WO2012102266A1 - 樹脂付リードフレームおよびその製造方法、ならびにリードフレーム - Google Patents

樹脂付リードフレームおよびその製造方法、ならびにリードフレーム Download PDF

Info

Publication number
WO2012102266A1
WO2012102266A1 PCT/JP2012/051432 JP2012051432W WO2012102266A1 WO 2012102266 A1 WO2012102266 A1 WO 2012102266A1 JP 2012051432 W JP2012051432 W JP 2012051432W WO 2012102266 A1 WO2012102266 A1 WO 2012102266A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead frame
led element
lead
element mounting
resin
Prior art date
Application number
PCT/JP2012/051432
Other languages
English (en)
French (fr)
Inventor
知加雄 池永
和範 小田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US13/980,980 priority Critical patent/US9461220B2/en
Priority to CN201280005657.6A priority patent/CN103348499B/zh
Priority to JP2012554800A priority patent/JP5861943B2/ja
Priority to KR1020137016578A priority patent/KR101760545B1/ko
Publication of WO2012102266A1 publication Critical patent/WO2012102266A1/ja
Priority to US15/246,608 priority patent/US9806241B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Definitions

  • the present invention relates to a lead frame with resin used for mounting an LED element, a method for manufacturing the same, and a lead frame.
  • LED devices have expanded their applications as mobile phone lighting and liquid crystal backlights, and recently their applications have expanded to the general lighting field replacing incandescent bulbs.
  • LED devices tend to have large variations in light emission efficiency within the same wafer. Further, in order to use an LED device for general illumination, the light emission efficiency is still low, and a plurality of LED elements must be mounted in one LED device.
  • LED device packaging there are LED devices mounted on an organic substrate such as glass epoxy, wire bonded, sealed with an epoxy-based transparent resin, and then separated into individual pieces.
  • a reflective plate (reflective resin part) made of white resin such as PPA is molded on a ceramic substrate, and then an LED element is mounted on this, wire bonded, sealed with a transparent resin, and separated into individual pieces Is also present.
  • a reflector is molded with a white resin such as PPA on a lead frame, and then an LED element is mounted thereon, wire bonded, sealed with a transparent resin, and separated into individual pieces.
  • a substrate on which a reflecting plate made of a synthetic resin is molded in advance on a lead frame is used as a substrate on which the LED element is mounted.
  • the lead frame has been subjected to silver plating on the entire surface in consideration of its reflection efficiency.
  • the synthetic resin constituting the reflecting plate it may be deteriorated and yellowed by ultraviolet rays emitted from the LED element, and the light extraction efficiency may decrease with time.
  • the silver plating of the lead frame has a problem that it reacts with hydrogen sulfide in the air and turns brown over time.
  • the present invention has been made in consideration of such points, and in a semiconductor device including an LED element, it is possible to increase the light extraction efficiency from the LED element and prevent deterioration of the lead frame over time. It is an object to provide a lead frame with resin, a method for manufacturing the same, and a lead frame.
  • the present invention includes a plurality of LED element placement portions and a plurality of lead portions arranged separately from each of the LED element placement portions, and each of the LED element placement portions and the lead portions.
  • Each of the LED elements of the lead frame main body includes a lead frame main body having an LED element mounting region formed on a surface thereof, and a reflective resin portion provided surrounding the LED element mounting regions of the lead frame main body.
  • the present invention has an LED element placement portion and a lead portion that is spaced apart from the LED element placement portion, and an LED element placement area on the surface of the LED element placement portion and the lead portion.
  • a lead frame body formed, and a reflective resin portion provided surrounding the LED element mounting area of the lead frame body, and an aluminum vapor deposition layer or a surface of the LED element mounting area surface of the lead frame body
  • the present invention is the lead frame with resin, wherein the aluminum vapor deposition layer or the aluminum sputter layer is further provided on an inner wall of the reflective resin portion.
  • the present invention is the lead frame with resin, wherein the plurality of LED element mounting regions of the lead frame main body are arranged vertically and horizontally.
  • the lead frame main body is made of copper, a copper alloy, or a 42 alloy, and at least the surface of the LED element mounting area of the lead frame main body is mirror-finished, and the LED element mounting area A lead frame with a resin characterized by having an arithmetic average height Sa of 0.01 ⁇ m to 0.10 ⁇ m and a roughness curve element average length Sm of 2 ⁇ m to 18 ⁇ m.
  • the present invention is the lead frame with resin, wherein a silver plating layer is provided on the back surface of the LED element mounting portion and the lead portion of the lead frame main body.
  • the present invention is the lead frame with resin, wherein a groove for improving the adhesion between the lead frame main body and the reflective resin portion is formed on the surface of the lead frame main body.
  • the present invention is the lead frame with resin, wherein a reflective metal layer is provided on the upper surface of the reflective resin portion.
  • the present invention is the lead frame with resin, wherein the reflective resin portion is exposed at a portion cut by dicing in the upper surface of the reflective resin portion.
  • the present invention is the lead frame with resin, wherein a concave portion that is recessed inward is formed on the upper surface of the reflective resin portion.
  • the present invention includes a plurality of LED element placement portions and a plurality of lead portions arranged separately from each of the LED element placement portions, and each of the LED element placement portions and the lead portions.
  • a lead frame comprising a lead frame main body having an LED element mounting area formed on a surface thereof, and an aluminum vapor deposition layer or an aluminum sputter layer provided on each LED element mounting area surface of the lead frame main body. is there.
  • the present invention has an LED element placement portion and a lead portion that is spaced apart from the LED element placement portion, and an LED element placement area on the surface of the LED element placement portion and the lead portion.
  • a lead frame comprising a formed lead frame main body, wherein an aluminum vapor deposition layer or an aluminum sputter layer is provided on the surface of the LED element mounting region of the lead frame main body.
  • the present invention includes a plurality of LED element mounting portions and a plurality of lead portions spaced apart from the LED element mounting portions, respectively, and the LED elements.
  • a method of manufacturing a lead frame with a resin comprising: a step of providing a layer; and a step of providing a reflective resin portion so as to surround each LED element mounting region of the lead frame main body.
  • the present invention includes a plurality of LED element mounting portions and a plurality of lead portions spaced apart from the LED element mounting portions, respectively, and the LED elements.
  • an aluminum vapor deposition layer or an aluminum sputter layer is provided on the surface of each LED element mounting region of the lead frame body.
  • FIG. 1 is a cross-sectional view showing a lead frame according to the first embodiment of the present invention (a cross-sectional view taken along the line II in FIG. 2).
  • FIG. 2 is a plan view showing a lead frame according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view (cross-sectional view taken along the line III-III in FIG. 4) of the lead frame with resin according to the first embodiment of the present invention.
  • FIG. 4 is a plan view showing a lead frame with resin according to the first embodiment of the present invention.
  • FIG. 5 is a sectional view showing the semiconductor device according to the first embodiment of the present invention (a sectional view taken along line VV in FIG. 6).
  • FIG. 6 is a plan view showing the semiconductor device according to the first embodiment of the present invention.
  • 7A to 7G are views showing a lead frame manufacturing method according to the first embodiment of the present invention.
  • FIGS. 8A to 8C are views showing a method for manufacturing a lead frame with resin according to the first embodiment of the present invention.
  • FIGS. 9A to 9F are cross-sectional views showing a method of manufacturing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a state where the semiconductor device is arranged on the wiring board.
  • FIG. 11 is a cross-sectional view showing a resin-attached lead frame according to the second embodiment of the present invention (cross-sectional view taken along line XI-XI in FIG. 12).
  • FIG. 12 is a plan view showing a lead frame with a resin according to the second embodiment of the present invention.
  • FIG. 13 is a sectional view showing a semiconductor device according to the second embodiment of the present invention (a sectional view taken along line XIII-XIII in FIG. 14).
  • FIG. 14 is a plan view showing a semiconductor device according to the second embodiment of the present invention.
  • FIGS. 15A to 15F are views showing a method of manufacturing a lead frame according to the second embodiment of the present invention.
  • FIGS. 16A to 16D are views showing a method for manufacturing a lead frame with a resin according to the second embodiment of the present invention.
  • FIG. 17 is a sectional view showing a modification of the lead frame with resin according to the second embodiment of the present invention.
  • FIG. 18 is a cross-sectional view showing a modified example of the lead frame with resin according to the second embodiment of the present invention.
  • FIG. 19 is a cross-sectional view showing a modified example of the lead frame with resin according to the second embodiment of the present invention.
  • FIG. 20 is a cross-sectional view showing a modified example of the lead frame with resin according to the second embodiment of the present invention.
  • FIGS. 1 and 2 are views showing a lead frame according to the present embodiment.
  • the lead frame 15 shown in FIGS. 1 and 2 is provided on the surface of the lead frame main body 11 having a plurality of LED element mounting areas 14 and the LED element mounting areas 14 of the lead frame main body 11. And a metal layer 12 functioning as a reflective layer for reflecting light.
  • the lead frame body 11 is made of a metal plate.
  • the material of the metal plate constituting the lead frame body 11 include copper, copper alloy, 42 alloy (Ni 42% Fe alloy), and the like.
  • the thickness of the lead frame body 11 is preferably 0.1 mm to 0.5 mm, although it depends on the configuration of the semiconductor device.
  • the lead frame main body 11 has an outer frame 13, and the plurality of LED element placement regions 14 are arranged vertically and horizontally in the outer frame 13.
  • the lead frame main body 11 has a plurality of die pads (LED element mounting portions) 25 and a plurality of lead portions 26 arranged away from each die pad 25.
  • Each LED element mounting region 14 has Are formed on the respective die pads 25 and lead portions 26.
  • a space 17 filled with the reflective resin portion 23 is formed between the die pad 25 and the lead portion 26.
  • Each die pad 25 and each lead portion 26 are connected to another adjacent die pad 25, another adjacent lead portion 26, or the outer frame 13 by a bar-like tie bar 16.
  • a first outer lead portion 27 is formed on the back surface of the die pad 25, and a second outer lead portion 28 is formed on the back surface of the lead portion 26.
  • Each of the first outer lead portion 27 and the second outer lead portion 28 is provided with a silver plating layer 29 for improving the contact property with the solder.
  • the thickness of the plating layer 29 is preferably 2 ⁇ m to 10 ⁇ m.
  • the metal layer 12 may be formed, for example, by vapor deposition or sputtering, and examples of the material thereof include aluminum, silver, rhodium, palladium, platinum, and copper.
  • the metal layer 12 is formed of an aluminum vapor deposition layer or an aluminum sputter layer will be described as an example (hereinafter also simply referred to as an aluminum vapor deposition layer or an aluminum sputter layer 12).
  • This aluminum vapor deposition layer or aluminum sputter layer 12 functions as a reflective layer for reflecting the light from the LED element 21, and is located on the outermost surface side of the lead frame 15.
  • This aluminum vapor deposition layer or aluminum sputter layer 12 is formed by vapor deposition or sputtering of aluminum (Al).
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 is formed to be extremely thin, and specifically, it is preferably 0.1 ⁇ m to 1 ⁇ m.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 may be formed directly on the lead frame main body 11, but is formed on the lead frame main body 11 via a bonding layer made of, for example, a silver (Ag) plating layer. Also good.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 is provided on the entire surface of the lead frame main body 11 including the outer frame 13 and the tie bar 16, but at least of the surface of the lead frame main body 11. What is necessary is just to be provided in each LED element mounting area
  • the LED element placement area 14 is an area that is not covered by the reflective resin portion 23 (described later) in the lead frame body 11 and contributes to reflecting light from the LED element 21.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 may not be provided on the portion of the surface of the lead frame body 11 where wire bonding is performed.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 may not be provided on the portion of the surface of the lead frame body 11 where the LED element 21 is mounted.
  • an aluminum vapor deposition layer or an aluminum sputter layer 12 is provided on the surface of the lead frame main body 11 via a bonding layer (not shown) made of a silver plating layer, and wire bonding is performed on the surface of the lead frame main body 11.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 may not be provided in the portion.
  • an aluminum vapor deposition layer or an aluminum sputter layer 12 is provided on the surface of the lead frame main body 11 via a bonding layer (not shown) made of a silver plating layer, and the LED element 21 on the surface of the lead frame main body 11. It is not necessary to provide the aluminum vapor deposition layer or the aluminum sputter layer 12 in the portion where the substrate is mounted.
  • each LED element mounting region 14 in the lead frame body 11 is preferably mirror-finished in advance before the aluminum vapor deposition layer or the aluminum sputter layer 12 is provided.
  • the roughness of the surface of each LED element mounting area 14 is an arithmetic average of the LED element mounting areas 14 measured using Ryoka System Co., Ltd., non-contact surface / layer cross-sectional shape measurement system, VertScan 2.0.
  • the height Sa is 0.01 ⁇ m to 0.10 ⁇ m
  • the roughness curve element average length Sm is 2 ⁇ m to 18 ⁇ m.
  • a groove 18 is formed on the surface of the lead frame main body 11 for improving the adhesion between the lead frame main body 11 and the reflective resin portion 23.
  • the groove 18 has a planar rectangular shape (excluding the space 17), and is provided along the outer peripheral edge of the LED element mounting region 14 on the surface of the lead frame main body 11.
  • a symbol S indicates a region of the lead frame 15 corresponding to a semiconductor device 20 (FIGS. 5 and 6) described later.
  • the lead frame main body 11 includes a plurality of die pads 25 and a plurality of lead portions 26 that are spaced apart from the die pads 25.
  • the main body 11 only needs to have at least one die pad 25 and one lead part 26.
  • FIG. 3 and 4 are views showing a resin-attached lead frame according to the present embodiment. 3 and 4, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.
  • Such a lead frame 10 with resin includes a lead frame 15 and a reflective resin portion 23 provided on the lead frame 15 and surrounding the LED element mounting region 14.
  • the lead frame 15 has a lead frame main body 11, and the lead frame main body 11 has a plurality of die pads 25 and a plurality of lead portions 26 arranged away from each die pad 25. Yes. LED element placement regions 14 are formed on the surfaces of the die pads 25 and the lead portions 26. Further, an aluminum vapor deposition layer or an aluminum sputter layer 12 is provided on the surface of each LED element mounting region 14 of the lead frame body 11. In FIG. 4, the aluminum vapor deposition layer or the aluminum sputtered layer 12 is indicated by oblique lines. The configuration of the lead frame 15 is the same as that shown in FIGS. 1 and 2 described above, and detailed description thereof is omitted here.
  • the reflective resin portion 23 is integrated with the lead frame 15, and has a concave portion 23 a having a substantially rectangular shape surrounding the LED element 21.
  • An inner wall 23b is formed inside the recess 23a.
  • the reflective resin portion 23 is also filled in the space 17 between the die pad 25 and the lead portion 26. Details of the reflective resin portion 23 will be described later.
  • the lead frame main body 11 includes a plurality of die pads 25 and a plurality of lead portions 26 that are spaced apart from the die pads 25.
  • the main body 11 only needs to have at least one die pad 25 and one lead part 26.
  • FIGS. 5 and 6 are diagrams showing a semiconductor device (SON type) according to the present embodiment.
  • SON type semiconductor device
  • FIGS. 5 and 6 the same parts as those in FIGS. 1 to 4 are denoted by the same reference numerals.
  • the semiconductor device 20 includes a lead frame 15 (separated) having a lead frame main body 11 and an aluminum vapor deposition layer or an aluminum sputter layer 12, and a die pad 25 on the lead frame 15. And a bonding wire (conductive portion) 22 that electrically connects the lead portion 26 of the lead frame 15 and the LED element 21.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 is indicated by oblique lines.
  • a reflective resin portion 23 having a recess 23 a is provided so as to surround the LED element 21. Furthermore, the LED element 21 and the bonding wire 22 are sealed with a translucent sealing resin 24. The sealing resin 24 is filled in the concave portion 23 a of the reflective resin portion 23. In addition, the area
  • the lead frame 15 is provided on the lead frame main body 11 having the die pad 25 and the lead portion 26 and the lead frame main body 11 and functions as a reflection layer for reflecting light from the LED element 21.
  • An aluminum vapor deposition layer or an aluminum sputter layer 12 is provided.
  • the LED element 21 selects an emission wavelength ranging from ultraviolet light to infrared light by appropriately selecting a material made of a compound semiconductor single crystal such as GaP, GaAs, GaAlAs, GaAsP, AlInGaP, or InGaN as a light emitting layer. can do.
  • a material made of a compound semiconductor single crystal such as GaP, GaAs, GaAlAs, GaAsP, AlInGaP, or InGaN as a light emitting layer.
  • a material made of a compound semiconductor single crystal such as GaP, GaAs, GaAlAs, GaAsP, AlInGaP, or InGaN as a light emitting layer.
  • the LED element 21 is fixedly mounted on the die pad 25 (the aluminum vapor deposition layer or the aluminum sputter layer 12) in the recess 23a of the reflective resin portion 23 by solder or die bonding paste.
  • solder or die bonding paste it is possible to select a die bonding paste made of an epoxy resin or a silicone resin having light resistance.
  • the bonding wire 22 is made of a material having good conductivity such as gold, and one end thereof is connected to the terminal portion 21a of the LED element 21, and the other end is on the surface of the lead portion 26 of the lead frame body 11 (aluminum vapor deposition layer). Or on the aluminum sputter layer 12).
  • the reflective resin portion 23 is formed by, for example, injection molding of a thermoplastic resin on the lead frame 10 with resin, or by injection molding or transfer molding of a thermosetting resin, for example.
  • the shape of the reflective resin portion 23 can be variously realized by designing a mold used for injection molding or transfer molding.
  • the overall shape of the reflective resin portion 23 may be a rectangular parallelepiped as shown in FIGS. 5 and 6, or may be a cylindrical shape or a cone shape.
  • the bottom surface of the recess 23a can be rectangular, circular, elliptical, polygonal, or the like.
  • the cross-sectional shape of the inner wall 23b of the recessed part 23a may be comprised from the straight line like FIG. 5, or may be comprised from the curve.
  • thermoplastic resin or thermosetting resin used for the reflective resin portion 23 it is desirable to select a resin having excellent heat resistance, weather resistance and mechanical strength.
  • Thermoplastic resins include polyamide, polyphthalamide (PPA), polyphenylene sulfide, liquid crystal polymer, polyethersulfone, polyetherimide and polybutylene terephthalate, polyolefin, cyclopolyolefin, etc. Epoxy, polyimide, etc. can be used.
  • the bottom surface of the recess 23a and the inner wall 23b can be separated from the light emitting element.
  • the sealing resin 24 it is desirable to select a material having a high light transmittance and a high refractive index at the emission wavelength of the semiconductor device 20 in order to improve the light extraction efficiency. Therefore, it is possible to select an epoxy resin or a silicone resin as a resin that satisfies the characteristics of high heat resistance, weather resistance, and mechanical strength.
  • the sealing resin 24 is preferably made of a silicone resin having high weather resistance because the sealing resin 24 is exposed to strong light.
  • a flat metal substrate 31 is prepared.
  • a metal substrate made of copper, copper alloy, 42 alloy (Ni 42% Fe alloy) or the like can be used as described above.
  • the surface 31a of the metal substrate 31 is previously mirror-finished so that the arithmetic average height Sa is 0.01 ⁇ m to 0.1 ⁇ m, and the roughness curve element average length Sm is 2 ⁇ m to 18 ⁇ m. It is preferable to keep it.
  • a mirror surface rolling roller can be used at the time of the final rolling of material, or a double-sided mirror surface copper plating process can be mentioned, for example.
  • photosensitive resists 32a and 33a are applied to the entire front and back surfaces of the metal substrate 31, respectively, and dried (FIG. 7B).
  • photosensitive resists 32a and 33a conventionally known resists can be used.
  • the metal substrate 31 is exposed through a photomask and developed to form etching resist layers 32 and 33 having desired openings 32b and 33b (FIG. 7C).
  • etching is performed on the metal substrate 31 with a corrosive solution using the etching resist layers 32 and 33 as corrosion resistant films (FIG. 7D).
  • the corrosive liquid can be appropriately selected according to the material of the metal substrate 31 to be used. For example, when copper is used as the metal substrate 31, an aqueous ferric chloride solution is usually used and sprayed from both surfaces of the metal substrate 31. It can be performed by etching.
  • the etching resist layers 32 and 33 are peeled off and removed.
  • the lead frame main body 11 having the die pad 25 and the lead portion 26 separated from the die pad 25 is obtained (FIG. 7E).
  • a groove 18 is formed on the surface of the lead frame body 11 by half etching.
  • a plating layer 29 is formed (FIG. 7F).
  • the first outer lead portion 27 and the silver degreasing step, the pickling step, the chemical polishing step, the copper strike step, the water washing step, the neutral degreasing step, the cyan washing step, and the silver plating step are sequentially performed.
  • a silver plating layer 29 is formed on the second outer lead portion 28.
  • the plating solution for electrolytic plating include a silver plating solution mainly composed of silver cyanide. In the actual process, a water washing process is appropriately added between the processes as necessary.
  • the lead frame body 11 is deposited on the lead frame body 11 by performing vapor deposition or sputtering on the surface of the lead frame body 11.
  • the aluminum vapor deposition layer or the aluminum sputtered layer 12 which functions as a reflective layer is formed on the entire surface of the lead frame main body 11 including the LED element mounting region 14 (FIG. 7G).
  • the formation of the aluminum vapor deposition layer or the aluminum sputter layer is not limited to this, but in the case of vapor deposition, the conditions for vacuum attainment 9 ⁇ 10 ⁇ 6 torr and rate 1.5 nm / second are:
  • An aluminum vapor deposition layer 12 can be formed on the lead frame body 11. Further, in the case of sputtering, on the lead frame body 11 under the conditions of a vacuum level of 4 ⁇ 10 ⁇ 6 torr, a film formation vacuum level of 5 ⁇ 10 ⁇ 3 torr, and a power of 900 W (target size: 5 inches ⁇ 18 inches).
  • An aluminum sputter layer 12 can be formed.
  • the lead frame 15 having the lead frame main body 11 and the aluminum vapor deposition layer or the aluminum sputtered layer 12 formed on the lead frame main body 11 is obtained (FIG. 7G).
  • the reflective resin portion 23 is formed on the aluminum vapor deposition layer or the aluminum sputter layer 12 of the lead frame 15. Hereinafter, each of these steps will be further described.
  • the lead frame 15 obtained by the above-described steps is mounted in a mold 35 of an injection molding machine or a transfer molding machine (not shown) (FIG. 8A).
  • a space 35 a corresponding to the shape of the reflective resin portion 23 is formed in the mold 35.
  • thermosetting resin is poured into the mold 35 by a resin supply unit (not shown) of an injection molding machine or a transfer molding machine, and then cured to thereby form an LED element mounting region on the surface of the lead frame 15.
  • a reflective resin portion 23 is formed in a portion other than 14 (FIG. 8B). At this time, the reflective resin portion 23 is also filled in the space 17 between the die pad 25 and the lead portion 26.
  • the lead frame 15 in which the reflective resin portion 23 is formed is taken out from the mold 35.
  • the lead frame with resin 10 (FIGS. 3 and 4) in which the reflective resin portion 23 and the lead frame 15 are integrally formed is obtained (FIG. 8C).
  • the resin-made lead frame 10 including the lead frame 15 and the reflective resin portion 23 is manufactured (FIG. FIG. 9A).
  • the LED element 21 is mounted on the die pad 25 of the lead frame 15.
  • the LED element 21 is mounted on the die pad 25 (on the aluminum vapor deposition layer or the aluminum sputter layer 12) of the lead frame 15 and fixed by using solder or die bonding paste (die attach step) (FIG. 9 ( b)).
  • the terminal portion 21a of the LED element 21 and the surface of the lead portion 26 of the lead frame 15 are electrically connected to each other by the bonding wire 22 (wire bonding step) (FIG. 9C).
  • the sealing resin 24 is filled into the recess 23a of the reflective resin portion 23, and the LED element 21 and the bonding wire 22 are sealed with the sealing resin 24 (FIG. 9D).
  • the reflective resin portion 23 between the LED elements 21 is diced to separate the lead frame 15 for each LED element 21 (FIG. 9E).
  • the lead frame 15 is first placed and fixed on the dicing tape 37, and then the reflective resin portion 23 between the LED elements 21 is cut in the vertical direction by a blade 38 made of, for example, a diamond grindstone.
  • FIG. 10 is a cross-sectional view showing a state where the semiconductor device according to the present embodiment is arranged on a wiring board.
  • the semiconductor device 20 is arranged on a wiring board 41.
  • a wiring board 41 has a board body 42 and wiring terminal portions 43 and 44 formed on the board body 42.
  • one wiring terminal portion 43 is connected to the first outer lead portion 27 via one connection solder portion 45.
  • the other wiring terminal portion 44 is connected to the second outer lead portion 28 via the other connecting solder portion 46.
  • the light from the LED element 21 passes through the sealing resin 24 and is emitted from the surface of the sealing resin 24, or is reflected by the inner wall 23 b of the recess 23 a of the reflective resin portion 23, thereby causing the sealing resin 24. Released from the surface.
  • the light from the LED element 21 is emitted from the surface of the sealing resin 24 by being reflected on the surface of the aluminum vapor deposition layer or the aluminum sputter layer 12.
  • an aluminum vapor deposition layer or an aluminum sputter layer 12 is provided on the surface of the LED element mounting region 14 of the lead frame main body 11. Thereby, the light from the LED element 21 can be efficiently reflected, and the light extraction efficiency from the LED element 21 can be increased. Moreover, since the aluminum which comprises the aluminum vapor deposition layer or the aluminum sputter layer 12 does not deteriorate with the hydrogen sulfide in the air, deterioration with time of the lead frame 15 can be prevented.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 is provided on the surface of each LED element mounting region 14 of the lead frame body 11. As a result, the light from the LED element 21 can be efficiently reflected to increase the light extraction efficiency from the LED element 21 and the deterioration of the lead frame 15 with time can be prevented.
  • the adhesion between the lead frame 15 and the sealing resin 24 can be improved by providing the aluminum vapor deposition layer or the aluminum sputter layer 12. Moreover, the wire bonding property by the bonding wire 22 and the die attachability of the LED element 21 can be maintained well.
  • an aluminum vapor deposition layer or an aluminum sputter layer 12 is provided via a bonding layer made of a silver plating layer, an alloy of the underlying silver (silver plating layer) and the wire is broken by breaking thin aluminum in the portion to be wire bonded. Since it is formed, the bondability is further improved and the wire bonding strength can be further increased.
  • the energy for breaking the aluminum oxide film is not required at the time of wire bonding, so the conditions such as bonding temperature and ultrasonic wave can be relaxed. I can do it.
  • the heat dissipation path through the die pad 25 is shortened, and as a result, the heat dissipation can be improved.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 is provided via a bonding layer made of a silver plating layer, and the aluminum vapor deposition layer or the aluminum sputter layer 12 is not provided in the portion to be wire-bonded, the silver plating layer as in the conventional case Since the wire bonding can be performed directly on the upper surface, for example, the bonding strength with the gold bonding wire 22 can be kept high.
  • the LED element 21 is When joining with solder, since the wetness of the solder of the part is good, a void does not generate
  • FIGS. 11 to 16 are views showing a second embodiment of the present invention.
  • the second embodiment shown in FIGS. 11 to 16 differs from the second embodiment in that an aluminum vapor deposition layer or an aluminum sputter layer 12 is also provided on the inner wall 23b of the reflective resin portion 23, and the other configurations are the same as those described above.
  • This is substantially the same as the first embodiment.
  • 11 to 16 the same parts as those of the embodiment shown in FIGS. 1 to 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • 11 and 12 are diagrams showing a resin-attached lead frame according to the present embodiment.
  • the lead frame with resin 10A includes a lead frame 15 and a reflective resin portion.
  • the lead frame 15 has a lead frame main body 11, and the lead frame main body 11 has a plurality of die pads 25 and a plurality of lead portions 26 that are arranged apart from the die pads 25. .
  • LED element placement regions 14 are formed on the surfaces of the die pads 25 and the lead portions 26.
  • the reflective resin portion 23 is provided so as to surround each LED element mounting region 14 of the lead frame main body 11.
  • the metal layer (in this case, the aluminum vapor deposition layer or the aluminum sputter layer) 12 is also applied to the inner wall 23b of the reflective resin portion 23 in addition to the surface of each LED element mounting region 14 of the lead frame body 11. Is provided. That is, the aluminum vapor deposition layer or the aluminum sputter layer 12 continuously extends from the surface of the LED element mounting region 14 along the inner wall 23 b of the reflective resin portion 23. In FIG. 12, the aluminum vapor deposition layer or the aluminum sputter layer 12 is indicated by oblique lines.
  • the metal layer 12 formed on the surface of the LED element mounting region 14 and the inner wall 23b of the reflective resin portion 23 is not limited to an aluminum vapor deposition layer or an aluminum sputter layer, but silver, rhodium, palladium, platinum, copper, etc. It may consist of layers of
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 is not provided between the lead frame main body 11 and the reflective resin portion 23. It is provided only on each LED element placement region 14 on the surface of the main body 11.
  • an aluminum vapor deposition layer or an aluminum sputter layer 12 is formed on a portion of the inner wall 23b of the reflective resin portion 23 adjacent to the space 17. Is not provided.
  • the lead frame main body 11 includes a plurality of die pads 25 and a plurality of lead portions 26 that are spaced apart from the die pads 25.
  • the main body 11 only needs to have at least one die pad 25 and one lead part 26.
  • FIG. 17 shows a lead frame with resin 10A according to a modification of the present embodiment.
  • a reflective metal layer 51 is provided on the upper surface 23 c of the reflective resin portion 23.
  • the reflective metal layer 51 may be made of an aluminum vapor deposition layer or an aluminum sputter layer, and may be made of other types of metal layers (for example, silver, rhodium, palladium, platinum, copper, etc.).
  • a part of the light emitted from the LED element 21 may be reflected inside the lighting device and return to the upper part of the semiconductor device 20.
  • By providing 51 it is possible to prevent the light returning to the upper part of the semiconductor device 20 from being absorbed by the semiconductor device 20.
  • FIG. 18 shows a lead frame with resin 10A according to another modification.
  • a reflective metal layer is formed on a portion 23d of the upper surface 23c of the reflective resin portion 23 cut by dicing (see FIG. 9E).
  • the reflective resin portion 23 is exposed without 51 being provided.
  • a reflective metal layer 51 is provided in a region of the upper surface 23c of the reflective resin portion 23 other than the portion 23d cut by dicing.
  • the portion 23d where the reflective resin portion 23 is exposed may be a substantially central portion of the upper surface 23c of the reflective resin portion 23, or may be a position shifted in the horizontal direction from the central portion of the upper surface 23c.
  • metal powder such as aluminum having good conductivity is not included in the cutting waste during dicing, it is possible to prevent a short circuit due to metal foreign matter remaining after cutting.
  • FIG. 19 shows a lead frame with resin 10A according to another modification.
  • a concave portion 52 that is recessed inward is formed at a substantially central portion of the upper surface 23c of the reflective resin portion 23.
  • the reflective metal layer 51 is provided over the entire area in the recess 52 (including the bottom surface 52 a).
  • this portion has a property of absorbing light.
  • the semiconductor device 20 is incorporated in the lighting device, part of the light emitted from the LED element 21 may be reflected inside the lighting device and return to the upper portion of the semiconductor device 20.
  • FIG. 19 by reducing the region that absorbs light (the portion cut by dicing), it is possible to prevent the light that has returned to the top of the semiconductor device 20 from being absorbed by the semiconductor device 20.
  • FIG. 20 shows a lead frame with resin 10A according to another modification.
  • the reflective metal layer 51 is formed on the bottom surface 52a which is a portion cut by dicing (see FIG. 9E) in the recess 52.
  • the reflective resin portion 23 is exposed without being provided.
  • a reflective metal layer 51 is provided in a region other than the bottom surface 52 a in the recess 52. In this case, the light returning to the upper part of the semiconductor device 20 can be prevented from being absorbed by the semiconductor device 20. Further, since metal powder such as aluminum having good conductivity is not included in the cutting waste during dicing, it is possible to prevent a short circuit due to metal foreign matters remaining after cutting.
  • FIG. 13 and 14 are diagrams showing a semiconductor device (SON type).
  • the semiconductor device 20 ⁇ / b> A includes a lead frame 15 having a lead frame body 11 and an aluminum vapor deposition layer or an aluminum sputter layer 12 (individualized), and a die pad 25 on the lead frame 15. And a bonding wire (conductive portion) 22 that electrically connects the lead portion 26 of the lead frame 15 and the LED element 21.
  • a reflective resin portion 23 is provided so as to surround the LED element 21. Furthermore, the LED element 21 and the bonding wire 22 are sealed with a translucent sealing resin 24.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 is provided on the inner wall 23b of the reflective resin portion 23 in addition to the surface of each LED element mounting region 14 of the lead frame body 11.
  • the aluminum vapor deposition layer or the aluminum sputtered layer 12 is indicated by oblique lines.
  • FIGS. 11 and 12 a manufacturing method of the lead frame with resin 10A shown in FIGS. 11 and 12 will be described with reference to FIGS. 15 (a)-(f) and FIGS. 16 (a)-(d). To do. The following description will focus on differences from the steps shown in FIGS. 7 (a)-(g) and FIGS. 8 (a)-(c).
  • the lead frame main body 11 having the die pad 25 and the lead portion 26 arranged away from the die pad 25 is manufactured (FIG. 15A). -(E)).
  • a silver plating layer 29 is formed on each of the first outer lead portion 27 and the second outer lead portion 28 by performing electroplating on the back surface of the lead frame main body 11. Thereby, the lead frame 15 is obtained (FIG. 15F). Alternatively, silver plating may be applied to the entire surface of the lead frame main body 11 at this time.
  • the lead frame 15 and the reflection resin portion 23 are integrally formed by forming the reflection resin portion 23 on the surface of the lead frame main body 11 (FIGS. 16A to 16C).
  • the steps of forming the reflective resin portion 23 are the same as those described above except that the reflective resin portion 23 is formed before the aluminum vapor deposition layer or the aluminum sputter layer 12 is formed. This is substantially the same as the steps shown in FIGS.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 is formed by performing vapor deposition or sputtering on the LED element placement region 14 of the lead frame main body 11 and the inner wall 23b of the reflective resin portion 23 (FIG. 16D). )). In this way, the lead frame with resin 10A shown in FIGS. 11 and 12 is obtained.
  • the aluminum vapor deposition layer or the aluminum sputter layer 12 is also provided on the inner wall 23 b of the reflective resin portion 23. Since aluminum constituting the aluminum vapor deposition layer or the aluminum sputter layer 12 is not deteriorated by the ultraviolet rays from the LED elements 21, the reflective resin portion 23 can be prevented from being deteriorated by ultraviolet rays over time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

 樹脂付リードフレーム10は、複数のダイパッド(LED素子載置部)25と、各ダイパッド25から離間して配置された複数のリード部26とを有するとともに、各ダイパッド25および各リード部26の表面にLED素子載置領域14が形成されたリードフレーム本体11を備えている。リードフレーム本体11の各LED素子載置領域14を取り囲むように反射樹脂部23が設けられている。リードフレーム本体11の各LED素子載置領域14表面に、アルミ蒸着層またはアルミスパッタ層12が設けられている。

Description

樹脂付リードフレームおよびその製造方法、ならびにリードフレーム
 本発明は、LED素子を載置するために用いられる樹脂付リードフレームおよびその製造方法、ならびにリードフレームに関する。
 近年、光デバイス、特にLEDデバイスは携帯電話の照明や液晶用バックライトとして用途を拡大しており、最近では白熱球に代わる一般照明分野までその用途は拡大している。しかしながら、一般に、LEDデバイスは同一ウエハー内の光発行効率のばらつきが大きい傾向がある。また、LEDデバイスを一般照明に用いるには発光効率がまだまだ低く、1つのLEDデバイス内に複数個のLED素子を搭載しなければならない。
 このようなLEDデバイスのパッケージングとしては、ガラスエポキシ等の有機基板にLED素子を搭載し、ワイヤーボンディングした後、エポキシ系の透明樹脂で封止し、その後個片化したものが存在する。あるいは、セラミック基板上にPPA等の白色樹脂からなる反射板(反射樹脂部)を成型し、その後これにLED素子を搭載し、ワイヤーボンディングした後、透明樹脂で封止し、個片化するものも存在する。あるいはまた、リードフレーム上にPPA等の白色樹脂で反射板を成型し、その後これにLED素子を搭載し、ワイヤーボンディングした後、透明樹脂で封止し、個片化するものもある。
特開2005-136379号公報
 上述したように、LEDパッケージの光取り出し効率(光束)を向上させるために、LED素子を搭載する基板として、リードフレーム上に合成樹脂からなる反射板を予め成型したものが用いられている。また従来、リードフレームは、その反射効率を考慮し、全面に銀めっき加工を施したものを用いている。しかしながら、反射板を構成する合成樹脂によっては、LED素子から発する紫外線により劣化して黄変し、光取り出し効率が経時的に低下する場合がある。また、リードフレームの銀めっきは、空気中の硫化水素と反応し、経時的に褐色に変色するという問題がある。
 本発明はこのような点を考慮してなされたものであり、LED素子を含む半導体装置において、LED素子からの光の取出し効率を高めるとともに、リードフレームの経時劣化を防止することが可能な、樹脂付リードフレームおよびその製造方法、ならびにリードフレームを提供することを目的とする。
 本発明は、複数のLED素子載置部と、それぞれ各前記LED素子載置部から離間して配置された複数のリード部とを有するとともに、各前記LED素子載置部および各前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体と、前記リードフレーム本体の各前記LED素子載置領域を取り囲んで設けられた反射樹脂部とを備え、前記リードフレーム本体の各前記LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設けたことを特徴とする樹脂付リードフレームである。
 本発明は、LED素子載置部と、前記LED素子載置部から離間して配置されたリード部とを有するとともに、前記LED素子載置部および前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体と、前記リードフレーム本体の前記LED素子載置領域を取り囲んで設けられた反射樹脂部とを備え、前記リードフレーム本体の前記LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設けたことを特徴とする樹脂付リードフレームである。
 本発明は、前記アルミ蒸着層または前記アルミスパッタ層は、更に前記反射樹脂部の内壁にも設けられていることを特徴とする樹脂付リードフレームである。
 本発明は、前記リードフレーム本体の前記複数のLED素子載置領域は、縦横に配置されていることを特徴とする樹脂付リードフレームである。
 本発明は、前記リードフレーム本体は、銅、銅合金、または42合金からなり、前記リードフレーム本体のうち少なくとも前記LED素子載置領域の表面は、鏡面加工されて、当該LED素子載置領域の算術平均高さSaが0.01μm~0.10μmとなり、粗さ曲線要素平均長さSmが2μm~18μmとなる粗さを有することを特徴とする樹脂付リードフレームである。
 本発明は、前記リードフレーム本体の前記LED素子載置部および前記リード部の裏面に、銀めっき層が設けられていることを特徴とする樹脂付リードフレームである。
 本発明は、前記リードフレーム本体の表面に、前記リードフレーム本体と前記反射樹脂部との密着性を高める溝が形成されていることを特徴とする樹脂付リードフレームである。
 本発明は、前記反射樹脂部の上面に、反射金属層が設けられていることを特徴とする樹脂付リードフレームである。
 本発明は、前記反射樹脂部の上面のうちダイシングにより切削される部分は、前記反射樹脂部が露出していることを特徴とする樹脂付リードフレームである。
 本発明は、前記反射樹脂部の上面に、内方に向けて凹む凹部が形成されていることを特徴とする樹脂付リードフレームである。
 本発明は、複数のLED素子載置部と、それぞれ各前記LED素子載置部から離間して配置された複数のリード部とを有するとともに、各前記LED素子載置部および各前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体を備え、前記リードフレーム本体の各前記LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設けたことを特徴とするリードフレームである。
 本発明は、LED素子載置部と、前記LED素子載置部から離間して配置されたリード部とを有するとともに、前記LED素子載置部および前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体を備え、前記リードフレーム本体の前記LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設けたことを特徴とするリードフレームである。
 本発明は、樹脂付リードフレームの製造方法において、複数のLED素子載置部と、それぞれ各前記LED素子載置部から離間して配置された複数のリード部とを有するとともに、各前記LED素子載置部および各前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体を準備する工程と、前記リードフレーム本体の各前記LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設ける工程と、前記リードフレーム本体の各前記LED素子載置領域を取り囲むように反射樹脂部を設ける工程とを備えたことを特徴とする樹脂付リードフレームの製造方法である。
 本発明は、樹脂付リードフレームの製造方法において、複数のLED素子載置部と、それぞれ各前記LED素子載置部から離間して配置された複数のリード部とを有するとともに、各前記LED素子載置部および各前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体を準備する工程と、前記リードフレーム本体の各前記LED素子載置領域を取り囲むように反射樹脂部を設ける工程と、前記リードフレーム本体の各前記LED素子載置領域表面および前記反射樹脂部の内壁に、アルミ蒸着層またはアルミスパッタ層を設ける工程とを備えたことを特徴とする樹脂付リードフレームの製造方法である。
 本発明によれば、リードフレーム本体の各LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設けている。このことにより、LED素子からの光を効率的に反射させて、LED素子からの光の取出し効率を高めるとともに、リードフレームの経時劣化を防止することができる。
図1は、本発明の第1の実施の形態によるリードフレームを示す断面図(図2のI-I線断面図)。 図2は、本発明の第1の実施の形態によるリードフレームを示す平面図。 図3は、本発明の第1の実施の形態による樹脂付リードフレームを示す断面図(図4のIII-III線断面図)。 図4は、本発明の第1の実施の形態による樹脂付リードフレームを示す平面図。 図5は、本発明の第1の実施の形態による半導体装置を示す断面図(図6のV-V線断面図)。 図6は、本発明の第1の実施の形態による半導体装置を示す平面図。 図7(a)-(g)は、本発明の第1の実施の形態によるリードフレームの製造方法を示す図。 図8(a)-(c)は、本発明の第1の実施の形態による樹脂付リードフレームの製造方法を示す図。 図9(a)-(f)は、本発明の第1の実施の形態による半導体装置の製造方法を示す断面図。 図10は、半導体装置が配線基板上に配置されている状態を示す断面図。 図11は、本発明の第2の実施の形態による樹脂付リードフレームを示す断面図(図12のXI-XI線断面図)。 図12は、本発明の第2の実施の形態による樹脂付リードフレームを示す平面図。 図13は、本発明の第2の実施の形態による半導体装置を示す断面図(図14のXIII-XIII線断面図)。 図14は、本発明の第2の実施の形態による半導体装置を示す平面図。 図15(a)-(f)は、本発明の第2の実施の形態によるリードフレームの製造方法を示す図。 図16(a)-(d)は、本発明の第2の実施の形態による樹脂付リードフレームの製造方法を示す図。 図17は、本発明の第2の実施の形態による樹脂付リードフレームの変形例を示す断面図。 図18は、本発明の第2の実施の形態による樹脂付リードフレームの変形例を示す断面図。 図19は、本発明の第2の実施の形態による樹脂付リードフレームの変形例を示す断面図。 図20は、本発明の第2の実施の形態による樹脂付リードフレームの変形例を示す断面図。
 第1の実施の形態
 以下、本発明の第1の実施の形態について、図1乃至図10を参照して説明する。
 リードフレームの構成
 まず、図1および図2により、本実施の形態によるLED素子用のリードフレームの概略について説明する。図1および図2は、本実施の形態によるリードフレームを示す図である。
 図1および図2に示すリードフレーム15は、複数のLED素子載置領域14を有するリードフレーム本体11と、リードフレーム本体11の各LED素子載置領域14表面に設けられ、LED素子21からの光を反射するための反射層として機能する金属層12とを備えている。
 このうちリードフレーム本体11は金属板からなっている。リードフレーム本体11を構成する金属板の材料としては、例えば銅、銅合金、42合金(Ni42%のFe合金)等を挙げることができる。このリードフレーム本体11の厚みは、半導体装置の構成にもよるが、0.1mm~0.5mmとすることが好ましい。
 また、図2に示すように、リードフレーム本体11は外枠13を有しており、複数のLED素子載置領域14は、この外枠13内で縦横に配置されている。またリードフレーム本体11は、複数のダイパッド(LED素子載置部)25と、各ダイパッド25から離間して配置された複数のリード部26とを有しており、各LED素子載置領域14は、それぞれのダイパッド25およびリード部26上に形成されている。ダイパッド25とリード部26との間には、反射樹脂部23が充填される空間17が形成されている。また各ダイパッド25および各リード部26は、それぞれ棒状のタイバー16により、隣接する他のダイパッド25、隣接する他のリード部26、または外枠13に連結されている。
 図1に示すように、ダイパッド25の裏面には、第1のアウターリード部27が形成され、リード部26の裏面には、第2のアウターリード部28が形成されている。これら第1のアウターリード部27および第2のアウターリード部28には、それぞれはんだとの接触性を高める銀めっき層29が設けられている。なお、めっき層29の厚みは、2μm~10μmとされることが好ましい。
 一方、金属層12は、例えば蒸着またはスパッタリングにより形成されていても良く、その材料としては、アルミニウム、銀、ロジウム、パラジウム、白金、銅などを挙げることができる。以下においては、金属層12が、アルミ蒸着層またはアルミスパッタ層からなる場合を例にとって説明する(以下、単にアルミ蒸着層またはアルミスパッタ層12ともいう)。このアルミ蒸着層またはアルミスパッタ層12は、LED素子21からの光を反射するための反射層として機能するものであり、リードフレーム15の最表面側に位置している。このアルミ蒸着層またはアルミスパッタ層12は、アルミニウム(Al)を蒸着またはスパッタリングすることにより形成されたものである。アルミ蒸着層またはアルミスパッタ層12は、その厚みが極薄く形成されており、具体的には0.1μm~1μmとされることが好ましい。なお、アルミ蒸着層またはアルミスパッタ層12は、リードフレーム本体11上に直接形成されても良いが、例えば銀(Ag)めっき層からなる接合層を介してリードフレーム本体11上に形成されていても良い。
 また、本実施の形態において、アルミ蒸着層またはアルミスパッタ層12は、外枠13およびタイバー16を含むリードフレーム本体11の表面全体に設けられているが、少なくとも、リードフレーム本体11表面のうち、各LED素子載置領域14に設けられていれば良い。すなわち、LED素子載置領域14は、リードフレーム本体11のうち反射樹脂部23(後述)によって覆われない領域であり、LED素子21からの光を反射するのに寄与する領域だからである。
 例えば、リードフレーム本体11表面のうち、ワイヤーボンディングされる部分にはアルミ蒸着層またはアルミスパッタ層12を設けなくても良い。
 また、例えば、リードフレーム本体11表面のうち、LED素子21を搭載する部分にはアルミ蒸着層またはアルミスパッタ層12を設けなくても良い。
 また、例えば、リードフレーム本体11表面に、銀めっき層からなる接合層(図示せず)を介してアルミ蒸着層またはアルミスパッタ層12を設け、かつリードフレーム本体11表面のうち、ワイヤーボンディングされる部分にはアルミ蒸着層またはアルミスパッタ層12を設けなくても良い。
 さらにまた、例えば、リードフレーム本体11表面に、銀めっき層からなる接合層(図示せず)を介してアルミ蒸着層またはアルミスパッタ層12を設け、かつリードフレーム本体11表面のうち、LED素子21を搭載する部分にはアルミ蒸着層またはアルミスパッタ層12を設けなくても良い。
 また、リードフレーム本体11のうち、少なくとも各LED素子載置領域14の表面は、アルミ蒸着層またはアルミスパッタ層12を設ける前に予め鏡面加工されていることが好ましい。この場合、各LED素子載置領域14の表面の粗さは、菱化システム社製、非接触表面・層断面形状計測システム、VertScan2.0を用いて測定したLED素子載置領域14の算術平均高さSaが、0.01μm~0.10μmとなり、粗さ曲線要素平均長さSmが2μm~18μmとなる粗さを有することが好ましい。これにより、各LED素子載置領域14の表面に形成されたアルミ蒸着層またはアルミスパッタ層12の反射率が高められ、LED素子21からの光を更に効率的に反射することができる。
 さらに、リードフレーム本体11の表面には、リードフレーム本体11と反射樹脂部23との密着性を高めるための溝18が形成されている。この溝18は、(空間17を除いて)平面矩形形状を有しており、リードフレーム本体11表面のうちLED素子載置領域14の外周縁に沿って設けられている。
 なお、図2において、符号S(二点鎖線)は、リードフレーム15のうち、後述する半導体装置20(図5および図6)に対応する領域を示している。
 なお、本実施の形態において、リードフレーム本体11は、複数のダイパッド25と、各ダイパッド25から離間して配置された複数のリード部26とを有しているが、これに限らず、リードフレーム本体11が、ダイパッド25およびリード部26をそれぞれ1つ以上有していればよい。
 樹脂付リードフレームの構成
 次に、図3および図4により、本実施の形態によるLED素子用の樹脂付リードフレームの概略について説明する。図3および図4は、本実施の形態による樹脂付リードフレームを示す図である。なお、図3および図4において、図1および図2と同一部分には同一の符号を付してある。
 図3および図4に示す樹脂付リードフレーム10は、LED素子21(図5および図6参照)を載置するために用いられるものである。このような樹脂付リードフレーム10は、リードフレーム15と、リードフレーム15上に設けられ、LED素子載置領域14を取り囲む反射樹脂部23とを備えている。
 このうちリードフレーム15は、リードフレーム本体11を有しており、このリードフレーム本体11は、複数のダイパッド25と、各ダイパッド25から離間して配置された複数のリード部26とを有している。各ダイパッド25および各リード部26の表面には、LED素子載置領域14が形成されている。また、リードフレーム本体11の各LED素子載置領域14の表面に、アルミ蒸着層またはアルミスパッタ層12が設けられている。図4において、このアルミ蒸着層またはアルミスパッタ層12を斜線で表示している。なお、リードフレーム15の構成は、上述した図1および図2に示すものと同様であり、ここでは詳細な説明を省略する。
 一方、反射樹脂部23は、リードフレーム15と一体化されており、LED素子21を取り囲む平面略矩形形状の凹部23aを有している。また、凹部23aの内側に内壁23bが形成されている。また、ダイパッド25とリード部26との間の空間17にも、反射樹脂部23が充填されている。なお、反射樹脂部23の詳細は後述する。
 なお、本実施の形態において、リードフレーム本体11は、複数のダイパッド25と、各ダイパッド25から離間して配置された複数のリード部26とを有しているが、これに限らず、リードフレーム本体11が、ダイパッド25およびリード部26をそれぞれ1つ以上有していればよい。
 半導体装置の構成
 次に、図5および図6により、図2および図3に示す樹脂付リードフレームを用いて作製された半導体装置について説明する。図5および図6は、本実施の形態による半導体装置(SONタイプ)を示す図である。なお、図5および図6において、図1乃至図4と同一部分には同一の符号を付してある。
 図5および図6に示すように、半導体装置20は、リードフレーム本体11とアルミ蒸着層またはアルミスパッタ層12とを有する(個片化された)リードフレーム15と、リードフレーム15のダイパッド25上に載置されたLED素子21と、リードフレーム15のリード部26とLED素子21とを電気的に接続するボンディングワイヤ(導電部)22とを備えている。なお、図6において、アルミ蒸着層またはアルミスパッタ層12を斜線で表示している。
 また、LED素子21を取り囲むように、凹部23aを有する反射樹脂部23が設けられている。さらに、LED素子21とボンディングワイヤ22とは、透光性の封止樹脂24によって封止されている。この封止樹脂24は、反射樹脂部23の凹部23a内に充填されている。なお、リードフレーム本体11表面のうち、封止樹脂24が設けられる領域が、上述したLED素子載置領域14に対応する。
 以下、半導体装置20を構成する各構成部材について、順次説明する。
 リードフレーム15は、上述したように、ダイパッド25とリード部26とを有するリードフレーム本体11と、リードフレーム本体11上に設けられ、LED素子21からの光を反射するための反射層として機能するアルミ蒸着層またはアルミスパッタ層12とを有している。
 一方、LED素子21は、発光層として例えばGaP、GaAs、GaAlAs、GaAsP、AlInGaP、またはInGaN等の化合物半導体単結晶からなる材料を適宜選ぶことにより、紫外光から赤外光に渡る発光波長を選択することができる。このようなLED素子21としては、従来一般に用いられているものを使用することができる。
 またLED素子21は、はんだまたはダイボンディングペーストにより、反射樹脂部23の凹部23a内においてダイパッド25上(アルミ蒸着層またはアルミスパッタ層12上)に固定実装されている。なお、ダイボンディングペーストを用いる場合、耐光性のあるエポキシ樹脂やシリコーン樹脂からなるダイボンディングペーストを選択することが可能である。
 ボンディングワイヤ22は、例えば金等の導電性の良い材料からなり、その一端がLED素子21の端子部21aに接続されるとともに、その他端がリードフレーム本体11のリード部26表面上(アルミ蒸着層またはアルミスパッタ層12上)に接続されている。
 反射樹脂部23は、例えば樹脂付リードフレーム10上に熱可塑性樹脂を例えば射出成形し、あるいは熱硬化性樹脂を例えば射出成形またはトランスファ成形することにより形成されたものである。反射樹脂部23の形状は、射出成形またはトランスファ成形に使用する金型の設計により、様々に実現することが可能である。例えば、反射樹脂部23の全体形状を、図5および図6に示すように直方体としても良く、あるいは円筒形または錐形等の形状とすることも可能である。また凹部23aの底面は、矩形、円形、楕円形または多角形等とすることができる。凹部23aの内壁23bの断面形状は、図5のように直線から構成されていても良いし、あるいは曲線から構成されていてもよい。
 反射樹脂部23に使用される熱可塑性樹脂または熱硬化性樹脂については、特に耐熱性、耐候性および機械的強度の優れたものを選ぶことが望ましい。熱可塑性樹脂の種類としては、ポリアミド、ポリフタルアミド(PPA)、ポリフェニレンサルファイド、液晶ポリマー、ポリエーテルサルホン、ポリエーテルイミドおよびポリブチレンテレフタレート、ポリオレフィン、シクロポリオレフィン等、熱硬化性樹脂としては、シリコーン、エポキシ、ポリイミド等を使用することができる。さらにまた、これらの樹脂中に光反射剤として、二酸化チタン、二酸化ジルコニウム、チタン酸カリウム、窒化アルミニウムおよび窒化ホウ素のうちいずれかを添加することによって、凹部23aの底面及び内壁23bにおいて、発光素子からの光の反射率を増大させ、半導体装置20全体の光取り出し効率を増大させることが可能となる。
 封止樹脂24としては、光の取り出し効率を向上させるために、半導体装置20の発光波長において光透過率が高く、また屈折率が高い材料を選択するのが望ましい。したがって耐熱性、耐候性、及び機械的強度が高い特性を満たす樹脂として、エポキシ樹脂やシリコーン樹脂を選択することが可能である。特に、LED素子21として高輝度LEDを用いる場合、封止樹脂24が強い光にさらされるため、封止樹脂24は高い耐候性を有するシリコーン樹脂からなることが好ましい。
 リードフレームおよび樹脂付リードフレームの製造方法
 次に、図1および図2に示すリードフレーム15および図3および図4に示す樹脂付リードフレーム10の製造方法について、図7(a)-(g)および図8(a)-(c)を用いて説明する。
 まず図7(a)に示すように、平板状の金属基板31を準備する。この金属基板31としては、上述のように銅、銅合金、42合金(Ni42%のFe合金)等からなる金属基板を使用することができる。なお金属基板31は、その両面に対して脱脂等を行い、洗浄処理を施したものを使用することが好ましい。
 また、金属基板31の表面31aに対して予め鏡面加工を施しておき、その算術平均高さSaが0.01μm~0.1μm、粗さ曲線要素平均長さSmが2μm~18μmとなるようにしておくことが好ましい。なお、このような鏡面加工としては、例えば材料の最終圧延時に鏡面加工圧延ローラーを使用することや、または、両面鏡面銅めっき加工を挙げることができる。
 次に、金属基板31の表裏全体にそれぞれ感光性レジスト32a、33aを塗布し、これを乾燥する(図7(b))。なお感光性レジスト32a、33aとしては、従来公知のものを使用することができる。
 続いて、この金属基板31に対してフォトマスクを介して露光し、現像することにより、所望の開口部32b、33bを有するエッチング用レジスト層32、33を形成する(図7(c))。
 次に、エッチング用レジスト層32、33を耐腐蝕膜として金属基板31に腐蝕液でエッチングを施す(図7(d))。腐蝕液は、使用する金属基板31の材質に応じて適宜選択することができ、例えば、金属基板31として銅を用いる場合、通常、塩化第二鉄水溶液を使用し、金属基板31の両面からスプレーエッチングにて行うことができる。
 次いで、エッチング用レジスト層32、33を剥離して除去する。このようにして、ダイパッド25と、ダイパッド25から離間したリード部26とを有するリードフレーム本体11が得られる(図7(e))。またこの際、ハーフエッチングによりリードフレーム本体11の表面に溝18が形成される。
 次に、リードフレーム本体11の裏面に電解めっきを施すことにより、第1のアウターリード部27および第2のアウターリード部28に金属(銀)を析出させて、はんだとの接触性を高める銀めっき層29を形成する(図7(f))。この場合、例えば電解脱脂工程、酸洗工程、化学研磨工程、銅ストライク工程、水洗工程、中性脱脂工程、シアン洗工程、および銀めっき工程を順次経ることにより、第1のアウターリード部27および第2のアウターリード部28に銀めっき層29を形成する。この電解めっき用のめっき液としては、例えばシアン化銀を主成分とした銀めっき液を挙げることができる。実際の工程では、各工程間で必要に応じ適宜水洗工程を加える。
 次に、リードフレーム本体11の表面に蒸着またはスパッタリングを施すことにより、リードフレーム本体11上にアルミニウムを付着させる。これにより、LED素子載置領域14を含むリードフレーム本体11の表面全体に、反射層として機能するアルミ蒸着層またはアルミスパッタ層12を形成する(図7(g))。
 アルミ蒸着層またはアルミスパッタ層の形成は、具体的には、これに限定されるものではないが、蒸着の場合、真空到達度9×10-6torr、レート1.5nm/秒という条件により、リードフレーム本体11上にアルミ蒸着層12を形成することができる。また、スパッタリングの場合、真空到達度4×10-6torr、成膜真空度5×10-3torr、パワー900W(ターゲットサイズ5インチ×18インチの場合)という条件により、リードフレーム本体11上にアルミスパッタ層12を形成することができる。
 このようにして、リードフレーム本体11と、リードフレーム本体11上に形成されたアルミ蒸着層またはアルミスパッタ層12とを有するリードフレーム15が得られる(図7(g))。
 次に、リードフレーム15のアルミ蒸着層またはアルミスパッタ層12上に反射樹脂部23を形成する。以下、これらの各工程について更に説明する。
 まず上述した工程(図7(a)-(g))により得られたリードフレーム15を、射出成形機またはトランスファ成形機(図示せず)の金型35内に装着する(図8(a))。金型35内には、反射樹脂部23の形状に対応する空間35aが形成されている。
 次に、射出成形機またはトランスファ成形機の樹脂供給部(図示せず)により金型35内に熱硬化性樹脂を流し込み、その後硬化させることにより、リードフレーム15表面のうち、LED素子載置領域14以外の部分に反射樹脂部23を形成する(図8(b))。この際、ダイパッド25とリード部26との間の空間17にも反射樹脂部23を充填する。
 次いで、反射樹脂部23が形成されたリードフレーム15を金型35内から取り出す。このようにして、反射樹脂部23とリードフレーム15とが一体に形成された樹脂付リードフレーム10(図3および図4)が得られる(図8(c))。
 半導体装置の製造方法
 次に、図5および図6に示す半導体装置20の製造方法について、図9(a)-(f)を用いて説明する。
 まず、上述した工程により(図7(a)-(g)および図8(a)-(c))、リードフレーム15と、反射樹脂部23とを備えた樹脂付リードフレーム10を作製する(図9(a))。
 次に、リードフレーム15のダイパッド25上にLED素子21を搭載する。この場合、はんだまたはダイボンディングペーストを用いて、LED素子21をリードフレーム15のダイパッド25上(アルミ蒸着層またはアルミスパッタ層12上)に載置して固定する(ダイアタッチ工程)(図9(b))。
 次に、LED素子21の端子部21aと、リードフレーム15のリード部26表面とを、ボンディングワイヤ22によって互いに電気的に接続する(ワイヤボンディング工程)(図9(c))。
 その後、反射樹脂部23の凹部23a内に封止樹脂24を充填し、封止樹脂24によりLED素子21とボンディングワイヤ22とを封止する(図9(d))。
 次に、各LED素子21間の反射樹脂部23をダイシングすることにより、リードフレーム15を各LED素子21毎に分離する(図9(e))。この際、まずリードフレーム15をダイシングテープ37上に載置して固定し、その後、例えばダイヤモンド砥石等からなるブレード38によって、各LED素子21間の反射樹脂部23を垂直方向に切断する。
 このようにして、図5および図6に示す半導体装置20を得ることができる(図9(f))。
 本実施の形態の作用効果
 次に、このような構成からなる本実施の形態の作用について、図10を用いて説明する。図10は、本実施の形態による半導体装置が配線基板上に配置されている状態を示す断面図である。
 図10に示すように、本実施の形態による半導体装置20を配線基板41上に配置する。このような配線基板41は、基板本体42と、基板本体42上に形成された配線端子部43、44とを有している。このうち一方の配線端子部43は、一方の接続はんだ部45を介して、第1のアウターリード部27に接続されている。また他方の配線端子部44は、他方の接続はんだ部46を介して、第2のアウターリード部28に接続されている。
 このようにして、半導体装置20を配線基板41上に配置するとともに、一対の配線端子部43、44間に電流を流した場合、ダイパッド25上のLED素子21に電流が加わり、LED素子21が点灯する。
 この際、LED素子21からの光は、封止樹脂24を通過して封止樹脂24の表面から放出され、または反射樹脂部23の凹部23aの内壁23bで反射することにより、封止樹脂24の表面から放出される。あるいは、LED素子21からの光は、アルミ蒸着層またはアルミスパッタ層12の表面で反射することにより封止樹脂24の表面から放出される。
 本実施の形態においては、リードフレーム本体11のLED素子載置領域14の表面に、アルミ蒸着層またはアルミスパッタ層12を設けている。このことにより、LED素子21からの光を効率的に反射させて、LED素子21からの光の取出し効率を高めることができる。また、アルミ蒸着層またはアルミスパッタ層12を構成するアルミニウムは、空気中の硫化水素によって劣化することがないため、リードフレーム15の経時劣化を防止することができる。
 以上説明したように本実施の形態によれば、リードフレーム本体11の各LED素子載置領域14表面に、アルミ蒸着層またはアルミスパッタ層12を設けている。このことにより、LED素子21からの光を効率的に反射させて、LED素子21からの光の取出し効率を高めるとともに、リードフレーム15の経時劣化を防止することができる。
 また本実施の形態によれば、アルミ蒸着層またはアルミスパッタ層12を設けたことにより、リードフレーム15と封止樹脂24との密着性を高めることができる。しかも、ボンディングワイヤ22によるワイヤボンディング性やLED素子21のダイアタッチ性も良好に維持することができる。
 銀めっき層からなる接合層を介してアルミ蒸着層またはアルミスパッタ層12を設けた場合、ワイヤーボンディングされる部分には、薄いアルミを破って下地の銀(銀めっき層)とワイヤーとの合金も形成されるため、ボンディング性がさらに良くなり、ワイヤボンディング強度をより高くすることができる。
 ワイヤーボンディングされる部分にアルミ蒸着層またはアルミスパッタ層12を設けない場合、ワイヤーボンディングの際にアルミの酸化膜を破るエネルギーが不要となるため、ボンディング温度および超音波などの条件を緩和することが出来る。
 LED素子21を搭載する部分にアルミ蒸着層またはアルミスパッタ層12を設けない場合、ダイパッド25を介した放熱の経路が短くなり、結果として放熱性を向上させることが出来る。
 例えば、銀めっき層からなる接合層を介してアルミ蒸着層またはアルミスパッタ層12を設け、かつワイヤーボンディングされる部分にはアルミ蒸着層またはアルミスパッタ層12を設けない場合、従来と同様銀めっき層上に直接ワイヤーボンディングすることができるため、例えば金製のボンディングワイヤ22との接合強度を高く保持することが出来る。
 例えば、銀めっき層からなる接合層を介してアルミ蒸着層またはアルミスパッタ層12を設け、かつLED素子21を搭載する部分にアルミ蒸着層またはアルミスパッタ層12を設けない場合、例えばLED素子21をはんだで接合する際に、その部分のはんだの濡れが良いため、はんだ内にボイドを発生させず、かつLED素子21の全面を確実に搭載することができる。
 第2の実施の形態
 次に、図11乃至図16を参照して本発明の第2の実施の形態について説明する。図11乃至図16は、本発明の第2の実施の形態を示す図である。図11乃至図16に示す第2の実施の形態は、アルミ蒸着層またはアルミスパッタ層12を、反射樹脂部23の内壁23bにも設けた点が異なるものであり、他の構成は上述した第1の実施の形態と略同一である。図11乃至図16において、図1乃至図10に示す実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
 樹脂付リードフレームの構成
 まず図11および図12により、本実施の形態による樹脂付リードフレームの概略について説明する。図11および図12は、本実施の形態による樹脂付リードフレームを示す図である。
 図11および図12に示すように、本実施の形態による樹脂付リードフレーム10Aは、リードフレーム15と、反射樹脂部23とを備えている。
 このうちリードフレーム15は、リードフレーム本体11を有しており、リードフレーム本体11は、複数のダイパッド25と、各ダイパッド25から離間して配置された複数のリード部26とを有している。また、各ダイパッド25および各リード部26の表面には、LED素子載置領域14が形成されている。一方、反射樹脂部23は、リードフレーム本体11の各LED素子載置領域14を取り囲むように設けられている。
 本実施の形態において、金属層(この場合はアルミ蒸着層またはアルミスパッタ層)12は、リードフレーム本体11の各LED素子載置領域14の表面に加え、更に反射樹脂部23の内壁23bにも設けられている。すなわちアルミ蒸着層またはアルミスパッタ層12は、LED素子載置領域14の表面から反射樹脂部23の内壁23bに沿って連続的に延びている。なお、図12において、アルミ蒸着層またはアルミスパッタ層12を斜線で表示している。LED素子載置領域14の表面および反射樹脂部23の内壁23bに形成される金属層12は、アルミ蒸着層またはアルミスパッタ層に限定されるものではなく、銀、ロジウム、パラジウム、白金、銅などの層からなっていても良い。
 この場合、図3および図4に示す樹脂付リードフレーム10と異なり、アルミ蒸着層またはアルミスパッタ層12は、リードフレーム本体11と反射樹脂部23との間には設けられておらず、リードフレーム本体11表面のうち各LED素子載置領域14のみに設けられている。
 また、図12に示すように、ダイパッド25とリード部26とが短絡しないようにするため、反射樹脂部23の内壁23bのうち空間17に隣接する部分には、アルミ蒸着層またはアルミスパッタ層12を設けないようにしている。
 このほか、図11および図12に示す樹脂付リードフレーム10Aの構成は、図3および図4に示す樹脂付リードフレーム10と略同一であるので、ここでは詳細な説明を省略する。
 なお、本実施の形態において、リードフレーム本体11は、複数のダイパッド25と、各ダイパッド25から離間して配置された複数のリード部26とを有しているが、これに限らず、リードフレーム本体11が、ダイパッド25およびリード部26をそれぞれ1つ以上有していればよい。
 図17は、本実施の形態の一変形例による樹脂付リードフレーム10Aを示している。図17に示す樹脂付リードフレーム10Aにおいて、反射樹脂部23の上面23cに、反射金属層51が設けられている。反射金属層51は、アルミ蒸着層またはアルミスパッタ層からなっていても良く、他の種類の金属層(例えば銀、ロジウム、パラジウム、白金、銅など)からなっていても良い。一般に、半導体装置20が照明装置に組み込まれた際、LED素子21から出た光の一部は照明装置内を反射し、半導体装置20の上部に戻ることがあるが、このように反射金属層51を設けたことにより、半導体装置20の上部に戻った光が半導体装置20に吸収されることを防止することが出来る。
 図18は、他の変形例による樹脂付リードフレーム10Aを示している。図18に示す樹脂付リードフレーム10Aにおいて、図17に示す形態と異なり、反射樹脂部23の上面23cのうち、ダイシング(図9(e)参照)により切削される部分23dには、反射金属層51が設けられることなく、反射樹脂部23が露出している。一方、反射樹脂部23の上面23cのうち、ダイシングにより切削される部分23d以外の領域には、反射金属層51が設けられている。なお、反射樹脂部23が露出する部分23dは、反射樹脂部23の上面23cの略中央部分であっても良く、上面23cの中央部分から水平方向にずれた位置であっても良い。この場合、ダイシング時の切削くずに、導電性の良いアルミ等の金属粉が含まれないため、切削後に残った金属異物によるショートを防ぐことが出来る。
 図19は、他の変形例による樹脂付リードフレーム10Aを示している。図19に示す樹脂付リードフレーム10Aにおいて、図17に示す形態と異なり、反射樹脂部23の上面23cの略中央部に、内方に向けて凹む凹部52が形成されている。図19において、凹部52内の(底面52aを含む)全域に、反射金属層51が設けられている。一般に、ダイシングにより切削された部分には反射金属層51が存在しないため、この部分が光を吸収する性質がある。また、半導体装置20が照明装置に組み込まれた際、LED素子21から出た光の一部は、照明装置内を反射し、半導体装置20の上部に戻ることがある。図19において、光を吸収する領域(ダイシングにより切削される部分)を小さくしたことにより、半導体装置20の上部に戻ってきた光が半導体装置20に吸収されることを防止することが出来る。
 図20は、他の変形例による樹脂付リードフレーム10Aを示している。図20に示す樹脂付リードフレーム10Aにおいて、図19に示す形態と異なり、凹部52のうち、ダイシング(図9(e)参照)により切削される部分である底面52aには、反射金属層51が設けられることなく、反射樹脂部23が露出している。一方、凹部52のうち底面52a以外の領域には反射金属層51が設けられている。この場合、半導体装置20の上部に戻ってきた光が半導体装置20に吸収されることを防止することが出来る。またダイシング時の切削くずに、導電性の良いアルミ等の金属粉が含まれないため、切削後に残った金属異物によるショートを防ぐことが出来る。
 半導体装置の構成
 次に、図13および図14により、図11および図12に示す樹脂付リードフレームを用いて作製された半導体装置について説明する。図13および図14は、半導体装置(SONタイプ)を示す図である。
 図13および図14に示すように、半導体装置20Aは、リードフレーム本体11とアルミ蒸着層またはアルミスパッタ層12とを有する(個片化された)リードフレーム15と、リードフレーム15のダイパッド25上に載置されたLED素子21と、リードフレーム15のリード部26とLED素子21とを電気的に接続するボンディングワイヤ(導電部)22とを備えている。
 また、LED素子21を取り囲むように反射樹脂部23が設けられている。さらに、LED素子21とボンディングワイヤ22とは、透光性の封止樹脂24によって封止されている。
 図13および図14において、アルミ蒸着層またはアルミスパッタ層12は、リードフレーム本体11の各LED素子載置領域14の表面に加え、更に反射樹脂部23の内壁23bにも設けられている。なお、図14において、アルミ蒸着層またはアルミスパッタ層12を斜線で表示している。
 このほか、図13および図14に示す半導体装置20Aの構成は、図5および図6に示す半導体装置20と略同一であるので、ここでは詳細な説明を省略する。
 樹脂付リードフレームの製造方法
 次に、図11および図12に示す樹脂付リードフレーム10Aの製造方法について、図15(a)-(f)および図16(a)-(d)を用いて説明する。以下、上述した図7(a)-(g)および図8(a)-(c)に示す工程との相違点を中心に説明する。
 まず、図7(a)-(e)に示す工程と同様に、ダイパッド25と、ダイパッド25から離間して配置されたリード部26とを有するリードフレーム本体11を作製する(図15(a)-(e))。
 次に、リードフレーム本体11の裏面に電解めっきを施すことにより、第1のアウターリード部27および第2のアウターリード部28に、それぞれ銀めっき層29を形成する。これによりリードフレーム15が得られる(図15(f))。あるいは、このときリードフレーム本体11の全面に銀めっきを施してもよい。
 次に、リードフレーム本体11の表面に反射樹脂部23を形成することにより、リードフレーム15と反射樹脂部23とを一体に構成する(図16(a)-(c))。この反射樹脂部23を形成する工程(図16(a)-(c))は、アルミ蒸着層またはアルミスパッタ層12を形成する前に反射樹脂部23を形成している点を除き、上述した図8(a)-(c)に示す工程と略同様である。
 次に、リードフレーム本体11のLED素子載置領域14と、反射樹脂部23の内壁23bとに、蒸着またはスパッタリングを施すことにより、アルミ蒸着層またはアルミスパッタ層12を形成する(図16(d))。このようにして、図11および図12に示す樹脂付リードフレーム10Aが得られる。
 なお、このようにして得られた樹脂付リードフレーム10Aを用いて、図13および図14に示す半導体装置20Aを作製する方法は、上述した図9(a)-(f)に示す方法と略同様であるので、ここでは詳細な説明を省略する。
 このように本実施の形態によれば、LED素子21からの光の取出し効率を高めるとともに、リードフレーム15の経時劣化を防止することができる。
 また、本実施の形態によれば、アルミ蒸着層またはアルミスパッタ層12が反射樹脂部23の内壁23bにも設けられている。アルミ蒸着層またはアルミスパッタ層12を構成するアルミニウムは、LED素子21からの紫外線によって劣化することがないので、反射樹脂部23が紫外線によって経時劣化することを防止することができる。

Claims (14)

  1.  複数のLED素子載置部と、それぞれ各前記LED素子載置部から離間して配置された複数のリード部とを有するとともに、各前記LED素子載置部および各前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体と、
     前記リードフレーム本体の各前記LED素子載置領域を取り囲んで設けられた反射樹脂部とを備え、
     前記リードフレーム本体の各前記LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設けたことを特徴とする樹脂付リードフレーム。
  2.  LED素子載置部と、前記LED素子載置部から離間して配置されたリード部とを有するとともに、前記LED素子載置部および前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体と、
     前記リードフレーム本体の前記LED素子載置領域を取り囲んで設けられた反射樹脂部とを備え、
     前記リードフレーム本体の前記LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設けたことを特徴とする樹脂付リードフレーム。
  3.  前記アルミ蒸着層または前記アルミスパッタ層は、更に前記反射樹脂部の内壁にも設けられていることを特徴とする請求項1または2記載の樹脂付リードフレーム。
  4.  前記リードフレーム本体の前記複数のLED素子載置領域は、縦横に配置されていることを特徴とする請求項1記載の樹脂付リードフレーム。
  5.  前記リードフレーム本体は、銅、銅合金、または42合金からなり、前記リードフレーム本体のうち少なくとも前記LED素子載置領域の表面は、鏡面加工されて、当該LED素子載置領域の算術平均高さSaが0.01μm~0.10μmとなり、粗さ曲線要素平均長さSmが2μm~18μmとなる粗さを有することを特徴とする請求項1または2記載の樹脂付リードフレーム。
  6.  前記リードフレーム本体の前記LED素子載置部および前記リード部の裏面に、銀めっき層が設けられていることを特徴とする請求項1または2記載の樹脂付リードフレーム。
  7.  前記リードフレーム本体の表面に、前記リードフレーム本体と前記反射樹脂部との密着性を高める溝が形成されていることを特徴とする請求項1または2記載の樹脂付リードフレーム。
  8.  前記反射樹脂部の上面に、反射金属層が設けられていることを特徴とする請求項1または2記載の樹脂付リードフレーム。
  9.  前記反射樹脂部の上面のうちダイシングにより切削される部分は、前記反射樹脂部が露出していることを特徴とする請求項8記載の樹脂付リードフレーム。
  10.  前記反射樹脂部の上面に、内方に向けて凹む凹部が形成されていることを特徴とする請求項8記載の樹脂付リードフレーム。
  11.  複数のLED素子載置部と、それぞれ各前記LED素子載置部から離間して配置された複数のリード部とを有するとともに、各前記LED素子載置部および各前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体を備え、
     前記リードフレーム本体の各前記LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設けたことを特徴とするリードフレーム。
  12.  LED素子載置部と、前記LED素子載置部から離間して配置されたリード部とを有するとともに、前記LED素子載置部および前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体を備え、
     前記リードフレーム本体の前記LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設けたことを特徴とするリードフレーム。
  13.  樹脂付リードフレームの製造方法において、
     複数のLED素子載置部と、それぞれ各前記LED素子載置部から離間して配置された複数のリード部とを有するとともに、各前記LED素子載置部および各前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体を準備する工程と、
     前記リードフレーム本体の各前記LED素子載置領域表面に、アルミ蒸着層またはアルミスパッタ層を設ける工程と、
     前記リードフレーム本体の各前記LED素子載置領域を取り囲むように反射樹脂部を設ける工程とを備えたことを特徴とする樹脂付リードフレームの製造方法。
  14.  樹脂付リードフレームの製造方法において、
     複数のLED素子載置部と、それぞれ各前記LED素子載置部から離間して配置された複数のリード部とを有するとともに、各前記LED素子載置部および各前記リード部の表面にLED素子載置領域が形成されたリードフレーム本体を準備する工程と、
     前記リードフレーム本体の各前記LED素子載置領域を取り囲むように反射樹脂部を設ける工程と、
     前記リードフレーム本体の各前記LED素子載置領域表面および前記反射樹脂部の内壁に、アルミ蒸着層またはアルミスパッタ層を設ける工程とを備えたことを特徴とする樹脂付リードフレームの製造方法。
PCT/JP2012/051432 2011-01-27 2012-01-24 樹脂付リードフレームおよびその製造方法、ならびにリードフレーム WO2012102266A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/980,980 US9461220B2 (en) 2011-01-27 2012-01-24 Resin-attached lead frame, method for manufacturing the same, and lead frame
CN201280005657.6A CN103348499B (zh) 2011-01-27 2012-01-24 带树脂的引线框和其制造方法、以及引线框
JP2012554800A JP5861943B2 (ja) 2011-01-27 2012-01-24 樹脂付リードフレームおよびその製造方法、ならびにリードフレーム
KR1020137016578A KR101760545B1 (ko) 2011-01-27 2012-01-24 수지 부착 리드 프레임 및 그 제조 방법, 및 리드 프레임
US15/246,608 US9806241B2 (en) 2011-01-27 2016-08-25 Resin-attached lead frame and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011015274 2011-01-27
JP2011-015274 2011-01-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/980,980 A-371-Of-International US9461220B2 (en) 2011-01-27 2012-01-24 Resin-attached lead frame, method for manufacturing the same, and lead frame
US15/246,608 Continuation US9806241B2 (en) 2011-01-27 2016-08-25 Resin-attached lead frame and semiconductor device

Publications (1)

Publication Number Publication Date
WO2012102266A1 true WO2012102266A1 (ja) 2012-08-02

Family

ID=46580832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051432 WO2012102266A1 (ja) 2011-01-27 2012-01-24 樹脂付リードフレームおよびその製造方法、ならびにリードフレーム

Country Status (6)

Country Link
US (2) US9461220B2 (ja)
JP (1) JP5861943B2 (ja)
KR (1) KR101760545B1 (ja)
CN (1) CN103348499B (ja)
TW (1) TW201250964A (ja)
WO (1) WO2012102266A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096550A (ja) * 2012-11-09 2014-05-22 Fusheng Industrial Co Ltd 発光ダイオードのフレーム構造の製造方法(四)
JP2014112616A (ja) * 2012-12-05 2014-06-19 Dainippon Printing Co Ltd 光半導体装置用リードフレーム、樹脂付き光半導体装置用リードフレーム、リードフレームの多面付け体、樹脂付きリードフレームの多面付け体、光半導体装置、光半導体装置の多面付け体
JP2014112614A (ja) * 2012-12-05 2014-06-19 Dainippon Printing Co Ltd 光半導体装置用リードフレーム、樹脂付き光半導体装置用リードフレーム、リードフレームの多面付け体、樹脂付きリードフレームの多面付け体、光半導体装置、光半導体装置の多面付け体
JP2015056425A (ja) * 2013-09-10 2015-03-23 大日本印刷株式会社 光半導体装置、光半導体装置用リードフレーム、及びそれらの製造方法
JP2016032082A (ja) * 2014-07-30 2016-03-07 シチズン電子株式会社 メッキ膜の剥離防止方法、部品集合体および発光装置
JP2016086059A (ja) * 2014-10-24 2016-05-19 日亜化学工業株式会社 発光装置、パッケージ及びそれらの製造方法
WO2017056321A1 (ja) * 2015-10-02 2017-04-06 大日本印刷株式会社 樹脂付リードフレームおよびその製造方法、ならびにledパッケージおよびその製造方法
JP2017157684A (ja) * 2016-03-02 2017-09-07 ローム株式会社 発光装置およびその製造方法
JP2017183662A (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 リードフレーム材料およびその製造方法
WO2018147325A1 (ja) * 2017-02-09 2018-08-16 株式会社アクアバンク 飲料殺菌ユニットおよびこれを備えた飲料水供給装置
JP2019016620A (ja) * 2017-07-03 2019-01-31 株式会社沖データ 光源用反射体、光源及び光源用反射体の製造方法
JP2019016740A (ja) * 2017-07-10 2019-01-31 新光電気工業株式会社 リードフレーム、半導体装置、及びリードフレームの製造方法
JP2019046938A (ja) * 2017-08-31 2019-03-22 日亜化学工業株式会社 パッケージの製造方法及び発光装置の製造方法
US10777719B2 (en) 2018-04-10 2020-09-15 Nichia Corporation Base member, and method of manufacturing light emitting device using same

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878215B2 (en) * 2011-06-22 2014-11-04 Lg Innotek Co., Ltd. Light emitting device module
DE102012104882B4 (de) * 2012-06-05 2017-06-08 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von optoelektronischen Halbleiterbauteilen und damit hergestelltes optoelektronisches Halbleiterbauteil
US9748164B2 (en) * 2013-03-05 2017-08-29 Nichia Corporation Semiconductor device
US10242934B1 (en) * 2014-05-07 2019-03-26 Utac Headquarters Pte Ltd. Semiconductor package with full plating on contact side surfaces and methods thereof
TWI553264B (zh) 2014-05-23 2016-10-11 億光電子工業股份有限公司 承載支架及其製造方法以及從該承載支架所製得之發光裝置及其製造方法
US10177292B2 (en) 2014-05-23 2019-01-08 Everlight Electronics Co., Ltd. Carrier, carrier leadframe, and light emitting device
JP6493952B2 (ja) * 2014-08-26 2019-04-03 大口マテリアル株式会社 リードフレーム及びその製造方法
US9379087B2 (en) * 2014-11-07 2016-06-28 Texas Instruments Incorporated Method of making a QFN package
JP6362111B2 (ja) * 2014-12-01 2018-07-25 大口マテリアル株式会社 リードフレームの製造方法
JP6270052B2 (ja) * 2014-12-05 2018-01-31 Shマテリアル株式会社 リードフレーム及びその製造方法
US9859481B2 (en) * 2014-12-22 2018-01-02 Nichia Corporation Light emitting device
US9590158B2 (en) 2014-12-22 2017-03-07 Nichia Corporation Light emitting device
JP2016207739A (ja) 2015-04-17 2016-12-08 株式会社東芝 半導体発光装置及びその製造方法
CN107615477B (zh) * 2015-06-18 2021-12-28 京瓷株式会社 电子元件安装用基板以及电子装置
JP6337859B2 (ja) 2015-09-08 2018-06-06 日亜化学工業株式会社 発光装置
US20170294367A1 (en) * 2016-04-07 2017-10-12 Microchip Technology Incorporated Flat No-Leads Package With Improved Contact Pins
JP6644978B2 (ja) * 2016-07-25 2020-02-12 大口マテリアル株式会社 半導体素子搭載用基板及び半導体装置、並びにそれらの製造方法
JP6825780B2 (ja) * 2016-07-27 2021-02-03 大口マテリアル株式会社 多列型led用配線部材及びその製造方法
US10700252B2 (en) 2017-04-18 2020-06-30 Bridgelux Chongqing Co., Ltd. System and method of manufacture for LED packages
CN108933185B (zh) * 2017-05-26 2021-01-05 黄国益 支撑结构、使用其的发光装置以及其加工方法
US10892211B2 (en) * 2017-08-09 2021-01-12 Semtech Corporation Side-solderable leadless package
US10672954B2 (en) * 2017-09-01 2020-06-02 Lg Innotek Co., Ltd. Light emitting device package
KR102641336B1 (ko) * 2017-09-05 2024-02-28 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자 패키지
KR102401826B1 (ko) * 2017-09-15 2022-05-25 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 패키지 및 이를 포함하는 조명장치
KR102379733B1 (ko) 2017-09-15 2022-03-28 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 패키지
KR102359594B1 (ko) * 2017-09-19 2022-02-07 엘지디스플레이 주식회사 복합 무기 발광 재료, 발광 필름, 이를 포함하는 엘이디 패키지, 발광다이오드 및 발광장치
CN108321283A (zh) * 2018-04-03 2018-07-24 江苏鸿利国泽光电科技有限公司 一种高光效紫外led的封装支架及其封装方法
JP7174240B2 (ja) * 2018-11-30 2022-11-17 日亜化学工業株式会社 発光装置の製造方法
JP6947988B2 (ja) * 2019-01-28 2021-10-13 日亜化学工業株式会社 発光装置の製造方法
CN111724741A (zh) * 2020-06-09 2020-09-29 武汉华星光电半导体显示技术有限公司 覆晶薄膜及其制备方法
JP7495610B2 (ja) * 2020-07-06 2024-06-05 日亜化学工業株式会社 発光装置及び発光装置の製造方法
TWM606836U (zh) * 2020-09-18 2021-01-21 長華科技股份有限公司 導線架
US11715678B2 (en) * 2020-12-31 2023-08-01 Texas Instruments Incorporated Roughened conductive components
CN113113321B (zh) * 2021-03-26 2022-02-11 昆山弗莱吉电子科技有限公司 半导体高密度引线框架及其制造工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165567A (ja) * 2002-11-15 2004-06-10 Mitsui High Tec Inc プリモールドパッケージ用リードフレーム及びその製造方法並びにプリモールドパッケージ及びその製造方法
JP2005019688A (ja) * 2003-06-26 2005-01-20 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2006156747A (ja) * 2004-11-30 2006-06-15 Ngk Spark Plug Co Ltd 配線基板
JP2007294631A (ja) * 2006-04-25 2007-11-08 Matsushita Electric Works Ltd 樹脂反射鏡及びこれを用いた照明器具
JP2008172125A (ja) * 2007-01-15 2008-07-24 Citizen Electronics Co Ltd チップ型led発光装置及びその製造方法
WO2010026716A1 (ja) * 2008-09-03 2010-03-11 日亜化学工業株式会社 発光装置、樹脂パッケージ、樹脂成形体並びにこれらの製造方法
JP2011003853A (ja) * 2009-06-22 2011-01-06 Stanley Electric Co Ltd 発光装置の製造方法、発光装置および発光装置搭載用基板

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632528B2 (ja) * 1988-02-08 1997-07-23 新光電気工業株式会社 リードフレーム
JP2000183407A (ja) * 1998-12-16 2000-06-30 Rohm Co Ltd 光半導体装置
JP3940124B2 (ja) * 2003-01-16 2007-07-04 松下電器産業株式会社 装置
JP4493013B2 (ja) 2003-10-08 2010-06-30 日亜化学工業株式会社 半導体装置
TWI245437B (en) 2004-11-16 2005-12-11 Lighthouse Technology Co Ltd Package structure of a surface mount device light emitting diode
JP2006344925A (ja) * 2005-05-11 2006-12-21 Sharp Corp 発光素子搭載用フレームおよび発光装置
US7906794B2 (en) * 2006-07-05 2011-03-15 Koninklijke Philips Electronics N.V. Light emitting device package with frame and optically transmissive element
TW200847478A (en) * 2007-05-30 2008-12-01 I Chiun Precision Ind Co Ltd Light-emitting diode lead frame and manufacture method thereof
JP4758976B2 (ja) * 2007-12-03 2011-08-31 日立ケーブルプレシジョン株式会社 半導体発光素子搭載用リードフレーム及びその製造方法並びに発光装置
WO2010029872A1 (ja) * 2008-09-09 2010-03-18 昭和電工株式会社 発光装置、発光モジュール、表示装置
WO2010035944A2 (ko) * 2008-09-29 2010-04-01 서울반도체 주식회사 발광 장치
US8288785B2 (en) * 2008-12-03 2012-10-16 Seoul Semiconductor Co., Ltd. Lead frame having light-reflecting layer, light emitting diode having the lead frame, and backlight unit having the light emitting diode
TWI393275B (zh) * 2009-02-04 2013-04-11 Everlight Electronics Co Ltd 發光二極體封裝體及其製造方法
TWI485878B (zh) * 2009-04-01 2015-05-21 Lite On Technology Corp 形成發光二極體之透鏡結構之方法及其相關架構
US20130009190A1 (en) * 2010-04-07 2013-01-10 Yuhichi Memida Light emitting device and method for manufacturing same
TWM400099U (en) * 2010-09-27 2011-03-11 Silitek Electronic Guangzhou Lead frame, package structure and lighting device thereof
KR101778832B1 (ko) * 2010-11-02 2017-09-14 다이니폰 인사츠 가부시키가이샤 Led 소자 탑재용 리드 프레임, 수지 부착 리드 프레임, 반도체 장치의 제조 방법 및 반도체 소자 탑재용 리드 프레임
US9209373B2 (en) * 2011-02-23 2015-12-08 Intellectual Discovery Co., Ltd. High power plastic leaded chip carrier with integrated metal reflector cup and direct heat sink
US8846421B2 (en) * 2011-03-10 2014-09-30 Mds Co. Ltd. Method of manufacturing lead frame for light-emitting device package and light-emitting device package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165567A (ja) * 2002-11-15 2004-06-10 Mitsui High Tec Inc プリモールドパッケージ用リードフレーム及びその製造方法並びにプリモールドパッケージ及びその製造方法
JP2005019688A (ja) * 2003-06-26 2005-01-20 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2006156747A (ja) * 2004-11-30 2006-06-15 Ngk Spark Plug Co Ltd 配線基板
JP2007294631A (ja) * 2006-04-25 2007-11-08 Matsushita Electric Works Ltd 樹脂反射鏡及びこれを用いた照明器具
JP2008172125A (ja) * 2007-01-15 2008-07-24 Citizen Electronics Co Ltd チップ型led発光装置及びその製造方法
WO2010026716A1 (ja) * 2008-09-03 2010-03-11 日亜化学工業株式会社 発光装置、樹脂パッケージ、樹脂成形体並びにこれらの製造方法
JP2011003853A (ja) * 2009-06-22 2011-01-06 Stanley Electric Co Ltd 発光装置の製造方法、発光装置および発光装置搭載用基板

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096550A (ja) * 2012-11-09 2014-05-22 Fusheng Industrial Co Ltd 発光ダイオードのフレーム構造の製造方法(四)
JP2014112616A (ja) * 2012-12-05 2014-06-19 Dainippon Printing Co Ltd 光半導体装置用リードフレーム、樹脂付き光半導体装置用リードフレーム、リードフレームの多面付け体、樹脂付きリードフレームの多面付け体、光半導体装置、光半導体装置の多面付け体
JP2014112614A (ja) * 2012-12-05 2014-06-19 Dainippon Printing Co Ltd 光半導体装置用リードフレーム、樹脂付き光半導体装置用リードフレーム、リードフレームの多面付け体、樹脂付きリードフレームの多面付け体、光半導体装置、光半導体装置の多面付け体
JP2015056425A (ja) * 2013-09-10 2015-03-23 大日本印刷株式会社 光半導体装置、光半導体装置用リードフレーム、及びそれらの製造方法
JP2016032082A (ja) * 2014-07-30 2016-03-07 シチズン電子株式会社 メッキ膜の剥離防止方法、部品集合体および発光装置
JP2016086059A (ja) * 2014-10-24 2016-05-19 日亜化学工業株式会社 発光装置、パッケージ及びそれらの製造方法
WO2017056321A1 (ja) * 2015-10-02 2017-04-06 大日本印刷株式会社 樹脂付リードフレームおよびその製造方法、ならびにledパッケージおよびその製造方法
JP2017157684A (ja) * 2016-03-02 2017-09-07 ローム株式会社 発光装置およびその製造方法
JP2017183662A (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 リードフレーム材料およびその製造方法
WO2018147325A1 (ja) * 2017-02-09 2018-08-16 株式会社アクアバンク 飲料殺菌ユニットおよびこれを備えた飲料水供給装置
JPWO2018147325A1 (ja) * 2017-02-09 2019-11-07 株式会社アクアバンク 飲料殺菌ユニットおよびこれを備えた飲料水供給装置
JP2019016620A (ja) * 2017-07-03 2019-01-31 株式会社沖データ 光源用反射体、光源及び光源用反射体の製造方法
JP2019016740A (ja) * 2017-07-10 2019-01-31 新光電気工業株式会社 リードフレーム、半導体装置、及びリードフレームの製造方法
JP2019046938A (ja) * 2017-08-31 2019-03-22 日亜化学工業株式会社 パッケージの製造方法及び発光装置の製造方法
JP7116881B2 (ja) 2017-08-31 2022-08-12 日亜化学工業株式会社 パッケージの製造方法及び発光装置の製造方法
US10777719B2 (en) 2018-04-10 2020-09-15 Nichia Corporation Base member, and method of manufacturing light emitting device using same

Also Published As

Publication number Publication date
CN103348499B (zh) 2016-08-10
KR20130140097A (ko) 2013-12-23
CN103348499A (zh) 2013-10-09
TW201250964A (en) 2012-12-16
US20130307000A1 (en) 2013-11-21
KR101760545B1 (ko) 2017-07-21
US9461220B2 (en) 2016-10-04
JPWO2012102266A1 (ja) 2014-06-30
JP5861943B2 (ja) 2016-02-16
US20160365495A1 (en) 2016-12-15
US9806241B2 (en) 2017-10-31

Similar Documents

Publication Publication Date Title
JP5861943B2 (ja) 樹脂付リードフレームおよびその製造方法、ならびにリードフレーム
JP5818149B2 (ja) 樹脂付リードフレーム、半導体装置、照明装置、樹脂付リードフレームの製造方法および半導体装置の製造方法
JP5922326B2 (ja) Led用リードフレームまたは基板およびその製造方法、ならびに半導体装置およびその製造方法
TWI397193B (zh) Light emitting diode chip element with heat dissipation substrate and method for making the same
JP5582382B2 (ja) リードフレームおよびその製造方法、ならびに半導体装置およびその製造方法
JP2011146524A (ja) リードフレームおよびその製造方法、ならびに半導体装置およびその製造方法
JP2012146816A (ja) 半導体装置およびその製造方法ならびに照明装置
WO2013121708A1 (ja) 発光装置およびその製造方法
JP5904001B2 (ja) Led素子搭載用リードフレーム、樹脂付リードフレーム、多面付ledパッケージ、ledパッケージの製造方法および半導体素子搭載用リードフレーム
JP5737605B2 (ja) Led用リードフレームまたは基板およびその製造方法、ならびに半導体装置およびその製造方法
JP5970835B2 (ja) リードフレーム部材、樹脂付リードフレーム部材および半導体装置
JP5871174B2 (ja) Led用リードフレームまたは基板、半導体装置、およびled用リードフレームまたは基板の製造方法
JP2011228687A (ja) Led用リードフレームまたは基板、半導体装置、およびled用リードフレームまたは基板の製造方法
JP2014207481A (ja) リードフレームおよびその製造方法、ならびに半導体装置およびその製造方法
JP6071034B2 (ja) Led素子搭載用リードフレーム、樹脂付リードフレーム、多面付ledパッケージ、ledパッケージの製造方法および半導体素子搭載用リードフレーム
JP2016026398A (ja) リードフレームおよびその製造方法、ならびに半導体装置およびその製造方法
JP5804369B2 (ja) 半導体素子用リードフレーム、樹脂付半導体素子用リードフレームおよび半導体装置、並びに、半導体素子用リードフレームの製造方法、樹脂付半導体素子用リードフレームの製造方法および半導体装置の製造方法
JP5888098B2 (ja) Led素子搭載用リードフレーム、樹脂付リードフレーム、多面付ledパッケージ、ledパッケージの製造方法および半導体素子搭載用リードフレーム
KR101321887B1 (ko) 조명용 엘이디모듈의 리드프레임
JP6697720B2 (ja) 半導体装置およびその製造方法ならびに照明装置
JP6350683B2 (ja) Led素子搭載用リードフレーム、樹脂付リードフレーム、多面付ledパッケージ、ledパッケージの製造方法および半導体素子搭載用リードフレーム
JP5998609B2 (ja) 光半導体装置
JP5867261B2 (ja) 光半導体装置用リードフレーム、光半導体装置、および、それらの製造方法
JP2015181203A (ja) 樹脂付リードフレーム、半導体装置および照明装置
JP2015195412A (ja) 半導体素子用リードフレーム、樹脂付半導体素子用リードフレームおよび半導体装置、並びに、半導体素子用リードフレームの製造方法、樹脂付半導体素子用リードフレームの製造方法および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738905

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012554800

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137016578

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980980

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738905

Country of ref document: EP

Kind code of ref document: A1