WO2012091111A1 - 非水電解質電池の製造方法、および非水電解質電池 - Google Patents

非水電解質電池の製造方法、および非水電解質電池 Download PDF

Info

Publication number
WO2012091111A1
WO2012091111A1 PCT/JP2011/080452 JP2011080452W WO2012091111A1 WO 2012091111 A1 WO2012091111 A1 WO 2012091111A1 JP 2011080452 W JP2011080452 W JP 2011080452W WO 2012091111 A1 WO2012091111 A1 WO 2012091111A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
active material
negative electrode
positive electrode
electrode active
Prior art date
Application number
PCT/JP2011/080452
Other languages
English (en)
French (fr)
Inventor
吉田 健太郎
和宏 後藤
良子 神田
知陽 竹山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112011104632T priority Critical patent/DE112011104632T5/de
Priority to US13/976,152 priority patent/US9083057B2/en
Priority to CN201180063443.XA priority patent/CN103283078B/zh
Priority to JP2012504976A priority patent/JP5495196B2/ja
Priority to KR1020137015802A priority patent/KR20140026345A/ko
Publication of WO2012091111A1 publication Critical patent/WO2012091111A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • a positive electrode body provided with a positive electrode active material layer and a positive electrode side solid electrolyte layer and a negative electrode body provided with a negative electrode active material layer and a negative electrode side solid electrolyte layer are separately produced, and both electrodes are formed in a post-process.
  • the present invention relates to a method for manufacturing a non-aqueous electrolyte battery in which bodies are superposed, and a non-aqueous electrolyte battery obtained by the manufacturing method.
  • a non-aqueous electrolyte battery including a positive electrode layer, a negative electrode layer, and an electrolyte layer disposed between these electrode layers is used as a power source on the premise that charging and discharging are repeated.
  • the electrode layer included in the battery further includes a current collector having a current collecting function and an active material layer containing an active material.
  • a non-aqueous electrolyte battery that charges and discharges by movement of Li ions between the positive and negative electrode layers has a high discharge capacity while being small.
  • Examples of the technique for producing the nonaqueous electrolyte battery include those described in Patent Document 1.
  • a positive electrode body having a positive electrode active material layer of a powder molded body on a positive electrode current collector and a negative electrode active material layer of a powder molded body are provided on the negative electrode current collector.
  • the negative electrode body is manufactured separately.
  • Each of these electrode bodies is provided with a solid electrolyte layer, and a non-aqueous electrolyte battery is produced by superposing these positive and negative electrode bodies.
  • the solid electrolyte layers provided in both electrode bodies are pressed against each other at a high pressure exceeding 950 MPa.
  • the nonaqueous electrolyte battery of Patent Document 1 has the following problems.
  • both electrode bodies are pressed against each other at a high pressure, there is a risk of cracking in each electrode body.
  • an active material layer made of a powder molded body is easy to break, and if it breaks, the performance of the non-aqueous electrolyte battery may be significantly reduced.
  • the solid electrolyte layer of the nonaqueous electrolyte battery of Patent Document 1 is formed by pressing the positive electrode side solid electrolyte layer and the negative electrode side solid electrolyte layer, the positive electrode side solid electrolyte layer and the negative electrode side solid electrolyte are formed.
  • a bonding interface is formed with the electrolyte layer. Since the junction interface tends to have a high resistance, the discharge capacity and discharge output of the nonaqueous electrolyte battery may be significantly lower than the theoretical values.
  • the present invention has been made in view of the above circumstances, and one of the purposes thereof is a non-aqueous solution in which a high resistance layer is not formed at the bonding interface between two electrode bodies even when two individually produced electrode bodies are bonded together. It is providing the manufacturing method of the nonaqueous electrolyte battery which can produce an electrolyte battery, and the nonaqueous electrolyte battery obtained by the manufacturing method.
  • a method for producing a nonaqueous electrolyte battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer, and a sulfide solid electrolyte layer (hereinafter referred to as an SE layer) disposed between these active material layers.
  • a method for producing a non-aqueous electrolyte battery for producing a water electrolyte battery comprising the following steps.
  • PSE layer amorphous positive electrode-side solid electrolyte layer
  • NSE layer amorphous negative electrode-side solid electrolyte layer
  • the PSE layer and the NSE layer are bonded by utilizing the mutual diffusion of atoms when the amorphous is crystallized, a high resistance is provided between the PSE layer and the NSE layer. The bonding interface is hardly formed.
  • the PSE layer and the NSE layer are bonded using crystallization by heat treatment, the positive electrode body and the negative electrode body are bonded at the time of bonding the PSE layer and the NSE layer. There is no need to compress at high pressure, and it is difficult for defects such as cracks to occur in the components of both electrode bodies.
  • the active material layer is formed of a powder product that is relatively easy to break, it is not necessary to compress the PSE layer and the NSE layer at a high pressure.
  • a big advantage The reason why the active material layer is formed into a powder compact is that it is easy to form an active material layer thicker than the vapor phase method, and as a result, a nonaqueous electrolyte battery having a high discharge capacity can be manufactured. .
  • a method for producing a nonaqueous electrolyte battery according to the present invention comprises a positive electrode active material layer, a negative electrode active material layer, and a nonaqueous electrolyte battery comprising a SE layer disposed between these active material layers.
  • This manufacturing method is characterized by comprising the following steps.
  • all the “thicknesses” in this specification are averages of thicknesses measured at five or more different portions. The “thickness” can be measured, for example, by observing the cross section with a scanning electron microscope.
  • the amorphous PSE layer is a thin film having a thickness of 2 ⁇ m or less, the PSE layer becomes active. Therefore, when the PSE layer is crystallized from amorphous, the constituent material of the PSE layer is the negative electrode active material. It was found that it easily diffused into the layer. Therefore, if a nonaqueous electrolyte battery is produced by the manufacturing method of (2) above, it is difficult to form a high-resistance bonding interface between the positive electrode body and the negative electrode body in the battery.
  • the PSE layer has a thickness of more than 2 ⁇ m, the activity of the PSE layer is lowered, and the constituent materials of the PSE layer are difficult to diffuse into the negative electrode active material layer. A high-resistance bonding interface is formed.
  • the thickness of the SE layer derived from the PSE layer is as thin as 2 ⁇ m or less. Therefore, according to the manufacturing method, the nonaqueous electrolyte battery is thinner than the conventional one. An electrolyte battery can be produced.
  • a method for producing a nonaqueous electrolyte battery according to the present invention includes a positive electrode active material layer, a negative electrode active material layer, and a nonaqueous electrolyte battery that produces a nonaqueous electrolyte battery including an SE layer disposed between these active material layers.
  • This manufacturing method is characterized by comprising the following steps. -The process of preparing the positive electrode body which has a positive electrode active material layer which consists of a powder compact. A step of preparing a negative electrode body having a negative electrode active material layer made of a powder molded body and an amorphous NSE layer having a thickness of 2 ⁇ m or less formed on the negative electrode active material layer by a vapor phase method. A process in which the positive electrode body and the negative electrode body are heat-treated while being pressed so that the positive electrode active material layer and the NSE layer are in contact with each other, and the NSE layer is crystallized to be joined.
  • the amorphous NSE layer is a thin film of 2 ⁇ m or less, the NSE layer becomes active. Therefore, when the NSE layer is crystallized from amorphous, the constituent material of the NSE layer is the positive electrode active material. It was found that it easily diffused into the layer. Therefore, if a nonaqueous electrolyte battery is produced by the production method of (3) above, it is difficult to form a high-resistance bonding interface between the positive electrode body and the negative electrode body in the battery.
  • the NSE layer has a thickness of more than 2 ⁇ m, the activity of the NSE layer is lowered, and the constituent materials of the NSE layer are difficult to diffuse into the negative electrode active material layer. A high-resistance bonding interface is formed.
  • the thickness of the SE layer derived from the NSE layer is as thin as 2 ⁇ m or less. Therefore, according to the manufacturing method, the nonaqueous electrolyte battery is thinner than the conventional one. An electrolyte battery can be produced.
  • the heat treatment is preferably performed at 130 to 300 ° C. for 1 to 1200 minutes.
  • the heat treatment conditions for crystallizing and bonding the amorphous PSE layer and the NSE layer can be appropriately selected depending on the type of sulfide constituting the PSE layer and the NSE layer.
  • Li 2 S—P 2 S 5 is used as the sulfide, and this Li 2 S—P 2 S 5 can be sufficiently crystallized under the above heat treatment conditions.
  • the heat treatment temperature is too low or the heat treatment time is too short, the PSE layer and the NSE layer are not sufficiently crystallized, and a bonding interface may be formed between the PSE layer and the NSE layer.
  • the heat treatment temperature is too high or the heat treatment time is too long, a low Li ion conductive crystal phase may be formed.
  • the above description also applies to the manufacturing methods (2) and (3) above in which the solid electrolyte layer is formed only on one of the electrode bodies.
  • the amorphous Li 2 S—P 2 S 5 solid electrolyte layer formed by the vapor phase method is formed by crystallization temperature and powdery amorphous Li 2 S—P 2 S 5 by pressure molding. This is different from the crystallization temperature of the solid electrolyte layer.
  • the crystallization temperature of the Li 2 S—P 2 S 5 solid electrolyte layer formed by the vapor phase method is about 130 ° C.
  • the crystallization temperature of is about 240 ° C. Since the PSE layer and the NSE layer in the manufacturing method of the present invention are formed by a vapor phase method, the PSE layer and the NSE layer are crystallized at about 130 ° C.
  • nonaqueous electrolyte battery it is preferable to pressurize at 160 Mpa or less.
  • the pressure of the pressurization By controlling the pressure of the pressurization to 160 MPa or less, more preferably to 16 MPa or less, it is possible to suppress the occurrence of defects such as cracks in each layer of the electrode body when joining the positive electrode body and the negative electrode body. Can do.
  • C content of the solid electrolyte layer formed on an active material layer shall be 10 atomic% or less.
  • the C content in the PSE layer and the NSE layer is 10 atomic% or less, and only the positive electrode body has a solid electrolyte layer (PSE layer).
  • PSE layer solid electrolyte layer
  • the C content of the PSE layer is 10 atomic%
  • NSE layer solid electrolyte layer
  • the C content in the solid electrolyte layer By setting the C content in the solid electrolyte layer to 10 atomic%, it can be avoided that the solid electrolyte contained in the solid electrolyte layer is altered by the influence of C and the Li ion conductivity of the SE layer is lowered.
  • the nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte battery including a positive electrode active material layer, a negative electrode active material layer, and a sulfide SE layer disposed between the active material layers.
  • the positive electrode active material layer and the negative electrode active material layer of this non-aqueous electrolyte battery are powder molded bodies, and the SE layer is an NSE provided on the PSE layer provided on the positive electrode active material side and the negative electrode active material layer side. It is a crystalline layer integrated by joining the layers. Resistance of the SE layer is preferably 50 [Omega ⁇ cm 2 or less, more preferably 20 [Omega ⁇ cm 2 or less.
  • the non-aqueous electrolyte battery of the present invention having the above configuration is a non-aqueous electrolyte battery manufactured by the manufacturing method of (1) above, and the resistance value of the SE layer is smaller than that of a battery manufactured by a conventional method.
  • the battery characteristics are superior to those of conventional batteries.
  • the nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte battery comprising a positive electrode active material layer, a negative electrode active material layer, and a sulfide SE layer disposed between the active material layers.
  • the positive electrode active material layer and the negative electrode active material layer of this non-aqueous electrolyte battery are powder compacts, and the SE layer is a crystalline layer having a thickness of 2 ⁇ m or less.
  • the resistance value of the SE layer is 50 ⁇ ⁇ cm 2 or less.
  • the non-aqueous electrolyte battery of the present invention having the above configuration is a non-aqueous electrolyte battery produced by the production method of (2) or (3) above, wherein the resistance value of the SE layer is produced by a conventional method. Therefore, the battery characteristics (discharge capacity and discharge output) superior to those of conventional batteries are exhibited.
  • the nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte battery that is much thinner than the conventional battery because it has a thinner SE layer than ever before.
  • C content of SE layer is 10 atomic% or less.
  • the C content in the SE layer By setting the C content in the SE layer to 10 atomic%, it is possible to avoid deterioration of the Li ion conductivity of the SE layer due to the influence of C on the solid electrolyte.
  • the positive electrode active material layer includes an active material made of an oxide containing at least one metal selected from Co, Mn, Ni, Fe, and Al and Li, And a solid electrolyte comprising Li 2 S—P 2 S 5 .
  • the discharge capacity of the nonaqueous electrolyte battery can be improved.
  • the resistance value of a positive electrode active material layer can be lowered
  • the negative electrode active material layer includes an active material containing at least one element selected from C, Si, Ge, Sn, Al, and Li, or at least Ti and Li It is preferable to include an active material made of an oxide containing and a solid electrolyte containing Li 2 S—P 2 S 5 .
  • the discharge capacity of the nonaqueous electrolyte battery can be improved.
  • the resistance value of a negative electrode active material layer can be lowered
  • the nonaqueous electrolyte battery of the present invention exhibits excellent battery characteristics.
  • a nonaqueous electrolyte battery 100 shown in FIG. 1 includes a positive electrode current collector 11, a positive electrode active material layer 12, a sulfide solid electrolyte layer (SE layer) 40, a negative electrode active material layer 22, and a negative electrode current collector 21. .
  • the nonaqueous electrolyte battery 100 can be manufactured by a method for manufacturing a nonaqueous electrolyte battery according to the following process, that is, by superposing the individually produced positive electrode body 1 and negative electrode body 2 as shown in FIG. it can.
  • ⁇ Method for producing non-aqueous electrolyte battery ( ⁇ ) The positive electrode body 1 is produced. ( ⁇ ) The negative electrode body 2 is prepared. ( ⁇ ) The positive electrode body 1 and the negative electrode body 2 are superposed and subjected to heat treatment while being pressed to join the positive electrode body 1 and the negative electrode body 2 together. * The order of the processes ⁇ and ⁇ can be interchanged.
  • the positive electrode body 1 of this embodiment has a configuration in which a positive electrode active material layer 12 and a positive electrode side solid electrolyte layer (PSE layer) 13 are laminated on a positive electrode current collector 11.
  • PSE layer positive electrode side solid electrolyte layer
  • a substrate to be the positive electrode current collector 11 is prepared, and the remaining layers 12 and 13 may be sequentially formed on the substrate.
  • the positive electrode current collector 11 may be formed on the surface of the positive electrode active material layer 12 opposite to the PSE layer 13 after the step ⁇ for bonding the positive electrode body 1 and the negative electrode body 2.
  • the substrate to be the positive electrode current collector 11 may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material film functions as a current collector.
  • the conductive material one selected from Al, Ni, alloys thereof, and stainless steel can be suitably used.
  • the positive electrode active material layer 12 is a layer obtained by pressure-molding a powder containing positive electrode active material particles that are the main component of the battery reaction.
  • a material having a layered rock salt type crystal structure for example, Li ⁇ X ⁇ (1-X) O 2 ( ⁇ is at least one selected from Co, Ni, Mn, ⁇ is Fe, Al, 1 type selected from Ti, Cr, Zn, Mo and Bi, and X is 0.5 or more).
  • Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiCo 0.5 Fe 0.5 O 2 , LiCo 0.5 Al 0.5 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O.
  • a positive electrode active material a substance having a spinel crystal structure (for example, LiMn 2 O 4 or the like) or a substance having an olivine crystal structure (for example, Li X FePO 4 (0 ⁇ X ⁇ 1)) is used. It can also be used.
  • a substance having a spinel crystal structure for example, LiMn 2 O 4 or the like
  • a substance having an olivine crystal structure for example, Li X FePO 4 (0 ⁇ X ⁇ 1)
  • the positive electrode active material layer 12 may contain electrolyte particles that improve the Li ion conductivity of the layer 12. In that case, electrolyte particles are mixed with positive electrode active material particles which are raw materials for pressure molding. By doing so, the positive electrode active material layer 12 including the positive electrode active material particles and the solid electrolyte particles can be formed when the raw material is pressure-molded.
  • the electrolyte particles for example, sulfides such as Li 2 S—P 2 S 5 can be suitably used.
  • the solid electrolyte particles included in the positive electrode active material layer 12 may be amorphous or crystalline, but are preferably crystalline having high Li ion conductivity.
  • the positive electrode active material layer 12 may contain a conductive additive or a binder.
  • the conditions for pressure molding can be selected as appropriate. For example, pressure molding may be performed under an atmosphere of room temperature to 300 ° C. and a surface pressure of 100 to 600 MPa. Further, the average particle diameter of the positive electrode active material particles to be pressure-molded is preferably 1 to 20 ⁇ m. If electrolyte particles are used, the average particle size of the electrolyte particles is preferably 0.5 to 2 ⁇ m.
  • the positive electrode side solid electrolyte layer (PSE layer) 13 is an amorphous Li ion conductor made of sulfide.
  • the PSE layer 13 is crystallized through a process ⁇ described later and becomes a part of the SE layer 40 of the completed battery 100 shown in FIG.
  • the characteristics required for the PSE layer 13 are high Li ion conductivity and low electron conductivity when crystallized.
  • the Li ion conductivity (20 ° C.) when the PSE layer 13 in an amorphous state is crystallized is preferably 10 ⁇ 5 S / cm or more, particularly preferably 10 ⁇ 4 S / cm or more.
  • the electronic conductivity of the PSE layer 13 when crystallized is preferably 10 ⁇ 8 S / cm or less.
  • Examples of the material of the PSE layer 13 include Li 2 S—P 2 S 5 .
  • the PSE layer 13 may contain an oxide such as P 2 O 5 .
  • a vapor phase method can be used to form the PSE layer 13.
  • the vapor phase method for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, or the like can be used.
  • the substrate in order to form the amorphous PSE layer 13, the substrate may be cooled so that the substrate temperature at the time of film formation is equal to or lower than the crystallization temperature of the film.
  • the substrate temperature during film formation is preferably 150 ° C. or lower.
  • the thickness of the PSE layer 13 formed by the vapor phase method is preferably 0.1 to 5 ⁇ m. In the case of the vapor phase method, even the thin PSE layer 13 has almost no defects such as pinholes in the PSE layer 13, and almost no unformed portion of the PSE layer 13 occurs.
  • the PSE layer 13 does not contain much C (carbon). This is because C may alter the solid electrolyte and reduce the Li ion conductivity of the PSE layer 13. Since the PSE layer 13 becomes the SE layer 40 in a later step, when the Li ion conductivity of the PSE layer 13 decreases, the Li ion conductivity of the SE layer 40 also decreases, and the performance of the nonaqueous electrolyte battery 100 decreases. Therefore, the C content of the PSE layer 13 is preferably 10 atomic% or less, more preferably 5 atomic% or less, and still more preferably 3 atomic% or less. Most preferably, the PSE layer 13 is substantially free of C.
  • C contained in the PSE layer 13 is mainly derived from C contained as an impurity in the raw material used for forming the PSE layer 13.
  • Li 2 S—P 2 S 5 which is a typical sulfide solid electrolyte
  • a raw material with low purity of Li 2 S—P 2 S 5 Can contain a large amount of C. Therefore, in order to keep the C content of the PSE layer 13 low, the PSE layer 13 may be formed using a raw material having a high purity of Li 2 S—P 2 S 5 and a low content of C.
  • a raw material having a high purity of Li 2 S—P 2 S 5 for example, a commercial product adjusted so as to have a low C content can be used.
  • Other examples of the origin of C contained in the PSE layer 13 include a boat that holds a raw material when the PSE layer 13 is formed by a vapor phase method.
  • the boat may be made of C, and the boat C may be mixed into the PSE layer 13 due to heat generated when the raw material is evaporated.
  • mixing of C into the PSE layer 13 can be effectively suppressed by adjusting film formation conditions such as boat heating temperature and atmospheric pressure during film formation.
  • the PSE layer 13 includes a sulfide solid electrolyte
  • the sulfide solid electrolyte reacts with the positive electrode active material of the oxide included in the positive electrode active material layer 12 adjacent to the PSE layer 13, so that the positive electrode active material layer 12 and the PSE
  • an intermediate layer may be provided between the positive electrode active material layer 12 and the PSE layer 13 in order to suppress the increase in resistance near the interface.
  • an amorphous Li ion conductive oxide such as LiNbO 3 , LiTaO 3 , Li 4 Ti 5 O 12, or the like can be used.
  • LiNbO 3 can effectively suppress an increase in resistance near the interface between the positive electrode active material layer 12 and the PSE layer 13.
  • the negative electrode body 2 has a configuration in which a negative electrode active material layer 22 and a negative electrode side solid electrolyte layer (NSE layer) 23 are laminated on a negative electrode current collector 21.
  • NSE layer negative electrode side solid electrolyte layer
  • a substrate to be the negative electrode current collector 21 is prepared, and the remaining layers 22 and 23 may be sequentially formed on the substrate.
  • the negative electrode current collector 21 may be formed on the surface of the negative electrode active material layer 22 opposite to the NSE layer 23 after the step ⁇ .
  • the substrate to be the negative electrode current collector 21 may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material film functions as a current collector.
  • the conductive material for example, one selected from Al, Cu, Ni, Fe, Cr, and alloys thereof (for example, stainless steel) can be suitably used.
  • the negative electrode active material layer 22 is a layer obtained by pressure-molding a powder containing negative electrode active material particles that are the main component of the battery reaction.
  • the negative electrode active material C, Si, Ge, Sn, Al, an Li alloy, or an oxide containing Li such as Li 4 Ti 5 O 12 can be used.
  • the negative electrode active material layer 22 may contain electrolyte particles that improve the Li ion conductivity of the layer 22.
  • electrolyte particles are mixed with negative electrode active material particles which are raw materials for pressure molding.
  • the negative electrode active material layer 22 containing negative electrode active material particles and solid electrolyte particles can be formed when the raw material is pressure-molded.
  • the electrolyte particles for example, sulfides such as Li 2 S—P 2 S 5 can be suitably used.
  • the solid electrolyte particles included in the negative electrode active material layer 22 may be amorphous or crystalline, but are preferably crystalline having high Li ion conductivity.
  • the negative electrode active material layer 22 may contain a conductive additive or a binder.
  • the conditions for pressure molding can be selected as appropriate. For example, pressure molding may be performed under an atmosphere of room temperature to 300 ° C. and a surface pressure of 100 to 600 MPa. Further, the average particle diameter of the negative electrode active material particles to be molded is preferably 1 to 20 ⁇ m. If electrolyte particles are used, the average particle size of the electrolyte particles is preferably 0.5 to 2 ⁇ m.
  • the negative electrode side solid electrolyte layer (NSE layer) 23 is an amorphous Li ion conductor made of sulfide, like the PSE layer 13 described above.
  • This NSE layer 23 is also a layer that becomes a part of the SE layer 40 of the battery 100 when the battery 100 is completed through the next step ⁇ , and has a high Li ion conductivity when crystallized and has a low electron. It is required to be conductive.
  • the NSE layer 23 and the PSE layer 13 described above preferably have the same composition and manufacturing method. This is to prevent variation in Li ion conductivity in the thickness direction of the SE layer 40 when the NSE layer 23 and the PSE layer 13 become one SE layer 40 through the next step ⁇ . Because.
  • the thickness of the NSE layer 23 formed by the vapor phase method is preferably 0.1 to 5 ⁇ m. In the case of the vapor phase method, even with this thin NSE layer 23, defects such as pinholes hardly occur in the NSE layer 23, and there are hardly any places where the NSE layer 23 is not formed.
  • the NSE layer 23 preferably does not contain much C (carbon). The reason is that the preferable value of the C content in the NSE layer 23 and the method for adjusting the C content in the NSE layer 23 are the same as those of the PSE layer 13.
  • the non-aqueous electrolyte battery 100 is manufactured by laminating the positive electrode body 1 and the negative electrode body 2 so that the PSE layer 13 and the NSE layer 23 face each other.
  • the PSE layer 13 and the NSE layer 23 are heat-treated while being pressed, the PSE layer 13 and the NSE layer 23 in an amorphous state are crystallized, and the PSE layer 13 and the NSE layer 23 are integrated.
  • the heat treatment conditions in the step ⁇ are selected so that the PSE layer 13 and the NSE layer 23 can be crystallized. If the heat treatment temperature is too low, the PSE layer 13 and the NSE layer 23 do not crystallize sufficiently, leaving many unbonded interfaces between the PSE layer 13 and the NSE layer 23, and the PSE layer 13 and the NSE layer 23 are Not integrated. On the other hand, if the heat treatment temperature is too high, a crystal phase with low Li ion conductivity may be formed even if the PSE layer 13 and the NSE layer 23 are integrated.
  • Specific heat treatment conditions vary depending on the composition of the PSE layer 13 and the NSE layer 23, but are preferably about 130 to 300 ° C. ⁇ 1 to 1200 minutes. More preferable heat treatment conditions are 150 to 250 ° C. ⁇ 30 to 150 minutes.
  • the PSE layer 13 and the NSE layer 23 are pressurized in the direction to bring them closer during the heat treatment. This is to promote integration of the PSE layer 13 and the NSE layer 23 by keeping the PSE layer 13 and the NSE layer 23 in close contact during the heat treatment.
  • the pressure of the pressurization is very small, there is an effect of promoting the integration of the PSE layer 13 and the NSE layer 23. However, the higher the pressure, the easier the integration.
  • the pressure of the pressurization is increased, there is a risk that defects such as cracking may occur in each layer of the positive electrode body 1 and the negative electrode body 2.
  • the positive electrode active material layer 12 and the negative electrode active material layer 22 that are powder compacts are easily cracked. Therefore, the pressure is preferably 160 MPa or less. Since the integration of the PSE layer 13 and the NSE layer 23 is only caused by heat treatment, a pressure of 1 to 20 MPa is sufficient.
  • the nonaqueous electrolyte battery 100 including the single crystallized SE layer 40 is formed.
  • this one-layer SE layer 40 is formed by integrating the PSE layer 13 and the NSE layer 23 as described above, the interface between the PSE layer 13 and the NSE layer 23 hardly remains. Therefore, the SE layer 40 does not have a decrease in Li ion conductivity due to the interface, and becomes the SE layer 40 having high Li ion conductivity and low electron conductivity.
  • traces of integrating the PSE layer 13 and the NSE layer 23 are likely to remain due to the influence of the surface roughness of the PSE layer 13 and the NSE layer 23 before integration.
  • the traces are observed as voids arranged intermittently on a virtual straight line extending in the width direction of the battery 100 when the SE layer 40 in the longitudinal section of the nonaqueous electrolyte battery 100 is observed.
  • the traces are preferably small.
  • the traces have a gap with respect to the entire length in the width direction of the battery 100 (the length in the left-right direction in FIG. 1). It can be evaluated as a percentage of the total length of the part.
  • the ratio is preferably 5% or less, more preferably 3% or less, and most preferably 1% or less.
  • the SE layer 40 is preferable.
  • the resistance of the SE layer 40 is 50 ⁇ ⁇ cm 2 or less.
  • the resistance is measured using the AC impedance method, and the measurement conditions are a voltage amplitude of 5 mV and a frequency range of 0.01 Hz to 10 kHz.
  • the Nyquist diagram obtained by AC impedance measurement see FIG. 3
  • the intersection of the extension line (dotted line in the figure) of the Nyquist plot on the highest frequency side (solid line in the figure) and the real axis is the SE layer.
  • the resistance value is 40, and this is made clear by analyzing the equivalent circuit calculation result and the measurement result.
  • the resistance value of the SE layer 40 is 20 ⁇ ⁇ cm 2 .
  • the SE layer 40 does not contain much C.
  • C may change the solid electrolyte.
  • the C content of the SE layer 40 may be considered as the sum of the C content of the PSE layer 13 and the C content of the NSE layer 23, and is preferably 10 atomic% or less.
  • the nonaqueous electrolyte battery 100 shown in FIG. 1 can also be produced by a nonaqueous electrolyte battery manufacturing method according to the following steps with reference to FIG.
  • ⁇ Method for producing non-aqueous electrolyte battery ( ⁇ ) The positive electrode body 3 including the positive electrode active material layer 12 and the PSE layer 13 is produced. ( ⁇ ) The negative electrode body 4 having the negative electrode active material layer 22 but not having the NSE layer is prepared. ( ⁇ ) The positive electrode body 3 and the negative electrode body 4 are superposed and subjected to heat treatment while being pressed to join the positive electrode body 3 and the negative electrode body 4 together. * The order of processes ⁇ and ⁇ can be interchanged.
  • each layer provided in the positive electrode body 3 and the negative electrode body 4 and the conditions of the pressure heat treatment when joining both the electrode bodies 3 and 4 are the same as in the first embodiment.
  • the thickness of the PSE layer 13 needs to be 2 ⁇ m or less.
  • the activity of the solid electrolyte contained in the PSE layer 13 is high.
  • the amorphous solid electrolyte of the PSE layer 13 easily diffuses into the negative electrode active material layer 22.
  • the amorphous solid electrolyte of the PSE layer 13 is crystallized and bonded to the crystalline solid electrolyte particles contained in the negative electrode active material layer 22, and the bonding interface is formed between the positive electrode body 3 and the negative electrode body 4.
  • the positive electrode body 3 and the negative electrode body 4 are joined together without being formed.
  • the resistance value of the SE layer 40 obtained through the step ⁇ is measured using the AC impedance method under the same conditions as in the first embodiment, it is also 50 ⁇ ⁇ cm 2 or less.
  • the thickness of the PSE layer 13 exceeds 2 ⁇ m, the activity of the amorphous solid electrolyte contained in the PSE layer 13 is low and hardly diffuses into the negative electrode active material layer 22 by heat treatment. A high-resistance bonding interface is easily formed between the body 4 and the body 4.
  • the nonaqueous electrolyte battery 100 shown in FIG. 1 can also be produced by a nonaqueous electrolyte battery manufacturing method according to the following steps with reference to FIG.
  • a positive electrode body 5 that includes the positive electrode active material layer 12 but does not have a PSE layer is prepared.
  • the negative electrode body 6 including the negative electrode active material layer 22 and the NSE layer 23 is produced.
  • the positive electrode body 5 and the negative electrode body 6 are superposed and subjected to heat treatment while being pressed to join the positive electrode body 5 and the negative electrode body 6 together. * The order of processes ⁇ and ⁇ can be interchanged.
  • each layer provided in the positive electrode body 5 and the negative electrode body 6 and the conditions of the pressure heat treatment when joining both the electrode bodies 5 and 6 are the same as those in the first embodiment.
  • the thickness of the NSE layer 23 needs to be 2 ⁇ m or less. This is to increase the activity of the amorphous solid electrolyte contained in the NSE layer 23 as in the second embodiment. By doing so, the amorphous solid electrolyte of the NSE layer 23 is crystallized by the heat treatment, and is bonded to the crystalline solid electrolyte particles contained in the positive electrode active material layer 12, and between the positive electrode body 5 and the negative electrode body 6. The positive electrode body 5 and the negative electrode body 6 are bonded together with almost no bonding interface formed. As a result, if the resistance value of the SE layer 40 obtained through the step ⁇ is measured using the AC impedance method under the same conditions as in the first embodiment, it is also 50 ⁇ ⁇ cm 2 or less.
  • the non-aqueous electrolyte battery 100 of the embodiment described with reference to FIG. 1 was produced, and the battery characteristics of the battery 100 were evaluated by measuring the resistance value of the SE layer 40 included in the battery 100.
  • a non-aqueous electrolyte battery as a comparative example was produced, and the resistance value of the SE layer included in the battery was also measured.
  • Nonaqueous Electrolyte Battery of Example 1 In producing the nonaqueous electrolyte battery 100, a positive electrode body 1 and a negative electrode body 2 having the following configuration were prepared.
  • Positive electrode current collector 11 Al foil having a thickness of 10 ⁇ m
  • PSE layer 13 Amorphous Li 2 S—P 2 S 5 film having a thickness of 5 ⁇ m (vacuum deposition method)
  • Negative electrode body 2 ⁇ ⁇ Negative electrode current collector 21... Stainless steel foil having a thickness of 10 ⁇ m ⁇ Negative electrode active material layer 22... Press molded product of graphite powder having a thickness of 200 ⁇ m and Li 2 SP 2 S 5 powder (graphite: Li 2 SP 2 S 5 50% by mass: 50% by mass) NSE layer 23: Amorphous Li 2 S—P 2 S 5 film having a thickness of 5 ⁇ m (vacuum deposition method)
  • the resistance value of the prepared PSE layer 13 of the positive electrode body 1 and the resistance value of the NSE layer 23 of the negative electrode body 2 were measured by an AC impedance method.
  • the measurement conditions were a voltage amplitude of 5 mV and a frequency range of 0.01 Hz to 10 kHz.
  • the measurement results are shown in Table 1 below.
  • the prepared positive electrode body 1 and negative electrode body 2 are overlapped so that the SE layers 13 and 23 are in contact with each other, and the electrode bodies 1 and 2 are pressed together.
  • a plurality of nonaqueous electrolyte batteries 100 that were subjected to heat treatment were produced.
  • the heat treatment conditions range of 130 to 300 ° C., a range of 1 to 1200 minutes
  • pressure conditions range of 8 to 160 MPa
  • Each non-aqueous electrolyte battery 100 produced as described above was charged in a coin cell, and the resistance value of the SE layer 40 in these non-aqueous electrolyte batteries 100 was measured by an AC impedance method.
  • the measurement conditions are the same as the conditions for measuring the resistance values of the PSE layer 13 and the NSE layer 23.
  • the measurement results of the bonding conditions and the resistance values are shown in Table 1 below.
  • the part considered to correspond to the boundary part between the PSE layer 13 and the NSE layer 23 in the longitudinal section of the nonaqueous electrolyte battery 100 of Sample 4 and Sample 9 was observed with a scanning electron microscope.
  • the SE layer 40 voids that were traces of joining the PSE layer 13 and the NSE layer 23 were observed.
  • the ratio of the total length of the portion where the air gap exists to the entire length in the width direction of battery 100 (the length in the left-right direction in FIG. 1) was 1% for sample 4 and 3% for sample 9.
  • Nonaqueous Electrolyte Battery of Comparative Example 1 A positive electrode body having a crystallized PSE layer and a negative electrode body having a crystallized NSE layer were prepared, and an attempt was made to join the positive electrode body and the negative electrode body under the conditions of the examples, but the PSE layer and the NSE layer were integrated. No bonding between the PSE layer and the NSE layer was observed. Further, when the resistance value of the SE layer of the nonaqueous electrolyte battery in which the PSE layer and the NSE layer that were not integrated were brought into contact with each other by pressurization (not in a joined state) was measured, the nonaqueous electrolyte of the example was measured. It was significantly higher than the SE layer of the battery.
  • a positive electrode body having a crystallized PSE layer and a negative electrode body having a crystallized NSE layer were joined at 300 MPa.
  • the PSE layer and the NSE layer were integrated in a very small part, but the PSE layer and the NSE layer were not integrated in most of the rest.
  • the pressure of the pressurization is increased, the region where the PSE layer and the NSE layer are integrated is expected to increase, but it is considered that the PSE layer and the NSE layer are not completely integrated.
  • the pressure of the pressurization is increased, there is a high possibility that a defect such as a crack may occur in any layer of the positive electrode body and the negative electrode body.
  • the resistance value of the SE layer 40 changes depending on the conditions. For example, when samples 1 to 6 are compared, the resistance value of the SE layer 40 tends to increase as the heat treatment temperature approaches 150 ° C. or 300 ° C. In particular, it can be seen that the resistance value of the SE layer 40 of the samples 3 and 4 having a heat treatment temperature of 180 to 250 ° C. is smaller than that of the other samples 1, 2, 5, and 6. Further, comparing Samples 4 and 10-12, it can be read that the resistance value of the SE layer 40 can be reduced by increasing the heat treatment time. Compared with Samples 4 and 7-9, the pressurization pressure increases. It can be seen that the resistance value of the SE layer 40 decreases.
  • Test Example 2 ⁇ Nonaqueous Electrolyte Battery of Example 2>
  • the influence of the C content contained in the SE layer 40 on the resistance value of the SE layer 40 was examined. Specifically, five nonaqueous electrolyte batteries 100 (samples 21 to 25) having different C contents in the SE layer 40 were produced, and the resistance values ( ⁇ ⁇ cm 2 ) of the SE layers 40 of the samples 21 to 25 were produced. Was measured.
  • Samples 21 to 25 have the same materials and production conditions except that the raw materials used for forming the PSE layer 13 and the NSE layer 23 are different. The common items are listed below.
  • [Positive electrode body 1] -Positive electrode current collector 11 ; 10 ⁇ m thick Al foil / positive electrode active material layer 12 A pressure formed body of LiNi 0.8 Co 0.15 Al 0.05 O 2 (hereinafter, NCA) powder having a thickness of 200 ⁇ m and Li 2 S—P 2 S 5 powder; the average particle diameter of the NCA particles is 6 ⁇ m The average particle size of the Li 2 S—P 2 S 5 particles is 2 ⁇ m NCA: Li 2 S—P 2 S 5 70: 30 (mass ratio)
  • the pressure molding conditions are 200 ° C. atmosphere and surface pressure of 540 MPa.
  • -PSE layer 13 5 ⁇ m thick amorphous Li 2 SP 2 S 5 film (vacuum evaporation method)
  • the prepared positive electrode body 1 and negative electrode body 2 are overlapped so that the SE layers 13 and 23 are in contact with each other, and the electrode bodies 1 and 2 are pressed together.
  • a plurality of nonaqueous electrolyte batteries 100 were manufactured by heat treatment.
  • the heat treatment conditions were 190 ° C. ⁇ 130 minutes, and the pressurization conditions were 16 MPa.
  • the non-aqueous electrolyte battery 100 produced as described above is charged into a coin cell to complete samples 21 to 25, and the C content (atomic%) and resistance value ( ⁇ ⁇ cm 2 ) of the SE layer 40 of each sample are measured. did.
  • the C content was determined by taking out a cross section of the SE layer 40 by cross section polisher and analyzing the cross section by XPS analysis.
  • the resistance value was determined in the same manner as in Test Example 1.
  • the results are shown in the following Table 2 (the materials used are also described). Note that the sample 21 having a C content of “0” in the table is a sample in which the C content is the detection limit of the measuring device and does not contain C at all or It is a sample containing C below the detection limit.
  • the C content of the raw material used for forming the SE layer 40 is reflected in the C content of the SE layer 40. Further, by comparing Samples 21 to 24 with Sample 25, it was found that when the C content in the SE layer 40 was 10 atomic% or less, the resistance value of the SE layer 40 was significantly reduced. Furthermore, by comparing Samples 21 to 24, it was found that the resistance value of the SE layer 40 can be lowered as the C content of the SE layer 40 decreases. As a result, the C content of the SE layer 40 is more preferably 5 atomic% or less, further preferably 3 atomic% or less, and most preferably 0 atomic%.
  • Test Example 3 ⁇ Nonaqueous Electrolyte Battery of Example 3>
  • Test Example 3 the influence on the resistance value of the SE layer 40 when the thicknesses of the PSE layer 13 and the NSE layer 23 were changed was examined.
  • a plurality of non-aqueous electrolyte batteries (samples 31 to 33) in which the thicknesses of the amorphous PSE layer 13 and the NSE layer 23 were changed were manufactured, and their resistance values ( ⁇ ⁇ cm 2 ) were measured.
  • the configuration other than the thicknesses of the PSE layer 13 and the NSE layer 23 that is, the constituent materials of each layer, the formation conditions of each layer, the pressure heat treatment conditions when joining both electrode bodies, the measurement conditions of the resistance value) are as described in Test Example 2. This was exactly the same as the sample 21 in FIG. Table 3 shows the measurement results of the resistance values of Samples 31 to 33 together with the thicknesses and resistance values of the PSE layer 13 and the NSE layer 23.
  • Test Example 4 ⁇ Nonaqueous Electrolyte Battery of Example 4>
  • a non-aqueous electrolyte battery 100 (samples 41 to 44) in which a very thin solid electrolyte layer having a thickness of 2 ⁇ m or less was formed only on one of the electrode bodies to be bonded, and both electrode bodies were joined by heat treatment. It produced and the resistance value (ohm * cm ⁇ 2 >) was measured.
  • the configuration other than the presence / absence and thickness of the PSE layer 13 and the NSE layer 23 described in Table 4 below was exactly the same as the sample 21 of Test Example 2.
  • Table 4 shows the measurement results of the resistance values of the samples 41 to 44 together with the thicknesses and resistance values of the PSE layer 13 and the NSE layer 23.
  • ⁇ Nonaqueous Electrolyte Battery of Comparative Example 2> A positive electrode body having an amorphous PSE layer having a thickness of 10 ⁇ m and a negative electrode body not having an NSE layer were prepared, and both were bonded while being heat-treated under the conditions of Example 4. In this case, the PSE layer becomes the SE layer in the nonaqueous electrolyte battery.
  • Nonaqueous Electrolyte Battery of Comparative Example 3 A positive electrode body having no PSE layer and a negative electrode body having an amorphous NSE layer having a thickness of 10 ⁇ m were prepared, and both were bonded while being heat-treated under the conditions of Example 4. In this case, the NSE layer becomes the SE layer in the nonaqueous electrolyte battery.
  • the present invention is not limited to the above-described embodiment. That is, the configuration of the nonaqueous electrolyte battery described in the above-described embodiment can be changed as appropriate without departing from the gist of the present invention.
  • the method for producing a non-aqueous electrolyte battery of the present invention is suitable for producing a non-aqueous electrolyte battery that is used as a power source for electrical equipment on the premise that charging and discharging are repeated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 粉末成形体からなる正極活物質層12と、その正極活物質層12上に気相法で形成されるアモルファスの正極側固体電解質層(PSE層)13と、を有する正極体1を用意する。粉末成形体からなる負極活物質層22と、その負極活物質層22上に気相法で形成されるアモルファスの負極側固体電解質層(NSE層)23と、を有する負極体2を用意する。正極体1と負極体2とを、両電極体1,2の固体電解質層13,23同士が接触するように重ね合わせて加圧しながら熱処理し、PSE層13とNSE層23とを結晶化させることで接合させる。

Description

非水電解質電池の製造方法、および非水電解質電池
 本発明は、正極活物質層および正極側固体電解質層を備えた正極体と、負極活物質層および負極側固体電解質層を備えた負極体と、をそれぞれ別個に作製し、後工程において両電極体を重ね合わせる非水電解質電池の製造方法、およびその製造方法で得られた非水電解質電池に関するものである。
 充放電を繰り返すことを前提とした電源として、正極層と負極層とこれら電極層の間に配される電解質層とを備える非水電解質電池が利用されている。この電池に備わる電極層はさらに、集電機能を有する集電体と、活物質を含む活物質層とを備える。このような非水電解質電池のなかでも特に、正・負極層間のLiイオンの移動により充放電を行う非水電解質電池は、小型でありながら高い放電容量を備える。
 上記非水電解質電池を作製する技術としては、例えば、特許文献1に記載のものが挙げられる。この特許文献1では、非水電解質電池の作製にあたり、正極集電体上に粉末成形体の正極活物質層を備える正極体と、負極集電体上に粉末成形体の負極活物質層を備える負極体と、を別個に作製している。これら電極体はそれぞれ固体電解質層を備えており、これら正極体と負極体とを重ね合わせることで非水電解質電池を作製している。その重ね合わせの際、特許文献1の技術では、両電極体に備わる固体電解質層同士を950MPaを超える高圧で圧接している。
特開2008-103289号公報
 しかし、特許文献1の非水電解質電池では、以下に示すような問題点がある。
 第一に、両電極体を高圧で圧接するため、各電極体に割れなどが生じる恐れがある。特に、粉末成形体からなる活物質層が割れ易く、割れてしまうと非水電解質電池の性能が著しく低下する恐れがある。
 第二に、特許文献1の非水電解質電池の固体電解質層は、正極側固体電解質層と負極側固体電解質層とを圧接することで形成されるため、その正極側固体電解質層と負極側固体電解質層との間に接合界面が形成される。その接合界面は高抵抗となり易いため、非水電解質電池の放電容量や放電出力が理論値よりも大幅に低下する恐れがある。
 本発明は上記事情に鑑みてなされたものであり、その目的の一つは、個別に作製した2つの電極体を貼り合せても、両電極体の接合界面に高抵抗層が形成されない非水電解質電池を作製できる非水電解質電池の製造方法、およびその製造方法で得られた非水電解質電池を提供することにある。
 本発明非水電解質電池の製造方法には三つの形態がある。その三つの形態を順次説明する。
(1)本発明非水電解質電池の製造方法は、正極活物質層、負極活物質層、およびこれら活物質層の間に配される硫化物の固体電解質層(以下、SE層)を備える非水電解質電池を製造する非水電解質電池の製造方法であって、以下の工程を備えることを特徴とする。
・粉末成形体からなる正極活物質層と、その正極活物質層上に気相法で形成されるアモルファスの正極側固体電解質層(以下、PSE層)と、を有する正極体を用意する工程。
・粉末成形体からなる負極活物質層と、その負極活物質層上に気相法で形成されるアモルファスの負極側固体電解質層(以下、NSE層)と、を有する負極体を用意する工程。
・正極体と負極体とを、両電極体の固体電解質層同士が接触するように重ね合わせた状態で加圧しながら熱処理し、PSE層とNSE層とを結晶化させることで接合させる工程。
 本発明非水電解質電池の製造方法によれば、アモルファスが結晶化するときの原子の相互拡散を利用してPSE層とNSE層を接合しているので、PSE層とNSE層の間に高抵抗の接合界面が殆ど形成されない。
 また、本発明非水電解質電池の製造方法によれば、熱処理による結晶化を利用してPSE層とNSE層とを接合するため、PSE層とNSE層との接合時に正極体と負極体とを高圧で圧縮する必要がなく、両電極体の構成要素に割れなどの不具合が生じ難い。特に本発明製造方法では、比較的割れ易い粉末成形体で活物質層を形成しているため、PSE層とNSE層とを高圧で圧縮する必要がないことは、非水電解質電池の製造上、大きな利点となる。なお、活物質層を粉末成形体としているのは、気相法よりも厚い活物質層を形成することが容易であり、その結果として高い放電容量を備える非水電解質電池を作製できるからである。
(2)本発明非水電解質電池の製造方法は、正極活物質層、負極活物質層、およびこれら活物質層の間に配されるSE層を備える非水電解質電池を製造する非水電解質電池の製造方法であって、以下の工程を備えることを特徴とする。
・粉末成形体からなる正極活物質層と、その正極活物質層上に気相法で形成される厚さ2μm以下のアモルファスのPSE層と、を有する正極体を用意する工程。
・粉末成形体からなる負極活物質層を有する負極体を用意する工程。
・正極体と負極体とを、PSE層と負極活物質層とが接触するように重ね合わせた状態で加圧しながら熱処理し、PSE層を結晶化させることで接合させる工程。
 ここで、本明細書における『厚さ』は全て、異なる5点以上の部分で測定した厚さの平均である。『厚さ』は、例えば、断面を走査型電子顕微鏡により観察することで測定することができる。
 本発明者らの検討の結果、アモルファスのPSE層が2μm以下の薄膜であると、PSE層が活性となるため、PSE層がアモルファスから結晶化する際に、PSE層の構成物質が負極活物質層に拡散し易いことが分かった。そのため、上記(2)の製造方法により非水電解質電池を作製すれば、当該電池における正極体と負極体との間に高抵抗の接合界面が形成され難い。これに対して、PSE層が2μm超の厚さであると、PSE層の活性が下がり、PSE層の構成物質が負極活物質層に拡散し難くなるため、正極体と負極体との間に高抵抗の接合界面が形成されてしまう。
 また、上記(2)の製造方法で得られる非水電解質電池では、PSE層に由来するSE層の厚さが2μm以下と非常に薄くなるため、当該製造方法によれば従来よりも薄い非水電解質電池を作製することができる。
(3)本発明非水電解質電池の製造方法は、正極活物質層、負極活物質層、およびこれら活物質層の間に配されるSE層を備える非水電解質電池を製造する非水電解質電池の製造方法であって、以下の工程を備えることを特徴とする。
・粉末成形体からなる正極活物質層を有する正極体を用意する工程。
・粉末成形体からなる負極活物質層と、その負極活物質層上に気相法で形成される厚さ2μm以下のアモルファスのNSE層と、を有する負極体を用意する工程。
・正極体と負極体とを、正極活物質層とNSE層とが接触するように重ね合わせた状態で加圧しながら熱処理し、NSE層を結晶化させることで接合させる工程。
 本発明者らの検討の結果、アモルファスのNSE層が2μm以下の薄膜であると、NSE層が活性となるため、NSE層がアモルファスから結晶化する際に、NSE層の構成物質が正極活物質層に拡散し易いことが分かった。そのため、上記(3)の製造方法により非水電解質電池を作製すれば、当該電池における正極体と負極体との間に高抵抗の接合界面が形成され難い。これに対して、NSE層が2μm超の厚さであると、NSE層の活性が下がり、NSE層の構成物質が負極活物質層に拡散し難くなるため、正極体と負極体との間に高抵抗の接合界面が形成されてしまう。
 また、上記(3)の製造方法で得られる非水電解質電池では、NSE層に由来するSE層の厚さが2μm以下と非常に薄くなるため、当該製造方法によれば従来よりも薄い非水電解質電池を作製することができる。
 以上説明した本発明非水電解質電池の製造方法のより好ましい構成について以下に説明する。
(4)本発明非水電解質電池の製造方法の一形態として、熱処理は、130~300℃×1~1200分で行うことが好ましい。
 上記(1)の製造方法においてアモルファスのPSE層とNSE層とを結晶化させて接合するための熱処理条件は、これらPSE層とNSE層を構成する硫化物の種類によって適宜選択することができる。硫化物として特にLiS-Pが用いられており、このLiS-Pは、上記熱処理条件により十分に結晶化させることができる。ここで、熱処理温度が低すぎたり、熱処理時間が短すぎると、PSE層とNSE層の結晶化が十分でなく、PSE層とNSE層との間に接合界面が形成される恐れがある。一方、熱処理温度が高すぎたり、熱処理時間が長すぎると、低Liイオン伝導性の結晶相が形成される恐れがある。上記範囲で熱処理温度を高くするほど、加速度的に結晶化の時間(つまり、熱処理時間)を短くできる。以上の記載は、電極体のいずれか一方にのみ固体電解質の層を形成する上記(2)、(3)の製造方法にも当てはまる。
 なお、気相法で形成されたアモルファスのLiS-Pの固体電解質層の結晶化温度と、粉末状のアモルファスのLiS-Pを加圧成形することで形成された固体電解質層の結晶化温度と、は異なる。具体的には、気相法によって形成したLiS-Pの固体電解質層の結晶化温度は約130℃、粉末成形法によって形成したLiS-Pの固体電解質層の結晶化温度は約240℃である。本発明製造方法におけるPSE層とNSE層は気相法で形成されるので、これらPSE層とNSE層は約130℃で結晶化する。
(5)本発明非水電解質電池の製造方法の一形態として、加圧は、160MPa以下で行うことが好ましい。
 加圧の圧力を160MPa以下とすることで、より好ましくは16MPa以下とすることで、正極体と負極体の接合の際、これら電極体に備わる各層に割れなどの不具合が生じることを抑制することができる。
(6)本発明非水電解質電池の製造方法の一形態として、活物質層上に形成される固体電解質層のC含有量を、10原子%以下とすることが好ましい。具体的には、正極体がPSE層を備え、負極体がNSE層を備える場合は、PSE層とNSE層におけるC含有量は10原子%以下、正極体のみが固体電解質層(PSE層)を備える場合は、そのPSE層のC含有量が10原子%、負極体のみが固体電解質層(NSE層)を備える場合、そのNSE層のC含有量が10原子%とする。
 固体電解質層におけるC含有量を10原子%とすることで、Cの影響により固体電解質層に含まれる固体電解質が変質してSE層のLiイオン伝導度が低下することを回避できる。
 次に、本発明非水電解質電池について説明する。
(7)本発明非水電解質電池は、正極活物質層、負極活物質層、およびこれら活物質層の間に配される硫化物のSE層を備える非水電解質電池である。この非水電解質電池の正極活物質層と負極活物質層は、粉末成形体であり、SE層は、正極活物質の側に設けられたPSE層と負極活物質層の側に設けられたNSE層とを接合することで一体化された結晶質の層である。このSE層の抵抗値は、50Ω・cm以下であることが好ましく、さらに好ましくは20Ω・cm以下である。
 上記構成を備える本発明非水電解質電池は、上記(1)の製造方法で作製された非水電解質電池であって、そのSE層の抵抗値が従来の方法で作製された電池よりも小さいため、従来の電池よりも優れた電池特性(放電容量や放電出力)を発揮する。
(8)本発明非水電解質電池は、正極活物質層、負極活物質層、およびこれら活物質層の間に配される硫化物のSE層を備える非水電解質電池である。この非水電解質電池の正極活物質層と負極活物質層は、粉末成形体であり、SE層は、その厚さが2μm以下の結晶質の層である。そして、このSE層の抵抗値は、50Ω・cm以下である。
 上記構成を備える本発明非水電解質電池は、上記(2)または(3)の製造方法で作製された非水電解質電池であって、そのSE層の抵抗値が従来の方法で作製された電池よりも小さいため、従来の電池よりも優れた電池特性(放電容量や放電出力)を発揮する。また、上記本発明非水電解質電池は、従来にないほど薄いSE層を備えるため、従来電池よりも格段に薄い非水電解質電池である。
(9)本発明非水電解質電池の一形態として、SE層のC含有量は、10原子%以下であることが好ましい。
 SE層におけるC含有量を10原子%とすることで、Cの影響により固体電解質が変質してSE層のLiイオン伝導度が低下することを回避できる。
(10)本発明非水電解質電池の一形態として、正極活物質層は、Co,Mn,Ni,Fe,Alから選択される少なくとも1種の金属とLiとを含む酸化物からなる活物質、およびLiS-Pを含む固体電解質を含むことが好ましい。
 正極活物質層に上記活物質を含有させることで、非水電解質電池の放電容量を向上させることができる。また、正極活物質層に固体電解質を含有させることで、正極活物質層の抵抗値を下げることができ、その結果として電池の放電容量を向上させることができる。
(11)本発明非水電解質電池の一形態として、負極活物質層は、C、Si、Ge、Sn、Al、Liから選択される少なくとも1種の元素を含む活物質、または少なくともTiとLiとを含む酸化物からなる活物質、およびLiS-Pを含む固体電解質を含むことが好ましい。
 負極活物質層に上記活物質を含有させることで、非水電解質電池の放電容量を向上させることができる。また、負極活物質層に固体電解質を含有させることで、負極活物質層の抵抗値を下げることができ、その結果として電池の放電容量を向上させることができる。
 本発明非水電解質電池の製造方法によれば、個別に作製された正極体と負極体とを接合して本発明非水電解質電池を作製しても、正極体と負極体との間に高抵抗層が形成されない。そのため、本発明非水電解質電池は、優れた電池特性を発揮する。
正極体と負極体とを貼り合わせてなる非水電解質電池の縦断面図である。 実施形態1に記載される貼り合わせ前の正極体と負極体の縦断面図である。 交流インピーダンス法で得られるナイキスト線図の一例を示す概略図である。 実施形態2に記載される貼り合わせ前の正極体と負極体の縦断面図である。 実施形態3に記載される貼り合わせ前の正極体と負極体の縦断面図である。
(実施形態1)
<非水電解質電池の全体構成>
 図1に示す非水電解質電池100は、正極集電体11、正極活物質層12、硫化物の固体電解質層(SE層)40、負極活物質層22、および負極集電体21とを備える。この非水電解質電池100は、以下の工程に従う非水電解質電池の製造方法、即ち、図2に示すように個別に作製された正極体1と負極体2とを重ね合わせることで作製することができる。
<非水電解質電池の製造方法>
(α)正極体1を作製する。
(β)負極体2を作製する。
(γ)正極体1と負極体2とを重ね合わせ、加圧しながら熱処理を施して、正極体1と負極体2とを接合する。
※工程α,βの順序は入れ替え可能である。
 ≪工程α:正極体の作製≫
 本実施形態の正極体1は、正極集電体11の上に、正極活物質層12と正極側固体電解質層(PSE層)13を積層した構成を有する。この正極体1を作製するには、正極集電体11となる基板を用意し、その基板の上に残りの層12,13を順次形成すれば良い。なお、正極集電体11は、正極体1と負極体2とを接合する工程γの後に、正極活物質層12におけるPSE層13とは反対側の面に形成しても良い。
  [正極集電体]
 正極集電体11となる基板は、導電材料のみから構成されていても良いし、絶縁基板上に導電材料の膜を形成したもので構成されていても良い。後者の場合、導電材料の膜が集電体として機能する。導電材料としては、AlやNi、これらの合金、ステンレスから選択される1種が好適に利用できる。
  [正極活物質層]
 正極活物質層12は、電池反応の主体となる正極活物質粒子を含む粉末を加圧成形することで得られる層である。正極活物質としては、層状岩塩型の結晶構造を有する物質、例えば、Liαβ(1-X)(αはCo,Ni,Mnから選択される少なくとも1種、βはFe,Al,Ti,Cr,Zn,Mo,Biから選択される1種、Xは0.5以上)で表される物質を挙げることができる。その具体例としては、LiCoOやLiNiO、LiMnO、LiCo0.5Fe0.5、LiCo0.5Al0.5、LiNi0.8Co0.15Al0.05などを挙げることができる。その他、正極活物質として、スピネル型の結晶構造を有する物質(例えば、LiMnなど)や、オリビン型の結晶構造を有する物質(例えば、LiFePO(0<X<1))を用いることもできる。
 上記正極活物質層12は、この層12のLiイオン伝導性を改善する電解質粒子を含有していても良い。その場合、加圧成形の原料である正極活物質粒子に電解質粒子を混合しておく。そうすることで、原料を加圧成形した際、正極活物質粒子と固体電解質粒子とを含む正極活物質層12を形成できる。上記電解質粒子としては、例えば、LiS-Pなどの硫化物を好適に利用することができる。正極活物質層12に含ませる固体電解質粒子は、アモルファスでも結晶質でも良いが、Liイオン伝導性が高い結晶質とすることが好ましい。その他、正極活物質層12は、導電助剤や結着剤を含んでいても良い。
 加圧成形の条件は、適宜選択することができる。例えば、室温~300℃の雰囲気下、面圧100~600MPaで加圧成形すると良い。また、加圧成形される正極活物質粒子の平均粒径は、1~20μmが好ましい。さらに電解質粒子を利用するのであれば、その電解質粒子の平均粒径は、0.5~2μmが好ましい。
  [正極側固体電解質層]
 正極側固体電解質層(PSE層)13は、硫化物からなるアモルファスのLiイオン伝導体である。このPSE層13は、後述する工程γを経て結晶化し、図1に示す完成した電池100のSE層40の一部となる。PSE層13に求められる特性は、結晶化したときに高Liイオン伝導性で、かつ低電子伝導性であることである。例えば、アモルファス状態にあるPSE層13が結晶化したときのLiイオン伝導度(20℃)は、10-5S/cm以上、特に、10-4S/cm以上であることが好ましい。また、結晶化したときのPSE層13の電子伝導度は、10-8S/cm以下であることが好ましい。このようなPSE層13の材質としては、例えば、LiS-Pを挙げることができる。PSE層13は、Pなどの酸化物を含有していても良い。
 PSE層13の形成には、気相法を利用することができる。気相法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザーアブレーション法などを利用できる。ここで、アモルファス状態のPSE層13を形成するには、膜形成時の基材温度が膜の結晶化温度以下になるように基材を冷却したりすれば良い。例えば、LiS-PでPSE層13を形成する場合、膜形成時の基材温度を150℃以下とすることが好ましい。
 上記気相法で形成するPSE層13の厚さは、0.1~5μmとすることが好ましい。気相法であれば、この薄さのPSE層13であっても、PSE層13にピンホールなどの欠陥が生じることが殆ど無く、PSE層13の未形成箇所が生じることも殆ど無い。
 また、PSE層13は、C(炭素)をあまり含まないことが好ましい。Cは、固体電解質を変質させ、PSE層13のLiイオン伝導度を低下させる恐れがあるからである。PSE層13は後工程でSE層40となるため、PSE層13のLiイオン伝導度が下がると、SE層40のLiイオン伝導度も下がり、非水電解質電池100の性能が低下する。そのため、PSE層13のC含有量は、10原子%以下とすることが好ましく、より好ましくは5原子%以下、さらに好ましくは3原子%以下である。PSE層13に実質的にCが含まれないことが最も好ましい。
 PSE層13に含まれるCは、主としてPSE層13の形成に利用する原料に不純物として含まれるCに由来する。例えば、代表的な硫化物の固体電解質であるLiS-Pの合成過程では炭酸リチウム(LiCO)が用いられるため、LiS-Pの純度が低い原料には、Cが多く含まれ得る。そのため、PSE層13のC含有量を低く抑えるには、LiS-Pの純度が高く、Cの含有量が低い原料を用いてPSE層13を形成すれば良い。LiS-Pの純度が高い原料としては例えば、C含有量が低くなるように調整された市販品を利用することができる。
 その他、PSE層13に含まれるCの由来として、気相法によるPSE層13の成膜の際に原料を保持するボートを挙げることができる。ボートはCでできている場合があり、原料を蒸発させる際の熱でボートのCがPSE層13に混入することがある。但し、成膜時のボート加熱温度や雰囲気圧力などの成膜条件を調整することで、PSE層13へのCの混入を効果的に抑制することができる。
  [その他の構成]
 PSE層13が硫化物固体電解質を含むと、この硫化物固体電解質がPSE層13に隣接する正極活物質層12に含まれる酸化物の正極活物質と反応して、正極活物質層12とPSE層13との界面近傍が高抵抗化し、非水電解質電池100の放電容量を低下させる恐れがある。そこで、上記界面近傍の高抵抗化を抑制するために、正極活物質層12とPSE層13との間に中間層を設けても良い。
 上記中間層に用いる材料としては、非晶質のLiイオン伝導性酸化物、例えばLiNbOやLiTaO、LiTi12などを利用できる。特にLiNbOは、正極活物質層12とPSE層13との界面近傍の高抵抗化を効果的に抑制できる。
 ≪工程β:負極体の作製≫
 負極体2は、負極集電体21の上に、負極活物質層22と負極側固体電解質層(NSE層)23を積層した構成を有する。この負極体2を作製するには、負極集電体21となる基板を用意し、その基板の上に残りの層22,23を順次形成すれば良い。なお、負極集電体21は、工程γの後に、負極活物質層22におけるNSE層23とは反対側の面に形成しても良い。
  [負極集電体]
 負極集電体21となる基板は、導電材料のみから構成されていても良いし、絶縁基板上に導電材料の膜を形成したもので構成されていても良い。後者の場合、導電材料の膜が集電体として機能する。導電材料としては、例えば、Al,Cu、Ni、Fe、Cr、及びこれらの合金(例えば、ステンレスなど)から選択される1種が好適に利用できる。
  [負極活物質層]
 負極活物質層22は、電池反応の主体となる負極活物質粒子を含む粉末を加圧成形することで得られる層である。負極活物質としては、C、Si、Ge、Sn、Al、Li合金、またはLiTi12などのLiを含む酸化物を利用することができる。その他、負極活物質として、LaSn(M=NiまたはCo)で表される化合物を利用することができる。
 上記負極活物質層22は、この層22のLiイオン伝導性を改善する電解質粒子を含有していても良い。その場合、加圧成形の原料である負極活物質粒子に電解質粒子を混合しておく。そうすることで、原料を加圧成形した際、負極活物質粒子と固体電解質粒子とを含む負極活物質層22を形成できる。上記電解質粒子としては、例えば、LiS-Pなどの硫化物を好適に利用することができる。負極活物質層22に含ませる固体電解質粒子は、アモルファスでも結晶質でも良いが、Liイオン伝導性が高い結晶質とすることが好ましい。その他、負極活物質層22は、導電助剤や結着剤を含んでいても良い。
 加圧成形の条件は、適宜選択することができる。例えば、室温~300℃の雰囲気下、面圧100~600MPaで加圧成形すると良い。また、加圧成形される負極活物質粒子の平均粒径は、1~20μmが好ましい。さらに電解質粒子を利用するのであれば、その電解質粒子の平均粒径は、0.5~2μmが好ましい。
  [負極側固体電解質層]
 負極側固体電解質層(NSE層)23は、上述したPSE層13と同様に、硫化物からなるアモルファスのLiイオン伝導体である。このNSE層23も、次の工程γを経て電池100を完成させた際、電池100のSE層40の一部となる層であり、結晶化したときに高Liイオン伝導性で、かつ低電子伝導性であることが求められる。このNSE層23の材質としてはPSE層13と同様に、LiS-P(必要に応じてPを含む)などを使用することが好ましい。特に、このNSE層23と上述したPSE層13とは組成や作製方法などを同じとしておくことが好ましい。これは、NSE層23とPSE層13とが次の工程γを経ることで一層のSE層40となったときに、SE層40の厚み方向にLiイオン伝導性にバラツキが生じないようにするためである。
 上記気相法で形成するNSE層23の厚さは、0.1~5μmとすることが好ましい。気相法であれば、この薄さのNSE層23であっても、NSE層23にピンホールなどの欠陥が生じることが殆ど無く、NSE層23の未形成箇所が生じることも殆ど無い。
 また、NSE層23も、PSE層13と同様に、C(炭素)をあまり含まないことが好ましい。その理由も、NSE層23におけるC含有量の好ましい値も、NSE層23におけるC含有量の調整方法も、PSE層13と同様である。
 ≪工程γ:正極体と負極体との接合≫
 次に、PSE層13とNSE層23とが互いに対向するように正極体1と負極体2とを積層して非水電解質電池100を作製する。その際、PSE層13とNSE層23とを圧接させつつ熱処理を施して、アモルファス状態にあるPSE層13とNSE層23を結晶化させ、これらPSE層13とNSE層23とを一体化させる。
 工程γにおける熱処理条件は、PSE層13とNSE層23を結晶化させることができるように選択する。熱処理温度が低すぎると、PSE層13とNSE層23が十分に結晶化せず、PSE層13とNSE層23との間に未接合の界面が多く残り、PSE層13とNSE層23とが一体化されない。逆に熱処理温度が高すぎると、PSE層13とNSE層23とが一体化しても、低Liイオン伝導性の結晶相が形成される恐れがある。熱処理時間についても熱処理温度と同様に、短すぎると一体化が不十分になり、長すぎると低Liイオン伝導性の結晶相の生成を招く恐れがある。具体的な熱処理条件は、PSE層13とNSE層23の組成などの影響を受けて変化するが、概ね130~300℃×1~1200分で行うことが好ましい。より好ましい熱処理条件は、150~250℃×30~150分である。
 また、工程γでは熱処理時にPSE層13とNSE層23とを近づける方向に加圧する。これは、熱処理の際、PSE層13とNSE層23とを密着させておくことで、PSE層13とNSE層23との一体化を促進するためである。加圧の圧力は、非常に小さくともPSE層13とNSE層23との一体化を促進する効果はあるものの、高くする方が当該一体化を促進し易い。但し、加圧の圧力を高くすると、正極体1と負極体2に備わる各層に割れなどの不具合が生じる恐れがある。特に、粉末成形体である正極活物質層12や負極活物質層22には割れが生じ易い。そこで、圧力は160MPa以下とすることが好ましい。なお、PSE層13とNSE層23との一体化はあくまで熱処理により生じるものであるので、加圧の圧力は1~20MPaで十分である。
 工程γを行うことにより、結晶化された一層のSE層40を備える非水電解質電池100が形成される。この一層のSE層40は、上述したようにPSE層13とNSE層23とを一体化させることで形成されたものでありながら、PSE層13とNSE層23との界面がほとんど残らない。そのため、このSE層40は、当該界面に起因するLiイオン伝導性の低下がなく、高Liイオン伝導性で、かつ低電子伝導性のSE層40となる。ここで、SE層40には、一体化前のPSE層13とNSE層23の表面粗さなどの影響により、PSE層13とNSE層23とを一体化した痕跡が残り易い。当該痕跡は、非水電解質電池100の縦断面におけるSE層40を観察したときに、電池100の幅方向に伸びる仮想直線上に断続的に並ぶ空隙として観察される。当該痕跡は小さい方が好ましく、痕跡の大小は、例えば、電池100の縦断面を見たときに、電池100の幅方向の全長(図1における左右方向の長さ)に対して空隙が存在する部分の合計長さの割合で評価できる。その割合は、5%以下とすることが好ましく、より好ましくは3%以下、最も好ましくは1%以下である。もちろん、一体化前のPSE層13とNSE層23の表面状態を改善するなどしてPSE層13とNSE層23とを一体化させ、PSE層13とNSE層23とを接合した痕跡が全く無いSE層40とすることが好ましい。
 工程γを経て出来上がるSE層40の特性を述べると、SE層40の抵抗が、50Ω・cm以下である。抵抗は交流インピーダンス法を用いて測定しており、測定条件は、電圧振幅5mV、周波数範囲0.01Hz~10kHzである。なお、交流インピーダンス測定で得られるナイキスト線図(図3を参照)において、最も高周波側のナイキストプロット(図中の実線)の延長線(図中の点線)と実数軸との交点が、SE層40の抵抗値であり、このことは等価回路計算結果と測定結果を解析することにより明らかになっている。図3の結果が得られた電池100の場合、SE層40の抵抗値は20Ω・cmである。
 また、SE層40はCをあまり含まないことが好ましい。その理由は、PSE層13の説明の際に述べたように、Cが固体電解質を変質させる恐れがあるからである。SE層40のC含有量は、PSE層13のC含有量とNSE層23のC含有量の合計と考えて良く、従って10原子%以下であることが好ましい。
<非水電解質電池の効果>
 以上説明した製造方法により得られた非水電解質電池100によれば、正極体1と負極体2とを高圧で圧接した従来の電池よりも優れた電池特性(放電容量や、放電出力)を発揮する。それは、SE層40において、PSE層13とNSE層23との接合界面に高抵抗層が形成されないからである。
(実施形態2)
 図1に示す非水電解質電池100は、図4を参照する以下の工程に従う非水電解質電池の製造方法によっても作製することができる。
<非水電解質電池の製造方法>
(δ)正極活物質層12とPSE層13とを備える正極体3を作製する。
(ε)負極活物質層22を備えるが、NSE層を有さない負極体4を作製する。
(ζ)正極体3と負極体4とを重ね合わせ、加圧しながら熱処理を施して、正極体3と負極体4とを接合する。
※工程δ,εの順序は入れ替え可能である。
 正極体3と負極体4に備わる各層の構成、両電極体3,4を接合する際の加圧熱処理の条件は、実施形態1に準ずる。但し、PSE層13の厚さは2μm以下とする必要がある。PSE層13の厚さが2μm以下の場合、PSE層13に含まれる固体電解質の活性が高く、正極体3と負極体4とを重ね合わせて熱処理した際に、PSE層13のアモルファスの固体電解質が負極活物質層22に拡散し易い。即ち、上記熱処理によって、PSE層13のアモルファスの固体電解質が結晶化しながら、負極活物質層22に含まれる結晶質の固体電解質粒子と結合し、正極体3と負極体4との間に接合界面が殆ど形成されることなく正極体3と負極体4とが接合される。その結果、工程ζを経て出来上がるSE層40の抵抗値を、実施形態1と同じ条件の交流インピーダンス法を用いて測定すれば、やはり50Ω・cm以下となる。これに対して、PSE層13の厚さが2μm超の場合、PSE層13に含まれるアモルファスの固体電解質の活性が低く、熱処理によって負極活物質層22に拡散し難いため、正極体3と負極体4との間に高抵抗の接合界面が形成され易い。
(実施形態3)
 図1に示す非水電解質電池100は、図5を参照する以下の工程に従う非水電解質電池の製造方法によっても作製することができる。
<非水電解質電池の製造方法>
(η)正極活物質層12を備えるが、PSE層を有さない正極体5を作製する。
(θ)負極活物質層22とNSE層23とを備える負極体6を作製する。
(ι)正極体5と負極体6とを重ね合わせ、加圧しながら熱処理を施して、正極体5と負極体6とを接合する。
※工程η,θの順序は入れ替え可能である。
 正極体5と負極体6に備わる各層の構成、両電極体5,6を接合する際の加圧熱処理の条件は、実施形態1に準ずる。但し、NSE層23の厚さは2μm以下とする必要がある。これは、実施形態2と同様に、NSE層23に含まれるアモルファスの固体電解質の活性を高くするためである。そうすることで、熱処理によって、NSE層23のアモルファスの固体電解質が結晶化しながら、正極活物質層12に含まれる結晶質の固体電解質粒子と結合し、正極体5と負極体6との間に接合界面が殆ど形成されることなく正極体5と負極体6とが接合される。その結果、工程ιを経て出来上がるSE層40の抵抗値を、実施形態1と同じ条件の交流インピーダンス法を用いて測定すれば、やはり50Ω・cm以下となる。
〔試験例1〕
 図1を参照して説明した実施形態の非水電解質電池100を作製し、その電池100に備わるSE層40の抵抗値を測定することで、電池100の電池特性を評価した。また、比較例となる非水電解質電池を作製し、その電池に備わるSE層の抵抗値も測定した。
<実施例1の非水電解質電池>
 非水電解質電池100の作製にあたり、以下の構成を備える正極体1、負極体2を用意した。
≪正極体1≫
・正極集電体11…厚さ10μmのAl箔
・正極活物質層12…厚さ200μmのLiCoO粉末とLiS-P粉末との加圧成形体(LiCoO:LiS-P=70質量%:30質量%)
・PSE層13…厚さ5μmのアモルファスLiS-P膜(真空蒸着法)
≪負極体2≫
・負極集電体21…厚さ10μmのステンレス箔
・負極活物質層22…厚さ200μmのグラファイト粉末とLiS-P粉末との加圧成形体(グラファイト:LiS-P=50質量%:50質量%)
・NSE層23…厚さ5μmのアモルファスLiS-P膜(真空蒸着法)
 次に、用意した正極体1のPSE層13の抵抗値と、負極体2のNSE層23の抵抗値を交流インピーダンス法により測定した。測定条件は、電圧振幅5mV、周波数範囲0.01Hz~10kHzとした。測定結果は、後段の表1に示す。
 最後に、露点温度-40℃のドライ雰囲気下で、用意した正極体1と負極体2とを互いのSE層13,23同士が接触するように重ね合わせ、両電極体1,2を圧接しつつ熱処理を施した複数の非水電解質電池100を作製した。各電池100の作製の際は、熱処理の条件(130~300℃の範囲、1~1200分の範囲)と加圧の条件(8~160MPaの範囲)を変化させておいた。
 以上のようにして作製した各非水電解質電池100をコインセルに仕込んで、これら非水電解質電池100におけるSE層40の抵抗値を交流インピーダンス法により測定した。測定条件は、PSE層13とNSE層23の抵抗値を測定する際の条件と同じである。接合条件と抵抗値の測定結果を、次の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 さらに、試料4と試料9の非水電解質電池100の縦断面におけるPSE層13とNSE層23との境界部に相当すると考えられる部分を走査型電子顕微鏡で観察した。その結果、SE層40において、PSE層13とNSE層23とを接合した痕跡である空隙が観察された。電池100の幅方向の全長(図1における左右方向の長さ)に対して空隙が存在する部分の合計長さの割合は、試料4では1%、試料9では3%であった。
<比較例1の非水電解質電池>
 結晶化したPSE層を有する正極体と、結晶化したNSE層を有する負極体を用意し、実施例の条件でこれら正極体と負極体の接合を試みたが、PSE層とNSE層は一体化せず、PSE層とNSE層の接合は認められなかった。また、この一体化しなかったPSE層とNSE層を加圧により接触させた状態(接合した状態ではない)とした非水電解質電池のSE層の抵抗値を測定したところ、実施例の非水電解質電池のSE層よりも著しく高かった。そのため接触界面のある電池の放電容量や放電出力は、接触界面がない電池に比べて著しく低下すると考えられる。それは、接触界面の抵抗値が接触界面以外の部分の抵抗値よりも著しく高いためと推察される。
 次に、結晶化したPSE層を有する正極体と、結晶化したNSE層を有する負極体とを、300MPaで接合した。その場合、ごく一部分でPSE層とNSE層とが一体となっていたが、残りの大部分ではPSE層とNSE層とが一体となっていなかった。加圧の圧力を高めていけば、PSE層とNSE層とが一体となる領域が大きくなると予想されるが、PSE層とNSE層とが完全に一体化することはないと考えられる。しかも、加圧の圧力を高めていくと、正極体と負極体のいずれかの層に割れなどの不具合が生じる恐れが高くなる。
<まとめ>
 以上説明した実施例、比較例の非水電解質電池の結果から、正極体1のPSE層13と負極体2のNSE層23とをアモルファスとし、その正極体1と負極体2とを接合する際、PSE層13とNSE層23を結晶化させることで得られた電池100は、比較例に示す電池よりも優れた電池特性を有することがわかった。
 また、表1に示すアモルファスを結晶化する際の条件を見ると、条件の相違によりSE層40の抵抗値が変化することがわかる。例えば、試料1~6を比較すると、熱処理温度が150℃または300℃に近づくほど、SE層40の抵抗値が大きくなる傾向にある。特に、熱処理温度が180~250℃の間にある試料3,4のSE層40の抵抗値は、他の試料1,2,5,6のそれよりも小さいことがわかる。また、試料4,10~12を比較すると、熱処理時間を長くすることで、SE層40の抵抗値を低減できることが読み取れるし、試料4,7~9を比較すると、加圧の圧力が大きくなるほど、SE層40の抵抗値が低下する傾向が読み取れる。
〔試験例2〕
<実施例2の非水電解質電池>
 試験例2では、SE層40の抵抗値に及ぼすSE層40に含まれるC含有量の影響を調べた。具体的には、SE層40のC含有量を異ならせた5つの非水電解質電池100(試料21~25)を作製し、試料21~25のSE層40の抵抗値(Ω・cm)を測定した。
 まず、試料21~25の作製にあたり、PSE層13とNSE層23を形成するための原料として、LiS-Pの純度が異なる5種類の原料を用意した。各原料におけるC含有量はそれぞれ、0原子%、3原子%、5原子%、10原子%、12原子%であった。原料におけるC含有量は、XPS(X-ray Photoemission Spectroscopy)分析により測定した。
 試料21~25は、PSE層13とNSE層23の形成に使用する原料が異なる以外、使用する材料も作製の条件も共通である。共通する事項を以下に列挙する。
  [正極体1]
・正極集電体11
 ;厚さ10μmのAl箔
・正極活物質層12
 ;厚さ200μmのLiNi0.8Co0.15Al0.05(以下、NCA)粉末とLiS-P粉末との加圧形成体
 ;NCA粒子の平均粒径は6μm
 ;LiS-P粒子の平均粒径は2μm
 ;NCA:LiS-P=70:30(質量比)
 ;加圧成形条件は、200℃の雰囲気下、面圧540MPa
・PSE層13
 ;厚さ5μmのアモルファスLiS-P膜(真空蒸着法)
  [負極体2]
・負極集電体21
 ;厚さ10μmのAl箔
・負極活物質層22
 ;厚さ200μmのLiTi12(以下、LTO)粉末とLiS-P粉末とアセチレンブラック(以下、AB)との加圧形成体
 ;LTO粒子の平均粒径は6μm
 ;LiS-P粒子の平均粒径は2μm
 ;LTO:LiS-P:AB=40:60:4(質量比)
 ;加圧成形条件は、200℃の雰囲気下、面圧540MPa
・NSE層23
 ;厚さ5μmのアモルファスLiS-P膜(真空蒸着法)
 次に、露点温度-40℃のドライ雰囲気下で、用意した正極体1と負極体2とを互いのSE層13,23同士が接触するように重ね合わせ、両電極体1,2を圧接しつつ熱処理を施して、複数の非水電解質電池100を作製した。熱処理の条件は190℃×130分、加圧の条件は16MPaであった。
 以上のようにして作製した非水電解質電池100をコインセルに仕込んで試料21~25を完成させ、各試料のSE層40のC含有量(原子%)と抵抗値(Ω・cm)を測定した。C含有量は、クロスセクションポリッシャ加工でSE層40の断面を出し、その断面をXPS分析することで求めた。また、抵抗値は、試験例1と同様に求めた。その結果を次の表2に示す(使用する原料も合わせて記載)。なお、表中でC含有量が『0』となっている試料21は、C含有量が測定機器の検出限界であった試料であって、Cが全く含まれていないか、または測定機器の検出限界以下のCを含む試料である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、SE層40の形成に使用した原料のC含有量がSE層40のC含有量に反映されることが分かった。また、試料21~24と試料25との比較により、SE層40におけるC含有量が10原子%以下であると、SE層40の抵抗値が顕著に低くなることが分かった。さらに、試料21~24を比較することで、SE層40のC含有量が低くなる程、SE層40の抵抗値を下げることができるということが分かった。その結果、SE層40のC含有量は5原子%以下がより好ましく、さらに好ましくは3原子%以下、最も好ましくは0原子%である。
〔試験例3〕
<実施例3の非水電解質電池>
 試験例3では、PSE層13とNSE層23の厚さを変化させたときの、SE層40の抵抗値に及ぼす影響について調べた。具体的には、アモルファスのPSE層13とNSE層23の厚さを変化させた複数の非水電解質電池(試料31~33)を作製し、その抵抗値(Ω・cm)を測定した。PSE層13とNSE層23の厚さ以外の構成(即ち、各層の構成材料、各層の形成条件、両電極体を接合させる際の加圧熱処理条件、抵抗値の測定条件)は、試験例2の試料21と全く同じであった。試料31~33の抵抗値の測定結果を、PSE層13とNSE層23の厚さおよび抵抗値と共に表3に示す。
Figure JPOXMLDOC01-appb-T000003
<まとめ>
 表3に示すように、試料31~33のSE層40の抵抗値が測定できたことから、PSE層13とNSE層23を2μm以下の非常に薄い膜としても、試料31~33が電池として動作することが分かった。また、SE層40の厚みが薄くなるほどSE層40の抵抗値が低く、小型でありながら放電出力の高い電池となることが分かった。
〔試験例4〕
<実施例4の非水電解質電池>
 試験例4では、貼り合わせる電極体のいずれか一方にのみ厚さ2μm以下の非常に薄い固体電解質層を形成し、両電極体を熱処理によって接合した非水電解質電池100(試料41~44)を作製し、その抵抗値(Ω・cm)を測定した。下記表4に記載されるPSE層13とNSE層23の有無と厚さ以外の構成は、試験例2の試料21と全く同じであった。試料41~44の抵抗値の測定結果を、PSE層13とNSE層23の厚さおよび抵抗値と共に表4に示す。
Figure JPOXMLDOC01-appb-T000004
<比較例2の非水電解質電池>
 厚さが10μmのアモルファスのPSE層を有する正極体と、NSE層を有さない負極体とを用意して、両者を実施例4の条件で熱処理しつつ接合した。この場合、PSE層が非水電解質電池におけるSE層となる。このようにして作製された電池におけるSE層(=PSE層)の抵抗値は、実施例4の電池100におけるSE層40の抵抗値よりも著しく高かった。これは、比較例2の電池におけるSE層と負極体との接触界面の抵抗値が著しく高いためと考えられる。なお、熱処理時の加圧の圧力を160MPaよりも高くしても、SE層の抵抗値は殆ど改善されなかった。
<比較例3の非水電解質電池>
 PSE層を有さない正極体と、厚さが10μmのアモルファスのNSE層を有する負極体とを用意して、両者を実施例4の条件で熱処理しつつ接合した。この場合、NSE層が非水電解質電池におけるSE層となる。このようにして作製された電池におけるSE層(=NSE層)の抵抗値は、実施例4の電池におけるSE層40の抵抗値よりも著しく高かった。これは、比較例3の電池におけるSE層と正極体との接触界面の抵抗値が著しく高いためと考えられる。なお、熱処理時の加圧の圧力を160MPaよりも高くしても、SE層の抵抗値は殆ど改善されなかった。
<まとめ>
 以上説明した実施例4、比較例2,3の非水電解質電池の結果から、電極体のいずれか一方にのみ固体電解質層を形成する場合、その固体電解質層の厚さは2μm以下である必要があることが分かった。
 なお、本発明は上述の実施の形態に何ら限定されることはない。即ち、上述した実施形態に記載の非水電解質電池の構成は、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。
 本発明非水電解質電池の製造方法は、充放電を繰り返すことを前提とした電気機器の電源に利用される非水電解質電池の作製に好適である。
100 非水電解質電池
 1,3,5 正極体
  11 正極集電体
  12 正極活物質層
  13 正極側固体電解質層(PSE層)
 2,4,6 負極体
  21 負極集電体
  22 負極活物質層
  23 負極側固体電解質層(NSE層)
 40 硫化物固体電解質層(SE層)

Claims (13)

  1.  正極活物質層、負極活物質層、およびこれら活物質層の間に配される硫化物の固体電解質層を備える非水電解質電池を製造する非水電解質電池の製造方法であって、
     粉末成形体からなる正極活物質層と、その正極活物質層上に気相法で形成されるアモルファスの正極側固体電解質層と、を有する正極体を用意する工程と、
     粉末成形体からなる負極活物質層と、その負極活物質層上に気相法で形成されるアモルファスの負極側固体電解質層と、を有する負極体を用意する工程と、
     正極体と負極体とを、両電極体の固体電解質層同士が接触するように重ね合わせた状態で加圧しながら熱処理し、正極側固体電解質層と負極側固体電解質層とを結晶化させることで接合させる工程と、
     を備えることを特徴とする非水電解質電池の製造方法。
  2.  正極活物質層、負極活物質層、およびこれら活物質層の間に配される硫化物の固体電解質層を備える非水電解質電池を製造する非水電解質電池の製造方法であって、
     粉末成形体からなる正極活物質層と、その正極活物質層上に気相法で形成される厚さ2μm以下のアモルファスの正極側固体電解質層と、を有する正極体を用意する工程と、
     粉末成形体からなる負極活物質層を有する負極体を用意する工程と、
     正極体と負極体とを、正極側固体電解質層と負極活物質層とが接触するように重ね合わせた状態で加圧しながら熱処理し、正極側固体電解質層を結晶化させることで接合させる工程と、
     を備えることを特徴とする非水電解質電池の製造方法。
  3.  正極活物質層、負極活物質層、およびこれら活物質層の間に配される硫化物の固体電解質層を備える非水電解質電池を製造する非水電解質電池の製造方法であって、
     粉末成形体からなる正極活物質層を有する正極体を用意する工程と、
     粉末成形体からなる負極活物質層と、その負極活物質層上に気相法で形成される厚さ2μm以下のアモルファスの負極側固体電解質層と、を有する負極体を用意する工程と、
     正極体と負極体とを、正極活物質層と負極側固体電解質層とが接触するように重ね合わせた状態で加圧しながら熱処理し、負極側固体電解質層を結晶化させることで接合させる工程と、
     を備えることを特徴とする非水電解質電池の製造方法。
  4.  前記熱処理は、130~300℃×1~1200分で行うことを特徴とする請求項1~3のいずれか一項に記載の非水電解質電池の製造方法。
  5.  前記加圧は、160MPa以下で行うことを特徴とする請求項4に記載の非水電解質電池の製造方法。
  6.  前記活物質層上に形成される固体電解質層におけるC含有量を、10原子%以下とすることを特徴とする請求項1~3のいずれか一項に記載の非水電解質電池の製造方法。
  7.  前記活物質層上に形成される固体電解質層におけるC含有量を、10原子%以下とすることを特徴とする請求項4に記載の非水電解質電池の製造方法。
  8.  前記活物質層上に形成される固体電解質層におけるC含有量を、10原子%以下とすることを特徴とする請求項5に記載の非水電解質電池の製造方法。
  9.  正極活物質層、負極活物質層、およびこれら活物質層の間に配される硫化物の固体電解質層を備える非水電解質電池であって、
     前記正極活物質層と負極活物質層は、粉末成形体であり、
     前記固体電解質層は、正極活物質の側に設けられた正極側固体電解質層と負極活物質層の側に設けられた負極側固体電解質層とを接合することで一体化された結晶質の層であり、
     前記固体電解質層の抵抗値が、50Ω・cm以下であることを特徴とする非水電解質電池。
  10.  正極活物質層、負極活物質層、およびこれら活物質層の間に配される硫化物の固体電解質層を備える非水電解質電池であって、
     前記正極活物質層と負極活物質層は、粉末成形体であり、
     前記固体電解質層は、その厚さが2μm以下の結晶質の層であり、かつ
     前記固体電解質層の抵抗値は、50Ω・cm以下であることを特徴とする非水電解質電池。
  11.  前記固体電解質層のC含有量は、10原子%以下であることを特徴とする請求項9または10に記載の非水電解質電池。
  12.  前記正極活物質層は、Co,Mn,Ni,Fe,Alから選択される少なくとも1種の金属とLiとを含む酸化物からなる活物質、およびLiS-Pを含む固体電解質を含むことを特徴とする請求項9または10に記載の非水電解質電池。
  13.  前記負極活物質層は、C、Si、Ge、Sn、Al、Liから選択される少なくとも1種の元素を含む活物質、または少なくともTiとLiとを含む酸化物からなる活物質、およびLiS-Pを含む固体電解質を含むことを特徴とする請求項9または10に記載の非水電解質電池。
PCT/JP2011/080452 2010-12-28 2011-12-28 非水電解質電池の製造方法、および非水電解質電池 WO2012091111A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112011104632T DE112011104632T5 (de) 2010-12-28 2011-12-28 Verfahren zur Erzeugung einer nicht-wässrigen Elektrolytbatterie und nicht-wässrige Elektrolytbatterie
US13/976,152 US9083057B2 (en) 2010-12-28 2011-12-28 Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
CN201180063443.XA CN103283078B (zh) 2010-12-28 2011-12-28 非水电解质电池的制造方法和非水电解质电池
JP2012504976A JP5495196B2 (ja) 2010-12-28 2011-12-28 非水電解質電池の製造方法、および非水電解質電池
KR1020137015802A KR20140026345A (ko) 2010-12-28 2011-12-28 비수 전해질 전지의 제조 방법 및, 비수 전해질 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010292534 2010-12-28
JP2010-292534 2010-12-28
PCT/JP2011/076046 WO2012090601A1 (ja) 2010-12-28 2011-11-11 非水電解質電池の製造方法、および非水電解質電池
JPPCT/JP2011/076046 2011-11-11

Publications (1)

Publication Number Publication Date
WO2012091111A1 true WO2012091111A1 (ja) 2012-07-05

Family

ID=46382722

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/076046 WO2012090601A1 (ja) 2010-12-28 2011-11-11 非水電解質電池の製造方法、および非水電解質電池
PCT/JP2011/080452 WO2012091111A1 (ja) 2010-12-28 2011-12-28 非水電解質電池の製造方法、および非水電解質電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076046 WO2012090601A1 (ja) 2010-12-28 2011-11-11 非水電解質電池の製造方法、および非水電解質電池

Country Status (6)

Country Link
US (1) US9083057B2 (ja)
JP (1) JP5495196B2 (ja)
KR (1) KR20140026345A (ja)
CN (1) CN103283078B (ja)
DE (1) DE112011104632T5 (ja)
WO (2) WO2012090601A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161350A1 (ja) * 2012-04-27 2013-10-31 住友電気工業株式会社 非水電解質電池の製造方法、および非水電解質電池
JP2014035812A (ja) * 2012-08-07 2014-02-24 Toyota Motor Corp 硫化物固体電池
FR3002695A1 (fr) * 2013-02-28 2014-08-29 I Ten Procede de fabrication d'une batterie monolithique entierement solide
JP2016509739A (ja) * 2012-12-27 2016-03-31 サムスン エレクトロニクス カンパニー リミテッド 2次電池用の負極活物質、2次電池用の導電性組成物、これを含む負極材料、これを含む負極構造体および2次電池、およびこれらの製造方法
JP2016157676A (ja) * 2015-02-25 2016-09-01 トヨタ自動車株式会社 全固体電池
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772533B2 (ja) * 2011-11-17 2015-09-02 富士通株式会社 二次電池およびその製造方法
JP6071225B2 (ja) * 2012-03-29 2017-02-01 日立造船株式会社 全固体二次電池の製造方法
JP2015026530A (ja) * 2013-07-26 2015-02-05 トヨタ自動車株式会社 電極体の製造方法
JP6380254B2 (ja) * 2015-06-23 2018-08-29 トヨタ自動車株式会社 全固体電池の製造方法
JP6795307B2 (ja) * 2016-02-12 2020-12-02 国立大学法人大阪大学 接合材、接合材の製造方法、接合構造体の作製方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185862A (ja) * 2002-11-29 2004-07-02 Ohara Inc リチウムイオン二次電池及びその製造方法
JP2008103287A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 無機固体電解質層の形成方法
JP2008112661A (ja) * 2006-10-31 2008-05-15 Ohara Inc リチウムイオン伝導性固体電解質およびその製造方法
JP2008243736A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法
JP2008288098A (ja) * 2007-05-18 2008-11-27 Idemitsu Kosan Co Ltd 硫化物系電解質粉体及びそれを用いた硫化物系電解質成形体
JP2009054596A (ja) * 2008-10-30 2009-03-12 Ohara Inc リチウムイオン二次電池及びその製造方法
JP2010218827A (ja) * 2009-03-16 2010-09-30 Toyota Motor Corp 結晶化硫化物固体電解質材料の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340255A (ja) * 1999-05-28 2000-12-08 Kyocera Corp リチウム電池
JP2003077529A (ja) * 2001-09-03 2003-03-14 Sanyo Electric Co Ltd リチウム電池及びリチウム二次電池
JP2008103289A (ja) 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 車両用全固体電池
JP5093449B2 (ja) * 2007-01-09 2012-12-12 住友電気工業株式会社 リチウム電池
JP2010177024A (ja) * 2009-01-29 2010-08-12 Sumitomo Electric Ind Ltd 非水電解質電池用正極と非水電解質電池および非水電解質電池用正極の製造方法
JP5269665B2 (ja) * 2009-03-23 2013-08-21 日本碍子株式会社 全固体電池及びその製造方法
JP2010262798A (ja) * 2009-05-01 2010-11-18 Sumitomo Electric Ind Ltd 非水電解質電池用の正極の製造方法、非水電解質電池および非水電解質電池用の正極
JP5417989B2 (ja) * 2009-05-21 2014-02-19 トヨタ自動車株式会社 固体電解質電池の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185862A (ja) * 2002-11-29 2004-07-02 Ohara Inc リチウムイオン二次電池及びその製造方法
JP2008103287A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 無機固体電解質層の形成方法
JP2008112661A (ja) * 2006-10-31 2008-05-15 Ohara Inc リチウムイオン伝導性固体電解質およびその製造方法
JP2008243736A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法
JP2008288098A (ja) * 2007-05-18 2008-11-27 Idemitsu Kosan Co Ltd 硫化物系電解質粉体及びそれを用いた硫化物系電解質成形体
JP2009054596A (ja) * 2008-10-30 2009-03-12 Ohara Inc リチウムイオン二次電池及びその製造方法
JP2010218827A (ja) * 2009-03-16 2010-09-30 Toyota Motor Corp 結晶化硫化物固体電解質材料の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161350A1 (ja) * 2012-04-27 2013-10-31 住友電気工業株式会社 非水電解質電池の製造方法、および非水電解質電池
JP2014035812A (ja) * 2012-08-07 2014-02-24 Toyota Motor Corp 硫化物固体電池
JP2016509739A (ja) * 2012-12-27 2016-03-31 サムスン エレクトロニクス カンパニー リミテッド 2次電池用の負極活物質、2次電池用の導電性組成物、これを含む負極材料、これを含む負極構造体および2次電池、およびこれらの製造方法
US10586978B2 (en) 2012-12-27 2020-03-10 Samsung Electronics Co., Ltd Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material comprising same, negative electrode structure and secondary battery comprising same, and method for manufacturing same
FR3002695A1 (fr) * 2013-02-28 2014-08-29 I Ten Procede de fabrication d'une batterie monolithique entierement solide
WO2014131997A3 (fr) * 2013-02-28 2014-11-20 I-Ten Procede de fabrication d'une batterie monolithique entierement solide
CN105009332A (zh) * 2013-02-28 2015-10-28 I-Ten公司 制造单片全固态电池的方法
JP2016511929A (ja) * 2013-02-28 2016-04-21 アイ テン モノリシック全固体状態電池の製造プロセス
CN105009332B (zh) * 2013-02-28 2019-03-22 I-Ten公司 制造单片全固态电池的方法
JP2016157676A (ja) * 2015-02-25 2016-09-01 トヨタ自動車株式会社 全固体電池
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Also Published As

Publication number Publication date
KR20140026345A (ko) 2014-03-05
DE112011104632T5 (de) 2013-10-10
WO2012090601A1 (ja) 2012-07-05
CN103283078B (zh) 2016-01-20
US20130273438A1 (en) 2013-10-17
JP5495196B2 (ja) 2014-05-21
US9083057B2 (en) 2015-07-14
CN103283078A (zh) 2013-09-04
JPWO2012091111A1 (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5495196B2 (ja) 非水電解質電池の製造方法、および非水電解質電池
WO2013161350A1 (ja) 非水電解質電池の製造方法、および非水電解質電池
JP5626654B2 (ja) 非水電解質電池、及び非水電解質電池の製造方法
WO2018143022A1 (ja) 全固体電池およびその製造方法
CN104919628B (zh) 全固态电池和用于制造该全固态电池的方法
KR101685799B1 (ko) 전고체 전지용 전극의 제조 방법 및 전고체 전지의 제조 방법
JP2013175412A (ja) 非水電解質電池
WO2011148824A1 (ja) 非水電解質電池、およびその製造方法
JP5311283B2 (ja) 非水電解質電池、およびその製造方法
JP2012160379A (ja) 非水電解質電池及びその製造方法
WO2016208314A1 (ja) リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
JP2009259696A (ja) リチウム電池
JP2013182790A (ja) 非水電解質電池の製造方法、および非水電解質電池
CN112803078B (zh) 全固体电池的制造方法和全固体电池
KR101559225B1 (ko) 전극 재료 및 그 제조 방법
JP2013161646A (ja) 非水電解質電池及びその製造方法、並びにこの電池を備える電動車両
JP2013065531A (ja) 非水電解質電池の製造方法、および非水電解質電池
JP2013054949A (ja) 非水電解質電池
JP2022044461A (ja) 全固体二次電池、積層全固体二次電池及びこれらの製造方法
JP7370728B2 (ja) 全固体電池およびその製造方法
WO2015159331A1 (ja) 全固体電池、全固体電池用電極及びその製造方法
JP7448506B2 (ja) 電池
JP5648978B2 (ja) 非水電解質電池、及び非水電解質電池の製造方法
JP2013125636A (ja) 非水電解質電池
JP2013016280A (ja) 非水電解質電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012504976

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137015802

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13976152

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111046324

Country of ref document: DE

Ref document number: 112011104632

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853806

Country of ref document: EP

Kind code of ref document: A1