WO2011148824A1 - 非水電解質電池、およびその製造方法 - Google Patents
非水電解質電池、およびその製造方法 Download PDFInfo
- Publication number
- WO2011148824A1 WO2011148824A1 PCT/JP2011/061277 JP2011061277W WO2011148824A1 WO 2011148824 A1 WO2011148824 A1 WO 2011148824A1 JP 2011061277 W JP2011061277 W JP 2011061277W WO 2011148824 A1 WO2011148824 A1 WO 2011148824A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- sulfur
- negative electrode
- positive electrode
- solid electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
- Y10T29/49112—Electric battery cell making including laminating of indefinite length material
Definitions
- the present invention relates to a nonaqueous electrolyte battery produced by separately producing a positive electrode body having a positive electrode active material layer and a negative electrode body having a negative electrode active material layer, and superposing both electrode bodies in a subsequent step, and It relates to a manufacturing method.
- a nonaqueous electrolyte battery including a positive electrode layer, a negative electrode layer, and an electrolyte layer disposed between these electrode layers is used as a power source for electric devices on the assumption that charging / discharging is repeated.
- the electrode layer included in the battery further includes a current collector having a current collecting function and an active material layer containing an active material.
- a Li-ion battery that charges and discharges by movement of Li ions between the positive and negative electrode layers has a high discharge capacity while being small.
- Patent Document 1 Examples of the technology for producing the Li ion battery include those described in Patent Document 1.
- Patent Document 1 when manufacturing a Li ion battery, a positive electrode body including a positive electrode active material layer and a negative electrode body including a negative electrode active material layer are separately manufactured. A solid electrolyte layer is formed on at least one of the positive electrode body and the negative electrode body, and a Li ion battery can be manufactured in a short time by superimposing the positive electrode body and the negative electrode body. At the time of the superposition, Patent Document 1 prevents a short circuit between the positive and negative electrode layers by filling the pinhole formed in the solid electrolyte layer with an ionic liquid containing a Li-containing salt having a high Li ion conductivity. Yes.
- the main cause of the short circuit is that needle-like Li crystals (dendrites) generated on the surface of the negative electrode active material layer during the charging of the Li ion battery grow while repeating the charge and discharge of the Li ion battery, and become the positive electrode active material layer. Is to reach. Dendrites are particularly easily formed on the surface of the negative electrode active material layer exposed in the pinhole formed in the solid electrolyte layer, and grow along the inner wall surface of the pinhole.
- Patent Document 1 prevents the short circuit by making the dendrite easily disappear by the liquid having high Li ion conductivity filled in the pinhole when the Li ion battery is discharged.
- the high Li ion conductivity of the liquid in the pinhole can be said to mean that dendrites are easily generated in the pinhole. Therefore, for example, if charging is repeated before sufficiently discharging, a new dendrite is generated on the basis of the dendrite that has not disappeared before the grown dendrite disappears due to discharge, and a short circuit occurs. The fear increases.
- the present invention has been made in view of the above circumstances, and one of its purposes is a more reliable short circuit between the positive and negative electrode layers in a non-aqueous electrolyte battery manufactured by laminating individually produced electrode bodies.
- An object of the present invention is to provide a nonaqueous electrolyte battery that can be prevented, and a method for manufacturing the same.
- the nonaqueous electrolyte battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer, and a sulfide solid electrolyte layer disposed between these active material layers.
- the sulfide solid electrolyte layer provided in the nonaqueous electrolyte battery includes a sulfur-added layer at an intermediate portion in the thickness direction, and the sulfur-added layer is not a compound as compared with other portions of the sulfide solid electrolyte layer. High content of elemental sulfur.
- the sulfur-added layer is substantially free from pinholes.
- the sulfur-added layer is represented by Li 2 S—P 2 S 5 —P 2 O 5 + S.
- the nonaqueous electrolyte battery of the present invention there is no continuous pinhole from the negative electrode active material layer to the positive electrode active material layer due to the presence of the sulfur-added layer having substantially no pinholes. Therefore, in the nonaqueous electrolyte battery of the present invention, a short circuit due to charging / discharging of the battery does not substantially occur.
- the nonaqueous electrolyte battery of the present invention having a sulfur-added layer substantially free of pinholes is formed by stacking a positive electrode body and a negative electrode body separately produced as shown in the method for producing the nonaqueous electrolyte battery of the present invention described later. It can be manufactured by combining them.
- both electrode bodies are provided when the positive electrode body and the negative electrode body are overlapped.
- the adhesive layers are bonded to each other to form a sulfur addition layer in the nonaqueous electrolyte battery.
- the content of elemental sulfur in the sulfur-added layer is preferably 1% to 20% of the total number of moles of the solid electrolyte in the sulfur-added layer.
- aLi 2 S—bP 2 S 5 —cP 2 O 5 (a, b, c are the respective mole numbers)
- the total number of moles of the solid electrolyte obtained by adding all of them is 3a + 7b + 7c moles.
- the content X in the sulfur addition layer defined as described above is 0.01 ⁇ (3a + 7b + 7c) to 0.2 ⁇ (3a + 7b + 7c).
- S in the solid electrolyte is S which is a compound having a valence of ⁇ 2, and is different from elemental sulfur having a valence of 0.
- the sulfur content in the sulfur-added layer is in the above range, the presence of the sulfur-added layer does not significantly reduce the Li ion conductivity of the sulfide solid electrolyte layer.
- the content of elemental sulfur in the sulfur addition layer is preferably 1% to 5% of the total number of moles of the solid electrolyte in the sulfur addition layer.
- the sulfur-added layer of the nonaqueous electrolyte battery of the present invention is formed by bonding the adhesive layers respectively provided on the positive electrode body and the negative electrode body that are separately produced.
- the adhesiveness of both adhesive layers improves as the content of elemental sulfur contained in each adhesive layer increases.
- the ratio of the solid electrolyte in each adhesive layer decreases, so the Li ion conductivity of each adhesive layer tends to decrease.
- the thickness of the sulfur addition layer is preferably 0.5 to 1 ⁇ m.
- Li ion conductivity of the sulfur-added layer to which elemental sulfur is added is lower than that of the part not including elemental sulfur. Therefore, in terms of the performance of the nonaqueous electrolyte battery, it is preferable to make the sulfur addition layer thin.
- a method for producing a nonaqueous electrolyte battery of the present invention is a method for producing a nonaqueous electrolyte battery comprising a positive electrode active material layer, a negative electrode active material layer, and a sulfide solid electrolyte layer disposed between these active material layers. And it is characterized by providing the following processes.
- a positive electrode body having a positive electrode active material layer, a positive electrode side solid electrolyte layer, and a positive electrode side sulfur addition layer made of a solid electrolyte containing more elemental sulfur that is not a compound than the positive electrode side solid electrolyte layer is prepared.
- Step A negative electrode body having a negative electrode active material layer, a negative electrode side solid electrolyte layer, and a negative electrode side sulfur addition layer made of a solid electrolyte containing more elemental sulfur than the negative electrode side solid electrolyte layer is prepared.
- the manufacturing method of the present invention it is possible to suppress the formation of a continuous pinhole from the negative electrode active material layer to the positive electrode active material layer. This is because the positions of the pinholes in the positive electrode body and the negative electrode body which are separately manufactured do not almost coincide with each other.
- the sulfur-added layers of both electrode bodies are softened and integrated by heat treatment. This is because pinholes are substantially eliminated in the layer.
- the manufacturing method of the present invention it is possible to suppress variation in the Li ion conductivity in the planar direction of the sulfide solid electrolyte layer in the completed battery.
- a gap in which the two electrode bodies do not contact each other is necessarily formed.
- the Li ion conductivity is not significantly reduced at the position of the gap.
- the Li ion conductivity when the electrode layers are in direct contact with the Li ion conductivity when the ionic liquid is interposed, the Li ion conductivity in the bonding surface between the electrode bodies is different.
- the battery performance is not stable.
- the manufacturing method of the present invention since the sulfur-added layers of both electrode bodies produced individually are softened and bonded, there is almost no variation in Li ion conductivity in the plane direction of the battery. .
- the heat treatment is preferably performed at 80 to 200 ° C. ⁇ 1 to 20 hours, more preferably 110 to 200 ° C. ⁇ 1 to 20 hours.
- the sulfur-added layers of both electrode layers can be firmly bonded to each other without deteriorating the battery components with heat.
- the heat treatment temperature exceeds 200 ° C., crystallization of the solid electrolyte layer proceeds, and there is a risk that cracks will occur in the solid electrolyte layer.
- the heat treatment is preferably performed at 170 to 200 ° C. for 1 to 20 hours.
- nonaqueous electrolyte battery it is preferable to press-contact a positive electrode body and a negative electrode body by applying a pressure at the time of heat processing.
- the pressure during the heat treatment is preferably 10 to 200 MPa.
- non-aqueous electrolyte battery of the present invention it is possible to effectively prevent a short circuit due to the dendrite generated when the battery is charged.
- FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte battery described in Embodiment 1.
- FIG. It is a longitudinal cross-sectional view which shows the state before the assembly of the battery shown to FIG. 1A.
- a Li ion battery (nonaqueous electrolyte battery) 100 shown in FIG. 1A includes a positive electrode current collector 11, a positive electrode active material layer 12, an intermediate layer 1c, a sulfide solid electrolyte layer 40, a negative electrode active material layer 22, and a negative electrode current collector. 21 is provided.
- the battery 100 is different from the conventional one in that the sulfide solid electrolyte layer 40 of the battery 100 has a positive electrode side solid electrolyte layer 41, a negative electrode side solid electrolyte layer 42, and these 41, 42 depending on the content of elemental sulfur.
- the sulfur-added layer 43 is divided into three layers, and the content of simple sulfur in the sulfur-added layer 43 is larger than the content of simple sulfur in the other layers 41 and 42.
- the Li ion battery 100 is manufactured by superposing the positive electrode body 1 and the negative electrode body 2 individually manufactured as shown in FIG. 1B, that is, the method for manufacturing the nonaqueous electrolyte battery of the present invention according to the following steps. Can do. (A) The positive electrode body 1 is produced. (B) The negative electrode body 2 is produced. (C) The positive electrode body 1 and the negative electrode body 2 are superposed and heat-treated. * The order of steps A and B can be interchanged.
- the positive electrode body 1 has a positive electrode active material layer 12, a positive electrode side solid electrolyte layer (PSE layer) 13, and a positive electrode side sulfur addition layer (PA layer) 14 on a positive electrode current collector 11.
- PSE layer positive electrode side solid electrolyte layer
- PA layer positive electrode side sulfur addition layer
- a substrate to be the positive electrode current collector 11 is prepared, and the remaining layers 12, 13, and 14 are sequentially formed on the substrate.
- An intermediate layer 1c is preferably formed between the positive electrode active material layer 12 and the PSE layer 13 as shown in the figure. The intermediate layer 1c is for suppressing an increase in resistance between the positive electrode active material layer 12 and the PSE layer 13 as will be described later.
- the substrate to be the positive electrode current collector 11 may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material film functions as a current collector.
- the conductive material one selected from Al, Ni, alloys thereof, and stainless steel can be suitably used.
- the positive electrode active material layer 12 is a layer containing a positive electrode active material that is a main component of the battery reaction.
- a material having a layered rock salt type crystal structure for example, Li ⁇ X ⁇ (1-X) O 2 ( ⁇ is one selected from Co, Ni, Mn, ⁇ is Fe, Al, Ti , Cr, Zn, Mo, and Bi, and X is 0.5 or more). Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiCo 0.5 Fe 0.5 O 2 and LiCo 0.5 Al 0.5 O 2 .
- a positive electrode active material a substance having a spinel crystal structure (for example, LiMn 2 O 4 or the like) or a substance having an olivine crystal structure (for example, Li X FePO 4 (0 ⁇ X ⁇ 1)) is used. It can also be used.
- the positive electrode active material layer 12 may contain a conductive additive or a binder.
- a wet method or a dry method can be used as a method for forming the positive electrode active material layer 12 described above.
- the wet method include a sol-gel method, a colloid method, and a casting method.
- the dry method include a vapor deposition method such as vacuum deposition, ion plating, sputtering, and laser ablation.
- the positive electrode side solid electrolyte layer (PSE layer) 13 is a Li ion conductor made of sulfide, and becomes the positive electrode side solid electrolyte layer 41 in the completed battery 100 shown in FIG. 1A.
- the characteristics required for the PSE layer 13 are high Li ion conductivity and low electron conductivity.
- the specific Li ion conductivity (20 ° C.) of the PSE layer 13 is preferably 10 ⁇ 5 S / cm or more, particularly preferably 10 ⁇ 4 S / cm or more.
- the electronic conductivity of the PSE layer 13 is preferably 10 ⁇ 8 S / cm or less.
- Examples of the material of the PSE layer 13 include Li 2 S—P 2 S 5 —P 2 O 5 (Li ion conductivity: 1 ⁇ 10 ⁇ 4 to 3 ⁇ 10 ⁇ 3 S / cm). be able to. Sulfur in the PSE layer 13 is included in a proportion according to the composition. Note that the sulfur in the PSE layer 13 is sulfur having a valence of ⁇ 2, and it can be considered that the PSE layer 13 contains almost no elemental sulfur having a valence of zero.
- a vapor phase method can be used for forming the PSE layer 13.
- a vacuum deposition method for example, a sputtering method, an ion plating method, a laser ablation method, or the like can be used.
- the PSE layer 13 includes a sulfide solid electrolyte
- the sulfide solid electrolyte reacts with the positive electrode active material of the oxide included in the positive electrode active material layer 12 adjacent to the PSE layer 13, so that the positive electrode active material layer 12 and the PSE The vicinity of the interface with the layer 13 is increased in resistance, and the discharge capacity of the Li ion battery 100 is reduced.
- the intermediate layer 1c by providing the intermediate layer 1c, the increase in the resistance can be suppressed, and the decrease in the discharge capacity of the battery 100 due to charge / discharge can be suppressed.
- an amorphous Li ion conductive oxide such as LiNbO 3 or LiTaO 3 can be used.
- LiNbO 3 can effectively suppress an increase in resistance near the interface between the positive electrode active material layer 12 and the PSE layer 13.
- the positive electrode side sulfur addition layer (PA layer) 14 is a part of the sulfide solid electrolyte layer 40 of the battery 100 when the positive electrode body 1 and the negative electrode body 2 are overlapped in the process C described later to complete the battery 100 ( Specifically, it functions as a part of the sulfur addition layer 43 of FIG. 1A. Further, when the two electrode bodies 1 and 2 are bonded together, they also serve as an adhesive.
- the PA layer 14 becomes a part of the sulfide solid electrolyte layer 40 when the battery 100 is completed, it is mainly composed of a sulfide-based solid electrolyte.
- This PA layer 14 further contains elemental sulfur (sulfur having a valence of 0 which is not a compound).
- the elemental sulfur is contained in the PA layer 14 when the electrode bodies 1 and 2 are bonded together by heat treatment in the process C described later, and the elemental sulfur (melting point: about 113 ° C.) contained in the PA layer 14 functions as an adhesive. This is to make it happen.
- the content of elemental sulfur in the soot PA layer 14 is larger than that in the PSE layer 13.
- the content of elemental sulfur in the PA layer 14 is preferably 1% to 20% of the total number of moles of the solid electrolyte in the PA layer 14.
- the PA layer 14 further contains 1 to 20 moles of elemental sulfur.
- the amount of elemental sulfur added to the PA layer 14 becomes too large, the Li ion conductivity of the PA layer 14 may be lowered.
- a more preferable content of elemental sulfur is 1% to 5% of the total number of moles of the solid electrolyte.
- the average thickness of the PA layer 14 is 0.05 ⁇ m or more, it functions sufficiently as an adhesive when the electrode bodies 1 and 2 are bonded together.
- the PA layer 14 since the PA layer 14 has a slightly lower Li ion conductivity than the PSE layer 13, it is preferable that the thickness of the PA layer 14 is not excessively increased. Therefore, the upper limit of the thickness of the PA layer 14 is preferably 10 ⁇ m. A more preferable upper limit of the thickness of the PA layer 14 is 0.5 ⁇ m.
- the PA layer 14 described above can be formed by a vapor phase method.
- the evaporation source for example, Li 2 S—P 2 S 5 —P 2 O 5
- the evaporation source of sulfur powder are arranged in the same or different film formation boats.
- the PA layer 14 can be formed by evaporating both evaporation sources.
- the negative electrode body 2 has a negative electrode active material layer 22, a negative electrode side solid electrolyte layer (NSE layer) 23, and a negative electrode side sulfur addition layer (NA layer) 24 on a negative electrode current collector 21.
- NSE layer negative electrode side solid electrolyte layer
- NA layer negative electrode side sulfur addition layer
- the substrate to be the negative electrode current collector 21 may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material film functions as a current collector.
- the conductive material for example, one selected from Cu, Ni, Fe, Cr, and alloys thereof can be suitably used.
- the negative electrode active material layer 22 is a layer containing a negative electrode active material that is a main component of the battery reaction. It is preferable to use metal Li as the negative electrode active material.
- metal Li as the negative electrode active material, an element (for example, Si) alloyed with Li in addition to metal Li can be used. In that case, in the first charge / discharge cycle, the discharge capacity is compared with the charge capacity. Is greatly reduced (that is, a problem that irreversible capacity occurs). On the other hand, when the negative electrode active material layer 22 is made of metal Li, this irreversible capacity is almost eliminated.
- the method for forming the negative electrode active material layer 22 described above is preferably a vapor phase method.
- a thin film of metal Li may be stacked on the negative electrode current collector 21, and the negative electrode active material layer 22 may be formed on the negative electrode current collector 21 by pressing or an electrochemical method.
- the negative electrode side solid electrolyte layer (NSE layer 23) is a layer that becomes a part of the sulfide solid electrolyte layer 40 of the battery 100 (the negative electrode side solid electrolyte layer 42 in FIG. 1A) when the battery 100 is completed. Similar to the PSE layer 13, high Li conductivity and low electron conductivity are required. As the material of the NSE layer 23, like the PSE layer 13, it is preferable to use Li 2 S—P 2 S 5 —P 2 O 5 or the like. Note that the sulfur in the NSE layer 23 is included at a composition ratio.
- the negative electrode-side sulfur-added layer (NA layer) 24 is a layer formed for the same purpose as the PA layer 14 described above, and has the same role as the PA layer 14, that is, an adhesive for bonding both electrode bodies 1 and 2 together. It functions as a part of the solid electrolyte layer (part of the sulfur addition layer 43 in FIG. 1A) in the battery 100 thus completed. Therefore, the composition, thickness, and elemental sulfur content of the NA layer 24 may be the same as those of the PA layer 14 (of course, the composition, thickness, and elemental sulfur content may be different).
- the NA layer 24 may be formed in the same manner as the PA layer 14.
- Step C Lamination of positive electrode body and negative electrode body, and heat treatment >> Next, the positive electrode body 1 and the negative electrode body 2 are laminated so that the PA layer 14 and the NA layer 24 face each other, and the Li ion battery 100 is manufactured. At that time, heat treatment is performed to soften and integrate the PA layer 14 and the NA layer 24, whereby the sulfur addition layer 43 is formed.
- the heat treatment conditions in the cocoon process C are selected so that the PA layer 14 and the NA layer 24 are softened without deterioration.
- the heat treatment is preferably performed in an inert gas atmosphere, and the heat treatment temperature is preferably 80 to 200 ° C. and the time is preferably 1 to 20 hours.
- the temperature and time of the heat treatment are optimally selected depending on the content of elemental sulfur in the PA layer 14 and the NA layer 24.
- the heat treatment temperature is set higher so that the PA layer 14 and the NA layer 24 The fusion with the layer 24 can be ensured.
- the heat treatment temperature is preferably 110 ° C. or higher, and more preferably 170 ° C. or higher.
- pressure may be applied during the heat treatment.
- the content of elemental sulfur in the PA layer 14 and the NA layer 24 is low, for example, 5% or less, if the heat treatment is performed without applying pressure, the PA layer 14 and the NA layer 24 are not sufficiently fused. There is a fear.
- a pressure of 10 to 200 MPa is applied during the heat treatment, the PA layer 14 and the NA layer 24 can be more reliably fused.
- the Li ion battery 100 including the sulfide solid electrolyte layer 40 is formed.
- the PA layer 14 and the NA layer 24 are integrated, the excess elemental sulfur contained in the layers 14 and 24 is softened, so that pinholes formed in the layers 14 and 24 are blocked. There is substantially no pinhole in the sulfur-added layer 43.
- the manufactured battery 100 there is no continuous pinhole from the negative electrode active material layer 22 to the positive electrode active material layer 12, so that even when the battery 100 is repeatedly charged and discharged, a short circuit does not substantially occur.
- the average thickness of the sulfur-added layer 43 formed by fusing the PA layer 14 and the NA layer 24 is the same as the total thickness of the PA layer 14 and the NA layer 24 before fusing. Good.
- the Li ion battery 100 of Embodiment 1 described with reference to FIG. 1 was produced, and its cycle characteristics were evaluated.
- a Li ion battery in which all layers except the current collector in the battery were formed by a vapor phase method was produced, and the cycle characteristics were also evaluated.
- Li-ion battery of Example> In preparing the Li ion battery 100, a positive electrode body 1 and a negative electrode body 2 having the following configurations were prepared. ⁇ Positive electrode body 1 ⁇ ⁇ Cathode current collector 11 ... thickness 10 ⁇ m of the stainless steel foil, the positive electrode active material layer 12 ... thickness 5 ⁇ m of LiCoO 2 film: LiNbO 3 anneal intermediate layer 1c ... thickness of 20nm at a deposition after 500 ° C. In the laser ablation method Film: RF sputtering method / PSE layer 13...
- Laser ablation method NA24 Li 2 S—P 2 S 5 —P 2 O 5 —S film with a thickness of 5 ⁇ m (elemental sulfur in the film) Content is 20 mol%): Laser ablation method
- the prepared positive electrode body 1 and the negative electrode body 2 were superposed so that the sulfur addition layers 14 and 24 were in contact with each other, and heat treatment was performed while the electrode bodies 1 and 2 were pressed.
- the load for pressure welding was 10 kgf / cm 2 ( ⁇ 0.98 MPa), and the heating conditions were 130 ° C. ⁇ 5 h in an inert gas atmosphere.
- the contact interface between the sulfur-added layers 14 and 24 is melted to form an integrated sulfur-added layer 43 shown in FIG. 1A.
- the Li ion battery 100 produced as described above was charged in a coin cell, and a charge / discharge test was performed.
- the test conditions were a cutoff voltage of 3.0 V to 4.2 V and a current density of 0.05 mA / cm 2 .
- the number of cycles that could maintain a discharge capacity of 70% or more of the initial capacity (discharge capacity at the first cycle) was 120 cycles.
- Li-ion battery of comparative example> Unlike Example 1, a positive electrode body and a negative electrode body on which no sulfur-added layer was formed were prepared, and these electrode bodies were stacked to produce a Li ion battery.
- This Li-ion battery was also subjected to a charge / discharge cycle test under the same conditions as the Li-ion battery of the example. As a result, the number of cycles that could maintain a discharge capacity of 70% or more of the initial capacity was 30 cycles.
- Example 2 a plurality of nonaqueous electrolyte batteries (samples A to F) were produced in which the content of elemental sulfur and the heat treatment conditions were changed.
- the production raw materials and production methods of Samples A to F are substantially the same as those of Example 1 described above.
- Example 1 the thicknesses of PA layer 14 and NA layer 24 provided in both electrode bodies 1 and 2 and the amount of simple sulfur are measured.
- the content and the heat treatment conditions for fusing both electrode bodies 1 and 2 are different.
- the differences from Example 1 in the production of Samples A to F are shown in Table 1.
- the thickness of the sulfur addition layer 43 in the table is the total thickness of the PA layer 14 and the NA layer 24, and the thicknesses of both the layers 14 and 24 are the same.
- the heat treatment conditions were 200 ° C. ⁇ 1 hour holding, and the pressure contact load was 50 MPa.
- Samples A to F were charged and discharged under the conditions of a cutoff voltage of 3.0 V to 4.2 V and a current density of 0.5 mA / cm 2 , and the number of cycles in which the discharge capacity of 70% or more of the initial capacity was maintained A cycle test was conducted. Further, the total resistance ( ⁇ ⁇ cm 2 ) of samples A to F was measured. These results are also shown in Table 1.
- the present invention is not limited to the above-described embodiment. That is, the configuration of the nonaqueous electrolyte battery described in the above-described embodiment can be changed as appropriate without departing from the gist of the present invention.
- the nonaqueous electrolyte battery of the present invention can be suitably used as a power source for electrical equipment on the premise that charging and discharging are repeated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
正極活物質層と、正極側固体電解質層と、この正極側固体電解質層よりも、化合物となっていない単体硫黄を多く含む固体電解質からなる正極側硫黄添加層と、を有する正極体を用意する工程
負極活物質層と、負極側固体電解質層と、この負極側固体電解質層よりも、化合物となっていない単体硫黄を多く含む固体電解質からなる負極側硫黄添加層と、を有する負極体を用意する工程
正極体と負極体とを、両電極体の硫黄添加層同士が接触するように重ね合わせて熱処理することで、両硫黄添加層同士を接着させる工程
≪Liイオン電池の全体構成≫
図1Aに示すLiイオン電池(非水電解質電池)100は、正極集電体11、正極活物質層12、中間層1c、硫化物固体電解質層40、負極活物質層22、および負極集電体21を備える。この電池100の従来とは異なる特徴となる部分は、電池100の硫化物固体電解質層40が、単体硫黄の含有量により正極側固体電解質層41、負極側固体電解質層42、およびこれら41,42に挟まれる硫黄添加層43の3つに区分され、硫黄添加層43における単体硫黄の含有量が他の層41,42における単体硫黄の含有量に比べて多いことである。
(A)正極体1を作製する。
(B)負極体2を作製する。
(C)正極体1と負極体2とを重ね合わせ、熱処理を施す。
※工程A,Bの順序は入れ替え可能である。
正極体1は、正極集電体11上に正極活物質層12、正極側固体電解質層(PSE層)13、正極側硫黄添加層(PA層)14を有する。正極体1を作製するには、まず正極集電体11となる基板を用意し、その基板の上に残りの層12,13,14を順次形成すれば良い。なお、正極活物質層12とPSE層13との間には図示するように中間層1cが形成されていることが好ましい。この中間層1cは、後述するように正極活物質層12とPSE層13との間の高抵抗化を抑制するためのものである。
正極集電体11となる基板は、導電材料のみから構成されていても良いし、絶縁基板上に導電材料の膜を形成したもので構成されていても良い。後者の場合、導電材料の膜が集電体として機能する。導電材料としては、AlやNi、これらの合金、ステンレスから選択される1種が好適に利用できる。
正極活物質層12は、電池反応の主体となる正極活物質を含む層である。正極活物質としては、層状岩塩型の結晶構造を有する物質、例えば、LiαXβ(1-X)O2(αはCo,Ni,Mnから選択される1種、βはFe,Al,Ti,Cr,Zn,Mo,Biから選択される1種、Xは0.5以上)で表される物質を挙げることができる。その具体例としては、LiCoO2やLiNiO2、LiMnO2、LiCo0.5Fe0.5O2、LiCo0.5Al0.5O2などを挙げることができる。その他、正極活物質として、スピネル型の結晶構造を有する物質(例えば、LiMn2O4など)や、オリビン型の結晶構造を有する物質(例えば、LiXFePO4(0<X<1))を用いることもできる。なお、正極活物質層12は、導電助剤や結着剤を含んでいても良い。
正極側固体電解質層(PSE層)13は硫化物からなるLiイオン伝導体であり、図1Aに示す完成した電池100において正極側固体電解質層41となる。このPSE層13に求められる特性は、高Liイオン伝導性で、かつ低電子伝導性である。具体的なPSE層13のLiイオン伝導度(20℃)は、10-5S/cm以上、特に、10-4S/cm以上であることが好ましい。また、PSE層13の電子伝導率は、10-8S/cm以下であることが好ましい。このようなPSE層13の材質としては、例えば、Li2S-P2S5-P2O5(Liイオン伝導度:1×10-4~3×10-3S/cm)などを挙げることができる。このPSE層13における硫黄は、組成通りの比率で含まれる。なお、PSE層13の硫黄は、価数-2の硫黄であって、このPSE層13には、価数0の単体硫黄は殆ど含まれていないと考えて良い。
PSE層13が硫化物固体電解質を含むと、この硫化物固体電解質がPSE層13に隣接する正極活物質層12に含まれる酸化物の正極活物質と反応して、正極活物質層12とPSE層13との界面近傍が高抵抗化し、Liイオン電池100の放電容量を低下させる。これに対して、中間層1cを設けることで、上記高抵抗化を抑制し、充放電に伴う電池100の放電容量の低下を抑制できる。
正極側硫黄添加層(PA層)14は、後述する工程Cで正極体1と負極体2とを重ね合せて電池100を完成させた際、電池100の硫化物固体電解質層40の一部(具体的には、図1Aの硫黄添加層43の一部)として機能する。また、両電極体1,2の貼り合わせの際、接着剤としての役割も果たす。
負極体2は、負極集電体21上に負極活物質層22、負極側固体電解質層(NSE層)23、負極側硫黄添加層(NA層)24を有する。負極体2を作製するには、負極集電体21となる基板を用意し、その基板の上に残りの層22,23,24を順次形成すれば良い。
負極集電体21となる基板は、導電材料のみから構成されていても良いし、絶縁基板上に導電材料の膜を形成したもので構成されていても良い。後者の場合、導電材料の膜が集電体として機能する。導電材料としては、例えば、Cu、Ni、Fe、Cr、及びこれらの合金から選択される1種が好適に利用できる。
負極活物質層22は、電池反応の主体となる負極活物質を含む層である。負極活物質としては金属Liを使用することが好ましい。ここで、負極活物質としては金属Liの他、Liと合金化する元素(例えば、Si)なども利用できるが、その場合、第1サイクル目の充放電サイクルにおいて、充電容量に対して放電容量が大幅に小さくなるという問題(即ち、不可逆容量が生じる問題)がある。これに対して、負極活物質層22を金属Liで構成すると、この不可逆容量は殆どなくなる。
負極側固体電解質層(NSE層23)は、電池100を完成させた際、電池100の硫化物固体電解質層40の一部(図1Aの負極側固体電解質層42)となる層であり、上述したPSE層13と同様に高Li伝導性で、かつ低電子伝導性であることが求められる。このNSE層23の材質としてはPSE層13と同様に、Li2S-P2S5-P2O5などを使用することが好ましい。なお、このNSE層23における硫黄は、組成通りの比率で含まれる。
負極側硫黄添加層(NA層)24は、上述したPA層14と同じ目的で形成される層であり、PA層14と同じ役割、即ち、両電極体1,2を貼り合せる際の接着剤としての役割を果たし、出来上がる電池100における固体電解質層の一部(図1Aの硫黄添加層43の一部)として機能する。そのため、NA層24の組成や厚さ、単体硫黄の含有量は、PA層14と同じとすれば良い(もちろん、組成や厚さ、単体硫黄の含有量を異ならせてもかまわない)。また、NA層24の形成も、PA層14と同様に行えば良い。
次に、PA層14とNA層24とが互いに対向するように正極体1と負極体2とを積層してLiイオン電池100を作製する。その際、熱処理を施して、PA層14とNA層24とを軟化させ、一体化させることで、硫黄添加層43が形成される。
Liイオン電池100の作製にあたり、以下の構成を備える正極体1、負極体2を用意した。
≪正極体1≫
・正極集電体11…厚さ10μmのステンレス箔
・正極活物質層12…厚さ5μmのLiCoO2膜:レーザーアブレーション法で成膜後500℃でアニール
・中間層1c…厚さ20nmのLiNbO3膜:RFスパッタ法
・PSE層13…厚さ5μmのLi2S-P2S5-P2O5膜(膜中の単体硫黄含有量は0モル%):レーザーアブレーション法
・PA層14…厚さ5μmのLi2S-P2S5-P2O5-S膜(膜中の単体硫黄含有量は20モル%):レーザーアブレーション法
≪負極体2≫
・負極集電体21…厚さ10μmのステンレス箔
・負極活物質層22…厚さ1μmの金属Li膜:真空蒸着法
・NSE層23…厚さ5μmのLi2S-P2S5-P2O5膜(膜中の単体硫黄含有量は0モル%):レーザーアブレーション法
・NA24…厚さ5μmのLi2S-P2S5-P2O5-S膜(膜中の単体硫黄含有量は20モル%):レーザーアブレーション法
実施例1と異なり、硫黄添加層を形成しなかった正極体と負極体を用意し、それら電極体を重ね合わせてLiイオン電池を作製した。
1 正極体
11 正極集電体
12 正極活物質層
1c 中間層
13 正極側固体電解質層(PSE層)
14 正極層側硫黄添加層(PA層)
2 負極体
21 負極集電体
22 負極活物質層
23 負極側固体電解質層(NSE層)
24 負極層側硫黄添加層(NA層)
40 硫化物固体電解質層
41 正極側固体電解質層
42 負極側固体電解質層
43 硫黄添加層
Claims (10)
- 正極活物質層、負極活物質層、およびこれら活物質層の間に配される硫化物固体電解質層を備える非水電解質電池であって、
前記硫化物固体電解質層は、その厚さ方向の中間部分に硫黄添加層を備え、
この硫黄添加層は硫化物固体電解質層の他の部分よりも、化合物となっていない単体硫黄の含有量が多く、かつ、
当該硫黄添加層に実質的にピンホールが存在しないことを特徴とする非水電解質電池。 - 前記硫黄添加層における単体硫黄の含有量は、硫黄添加層における固体電解質の全モル数の1%~20%であることを特徴とする請求項1に記載の非水電解質電池。
- 前記含有量は、硫黄添加層における固体電解質の全モル数の1%~5%であることを特徴とする請求項2に記載の非水電解質電池。
- 前記硫黄添加層の平均厚さは、0.5~1μmであることを特徴とする請求項1~3のいずれか一項に記載の非水電解質電池。
- 正極活物質層、負極活物質層、およびこれら活物質層の間に配される硫化物固体電解質層を備える非水電解質電池を製造する非水電解質電池の製造方法であって、
正極活物質層と、正極側固体電解質層と、この正極側固体電解質層よりも、化合物となっていない単体硫黄を多く含む固体電解質からなる正極側硫黄添加層と、を有する正極体を用意する工程と、
負極活物質層と、負極側固体電解質層と、この負極側固体電解質層よりも、化合物となっていない単体硫黄を多く含む固体電解質からなる負極側硫黄添加層と、を有する負極体を用意する工程と、
正極体と負極体とを、両電極体の硫黄添加層同士が接触するように重ね合わせて熱処理することで、両硫黄添加層同士を接着させる工程と、
を備えることを特徴とする非水電解質電池の製造方法。 - 前記熱処理は、80~200℃×1~20hで行うことを特徴とする請求項5に記載の非水電解質電池の製造方法。
- 前記熱処理は、110~200℃×1~20hで行うことを特徴とする請求項5に記載の非水電解質電池の製造方法。
- 前記熱処理は、170~200℃×1~20hで行うことを特徴とする請求項5に記載の非水電解質電池の製造方法。
- 前記熱処理時に圧力をかけて正極体と負極体とを圧接することを特徴とする請求項5~8のいずれか一項に記載の非水電解質電池の製造方法。
- 前記圧力は、10~200MPaであることを特徴とする請求項9に記載の非水電解質電池の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127029169A KR20130018860A (ko) | 2010-05-25 | 2011-05-17 | 비수 전해질 전지 및, 그 제조 방법 |
JP2012517223A JPWO2011148824A1 (ja) | 2010-05-25 | 2011-05-17 | 非水電解質電池、およびその製造方法 |
CN2011800258997A CN102906928A (zh) | 2010-05-25 | 2011-05-17 | 非水电解质电池及其制造方法 |
US13/698,125 US20130065134A1 (en) | 2010-05-25 | 2011-05-17 | Nonaqueous-electrolyte battery and method for producing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-119735 | 2010-05-25 | ||
JP2010119735 | 2010-05-25 | ||
JP2011-000492 | 2011-01-05 | ||
JP2011000492 | 2011-01-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011148824A1 true WO2011148824A1 (ja) | 2011-12-01 |
Family
ID=45003815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/061277 WO2011148824A1 (ja) | 2010-05-25 | 2011-05-17 | 非水電解質電池、およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130065134A1 (ja) |
JP (1) | JPWO2011148824A1 (ja) |
KR (1) | KR20130018860A (ja) |
CN (1) | CN102906928A (ja) |
WO (1) | WO2011148824A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140272569A1 (en) * | 2013-03-15 | 2014-09-18 | GM Global Technology Operations LLC | Coating for separator or cathode of lithium-sulfur or silicon-sulfur battery |
JP2015032535A (ja) * | 2013-08-06 | 2015-02-16 | トヨタ自動車株式会社 | 積層プレス前に負極層側に緻密な電解質層を有する積層電極体 |
JP2016115617A (ja) * | 2014-12-17 | 2016-06-23 | 富士通株式会社 | 全固体二次電池 |
JP2017224536A (ja) * | 2016-06-16 | 2017-12-21 | 富士通株式会社 | 全固体二次電池、電源装置及び全固体二次電池の監視方法 |
WO2018164051A1 (ja) * | 2017-03-07 | 2018-09-13 | 富士フイルム株式会社 | 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質膜及びその製造方法 |
JPWO2018168549A1 (ja) * | 2017-03-13 | 2019-11-07 | 富士フイルム株式会社 | 全固体二次電池及びその製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9905844B2 (en) * | 2013-08-28 | 2018-02-27 | Robert Bosch Gmbh | Solid state battery with volume change material |
US10581050B2 (en) | 2017-06-07 | 2020-03-03 | Robert Bosch Gmbh | Battery having a low counter-ion permeability layer |
JP6940316B2 (ja) * | 2017-06-23 | 2021-09-22 | 株式会社日立製作所 | 二次電池及び二次電池の製造方法 |
CN111213261B (zh) * | 2017-10-20 | 2023-07-07 | 富士胶片株式会社 | 电极层叠体、全固态层叠型二次电池及其制造方法 |
CN112136230A (zh) | 2018-05-31 | 2020-12-25 | 罗伯特·博世有限公司 | 具有突起抑制隔膜的电极结构 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005032731A (ja) * | 2001-02-28 | 2005-02-03 | Sumitomo Electric Ind Ltd | 無機固体電解質の形成方法 |
JP2009004133A (ja) * | 2007-06-19 | 2009-01-08 | Sumitomo Electric Ind Ltd | 電池およびその製造方法 |
JP2009054484A (ja) * | 2007-08-28 | 2009-03-12 | Seiko Epson Corp | 全固体リチウム二次電池およびその製造方法 |
JP2009093995A (ja) * | 2007-10-11 | 2009-04-30 | Idemitsu Kosan Co Ltd | リチウムイオン二次電池用硫化物系固体電解質 |
WO2011010552A1 (ja) * | 2009-07-22 | 2011-01-27 | 住友電気工業株式会社 | 非水電解質電池及び非水電解質電池用固体電解質 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69936706T2 (de) * | 1998-12-03 | 2008-04-30 | Sumitomo Electric Industries, Ltd. | Lithiumspeicherbatterie |
JP4165536B2 (ja) * | 2005-06-28 | 2008-10-15 | 住友電気工業株式会社 | リチウム二次電池負極部材およびその製造方法 |
JP4779988B2 (ja) * | 2007-02-13 | 2011-09-28 | トヨタ自動車株式会社 | 全固体リチウム二次電池 |
-
2011
- 2011-05-17 KR KR1020127029169A patent/KR20130018860A/ko not_active Application Discontinuation
- 2011-05-17 WO PCT/JP2011/061277 patent/WO2011148824A1/ja active Application Filing
- 2011-05-17 CN CN2011800258997A patent/CN102906928A/zh active Pending
- 2011-05-17 JP JP2012517223A patent/JPWO2011148824A1/ja not_active Withdrawn
- 2011-05-17 US US13/698,125 patent/US20130065134A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005032731A (ja) * | 2001-02-28 | 2005-02-03 | Sumitomo Electric Ind Ltd | 無機固体電解質の形成方法 |
JP2009004133A (ja) * | 2007-06-19 | 2009-01-08 | Sumitomo Electric Ind Ltd | 電池およびその製造方法 |
JP2009054484A (ja) * | 2007-08-28 | 2009-03-12 | Seiko Epson Corp | 全固体リチウム二次電池およびその製造方法 |
JP2009093995A (ja) * | 2007-10-11 | 2009-04-30 | Idemitsu Kosan Co Ltd | リチウムイオン二次電池用硫化物系固体電解質 |
WO2011010552A1 (ja) * | 2009-07-22 | 2011-01-27 | 住友電気工業株式会社 | 非水電解質電池及び非水電解質電池用固体電解質 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140272569A1 (en) * | 2013-03-15 | 2014-09-18 | GM Global Technology Operations LLC | Coating for separator or cathode of lithium-sulfur or silicon-sulfur battery |
US8974946B2 (en) * | 2013-03-15 | 2015-03-10 | Gm Global Technology Operations | Coating for separator or cathode of lithium—sulfur or silicon—sulfur battery |
JP2015032535A (ja) * | 2013-08-06 | 2015-02-16 | トヨタ自動車株式会社 | 積層プレス前に負極層側に緻密な電解質層を有する積層電極体 |
JP2016115617A (ja) * | 2014-12-17 | 2016-06-23 | 富士通株式会社 | 全固体二次電池 |
JP2017224536A (ja) * | 2016-06-16 | 2017-12-21 | 富士通株式会社 | 全固体二次電池、電源装置及び全固体二次電池の監視方法 |
WO2018164051A1 (ja) * | 2017-03-07 | 2018-09-13 | 富士フイルム株式会社 | 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質膜及びその製造方法 |
JPWO2018164051A1 (ja) * | 2017-03-07 | 2019-11-07 | 富士フイルム株式会社 | 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質膜及びその製造方法 |
JPWO2018168549A1 (ja) * | 2017-03-13 | 2019-11-07 | 富士フイルム株式会社 | 全固体二次電池及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011148824A1 (ja) | 2013-07-25 |
US20130065134A1 (en) | 2013-03-14 |
KR20130018860A (ko) | 2013-02-25 |
CN102906928A (zh) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011148824A1 (ja) | 非水電解質電池、およびその製造方法 | |
JP6319335B2 (ja) | 全固体電池の製造方法 | |
US9634358B2 (en) | Method for producing all-solid-state battery, and all-solid-state battery | |
JP6085370B2 (ja) | 全固体電池、全固体電池用電極及びその製造方法 | |
JP5626654B2 (ja) | 非水電解質電池、及び非水電解質電池の製造方法 | |
CN109565028B (zh) | 具有锂电极的电化学电池单体的制造方法和电化学电池单体 | |
US20140234725A1 (en) | Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery | |
KR20160002988A (ko) | 고체 및 액체 전해질들을 갖는 전기화학 셀 | |
JP6259704B2 (ja) | 全固体電池用電極の製造方法及び全固体電池の製造方法 | |
WO2012090601A1 (ja) | 非水電解質電池の製造方法、および非水電解質電池 | |
WO2019151376A1 (ja) | 固体電池および固体電池の製造方法 | |
JP7474977B2 (ja) | 電池 | |
JP2012160379A (ja) | 非水電解質電池及びその製造方法 | |
WO2014170998A1 (ja) | 全固体リチウムイオン二次電池 | |
JP2013175412A (ja) | 非水電解質電池 | |
JP6070471B2 (ja) | 全固体リチウム二次電池及び全固体リチウム二次電池の製造方法 | |
JP5190762B2 (ja) | リチウム電池 | |
JP5217455B2 (ja) | リチウム電池、及びリチウム電池の製造方法 | |
JP2012089421A (ja) | 非水電解質電池の製造方法および非水電解質電池 | |
WO2011102027A1 (ja) | 非水電解質電池、およびその製造方法 | |
WO2018181662A1 (ja) | 全固体リチウムイオン二次電池 | |
JP2013054949A (ja) | 非水電解質電池 | |
JP5648978B2 (ja) | 非水電解質電池、及び非水電解質電池の製造方法 | |
JP2015032495A (ja) | 固体電池の製造方法 | |
JP2017228453A (ja) | 全固体電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180025899.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11786523 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127029169 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13698125 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012517223 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11786523 Country of ref document: EP Kind code of ref document: A1 |