WO2016208314A1 - リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2016208314A1
WO2016208314A1 PCT/JP2016/065372 JP2016065372W WO2016208314A1 WO 2016208314 A1 WO2016208314 A1 WO 2016208314A1 JP 2016065372 W JP2016065372 W JP 2016065372W WO 2016208314 A1 WO2016208314 A1 WO 2016208314A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
silicon particles
Prior art date
Application number
PCT/JP2016/065372
Other languages
English (en)
French (fr)
Inventor
岡井 誠
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017524762A priority Critical patent/JPWO2016208314A1/ja
Priority to CN201680031626.6A priority patent/CN107615528A/zh
Priority to US15/578,538 priority patent/US20180159124A1/en
Priority to KR1020177034697A priority patent/KR20180003577A/ko
Publication of WO2016208314A1 publication Critical patent/WO2016208314A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium ion secondary battery and a lithium ion secondary battery.
  • Graphite-based carbon materials are widely used as negative electrode active materials for lithium ion secondary batteries.
  • the stoichiometric composition when graphite is filled with lithium ions is LiC 6 and its theoretical capacity can be calculated as 372 mAh / g.
  • the stoichiometric composition when silicon is filled with lithium ions is Li 15 Si 4 or Li 22 Si 5 , and the theoretical capacity can be calculated as 3577 mAh / g or 4197 mAh / g.
  • silicon is an attractive material that can store 9.6 times or 11.3 times as much lithium as graphite.
  • the silicon particles are filled with lithium ions, the volume expands to about 2.7 times or 3.1 times, so that the silicon particles are dynamically destroyed during repeated filling and releasing of lithium ions.
  • the silicon particles are broken, the broken fine silicon particles are electrically isolated, and a new electrochemical coating layer is formed on the broken surface, whereby the irreversible capacity is increased and the charge / discharge cycle characteristics are remarkably lowered.
  • silicon particles nano-sized as a negative electrode active material of a lithium ion secondary battery By making silicon particles nano-sized as a negative electrode active material of a lithium ion secondary battery, mechanical breakdown associated with filling and releasing of lithium ions can be prevented. However, there has been a problem that due to the volume change accompanying the filling and releasing of lithium ions, some of the silicon nanoparticles are electrically isolated and the life characteristics are greatly deteriorated due to this.
  • Patent Document 1 describes an example in which a Si metal thin film produced by a sputtering method is pulverized and applied to a negative electrode for a lithium ion secondary battery.
  • the scaly Si particles obtained by pulverizing the Si metal thin film are likely to come into surface contact with each other, the particles are likely to become lumps.
  • the Si-based active material has lower conductivity than the carbon material, the flaky Si active material that has become a problem particularly has a problem that the gap between the particles is small and the conductivity is lowered.
  • An object of the present invention is to solve such problems and provide a negative electrode active material for a lithium ion secondary battery having a high capacity and a long life.
  • the negative electrode is formed by applying the negative electrode mixture to a current collector, and the scaly silicon particles are a plurality of lithium ions that are overlapped on the current collector and are electrically bonded via a carbon layer. Secondary battery.
  • a negative electrode active material for a lithium ion secondary battery that has excellent conductivity and can form a mixture layer even if it is scaly silicon particles, and has a high capacity and a long life.
  • FIG. 1 is a diagram schematically showing a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • (A) is a top view
  • (b) is a side sectional view.
  • the carbon-coated flaky silicon particles 101 have a structure in which the carbon layer 103 is covered on the surface of the flaky silicon particles 102.
  • the thickness of the scale-like silicon particles is 5 to 100 nm, more preferably 10 to 50 nm, and the longest diameter and longest diameter of the flat portion are 100 nm to 3 ⁇ m, and more preferably 100 nm to 1 ⁇ m.
  • the thickness of the scaly silicon particles is 5 nm or less, the mechanical strength is weak, and there is a possibility of breaking into pieces during the negative electrode paste preparation process.
  • the thickness is desirably 10 nm or more.
  • the thickness is 100 nm or more, there is a high possibility of destruction due to volume expansion at the time of lithium ion filling.
  • it is desirable that the thickness be 50 nm or less.
  • the longest diameter is 100 nm or less, the shape is difficult to say a scale shape.
  • the longest diameter is 3 ⁇ m or more, there is a high possibility of destruction due to volume expansion during lithium ion filling.
  • the thickness is desirably 1 ⁇ m or less.
  • the scaly silicon particles 101 need only have Si as an element, and may be Si, SiO 2 or an alloy of Si and another metal such as Ti, Cu, Al, or the like.
  • the flaky silicon particles are apt to be lumped due to van der Waals force due to their flat shape.
  • the scaly silicon particles have the carbon layer 103, the conductivity between the particles can be ensured.
  • the scaly silicon particles can be produced, for example, by pulverizing a Si metal thin film produced on a substrate by sputtering. Further, after this, it is preferable to further process to a desired thickness and longest diameter using a planetary ball mill or a bead mill. By mixing with a ball mill, it can be processed to have a desired thickness and longest diameter, and further has an effect of separating particles.
  • the carbon layer 103 has electrical conductivity and has an effect of improving electrical conduction between the scaly silicon particles 102. A certain effect can be expected even when the scaly silicon particles 102 are partially covered with the carbon layer 103 rather than the entire surface. Since the surface of the scaly silicon particles is oxidized in the atmosphere, it is covered with a natural oxide film having a thickness of about 2 nm. It is possible to form the carbon layer 103 on the natural oxide film or to form the carbon layer 103 directly on the silicon surface after removing the natural oxide film. From the viewpoint of reducing electrical resistance, it is desirable to remove the natural oxide film. The natural oxide film can be removed by heat treatment at 1000 ° C. in a hydrogen atmosphere, for example.
  • a method for producing the carbon layer 103 will be described with reference to FIG. Place scaly silicon particles in a sample boat and install it near the center of the reactor.
  • the reactor is made of quartz and has a diameter of 5 cm and a length of 40 cm.
  • hydrogen gas was flowed at a flow rate of 200 mL / min, the growth furnace was heated from room temperature to 1000 ° C. at a rate of 10 ° C./min, and further maintained at 1000 ° C. for 1 hr.
  • the natural oxide film formed on the surface of the scaly silicon particles can be reduced.
  • the hydrogen line was closed, and argon gas was flowed at a flow rate of 200 mL / min, the temperature was lowered at a rate of 10 ° C./min, and the temperature was lowered to 800 ° C.
  • propylene gas was introduced at a flow rate of 10 mL / min, and at the same time, the flow rate of argon gas was set to 190 mL / min, and the carbon coating layer was grown for 1 hour.
  • the propylene gas line was closed, and argon gas was allowed to flow at a flow rate of 200 mL / min, maintained for 15 min, and then naturally cooled.
  • the carbon layer itself is a multilayer nanographene layer in which nanographene is laminated in multiple layers, so that the carbon layer itself has excellent conductivity, and the mobility of electrons between scaly silicon particles is also high.
  • the film thickness of the carbon layer can be set to any film thickness between 2 and 100 nm.
  • the film thickness is 2 nm or less, the mechanical strength is weak, so there is a possibility of peeling due to the stress at the time of slurry preparation.
  • the thickness is 100 nm or more, it is difficult to cover the scaly silicon particles with a uniform film thickness.
  • the carbon layer has a structure in which nanographene is laminated in multiple layers, and has an electric conductivity of 1000 S / m or more.
  • FIGS. 2 and 3 are scanning electron micrographs of scaly silicon particles. From the low-magnification photograph in FIG. 2, it can be seen that the average value of the longest and longest diameters of the flat portion of the scaly silicon particles is about 300 nm. Further, it can be seen from the high-magnification photograph in FIG. 3 that the thickness of the scaly silicon particles is about 20 nm.
  • the scaly silicon particles are almost entirely covered.
  • the coverage of the scaly silicon particles can be 90% or more. Due to the high coverage, conductivity can be ensured even when a plurality of scaly silicon layers overlap.
  • there is a method of providing carbon by mixing conductive carbon with scaly silicon particles but in this case, the coverage is not as high as the above method.
  • the mixing step for example, by mixing a bead mill or the like, the scaly silicon particles can be loosened and carbon can be interposed therebetween, which has the effect of increasing the conductivity between the silicon particles.
  • FIG. 4 and 5 show scanning electron micrographs of scaly silicon particles coated with a carbon layer.
  • 4 is a low-magnification photograph
  • FIG. 5 is a high-magnification photograph.
  • the carbon layer having a thickness of about 10 nm uniformly covers the surface of the scaly silicon particles.
  • the carbon weight ratio was 9.9 wt%
  • the silicon weight ratio was 90.1 wt%.
  • the electric capacity can be adjusted by adjusting the amount of carbon coating on the scaly silicon surface described above.
  • FIG. 7 shows the results of calculating the silicon weight ratio dependence of the electric capacity.
  • the stoichiometric composition upon filling with lithium ions was assumed to be LiC 6 and its electric capacity was 372 mAh / g.
  • the stoichiometric composition at the time of filling with lithium ions is assumed to be Li 15 Si 4 , assuming that its electric capacity is 3577 mAh / g, and Li 22 Si 5 , Calculation was made for the case where the electric capacity was 4197 mAh / g.
  • Si of Si / (Si + C) is the weight of the scaly silicon particles
  • C is the weight of the carbon layer or the like.
  • 801 is a positive electrode
  • 802 is a separator
  • 803 is a negative electrode
  • 804 is a battery can
  • 805 is a positive current collector tab
  • 806 is a negative current collector tab
  • 807 is an inner lid
  • 808 is an internal pressure release valve
  • 809 is a gasket
  • 810 is a positive temperature coefficient (TPC) resistance element
  • 811 is a battery lid.
  • the battery lid 811 is an integrated part including an inner lid 807, an internal pressure release valve 808, a gasket 809, and a positive temperature coefficient resistance element 810.
  • the positive electrode 801 can be manufactured by the following procedure. LiMn 2 O 4 is used as the positive electrode active material. To 85.0 wt% of the positive electrode active material, 7.0 wt% and 2.0 wt% of graphite powder and acetylene black are added as conductive materials, respectively. Further, 6.0 wt% polyvinylidene fluoride (hereinafter abbreviated as PVDF) (a solution dissolved in 1-methyl-2-pyrrolidone (hereinafter abbreviated as NMP)) was added as a binder, and mixed with a planetary mixer. Further, air bubbles in the slurry are removed under vacuum to prepare a homogeneous positive electrode mixture slurry.
  • PVDF polyvinylidene fluoride
  • NMP 1-methyl-2-pyrrolidone
  • This slurry is applied uniformly and evenly on both sides of an aluminum foil having a thickness of 20 ⁇ m using an applicator. After the application, compression molding is performed by a roll press so that the electrode density is 2.55 g / cm 3 . This is cut with a cutting machine to produce a positive electrode 801 having a thickness of 100 ⁇ m, a length of 900 mm, and a width of 54 mm.
  • the negative electrode 803 can be manufactured by the following procedure.
  • the negative electrode active material the above carbon-coated scale-like silicon particles can be used.
  • a binder 5.0 wt% PVDF (solution dissolved in NMP) is added to 95.0 wt% of the negative electrode active material. It is mixed with a planetary mixer, and bubbles in the slurry are removed under vacuum to prepare a homogeneous negative electrode mixture slurry. This slurry is applied uniformly and evenly on both sides of a rolled copper foil having a thickness of 10 ⁇ m with an applicator. After coating, the electrode is compression-molded by a roll press machine so that the electrode density is 1.3 g / cm 3 .
  • the negative electrode 803 is cut with a cutting machine to produce a negative electrode 803 having a thickness of 110 ⁇ m, a length of 950 mm, and a width of 56 mm.
  • the negative electrode has a structure in which a negative electrode mixture is applied to a current collector, and a plurality of scaly silicon particles are in an electrically bonded state via a carbon layer on the current collector. For this reason, even if it is a material with high surface contact property like a scale-like silicon particle, electroconductivity is securable.
  • negative electrode active materials can be used for the negative electrode mixture.
  • a carbon-based active material such as graphite can be mixed.
  • the positive electrode current collector tab 805 and the negative electrode current collector tab 806 are ultrasonically welded to the positive electrode 801 and the uncoated portion (current collector exposed surface) of the negative electrode 803, respectively.
  • the positive electrode current collecting tab 805 can be an aluminum lead piece, and the negative electrode current collecting tab 806 can be a nickel lead piece.
  • a separator 802 made of a porous polyethylene film having a thickness of 30 ⁇ m is inserted into the positive electrode 801 and the negative electrode 803, and the positive electrode 801, the separator 802, and the negative electrode 803 are wound.
  • the wound body is accommodated in the battery can 804, and the negative electrode current collecting tab 806 is connected to the bottom of the battery can 804 by a resistance welding machine.
  • the positive electrode current collecting tab 805 is connected to the bottom surface of the inner lid 807 by ultrasonic welding.
  • the solvent of the electrolytic solution is composed of, for example, ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC), and has a volume ratio of 1: 1: 1.
  • the electrolyte is LiPF 6 at a concentration of 1 mol / L (about 0.8 mol / kg). Such an electrolytic solution is dropped from above the wound body, and the battery lid 811 is caulked and sealed in the battery can 804, whereby a lithium ion secondary battery can be obtained.
  • Example 1 For comparison, the life characteristics of a battery using flaky silicon particles not coated with carbon as a negative electrode material are also shown. Other conditions and the battery evaluation method were the same as in Example 1.
  • FIG. 9 shows the life characteristics of a battery fabricated using the negative electrode material of the present invention.
  • the capacity retention rate after 200 cycles was 97.0%, whereas the capacity retention rate of the scaly silicon particles not coated with carbon was 24.3%.
  • Carbon-coated scaly silicon particles 102 scale-like silicon particles 103 carbon layer 801 positive electrode 802 Separator 803 negative electrode 804 battery can 805 Positive current collector tab 806 Negative electrode current collector tab 807 Inner lid 808 Pressure release valve 809 gasket, 810 Positive temperature coefficient resistance element 811 Battery cover

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明では、このような課題を解決し、高容量、長寿命なリチウムイオン二次電池用負極活物質を提供することを課題とする。鱗片状のシリコン粒子を有するリチウムイオン二次電池用負極活物質であって、前記鱗片状のシリコン粒子は、表面が炭素層により覆われているリチウムイオン二次電池用負極材料。

Description

リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池に関する。
 リチウムイオン二次電池の負極活物質として、黒鉛系の炭素材料が広く用いられている。黒鉛にリチウムイオンを充填した際の化学量論的組成は、LiC6であり、その理論容量は372mAh/gと算出できる。
 これに対してシリコンにリチウムイオンを充填した際の化学量論的組成は、Li15Si4もしくはLi22Si5であり、その理論容量は3577mAh/gもしくは4197mAh/gと算出できる。このようにシリコンは黒鉛に比べて、9.6倍もしくは11.3倍のリチウムを貯蔵できる魅力的な材料である。しかしながら、シリコン粒子にリチウムイオンを充填すると、体積が2.7倍ないしは3.1倍程度に膨張するため、リチウムイオンの充填と放出を繰り返す間に、シリコン粒子が力学的に破壊する。シリコン粒子が破壊することにより、破壊した微細シリコン粒子が電気的に孤立し、また、破壊面に新しい電気化学的被覆層ができることにより、不可逆容量が増加し、充放電サイクル特性が著しく低下する。
 リチウムイオン二次電池の負極活物質としてシリコン粒子をナノ化ことにより、リチウムイオンの充填と放出に伴う機械的破壊を防ぐことができる。しかしながら、リチウムイオンの充填と放出に伴う体積変化により、シリコンナノ粒子の一部が電気的に孤立し、これが原因で寿命特性が大きく劣化するという問題があった。
 特許文献1には、スパッタ法により作製したSi金属薄膜を粉砕し、リチウムイオン二次電池用負極に応用した例が記載されている。
特開2011-65983
 しかし、Si金属薄膜を粉砕した鱗片状のSi粒子は、粒子同士面接触しやすいた為、粒子同士がダマとなりやすい。Si系の活物質は炭素材料と比較して、導電性が低いため、ダマとなった鱗片状のSi活物質は特に、粒子間に隙間が少なく、導電性が低くなる課題がある。
 本発明では、このような課題を解決し、高容量、長寿命なリチウムイオン二次電池用負極活物質を提供することを課題とする。
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。
 鱗片状のシリコン粒子を有するリチウムイオン二次電池用負極活物質であって、鱗片状のシリコン粒子は、表面が炭素層により覆われているリチウムイオン二次電池用負極材料。
 また、負極は、集電体に前記負極合剤が塗布されてなり、鱗片状シリコン粒子は、前記集電体上で、複数重なり、炭素層を介して、電気的に接合しているリチウムイオン二次電池。
 本発明により、鱗片状のシリコン粒子であっても、導電性が優れ合剤層を作成することができ、高容量、長寿命なリチウムイオン二次電池用負極活物質を提供することができる。
本発明の一実施形態に係る、リチウムイオン二次電池用負極活物質を模式的に表現した図である。 本発明の一実施形態に係る、リチウムイオン二次電池用負極活物質の走査型電子顕微鏡写真である。 本発明の一実施形態に係る、リチウムイオン二次電池用負極活物質の走査型電子顕微鏡写真である。 本発明の一実施形態に係る、リチウムイオン二次電池用負極活物質の走査型電子顕微鏡写真である。 本発明の一実施形態に係る、リチウムイオン二次電池用負極活物質の走査型電子顕微鏡写真である。 本発明の一実施形態に係る、リチウムイオン二次電池用負極活物質の作製方法を説明するための装置構成図である。 本発明の一実施形態に係る、電気容量のシリコンの重量比依存性を計算した結果である。 本発明の一実施形態に係る、リチウムイオン二次電池の模式図である。 本発明の一実施形態に係る、リチウムイオン二次電池の寿命特性である。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。
 本発明の第1の実施例について、図1~図7を用いて説明する。
 <負極活物質>
 図1は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質を模式的に表現した図である。(a)が上面図、(b)が側面断面図である。炭素被覆鱗片状シリコン粒子101は、鱗片状シリコン粒子102の表面に、炭素層103を被覆した構造を有する。鱗片状シリコン粒子の厚さが5~100nm、さらに望ましくは10~50nmであり、平坦部分の最も長い径、最長径が100nm~3μm、さらに望ましくは100nm~1μmである。鱗片状シリコン粒子の厚さが5nm以下の場合、機械的強度が弱く、負極ペースト作製工程中に粉々に破壊する可能性がある。十分な機械強度を確保するためには、その厚さが10nm以上であることが望ましい。また、その厚さが100nm以上になると、リチウムイオン充填時の体積膨張により破壊する可能性が高い。高速充放電時にも破壊しないためには、50nm以下であることが望ましい。また、最長径が100nm以下の場合、鱗片形状とは言い難い形状になってしまう。最長径が3μm以上になると、リチウムイオン充填時の体積膨張により破壊する可能性が高い。高速充放電時にも破壊しないためには、1μm以下であることが望ましい。
 ここで、鱗片状シリコン粒子101としては、元素としてSiを有していればよく、Si、SiOまたはSiと他の金属例えばTi、Cu、Al等との合金であっても構わない。
 鱗片状シリコン粒子を負極物質として負極合剤を作成する場合、鱗片状シリコン粒子は、その平坦な形状の為、粒子同士がファンデルワールス力によりダマとなりやすい。鱗片状シリコン粒子が炭素層103を有していることによって、粒子同士の導電性を確保することができる。
 鱗片状シリコン粒子は、例えばスパッタ法により基板に作製したSi金属薄膜を粉砕することで作成することができる。また、この後、さらに遊星ボールミルやビーズミルを用いて、所望の厚さ、最長径に加工することが好ましい。ボールミルと共に混合することで、所望の厚さ、最長径に加工することができ、さらに粒子同士を離す効果がある。
 炭素層103は、電気伝導性を有しており、鱗片状シリコン粒子102の粒子間の電気伝導を向上させる効果がある。鱗片状シリコン粒子102の表面全体ではなく、部分的に炭素層103で覆われていても、一定の効果が期待できる。鱗片状シリコン粒子は、大気中で表面が酸化されるため、厚さが2nm程度の自然酸化膜で覆われている。自然酸化膜に上に炭素層103を形成することも、あるいは自然酸化膜を除去してから、シリコン面に直接炭素層103を形成することも可能である。電気抵抗低減の観点からは、自然酸化膜を除去する方が望ましい。自然酸化膜は例えば水素雰囲気で1000℃で熱処理することにより、除去することができる。
 炭素層103の作製法を、図6を用いて説明する。サンプルボートに鱗片状シリコン粒子を入れて、反応炉の中央付近に設置する。反応炉は、石英製であり、直径が5cm、長さが40cmである。図6の水素ラインを用いて、水素ガスを200mL/minの流速で流し、成長炉を室温から1000℃まで、10℃/minでの速度で昇温し、さらに1000℃で1hr保持した。この熱処理工程により、鱗片状シリコン粒子の表面に形成された自然酸化膜を還元することが可能である。その後、水素ラインを閉じ、アルゴンガスを200mL/minの流速で流し、10℃/minの速度で降温し、800℃まで降温した。800℃に達したところで、プロピレンガスを10mL/minの流速で導入し、同時にアルゴンガスの流速を190mL/minにして、炭素被覆層を1時間成長した。その後、プロピレンガスラインを閉じ、アルゴンガスを200mL/minの流速で流し、15min保持した後、自然冷却した。これにより、鱗片状シリコン粒子の表面に、ナノグラフェン多層構造を有する炭素層(膜厚5nm)を作製することが可能である。炭素層、ナノグラフェンが多層に積層した多層ナノグラフェン層であることにより炭素層自体が導電性に優れたものとなり、さらに鱗片状シリコン粒子同士の電子の移動度も高いものとなる。
 鱗片状シリコン粒子の表面の自然酸化膜を除去しない場合には、上記の水素処理は不要である。また、炭素層の膜厚は、2~100nmの間で任意の膜厚に設定することが可能である。膜厚が2nm以下の場合、機械的強度が弱いために、スラリー作製時の応力で、剥がれる可能性がある。また、100nm以上の場合には、均一な膜厚で鱗片状シリコン粒子を覆うことが困難である。炭素層はナノグラフェンが多層に積層した構造であり、1000S/m以上の電気伝導率を有する。
 図2および図3は、鱗片状シリコン粒子の走査型電子顕微鏡写真である。図2の低倍率の写真より、鱗片状シリコン粒子の平坦部分の最も長い径、最長径の平均値が300nm程度であることがわかる。また、図3の高倍率の写真より、鱗片状シリコン粒子の厚さは、20nm程度であることが分かる。
 図6のような方法を用いることにより、鱗片状のシリコン粒子は、ほぼ全体が覆われることになる。この場合被覆率は鱗片状のシリコン粒子の被覆率は90%以上とすることができる。被覆率が高いことにより、鱗片状のシリコンが複数重なった場合であっても導電性を確保することができる。他には、導電性の炭素を鱗片状シリコン粒子と混合させて炭素を設ける方法もあるが、この場合、被覆率は、上記方法程高くない。しかし、混合の工程で、例えばビーズミル等を混ぜることにより鱗片状のシリコン粒子同士をほぐし、炭素を間に入れることができ、シリコン粒子同士の導電性を高める効果がある。
 図4および図5は、炭素層で被覆した鱗片状シリコン粒子の走査型電子顕微鏡写真を示す。図4が低倍率、図5が高倍率の写真である。特に図5の高倍率の写真より、厚さが40nm程度に増加していることから、厚さが10nm程度の炭素層が、鱗片状シリコン粒子の表面を均一に被覆していると考えられる。燃焼法による分析の結果、炭素重量比は9.9wt%、シリコン重量比は90.1wt%であった。
 上述した鱗片状シリコン表面への炭素被覆量を調整することにより、その電気容量を調整することが可能である。
図7は、電気容量のシリコン重量比依存性を計算した結果である。炭素に対しては、リチウムイオンを充填した際の化学量論的組成を、LiC6と仮定し、その電気容量を372mAh/gとした。また、シリコンに対しては、リチウムイオンを充填した際の化学量論的組成を、Li15Si4と仮定し、その電気容量を3577mAh/gとした場合と、Li22Si5と仮定し、その電気容量を4197mAh/gとした場合について計算した。横軸のSi/(Si+C)のSiは、鱗片状シリコン粒子の重量を、Cは、炭素層等の重量である。シリコン重量比を変えることで、炭素固有の電気容量から、シリコン固有の電気容量まで、幅広く制御することが可能である。現実的には、シリコン重量比5~95wt%の複合材料を作製することが可能である。
本実施例では平均厚さは40nm、平均長径は300nmの鱗片状シリコン粒子101を作成した。また、その後、鱗片状シリコン粒子の表面の自然酸化膜を除去し、図6の方法により鱗片状シリコン粒子101に直接、厚さ5nmの炭素層を被覆した。最終的なシリコン重量比は90.1wt%であった。
 (電池作成)
 上記の負極活物質を用いた電池を作成して、電池を評価した。
 本発明の第二の実施例について、図8を用いて説明する。図8で、801は正極、802はセパレータ、803は負極、804は電池缶、805は正極集電タブ、806は負極集電タブ、807は内蓋、808は内圧開放弁、809はガスケット、810は正温度係数(TPC; positive temperature coeffocent)抵抗素子、811は電池蓋である。電池蓋811は、内蓋807、内圧開放弁808、ガスケット809、正温度係数抵抗素子810からなる一体化部品である。
 例えば、正極801は以下の手順により作製できる。正極活物質には、LiMn2O4を用いる。
正極活物質の85.0wt%に、導電材として黒鉛粉末とアセチレンブラックをそれぞれ7.0wt%と2.0wt%を添加する。さらに、結着剤として6.0wt%のポリフッ化ビニリデン(以下、PVDFと略記)(1-メチル-2-ピロリドン(以下、NMPと略記)に溶解した溶液)を加えて、プラネタリ-ミキサーで混合し、さらに真空下でスラリー中の気泡を除去して、均質な正極合剤スラリーを調製する。このスラリーを、塗布機を用いて厚さ20μmのアルミニウム箔の両面に均一かつ均等に塗布する。塗布後ロールプレス機により電極密度が2.55g/cm3になるように圧縮成形する。これを切断機で裁断し、厚さ100μm、長さ900mm、幅54mmの正極801を作製する。
 例えば、負極803は以下の手順により作製できる。負極活物質は、上記の炭素被覆鱗片状シリコン粒子を用いることができる。その負極活物質の95.0wt%に、結着剤として5.0wt%のPVDF(NMPに溶解した溶液)を加える。それをプラネタリ-ミキサーで混合し、真空下でスラリー中の気泡を除去して、均質な負極合剤スラリーを調製する。このスラリーを塗布機で厚さ10μmの圧延銅箔の両面に均一かつ均等に塗布する。塗布後、その電極をロールプレス機によって圧縮成形して、電極密度が1.3g/cm3とする。これを切断機で裁断し、厚さ110μm、長さ950mm、幅56mmの負極803を作製する。負極は、集電体に負極合剤が塗布された構造であり、鱗片状シリコン粒子は、前記集電体上で、複数重なり、炭素層を介して、電気的に接合した状態となる。このため、鱗片状シリコン粒子のように面接触性が高い材料であっても、導電性を確保することができる。
 負極合剤には、他の負極活物質を用いることも可能である。例えば炭素被覆鱗片状シリコン粒子に加えて、黒鉛等の炭素系活物質を混合させることもできる。
 上のように作製できる正極801と、負極803の未塗布部(集電板露出面)に、それぞれ正極集電タブ805および負極集電タブ806を超音波溶接する。正極集電タブ805はアルミニウム製リード片とし、負極集電タブ806にはニッケル製リード片を用いることができる。
 その後、厚み30μmの多孔性ポリエチレンフィルムからなるセパレータ802を正極801と負極803に挿入し、正極801、セパレータ802、負極803を捲回する。この捲回体を電池缶804に収納し、負極集電タブ806を電池缶804の缶底に抵抗溶接機により接続する。正極集電タブ805は、内蓋807の底面に超音波溶接により接続する。
 上部の電池蓋811を電池缶804に取り付ける前に、非水電解液を注入する。電解液の溶媒は、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)からなり、体積比として1:1:1などがある。電解質は濃度1mol/L(約0.8mol/kg)のLiPF6である。このような電解液を捲回体の上から滴下し、電池蓋811を電池缶804に、かしめて密封し、リチウムイオン二次電池を得ることができる。
 <電池の評価方法>
 放電容量および維持率の測定は、1Cの速度で、定電流モードで行った。
 [比較例1]
 比較のために、炭素被覆していない鱗片状シリコン粒子を負極材料として用いた電池の寿命特性も示した。その他の条件、電池の評価方法は実施例1と同様とした。
 図9には、本発明の負極材料を用いて作製した電池の寿命特性を示す。実施例1では、200サイクル後の容量維持率が97.0%であったの対し、炭素被覆していない鱗片状シリコン粒子の容量維持率は24.3%であった。
 以上より、本発明の負極材料の優れた高容量、長寿命特性を確認した。
101 炭素被覆鱗片状シリコン粒子
102 鱗片状シリコン粒子
103 炭素層
801 正極
802 セパレータ
803 負極
804 電池缶
805 正極集電タブ
806 負極集電タブ
807 内蓋
808 圧力開放弁
809 ガスケット、
810 正温度係数抵抗素子
811 電池蓋

Claims (8)

  1.  鱗片状のシリコン粒子を有するリチウムイオン二次電池用負極活物質であって、
     前記鱗片状のシリコン粒子は、表面が炭素層により覆われているリチウムイオン二次電池用負極材料。
  2.  請求項1において、
     前記炭素層は、ナノグラフェンが多層に積層した多層ナノグラフェン層であるリチウムイオン二次電池用負極材料。
  3.  請求項2において、
     前記鱗片状シリコン粒子の厚さは5~100nmの範囲であるリチウムイオン二次電池用負極材料。
  4.  請求項3において、
     平坦部分の最も長い径が100nm~3μmであるリチウムイオン二次電池用負極材料。
  5.  請求項4において、
     前記鱗片状のシリコン粒子と前記炭素層の総量に対するシリコンの重量比は5~95wt%の範囲であるリチウムイオン二次電池用負極材料。
  6.  請求項5において、
     前記炭素層の電気伝導率が1000S/m以上であるリチウムイオン二次電池用負極材料。
  7.  正極と負極とを有し、
     前記負極は、負極合剤を有し、
     前記負極合剤は、請求項1ないし請求項6のいずれかに記載のリチウムイオン二次電池用負極材料を有するリチウムイオン二次電池。
  8.  請求項7において、
     前記負極は集電体に前記負極合剤が塗布されてなり、
     前記鱗片状シリコン粒子は、前記集電体上で、複数重なり、
     前記炭素層を介して、電気的に接合しているリチウムイオン二次電池。
PCT/JP2016/065372 2015-06-22 2016-05-25 リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池 WO2016208314A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017524762A JPWO2016208314A1 (ja) 2015-06-22 2016-05-25 リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
CN201680031626.6A CN107615528A (zh) 2015-06-22 2016-05-25 锂离子二次电池用负极活性物质以及锂离子二次电池
US15/578,538 US20180159124A1 (en) 2015-06-22 2016-05-25 Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
KR1020177034697A KR20180003577A (ko) 2015-06-22 2016-05-25 리튬 이온 이차 전지용 부극 활물질 및 리튬 이온 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-124352 2015-06-22
JP2015124352 2015-06-22

Publications (1)

Publication Number Publication Date
WO2016208314A1 true WO2016208314A1 (ja) 2016-12-29

Family

ID=57585372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065372 WO2016208314A1 (ja) 2015-06-22 2016-05-25 リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20180159124A1 (ja)
JP (1) JPWO2016208314A1 (ja)
KR (1) KR20180003577A (ja)
CN (1) CN107615528A (ja)
WO (1) WO2016208314A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131607A1 (ja) * 2017-01-11 2018-07-19 Jnc株式会社 シリコンナノ粒子含有水素ポリシルセスキオキサン焼成物、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
JP2018113187A (ja) * 2017-01-12 2018-07-19 日立化成株式会社 リチウムイオン二次電池用負極材料及びこれを用いたリチウムイオン二次電池
WO2018131608A1 (ja) * 2017-01-11 2018-07-19 Jnc株式会社 ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
WO2018131606A1 (ja) * 2017-01-11 2018-07-19 Jnc株式会社 シリコンナノ粒子含有水素ポリシルセスキオキサン焼成物-金属酸化物複合体及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110197895A (zh) * 2018-02-26 2019-09-03 华为技术有限公司 一种复合材料及其制备方法
CN109935808A (zh) * 2019-02-27 2019-06-25 福建翔丰华新能源材料有限公司 一种基于微米硅片制备硅碳负极材料的方法
CN115023823B (zh) * 2020-01-31 2024-08-23 松下知识产权经营株式会社 非水电解质二次电池用负极、非水电解质二次电池和非水电解质二次电池用负极的制造方法
CN113611837B (zh) * 2021-08-03 2022-09-23 辽宁石油化工大学 一种纳米硅复合材料、其制备方法和用途
WO2023206593A1 (zh) * 2022-04-26 2023-11-02 松山湖材料实验室 负极材料、负极极片及其制备方法和锂离子电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065983A (ja) * 2009-08-21 2011-03-31 Oike Ind Co Ltd 鱗片状薄膜微粉末分散液又は鱗片状薄膜微粉末、及びこれを用いたペースト、電池用電極、並びにリチウム二次電池
WO2013031993A1 (ja) * 2011-08-31 2013-03-07 国立大学法人東北大学 Si/C複合材料及びその製造方法並びに電極
WO2014128814A1 (ja) * 2013-02-22 2014-08-28 株式会社豊田自動織機 負極活物質とその製造方法及び蓄電装置
WO2016056373A1 (ja) * 2014-10-08 2016-04-14 小林 光 リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極又は負極材料の製造方法及びその製造装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259475A (ja) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd リチウム二次電池用負極材とその製造方法、及びそれを用いたリチウム二次電池
US9093693B2 (en) * 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
GB2470056B (en) * 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
CN103619397B (zh) * 2011-05-20 2016-08-31 贝克顿·迪金森公司 通过成一体的固定条的导管固定装置
KR101978726B1 (ko) * 2011-06-03 2019-05-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치 및 그 제작 방법
JP6050106B2 (ja) * 2011-12-21 2016-12-21 株式会社半導体エネルギー研究所 非水二次電池用シリコン負極の製造方法
KR101476043B1 (ko) * 2012-07-20 2014-12-24 주식회사 엘지화학 탄소-실리콘 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2015068195A1 (ja) * 2013-11-05 2015-05-14 株式会社日立製作所 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池
JP2016143462A (ja) * 2015-01-30 2016-08-08 日立化成株式会社 リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065983A (ja) * 2009-08-21 2011-03-31 Oike Ind Co Ltd 鱗片状薄膜微粉末分散液又は鱗片状薄膜微粉末、及びこれを用いたペースト、電池用電極、並びにリチウム二次電池
WO2013031993A1 (ja) * 2011-08-31 2013-03-07 国立大学法人東北大学 Si/C複合材料及びその製造方法並びに電極
WO2014128814A1 (ja) * 2013-02-22 2014-08-28 株式会社豊田自動織機 負極活物質とその製造方法及び蓄電装置
WO2016056373A1 (ja) * 2014-10-08 2016-04-14 小林 光 リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極又は負極材料の製造方法及びその製造装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131607A1 (ja) * 2017-01-11 2018-07-19 Jnc株式会社 シリコンナノ粒子含有水素ポリシルセスキオキサン焼成物、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
WO2018131608A1 (ja) * 2017-01-11 2018-07-19 Jnc株式会社 ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
WO2018131606A1 (ja) * 2017-01-11 2018-07-19 Jnc株式会社 シリコンナノ粒子含有水素ポリシルセスキオキサン焼成物-金属酸化物複合体及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
CN110278709A (zh) * 2017-01-11 2019-09-24 捷恩智株式会社 含有硅纳米粒子的氢聚倍半硅氧烷烧结体-金属氧化物复合体及其制造方法、锂离子电池用负极活性物质、锂离子电池用负极以及锂离子电池
JPWO2018131608A1 (ja) * 2017-01-11 2019-11-07 Jnc株式会社 ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
JPWO2018131607A1 (ja) * 2017-01-11 2019-11-07 Jnc株式会社 シリコンナノ粒子含有水素ポリシルセスキオキサン焼成物、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
US11031591B2 (en) 2017-01-11 2021-06-08 Jnc Corporation Polysilsesquioxane covered silicon nanoparticles or calcined product thereof and production method thereof, negative electrode active material for lithium ion battery, negative electrode for lithium ion battery and lithium ion battery
US11127947B2 (en) 2017-01-11 2021-09-21 Jnc Corporation Silicon nanoparticle-containing hydrogen polysilsesquioxane calcined product, negative electrode active material for lithium ion battery, negative electrode for lithium ion battery and lithium ion battery
US11211603B2 (en) 2017-01-11 2021-12-28 Jnc Corporation Silicon nanoparticle-containing hydrogen polysilsesquioxane calcined product-metal oxide complex and production method thereof, negative electrode active material for lithium ion battery, negative electrode for the lithium ion battery and lithium ion battery
JP2018113187A (ja) * 2017-01-12 2018-07-19 日立化成株式会社 リチウムイオン二次電池用負極材料及びこれを用いたリチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2016208314A1 (ja) 2018-04-05
CN107615528A (zh) 2018-01-19
KR20180003577A (ko) 2018-01-09
US20180159124A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2016208314A1 (ja) リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
CN106537663B (zh) 非水电解质二次电池用负极材料以及负极活性物质颗粒的制造方法
JP6569398B2 (ja) リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
JP6116138B2 (ja) 負極活物質及びそれを含む二次電池
US11121403B2 (en) Production method of electrode for all-solid-state batteries and production method of all-solid-state battery
JP6524610B2 (ja) 非水系二次電池用正極活物質及びその製造方法
JP5448555B2 (ja) リチウムイオン二次電池用負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極作製用のスラリー、リチウムイオン二次電池用負極の製造方法
CN109585853B (zh) 非水电解质二次电池及其制造方法
JP2017152294A (ja) 正極活物質材料及びリチウムイオン二次電池
JP6819245B2 (ja) 非水電解質二次電池用正極板の製造方法及び非水電解質二次電池の製造方法、並びに非水電解質二次電池
JP6048407B2 (ja) 負極活物質及びその製造方法
JP5505480B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP2018113187A (ja) リチウムイオン二次電池用負極材料及びこれを用いたリチウムイオン二次電池
JP5601388B2 (ja) 負極及びリチウムイオン二次電池
JP2016143462A (ja) リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
US9899673B2 (en) Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing the same
JP2019175721A (ja) 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
JP7317526B2 (ja) 非水電解質二次電池
JP3139390B2 (ja) 非水電解液二次電池用負極とその製造方法、ならびにそれを使用した非水電解液二次電池
JP6518685B2 (ja) リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
JP2017084684A (ja) リチウムイオン二次電池用負極活物質、およびその製造方法、リチウムイオン二次電池
JP6720762B2 (ja) リチウムイオン二次電池用負極材料、およびリチウムイオン二次電池
TWI727096B (zh) 可充電之電化學電池及電池組
JP2021150111A (ja) 非水電解質二次電池用の電極活物質層、非水電解質二次電池用の電極、及び、非水電解質二次電池
WO2024089460A1 (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524762

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177034697

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15578538

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814085

Country of ref document: EP

Kind code of ref document: A1