WO2016098544A1 - 有機el表示装置 - Google Patents

有機el表示装置 Download PDF

Info

Publication number
WO2016098544A1
WO2016098544A1 PCT/JP2015/083076 JP2015083076W WO2016098544A1 WO 2016098544 A1 WO2016098544 A1 WO 2016098544A1 JP 2015083076 W JP2015083076 W JP 2015083076W WO 2016098544 A1 WO2016098544 A1 WO 2016098544A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
display device
light emitting
pixel electrode
Prior art date
Application number
PCT/JP2015/083076
Other languages
English (en)
French (fr)
Inventor
松本 優子
佐藤 敏浩
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2016098544A1 publication Critical patent/WO2016098544A1/ja
Priority to US15/614,825 priority Critical patent/US10032831B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to a display device having a pixel configured of a light emitting element such as an electroluminescent element.
  • the present invention relates to an organic EL display device using an organic EL material as a light emitting material.
  • An electroluminescent (hereinafter also referred to as “EL”) element is known as a light emitting element utilizing an electroluminescence (EL) phenomenon.
  • EL elements can emit light of various wavelengths by selection of a light-emitting material forming a light-emitting layer, and application to display devices and lighting devices is in progress.
  • an organic EL element using an organic material as a light emitting material has attracted attention.
  • each pixel arranged in a matrix on a substrate includes an organic EL element as a light emitting element and a switching element for controlling light emission of the organic EL element. It is provided. Then, by controlling on / off of the switching element for each pixel, it is possible to display an arbitrary image as the entire display area.
  • an insulating material such as resin is provided on the periphery of a pixel electrode, and each pixel is partitioned by enclosing the pixel electrode with the insulating material, and a method of forming a light emitting element inside thereof is adopted.
  • Patent Document 1 An insulating material such as resin is provided on the periphery of a pixel electrode, and each pixel is partitioned by enclosing the pixel electrode with the insulating material, and a method of forming a light emitting element inside thereof is adopted.
  • Such insulating materials are generally referred to as banks.
  • the bank plays a role of flattening a contact hole connecting the pixel electrode and the switching element and preventing short circuit between the pixel electrode and the common electrode constituting the EL element.
  • the bank serves as a wall that limits the printing area.
  • the side surface shape of the bank is tapered to prevent division of the light emitting layer. Therefore, the distance between the bank and the pixel electrode may be 3 ⁇ m or more in some cases, and this is also a factor that hinders the improvement of the aperture ratio when promoting high definition.
  • one object of the present invention is to planarize the contact holes of the pixel electrodes without using a bank.
  • Another object of the present invention is to prevent a short circuit between a pixel electrode and a common electrode which constitute an EL element without using a bank.
  • One embodiment of the present invention is an organic EL display device including a plurality of pixels, wherein each of the plurality of pixels has a light emitting element, and the light emitting element includes a pixel electrode, a common electrode, and an EL common layer. And the light emitting layer, wherein the EL common layer and the light emitting layer are provided between the pixel electrode and the common electrode, and the EL common layer covers the main surface and the end of the pixel electrode. It is an organic EL display device.
  • One embodiment of the present invention is a method of manufacturing an organic EL display device including a plurality of pixels, comprising the steps of: forming a pixel electrode at a position corresponding to the plurality of pixels on a substrate; Forming a laminated structure including an EL common layer and a light emitting layer, and forming a common electrode on the laminated structure, wherein the EL common layer is a main surface and an end portion of the pixel electrode. It is a manufacturing method of the organic electroluminescence display formed so that it may cover.
  • drawings may be schematically represented as to the width, thickness, shape, etc. of each portion in comparison with the actual embodiment in order to clarify the description, but this is merely an example, and the interpretation of the present invention
  • elements having the same functions as the elements in the drawings described above are denoted by the same reference numerals, and redundant description may be omitted.
  • FIG. 1 is a top view showing a schematic configuration of an organic EL display device 100 according to a first embodiment of the present invention.
  • the organic EL display device 100 includes a pixel portion (display area) 102, a scanning line drive circuit 103, a data line drive circuit 104, and a driver IC 105 which are formed on a substrate 101.
  • a flexible printed circuit FPC may be provided to supply a signal to the scan line driver circuit 103 and the data line driver circuit 104.
  • a plurality of pixels are arranged in a matrix.
  • a data signal corresponding to image data is supplied from the data line drive circuit 104 to each pixel.
  • screen display can be performed according to the image data.
  • the transistor typically, a thin film transistor can be used. However, any element may be used as long as it is an element having a current control function as well as the thin film transistor.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the pixel section 102 in the organic EL display device 100 shown in FIG.
  • the pixel 201 includes a sub-pixel 201R corresponding to red (R), a sub-pixel 201G corresponding to green (G), and a sub-pixel 201B corresponding to blue (B).
  • a thin film transistor 202 is provided in each sub-pixel.
  • FIG. 2 shows a configuration using the three primary colors of RGB as the sub-pixels
  • the present embodiment is not limited thereto, and four sub-pixels in which white (W) or yellow (Y) is added to RGB are used.
  • the pixel 201 can also be configured.
  • an example in which pixels corresponding to the same color are stripe-arranged is shown as the pixel array, other delta-arrangement, Bayer array, or an array that realizes a pen tile structure may be used.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a cross section of the pixel 201 shown in FIG. 2 taken along A-A '.
  • an insulating layer formed of an inorganic material such as silicon oxide, silicon nitride, or aluminum oxide is provided as a base layer 302 on a substrate 301, and a thin film transistor 303 is formed thereon.
  • a glass substrate, a quartz substrate, a flexible substrate polyimide, polyethylene terephthalate, polyethylene naphthalate, or other bendable substrates
  • a metal substrate, a ceramic substrate, or a semiconductor substrate can be used.
  • the thin film transistor 303 may be formed by a known method. Further, it may be a top gate type or a bottom gate type.
  • the first insulating layer 304 is provided so as to cover the thin film transistor 303, and the unevenness due to the thin film transistor 303 is planarized. It is preferable to use a resin material as the first insulating layer 304.
  • organic materials such as polyimide, polyamide, and acrylic can be used. It is also possible to use an inorganic material such as silicon oxide instead of the organic material.
  • a laminated film in which the lower layer side is formed of two layers of an insulating inorganic material such as silicon oxide or silicon nitride and the upper layer side is an insulating organic material such as polyimide, polyamide, or acrylic may be applied to the first insulating layer 304.
  • the pixel electrode 305 is provided on the first insulating layer 304.
  • the pixel electrode 305 is connected to the thin film transistor 303 through a contact hole formed in the first insulating layer 304.
  • the pixel electrode 305 functions as an anode (anode) that constitutes the organic EL element.
  • the pixel electrode 305 emits light emitted from the organic EL element upward (in a direction not passing through the first insulating layer 304) or downward (in a direction passing through the first insulating layer 304)
  • a metal film with high reflectance is used as the pixel electrode 305, or a transparent conductive film and a metal film with a high work function, such as an indium oxide transparent conductive film or a zinc oxide transparent conductive film. It is sufficient to use the laminated structure of
  • the above-described transparent conductive film may be used as a single layer as the pixel electrode 305.
  • a first EL common layer 306 is provided on the pixel electrode 305.
  • the first EL common layer 306 is a functional layer having a function of assisting the movement of holes from the pixel electrode 305 to the light emitting layer 307 described later.
  • known hole injection layers, hole transport layers, or stacked structures thereof can be used.
  • the hole injection layer aromatic amine derivatives, polyaniline derivatives, polythiophene derivatives, phenylamine derivatives and the like are known. PEDOT / PSS etc. are known as a positive hole transport layer.
  • the first EL common layer 306 is provided so as to cover the main surface and the end portion of the pixel electrode 305.
  • the “main surface of the pixel electrode” refers to the surface of the pixel electrode facing the light emitting layer.
  • the “end of the pixel electrode” refers to an edge when the pixel electrode is viewed in plan.
  • the first EL common layer 306 is provided so as to cover the entire exposed portion of the pixel electrode 305.
  • the end portion of the pixel electrode 305 is covered with the first EL common layer 306 having a sufficient film thickness.
  • a short circuit between the pixel electrode 305 and the common electrode 309 described later can be prevented.
  • the first EL common layer 306 can also be used to fill in a recess due to a contact hole for connecting the pixel electrode 305 and the thin film transistor 303. Accordingly, the concave portion formed by the main surface of the pixel electrode 305 can be planarized by the first EL common layer 306. By flattening the concave portion, the shapes of the light emitting layer 307 and the second EL common layer 308 disposed thereon are planarized, and the occurrence of leakage or short circuit between the pixel electrode 305 and the common electrode 309 is realized. It can be suppressed.
  • the first EL common layer 306 is formed using an electrostatic droplet discharge method (for example, an inkjet method).
  • a light emitting layer 307 is provided on the first EL common layer 306.
  • the light emitting layer 307 is a functional layer that emits light by energy when holes and electrons recombine.
  • a known organic light emitting material can be used as the light emitting layer 307.
  • polyphenylene derivatives, polyfluorene derivatives, paraphenylene vinylene derivatives, polythiophene derivatives and the like are known. In order to make these organic light emitting materials emit light of each color of RGB, appropriate materials may be added.
  • materials for red color such as DCM, rhodamine and nile red
  • materials for green color such as coumarin and quinacridone
  • materials for blue color such as perylene and tetraphenyl butadiene
  • the area of the pixel electrode 305 can be sufficiently utilized to form the organic EL element.
  • the entire pixel electrode 305 can be used as an anode of the organic EL element by arranging the pixel electrode 305 and the light emitting layer 307 so that they overlap substantially in the entire area.
  • the end portion of the pixel electrode 305 is easily disturbed by an electric field, and the film thickness of the first EL common layer 306 and the light emitting layer 307 tends to be uneven. Therefore, it is preferable to control so that the end of the light emitting layer 307 is positioned in the range of 0.5 to 1.5 ⁇ m inward from the end of the pixel electrode 305.
  • the end of the light emitting layer 307 may be controlled to be positioned outside the end of the pixel electrode 305.
  • the second EL common layer 308 is provided on the light emitting layer 307.
  • the second EL common layer 308 is a functional layer having a function of assisting the movement of electrons from the adjacent common electrode 309 to the light emitting layer 307.
  • known electron injection layers, electron transport layers, or stacked structures thereof can be used.
  • metal fluorides, such as LiF, are known as an electron injection layer.
  • a triazine derivative etc. are known as an electron carrying layer.
  • the second EL common layer 308 is provided across a plurality of pixels, but may be separated into pixel units. Alternatively, the second EL common layer 308 may be omitted.
  • a common electrode 309 is provided on the second EL common layer 308.
  • the common electrode 309 functions as a cathode (cathode) that constitutes the organic EL element.
  • the common electrode 309 has a different structure depending on whether the light emitted from the organic EL element is emitted upward (in a direction not passing through the insulating layer 304) or emitted downward (in a direction passing through the insulating layer 304).
  • an indium oxide based transparent conductive film or a zinc oxide based transparent conductive film may be used as the common electrode 309.
  • a metal film with a low work function such as an MgAg alloy having a thickness of about 5 to 30 nm that allows light transmission may be used.
  • the work electrode of an MgAg alloy or the like having a thickness to which light is reflected (about 50 to 300 nm, which is about 10 times the thickness described above), is low as the common electrode 309 A metal film may be used.
  • a second insulating layer 310 is provided on the common electrode 309.
  • the second insulating layer 310 functions as a sealing film for preventing the entry of moisture and contaminants from the outside.
  • a silicon nitride-based or aluminum oxide-based insulating layer having a dense film quality is preferably used as the second insulating layer 310.
  • a black mask 311 is provided on the second insulating layer 310.
  • a resin layer in which a black pigment (for example, carbon black) is dispersed is used as the black mask 311.
  • the conductive layer may be provided as the black mask 311 as long as the layer functions as a light shielding layer.
  • a third insulating layer 312 is provided on the black mask 311.
  • the third insulating layer 312 functions as a protective layer for protecting the organic EL element and other elements formed on the substrate 301.
  • a resin layer formed of a resin material such as polyimide or acrylic may be provided.
  • an insulating layer formed of an inorganic material such as a silicon nitride layer or a silicon oxide layer may be provided.
  • a polarizing plate or a touch panel may be further provided on the third insulating layer 312.
  • the third insulating layer 312 also has a function of protecting the organic EL element and the other elements from mechanical external force (for example, pressure when the touch panel is pressed) and the like.
  • a color filter may be provided on the third insulating layer 312 as needed.
  • the organic EL display device 100 of the present embodiment has a structure in which the main surface and the end portion of the pixel electrode 305 are covered with the first EL common layer 306 having a sufficient film thickness.
  • the end portion of the pixel electrode 305 can be covered with the first EL common layer 306 without using a bank, and a short circuit between the pixel electrode and the common electrode constituting the EL element can be prevented. Can.
  • the contact hole of the pixel electrode 305 can be planarized without using a bank.
  • a base layer 302 is formed on a substrate 301, and a thin film transistor (TFT) 303 is formed thereon by a known method. Then, the first insulating layer 304 is formed so as to planarize unevenness caused by the formation of the thin film transistor 303.
  • TFT thin film transistor
  • a glass substrate, a quartz substrate, a flexible substrate polyimide, polyethylene terephthalate, polyethylene naphthalate, or other bendable substrates
  • a metal substrate, a ceramic substrate, or a semiconductor substrate can be used.
  • the base layer 302 typically, a silicon oxide-based insulating film, a silicon nitride-based insulating film, or a stacked film thereof can be used.
  • the base layer 302 has a function of preventing the entry of contaminants from the substrate 301 and relaxing the stress generated by the expansion and contraction of the substrate 301.
  • the thin film transistor 303 is an example in which a top gate TFT is formed in this embodiment, a reverse stagger TFT may be used. Further, as long as the element functions as a switching element, a two-terminal element may be formed without being limited to a three-terminal element such as a thin film transistor.
  • the first insulating layer 304 may be formed by applying a resin material such as polyimide or acrylic and then curing the resin material.
  • the film thickness of the first insulating layer 304 may be a film thickness sufficient to planarize the unevenness due to the thin film transistor 303. Typically, it can be 1 to 3 ⁇ m, but is not limited thereto.
  • a contact hole which reaches the thin film transistor 303 is formed in the first insulating layer 304, and then a pixel electrode 305 is formed by a known method.
  • a laminated film of ITO (Indium Tin Oxide) and an aluminum film is formed by a known sputtering method, and then the laminated film is patterned by known photolithography to form a pixel electrode 305.
  • Each pixel electrode 305 is patterned to correspond to a position corresponding to a plurality of pixels.
  • a first EL common layer 306 is formed.
  • a functional layer in which a hole injection layer and a hole transport layer are stacked is formed as the first EL common layer 306.
  • Specific materials constituting the first EL common layer 306 are as described above.
  • the film thickness of each functional layer may be appropriately determined as long as each layer exhibits the function as a hole injection layer or a hole transport layer.
  • an electrostatic droplet discharge method is used to form the first EL common layer 306.
  • a droplet discharge method an inkjet method is typically known.
  • the electrostatic droplet discharge method is a method in which a necessary material is dispersed in a solvent and dropped on a substrate to form a locally required thin film. According to this method, local thin film formation becomes possible by performing highly accurate alignment, and fine film formation processing becomes possible without using photolithography.
  • the electrostatic droplet discharge method used in the present embodiment can discharge very fine droplets from the nozzle.
  • droplets in the range of 0.1 fl (femtoliter) to 1.0 pl (pico liter) can be controlled and ejected with an alignment accuracy of about 0.2 ⁇ m.
  • the electrostatic droplet discharge method is a known technique.
  • a droplet discharge apparatus is used which can discharge droplets to many pixels at one time by providing a plurality of nozzles for droplet discharge.
  • the discharged droplets become extremely fine. Therefore, when the organic material forming the first EL common layer 306 is dispersed in an organic solvent and discharged as in this embodiment, only the solvent is almost evaporated before the droplets reach the pixel electrode 305. That is, the organic material forming the first EL common layer 306 adheres to the pixel electrode 305 in a state of being substantially a solid material. Therefore, it is possible to selectively form the first EL common layer 306 only at a target position without providing a wall as in the conventional bank.
  • the organic material constituting the first EL common layer 306 is dispersed in a solvent, and the droplets are dispersed on the main surface of the pixel electrode 305 using the electrostatic droplet discharge method.
  • the first EL common layer 306 is formed by dropping the end portion. At that time, the film thickness of the first EL common layer 306 can be easily controlled by the amount of droplets and the number of droplets. Therefore, local film thickness control can be easily performed.
  • the film thickness at the end of the pixel electrode 305 can be made a desired sufficient film thickness.
  • a short circuit between the pixel electrode 305 and the common electrode 309 can be prevented by using the first EL common layer 306 without separately providing an element such as a bank.
  • a concave portion resulting from a contact hole for connecting the pixel electrode 305 and the thin film transistor 303 exists.
  • the conventional bank structure is not required by using the droplet discharge method, various processes (resin application process, curing process, patterning process) necessary for forming the bank can be omitted.
  • the baking process for volatilizing the solvent after forming the EL common layer can also be omitted. As a result of these, it is possible to significantly reduce the manufacturing process of the organic EL display device.
  • the light emitting layer 307 is formed over the first EL common layer 306.
  • the above-described electrostatic droplet discharge method is used also for the formation of the light emitting layer 307.
  • the light emitting layer 307 can be selectively formed at a desired position without forming a bank.
  • the deposition mask it may be formed using a known deposition method.
  • the specific organic material constituting the light emitting layer 307 is as described above.
  • the second EL common layer 308 is formed across a plurality of pixels.
  • a functional layer in which an electron injection layer and an electron transport layer are stacked is formed as the second EL common layer 308.
  • Specific materials constituting the second EL common layer 308 are as described above.
  • the film thickness of each functional layer may be appropriately determined as long as each layer exhibits the function as an electron injection layer or an electron transport layer.
  • the electrostatic droplet discharge method described above is used also for the formation of the second EL common layer 308.
  • the second EL common layer 308 is formed to completely cover the first EL common layer 306 and the light emitting layer 307, a sufficient film thickness can be secured at the end of each layer.
  • the second EL common layer 308 may be formed by a known evaporation method.
  • the second EL common layer 308 may be omitted.
  • a common electrode 309 functioning as a cathode of the organic EL element and a second insulating layer 310 as a sealing film are formed.
  • the specific materials of the common electrode 309 and the second insulating layer 310 are as described above.
  • the common electrode 309 and the second insulating layer 310 are continuously formed without opening to the air by using a known sputtering method.
  • the metal used for the common electrode 309 is a metal having a low work function such as an MgAg alloy, but these metals have a feature of being easily oxidized. Therefore, after the common electrode 309 is formed, the second insulating layer 310 is preferably formed without being exposed to oxygen as it is.
  • a black mask 311 is formed above the thin film transistor 303.
  • the black mask 311 is formed using a resin material containing carbon black. Specifically, a resin material containing carbon black is dispersed in a solvent, and selectively formed above the thin film transistor 303 by using the above-described electrostatic droplet discharge method.
  • the black mask 311 when forming the black mask 311, the process of applying the resin material, the curing process, and the patterning process are not required as in the prior art, so that the manufacturing process of the organic EL display device can be simplified.
  • the black mask may be formed by a known method.
  • the black mask 311 may be formed by patterning a metal film such as chromium or patterning a resin layer containing carbon black.
  • a third insulating layer 312 is formed as a protective layer.
  • a resin layer such as polyimide or acrylic is formed by a printing method. By using the printing method, it is possible to selectively form the resin layer, so it is possible to form the third insulating layer 312 while avoiding the external extraction terminal group in the peripheral portion of the organic EL display device. It is.
  • the organic EL display device 100 As described above, the organic EL display device 100 according to the first embodiment described with reference to FIG. 3 is completed. According to the present embodiment, since the first EL common layer 306 is formed by the electrostatic droplet discharge method, the end of the pixel electrode 305 is covered with a sufficient film thickness without adopting the bank structure. can do. As a result, a short circuit between the pixel electrode 305 and the common electrode 309 can be prevented at the end of the pixel electrode 305.
  • the organic material which constitutes the first EL common layer 306 can be selectively concentrated. Therefore, the recess formed in the main surface of the pixel electrode 305 can be filled with the organic material forming the first EL common layer 306 to be planarized.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of an organic EL display device 200 according to a second embodiment of the present invention.
  • the difference between the organic EL display device 200 according to the second embodiment and the organic EL display device 100 according to the first embodiment is that the black mask 311 is common to the organic EL display device 200 according to the second embodiment. It is a point provided between the electrode 309 and the second insulating layer 310.
  • the other configuration is the same as that of the organic EL display device 100 according to the first embodiment.
  • the black mask 311 is formed by an electrostatic droplet discharge method in a nitrogen atmosphere. Then, the substrate is carried into a sputtering apparatus while maintaining a nitrogen atmosphere to form a second insulating layer 310.
  • the main surface and the end portion of the pixel electrode 305 are formed by the electrostatic droplet discharge method.
  • a structure covered with the first EL common layer 306 is employed. Therefore, the organic EL display device 200 according to the present embodiment also exhibits the same effects as the effects described for the organic EL display device 100 according to the first embodiment. Since the distance between the black mask 311 and the light emitting layer 307 is short as compared with the first embodiment, the leaked light to the adjacent pixels is smaller.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of an organic EL display device 300 according to a third embodiment of the present invention.
  • the difference between the organic EL display device 300 according to the third embodiment and the organic EL display device 100 according to the first embodiment is that the organic EL display device 300 according to the third embodiment is different from the organic EL display device 300 according to the third embodiment in the black mask 311. It is a point provided between the second EL common layer 308 and the common electrode 309.
  • the other configuration is the same as that of the organic EL display device 100 according to the first embodiment.
  • the black mask 311 is formed by electrostatic droplet discharge so as to be in contact with the second EL common layer 308. Therefore, as the solvent used for the droplet discharge method (solvent for dispersing the resin material containing carbon black), a solvent that does not affect the second EL common layer 308 (for example, a fluorocarbon solvent such as fluoroether) It is preferred to use
  • the black mask 311 is formed in contact with the first EL common layer 306 and the light emitting layer 307. Also in this case, it is preferable to use a solvent that does not affect the first EL common layer 306 and the light emitting layer 307 (for example, a fluorocarbon solvent such as fluoroether).
  • a solvent that does not affect the first EL common layer 306 and the light emitting layer 307 for example, a fluorocarbon solvent such as fluoroether.
  • the main surface and the end portion of the pixel electrode 305 are formed by the electrostatic droplet discharge method.
  • a structure covered with the first EL common layer 306 is employed. Therefore, the organic EL display device 300 according to the present embodiment also exhibits the same effects as the effects described for the organic EL display device 100 according to the first embodiment.
  • the black mask 311 is provided on the end portion of the pixel electrode in which the electric field disturbance easily occurs and the film thickness of the first EL common layer 306 and the light emitting layer 307 tends to be uneven, it is common to the pixel electrode 305 It is possible to more effectively prevent a short circuit with the electrode 309. In order to obtain such an effect, it is preferable to use a black mask 311 with high insulation. Furthermore, in the case of the organic EL display device 300 according to the present embodiment, since the black mask 311 is closer to the light emitting layer 307 compared to that of the first embodiment, leakage light to a more optically adjacent pixel is reduced.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of an organic EL display device 400 according to a fourth embodiment of the present invention.
  • the difference between the organic EL display device 400 according to the fourth embodiment and the organic EL display device 100 according to the first embodiment is that the organic EL display device 400 according to the fourth embodiment is the second EL common layer.
  • the pixel 308 is provided separately for each pixel.
  • the other configuration is the same as that of the organic EL display device 100 according to the first embodiment.
  • the pixel electrode 305 is formed on the electrode (for example, the drain electrode) 11 which constitutes a part of the thin film transistor 303 via a contact hole. Then, the first EL common layer 306 is filled in a recess (a recess resulting from the contact hole) formed in the main surface of the pixel electrode 305.
  • This structure is not limited to the fourth embodiment, and is common to the first to third embodiments described above, and is common to the respective embodiments described later.
  • the second EL common layer 308 is selectively formed for each pixel by using an electrostatic droplet discharge method. Specifically, as shown in FIG. 10, the second EL common layer 308 is formed so as to cover the end of the first EL common layer 306, and is separated between a plurality of pixels . In other words, each layer made of an organic material such as the first EL common layer 306, the light emitting layer 307, and the second EL common layer 308 is not formed across a plurality of pixels. As a result, carrier movement does not occur between the plurality of pixels via each layer formed of an organic material, and it is possible to further reduce the leak current flowing between the respective pixels.
  • each layer made of an organic material such as the first EL common layer 306, the light emitting layer 307, and the second EL common layer 308 does not exist between the pixels, the common electrode 309 and the first insulating layer 304 are formed. And a structure in contact with it. This is also a structural feature of the organic EL display device 400 according to the present embodiment.
  • the second EL common layer 308 covers the end of the first EL common layer 306, the end of the pixel electrode 305 and the first EL common when the pixel electrode 305 is viewed as a reference.
  • the end of the layer 306 and the end of the second EL common layer 308 are arranged in the order from the end toward the outer side (the side toward the adjacent pixel).
  • the pixel electrode 305 is disposed so as to overlap the light emitting layer 307 and have an outer size larger than that of the light emitting layer 307 and overlap the pixel electrode 305 so as to have an outer size larger than the pixel electrode 305
  • This can also be said to be a structural feature of the organic EL display device 400 according to the present embodiment.
  • the light emitting layer 307 is not formed on the contact holes. This is because when the light emitting layer 307 is directly on the contact hole, the thickness of the first EL common layer 306 is different from that at other places, and light emission different from normal is generated in the light emitting layer 307, which makes control difficult. It is.
  • the main surface and the end portion of the pixel electrode 305 are formed by the electrostatic droplet discharge method.
  • a structure covered with the first EL common layer 306 is employed. Therefore, the organic EL display device 400 according to the present embodiment also exhibits the same effects as the effects described for the organic EL display device 100 according to the first embodiment.
  • the EL common layer and the light emitting layer are provided for each pixel, and the EL common layer and the light emitting layer do not exist across the pixels, so that the leak current due to the carrier movement between the pixels is reduced. It can be reduced.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of an organic EL display device 500 according to a fifth embodiment of the present invention.
  • the difference between the organic EL display device 500 according to the fifth embodiment and the organic EL display device 100 according to the first embodiment is that the organic EL display device 500 according to the fifth embodiment is the second EL common layer.
  • the thickness of the first EL common layer 306 is locally thickly formed at the end of the pixel electrode 305 and the point that 308 is provided separately for each pixel (as in the fourth embodiment) It is a point.
  • the other configuration is the same as that of the organic EL display device 100 according to the first embodiment.
  • the film thickness of the first EL common layer 306 is locally thickened at the end of the pixel electrode 305 as shown by the frame 21 surrounded by the dotted line. .
  • a short circuit between the pixel electrode 305 and the common electrode 309 at the end of the pixel electrode 305 can be prevented more effectively.
  • the film thickness of the end portion of the pixel electrode 305 is locally increased by intensively attaching the organic material forming the first EL common layer 306 at the end portion of the pixel electrode 305. It is thicker than the part of. For that purpose, the amount of drop or the number of drops of the droplet may be increased at the end of the pixel electrode 305.
  • the main surface and the end portion of the pixel electrode 305 are formed by the electrostatic droplet discharge method.
  • a structure covered with the first EL common layer 306 is employed. Therefore, the organic EL display device 500 according to the present embodiment also exhibits the same effects as the effects described for the organic EL display device 100 according to the first embodiment.
  • the film thickness of the first EL common layer 306 is locally thicker than the other portion at the end of the pixel electrode 305, the space between the pixel electrode 305 and the common electrode 309 is Short circuit can be prevented more effectively.
  • FIG. 12 is a cross-sectional view showing a schematic configuration of an organic EL display device 600 according to a sixth embodiment of the present invention.
  • the difference between the organic EL display device 600 according to the sixth embodiment and the organic EL display device 100 according to the first embodiment is that the organic EL display device 600 according to the sixth embodiment is the second EL common layer.
  • the point that 308 is provided separately for each pixel (as in the fourth embodiment) and the point where the black mask 311 is sandwiched between the second insulating layer 310 and the fourth insulating layer 313 .
  • the other configuration is the same as that of the organic EL display device 100 according to the first embodiment.
  • a fourth insulating layer 313 is further formed by a sputtering method or the like.
  • the black mask 311 is sandwiched between the second insulating layer 310 and the fourth insulating layer 313.
  • the fourth insulating layer 313 can be formed with the influence thereof reduced. Therefore, the function as a sealing film in the second insulating layer 310 and the fourth insulating layer 313 can be further enhanced, and an organic EL display device with high reliability can be realized.
  • the black mask 311 is formed by spin coating. That is, a resin material containing carbon black is applied by spin coating in a liquid or gel state, and then cured by light irradiation and then patterned to form a black mask 311. At that time, the property that liquid or gel-like substance gathers on the steps (recesses and projections) is used. Furthermore, in order to control the thickness of the black mask 311 precisely, it may be formed by vapor deposition.
  • a solution containing a spin-coated resin material gathers in the step. Therefore, if a solution containing a resin material containing carbon black is spin-coated to form the black mask 311, even if there is a step on the substrate, it can be planarized. Therefore, the fourth insulating layer 313 can be formed after reducing the level difference on the second insulating layer 310, so that a sealing film with higher reliability can be formed.
  • the organic EL display device 600 according to the present embodiment as in the organic EL display device 100 according to the first embodiment, the main surface and the end portion of the pixel electrode 305 are formed by the electrostatic droplet discharge method. A structure covered with the first EL common layer 306 is employed. Therefore, the organic EL display device 600 according to the present embodiment also exhibits the same effects as the effects described for the organic EL display device 100 according to the first embodiment.
  • the fourth insulating layer 313 is provided as a sealing film after reducing the level difference on the second insulating layer 310, a more reliable organic EL display device is realized. Can.
  • FIG. 13 is a cross-sectional view showing a schematic configuration of an organic EL display device 700 according to a seventh embodiment of the present invention.
  • the difference between the organic EL display device 700 according to the seventh embodiment and the organic EL display device 100 according to the first embodiment is that the organic EL display device 700 according to the seventh embodiment is the second EL common layer.
  • a point 308 is provided separately for each pixel (as in the fourth embodiment), and a light emitting layer corresponding to each color of RGB is formed on one pixel electrode.
  • the other configuration is the same as that of the organic EL display device 100 according to the first embodiment.
  • a light emitting layer 307R that emits red light, a light emitting layer 307G that emits green light, and a light emitting layer 307B that emits blue light are provided on the pixel electrode 305a.
  • a light emitting layer corresponding to another color may be provided on the pixel electrode 305b.
  • the electrostatic droplet discharge method is used to form the light emitting layer 307, fine coating can be performed with an accuracy of about 0.2 ⁇ m. Therefore, light emitting layers corresponding to different colors can be formed on the same pixel electrode without using a conventional bank structure. Then, the light emitting layer 307R, the light emitting layer 307G, and the light emitting layer 307B on the pixel electrode 305a are simultaneously lighted to function as a pixel that emits white light (W). That is, each light emitting layer 307R, the light emitting layer 307G, and the light emitting layer 307B are functioned as sub-pixels corresponding to respective RGB colors, and white light emission is enabled as a whole pixel.
  • W white light
  • the organic EL display device 700 of this embodiment can realize fine adjustment of color purity and smooth display of an image by providing pixels corresponding to white in addition to pixels corresponding to each color of RGB.
  • FIG. 14 is a plan view showing a schematic configuration of a pixel section in the organic EL display device 700 according to the present embodiment.
  • reference numerals 41 and 44R denote sub-pixels corresponding to R (red)
  • reference numerals 42 and 44G denote sub-pixels corresponding to G (green)
  • reference numerals 43 and 44B denote B (blue). It is a corresponding sub-pixel.
  • reference numerals 44R, 44G and 44B denote the sub-pixels described with reference to FIG. 13, which are formed on the same pixel electrode. These sub-pixels 44R, 44G and 44B can be used to function as sub-pixels corresponding to white (W). Then, it is possible to determine the light emission color of one pixel configured using sub-pixels corresponding to each color of RGBW.
  • FIG. 14B is the same as the arrangement pattern shown in FIG. 14A, except that the arrangement of the sub-pixels 44R, 44G and 44B is different.
  • the sub-pixels 41 to 43 are provided in a stripe shape, and the upper part thereof is divided into sub-pixels 44R, 44G, and 44B. Also in this case, the sub-pixels 44R, 44G, and 44B function as a whole corresponding to W (white).
  • FIG. 14D shows an example in which the sub-pixels 44R, 44G and 44B of the present embodiment are added to an arrangement pattern called a so-called diamond pen tile. Also in this case, the sub-pixels 44R, 44G, and 44B function as a whole corresponding to W (white).
  • the pixel structure of this embodiment is applicable not only to the arrangement pattern shown in FIG. 14 described above, but also to all arrangement patterns using RGBW.
  • the range indicated by the dotted line in FIG. 14A is one pixel 400A, and includes one each of the sub-pixels 41 to 43, 44R, 44G, and 44B.
  • the range indicated by the dotted line in FIG. 14B is one pixel 400B, and includes one each of the sub-pixels 41 to 43, 44R, 44G, and 44B.
  • the range indicated by a dotted line in FIG. 14C is one pixel 400C, and includes one each of the sub-pixels 41 to 43, 44R, 44G, and 44B.
  • the range indicated by a dotted line in FIG. 14D is one pixel 400D, includes two sub-pixels 41 and 43, includes three sub-pixels 42, and includes one each of sub-pixels 44R, 44G, and 44B.
  • light emitting layers corresponding to RGB colors are provided on the same pixel electrode to function as white pixels, but for example, light emitting layers corresponding to RG colors are provided on the same pixel electrode It is also possible to function as a pixel corresponding to yellow). In that case, it is applicable to all arrangement patterns using RGBY. As described above, by separately coating the necessary light emitting layer on the same pixel electrode, it can function as a sub-pixel of a desired light emission color.
  • the film thicknesses of the respective light emitting layers 307R, 307G, and 307B are described as the same film thickness, but the film thickness of at least one layer may be different from the film thickness of the remaining light emitting layers.
  • the film thickness of the light emitting layer 307B corresponding to B thinner than the light emitting layers 307R and 307G corresponding to each color of RG.
  • the control of the film thickness can be easily controlled by the drop amount or the drop count of the droplet by the droplet discharge method.
  • the organic EL display device 700 according to the present embodiment as in the organic EL display device 100 according to the first embodiment, the main surface and the end portion of the pixel electrode 305 are formed by the electrostatic droplet discharge method. A structure covered with the first EL common layer 306 is employed. Therefore, the organic EL display device 700 according to the present embodiment also exhibits the same effects as the effects described for the organic EL display device 100 according to the first embodiment.
  • the light emitting layers corresponding to different light emitting colors are provided on the same pixel electrode, it is possible to form sub pixels corresponding to white without increasing the number of manufacturing steps. As a result, it is possible to realize improvement in luminance and color purity of the organic EL display device and smooth image display without increasing the number of manufacturing processes.
  • FIG. 15 is a cross-sectional view showing a schematic configuration of an organic EL display device 800 according to an eighth embodiment of the present invention.
  • the difference between the organic EL display device 800 according to the eighth embodiment and the organic EL display device 100 according to the first embodiment is that the organic EL display device 800 according to the eighth embodiment is the second EL common layer.
  • the point is that 308 is provided separately for each pixel (as in the fourth embodiment), and the point that the transparent resin material is applied after the second insulating layer 310 is formed.
  • the other configuration is the same as that of the organic EL display device 100 according to the first embodiment.
  • a transparent resin layer for example, a layer composed of an acrylic resin material having translucency
  • a transparent resin layer for example, a layer composed of an acrylic resin material having translucency
  • solution coating method for example, a solution coating method
  • the substrate may be spun to remove the solution.
  • an extremely thin film composed of the absorbed transparent resin material remains on the second insulating layer 310.
  • the layer made of this transparent resin material is formed with a thickness of 10 to 50 nm.
  • the applied solution has the property of collecting on the steps, so the solution containing the transparent resin material applied on the second insulating layer 310 collects on the steps.
  • the level difference in this case may be a level difference caused by the surface of the second insulating layer 310 having a relief, or may be a level difference caused by the presence of foreign matter on the second insulating layer 310.
  • the solution collected on the step remains as it is after the spin process.
  • the second insulating layer 310 has steps (portions surrounded by dotted lines) due to the pixel electrode 305, the EL common layers 306 and 308, and the light emitting layer 307 existing in the lower layer. Because of this, the solution containing the applied transparent resin material collects on such steps. Then, when the transparent resin material is cured by light irradiation or the like as it is, the transparent resin 51 can be selectively left on the step. That is, the step formed in the second insulating layer 310 can be planarized by the transparent resin 51.
  • the fourth insulating layer 313 is formed after the steps generated in the second insulating layer 310 are planarized with the transparent resin 51, pin holes or films are formed in the fourth insulating layer 313. The possibility of peeling can be reduced. In addition, even if pinholes or the like exist in the second insulating layer 310, the fourth insulating layer 313 can cover the same, so that a further sealing effect can be expected. Therefore, it is possible to effectively prevent the entry of moisture and contaminants from the outside, and a highly reliable organic EL display device can be realized.
  • the black mask 311 is formed. Then, by forming the fourth insulating layer 313 over the black mask 311, the black mask 311 can be sandwiched between the second insulating layer 310 and the fourth insulating layer 313.
  • the organic EL display device 800 according to the present embodiment as in the organic EL display device 100 according to the first embodiment, the main surface and the end portion of the pixel electrode 305 are formed by the electrostatic droplet discharge method. A structure covered with the first EL common layer 306 is employed. Therefore, the organic EL display device 800 according to the present embodiment also exhibits the same effects as the effects described for the organic EL display device 100 according to the first embodiment.
  • the black mask 311 remains in the same shape as the transparent resin 51 around the foreign matter 52 in the process of forming the black mask 311. Therefore, it becomes possible to form a highly reliable sealing film without being affected by the foreign matter 52.
  • a mode as shown in FIG. 15A prevents damage or the like from entering the light emitting layer 307 due to pinholes or the like of the second insulating layer 310 in the manufacturing process of the black mask 311. It is effective for
  • the step formed by the second insulating layer 310 or the second insulating layer is formed. It is possible to reduce the level difference caused by the foreign matter present on 310. Then, by forming the fourth insulating layer 313 free from defects such as pinholes, film peeling, and division on the second insulating layer 310, an organic EL display device having a sealing structure with higher reliability is realized. can do.
  • FIG. 17 is a cross-sectional view showing a schematic configuration of an organic EL display device 900 according to a ninth embodiment of the present invention.
  • the difference from the organic EL display device 100 according to the first embodiment is that a moisture blocking structure is provided on the outer side (substrate end side) of the pixel section 102 to prevent the infiltration of moisture from the outside.
  • the other configuration is the same as that of the organic EL display device 100 according to the first embodiment.
  • a water blocking structure 61 and a cathode contact portion 62 are provided outside the pixel portion 102.
  • the moisture blocking structure 61 is a structure provided for the purpose of preventing entry of moisture from the outside. Basically, an opening is provided in part of the first insulating layer 304, and the inside is covered with the second insulating layer 310 and the third insulating layer 312.
  • the conductive layer 63 formed simultaneously with the source / drain electrodes of the thin film transistor 303 is used as an etching stopper when the opening is provided in the first insulating layer 304.
  • the present invention is not limited to this, and a conductive layer formed simultaneously with the gate electrode of the thin film transistor 303 or a semiconductor layer formed simultaneously with the active layer may be used as an etching stopper.
  • the moisture blocking structure 61 By providing the moisture blocking structure 61, the possibility of moisture entering from the outside along the interfaces of the stacked insulating layers and the conductive layer can be significantly reduced, and a highly reliable organic EL display device is realized. can do.
  • the cathode contact portion 62 is a contact portion for electrically connecting the cathode 309 and the wiring 64.
  • the wiring 64 is formed of the same material as the source / drain electrode constituting the thin film transistor 303, and is a wiring for leading a common voltage to be applied to the cathode 309. At the same time, it also has a function as an etching stopper when providing an opening in the first insulating layer 304.
  • the wiring 64 can be formed using the same material as the gate electrode of the thin film transistor 303.
  • the pad electrode 65 formed of the same material as the pixel electrode 305 is formed, and the cathode 309 and the wiring 64 form the pad electrode 65. It has a structure electrically connected to each other. With such a structure, there is an advantage that it is not necessary to remove the conductive layer formed on the wiring 64, and the surface of the wiring 64 need not be roughened more than necessary.
  • the pad electrode 65 may be omitted (that is, the conductive layer formed on the wiring 64 may be removed), and the wiring 64 and the cathode 309 may be directly connected.
  • the cathode contact portion 62 is provided in addition to the moisture blocking structure 61, but the cathode contact portion 62 can be omitted.
  • the organic EL display device 900 has a structure in which a structure (water blocking structure 61) for preventing entry of water from the outside is provided outside the pixel portion. Therefore, in addition to the effect exhibited by the organic EL display device 100 according to the first embodiment, an effect is achieved that an organic EL display device with higher reliability can be realized.
  • a structure water blocking structure 61
  • DESCRIPTION OF SYMBOLS 100 Display device 102 Pixel part 103 Scanning line drive circuit 104 Data line drive circuit 105
  • Driver IC 201 pixel corresponding to 201R R (red) pixel corresponding to 201G G (green) pixel corresponding to 201B B (blue) 202 thin film transistor 301 substrate 302 base layer 303 thin film transistor (TFT) 304 first insulating layer 305 pixel electrode 306 first EL common layer 307 light emitting layer 308 second EL common layer 309 common electrode 310 second insulating layer 311 black mask 312 third insulating layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 隣接画素への光漏れを防止して画素間の混色を防ぐことにより、画質の改善された表示装置を提供することを目的とする。有機EL表示装置は、複数の画素を備えた有機EL表示装置であって、前記複数の画素は、各々発光素子を有し、前記発光素子は、画素電極と、共通電極と、EL共通層と、発光層とを含み、前記EL共通層及び前記発光層は、前記画素電極と前記共通電極との間に設けられ、前記EL共通層は、前記画素電極の主面及び端部を被覆することを特徴とする。前記画素電極の主面が形成する凹部は、前記EL共通層により充填されていても良い。

Description

有機EL表示装置
 本発明は、エレクトロルミネセンス素子等の発光素子で構成される画素を有する表示装置に関する。特に、発光材料として、有機EL材料を用いた有機EL表示装置に関する。
 エレクトロルミネセンス(Electroluminescence:EL)現象を利用した発光素子として、エレクトロルミネセンス(以下「EL」ともいう)素子が知られている。EL素子は、発光層を構成する発光材料の選択により様々な波長の色で発光させることが可能であり、表示装置や照明器具への応用が進められている。特に、発光材料として有機材料を用いた有機EL素子が注目されている。
 有機EL素子を表示装置に応用した有機EL表示装置においては、基板上にマトリクス状に配置した各画素に、発光素子としての有機EL素子と、その有機EL素子の発光制御を行うスイッチング素子とが設けられている。そして、画素ごとにスイッチング素子のオン/オフを制御することにより、表示領域全体として任意の画像を表示することが可能である。
 一般的な有機EL表示装置では、画素電極の周縁に樹脂等の絶縁材料を設け、画素電極を絶縁材料で囲い込むことにより各画素を区画し、その内側に発光素子を形成する手法が採用されている(特許文献1)。
 このような絶縁材料は、一般的には、バンクと呼ばれる。バンクは、画素電極とスイッチング素子を接続するコンタクトホールの平坦化やEL素子を構成する画素電極と共通電極との短絡防止といった役割を果たす。また、印刷法を用いて発光層を形成する場合においては、バンクが印刷領域を制限する壁としての役割を果たす。
特開2012-160388号公報
 しかし、バンクを形成するためには、絶縁材料を成膜した後、フォトリソグラフィを用いて所望のパターン形状とする必要がある。そのため、バンクを形成する際には、絶縁材料の塗布工程、焼成工程、露光工程、現像工程といった複数のプロセスが必要であった。
 また、一般的にバンクの側面形状は、発光層の分断を防ぐためにテーパ形状となっている。そのため、バンクと画素電極とを重ねる距離が、3μm以上となる場合もあり、高精細化を進める上で、開口率向上を阻害する要因でもあった。
 そこで、本発明は、バンクを用いずに、画素電極のコンタクトホールを平坦化することを目的の一つとする。
 また、本発明は、バンクを用いずに、EL素子を構成する画素電極と共通電極との間の短絡を防止することを目的の一つとする。
 本発明の一態様は、複数の画素を備えた有機EL表示装置であって、前記複数の画素は、各々発光素子を有し、前記発光素子は、画素電極と、共通電極と、EL共通層と、発光層とを含み、前記EL共通層及び前記発光層は、前記画素電極と前記共通電極との間に設けられ、前記EL共通層は、前記画素電極の主面及び端部を被覆する有機EL表示装置である。
 本発明の一態様は、複数の画素を備えた有機EL表示装置の製造方法であって、基板上の前記複数の画素に対応する位置に、画素電極を形成する工程と、前記画素電極上に、EL共通層と発光層とを含む積層構造を形成する工程と、前記積層構造上に共通電極を形成する工程と、を有し、前記EL共通層を、前記画素電極の主面及び端部を被覆するように形成する有機EL表示装置の製造方法である。
本発明の第1の実施形態に係る有機EL表示装置の概略構成を示す平面図である。 本発明の第1の実施形態に係る有機EL表示装置における画素部の概略構成を示す平面図である。 本発明の第1の実施形態に係る有機EL表示装置における画素部の概略構成を示す断面図である。 本発明の第1の実施形態に係る有機EL表示装置における画素部の製造方法を示す図である。 本発明の第1の実施形態に係る有機EL表示装置における画素部の製造方法を示す図である。 本発明の第1の実施形態に係る有機EL表示装置における画素部の製造方法を示す図である。 本発明の第1の実施形態に係る有機EL表示装置における画素部の製造方法を示す図である。 本発明の第2の実施形態に係る有機EL表示装置における画素部の概略構成を示す断面図である。 本発明の第3の実施形態に係る有機EL表示装置における画素部の概略構成を示す断面図である。 本発明の第4の実施形態に係る有機EL表示装置における画素部の概略構成を示す断面図である。 本発明の第5の実施形態に係る有機EL表示装置における画素部の概略構成を示す断面図である。 本発明の第6の実施形態に係る有機EL表示装置における画素部の概略構成を示す断面図である。 本発明の第7の実施形態に係る有機EL表示装置における画素部の概略構成を示す断面図である。 本発明の第7の実施形態に係る有機EL表示装置における画素部の概略構成を示す平面図である。 本発明の第8の実施形態に係る有機EL表示装置における画素部の概略構成を示す断面図である。 本発明の第8の実施形態に係る有機EL表示装置における画素(異物周辺)の概略構成を示す断面図である。 本発明の第9の実施形態に係る有機EL表示装置における画素部の外側における概略構成を示す断面図である。
 以下、本発明の各実施の形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。
 また、図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、すでに説明した図面中の要素と同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。
(第1の実施形態)
<表示装置の構造>
 図1は、本発明の第1の実施形態に係る有機EL表示装置100の概略構成を示す上面図である。有機EL表示装置100は、基板101上に形成された、画素部(表示領域)102、走査線駆動回路103、データ線駆動回路104、及びドライバIC105を備えている。さらに、走査線駆動回路103及びデータ線駆動回路104に信号を与えるためのFPC(Flexible Printed Circuits)を備えていてもよい。
 図1に示す画素部102には、複数の画素がマトリクス状に配置される。各画素には、データ線駆動回路104から画像データに応じたデータ信号が与えられる。それらデータ信号を、各画素に設けられたトランジスタを介して画素電極に与えることにより、画像データに応じた画面表示を行うことができる。トランジスタとしては、典型的には、薄膜トランジスタ(Thin Film Transistor)を用いることができる。但し、薄膜トランジスタに限らず、電流制御機能を備える素子であれば、如何なる素子を用いても良い。
 図2は、図1に示す有機EL表示装置100における画素部102の概略構成を示す断面図である。本実施形態において、画素201は、赤(R)に対応するサブ画素201R、緑(G)に対応するサブ画素201G及び青(B)に対応するサブ画素201Bを含む。各サブ画素には、薄膜トランジスタ202が設けられる。薄膜トランジスタ202を用いて各サブ画素201R、201G及び201Bをオン/オフ制御することにより、各サブ画素に対応する任意の色を発光させ、1つの画素として様々な色を表現できる。
 図2では、サブ画素として、RGBの三原色を用いる構成を示したが、本実施形態はそれに限定されるものではなく、RGBに白(W)又は黄(Y)を加えた4つのサブ画素で画素201を構成することもできる。また、画素配列として、同一色に対応する画素がストライプ配列された例を示したが、その他デルタ配列やベイヤー配列、又はペンタイル構造を実現する配列であってもよい。
 図3は、図2に示す画素201をA-A’で切断した断面の概略構成を示す断面図である。図3において、基板301上には、下地層302として、酸化シリコン、窒化シリコン、酸化アルミニウム等の無機材料で構成される絶縁層が設けられ、その上に薄膜トランジスタ303が形成されている。
 基板301としては、ガラス基板、石英基板、フレキシブル基板(ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレートその他の曲げることが可能な基板)を用いることができる。基板301が透光性を有する必要がない場合には、金属基板、セラミックス基板、半導体基板を用いることも可能である。
 薄膜トランジスタ303は、公知の方法で形成すればよい。また、トップゲート型であってもボトムゲート型であってもよい。本実施形態の有機EL表示装置100では、薄膜トランジスタ303を覆うように第1の絶縁層304を設け、薄膜トランジスタ303に起因する凹凸を平坦化する構造としている。第1の絶縁層304としては、樹脂材料を用いることが好ましい。例えば、ポリイミド、ポリアミド、アクリル等の有機材料を用いることができる。有機材料に代えて、酸化シリコン等の無機材料を用いることも可能である。さらに、下層側が酸化シリコンや窒化シリコン等の絶縁無機材料、上層側がポリイミド、ポリアミド、アクリル等の絶縁有機材料の2層で構成された積層膜を第1の絶縁層304に適用しても良い。
 第1の絶縁層304上には、画素電極305が設けられる。画素電極305は、第1の絶縁層304に形成されたコンタクトホールを介して薄膜トランジスタ303に接続されている。本実施形態の有機EL表示装置100において、画素電極305は、有機EL素子を構成する陽極(アノード)として機能する。
 画素電極305は、有機EL素子から発した光を上方向(第1の絶縁層304を通過しない方向)に出射するか、下方向(第1の絶縁層304を通過する方向)に出射するかで異なる構成とする。例えば、光を上方向に出射する場合、画素電極305として反射率の高い金属膜を用いるか、酸化インジウム系透明導電膜や酸化亜鉛系透明導電膜といった仕事関数の高い透明導電膜と金属膜との積層構造を用いれば良い。逆に、光を下方向に出射する場合、画素電極305として上述した透明導電膜を単層で用いれば良い。
 画素電極305の上には、第1のEL共通層306が設けられる。第1のEL共通層306は、画素電極305から後述する発光層307への正孔(ホール)の移動を補助する機能を有する機能層である。具体的には、公知の正孔注入層、正孔輸送層またはそれらの積層構造を用いることができる。例えば、正孔注入層としては、芳香族アミン誘導体、ポリアニリン誘導体、ポリチオフェン誘導体、フェニルアミン誘導体などが知られている。正孔輸送層としては、PEDOT/PSSなどが知られている。
 本実施形態の有機EL表示装置100は、この第1のEL共通層306が、画素電極305の主面及び端部を被覆するように設けられている。「画素電極の主面」とは、画素電極において発光層と向かい合う面を指す。「画素電極の端部」とは、画素電極を平面視した場合における縁(エッジ)を指す。本実施形態の有機EL表示装置100では、図3に示されるように、画素電極305の露出部分全体を覆うように、第1のEL共通層306が設けられる。
 このとき、画素電極305の端部が十分な膜厚の第1のEL共通層306で被覆される。これにより、画素電極305と後述する共通電極309との短絡(ショート)を防止することができる。
 さらに、画素電極305と薄膜トランジスタ303とを接続するためのコンタクトホールに起因する凹部を、第1のEL共通層306で充填することも可能である。したがって、第1のEL共通層306により、画素電極305の主面が形成する凹部を平坦化することができる。この凹部を平坦化することで、その上に配置される発光層307や第2のEL共通層308の形状が平坦化され、画素電極305と共通電極309との間におけるリークや短絡の発生を抑えることができる。
 なお、後述するが、本実施形態では、第1のEL共通層306を静電方式の液滴吐出法(例えばインクジェット法)を用いて形成する。
 第1のEL共通層306の上には、発光層307が設けられる。発光層307は、正孔と電子とが再結合する際のエネルギーにより光を発する機能層である。発光層307として公知の有機性発光材料を用いることができる。例えば、ポリフェニレン誘導体、ポリフルオレン誘導体、パラフェニレンビニレン誘導体、ポリチオフェン誘導体などが知られている。また、これら有機性発光材料をRGBの各色に発光させるため、適当な材料を添加しても良い。例えば、DCM、ローダミン、ナイルレッド等の赤色用材料、クマリン、キナクリドン等の緑色用材料又はペリレン、テトラフェニルブタジエン等の青色用材料を添加しても良い。
 本実施形態の有機EL表示装置100では、従来のバンク構造を採用していないため、画素電極305の面積を十分に有効活用して、有機EL素子を形成することができる。例えば、画素電極305と発光層307とがほぼ全域で重なるように両者を配置することにより、画素電極305全体を有機EL素子の陽極として活用することができる。
 但し、画素電極305の端部は、電界乱れが生じやすく、第1のEL共通層306や発光層307の膜厚が不均一になりやすい。そのため、発光層307の端部が、画素電極305の端部から内側に0.5~1.5μmの範囲に位置するように制御することが好ましい。本実施形態では、第1のEL共通層306と同様に、発光層307も静電方式の液滴吐出法で形成するため、精度の高い位置制御が可能である。勿論、発光層307の端部が画素電極305の端部より外側に位置するように制御しても構わない。
 発光層307の上には、第2のEL共通層308が設けられる。第2のEL共通層308は、隣接する共通電極309から発光層307への電子の移動を補助する機能を有する機能層である。具体的には、公知の電子注入層、電子輸送層またはそれらの積層構造を用いることができる。例えば、電子注入層としては、LiF等の金属フッ化物が知られている。電子輸送層としては、トリアジン誘導体などが知られている。
 本実施形態の有機EL表示装置100では、第2のEL共通層308を複数の画素に跨って設けているが、画素単位に分離させても良い。また、第2のEL共通層308を省略した構造とすることも可能である。
 第2のEL共通層308の上には、共通電極309が設けられる。本実施形態の有機EL表示装置100において、共通電極309は、有機EL素子を構成する陰極(カソード)として機能する。
 共通電極309は、有機EL素子から発した光を上方向(絶縁層304を通過しない方向)に出射するか、下方向(絶縁層304を通過する方向)に出射するかで異なる構成とする。例えば、光を上方向に出射する場合、共通電極309として酸化インジウム系透明導電膜や酸化亜鉛系透明導電膜を用いれば良い。それ以外にも光が透過される程度の厚みである5~30nm程度のMgAg合金等の仕事関数の低い金属膜を用いてもよい。逆に、光を下方向に出射する場合、共通電極309として、光が反射される程度の厚み(上述した厚みの10倍程度である50~300nm程度)を持つMgAg合金等の仕事関数の低い金属膜を用いれば良い。
 共通電極309の上には、第2の絶縁層310が設けられる。第2の絶縁層310は、外部からの水分や汚染物質の侵入を防ぐための封止膜として機能する。第2の絶縁層310としては、緻密な膜質を有する窒化シリコン系もしくは酸化アルミニウム系の絶縁層を用いることが好ましい。
 第2の絶縁層310の上には、ブラックマスク311が設けられる。本実施形態の有機EL表示装置100では、ブラックマスク311として、黒色顔料(例えばカーボンブラック)を分散させた樹脂層を用いる。ただし、これに限らず、遮光層としての機能を果たすものであれば、導電層をブラックマスク311として設けても良い。
 ブラックマスク311の上には、第3の絶縁層312が設けられる。第3の絶縁層312は、基板301上に形成された有機EL素子やその他の各要素を保護するための保護層として機能する。例えば、第3の絶縁層312としては、ポリイミド、アクリル等の樹脂材料で構成される樹脂層を設けても良い。また、窒化シリコン層、酸化シリコン層などの無機材料で構成される絶縁層を設けても良い。
 図3においては図示しないが、第3の絶縁層312の上に、さらに偏光板やタッチパネルを設けても良い。その場合、第3の絶縁層312は、有機EL素子やその他の各要素を、機械的な外因(例えば、タッチパネルを押した際の圧力)等から保護する機能をも持つ。また、必要に応じて、第3の絶縁層312上にカラーフィルタを設けても良い。
 以上のように、本実施形態の有機EL表示装置100は、画素電極305の主面及び端部を、十分な膜厚の第1のEL共通層306で被覆した構造としている。これにより、バンクを用いずに、画素電極305の端部を第1のEL共通層306で被覆することが可能となり、EL素子を構成する画素電極と共通電極との間の短絡を防止することができる。
 さらに、画素電極305のコンタクトホールに起因する凹部を第1のEL共通層306で充填することができるため、バンクを用いずに、画素電極305のコンタクトホールを平坦化することができる。
 以下、上述した構成を備える本実施形態の有機EL表示装置100の製造工程について、図4~7を参照して説明する。
<表示装置の製造方法>
 まず、図4(A)に示すように、基板301上に下地層302を形成し、その上に公知の方法により薄膜トランジスタ(TFT)303を形成する。そして、薄膜トランジスタ303の形成により生じた起伏を平坦化するように、第1の絶縁層304を形成する。
 基板301としては、ガラス基板、石英基板、フレキシブル基板(ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレートその他の曲げることが可能な基板)等を用いることができる。基板301が透光性を有する必要がない場合には、金属基板、セラミックス基板、半導体基板を用いることも可能である。
 下地層302としては、典型的には、酸化シリコン系絶縁膜、窒化シリコン系絶縁膜またはそれらの積層膜を用いることができる。下地層302は、基板301からの汚染物質の侵入を防いだり、基板301の伸縮により発生する応力を緩和したりする機能を有する。
 薄膜トランジスタ303は、本実施形態では、トップゲート型TFTを形成する例を示しているが、逆スタガ型TFTであっても良い。また、スイッチング素子として機能する素子であれば、薄膜トランジスタなどの三端子素子に限らず、二端子素子を形成しても良い。
 第1の絶縁層304は、ポリイミドやアクリルといった樹脂材料を塗布し、その後樹脂材料を硬化させて形成すれば良い。第1の絶縁層304の膜厚は、薄膜トランジスタ303に起因する起伏を平坦化するに十分な膜厚であれば良い。典型的には、1~3μmとすることができるが、これに限定されるものではない。
 次に、図4(B)に示すように、第1の絶縁層304に薄膜トランジスタ303に達するコンタクトホールを形成した後、公知の方法により画素電極305を形成する。本実施形態では、公知のスパッタ法によりITO(Indium Tin Oxide)とアルミニウム膜との積層膜を形成した後、公知のフォトリソグラフィにより積層膜をパターニングして画素電極305を形成する。各画素電極305は、複数の画素に対応する位置にそれぞれ対応するようにパターニングされる。
 次に、図5(A)に示すように、第1のEL共通層306を形成する。本実施形態では、第1のEL共通層306として、正孔注入層及び正孔輸送層を積層した機能層を形成する。第1のEL共通層306を構成する具体的な材料については、上述した通りである。それぞれの機能層の膜厚は、各層が正孔注入層や正孔輸送層としての機能を発揮する範囲で適宜決定すれば良い。
 本実施形態では、第1のEL共通層306の形成に、静電方式の液滴吐出法を用いる。液滴吐出法としては、代表的にはインクジェット法が知られる。静電方式の液滴吐出法は、必要な材料を溶媒に分散させた状態で基板上に滴下し、局所的に必要とする薄膜を形成する手法である。この手法によれば、精度の高い位置合わせを行うことにより局所的な薄膜形成が可能となり、フォトリソグラフィを用いることなく、微細な成膜加工が可能となる。
 本実施形態で使用する静電方式の液滴吐出法は、ノズルから非常に微細な液滴を吐出することが可能である。典型的には、0.1fl(フェムトリットル)から1.0pl(ピコリットル)の範囲の液滴を約0.2μmの位置合わせ精度で制御して吐出可能である。静電方式の液滴吐出法は公知技術である。本実施形態では、液滴吐出用のノズルを複数設けることにより一度に多くの画素に対して液滴を吐出可能とした液滴吐出装置を用いる。
 静電方式の液滴吐出法を用いた場合、吐出される液滴が極めて微細なものとなる。したがって、本実施形態のように、第1のEL共通層306を構成する有機材料を有機溶媒に分散させて吐出した場合、液滴が画素電極305に到達する前に溶媒のみがほとんど蒸発する。つまり、第1のEL共通層306を構成する有機材料が、実質的に固体材料となった状態で画素電極305に付着する。そのため、従来のバンクのような壁を設けなくても、狙った位置のみに選択的に第1のEL共通層306を形成することが可能である。
 具体的には、本実施形態では、第1のEL共通層306を構成する有機材料を溶媒に分散させ、その液滴を静電方式の液滴吐出法を用いて画素電極305の主面及び端部に対して滴下することにより第1のEL共通層306を形成する。その際、第1のEL共通層306の膜厚は、液滴の滴下量や滴下回数で容易に制御することができる。そのため、局所的な膜厚制御を容易に行うことが可能である。
 したがって、滴下量もしくは滴下回数を選択的に増加させることにより、画素電極305の端部における膜厚を所望の十分な膜厚とすることができる。これにより、バンクのような要素を別途設けることなく、第1のEL共通層306を用いて画素電極305と共通電極309との間の短絡を防ぐことができる。
 また、画素電極305には、画素電極305と薄膜トランジスタ303とを接続するためのコンタクトホールに起因する凹部が存在する。しかし、本実施形態では、凹部に集中的に液滴を吐出して、凹部を第1のEL共通層306で充填することが可能である。これにより、第1のEL共通層306を用いて画素電極305の主面が形成する凹部を平坦化することが可能である。
 さらに、本実施形態では、液滴吐出法を用いることにより従来のバンク構造を不要としたため、バンクの形成に必要な各種プロセス(樹脂の塗布工程、硬化工程、パターニング工程)を省略することができる。その上、EL共通層を形成した後の溶媒を揮発させるための焼成工程をも省略することができる。これらの結果、有機EL表示装置の製造工程を大幅に削減することが可能である。
 次に、図5(B)に示すように、第1のEL共通層306の上に発光層307を形成する。本実施形態では、発光層307の形成にも上述した静電方式の液滴吐出法を用いる。これにより、バンクを形成することなく、所望の位置に選択的に発光層307を形成することが可能である。しかし、蒸着マスクを精度よく位置合わせすることができれば公知の蒸着法を用いて形成しても良い。発光層307を構成する具体的な有機材料については、上述した通りである。
 次に、図6(A)に示すように、複数の画素に跨って第2のEL共通層308を形成する。本実施形態では、第2のEL共通層308として、電子注入層及び電子輸送層を積層した機能層を形成する。第2のEL共通層308を構成する具体的な材料については、上述した通りである。それぞれの機能層の膜厚は、各層が電子注入層や電子輸送層としての機能を発揮する範囲で適宜決定すれば良い。
 本実施形態では、第2のEL共通層308の形成にも上述した静電方式の液滴吐出法を用いる。これにより、第1のEL共通層306及び発光層307を完全に覆うように第2のEL共通層308を形成した際、各層の端部において十分な膜厚を確保することができる。なお、スループットの向上を優先した場合、第2のEL共通層308を公知の蒸着法により形成しても良い。また、第2のEL共通層308を省略しても良い。
 次に、図6(B)に示すように、有機EL素子の陰極として機能する共通電極309と、封止膜としての第2の絶縁層310を形成する。共通電極309や第2の絶縁層310を構成する具体的な材料については、上述した通りである。
 本実施形態では、公知のスパッタ法を用いて共通電極309と第2の絶縁層310とを大気開放せずに連続形成する。共通電極309に使用する金属は、MgAg合金等の仕事関数の低い金属であるが、これらの金属は酸化し易いという特長を有する。したがって、共通電極309を形成したら、そのまま酸素に触れさせることなく第2の絶縁層310を形成することが望ましい。
 次に、図7(A)に示すように、薄膜トランジスタ303の上方にブラックマスク311を形成する。本実施形態では、カーボンブラックを含有した樹脂材料を用いてブラックマスク311を形成する。具体的には、カーボンブラックを含有した樹脂材料を溶媒に分散させ、上述した静電方式の液滴吐出法を用いて薄膜トランジスタ303の上方に選択的に形成する。これにより、ブラックマスク311を形成するに当たり、従来のように樹脂材料の塗布工程、硬化工程、パターニング工程が不要となるため、有機EL表示装置の製造工程の簡略化が可能である。
 勿論、公知の方法でブラックマスクを形成しても構わない。例えば、クロム等の金属膜をパターン化したり、カーボンブラックを含有した樹脂層をパターン化したりしてブラックマスク311を形成しても良い。
 次に、図7(B)に示すように、保護層として第3の絶縁層312を形成する。本実施形態では、第3の絶縁層312として、ポリイミドやアクリル等の樹脂層を印刷法により形成する。印刷法を用いることにより、選択的に樹脂層を形成することが可能であるため、有機EL表示装置の周辺部分にある外部取り出し端子群を避けて第3の絶縁層312を形成することが可能である。
 以上のようにして、図3を用いて説明した第1実施形態に係る有機EL表示装置100が完成する。本実施形態によれば、第1のEL共通層306を静電方式の液滴吐出法により形成するため、バンク構造を採用しなくても、画素電極305の端部を十分な膜厚で被覆することができる。その結果、画素電極305の端部において、画素電極305と共通電極309との間の短絡を防止することができる。
 また、液滴の滴下量や滴下回数を制御することにより、選択的に集中して第1のEL共通層306を構成する有機材料を塗布することができる。そのため、画素電極305の主面に形成される凹部を第1のEL共通層306を構成する有機材料で充填して平坦化することも可能である。
(第2の実施形態)
 図8は、本発明の第2の実施形態に係る有機EL表示装置200の概略構成を示す断面図である。第2の実施形態に係る有機EL表示装置200と第1の実施形態に係る有機EL表示装置100との違いは、第2の実施形態に係る有機EL表示装置200は、ブラックマスク311が、共通電極309と第2の絶縁層310との間に設けられている点である。その他の構成は、第1の実施形態に係る有機EL表示装置100と同じである。
 本実施形態の場合、共通電極309を形成した後、窒素雰囲気中にて静電方式の液滴吐出法によりブラックマスク311を形成する。そして、窒素雰囲気を保ったまま基板をスパッタ装置に搬入し、第2の絶縁層310を形成する。
 本実施形態に係る有機EL表示装置200においても、第1の実施形態に係る有機EL表示装置100と同様に、画素電極305の主面及び端部を静電方式の液滴吐出法により形成した第1のEL共通層306で被覆した構造としている。したがって、本実施形態に係る有機EL表示装置200も、第1の実施形態に係る有機EL表示装置100について説明した効果と同様の効果を奏する。ブラックマスク311と発光層307との間の距離が第1の実施形態に比べて短いので、隣接画素への漏れ光がより少なくなる。
(第3の実施形態)
 図9は、本発明の第3の実施形態に係る有機EL表示装置300の概略構成を示す断面図である。第3の実施形態に係る有機EL表示装置300と第1の実施形態に係る有機EL表示装置100との違いは、第3の実施形態に係る有機EL表示装置300は、ブラックマスク311が、第2のEL共通層308と共通電極309との間に設けられている点である。その他の構成は、第1の実施形態に係る有機EL表示装置100と同じである。
 本実施形態では、第2のEL共通層308に接するように、静電方式の液滴吐出法によりブラックマスク311を形成する。そのため、液滴吐出法に用いる溶媒(カーボンブラックを含有した樹脂材料を分散させる溶媒)としては、第2のEL共通層308に対して影響を与えない溶媒(例えばフルオロエーテル等のフルオロカーボン系の溶媒)を用いることが好ましい。
 また、第2のEL共通層308が存在しない場合は、第1のEL共通層306や発光層307に接するようにブラックマスク311が形成される。この場合も、第1のEL共通層306や発光層307に影響を与えない溶媒(例えばフルオロエーテル等のフルオロカーボン系の溶媒)を用いることが好ましい。
 本実施形態に係る有機EL表示装置300においても、第1の実施形態に係る有機EL表示装置100と同様に、画素電極305の主面及び端部を静電方式の液滴吐出法により形成した第1のEL共通層306で被覆した構造としている。したがって、本実施形態に係る有機EL表示装置300も、第1の実施形態に係る有機EL表示装置100について説明した効果と同様の効果を奏する。
 また、電界乱れが生じやすく、第1のEL共通層306や発光層307の膜厚が不均一になりやすい画素電極の端部上にブラックマスク311を設けることになるため、画素電極305と共通電極309との間の短絡をより効果的に防止することが可能である。このような効果を持たせるには、ブラックマスク311として絶縁性の高いものを用いることが好ましい。さらに、本実施形態に係る有機EL表示装置300の場合、ブラックマスク311が第1の実施形態のものと比べて発光層307に近いので、より光学的な隣接画素への漏れ光が少なくなる。
(第4の実施形態)
 図10は、本発明の第4の実施形態に係る有機EL表示装置400の概略構成を示す断面図である。第4の実施形態に係る有機EL表示装置400と第1の実施形態に係る有機EL表示装置100との違いは、第4の実施形態に係る有機EL表示装置400は、第2のEL共通層308が、第1のEL共通層306や発光層307と同様に、画素ごとに分離して設けられている点である。その他の構成は、第1の実施形態に係る有機EL表示装置100と同じである。
 なお、図10において、薄膜トランジスタ303の一部を構成する電極(例えばドレイン電極)11の上には、コンタクトホールを介して画素電極305が形成されている。そして、画素電極305の主面に形成される凹部(コンタクトホールに起因する凹部)には、第1のEL共通層306が充填されている。この構造は、第4の実施形態に限るものではなく、上述した第1~第3の実施形態においても共通であるし、後述する各実施形態においても共通である。
 本実施形態では、静電方式の液滴吐出法を用いることにより、第2のEL共通層308を画素ごとに選択的に形成する。具体的には、図10に示すように、第2のEL共通層308は、第1のEL共通層306の端部を被覆するように形成され、かつ、複数の画素間において分離している。換言すれば、第1のEL共通層306、発光層307及び第2のEL共通層308などの有機材料で構成される各層が複数の画素に跨って形成されない構造となる。その結果、複数の画素間において、有機材料で構成される各層を介したキャリア移動が発生せず、各画素間を流れるリーク電流をより低減することが可能である。
 なお、各画素の間に第1のEL共通層306、発光層307及び第2のEL共通層308などの有機材料で構成される各層が存在しないため、共通電極309と第1の絶縁層304とが接する構造となる。これも本実施形態に係る有機EL表示装置400における構造上の特徴である。
 また、第2のEL共通層308が、第1のEL共通層306の端部を被覆する構造となるため、画素電極305を基準としてみると、画素電極305の端部、第1のEL共通層306の端部、第2のEL共通層308の端部の順に、各端部が外側(隣接する画素に向かう側)に向かって位置する構造となる。平面視においては、発光層307にオーバーラップし、発光層307よりも外形が大きくなるように画素電極305が配置され、画素電極305にオーバーラップし、画素電極305よりも外形が大きくなるように第1のEL共通層306が配置され、第1のEL共通層306にオーバーラップし、第1のEL共通層306よりも外形が大きくなるように第2のEL共通層308が配置される形となる。これも本実施形態に係る有機EL表示装置400における構造上の特徴と言える。
 また、コンタクトホール上には発光層307が形成されない形となっている。これは発光層307がコンタクトホール直上にあった場合、第1のEL共通層306の厚みが他の箇所とは異なり、通常とは異なる発光が発光層307で発生して制御が困難となるからである。
 本実施形態に係る有機EL表示装置400においても、第1の実施形態に係る有機EL表示装置100と同様に、画素電極305の主面及び端部を静電方式の液滴吐出法により形成した第1のEL共通層306で被覆した構造としている。したがって、本実施形態に係る有機EL表示装置400も、第1の実施形態に係る有機EL表示装置100について説明した効果と同様の効果を奏する。
 さらに、上述したように、画素ごとにEL共通層や発光層を設けて、画素間に跨ってEL共通層や発光層が存在しない構成とすることにより、各画素間におけるキャリア移動によるリーク電流を低減することができる。
(第5の実施形態)
 図11は、本発明の第5の実施形態に係る有機EL表示装置500の概略構成を示す断面図である。第5の実施形態に係る有機EL表示装置500と第1の実施形態に係る有機EL表示装置100との違いは、第5の実施形態に係る有機EL表示装置500は、第2のEL共通層308が画素ごとに分離して設けられている点(第4の実施形態と同様)と、画素電極305の端部において局所的に第1のEL共通層306の膜厚が厚く形成されている点である。その他の構成は、第1の実施形態に係る有機EL表示装置100と同じである。
 本実施形態の有機EL表示装置500においては、点線で囲まれた枠21に示されるように、第1のEL共通層306の膜厚が画素電極305の端部において局所的に厚くなっている。これにより、画素電極305の端部における画素電極305と共通電極309との間の短絡をより効果的に防止することが可能である。
 本実施形態では、第1のEL共通層306を静電方式の液滴吐出法により形成するため、膜厚の制御が容易である。したがって、本実施形態では、画素電極305の端部において、第1のEL共通層306を構成する有機材料を集中的に付着させることにより、画素電極305の端部だけ局所的に膜厚を他の部分よりも厚くしている。そのためには、液滴の滴下量もしくは滴下回数を、画素電極305の端部において増加させれば良い。
 本実施形態に係る有機EL表示装置500においても、第1の実施形態に係る有機EL表示装置100と同様に、画素電極305の主面及び端部を静電方式の液滴吐出法により形成した第1のEL共通層306で被覆した構造としている。したがって、本実施形態に係る有機EL表示装置500も、第1の実施形態に係る有機EL表示装置100について説明した効果と同様の効果を奏する。
 さらに、上述したように、画素電極305の端部において、第1のEL共通層306の膜厚を局所的に他の部分よりも厚くしているため、画素電極305と共通電極309との間の短絡をより効果的に防止することができる。
(第6の実施形態)
 図12は、本発明の第6の実施形態に係る有機EL表示装置600の概略構成を示す断面図である。第6の実施形態に係る有機EL表示装置600と第1の実施形態に係る有機EL表示装置100との違いは、第6の実施形態に係る有機EL表示装置600は、第2のEL共通層308が画素ごとに分離して設けられている点(第4の実施形態と同様)と、ブラックマスク311が第2の絶縁層310と第4の絶縁層313とで挟まれている点である。その他の構成は、第1の実施形態に係る有機EL表示装置100と同じである。
 本実施形態では、第1の実施形態と同様の製造方法によりブラックマスク311まで形成した後、さらに第4の絶縁層313をスパッタ法等により形成する。その結果、本実施形態の有機EL表示装置600は、ブラックマスク311が、第2の絶縁層310と第4の絶縁層313とで挟まれた構造となる。これにより、第2の絶縁層310上に異物等が存在していた場合であっても、その影響を低減した状態で第4の絶縁層313を形成することができる。そのため、第2の絶縁層310及び第4の絶縁層313における封止膜としての機能をより高めることができ、信頼性の高い有機EL表示装置を実現することができる。
 本実施形態では、ブラックマスク311をスピンコーティング法により形成する。すなわち、カーボンブラックを含有した樹脂材料を液状もしくはゲル状の状態でスピンコーティング法により塗布し、その後、光照射により硬化させてからパターニングしてブラックマスク311を形成する。その際、液状もしくはゲル状の物質が段差(凹部や凸部)に集まる特性を利用する。さらにブラックマスク311の厚さを精密に制御したい場合は、蒸着法により形成すればよい。
 例えば、第2の絶縁層310に生じる段差(例えば、画素電極や発光層に起因する段差)や異物による段差が存在する場合、スピンコーティングされた樹脂材料を含む溶液は、それらの段差に集まる。そのため、ブラックマスク311を形成するためにカーボンブラックを含有した樹脂材料を含む溶液をスピンコーティングすると、基板上に段差が存在したとしても平坦化することができる。したがって、第2の絶縁層310上の段差を軽減した上で第4の絶縁層313を形成することができるため、より信頼性の高い封止膜を形成することができる。
 本実施形態に係る有機EL表示装置600においても、第1の実施形態に係る有機EL表示装置100と同様に、画素電極305の主面及び端部を静電方式の液滴吐出法により形成した第1のEL共通層306で被覆した構造としている。したがって、本実施形態に係る有機EL表示装置600も、第1の実施形態に係る有機EL表示装置100について説明した効果と同様の効果を奏する。
 さらに、上述したように、第2の絶縁層310上の段差を軽減した上で第4の絶縁層313を封止膜として設けているため、より信頼性の高い有機EL表示装置を実現することができる。
(第7の実施形態)
 図13は、本発明の第7の実施形態に係る有機EL表示装置700の概略構成を示す断面図である。第7の実施形態に係る有機EL表示装置700と第1の実施形態に係る有機EL表示装置100との違いは、第7の実施形態に係る有機EL表示装置700は、第2のEL共通層308が画素ごとに分離して設けられている点(第4の実施形態と同様)と、1つの画素電極上にRGB各色に対応する発光層が形成されている点である。その他の構成は、第1の実施形態に係る有機EL表示装置100と同じである。
 図13において、画素電極305aの上には、赤色に発光する発光層307R、緑色に発光する発光層307G及び青色に発光する発光層307Bが設けられている。なお、画素電極305bの上には、緑色に発光する発光層307Gのみが設けられているが、他の色に対応する発光層であっても良い。
 本実施形態では、発光層307の形成に静電方式の液滴吐出法を用いるため、約0.2μmの精度で微細な塗り分けが可能である。したがって、従来のようなバンク構造を用いることなく、同一の画素電極上にそれぞれ異なる色に対応する発光層を形成することができる。そして、画素電極305a上の発光層307R、発光層307G及び発光層307Bを同時に点灯することにより、白色(W)に発光する画素として機能させることができる。すなわち、各発光層307R、発光層307G及び発光層307Bを、それぞれRGB各色に対応するサブ画素として機能させ、画素全体として白色発光を可能としている。
 本実施形態の有機EL表示装置700は、RGB各色に対応する画素に加えて、白色に対応する画素を設けることにより、色純度の微調整や画像の滑らかな表示を実現することができる。
 各画素の配列は様々なパターンを取り得る。各画素の配列パターンについて図14を用いて説明する。図14は、本実施形態に係る有機EL表示装置700における画素部の概略構成を示す平面図である。
 図14(A)において、符号41と44Rは、R(赤)に対応するサブ画素、符号42と44Gは、G(緑)に対応するサブ画素、符号43と44Bは、B(青)に対応するサブ画素である。この場合、符号44R、44G及び44Bは、図13を用いて説明したサブ画素であり、同一の画素電極上に形成されている。これらのサブ画素44R、44G及び44Bを用いて白(W)に対応するサブ画素として機能させることができる。そして、RGBWの各色に対応するサブ画素を用いて構成される1つの画素の発光色を決定することができる。
 図14(B)は、サブ画素44R、44G及び44Bの配置が異なるだけで、基本的な構成は図14(A)に示した配列パターンと同様である。
 図14(C)は、サブ画素41~43をストライプ形状に設け、その上側部分を区切ってサブ画素44R、44G及び44Bとしたものである。この場合もサブ画素44R、44G及び44Bが、全体として、W(白)に対応するサブ画素として機能する。
 図14(D)は、いわゆるダイヤモンドペンタイルと呼ばれる配列パターンに、本実施形態のサブ画素44R、44G及び44Bを追加した例である。この場合もサブ画素44R、44G及び44Bが、全体として、W(白)に対応するサブ画素として機能する。
 本実施形態の画素構造は、上述した図14に示す配列パターンに限らず、RGBWを用いるすべての配列パターンに対して適用可能である。尚、図14(A)で点線にて示した範囲が1つの画素400Aで、サブ画素41~43、44R、44G、44Bそれぞれ1つを含む。同じく図14(B)で点線にて示した範囲が1つの画素400Bで、サブ画素41~43、44R、44G、44Bそれぞれ1つを含む。図14(C)で点線にて示した範囲が1つの画素400Cで、サブ画素41~43、44R、44G、44Bそれぞれ1つを含む。図14(D)で点線にて示した範囲が1つの画素400Dで、サブ画素41、43を2つ含み、サブ画素42を3つ含み、サブ画素44R、44G、44Bそれぞれ1つを含む。
 また、本実施形態では、同一の画素電極上にRGB各色に対応する発光層を設けて白画素として機能させたが、例えば同一の画素電極上にRG各色に対応する発光層を設けてY(黄)に対応する画素として機能させることも可能である。その場合、RGBYを用いるすべての配列パターンに対して適用可能である。このように、同一の画素電極上に必要な発光層を塗り分けることにより、所望の発光色のサブ画素として機能させることができる。
 さらに、図13においては、各発光層307R、307G及び307Bの膜厚を同じ膜厚で記載しているが、少なくとも1層の膜厚が残りの発光層の膜厚と異なっていても良い。例えば、RG各色に対応する発光層307R及び307Gよりも、Bに対応する発光層307Bの膜厚を薄くすることも可能である。膜厚の制御は、上述した通り、液滴吐出法による液滴の滴下量もしくは滴下回数で容易に制御することができる。
 このように、画素内もしくは画素間で任意に各発光層307R、307G及び307Bの膜厚を制御することにより、マイクロキャビティ効果が得られるように調整し、有機EL表示装置の輝度と色純度とを向上させることが可能である。
 本実施形態に係る有機EL表示装置700においても、第1の実施形態に係る有機EL表示装置100と同様に、画素電極305の主面及び端部を静電方式の液滴吐出法により形成した第1のEL共通層306で被覆した構造としている。したがって、本実施形態に係る有機EL表示装置700も、第1の実施形態に係る有機EL表示装置100について説明した効果と同様の効果を奏する。
 さらに、上述したように、同一の画素電極上にそれぞれ異なる発光色に対応する発光層を設けているため、製造工程を増やすことなく、白色に対応するサブ画素を形成することができる。これにより、製造工程を増やすことなく、有機EL表示装置の輝度や色純度の向上と滑らかな画像表示とを実現することができる。
(第8の実施形態)
 図15は、本発明の第8の実施形態に係る有機EL表示装置800の概略構成を示す断面図である。第8の実施形態に係る有機EL表示装置800と第1の実施形態に係る有機EL表示装置100との違いは、第8の実施形態に係る有機EL表示装置800は、第2のEL共通層308が画素ごとに分離して設けられている点(第4の実施形態と同様)と、第2の絶縁層310を形成した後に、透明樹脂材料を塗布する点である。その他の構成は、第1の実施形態に係る有機EL表示装置100と同じである。
 図15(A)に示す構造においては、第2の絶縁層310を形成した後、透明樹脂層(例えば、透光性を有するアクリル樹脂材料で構成される層)をスピンコーティング法(溶液塗布法)、または蒸着法により形成する工程を行う。ただし、ここでは透明樹脂で構成される薄膜を形成することが目的ではないため、溶液を滴下した後、基板をスピンさせて溶液を除去しても良い。この場合でも、第2の絶縁層310上には吸着した透明樹脂材料で構成される極めて薄い膜が残存する。この透明樹脂材料で構成される層は10~50nmの厚さで形成される。
 その際、塗布された溶液は、段差に集まる特性を有するため、第2の絶縁層310上に塗布された透明樹脂材料を含む溶液は段差に集まる。この場合の段差とは、第2の絶縁層310の表面が起伏を有することにより生じた段差もあり得るし、第2の絶縁層310上に異物が存在することにより生じた段差もあり得る。そして、段差に集まった溶液は、スピン工程の後もそのままそこに残存する。
 図15(A)の場合、第2の絶縁層310は、下層に存在する画素電極305、EL共通層306及び308、発光層307に起因する段差(点線で囲まれた部分)を有しているため、塗布された透明樹脂材料を含む溶液は、そのような段差に集まる。そして、その状態のまま光照射等により透明樹脂材料を硬化させると、段差に対して選択的に透明樹脂51を残存させることができる。つまり、第2の絶縁層310に生じた段差を透明樹脂51により平坦化することができる。
 このように、本実施形態では、第2の絶縁層310に生じた段差を透明樹脂51で平坦化した後に第4の絶縁層313を形成するため、第4の絶縁層313にピンホールや膜剥がれが生じる可能性を低減することができる。また、第2の絶縁層310にピンホール等が存在していても、第4の絶縁層313でカバーできるため、さらなる封止効果が期待できる。したがって、外部からの水分や汚染物質の侵入を効果的に防ぐことができ、信頼性の高い有機EL表示装置を実現することができる。
 図15(B)の場合、第2の絶縁層310に生じた段差を透明樹脂51で平坦化した後、ブラックマスク311を形成する。そして、ブラックマスク311上に第4の絶縁層313を形成することにより、第2の絶縁層310と第4の絶縁層313との間にブラックマスク311を挟み込む構造とすることができる。
 図15(A)及び(B)に示す構造において、第2の絶縁層310上に異物が存在した場合は、図16に示すように、異物52の周囲に透明樹脂51が形成され、異物52に起因する段差が軽減される。そのため、異物52の上から第4の絶縁層313を形成しても、異物52の乗り越え部分で第4の絶縁層313が分断されてしまうことがない。したがって、異物52の影響を受けることなく、信頼性の高い封止膜を形成することが可能となり、信頼性の高い有機EL表示装置を実現することができる。
 本実施形態に係る有機EL表示装置800においても、第1の実施形態に係る有機EL表示装置100と同様に、画素電極305の主面及び端部を静電方式の液滴吐出法により形成した第1のEL共通層306で被覆した構造としている。したがって、本実施形態に係る有機EL表示装置800も、第1の実施形態に係る有機EL表示装置100について説明した効果と同様の効果を奏する。
 なお、第6の実施形態のように、透明樹脂51を用いないでも、ブラックマスク311の形成過程にて、異物52の周囲に透明樹脂51と同じような形状でブラックマスク311が残存する。よって異物52の影響を受けることなく信頼性の高い封止膜の形成が可能となる。このように、図15(B)のような形態は、特に異物52に対して信頼性の高いデバイスが必要な時に採用することが望ましい。透明樹脂51とブラックマスク311の材料の両方が異物52の周囲に付着し、より異物の周囲を覆いやすくなるからである。図15(A)のような形態は、ブラックマスク311の製造工程にて第2の絶縁層310のピンホール等に起因して発光層307に水分等が侵入してダメージが入ることを防ぐのに有効である。
 さらに、上述したように、第2の絶縁層310を形成した後に、透明樹脂材料を含む溶液を塗布する工程を追加することにより、第2の絶縁層310が形成する段差や第2の絶縁層310上に存在する異物に起因する段差を軽減することができる。そして、第2の絶縁層310の上にピンホール、膜剥がれ、分断といった不具合のない第4の絶縁層313を形成することにより、さらに信頼性の高い封止構造を有する有機EL表示装置を実現することができる。
(第9の実施形態)
 図17は、本発明の第9の実施形態に係る有機EL表示装置900の概略構成を示す断面図である。第1の実施形態に係る有機EL表示装置100との違いは、画素部102の外側(基板端側)に外部からの水分の侵入を防ぐための水分遮断構造を備えた点である。その他の構成は、第1の実施形態に係る有機EL表示装置100と同じである。
 図17に示されるように、画素部102の外側には、水分遮断構造61とカソードコンタクト部62とが設けられる。水分遮断構造61とは、外部からの水分の侵入を防ぐ目的で設けられた構造体である。基本的には、第1の絶縁層304の一部に開口部を設け、その内部を第2の絶縁層310及び第3の絶縁層312で覆った構成となっている。
 なお、本実施形態では、薄膜トランジスタ303を構成するソース/ドレイン電極と同時に形成された導電層63を第1の絶縁層304に開口部を設ける際のエッチングストッパーとして用いている。勿論、これに限らず、薄膜トランジスタ303を構成するゲート電極と同時に形成された導電層や活性層と同時に形成された半導体層をエッチングストッパーとして用いてもよい。
 水分遮断構造61を設けることにより、積層された各絶縁層や導電層の界面を伝って外部から水分が侵入する可能性を大幅に低減することができ、信頼性の高い有機EL表示装置を実現することができる。
 また、カソードコンタクト部62は、陰極309と配線64とを電気的に接続するためのコンタクト部である。配線64は、薄膜トランジスタ303を構成するソース/ドレイン電極と同一の材料で形成され、陰極309に与える共通電圧を引き回すための配線である。それと同時に、第1の絶縁層304に開口部を設ける際のエッチングストッパーとしての機能も有する。勿論、薄膜トランジスタ303を構成するゲート電極と同一の材料で配線64を形成することも可能である。
 なお、本実施形態では、第1の絶縁層304に開口部を設けた後、画素電極305と同一の材料で構成されるパッド電極65を形成し、陰極309と配線64とがパッド電極65を介して電気的に接続された構造となっている。このような構造とした場合、配線64上に成膜された導電層を除去する必要がなく、配線64の表面を必要以上に荒らさないで済むという利点がある。勿論、パッド電極65を省略し(つまり、配線64上に成膜された導電層を除去し)、配線64と陰極309とが直接接続された構造とすることも可能である。
 以上説明した本実施形態に係る有機EL表示装置900では、水分遮断構造61に加えてカソードコンタクト部62を設けた構成を例示しているが、カソードコンタクト部62を省略することも可能である。
 以上のとおり、本実施形態に係る有機EL表示装置900は、画素部の外側に外部からの水分の侵入を防ぐための構造体(水分遮断構造61)を設けた構造となっている。そのため、第1の実施形態に係る有機EL表示装置100が奏する効果に加えて、より信頼性の高い有機EL表示装置を実現できるという効果を奏する。
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態の表示装置を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 また、上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
 100 表示装置
 102 画素部
 103 走査線駆動回路
 104 データ線駆動回路
 105 ドライバIC
 201 画素
 201R R(赤)に対応する画素
 201G G(緑)に対応する画素
 201B B(青)に対応する画素
 202 薄膜トランジスタ
 301 基板
 302 下地層
 303 薄膜トランジスタ(TFT)
 304 第1の絶縁層
 305 画素電極
 306 第1のEL共通層
 307 発光層
 308 第2のEL共通層
 309 共通電極
 310 第2の絶縁層
 311 ブラックマスク
 312 第3の絶縁層

Claims (20)

  1.  複数の画素を備えた有機EL表示装置であって、
     前記複数の画素は、各々発光素子を有し、
     前記発光素子は、画素電極と、共通電極と、EL共通層と、発光層とを含み、
     前記EL共通層及び前記発光層は、前記画素電極と前記共通電極との間に設けられ、
     前記EL共通層は、前記画素電極の主面及び端部を被覆することを特徴とする有機EL表示装置。
  2.  前記EL共通層の膜厚は、前記画素電極の主面を被覆する部分の膜厚よりも、前記画素電極の端部を被覆する部分の膜厚の方が厚いことを特徴とする請求項1に記載の有機EL表示装置。
  3.  トランジスタと、前記トランジスタを覆う絶縁膜とをさらに有し、
     前記トランジスタと前記画素電極は、前記絶縁層に設けられたコンタクトホール内に形成された前記画素電極の凹部により接続され、
     前記画素電極の主面が形成する前記凹部は、前記EL共通層により充填されることを特徴とする請求項1に記載の有機EL表示装置。
  4.  前記EL共通層は、第1のEL共通層と第2のEL共通層とを含み、
     前記第1のEL共通層は、前記画素電極と前記発光層との間に設けられ、
     前記凹部内に充填された前記EL共通層は、前記第1のEL共通層であり、
     前記第2のEL共通層は、前記発光層と前記共通電極との間に設けられることを特徴とする請求項3に記載の有機EL表示装置。
  5.  前記第1のEL共通層は、前記画素電極の主面及び端部を被覆し、
     前記第2のEL共通層は、前記発光層及び前記第1のEL共通層の端部を被覆することを特徴とする請求項4に記載の有機EL表示装置。
  6.  前記EL共通層及び前記発光層は、前記複数の画素間において分離していることを特徴とする請求項1~5のいずれか一項に記載の有機EL表示装置。
  7.  前記画素電極は、平坦化膜上に設けられ、
     前記共通電極は、前記複数の画素間において前記平坦化膜に接することを特徴とする請求項1~5のいずれか一項に記載の有機EL表示装置。
  8.  前記発光層の端部は、平面視において前記画素電極の端部の内側に位置することを特徴とする請求項1~5のいずれか一項に記載の有機EL表示装置。
  9.  前記発光層は、各々RGB各色のいずれかに発光する3種類の発光層を含み、
     前記3種類の発光層が、同一の前記画素電極上に設けられることを特徴とする請求項1~5のいずれか一項に記載の有機EL表示装置。
  10.  前記3種類の発光層は、少なくとも1種類の発光層の膜厚が、残りの種類の発光層の膜厚と異なることを特徴とする請求項9に記載の有機EL表示装置。
  11.  複数の画素を備えた有機EL表示装置の製造方法であって、
     基板上の前記複数の画素に対応する位置に、画素電極を形成する工程と、
     前記画素電極上に、EL共通層と発光層とを含む積層構造を形成する工程と、
     前記積層構造上に共通電極を形成する工程と、
     を有し、
     前記EL共通層を、前記画素電極の主面及び端部を被覆するように形成することを特徴とする有機EL表示装置の製造方法。
  12.  前記EL共通層を、前記画素電極の主面を被覆する部分の膜厚よりも、前記画素電極の端部を被覆する部分の膜厚の方が厚くなるように形成することを特徴とする請求項11に記載の有機EL表示装置の製造方法。
  13.  前記画素電極を形成する前に、トランジスタを形成する工程と、前記トランジスタを覆う絶縁層を形成する工程と、前記絶縁層に前記トランジスタの一部を露出させるコンタクトホールを形成する工程をさらに有し、
     前記画素電極は、前記絶縁層上と前記コンタクトホール内に形成されることにより、前記コンタクトホール内に凹部を有し、
     前記画素電極の主面が形成する前記凹部に、前記EL共通層を充填することを特徴とする請求項11に記載の有機EL表示装置の製造方法。
  14.  前記積層構造として、第1のEL共通層と第2のEL共通層とで前記発光層を挟んだ構造を形成し、
     前記第1のEL共通層が前記凹部に充填されており、
     前記第1のEL共通層を、前記画素電極の主面及び端部を被覆するように形成することを特徴とする請求項13に記載の有機EL表示装置の製造方法。
  15.  前記第2のEL共通層を、前記発光層及び前記第1のEL共通層の端部を被覆するように形成することを特徴とする請求項14に記載の有機EL表示装置の製造方法。
  16.  前記EL共通層及び前記発光層を、前記複数の画素間において分離するように形成することを特徴とする請求項11~15のいずれか一項に記載の有機EL表示装置の製造方法。
  17.  前記発光層を、前記発光層の端部が平面視において前記画素電極の端部の内側に位置するように形成することを特徴とする請求項11~15のいずれか一項に記載の有機EL表示装置の製造方法。
  18.  同一の前記画素電極上に、前記発光層として、各々RGB各色のいずれかに発光する3種類の発光層を形成することを特徴とする請求項11~15のいずれか一項に記載の有機EL表示装置の製造方法。
  19.  前記3種類の発光層は、少なくとも1種類の発光層の膜厚が、残りの種類の発光層の膜厚と異なるように形成されることを特徴とする請求項18に記載の有機EL表示装置の製造方法。
  20.  前記EL共通層及び前記発光層を、静電方式の液滴吐出法を用いて形成することを特徴とする請求項11~15のいずれか一項に記載の有機EL表示装置の製造方法。
     
PCT/JP2015/083076 2014-12-18 2015-11-25 有機el表示装置 WO2016098544A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/614,825 US10032831B2 (en) 2014-12-18 2017-06-06 Organic EL display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014255901A JP6358946B2 (ja) 2014-12-18 2014-12-18 有機el表示装置
JP2014-255901 2014-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/614,825 Continuation US10032831B2 (en) 2014-12-18 2017-06-06 Organic EL display device

Publications (1)

Publication Number Publication Date
WO2016098544A1 true WO2016098544A1 (ja) 2016-06-23

Family

ID=56126441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083076 WO2016098544A1 (ja) 2014-12-18 2015-11-25 有機el表示装置

Country Status (3)

Country Link
US (1) US10032831B2 (ja)
JP (1) JP6358946B2 (ja)
WO (1) WO2016098544A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018078057A (ja) * 2016-11-11 2018-05-17 株式会社ジャパンディスプレイ 表示装置
KR102016565B1 (ko) * 2017-11-30 2019-08-30 엘지디스플레이 주식회사 전계발광표시장치
CN111819909A (zh) * 2018-03-06 2020-10-23 索尼半导体解决方案公司 发光元件单元
FR3079909B1 (fr) * 2018-04-05 2022-10-14 Microoled Dispositif electroluminescent a resolution et fiabilite ameliorees
US20200058891A1 (en) * 2018-08-16 2020-02-20 Int Tech Co., Ltd. Light emitting device and manufacturing method thereof
WO2021018304A1 (zh) 2019-07-31 2021-02-04 京东方科技集团股份有限公司 显示基板以及显示装置
US11980046B2 (en) * 2020-05-27 2024-05-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming an isolation structure having multiple thicknesses to mitigate damage to a display device
TW202232796A (zh) * 2021-01-14 2022-08-16 日商半導體能源研究所股份有限公司 顯示裝置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158881A (ja) * 2007-12-28 2009-07-16 Seiko Epson Corp 有機el装置及び有機el装置の製造方法
JP2010182422A (ja) * 2008-08-22 2010-08-19 Toshiba Mobile Display Co Ltd 有機el表示装置
WO2012114403A1 (ja) * 2011-02-25 2012-08-30 パナソニック株式会社 有機el表示パネルおよび有機el表示装置
WO2012114648A1 (ja) * 2011-02-23 2012-08-30 パナソニック株式会社 有機el表示パネルおよび有機el表示装置
WO2013031076A1 (ja) * 2011-09-02 2013-03-07 パナソニック株式会社 有機el表示パネルおよびその製造方法
WO2013076948A1 (ja) * 2011-11-24 2013-05-30 パナソニック株式会社 El表示装置およびその製造方法
WO2013118462A1 (ja) * 2012-02-06 2013-08-15 パナソニック株式会社 El表示装置およびその製造方法
WO2013179361A1 (ja) * 2012-05-31 2013-12-05 パナソニック株式会社 有機el素子、有機elパネル、有機el発光装置、および有機el表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553716B2 (ja) 2010-09-15 2014-07-16 株式会社日立ハイテクノロジーズ 欠陥検査方法及びその装置
JP2012160388A (ja) 2011-02-02 2012-08-23 Seiko Epson Corp 有機el表示装置およびその製造方法
KR102313361B1 (ko) * 2014-11-17 2021-10-18 삼성디스플레이 주식회사 유기 발광 표시 장치, 이를 포함하는 전자 기기, 및 유기 발광 표시 장치의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158881A (ja) * 2007-12-28 2009-07-16 Seiko Epson Corp 有機el装置及び有機el装置の製造方法
JP2010182422A (ja) * 2008-08-22 2010-08-19 Toshiba Mobile Display Co Ltd 有機el表示装置
WO2012114648A1 (ja) * 2011-02-23 2012-08-30 パナソニック株式会社 有機el表示パネルおよび有機el表示装置
WO2012114403A1 (ja) * 2011-02-25 2012-08-30 パナソニック株式会社 有機el表示パネルおよび有機el表示装置
WO2013031076A1 (ja) * 2011-09-02 2013-03-07 パナソニック株式会社 有機el表示パネルおよびその製造方法
WO2013076948A1 (ja) * 2011-11-24 2013-05-30 パナソニック株式会社 El表示装置およびその製造方法
WO2013118462A1 (ja) * 2012-02-06 2013-08-15 パナソニック株式会社 El表示装置およびその製造方法
WO2013179361A1 (ja) * 2012-05-31 2013-12-05 パナソニック株式会社 有機el素子、有機elパネル、有機el発光装置、および有機el表示装置

Also Published As

Publication number Publication date
US10032831B2 (en) 2018-07-24
JP6358946B2 (ja) 2018-07-18
JP2016115905A (ja) 2016-06-23
US20170278907A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2016098544A1 (ja) 有機el表示装置
TWI575731B (zh) Display device and manufacturing method thereof
JP4121514B2 (ja) 有機発光素子、及び、それを備えた表示装置
US7796101B2 (en) Electroluminescent device, method for manufacturing electroluminescent device, and electronic apparatus
JP5167932B2 (ja) 有機エレクトロルミネッセンス装置
KR101890469B1 (ko) 표시장치 및 그 제조 방법
JP2005327674A (ja) 有機エレクトロルミネッセント表示素子、それを有する表示装置、及び、その製造方法
JP6868676B2 (ja) 電界発光表示装置およびその製造方法
JP2020009634A (ja) 表示装置
JP2007227129A (ja) 有機el装置及び有機el装置の製造方法
KR20180118857A (ko) 유기 발광 표시 장치
JP2007213999A (ja) 有機el装置の製造方法及び有機el装置
CN112640579A (zh) 显示设备
JP2021061175A (ja) 自発光表示パネル
JP5478954B2 (ja) 有機エレクトロルミネッセンス表示装置
JP2020042955A (ja) 表示パネル、表示パネルの検査方法、及び表示パネルの製造方法
KR20210080925A (ko) 전계발광 표시장치
KR102127217B1 (ko) 유기전계발광 표시장치 및 그 제조 방법
US20210225995A1 (en) Display device and method for manufacturing display device
JP2011096375A (ja) 光学装置、その製造方法、および電子機器
JP2016152143A (ja) 有機el装置の製造方法
JP2008153237A (ja) 有機発光素子、及び、それを備えた表示装置
JP7451657B2 (ja) 電界発光表示装置およびその製造方法
KR20140080598A (ko) 유기발광 다이오드 표시장치 및 그 제조 방법
CN111640880B (zh) 有机el显示面板及有机el显示面板的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869752

Country of ref document: EP

Kind code of ref document: A1