WO2011102027A1 - 非水電解質電池、およびその製造方法 - Google Patents

非水電解質電池、およびその製造方法 Download PDF

Info

Publication number
WO2011102027A1
WO2011102027A1 PCT/JP2010/069671 JP2010069671W WO2011102027A1 WO 2011102027 A1 WO2011102027 A1 WO 2011102027A1 JP 2010069671 W JP2010069671 W JP 2010069671W WO 2011102027 A1 WO2011102027 A1 WO 2011102027A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
layer
positive electrode
active material
electrode body
Prior art date
Application number
PCT/JP2010/069671
Other languages
English (en)
French (fr)
Inventor
進啓 太田
良子 神田
光靖 小川
馨 柴田
卓 上村
健太郎 吉田
勝治 江村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2011102027A1 publication Critical patent/WO2011102027A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a nonaqueous electrolyte battery produced by separately producing a positive electrode body having a positive electrode active material layer and a negative electrode body having a negative electrode active material layer, and superimposing both electrode bodies in a subsequent step, and It relates to a manufacturing method.
  • a nonaqueous electrolyte battery including a positive electrode layer, a negative electrode layer, and an electrolyte layer disposed between these electrode layers is used.
  • the electrode layer included in the battery further includes a current collector having a current collecting function and an active material layer containing an active material.
  • a Li-ion battery that charges and discharges by movement of Li ions between the positive and negative electrode layers has a high discharge capacity while being small.
  • Patent Document 1 Examples of the technology for producing the Li ion battery include those described in Patent Document 1.
  • Patent Document 1 when manufacturing a Li ion battery, a positive electrode body including a positive electrode active material layer and a negative electrode body including a negative electrode active material layer are separately manufactured. A solid electrolyte layer is formed on at least one of the positive electrode body and the negative electrode body, and a Li ion battery can be manufactured by superimposing the positive electrode body and the negative electrode body. At the time of the superposition, Patent Document 1 prevents a short circuit between the positive and negative electrode layers by filling the pinhole formed in the solid electrolyte layer with an ionic liquid containing a Li-containing salt having a high Li ion conductivity. Yes.
  • the Li ion battery of Patent Document 1 may not prevent a short circuit between the positive and negative electrode layers depending on how the Li ion battery is used.
  • the main cause of the short circuit is that needle-like Li crystals (dendrites) generated on the surface of the negative electrode active material layer during the charging of the Li ion battery grow while repeating the charge and discharge of the Li ion battery, and become the negative electrode active material layer. Is to reach. Dendrites are particularly easily generated on the surface of the negative electrode active material layer exposed in the pinhole formed in the solid electrolyte layer, and grow along the inner wall surface of the pinhole. On the other hand, in Patent Document 1, when the Li ion battery is discharged, the dendrite is easily lost by the liquid having high Li ion conductivity filled in the pinhole.
  • the Li ion conductivity of the liquid in the pinhole is high, it can be said that dendrites are likely to be generated in the pinhole in the first place. Therefore, for example, the usage mode of the Li ion battery in which charging is performed before sufficiently discharging is performed. If it repeats, the possibility that a short circuit will arise becomes high.
  • the present invention has been made in view of the above circumstances, and one of its purposes is a nonaqueous electrolyte produced by separately producing a positive electrode body and a negative electrode body, and superimposing these electrode bodies in a subsequent step. It is an object of the present invention to provide a nonaqueous electrolyte battery that can prevent a short circuit between positive and negative electrode layers more reliably and a method for manufacturing the same.
  • the non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte battery in which a separately produced positive electrode body and negative electrode body are laminated, the positive electrode body has a positive electrode active material layer, and the negative electrode body is a negative electrode It has an active material layer and a negative electrode side solid electrolyte layer.
  • the nonaqueous electrolyte battery of the present invention has a low Li ion conductivity lower than the Li ion conductivity of the negative electrode side solid electrolyte layer on the surface of the negative electrode active material layer at the pinhole position of the negative electrode side solid electrolyte layer. A conductive portion is formed.
  • the mechanism that can prevent the short circuit differs depending on whether the low-conductivity portion is made of a liquid or a solid as described later.
  • the positive electrode body preferably further has a positive electrode side solid electrolyte layer on the positive electrode active material layer.
  • the low conduction part formed in the pinhole of a negative electrode side solid electrolyte layer may be comprised with the liquid with which the said pinhole is filled.
  • the Li ion conductivity of the low-conducting portion filled in the pinhole is low, it is difficult to generate dendrites at the pinhole position when charging the nonaqueous electrolyte battery. Further, even if dendrite is generated at the pinhole position, the generated dendrite is likely to disappear when the battery is discharged. This is presumably because the Li ion conduction path in the vicinity of the generated dendrite is also formed in the pinhole in addition to the negative electrode solid electrolyte layer.
  • the Li ion conduction path in the vicinity of the dendrite is formed only in the negative electrode side solid electrolyte layer, so that the dendrite hardly disappears during the discharge of the nonaqueous electrolyte battery. .
  • the low conductive portion formed in the pinhole of the negative electrode side solid electrolyte layer may be formed of a solid film.
  • the low conduction part formed in the pinhole of a negative electrode side solid electrolyte layer may be comprised with the organic polymer with which the said pinhole is filled.
  • the organic polymer covering the active material layer physically suppresses the formation of dendrite so that the negative electrode active material layer is not exposed in the pinhole. Furthermore, if a Li ion conductive substance is contained in the organic polymer, even if dendrite is generated, the dendrite can be lost when the battery is discharged.
  • the manufacturing method of the nonaqueous electrolyte battery of the present invention can be broadly divided into three, and the first is as follows. (6)
  • the manufacturing method of the nonaqueous electrolyte battery of the present invention is a manufacturing method of a nonaqueous electrolyte battery in which a nonaqueous electrolyte battery is manufactured by laminating individually produced positive electrode bodies and negative electrode bodies. It is characterized by providing.
  • the process of preparing the negative electrode body which has a negative electrode active material layer and a negative electrode side solid electrolyte layer.
  • a step of preparing a liquid filler having a Li ion conductivity lower than that of the negative electrode side solid electrolyte layer A step of laminating a positive electrode body and a negative electrode body with a prepared filler interposed therebetween, so that the pinhole of the negative electrode side solid electrolyte layer is filled with the filler;
  • a non-aqueous electrolyte battery in which the surface of the negative electrode active material layer at the pinhole position of the negative electrode side solid electrolyte layer is covered with the liquid low-conductivity portion filled in the pinhole is manufactured. can do.
  • the second method for producing the nonaqueous electrolyte battery of the present invention is as follows.
  • the method for producing a nonaqueous electrolyte battery of the present invention is a method for producing a nonaqueous electrolyte battery in which a separately produced positive electrode body and negative electrode body are laminated to produce a nonaqueous electrolyte battery, which comprises the following steps: It is characterized by providing. A step of preparing a positive electrode body having a positive electrode active material layer. The process of preparing the negative electrode body which has a negative electrode active material layer and a negative electrode side solid electrolyte layer.
  • a step of preparing a filler that reacts with Li to produce a compound having a Li ion conductivity lower than that of the negative electrode side solid electrolyte layer The positive electrode body and the negative electrode body are laminated with the prepared filler interposed, and the pin hole of the negative electrode side solid electrolyte layer is filled with the filler so that the negative electrode active at the position of the pin hole is obtained. Forming a solid film comprising the above compound on the surface of the material layer;
  • the third method for producing the nonaqueous electrolyte battery of the present invention is as follows.
  • the method for producing a nonaqueous electrolyte battery of the present invention is a method for producing a nonaqueous electrolyte battery in which a separately produced positive electrode body and negative electrode body are laminated to produce a nonaqueous electrolyte battery. It is characterized by providing.
  • the process of preparing the negative electrode body which has a negative electrode active material layer and a negative electrode side solid electrolyte layer.
  • a step of preparing an organic polymer gel filler having a lower Li ion conductivity than the negative electrode side solid electrolyte layer A step of laminating a positive electrode body and a negative electrode body with a prepared filler interposed therebetween, and drying the filler so that the pinhole of the negative electrode side solid electrolyte layer is filled with the organic polymer.
  • the non-aqueous electrolyte battery in which the surface of the negative electrode active material layer at the pinhole position of the negative electrode side solid electrolyte layer is covered with the low-conductivity portion of the organic polymer filled in the pinhole. Can be manufactured.
  • the positive electrode body to prepare prepares the positive electrode side solid electrolyte layer further on the positive electrode active material layer.
  • the above manufacturing method it is possible to suppress the formation of a continuous pinhole from the negative electrode active material layer to the positive electrode active material layer. This is because the position of the pinhole in the separately produced negative electrode solid electrolyte layer and the position of the pinhole in the positive electrode solid electrolyte layer rarely coincide.
  • nonaqueous electrolyte battery of the present invention it is possible to effectively prevent a short circuit caused by dendrite generated when the battery is charged.
  • FIG. 1 (A) is a longitudinal sectional view of the nonaqueous electrolyte battery described in Embodiment 1
  • FIG. 1 (B) is a longitudinal sectional view showing a state before the battery of (A) is assembled.
  • FIG. 2A is a longitudinal sectional view of the nonaqueous electrolyte battery described in Embodiment 2
  • FIG. 2B is a longitudinal sectional view showing a state before the battery of FIG.
  • a Li ion battery (nonaqueous electrolyte battery) 100 shown in FIG. 1A is formed by laminating a positive electrode body 1 and a negative electrode body 2 that are individually manufactured.
  • the Li ion battery 100 is manufactured by the method for manufacturing a nonaqueous electrolyte battery of the present invention according to the following steps.
  • (A) The positive electrode body 1 is produced.
  • (B) The negative electrode body 2 is produced.
  • a filler is prepared.
  • D) The positive electrode body 1 and the negative electrode body 2 are laminated with a filler interposed. * The order of steps A to C can be changed.
  • Steps C and D are the most characteristic features of the method for producing a nonaqueous electrolyte battery of the present invention comprising the above steps A to D. And it is reflected in the solid electrolyte layer of Li ion battery 100 (the PSE layer 13 and the NSE layer 23 which will be described later may be collectively referred to as the SE layer) that they are manufactured through the processes C and D. .
  • the SE layer the solid electrolyte layer of Li ion battery 100
  • each process of a manufacturing method is demonstrated sequentially, and the structure formed at each process is demonstrated in detail.
  • the positive electrode body 1 has a positive electrode active material layer 12 and a positive electrode side solid electrolyte layer (PSE layer) 13 on a positive electrode current collector 11.
  • PSE layer positive electrode side solid electrolyte layer
  • a substrate to be the positive electrode current collector 11 is prepared, and the positive electrode active material layer 12 and the PSE layer 13 are sequentially formed on the substrate.
  • an intermediate layer 1c is formed between the positive electrode active material layer 12 and the PSE layer 13, but the intermediate layer 1c is formed when the material of the PSE layer 13 is a sulfide as will be described later. If the material of the PSE layer 13 is not sulfide, it is not necessary to provide it.
  • the substrate to be the positive electrode current collector 11 may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material film functions as a current collector.
  • the conductive material one selected from Al, Ni, alloys thereof, and stainless steel can be suitably used.
  • the positive electrode active material layer 12 is a layer containing a positive electrode active material that is a main component of the battery reaction.
  • a material having a layered rock salt type crystal structure for example, Li ⁇ X ⁇ (1-X) O 2 ( ⁇ is one selected from Co, Ni, Mn, ⁇ is Fe, Al, Ti , Cr, Zn, Mo, and Bi, and X is 0.5 or more). Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiCo 0.5 Fe 0.5 O 2 , LiCo 1/2 Al 1/2 O 2 and the like.
  • a positive electrode active material a substance having a spinel crystal structure (for example, LiMn 2 O 4 or the like) or a substance having an olivine crystal structure (for example, Li X FePO 4 (0 ⁇ X ⁇ 1)) is used. It can also be used.
  • the positive electrode active material layer may include a conductive additive, a binder, and a solid electrolyte.
  • the solid electrolyte is preferably the same as that used for the positive electrode side solid electrolyte layer 13 described later, but may be different.
  • a wet method or a dry method can be used as a method for forming the positive electrode active material layer 12 described above.
  • the wet method include a sol-gel method, a colloid method, and a casting method.
  • the dry method include a vapor deposition method such as vacuum deposition, ion plating, sputtering, and laser ablation.
  • the positive electrode active material layer 12 may be formed by pressure forming positive electrode active material powder.
  • the positive electrode side solid electrolyte layer (PSE layer) 13 is a Li ion conductor, and the Li ion conductivity (20 ° C.) is preferably 10 ⁇ 5 S / cm or more. In particular, the Li ion conductivity is preferably 10 ⁇ 4 S / cm or more.
  • the PSE layer 13 preferably has an electronic conductivity of 10 ⁇ 8 S / cm or less.
  • Examples of the material of the PSE layer 13 include oxide-based solid electrolytes and sulfide-based solid electrolytes.
  • the oxide solid electrolyte include LiPON (Li ion conductivity: 2 to 3 ⁇ 10 ⁇ 6 S / cm).
  • Examples of the sulfide solid electrolyte include Li 2 S—P 2 S 5 —P 2 O 5 (Li ion conductivity: 1 ⁇ 10 ⁇ 4 to 3 ⁇ 10 ⁇ 3 S / cm).
  • a vapor phase method can be used as a method for forming the PSE layer 13.
  • a vacuum deposition method for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, or the like can be used.
  • the intermediate layer 1 c is a layer that is necessary when a sulfide solid electrolyte is used for the PSE layer 13.
  • the PSE layer 13 includes a sulfide solid electrolyte
  • the sulfide solid electrolyte reacts with the positive electrode active material of the oxide included in the positive electrode active material layer 12 adjacent to the PSE layer 13, so that the positive electrode active material layer 12 and the PSE
  • the vicinity of the interface with the layer 13 is increased in resistance, and the discharge capacity of the Li ion battery 100 is reduced.
  • the intermediate layer 1c by providing the intermediate layer 1c, the increase in the resistance can be suppressed, and the decrease in the discharge capacity of the battery 100 due to charge / discharge can be suppressed.
  • an amorphous Li ion conductive oxide such as LiNbO 3 or LiTaO 3 can be used.
  • LiNbO 3 can effectively suppress an increase in resistance near the interface between the positive electrode active material layer 12 and the PSE layer 13.
  • the positive electrode active material layer 12 is used as a powder compact, and the same function as the intermediate layer 1c is applied to the surface of each particle of the positive electrode active material powder used when forming the powder compact.
  • a coating film may be formed. The coating is composed of an amorphous Li ion conductive oxide used for the intermediate layer 1c.
  • the negative electrode body 2 includes a negative electrode active material layer 22 and a negative electrode side solid electrolyte layer (NSE layer 23) on a negative electrode current collector 21.
  • NSE layer 23 negative electrode side solid electrolyte layer
  • a substrate to be the negative electrode current collector 21 is prepared, and the negative electrode active material layer 22 and the NSE layer 23 are sequentially formed on the substrate.
  • the substrate to be the negative electrode current collector 21 may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material film functions as a current collector.
  • the conductive material for example, one selected from Cu, Ni, Fe, Cr, and alloys thereof can be suitably used.
  • the negative electrode active material layer 22 is a layer containing a negative electrode active material that is a main component of the battery reaction. It is preferable to use metal Li as the negative electrode active material.
  • metal Li As the negative electrode active material, an element alloyed with Li in addition to metal Li (for example, Si) can be used. In that case, in the first charge / discharge cycle, the discharge capacity is significantly larger than the charge capacity. There is a problem that it becomes smaller (that is, a problem that an irreversible capacity occurs).
  • a metal Li film is formed on an element alloyed with Li, and a negative electrode active material layer made of an alloy of the element and Li is formed before the battery is assembled. good. Needless to say, when the anode active material layer 22 is made of metal Li, this irreversible capacity hardly occurs.
  • the above-described method for forming the negative electrode active material layer 22 is preferably a vapor phase method.
  • a thin film of metal Li may be stacked on the negative electrode current collector 21, and the negative electrode active material layer 22 may be formed on the negative electrode current collector 21 by pressing or an electrochemical method.
  • the negative electrode side solid electrolyte layer (NSE layer 23) preferably has a high Li conductivity and a low electron conductivity, like the PSE layer 13 described above.
  • the material of the NSE layer 23 is preferably a sulfide type, and in particular Li 2 S—P 2 S 5 —P 2 O 5 (Li ion conductivity: 1 ⁇ 10 ⁇ 4 to 3 ⁇ 10 ⁇ 3 S / cm) Is preferred.
  • Process C Preparation of filler
  • Process D Lamination of positive electrode body and negative electrode body
  • the positive electrode body 1 and the negative electrode body 2 are laminated so that the PSE layer 13 and the NSE layer 23 face each other, and the Li ion battery 100 is manufactured.
  • the PSE layer 13 and the NSE layer 23 may have pinholes during the formation thereof.
  • the charge / discharge is performed. There is a possibility that a short circuit will occur while repeating the above.
  • Li needle crystals are likely to be formed on the surface of the negative electrode active material layer 22 (the surface on the positive electrode body 1 side), and if there are pinholes in the SE layers 13 and 23, This is because dendrite is likely to grow along the inner wall surface.
  • a liquid filler satisfying any of the following conditions, or an organic polymer gel filler is prepared, and the filler is at least The pinhole of the NSE layer 23 is filled.
  • the filler is dropped onto the surface of the NSE layer 23 and the positive electrode body 1 and the negative electrode body 2 are overlapped.
  • Liquid filler having a Li ion conductivity lower than the Li ion conductivity of the NSE layer 23 of the negative electrode body 2 (Condition Y) ... By reacting with Li, the Li ion conductivity of the NSE layer 23 Liquid filler that produces a solid compound having a lower Li ion conductivity (Condition Z): Organic polymer gel having a lower Li ion conductivity than the Li ion conductivity of the NSE layer 23 of the negative electrode body 2
  • Examples of the filler satisfying the condition X include LiPF 6 / EC-DEC and LiPF 6 / EC-DMC (however, the LiPF 6 content is 0.001 molar).
  • the Li ion conductivity of these fillers is 1 to 2 digits lower than the Li ion conductivity of the electrolyte normally used for the NSE layer 23.
  • the Li ion conductivity of Li 2 S—P 2 S 5 —P 2 O 5 suitable for the NSE layer 23 is 1 ⁇ 10 ⁇ 4 to 3 ⁇ 10 ⁇ 3 S / cm
  • LiPF 6 Li ion conductivity of / EC-DEC, LiPF 6 / EC-DMC, etc. (where LiPF 6 content is 0.001 molar) is about 10 ⁇ 5 S / cm.
  • the Li-ion battery 100 is manufactured by laminating the positive electrode body 1 and the negative electrode body 2 in a state where the filler satisfying the condition X is filled in the pinhole of the NSE layer 23, the dendrite at the position of the pinhole when the battery 100 is charged. Is generated, the generated dendrite is likely to disappear when the battery 100 is discharged. The reason is presumably that the Li ion conduction path in the vicinity of the generated dendrite is also formed in the filler (low conduction part) filled in the pinhole in addition to the NSE layer 23. .
  • the pinhole is not filled with anything, the Li ion conduction path in the vicinity of the generated dendrite is formed only in the NSE layer 23, so that the dendrite hardly disappears when the battery 100 is discharged.
  • the dendrite tends to disappear when the Li ion battery 100 is discharged, but the battery Dendrites are easily generated when 100 is charged.
  • examples of the filler that satisfies the condition Y include tetrahydrofuran (THF), acetonitrile (AN), and a solution of an anionic polymerization monomer.
  • the anionic polymerization monomer in the present invention is a monomer that is polymerized in the presence of Li metal.
  • These THF, AN, or anion polymerization monomers react with metal Li to form a solid film having almost no Li ion conductivity on the surface of metal Li. Therefore, if the pinhole of the NSE layer 23 is filled with the filler of the condition Y, a solid film (low conductivity portion) having almost no Li ion conductivity is formed on the surface of the metal Li exposed at the back of the pinhole. . As a result, it becomes difficult to generate dendrite on the surface of the metal Li at the position of the pinhole.
  • an organic solvent such as THF, a polyether which is an organic polymer having an ether bond, a polyester which is an organic polymer having an ester bond, an acrylic group What melt
  • the Li-ion battery 100 having this low-conductivity part is a battery that is unlikely to cause a short circuit even during repeated charging and discharging.
  • the SE layer is provided separately for each of the positive electrode body 1 and the negative electrode body 2, the positions of the pinholes in each SE layer hardly coincide with each other. A continuous pinhole is hardly formed from the active material layer 22 toward the positive electrode active material layer 12. As a result, it is possible to effectively suppress dendrite formed on the surface of the negative electrode active material layer 22 from reaching the positive electrode active material layer 12.
  • FIG. 2A shows a longitudinal sectional view of a Li ion battery 200 having a configuration different from that of the first embodiment.
  • the Li ion battery 200 of this embodiment has the same basic configuration as that of the first embodiment except that the solid electrolyte layer (NSE layer) 23 is provided only on the negative electrode active material layer 22. That is, the battery 200 of this embodiment has a configuration in which the positive electrode active material layer 12, the NSE layer 23, the negative electrode active material layer 22, and the negative electrode current collector 21 are stacked on the positive electrode current collector 11.
  • a negative electrode active material layer 22 was formed on the negative electrode current collector 21, and an NSE layer 23 was further formed on the active material layer 22.
  • the negative electrode body 2 is produced. Separately from the negative electrode body 2, the positive electrode body 1 in which the positive electrode active material layer 12 and the intermediate layer 1 c are formed on the positive electrode current collector 11 is produced. Then, a filler satisfying any one of the conditions X to Z shown in the first embodiment is dropped on at least one of the produced positive electrode body 1 and negative electrode body 2 (in the figure, on the NSE layer 23). , 2 are overlapped to produce the Li ion battery 200.
  • the solid electrolyte layer only on the negative electrode body 2, so that the Li-ion battery 200 can be easily manufactured.
  • the intermediate layer 1c of the positive electrode body 1 may be omitted.
  • the Li ion battery 100 of Embodiment 1 described with reference to FIG. 1 was produced, and its cycle characteristics were evaluated.
  • a Li ion battery in which all layers except the current collector in the battery were formed by a vapor phase method was produced, and the cycle characteristics were also evaluated.
  • a positive electrode body 1, a negative electrode body 2, and a filler having the following configuration were prepared.
  • the 10 Li ion batteries 100 produced as described above were subjected to a charge / discharge cycle test in which the battery was charged at 0.1 C to 4.2 V and discharged at 0.1 C to 3.0 V. As a result, all 10 batteries tested were able to be charged and discharged for 10 cycles or more without causing a short circuit.
  • Example 2 Ten Li ion batteries 100 were manufactured by the same configuration and the same method as in Example 1 except that the fillers were different. Specifically, an organic polymer gel prepared by dissolving 1 part by weight of a polyether-polyester resin and 0.2 parts by weight of LiTFSI in 1.5 parts by weight of THF was prepared as a filler. And the positive electrode body 1 and the negative electrode body 2 were bonded together by interposing 0.01 mL of organic polymer gel, and the organic component of the gel was volatilized.
  • Example 3 Except for the difference in thickness of the negative electrode current collector 21 made of Cu foil and the negative electrode active material layer 22 made of Li—Si alloy, 10 Li An ion battery was produced. Specifically, when the negative electrode body 2 is manufactured, a Si layer having a thickness of 300 nm is provided on a Cu foil having a thickness of 20 ⁇ m by a sputtering method, and a Li layer having a thickness of 200 nm is formed on the Si layer by an evaporation method. Formed. By forming the Li layer on the Si layer, the negative electrode active material layer 22 in which Li and Si are alloyed is formed.
  • Example 4 Except for changing the configuration of the positive electrode body 1 as described below, ten Li ion batteries were manufactured by the same configuration and the same method as in Example 1.
  • Positive electrode current collector 11 Aluminum foil having a diameter of 15 mm and a thickness of 20 ⁇ m
  • Positive electrode active material layer 12 Powder molded body having a thickness of 30 ⁇ m Intermediate layer 1 c None None PSE layer 13 Same as Example 1.
  • the powder compact is composed of LiCoO 2 having an average particle diameter of 5 ⁇ m coated on the surface with LiNbO 3 and Li 2 S—P 2 S 5 —P 2 O 5 particles having an average particle diameter of 1 ⁇ m in weight%. It was obtained by mixing at a ratio of 7: 3 and pressurizing at 360 MPa. LiNbO 3 was coated by spraying a solution of ethanol mixed with ethoxylithium and pentaethoxyniobium onto LiCoO 2 particles and drying, followed by heat treatment at 300 ° C. for 30 minutes.
  • the charge / discharge cycle test was also performed on the Li-ion battery of the comparative example under the same conditions as the Li-ion battery of the example. As a result, 7 out of 10 Li-ion batteries could not be driven as batteries because of their high resistance. Also, the three batteries that operated as batteries were short-circuited within 10 cycles.
  • the present invention is not limited to the above-described embodiment. That is, the configuration of the nonaqueous electrolyte battery described in the above-described embodiment can be changed as appropriate without departing from the gist of the present invention.
  • the non-aqueous electrolyte battery of the present invention can be suitably used as a power source for electrical equipment on the premise that charging and discharging are repeated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

正極体と負極体とをそれぞれ別個に作製し、これら電極体を後工程において重ね合わせることで製造する非水電解質電池において、より確実に正・負極層間の短絡を防止できる非水電解質電池を提供する。個別に作製された正極体1と負極体2とが積層されてなる非水電解質電池100である。正極体1は正極活物質層12を有し、負極体2は負極活物質層22と負極側固体電解質層23とを有する。負極側固体電解質層23のピンホールの位置にある負極活物質層22の表面に、負極側固体電解質層23のLiイオン伝導度よりも低いLiイオン伝導度を有する低伝導部が形成されている。

Description

非水電解質電池、およびその製造方法
 本発明は、正極活物質層を備えた正極体と負極活物質層を備えた負極体とをそれぞれ別個に作製し、後工程において両電極体を重ね合わせて作製した非水電解質電池、およびその製造方法に関する。
 充放電を繰り返すことを前提とした電気機器の電源として、正極層と負極層とこれら電極層の間に配される電解質層とを備える非水電解質電池が利用されている。この電池に備わる電極層はさらに、集電機能を有する集電体と、活物質を含む活物質層とを備える。このような非水電解質電池のなかでも特に、正・負極層間のLiイオンの移動により充放電を行うLiイオン電池は、小型でありながら高い放電容量を備える。
 上記Liイオン電池を作製する技術としては、例えば、特許文献1に記載のものが挙げられる。特許文献1では、Liイオン電池の作製にあたり、正極活物質層を備える正極体と、負極活物質層を備える負極体とを別個に作製している。これら正極体と負極体の少なくとも一方には固体電解質層が形成されており、これら正極体と負極体を重ね合わせることでLiイオン電池を作製できる。その重ね合わせの際、特許文献1では、固体電解質層に形成されるピンホールにLiイオン伝導度が高いLi含有塩を含むイオン液体を充填することで、正・負極層間の短絡を防止している。
特開2008-171588号公報
 しかし、特許文献1のLiイオン電池では、Liイオン電池の使用態様によっては、正・負極層間の短絡を防止できない場合があることがわかった。
 上記短絡の主要因は、Liイオン電池の充電時に負極活物質層の表面に生成する針状のLi結晶(デンドライト)が、Liイオン電池の充放電を繰り返すうちに成長し、負極活物質層に到達することである。デンドライトは、特に固体電解質層に形成されるピンホールに露出する負極活物質層の表面に生成し易く、ピンホールの内壁面を伝って成長する。これに対して、特許文献1では、Liイオン電池の放電の際、ピンホールに充填した高Liイオン伝導度の液体によりデンドライトが消失し易いようにしている。しかし、ピンホール中の液体のLiイオン伝導度が高いため、そもそもピンホール中にデンドライトが生成し易いといえるので、例えば、放電を十分に行う前に充電を行うといったLiイオン電池の使用態様を繰り返せば、短絡が生じる虞が高くなる。
 本発明は上記事情に鑑みてなされたものであり、その目的の一つは、正極体と負極体とをそれぞれ別個に作製し、これら電極体を後工程において重ね合わせることで製造する非水電解質電池において、より確実に正・負極層間の短絡を防止できる非水電解質電池、およびその製造方法を提供することにある。
(1)本発明非水電解質電池は、個別に作製された正極体と負極体とが積層されてなる非水電解質電池であって、正極体は正極活物質層を有し、負極体は負極活物質層と負極側固体電解質層とを有する。そして、本発明非水電解質電池は、負極側固体電解質層のピンホールの位置にある負極活物質層の表面に、負極側固体電解質層のLiイオン伝導度よりも低いLiイオン伝導度を有する低伝導部が形成されていることを特徴とする。
 上記構成によれば、非水電解質電池の充電時に生成するデンドライトにより当該電池が短絡することを効果的に防止することができる。短絡を防止できるメカニズムは、後述するように低伝導部が液体からなるか、または固体からなるかによって異なる。
(2)本発明非水電解質電池の一形態として、正極体は正極活物質層の上にさらに正極側固体電解質層を有することが好ましい。
 正極体と負極体にそれぞれ別個に固体電解質層を設けると、各固体電解質層のピンホールの位置が完全に一致することが殆どなく、負極活物質層から正極活物質層に向かって一続きのピンホールが形成され難い。その結果、ピンホール中の負極活物質層の表面に形成されるデンドライトが正極活物質層に到達することを効果的に抑制することができる。なお、負極側固体電解質層のピンホールに加えて正極側固体電解質層のピンホールにも低伝導部を形成しても良い。
(3)本発明非水電解質電池の一形態として、負極側固体電解質層のピンホール中に形成される低伝導部は、当該ピンホールに充填される液体で構成されていても良い。
 上記構成によれば、ピンホールに充填される低伝導部のLiイオン伝導度が低いため、非水電解質電池の充電時に当該ピンホールの位置にデンドライトが生成し難い。また、たとえピンホールの位置でデンドライトが生成したとしても、生成したデンドライトが電池の放電時に消失し易い。その理由は、生成したデンドライトの近傍におけるLiイオンの伝導路が、負極側固体電解質層に加えて、ピンホール中にも形成されるからであると推察される。仮に、ピンホール中に何も充填されていなければ、デンドライトの近傍におけるLiイオンの伝導路は負極側固体電解質層にしか形成されないことになるので、非水電解質電池の放電時にデンドライトが消失し難い。
(4)本発明非水電解質電池の一形態として、負極側固体電解質層のピンホール中に形成される低伝導部は、固体膜で構成されていても良い。
 上記構成によれば、ピンホールの位置にある負極活物質層の表面にデンドライトが生成し難い。その理由は、ピンホール中に負極活物質層が露出しないように当該活物質層を覆う固体膜がデンドライトの生成を物理的に抑制するからである。
(5)本発明非水電解質電池の一形態として、負極側固体電解質層のピンホール中に形成される低伝導部は、当該ピンホールに充填される有機高分子で構成されていても良い。
 上記構成によれば、ピンホールの位置にある負極活物質層の表面にデンドライトが生成し難い。その理由は、ピンホール中に負極活物質層が露出しないように当該活物質層を覆う有機高分子がデンドライトの生成を物理的に抑制するからである。さらに、この有機高分子にLiイオン伝導性の物質を含有させておけば、仮にデンドライトが生成しても、電池の放電時にそのデンドライトを消失させることができる。
 次に、本発明非水電解質電池を製造する方法を示す。本発明非水電解質電池の製造方法は大別すると3つあり、まず1つ目は以下の通りである。
(6)本発明非水電解質電池の製造方法は、個別に作製された正極体と負極体とを積層して非水電解質電池を製造する非水電解質電池の製造方法であって、以下の工程を備えることを特徴とする。
 正極活物質層を有する正極体を用意する工程。
 負極活物質層と負極側固体電解質層とを有する負極体を用意する工程。
 上記負極側固体電解質層よりもLiイオン伝導度が低い液体状の充填剤を用意する工程。
 用意した充填剤を介在させて正極体と負極体とを積層し、前記負極側固体電解質層のピンホール中に前記充填剤が充填された状態とする工程。
 上記製造方法によれば、負極側固体電解質層のピンホールの位置にある負極活物質層の表面を、当該ピンホール中に充填された液体状の低伝導部で覆った非水電解質電池を製造することができる。
 本発明非水電解質電池の製造方法の2つ目は、以下の通りである。
(7)本発明非水電解質電池の製造方法は、個別に作製された正極体と負極体とを積層して非水電解質電池を製造する非水電解質電池の製造方法であって、以下の工程を備えることを特徴とする。
 正極活物質層を有する正極体を用意する工程。
 負極活物質層と負極側固体電解質層とを有する負極体を用意する工程。
 Liと反応することで、前記負極側固体電解質層よりもLiイオン伝導度が低い化合物を生じる充填剤を用意する工程。
 用意した充填剤を介在させて正極体と負極体とを積層し、前記負極側固体電解質層のピンホールに前記充填剤が充填された状態とすることで、当該ピンホールの位置にある負極活物質層の表面に上記化合物からなる固体膜を形成する工程。
 上記製造方法によれば、負極側固体電解質層のピンホールの位置にある負極活物質層の表面を、固体膜からなる低伝導部で覆った非水電解質電池を製造することができる。
 本発明非水電解質電池の製造方法の3つ目は、以下の通りである。
(8)本発明非水電解質電池の製造方法は、個別に作製された正極体と負極体とを積層して非水電解質電池を製造する非水電解質電池の製造方法であって、以下の工程を備えることを特徴とする。
 正極活物質層を有する正極体を用意する工程。
 負極活物質層と負極側固体電解質層とを有する負極体を用意する工程。
 上記負極側固体電解質層よりもLiイオン伝導度が低い有機高分子ゲルの充填剤を用意する工程。
 用意した充填剤を介在させて正極体と負極体とを積層し、前記充填剤を乾燥させることで、前記負極側固体電解質層のピンホール中に前記有機高分子が充填された状態とする工程。
 上記製造方法によれば、負極側固体電解質層のピンホールの位置にある負極活物質層の表面を、当該ピンホール中に充填された有機高分子の低伝導部で覆った非水電解質電池を製造することができる。
(9)本発明非水電解質電池の製造方法の一形態として、用意する正極体は、正極活物質層の上にさらに正極側固体電解質層を形成したものであることが好ましい。
 上記製造方法によれば、負極活物質層から正極活物質層まで一続きになったピンホールが形成されることを抑制できる。これは、別個に作製した負極側固体電解質層のピンホールの位置と正極側固体電解質層のピンホールの位置とが一致することが殆どないからである。
 本発明非水電解質電池によれば、当該電池の充電時に生成するデンドライトに起因する短絡を効果的に防止することができる。
図1(A)は、実施形態1に記載の非水電解質電池の縦断面図であり、図1(B)は、(A)の電池の組み立て前の状態を示す縦断面図である。 図2(A)は、実施形態2に記載の非水電解質電池の縦断面図であり、図2(B)は、(A)の電池の組み立て前の状態を示す縦断面図である。
<実施形態1>
 ≪Liイオン電池の全体構成≫
 図1(A)に示すLiイオン電池(非水電解質電池)100は、個別に作製された正極体1と負極体2とを積層することで形成される。このLiイオン電池100は、以下の工程に従う本発明非水電解質電池の製造方法により作製される。
(A)正極体1を作製する。
(B)負極体2を作製する。
(C)充填剤を用意する。
(D)充填剤を介在させて、正極体1と負極体2とを積層する。
※工程A~Cの順序は入れ替え可能である。
 上記工程A~Dよりなる本発明非水電解質電池の製造方法の最も特徴とするところは工程C,Dにある。そして、その工程C,Dを経て製造されたことが、Liイオン電池100の固体電解質層(後述するPSE層13とNSE層23で、両者をまとめてSE層ということがある)に反映される。以下、製造方法の各工程を順次説明すると共に、その各工程で形成される構成について詳細に説明する。
 ≪工程A:正極体の作製≫
 正極体1は、正極集電体11上に正極活物質層12と正極側固体電解質層(PSE層)13とを有する。正極体1を作製するには、まず、正極集電体11となる基板を用意し、その基板の上に正極活物質層12とPSE層13を順次形成すれば良い。なお、図面上、正極活物質層12とPSE層13との間には中間層1cが形成されているが、この中間層1cは、後述するようにPSE層13の材質が硫化物である場合に必要なものであり、PSE層13の材質が硫化物でなければ設けなくても良い。
  [正極集電体]
 正極集電体11となる基板は、導電材料のみから構成されていても良いし、絶縁基板上に導電材料の膜を形成したもので構成されていても良い。後者の場合、導電材料の膜が集電体として機能する。導電材料としては、AlやNi、これらの合金、ステンレスから選択される1種が好適に利用できる。
  [正極活物質層]
 正極活物質層12は、電池反応の主体となる正極活物質を含む層である。正極活物質としては、層状岩塩型の結晶構造を有する物質、例えば、Liαβ(1-X)(αはCo,Ni,Mnから選択される1種、βはFe,Al,Ti,Cr,Zn,Mo,Biから選択される1種、Xは0.5以上)で表される物質を挙げることができる。その具体例としては、LiCoOやLiNiO、LiMnO、LiCo0.5Fe0.5、LiCo1/2Al1/2などを挙げることができる。その他、正極活物質として、スピネル型の結晶構造を有する物質(例えば、LiMnなど)や、オリビン型の結晶構造を有する物質(例えば、LiFePO(0<X<1))を用いることもできる。なお、正極活物質層は、導電助剤や結着剤、固体電解質を含んでいても良い。固体電解質には、後述する正極側固体電解質層13に使用されるものと同じものを使用することが好ましいが、異なっていても良い。
 上述した正極活物質層12の形成方法としては、湿式法や乾式法を利用することができる。湿式法には、ゾルゲル法、コロイド法、キャスティング法等が挙げられる。乾式法には、気相法である真空蒸着法、イオンプレーティング法、スパッタリング法、レーザアブレーション法等が挙げられる。その他、正極活物質粉末を加圧成形することで、正極活物質層12を形成しても良い。
  [正極側固体電解質層]
 正極側固体電解質層(PSE層)13はLiイオン伝導体であり、Liイオン伝導度(20℃)が10-5S/cm以上であることが好ましい。特に、Liイオン伝導度が10-4S/cm以上であることが好ましい。また、PSE層13は、電子伝導度が10-8S/cm以下であることが好ましい。PSE層13の材質としては、酸化物系の固体電解質や、硫化物系の固体電解質を挙げることができる。酸化物固体電解質としては、例えば、LiPON(Liイオン伝導度:2~3×10-6S/cm)を挙げることができる。硫化物固体電解質としては、例えば、LiS-P-P(Liイオン伝導度:1×10-4~3×10-3S/cm)を挙げることができる。
 PSE層13の形成方法としては、気相法を使用することができる。気相法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザアブレーション法などを利用できる。
  [中間層]
 中間層1cは、PSE層13に硫化物固体電解質を用いた場合に必要となる層である。PSE層13が硫化物固体電解質を含むと、この硫化物固体電解質がPSE層13に隣接する正極活物質層12に含まれる酸化物の正極活物質と反応して、正極活物質層12とPSE層13との界面近傍が高抵抗化し、Liイオン電池100の放電容量を低下させる。これに対して、中間層1cを設けることで、上記高抵抗化を抑制し、充放電に伴う電池100の放電容量の低下を抑制できる。
 上記中間層1cに用いる材料としては、非晶質のLiイオン伝導性酸化物、例えば、LiNbOやLiTaOなどを利用できる。特にLiNbOは、正極活物質層12とPSE層13との界面近傍の高抵抗化を効果的に抑制できる。
 なお、中間層1cを設ける代わりに、正極活物質層12を粉末成形体とし、その粉末成形体を形成する際に使用する正極活物質粉末の各粒子の表面に、上記中間層1cと同じ働きをする被膜を形成しても良い。その被膜は、中間層1cに用いる非晶質のLiイオン伝導性酸化物で構成する。
 ≪工程B:負極体の作製≫
 負極体2は、負極集電体21上に負極活物質層22と負極側固体電解質層(NSE層23)とを有する。負極体2を作製するには、まず負極集電体21となる基板を用意し、その基板の上に負極活物質層22、NSE層23を順次形成すれば良い。
  [負極集電体]
 負極集電体21となる基板は、導電材料のみから構成されていても良いし、絶縁基板上に導電材料の膜を形成したもので構成されていても良い。後者の場合、導電材料の膜が集電体として機能する。導電材料としては、例えば、Cu、Ni、Fe、Cr、及びこれらの合金から選択される1種が好適に利用できる。
  [負極活物質層]
 負極活物質層22は、電池反応の主体となる負極活物質を含む層である。負極活物質としては金属Liを使用することが好ましい。負極活物質としては金属Liの他、Liと合金化する元素(例えば、Si)なども利用できるが、その場合、第1サイクル目の充放電サイクルにおいて、充電容量に対して放電容量が大幅に小さくなるという問題(即ち、不可逆容量が生じる問題)がある。この問題を解決するには、Liと合金化する元素の上に金属Liの膜を形成し、電池として組み立てる前から、当該元素とLiとの合金からなる負極活物質層を形成しておけば良い。なお、言うまでもないが負極活物質層22を金属Liで構成すると、この不可逆容量は殆ど生じない。
 上述した負極活物質層22の形成方法は、気相法が好ましい。その他、金属Liの薄膜を負極集電体21上に重ねて、プレスあるいは電気化学的手法により負極集電体21上に負極活物質層22を形成しても良い。
  [負極側固体電解質層]
 負極側固体電解質層(NSE層23)は、上述したPSE層13と同様にLi伝導度が高く、電子伝導度が低いものであることが好ましい。このNSE層23の材質としては硫化物系が良く、特に、LiS-P-P(Liイオン伝導度:1×10-4~3×10-3S/cm)が好ましい。
 ≪工程C:充填剤の用意、工程D:正極体と負極体の積層≫
 次に、PSE層13とNSE層23とが互いに対向するように正極体1と負極体2とを積層してLiイオン電池100を作製する。ここで、PSE層13とNSE層23には、その形成の際にピンホールが生じていることがあり、単に正極体1と負極体2とを積層しただけのLiイオン電池100では、充放電を繰り返すうちに、短絡が生じる可能性がある。Liイオン電池100の充電時に負極活物質層22の表面(正極体1側の面)にLiの針状結晶(デンドライト)が生じ易く、SE層13,23にピンホールがあるとそのピンホールの内壁面に沿ってデンドライトが成長し易いからである。
 そこで、本実施形態では、正極体1と負極体2とを積層するにあたり、以下のいずれかの条件を満たす液体状充填剤、または有機高分子ゲルの充填剤を用意し、その充填剤を少なくともNSE層23のピンホールに充填しておく。ピンホールに充填剤を充填するには、NSE層23の表面に当該充填剤を滴下し、正極体1と負極体2とを重ね合わせれば良い。なお、条件Xおよび条件Yの充填剤を使用する場合、充填剤が揮発しないうちに電極体1,2を重ね合わせることが好ましい。
(条件X)…負極体2のNSE層23のLiイオン伝導度よりも低いLiイオン伝導度を有する液体状充填剤
(条件Y)…Liと反応することで、NSE層23のLiイオン伝導度よりも低いLiイオン伝導度を有する固体状化合物を生じる液体状充填剤
(条件Z)…負極体2のNSE層23のLiイオン伝導度よりも低いLiイオン伝導度を有する有機高分子ゲル
 上記条件Xを満たす充填剤としては、例えば、LiPF/EC-DECやLiPF/EC-DMCなど(但し、LiPF含有量は0.001モル濃度)を挙げることができる。これらの充填剤のLiイオン伝導度は、通常NSE層23に用いられる電解質のLiイオン伝導度よりも1桁から2桁低い。例えば、NSE層23に好適なLiS-P-PのLiイオン伝導度は1×10-4~3×10-3S/cmであるのに対して、LiPF/EC-DECやLiPF/EC-DMCなど(但し、LiPF含有量は0.001モル濃度)のLiイオン伝導度は10-5S/cm程度である。
 条件Xを満たす充填剤をNSE層23のピンホールに充填した状態で正極体1と負極体2とを積層してLiイオン電池100を作製すれば、電池100の充電時にピンホールの位置でデンドライトが生成したとしても、生成したデンドライトが電池100の放電時に消失し易い。その理由は、生成したデンドライトの近傍におけるLiイオンの伝導路が、NSE層23に加えて、ピンホール中に充填される充填剤(低伝導部)にも形成されるからであると推察される。仮に、ピンホールに何も充填されていなければ、生成したデンドライトの近傍におけるLiイオンの伝導路はNSE層23にしか形成されないことになるので、電池100の放電時にデンドライトが消失し難い。なお、特許文献1の構成のように、ピンホールにNSE層23よりも高いLiイオン伝導度の充填剤が充填されていた場合、Liイオン電池100の放電時にデンドライトが消失し易いものの、そもそも電池100の充電時にデンドライトが生成し易い。
 一方、条件Yを満たす充填剤としては、テトラヒドロフラン(THF)やアセトニトリル(AN)、あるいはアニオン重合モノマーの溶液などを挙げることができる。本発明におけるアニオン重合モノマーとは、Li金属の存在下で重合するモノマーのことである。これらTHFやAN、あるいはアニオン重合モノマーは、金属Liと反応することで金属Liの表面に、殆どLiイオン伝導性を有さない固体膜を形成する。そのため、NSE層23のピンホールに条件Yの充填剤を充填すれば、ピンホールの奥に露出する金属Liの表面に、Liイオン伝導性が殆どない固体膜(低伝導部)が形成される。その結果、ピンホールの位置で金属Liの表面にデンドライトが生成し難くなる。
 最後に、条件Zを満たす有機高分子ゲルの充填剤としては、THFなどの有機溶媒に、エーテル結合を有する有機高分子であるポリエーテルや、エステル結合を有する有機高分子であるポリエステル、アクリル基を有する有機高分子であるポリアクリレートを溶解させたものを好適に利用できる。この有機高分子ゲルに、さらにLiTFSIなどのLiイオン伝導性の物質を含有させたものを利用しても良い。このような条件Zの充填剤をNSE層23のピンホールに充填し、有機高分子を形成すれば、ピンホールの位置で金属Liの表面にデンドライトが生成し難くなる。また、当該有機高分子中にLiイオン伝導性の物質が含まれていれば、たとえ電池の充電時にデンドライトが生成したとしても、電池の放電時にデンドライトを有機高分子中に溶解させることができる。
 以上説明したように、正極体1と負極体2とを積層するにあたり、上記条件X~Zを満たす充填剤を正極体1と負極体2の間に介在させれば、負極体2のNSE層23の位置にある負極活物質層22の表面に低伝導部が形成される。低伝導部は、上述したようにデンドライトに起因する短絡を防止する機能を持つので、この低伝導部を有するLiイオン電池100は、繰り返しの充放電にも短絡が生じ難い電池となる。
 また、実施形態1のLiイオン電池100では、正極体1と負極体2にそれぞれ別個にSE層を設けているので、各SE層のピンホールの位置が完全に一致することが殆どなく、負極活物質層22から正極活物質層12に向かって一続きのピンホールが形成され難い。その結果、負極活物質層22の表面に形成されるデンドライトが正極活物質層12に到達することを効果的に抑制することができる。
 <実施形態2>
 図2(A)に実施形態1とは異なる構成のLiイオン電池200の縦断面図を示す。この実施形態のLiイオン電池200は、負極活物質層22の上にのみ固体電解質層(NSE層)23を設けた点を除いて、基本的な構成は実施形態1と共通する。つまり、この実施形態の電池200は、正極集電体11上に正極活物質層12、NSE層23、負極活物質層22、負極集電体21が積層された構成である。
 この電池200を作製するには、図2(B)に示すように、負極集電体21上に負極活物質層22を形成し、さらにこの活物質層22の上にNSE層23を形成した負極体2を作製する。また、この負極体2とは別個に、正極集電体11上に正極活物質層12と中間層1cを形成した正極体1を作製する。そして、作製した正極体1と負極体2の少なくとも一方に(同図ではNSE層23に)、実施形態1で示した条件X~Zのいずれかを満たす充填剤を滴下し、両積層体1,2を重ね合わせてLiイオン電池200を作製する。
 この実施の形態の構成によれば、負極体2にのみ固体電解質層を形成するだけで良いので、Liイオン電池200の製造が容易になる。なお、NSE層23として硫化物以外の固体電解質を利用する場合、正極体1の中間層1cを省略しても良い。
 図1を参照して説明した実施形態1のLiイオン電池100を作製し、そのサイクル特性を評価した。また、比較例として、電池における集電体を除く全ての層を気相法により形成したLiイオン電池を作製し、そのサイクル特性も評価した。
<実施例1>
 Liイオン電池100の作製にあたり、以下の構成を備える正極体1、負極体2、および充填剤を用意した。
≪正極体1≫
 正極集電体11…直径15mm、厚さ10μmのステンレス箔
 正極活物質層12…厚さ5μmのLiCoO膜:RFスパッタ法
 中間層1c…厚さ10nmのLiNbO膜:RFスパッタ法
 PSE層13…厚さ1μmのLiS-P-P膜:真空蒸着法
≪負極体2≫
 負極集電体21…直径15mm、厚さ10μmの銅箔
 負極活物質層22…厚さ1μmの金属Li膜:真空蒸着法
 NSE層23…厚さ1μmのLiS-P-P膜:真空蒸着法
≪充填剤≫
 LiPFを0.1モル濃度で溶解させたアセトニトリル
 次に、負極体2のNSE層23の表面に0.01mL(ミリリットル)の充填剤を滴下し、負極体2の上に正極体1を貼り合わせ、Liイオン電池100を完成させた。滴下した充填剤は、NSE層23とPSE層13のピンホールに余すところなく充填されると考えられる。
 上述のようにして作製した10個のLiイオン電池100について、0.1Cで4.2Vまで充電し、0.1Cで3.0Vまで放電する充放電サイクル試験を行った。その結果、試験を行った10個の電池は全て、短絡を起こすことなく、10サイクル以上の充放電を行うことができた。
<実施例2>
 充填剤が異なる以外、上記実施例1と同様の構成、同様の手法により10個のLiイオン電池100を作製した。具体的には、充填剤として、1重量部のポリエーテル-ポリエステル樹脂と0.2重量部のLiTFSIを、1.5重量部のTHFに溶解した有機高分子ゲルを用意した。そして、0.01mLの有機高分子ゲルを間に介在させて正極体1と負極体2とを貼り合せて、ゲルの有機成分を揮発させた。
 上述のようにして作製した10個のLiイオン電池100について、実施例1と同様の条件で充放電サイクル試験を行ったところ、試験を行った10個の電池は全て、短絡を起こすことなく、10サイクル以上の充放電を行うことができた。
<実施例3>
 Cu箔からなる負極集電体21の厚さを異ならせたことと、Li-Si合金からなる負極活物質層22とした以外、実施例1と同様の構成、同様の手法により10個のLiイオン電池を作製した。具体的には、負極体2を作製するにあたって、厚さ20μmのCu箔上にスパッタリング法で厚さ300nmのSi層を設け、さらにそのSi層の上に蒸着法で厚さ200nmのLi層を形成した。Si層上にLi層を形成することにより、LiとSiとが合金化した負極活物質層22が形成される。
 上述のようにして作製した10個のLiイオン電池100について、実施例1と同様の条件で充放電サイクル試験を行ったところ、試験を行った10個の電池は全て、短絡を起こすことなく、10サイクル以上の充放電を行うことができた。
<実施例4>
 正極体1の構成を下記のように変更した以外、実施例1と同様の構成、同様の手法により10個のLiイオン電池を作製した。
 正極集電体11…直径15mm、厚さ20μmのアルミニウム箔
 正極活物質層12…厚さ30μmの粉末成形体
 中間層1c…なし
 PSE層13…実施例1に同じ
 ここで、上記粉末成形体は、LiNbOを表面にコートした平均粒径5μmのLiCoOと、平均粒径1μmのLiS-P-P粒子とを、重量%で7:3の割合で混合し、360MPaで加圧することで得た。LiNbOのコートは、エタノールにエトキシリチウムとペンタエトキシニオブを混合した溶液を、LiCoO粒子に噴霧し、乾燥した後、300℃×30分の熱処理を施すことで行った。
 上述のようにして作製した10個のLiイオン電池100について、実施例1と同様の条件で充放電サイクル試験を行ったところ、試験を行った10個の電池は全て、短絡を起こすことなく、10サイクル以上の充放電を行うことができた。
<比較例>
 実施例と同様の構成を備える正極体と負極体を用意し、これら電極体を重ね合わせてLiイオン電池を完成させた。実施例との相違点は、電極体を重ね合わせる際、両電極体の間に何も介在させなかったことである。
 比較例のLiイオン電池についても実施例のLiイオン電池と同様の条件で充放電サイクル試験を行った。その結果、10個のうち7個のLiイオン電池は、高抵抗の為、電池として駆動するに到らなかった。また、電池として動作した3つの電池も10サイクル以内に短絡した。
 なお、本発明は上述の実施の形態に何ら限定されることはない。即ち、上述した実施形態に記載の非水電解質電池の構成は、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。
 本発明非水電解質電池は、充放電を繰り返すことを前提した電気機器の電源として好適に利用可能である。
100,200 Liイオン電池(非水電解質電池)
 1 正極体
  11 正極集電体
  12 正極活物質層
  13 正極側固体電解質層(PSE層)
  1c 中間層
 2 負極体
  21 負極集電体
  22 負極活物質層
  23 負極側固体電解質層(NSE層)

Claims (9)

  1.  個別に作製された正極体と負極体とが積層されてなる非水電解質電池であって、
     正極体は、正極活物質層を有し、
     負極体は、負極活物質層と負極側固体電解質層とを有し、
     負極側固体電解質層のピンホールの位置にある負極活物質層の表面に、負極側固体電解質層のLiイオン伝導度よりも低いLiイオン伝導度を有する低伝導部が形成されていることを特徴とする非水電解質電池。
  2.  正極体は、正極活物質層の上にさらに正極側固体電解質層を有することを特徴とする請求項1に記載の非水電解質電池。
  3.  前記低伝導部は、負極側固体電解質層のピンホールに充填される液体で構成されることを特徴とする請求項1または2に記載の非水電解質電池。
  4.  前記低伝導部は、固体膜で構成されることを特徴とする請求項1または2に記載の非水電解質電池。
  5.  前記低伝導部は、負極側固体電解質層のピンホールに充填される有機高分子であることを特徴とする請求項1または2に記載の非水電解質電池。
  6.  個別に作製された正極体と負極体とを積層して非水電解質電池を製造する非水電解質電池の製造方法であって、
     正極活物質層を有する正極体を用意する工程と、
     負極活物質層と負極側固体電解質層とを有する負極体を用意する工程と、
     前記負極側固体電解質層よりもLiイオン伝導度が低い液体状の充填剤を用意する工程と、
     前記充填剤を介在させて正極体と負極体とを積層し、前記負極側固体電解質層のピンホールに前記充填剤が充填された状態とする工程と、
     を備えることを特徴とする非水電解質電池の製造方法。
  7.  個別に作製された正極体と負極体とを積層して非水電解質電池を製造する非水電解質電池の製造方法であって、
     正極活物質層を有する正極体を用意する工程と、
     負極活物質層と負極側固体電解質層とを有する負極体を用意する工程と、
     Liと反応することで、前記負極側固体電解質層よりもLiイオン伝導度が低い化合物を生じる充填剤を用意する工程と、
     前記充填剤を介在させて正極体と負極体とを積層し、前記負極側固体電解質層のピンホールに前記充填剤が充填された状態とすることで、当該ピンホールの位置にある負極活物質層の表面に上記化合物からなる固体膜を形成する工程と、
     を備えることを特徴とする非水電解質電池の製造方法。
  8.  個別に作製された正極体と負極体とを積層して非水電解質電池を製造する非水電解質電池の製造方法であって、
     正極活物質層を有する正極体を用意する工程と、
     負極活物質層と負極側固体電解質層とを有する負極体を用意する工程と、
     前記負極側固体電解質層よりもLiイオン伝導度が低い有機高分子ゲルの充填剤を用意する工程と、
     前記充填剤を介在させて正極体と負極体とを積層し、前記充填剤を乾燥させることで、前記負極側固体電解質層のピンホールに前記有機高分子が充填された状態とする工程と、
     を備えることを特徴とする非水電解質電池の製造方法。
  9.  用意する正極体は、正極活物質層の上にさらに正極側固体電解質層を形成したものであることを特徴とする請求項6~8のいずれか一項に記載の非水電解質電池の製造方法。
PCT/JP2010/069671 2010-02-16 2010-11-05 非水電解質電池、およびその製造方法 WO2011102027A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010031683 2010-02-16
JP2010-031683 2010-02-16
JP2010-119931 2010-05-25
JP2010119931 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011102027A1 true WO2011102027A1 (ja) 2011-08-25

Family

ID=44482639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069671 WO2011102027A1 (ja) 2010-02-16 2010-11-05 非水電解質電池、およびその製造方法

Country Status (1)

Country Link
WO (1) WO2011102027A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140565A1 (ja) * 2012-03-22 2013-09-26 株式会社 東芝 電気化学セル、電気化学セルの製造方法、電池パック及び車
JP2016164888A (ja) * 2016-04-26 2016-09-08 株式会社東芝 バイポーラ電池、電池パック及び車
EP3039737A4 (en) * 2013-08-30 2017-01-18 Robert Bosch GmbH Li-ION BATTERY WITH COATED ELECTROLYTE
WO2017154851A1 (ja) * 2016-03-08 2017-09-14 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
JP2017224402A (ja) * 2016-06-13 2017-12-21 トヨタ自動車株式会社 全固体電池、及び、当該全固体電池の製造方法
JP2020087524A (ja) * 2018-11-15 2020-06-04 トヨタ自動車株式会社 全固体リチウム二次電池、及び全固体リチウム二次電池の劣化判定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340257A (ja) * 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd リチウム二次電池
WO2005112180A1 (ja) * 2004-05-14 2005-11-24 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池
JP2008243736A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法
JP2009004133A (ja) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd 電池およびその製造方法
JP2009211910A (ja) * 2008-03-04 2009-09-17 Sumitomo Electric Ind Ltd 全固体リチウム二次電池
JP2009218005A (ja) * 2008-03-07 2009-09-24 Sumitomo Electric Ind Ltd 全固体リチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340257A (ja) * 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd リチウム二次電池
WO2005112180A1 (ja) * 2004-05-14 2005-11-24 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池
JP2008243736A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法
JP2009004133A (ja) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd 電池およびその製造方法
JP2009211910A (ja) * 2008-03-04 2009-09-17 Sumitomo Electric Ind Ltd 全固体リチウム二次電池
JP2009218005A (ja) * 2008-03-07 2009-09-24 Sumitomo Electric Ind Ltd 全固体リチウム二次電池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013140565A1 (ja) * 2012-03-22 2015-08-03 株式会社東芝 電気化学セル、電気化学セルの製造方法、電池パック及び車
WO2013140565A1 (ja) * 2012-03-22 2013-09-26 株式会社 東芝 電気化学セル、電気化学セルの製造方法、電池パック及び車
EP3039737A4 (en) * 2013-08-30 2017-01-18 Robert Bosch GmbH Li-ION BATTERY WITH COATED ELECTROLYTE
CN108780918A (zh) * 2016-03-08 2018-11-09 富士胶片株式会社 固体电解质组合物、含有固体电解质的片材及全固态二次电池以及固体电解质组合物、含有固体电解质的片材及全固态二次电池的制造方法
WO2017154851A1 (ja) * 2016-03-08 2017-09-14 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
US20190006700A1 (en) * 2016-03-08 2019-01-03 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery
JPWO2017154851A1 (ja) * 2016-03-08 2019-01-17 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
US10833351B2 (en) 2016-03-08 2020-11-10 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery
CN108780918B (zh) * 2016-03-08 2021-07-27 富士胶片株式会社 固体电解质组合物、含有固体电解质的片材、全固态二次电池以及这些的制造方法
JP2016164888A (ja) * 2016-04-26 2016-09-08 株式会社東芝 バイポーラ電池、電池パック及び車
JP2017224402A (ja) * 2016-06-13 2017-12-21 トヨタ自動車株式会社 全固体電池、及び、当該全固体電池の製造方法
JP2020087524A (ja) * 2018-11-15 2020-06-04 トヨタ自動車株式会社 全固体リチウム二次電池、及び全固体リチウム二次電池の劣化判定方法
JP7172486B2 (ja) 2018-11-15 2022-11-16 トヨタ自動車株式会社 全固体リチウム二次電池、及び全固体リチウム二次電池の劣化判定方法

Similar Documents

Publication Publication Date Title
US11404716B2 (en) Lithium ion secondary cell and method for producing active material
JP5079461B2 (ja) リチウムイオン二次電池用正極、その製造方法及びリチウムイオン二次電池
JP6085370B2 (ja) 全固体電池、全固体電池用電極及びその製造方法
JP6833648B2 (ja) 二次電池、電池パック及び車両
JP4760816B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP5810479B2 (ja) リチウムイオン二次電池用の電極構造、リチウムイオン二次電池およびリチウムイオン二次電池用の電極の製造方法
JP4321584B2 (ja) 二次電池用負極および二次電池
US20210218048A1 (en) Electrode overlaying configuration for batteries comprising bipolar components
EP2579363A1 (en) Negative electrode for secondary battery, and process for production thereof
CN105190962B (zh) 电池用活性物质、非水电解质电池及电池包
JP6659609B2 (ja) 電極構造体、二次電池、電池パック及び車両
JP7080584B2 (ja) 二次電池、電池パック、および車両
KR20060052499A (ko) 정극 및 전지
JP2010245024A (ja) 全固体二次電池
CN108630894A (zh) 二次电池、电池包及车辆
WO2011148824A1 (ja) 非水電解質電池、およびその製造方法
JP5245425B2 (ja) 負極および二次電池
WO2011102027A1 (ja) 非水電解質電池、およびその製造方法
JP5742402B2 (ja) リチウム二次電池及びその製造方法
JP2012174577A (ja) リチウム二次電池用負極電極板、負極およびリチウム二次電池
JP2010086813A (ja) 非水電解質二次電池
JP2012113842A (ja) 非水電解質電池、およびその製造方法
JP2008153015A (ja) 負極および電池
US20200295375A1 (en) Electrode, secondary battery, battery pack, and vehicle
JP7069938B2 (ja) リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP