 有機el表示装置、有機el表示装置の製造方法
WO2010092797A1 (ja) 2009-02-10 2010-08-19 パナソニック株式会社 発光素子、表示装置、および発光素子の製造方法
WO2010092796A1 (ja) 2009-02-10 2010-08-19 パナソニック株式会社 発光素子、発光素子を備えた発光装置および発光素子の製造方法
JP5437736B2 (ja) 2009-08-19 2014-03-12 パナソニック株式会社 有機el素子
CN102473847B (zh) * 2010-06-24 2015-01-14 松下电器产业株式会社 有机el元件、显示装置以及发光装置
CN103053041B (zh) 2010-08-06 2015-11-25 株式会社日本有机雷特显示器 有机el元件
JP5612691B2 (ja) 2010-08-06 2014-10-22 パナソニック株式会社 有機el素子およびその製造方法
WO2012017485A1 (ja) * 2010-08-06 2012-02-09 パナソニック株式会社 有機el素子、表示装置および発光装置
JP5677433B2 (ja) * 2010-08-06 2015-02-25 パナソニック株式会社 有機el素子、表示装置および発光装置
WO2012017502A1 (ja) 2010-08-06 2012-02-09 パナソニック株式会社 有機el素子およびその製造方法
CN102640318B (zh) 2010-11-29 2015-12-16 株式会社日本有机雷特显示器 有机发光元件的制造方法、有机发光元件、发光装置、显示面板以及显示装置
US8884281B2 (en) * 2011-01-21 2014-11-11 Panasonic Corporation Organic EL element
WO2012114648A1 (ja) * 2011-02-23 2012-08-30 パナソニック株式会社 有機el表示パネルおよび有機el表示装置
CN102884650A (zh) * 2011-05-11 2013-01-16 松下电器产业株式会社 有机el显示面板及有机el显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073499A (ja) * 2005-08-08 2007-03-22 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2009277788A (ja) * 2008-05-13 2009-11-26 Panasonic Corp 有機エレクトロルミネッセント素子およびその製造方法
JP2011040167A (ja) * 2008-11-12 2011-02-24 Panasonic Corp 表示装置およびその製造方法
WO2010070798A1 (ja) * 2008-12-18 2010-06-24 パナソニック株式会社 有機エレクトロルミネッセンス表示装置及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103438A (ja) * 2013-11-26 2015-06-04 ソニー株式会社 表示装置、表示装置の製造方法および電子機器
WO2015198605A1 (ja) * 2014-06-26 2015-12-30 株式会社Joled 表示装置
JPWO2015198605A1 (ja) * 2014-06-26 2017-04-20 株式会社Joled 表示装置
JP2016115905A (ja) * 2014-12-18 2016-06-23 株式会社ジャパンディスプレイ 有機el表示装置
WO2016098544A1 (ja) * 2014-12-18 2016-06-23 株式会社ジャパンディスプレイ 有機el表示装置
US10032831B2 (en) 2014-12-18 2018-07-24 Japan Display Inc. Organic EL display device

Also Published As

Publication number Publication date
JPWO2012114403A1 (ja) 2014-07-07
US20130328039A1 (en) 2013-12-12
US8981361B2 (en) 2015-03-17
JP5809234B2 (ja) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5809234B2 (ja) 有機el表示パネルおよび有機el表示装置
JP5884224B2 (ja) 有機el表示パネルおよび有機el表示装置
WO2012153445A1 (ja) 有機el表示パネルおよび有機el表示装置
JP5677432B2 (ja) 有機el素子、表示装置および発光装置
JP5612691B2 (ja) 有機el素子およびその製造方法
JP5720006B2 (ja) 有機el素子、表示装置および発光装置
JP5612693B2 (ja) 有機el素子およびその製造方法
JP5677433B2 (ja) 有機el素子、表示装置および発光装置
JP5676652B2 (ja) 有機el素子
JP5677434B2 (ja) 有機el素子
JP5612692B2 (ja) 有機el素子およびその製造方法
JP5677431B2 (ja) 有機el素子、表示装置および発光装置
KR101702703B1 (ko) 유기 발광 소자의 제조 방법
JP5612503B2 (ja) 有機発光装置
US8703530B2 (en) Method for producing organic EL element, display device, light-emitting apparatus, and ultraviolet irradiation device
JP2012174712A (ja) 有機発光素子
JP2012174346A (ja) 有機発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500714

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14000977

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859290

Country of ref document: EP

Kind code of ref document: A1