WO2017154851A1 - 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法 - Google Patents

固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2017154851A1
WO2017154851A1 PCT/JP2017/008845 JP2017008845W WO2017154851A1 WO 2017154851 A1 WO2017154851 A1 WO 2017154851A1 JP 2017008845 W JP2017008845 W JP 2017008845W WO 2017154851 A1 WO2017154851 A1 WO 2017154851A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solid electrolyte
solid
secondary battery
active material
Prior art date
Application number
PCT/JP2017/008845
Other languages
English (en)
French (fr)
Inventor
雅臣 牧野
宏顕 望月
稔彦 八幡
智則 三村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201780015831.8A priority Critical patent/CN108780918B/zh
Priority to JP2018504482A priority patent/JP6615313B2/ja
Publication of WO2017154851A1 publication Critical patent/WO2017154851A1/ja
Priority to US16/123,023 priority patent/US10833351B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet, and an all-solid secondary battery, and a solid electrolyte composition, a solid electrolyte-containing sheet, and an all-solid secondary battery manufacturing method.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge or overdischarge, resulting in ignition, and further improvements in reliability and safety are required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention.
  • All-solid-state secondary batteries are composed of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which is a problem of batteries using organic electrolytes, and can also extend the life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which electrodes and an electrolyte are directly arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and application to an electric vehicle, a large storage battery, and the like is expected.
  • Non-patent Document 1 any one of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer is formed of an inorganic solid electrolyte and / or an active material and a binder particle such as a specific polymer compound. It has been proposed to form a material containing (binder).
  • a composition containing a sulfide solid electrolyte material, a monomer or oligomer having a double bond, and a binder composition having a radical polymerization initiator is applied, and radical polymerization is performed.
  • Patent Document 2 describes an all-solid secondary battery containing a solid electrolyte and a polymer containing polymer units having a nitrile group in a specific ratio in any layer.
  • An object of the present invention is to provide a solid electrolyte composition capable of improving the binding property between solid particles and improving cycle characteristics in an all-solid-state secondary battery. Moreover, this invention makes it a subject to provide the solid electrolyte containing sheet
  • a solid electrolyte composition containing an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table and a compound having an anionically polymerizable functional group containing an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table and a compound having an anionically polymerizable functional group.
  • R 1 ⁇ R 3 represents a monovalent electron-withdrawing group independently
  • R 4 is a bond site to the carbon atom to which R 3 and R 4 are attached is an electron-withdrawing
  • a divalent electron-withdrawing group is shown
  • Ra represents a hydrogen atom or an organic group.
  • X represents an m + n-valent linking group, m is an integer of 0 to 10, and n is an integer of 2 to 10.
  • R 1 and R 2 , R 3 and R 4 may be linked to each other to form a ring.
  • (11) A step of dispersing and solidifying the inorganic solid electrolyte in the presence of a dispersion medium; Adding the compound having an anion polymerizable functional group to the obtained slurry.
  • R 11A and R 12A each independently represent a monovalent electron withdrawing group
  • R 13B represents a monovalent electron withdrawing group or —R 14B — * 2
  • R 14B represents R A divalent electron withdrawing group in which the bonding site to the carbon atom to which 13B and R 14B are bonded is electron withdrawing. * 2 indicates a bond.
  • R 11A and R 12A , R 13B and R 14B may be linked to each other to form a ring.
  • An all-solid secondary battery comprising a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer in this order, An inorganic solid electrolyte in which at least one of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and an inorganic solid electrolyte All-solid-state secondary battery containing the anion polymer which has a repeating unit represented by the following general formula (2A) or (2B) couple
  • R 11A and R 12A each independently represent a monovalent electron withdrawing group
  • R 13B represents a monovalent electron withdrawing group or —R 14B — * 2
  • R 14B represents R A divalent electron withdrawing group in which the bonding site to the carbon atom to which 13B and R 14B are bonded is electron withdrawing. * 2 indicates a bond.
  • R 11A and R 12A , R 13B and R 14B may be linked to each other to form a ring.
  • a method for producing an all-solid secondary battery wherein an all-solid secondary battery is produced via the method for producing a solid electrolyte-containing sheet according to (13) or (14).
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • acryl or “(meth) acryl” is simply described, it means methacryl and / or acryl.
  • the term “acryloyl” or “(meth) acryloyl” simply means methacryloyl and / or acryloyl.
  • substituents, etc. when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) indicated by specific symbols, or when a plurality of substituents etc. are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like.
  • the mass average molecular weight (Mw) can be measured as a molecular weight in terms of polystyrene by GPC.
  • GPC device HLC-8220 manufactured by Tosoh Corporation
  • G3000HXL + G2000HXL is used as the column
  • the flow rate is 1 mL / min at 23 ° C.
  • detection is performed by RI.
  • the eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.) and dissolves. If present, use THF.
  • the solid electrolyte composition of the present invention When used as a material for a solid electrolyte layer and / or an active material layer in an all-solid secondary battery, the solid electrolyte composition enhances the binding property between solid particles and is a solid resulting from repeated charge and discharge. It has an excellent effect of suppressing an increase in interfacial resistance between particles and improving cycle characteristics.
  • the solid electrolyte-containing sheet and the all-solid secondary battery of the present invention are excellent in binding properties and / or cycle characteristics.
  • seat, and an all-solid-state secondary battery can each be manufactured suitably.
  • the solid electrolyte composition of the present invention includes an inorganic solid electrolyte having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table and a compound having an anion polymerizable functional group.
  • an inorganic solid electrolyte having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table and a compound having an anion polymerizable functional group.
  • the solid electrolyte composition of the present invention contains an inorganic solid electrolyte.
  • the solid electrolyte of the inorganic solid electrolyte is a solid electrolyte that can move ions inside. Since it does not contain organic substances as the main ionic conductivity material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., and organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). Further, since the inorganic solid electrolyte is solid in a steady state, it is not dissociated or released into cations and anions.
  • inorganic electrolyte salts LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.
  • LiPF 6 lithium bis (fluorosulfonyl) imide
  • LiFSI lithium bis (fluorosulfonyl) imide
  • LiCl LiCl
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metal elements belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte preferably has an ionic conductivity of lithium ions.
  • inorganic solid electrolyte a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
  • a sulfide-based inorganic solid An electrolyte is preferably used.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ionic conductivity of a metal element belonging to Group 1 or Group 2 of the periodic table, And what has electronic insulation is preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S, and P may be used. An element may be included.
  • a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (1) can be mentioned and is preferable.
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge. Among these, B, Sn, Si, Al, or Ge is preferable, and Sn, Al, or Ge is more preferable.
  • A represents I, Br, Cl or F, preferably I or Br, and particularly preferably I.
  • L, M, and A can each be one or more of the above elements.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 1: 1: 2 to 12: 0 to 5.
  • a1 is further preferably 1 to 9, and more preferably 1.5 to 4.
  • b1 is preferably 0 to 0.5.
  • d1 is preferably 3 to 7, and more preferably 3.25 to 4.5.
  • e1 is preferably 0 to 3, more preferably 0 to 1.
  • the composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P, and S or Li—PS system glass ceramics containing Li, P, and S can be used.
  • the sulfide-based inorganic solid electrolyte includes [1] lithium sulfide (Li 2 S) and phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), [2] lithium sulfide and at least one of simple phosphorus and simple sulfur, Or [3] It can be produced by the reaction of lithium sulfide, phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), at least one of elemental phosphorus and elemental sulfur.
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 65:35 to 85:15, more preferably 68:32 to 77:23.
  • the lithium ion conductivity can be further increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • the sulfide-based inorganic solid electrolyte include, for example, those using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15. it can. More specifically, Li 2 S—P 2 S 5 , Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5- SiS 2 , Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—GeS 2 , Li 2 S—GeS 2 —ZnS, Li 2 S— Ga 2 S 3 , Li 2 S—GeS 2 —G
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because processing at room temperature is possible, and the manufacturing process can be simplified. Among these, Li 2 S—P 2 S 5 , LGPS (Li 10 GeP 2 S 12 ), Li 2 S—P 2 S 5 —SiS 2 and the like are preferable.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal element belonging to Group 1 or Group 2 of the periodic table, And what has electronic insulation is preferable.
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7.
  • LLT Li xb La yb Zr zb M bb mb Onb
  • M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn
  • Xb satisfies 5 ⁇ xb ⁇ 10
  • yb satisfies 1 ⁇ yb ⁇ 4
  • zb satisfies 1 ⁇ zb ⁇ 4
  • mb satisfies 0 ⁇ mb ⁇ 2
  • nb satisfies 5 ⁇ nb ⁇ 20.
  • Li xc B yc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • Xc is 0 ⁇ xc ⁇ 5
  • Yc satisfies 0 ⁇ yc ⁇ 1,
  • zc satisfies 0 ⁇ zc ⁇ 1,
  • nc satisfies 0 ⁇ nc ⁇ 6
  • Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md Ond (xd satisfies 1 ⁇ xd ⁇ 3, yd Satisfies 0 ⁇ yd ⁇ 1, zd satisfies 0 ⁇ zd ⁇ 2, ad satisfies 0 ⁇ ad ⁇ 1, md satisfies 1 ⁇ md ⁇ 7, and nd satisfies 3 ⁇
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by substituting a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, And at least one element selected from Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au.
  • LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C, and Ga) can be preferably used.
  • LLT Li xb La yb Zr zb M bb mb O nb
  • LLZ Li 3 BO 3, Li 3 BO 3 -Li 2 SO 4 and Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd (xd, yd, zd, ad, md and nd are as defined above.)
  • LLZ, LLT LAGP Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3
  • LATP [Li 1.4 Ti 2 Si 0.4 P 2.6 O 12 ] —AlPO 4 ) are more preferable.
  • the inorganic solid electrolyte is preferably a particle.
  • the volume average particle diameter of the particulate inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the measurement of the volume average particle diameter of an inorganic solid electrolyte is performed in the following procedures.
  • the inorganic solid electrolyte particles are prepared by diluting a 1 mass% dispersion in a 20 mL sample bottle using water (heptane in the case of a substance unstable to water).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA)
  • data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Obtain the volume average particle size.
  • JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition should be 5% by mass or more at a solid content of 100% by mass considering the reduction of interface resistance and the effect of maintaining battery characteristics (improvement of cycle characteristics). Is more preferable, 70% by mass or more is more preferable, and 90% by mass or more is particularly preferable. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is such that the total content of the positive electrode active material or the negative electrode active material and the inorganic solid electrolyte is within the above range. Is preferred.
  • solid content refers to a component that does not volatilize or evaporate when subjected to a drying treatment at 170 ° C. for 6 hours in a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
  • An inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the solid electrolyte composition of the present invention contains a compound having an anion polymerizable functional group.
  • Anionic polymerizability refers to the property that monomer units form bonds continuously through an anion addition reaction using an anion as a polymerization initiation species.
  • the radical polymerizable property, anionic polymerizable property, and cationic polymerizable property of a vinyl monomer are determined by the resonance stabilization of the substituent bonded to the vinyl group and the effect of polarity.
  • the Qe scheme quantifies this as an empirical parameter.
  • Q represents the conjugation effect of the monomer (degree of resonance stabilization), and e represents the polar effect of the monomer.
  • a monomer having a Q value of 2.0 or more and an e value of 0.8 or more tends to exhibit anionic polymerizability.
  • monomers having a Q value of 4.0 or more and an e value of 0.9 or more are more likely to exhibit anionic polymerizability.
  • the practical upper limit value is a Q value of 15 or less and an e value of 4.0 or less.
  • the compound having an anion polymerizable functional group used in the present invention is preferably a vinyl monomer having the above preferable Q value and e value, and a compound having the vinyl monomer having the above preferable Q value and e value as a substituent.
  • the compound having an anion polymerizable functional group used in the present invention more preferably satisfies the following condition 1 or 2, and is further represented by the following general formula (1a) or (1b). preferable.
  • the anionic polymerizable functional group used in the present invention forms a direct covalent bond with the inorganic solid electrolyte
  • the all-solid secondary battery produced using the solid electrolyte composition of the present invention is excellent. Show binding properties and cycle characteristics.
  • R 1A and R 2A each independently represent a monovalent electron withdrawing group
  • R 3B represents a monovalent electron withdrawing group or —R 4B — * 1
  • R 4B represents R A divalent electron withdrawing group in which the bonding site to the carbon atom to which 3B and R 4B are bonded is electron withdrawing is shown.
  • * 1 represents a bond as an anion polymerizable functional group.
  • R 1A and R 2A , R 3B and R 4B may be linked to each other to form a ring.
  • the compound having an anion polymerizable functional group that satisfies the above condition 2 may have a group represented by the general formula (1B) in any of the compounds.
  • Examples of the mode include a monofunctional compound having one or more groups represented by the above general formula (1B) and a polyfunctional compound having two or more groups in the compound.
  • the polymer which has group represented by the said General formula (1B) in a polymer principal chain and / or a side chain is mentioned. From the viewpoint of synthesis, a polymer having a group represented by the general formula (1B) in the polymer side chain is preferably exemplified.
  • the polymer may have any structure as long as the effect of the present invention is exhibited, and may be any copolymer of random, alternating, block and graft, for example.
  • the polymer chain is not limited to a carbon-carbon bond, and may have an amide bond, an ester bond, a urethane bond, a urea bond, or the like.
  • the monovalent electron withdrawing groups in R 1A , R 2A and R 3B are stable when handling the solid electrolyte composition, and when the solid electrolyte composition is applied. From the viewpoint of compatibility with curability, each independently, a nitro group, a cyano group, —C ( ⁇ O) OR 5 , —C ( ⁇ O) R 6 , an alkyl group substituted with a fluoro group, and a nitro group , A cyano group, —C ( ⁇ O) OR 5 , —C ( ⁇ O) R 6 and an aryl group substituted with at least one of a fluoro group are preferable.
  • R 5 and R 6 each independently represent a hydrogen atom, an alkyl group or an aryl group.
  • the description of the substituent P described later can be preferably applied.
  • the more preferable number of carbon atoms of the monovalent electron-withdrawing group and the substituents in R 5 and R 6 are shown below.
  • the number of substituents is not particularly limited, and is preferably 1 or more, and is preferably equal to or less than the number of hydrogen atoms of the alkyl group before being substituted. ⁇ 5 are more preferred, and 1 to 3 are more preferred.
  • the number of carbon atoms constituting the alkyl group is preferably 1 to 16, more preferably 1 to 12, still more preferably 1 to 8, particularly preferably 1 to 6, and most preferably 1 to 3.
  • the alkyl group substituted with a fluoro group in R 1 to R 3 is preferably a perfluoroalkyl group.
  • the number of substituents is not particularly limited, and 1 It is preferably at least one and not more than the number of hydrogen atoms of the aryl group before substitution, more preferably 1 to 5.
  • the number of carbon atoms constituting the aryl group is preferably 6 to 18, more preferably 6 to 14, and particularly preferably 6 to 12.
  • Substituent position numbers are preferably 2-position, 4-position and / or 6-position in the phenyl group, and more preferably 4-position.
  • an aryl group substituted with at least one of a nitro group, a cyano group and a fluoro group is preferred, and a phenyl group substituted with at least one of a nitro group, a cyano group and a fluoro group is preferred.
  • the alkyl group in R 5 and R 6 is an alkyl group (the number of carbon atoms is preferably 1-20, more preferably 1-16, still more preferably 1-8, particularly preferably 1-6, and most preferably 1-3). ), A cycloalkyl group (preferably having 3 to 20 carbon atoms) and an aralkyl group (preferably having 7 to 23 carbon atoms). Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-octyl, dodecyl, heptadecyl, cyclohexyl, isobornyl and benzyl.
  • the alkyl group may be either an unsubstituted alkyl group or a substituted alkyl group.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably 6 to 12 carbon atoms. Specific examples include phenyl, tolyl and naphthyl.
  • the aryl group may be either an unsubstituted aryl group or a substituted aryl group.
  • Preferred examples of the substituted aryl group include aryl groups substituted with the above-described fluoro group.
  • R 5 and R 6 are each independently a hydrogen atom, an alkyl group or an aryl group, preferably a hydrogen atom or an alkyl group.
  • R 5 and R 6 are more preferably an alkyl group, and particularly preferably an alkyl group substituted with at least one functional group selected from the following functional group group I.
  • the functional group means both a functional group such as a hydroxy group and a bond such as an amide bond.
  • the acid anhydride group means a group obtained from an acid anhydride of a dicarboxylic acid (a group in which at least one hydrogen atom is replaced with a bond “—”).
  • the amino group preferably has 0 to 12 carbon atoms, more preferably 0 to 6 carbon atoms, and particularly preferably 0 to 2 carbon atoms.
  • the sulfonic acid group may be its ester or salt. In the case of an ester, the number of carbon atoms is preferably 1-24, more preferably 1-12, and particularly preferably 1-6.
  • the phosphate group may be its ester or salt. In the case of an ester, the number of carbon atoms is preferably 1-24, more preferably 1-12, and particularly preferably 1-6.
  • the preferable description of the substituent P mentioned later can be applied.
  • the said functional group may exist as a substituent or may exist as a coupling group.
  • the amino group may exist as a divalent imino group or a trivalent nitrogen atom.
  • the group having three or more ring structures is preferably a group having a cholesterol ring structure or a group having a structure in which three or more aromatic groups are condensed, and more preferably a cholesterol residue or a pyrenyl group.
  • the functional group selected from the functional group group is preferably any one of a hydroxy group, a carboxy group, a sulfonic acid group, a phosphoric acid group, a cyano group, an alkoxy group, and a group having a ring structure of three or more rings.
  • a carboxy group, a sulfonic acid group, a phosphoric acid group, and a group having three or more ring structures are more preferable.
  • Divalent electron withdrawing group The divalent electron withdrawing group in R 4B is substituted with * —C ( ⁇ O) OR 7 —, * —C ( ⁇ O) R 8 —, a fluoro group. And an arylene group substituted with at least one of a nitro group, a cyano group, —C ( ⁇ O) OR 5 , —C ( ⁇ O) R 6 and a fluoro group.
  • R 5 and R 6 has the same meaning as R 5 and R 6 in a monovalent electron-withdrawing group described above
  • R 7 and R 8 represents a single bond each independently, an alkylene group or an arylene group Show.
  • the divalent electron-withdrawing group in R 4B includes an electron bonded site with a carbon atom to which R 3B and R 4B are bonded, in which one hydrogen atom in the substituent P described later is replaced with a bond “-”.
  • the description of a divalent group that is attractive can be preferably applied.
  • the more preferable carbon number etc. of the bivalent electron withdrawing group in R 4B are shown below.
  • the number of substituents is not particularly limited, and it is preferably 1 or more and less than or equal to the number of hydrogen atoms of the alkylene group before substitution. ⁇ 4 are more preferred, and 1-2 are even more preferred.
  • the number of carbon atoms constituting the alkylene group is preferably 1 to 16, more preferably 1 to 12, still more preferably 1 to 8, particularly preferably 1 to 6, and most preferably 1 to 3.
  • the alkylene group substituted with the fluoro group in R 4B is preferably a perfluoroalkylene group.
  • the number of substituents is not particularly limited.
  • the number of hydrogen atoms is preferably not more than the number of hydrogen atoms of the arylene group before substitution, and more preferably 1 to 4.
  • the number of carbon atoms constituting the arylene group is preferably 6 to 18, more preferably 6 to 14, and particularly preferably 6 to 12.
  • the substituent position number in the phenylene group, when the number of the free valence carbon bonded to the carbon atom to which R 3B and R 4B are bonded is 1, it is substituted at the 2-position, 4-position or 6-position. It preferably has a group, and more preferably has a substituent in at least one of the 2-position and 4-position. Of these, an arylene group substituted with at least one of a nitro group, a cyano group and a fluoro group is preferable, and a phenylene group substituted with at least one of a nitro group, a cyano group and a fluoro group is preferable.
  • the alkylene group for R 7 and R 8 preferably has 1 to 16 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 8 carbon atoms, particularly preferably 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms. Most preferred. Specific examples include methylene, ethylene, n-propylene, isopropylene, n-butylene, t-butylene and n-octylene.
  • the alkylene group may be either an unsubstituted alkylene group or a substituted alkylene group. Preferred examples of the substituted alkylene group include an alkylene group substituted with the above-described fluoro group.
  • the arylene group preferably has 6 to 18 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably 6 to 12 carbon atoms. Specific examples include phenylene, tolylene, and naphthalenediyl.
  • the arylene group may be either an unsubstituted arylene group or a substituted arylene group. Preferred examples of the substituted arylene group include an arylene group substituted with the above-described fluoro group.
  • R 7 is a single bond, an alkylene group or an arylene group, and preferably a single bond or an alkylene group.
  • R 8 is preferably a single bond or an alkylene group.
  • R 1A is any one of a cyano group, a trifluoromethyl group, and —C ( ⁇ O) OR 5
  • R 2A is —C ( ⁇ O) OR 5
  • R 3B is preferably a monovalent electron-withdrawing group
  • particularly preferred combinations of R 3B and R 4B are those in which R 3B is a cyano group, a trifluoromethyl group, and —C ( ⁇ O) OR 5 .
  • R 4B is * —C ( ⁇ O) OR 7 —.
  • a compound having an anion polymerizable functional group having such a combination of substituents can achieve both stability when handling the solid electrolyte composition and curability when applying the solid electrolyte composition.
  • R 1 ⁇ R 3 represents a monovalent electron-withdrawing group independently
  • R 4 is a bond site to the carbon atom to which R 3 and R 4 are attached is an electron-withdrawing
  • a divalent electron-withdrawing group is shown
  • Ra represents a hydrogen atom or an organic group.
  • X represents an m + n-valent linking group, m is an integer of 0 to 10, and n is an integer of 2 to 10.
  • R 1 and R 2 , R 3 and R 4 may be linked to each other to form a ring.
  • the monovalent electron-withdrawing group in R 1 to R 3 and the divalent electron-withdrawing group in R 4 are the monovalent electron-withdrawing group and divalent groups in the general formulas (1A) and (1B). It is synonymous with the electron withdrawing group.
  • R a examples include an alkyl group, an aryl group, —C ( ⁇ O) OR b, and —C ( ⁇ O) R c .
  • R a is preferably a hydrogen atom, an alkyl group or —C ( ⁇ O) R c, more preferably an alkyl group or —C ( ⁇ O) R c .
  • R b and R c are preferably an alkyl group substituted with at least one functional group selected from the following functional group II.
  • the description in the functional group I can be preferably applied.
  • n is preferably an integer of 2 to 60, and more preferably an integer of 2 to 10.
  • m is preferably an integer of 0 to 10, more preferably an integer of 0 to 4.
  • X is preferably a 2 to 60 valent organic group, more preferably a 3 to 12 valent organic group.
  • n + m-valent linking group in X examples include polycyclic organic groups represented by the following general formulas (Q-1) to (Q-19), and the following general formulas (Q-20) to (Q-38).
  • Cyclic siloxane residues represented by the following general formulas (H-1) to (H-3) such as pentaerythritol residues, dipentaerythritol residues, diaminoalkylene residues and trimethylolalkane residues represented by Preferred examples include silsesquioxane residues represented by general formulas (P-1) to (P-8).
  • Y in the following general formulas (Q-1) to (Q-38) and R in the following general formulas (H-1) to (H-3) and (P-1) to (P-8) are arbitrary. And represents a binding site with R 4 or R a .
  • the arbitrary linking group is, for example, a single bond, an alkylene group (the number of carbon atoms is preferably 1-18, more preferably 1-10), —O—, —C ( ⁇ O) —, —C ( ⁇ O ) O— and —S—, and a single bond, an alkylene group or —O— is preferable.
  • a to f represent the number of repetitions, each independently preferably 2 to 20, more preferably 3 to 10.
  • the compound having an anion polymerizable functional group satisfying the above condition 1 include, for example, 2-methylenemalononitrile, H 2 C ⁇ C (COOR 5 ) 2 (2-methylenemalonic acid, dimethyl 2-methylenemalonate Diethyl 2-methylenemalonate, diisopropyl 2-methylenemalonate, butyl 2-methylenemalonate, t-butyl 2-methylenemalonate and cyclohexyl 2-methylenemalonate), H 2 C ⁇ C (CN) (COOR 5 ) (2-cyanoacrylic acid, methyl 2-cyanoacrylate, ethyl 2-cyanoacrylate, propyl 2-cyanoacrylate, isopropyl 2-cyanoacrylate, butyl 2-cyanoacrylate, benzyl 2-cyanoacrylate Methoxyethyl 2-cyanoacrylate, t-butyl 2-cyanoacrylate, 2 Isobornyl cyanoacrylate, cyclohexyl 2-cyanoacrylate, dode
  • the compound having an anion polymerizable functional group that satisfies the above condition 2 include the following compounds, but the present invention is not construed as being limited thereto.
  • the numerical value next to the parenthesis represents the mass ratio.
  • a substituent that does not specify substitution or non-substitution means that the group may have an appropriate substituent. This is also synonymous for compounds that do not specify substituted or unsubstituted.
  • Preferable substituents include the following substituent P. Examples of the substituent P include the following.
  • alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., but in this specification,
  • an aryloyl group (preferably an aryloyl group having 7 to 23 carbon atoms, such as benzoyl, etc., but an acyl group in this specification usually means an aryloyl group).
  • An acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy), an aryloyloxy group (preferably an aryloyloxy group having 7 to 23 carbon atoms, such as benzoyloxy, etc., provided that In this specification, an acyloxy group usually means an aryloyloxy group), a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.), an alkylsulfanyl group (preferably an alkylsulfanyl group having 1 to 20 carbon atoms, such as methylsulfanyl, ethyl Sulfanyl, isopropyl Sulfanyl, benzylsulfanyl, etc.), arylsulfanyl groups (preferably arylsulfanyl groups having 6 to 26 carbon atoms, such as phenylsulfanyl, 1-naphthylsulfanyl, 3-methylphenylsulfanyl, 4-methoxyphenylsulfanyl, etc.), alkylsulfonyl A group (preferably an alkylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl or ethyls
  • a silyl group (preferably an alkylsilyl group having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.), an arylsilyl group (preferably 6 to 4 carbon atoms)
  • Arylsilyl groups such as triphenylsilyl
  • alkoxysilyl groups preferably alkoxysilyl groups having 1 to 20 carbon atoms such as monomethoxysilyl, dimethoxysilyl, trimethoxysilyl, triethoxysilyl, etc.
  • aryl An oxysilyl group (preferably an aryloxysilyl group having 6 to 42 carbon atoms, such as triphenyloxysilyl), a phosphoryl group (preferably a phosphoryl group having 0 to 20 carbon atoms, such as —OP ( ⁇ O) (R P ) 2 ), a phosphonyl group (preferably a phosphonyl
  • Groups such as -P (R P ) 2 ), (meth) acryloyl groups, (meth) acryloyloxy groups, ( (Meth) acryloylumimino group ((meth) acrylamide group), hydroxy group, sulfanyl group, carboxy group, phosphoric acid group, phosphonic acid group, sulfonic acid group, cyano group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, Iodine atom).
  • each of the groups listed as the substituent P may be further substituted with the substituent P described above.
  • substituent, linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and / or an alkynylene group, these may be cyclic or linear, and may be linear or branched. It may be substituted as described above or unsubstituted.
  • the compound having an anion polymerizable functional group used in the present invention is preferably a compound having two or more anion polymerizable functional groups represented by the general formula (1B), and is represented by the general formula (1b). Is more preferable. Since these compounds having an anion polymerizable functional group have two or more anion polymerizable functional groups in one molecule, a strong cross-linked product by anionic polymerization, that is, a hard cured film is formed. It is preferable from the viewpoint that the life can be improved.
  • the compound having an anion polymerizable functional group represented by the general formula (1A) or (1a) is, for example, purified by distillation after acid-chlorinating the corresponding anion polymerizable carboxylic acid in the presence of thionyl chloride or phthalic acid dichloride. It can be obtained by esterification by treating with 2,6-lutidine and alcohols.
  • the compound having an anion polymerizable functional group represented by the general formula (1b) can be synthesized, for example, by the following method. That is, a compound in which the terminal portion in X which is a mother nucleus of a multi-branched skeleton (star type, hyperbranch type and dendrimer type) is a nucleophilic functional group such as hydroxy group, carboxy group, amino group and mercapto group, Alternatively, for a compound having a leaving group such as a halogen atom (Cl, Br, I), —OTs, and —OMs, a reactive functional group (hydroxyl group) between the anion polymerizable functional group and the terminal portion of X of the compound.
  • a compound having a leaving group such as a halogen atom (Cl, Br, I), —OTs, and —OMs
  • Ts represents a tosyl group and Ms represents a mesyl group.
  • an anion represented by the general formula (1b) is formed by forming an ester bond from a reaction of a hydroxy group and a carboxy group, an amide bond from a reaction of an amino group and a carboxy group, and a thioester bond from a reaction of a mercapto group and a carboxy group. A compound having a polymerizable functional group is obtained.
  • a compound having an anion polymerizable functional group represented by the general formula (1b) is formed.
  • a compound having an anion polymerizable functional group represented by the above general formula (1B) is also processed in the same manner as the compound having an anion polymerizable functional group represented by the above general formula (1b). Can be synthesized.
  • the molecular weight of the compound having an anion polymerizable functional group used in the present invention is preferably from 100 to 200,000, more preferably from 100 to 5,000, from the viewpoint of anionic polymerization rate and / or crosslinking rate and non-volatility. Preferably, 100 to 1,000 is more preferable.
  • the molecular weight means a mass average molecular weight. The mass average molecular weight can be measured using, for example, GPC.
  • the content of the compound having an anion-polymerizable functional group used in the present invention in the solid electrolyte composition is 5 at a solid content of 100% by mass from the viewpoint of hardly inhibiting ionic conductivity while giving sufficient binding properties. Less than 3% by mass is preferable, less than 3% by mass is more preferable, and less than 2% by mass is particularly preferable. Although there is no restriction
  • the compounds having an anion polymerizable functional group used in the present invention may be used singly or in combination of two or more.
  • a combination of the above H 2 C ⁇ C (CN) (COOR 5 ) and the above H 2 C ⁇ C (CF 3 ) (COOR 5 ) is preferable, and cyanoacrylate and trifluoromethyl acrylate A combination is most preferred.
  • the content of the anionic polymerizable functional group having a cyano group in all anionic polymerizable functional groups is preferably 0 to 2% by mass or more than 30% by mass and 100% by mass or less, and more than 30% by mass. More preferably, it is 100 mass% or less.
  • the solid electrolyte composition of the present invention may contain other functional additives described later.
  • the all-solid-state secondary battery formed using the solid electrolyte composition containing the compound having an anion polymerizable functional group used in the present invention exhibits high binding properties and excellent cycle characteristics as described above.
  • the solid electrolyte composition of the present invention preferably contains a particle dispersant.
  • the particle dispersant is a positive active material or a negative active material, and an organic compound that is unevenly distributed on the surface by chemical bonding or physical adsorption, and preferably has a reactive unsaturated bond.
  • the compound having an anion polymerizable functional group used in the present invention in combination with a particle dispersant having a reactive unsaturated bond capable of anion addition, and the binding property between the inorganic solid electrolyte and the active material. Can be further increased, which is preferable. This is because the reactive unsaturated bond capable of anion addition in the particle dispersing agent is added to the growth terminal of the compound having an anion polymerizable functional group to form a covalent bond, so that there is a gap between the inorganic solid electrolyte and the active material. This is considered to be due to covalent linkage through an anionic polymer.
  • the particle dispersant is composed of a low molecular weight or oligomer having a molecular weight of 70 or more and less than 3000, and preferably contains at least one functional group represented by the following functional group group (A). It is more preferable that it comprises an oligomer and contains at least one functional group represented by the following functional group group (A) and the above-mentioned reactive unsaturated bond capable of anion addition in the same molecule.
  • acidic group for example, carboxy group, sulfonic acid group, phosphoric acid group
  • group having basic nitrogen atom for example, alkoxysilyl group, epoxy group, oxetanyl group, isocyanate group, cyano group, sulfanyl group , A hydroxy group and a condensed hydrocarbon group having three or more rings (for example, a pyrenyl group)
  • the molecular weight of the particle dispersant is preferably 70 or more and less than 3000, more preferably 100 or more and less than 2000, and still more preferably 500 or more and less than 1000. If the molecular weight is too large, particles are likely to aggregate and the output of the all-solid-state secondary battery may be reduced. On the other hand, if the molecular weight is too small, it tends to volatilize when the solid electrolyte composition is applied and dried. In the case of an oligomer, the molecular weight means a mass average molecular weight. The mass average molecular weight can be measured using, for example, GPC.
  • an acidic group a group having a basic nitrogen atom, a cyano group, and a condensed hydrocarbon group having three or more rings are preferable, and an acidic group, a group having a basic nitrogen atom, and a cyano group are preferable. More preferred is an acidic group. Of the acidic groups, a carboxy group is most preferred.
  • Examples of the group having an unsaturated bond capable of anion addition of the particle dispersant include (meth) acryloyl group, (meth) acrylamide group, vinyl group and styryl group, which are preferable.
  • Specific examples of the particle dispersant include (meth) acrylic acid, (meth) acrylic acid (2-pyrenyl) methyl, erythritol tetraacrylate partially modified carboxylic acid (acrylate 3-substituted, carboxylic acid 1-substituted) and dipenta Preferred examples include carboxylic acid partially modified erythritol hexamethacrylate (methacrylate 4-substituted, carboxylic acid 2-substituted).
  • grain dispersing agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content in the solid electrolyte composition is preferably 0.1% by mass or more, and 0.5% by mass or more at a solid content of 100% by mass. It is more preferable that the content is 1% by mass or more.
  • the upper limit of the content is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. preferable.
  • the solid electrolyte composition of the present invention preferably contains a binder.
  • the binder used in the present invention is not particularly limited as long as it is an organic polymer.
  • the binder that can be used in the present invention is preferably a binder that is usually used as a binder for a positive electrode or a negative electrode of a battery material, and is not particularly limited.
  • a binder made of a resin described below is preferable.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP), and the like.
  • thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber (also referred to as butadiene-acrylonitrile copolymer), polybutadiene, polyisoprene, and the like. Is mentioned.
  • acrylic resin examples include poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate isopropyl, poly (meth) acrylate isobutyl, poly (meth) butyl acrylate, poly (meth) ) Hexyl acrylate, poly (meth) acrylate octyl, poly (meth) acrylate dodecyl, poly (meth) acrylate stearyl, poly (meth) acrylate 2-hydroxyethyl, poly (meth) acrylic acid, poly (meth) ) Benzyl acrylate, poly (meth) acrylate glycidyl, poly (meth) acrylate dimethylaminopropyl, and copolymers of monomers constituting these resins.
  • copolymers with other vinyl monomers are also preferably used.
  • examples thereof include (meth) methyl acrylate-styrene copolymer, (meth) methyl acrylate-acrylonitrile copolymer, (meth) butyl acrylate-acrylonitrile-styrene copolymer, and the like.
  • a polycondensation polymer can also be used.
  • the polycondensation polymer for example, urethane resin, urea resin, amide resin, imide resin, polyester resin, and the like can be suitably used.
  • the polycondensation polymer preferably has a hard segment part and a soft segment part.
  • the hard segment site indicates a site capable of forming an intermolecular hydrogen bond
  • the soft segment site generally indicates a flexible site having a glass transition temperature (Tg) of room temperature (25 ⁇ 5 ° C.) or lower and a molecular weight of 400 or higher. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the upper limit of the glass transition temperature of the binder is preferably 50 ° C. or lower, more preferably 0 ° C. or lower, and most preferably ⁇ 20 ° C. or lower.
  • the lower limit is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 70 ° C. or higher, and particularly preferably ⁇ 50 ° C. or higher.
  • the glass transition temperature (Tg) is measured under the following conditions using a dry sample and a differential scanning calorimeter “X-DSC7000” (trade name, manufactured by SII Nanotechnology Co., Ltd.). The measurement is performed twice on the same sample, and the second measurement result is adopted.
  • Measurement chamber atmosphere Nitrogen (50 mL / min) Temperature increase rate: 5 ° C / min Measurement start temperature: -100 ° C Measurement end temperature: 200 ° C
  • Sample pan Aluminum pan Mass of measurement sample: 5 mg Calculation of Tg: Tg is calculated by rounding off the decimal point of the intermediate temperature between the lowering start point and the lowering end point of the DSC chart.
  • the water concentration of the polymer constituting the binder is preferably 100 ppm (mass basis) or less, and Tg is preferably 100 ° C. or less.
  • the solvent used for the polymerization reaction of the polymer is not particularly limited. It is desirable to use a solvent that does not react with the inorganic solid electrolyte and the active material and that does not decompose them.
  • a solvent that does not react with the inorganic solid electrolyte and the active material and that does not decompose them.
  • hydrocarbon solvents toluene, heptane, xylene
  • ester solvents ethyl acetate, propylene glycol monomethyl ether acetate
  • ether solvents tetrahydrofuran, dioxane, 1,2-diethoxyethane
  • ketone solvents acetone
  • Methyl ethyl ketone Methyl ethyl ketone, cyclohexanone
  • nitrile solvents acetonitrile, propionitrile, butyronitrile, isobutyronitrile
  • halogen solvents dichloromethane
  • the polymer constituting the binder preferably has a mass average molecular weight of 10,000 or more, more preferably 20,000 or more, and further preferably 50,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable. In the present invention, the molecular weight of the polymer means a mass average molecular weight unless otherwise specified.
  • the content of the binder in the solid electrolyte composition is 0.01% by mass with respect to 100% by mass of the solid component, considering good reduction in interface resistance and its maintainability when used in an all-solid secondary battery.
  • the above is preferable, 0.1% by mass or more is more preferable, and 1% by mass or more is more preferable.
  • the mass ratio [(mass of inorganic solid electrolyte + mass of electrode active material) / mass of binder] of the total mass (total amount) of the inorganic solid electrolyte and the electrode active material to be included if necessary with respect to the mass of the binder is: A range of 1,000 to 1 is preferred. This ratio is more preferably 500 to 2, and further preferably 100 to 10.
  • the binder is a polymer particle that maintains the particle shape.
  • poly (meth) methyl acrylate (PMMA), methyl methacrylate-methacrylic acid copolymer (PMMA-PMA) or methyl methacrylate-ethyl methacrylate phosphate copolymer (PMMA-PHM) is preferably used. It is done.
  • the “polymer particles” refer to particles that do not completely dissolve even when added to the dispersion medium described later, and are dispersed in the dispersion medium in the form of particles and exhibit an average particle diameter of more than 0.01 ⁇ m.
  • the shape of the polymer particles is not limited as long as they are solid.
  • the polymer particles may be monodispersed or polydispersed.
  • the polymer particles may be spherical or flat and may be amorphous.
  • the surface of the polymer particles may be smooth or may have an uneven shape.
  • the polymer particles may have a core-shell structure, and the core (inner core) and the shell (outer shell) may be made of the same material or different materials. Moreover, it may be hollow and the hollow ratio is not limited.
  • the polymer particles can be synthesized by a method of polymerizing in the presence of a surfactant, an emulsifier or a dispersant, or a method of depositing in a crystalline form with an increase in molecular weight. Moreover, you may use the method of crushing the existing polymer mechanically, or the method of making a polymer liquid fine particle by reprecipitation.
  • the average particle diameter of the polymer particles is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 0.05 ⁇ m to 50 ⁇ m, further preferably 0.1 ⁇ m to 20 ⁇ m, and particularly preferably 0.2 ⁇ m to 10 ⁇ m.
  • the average particle diameter of the polymer particles used in the present invention is based on the measurement conditions and definitions described below.
  • the polymer particles are diluted and prepared in a 20 ml sample bottle using an arbitrary solvent (dispersion medium used for preparing the solid electrolyte composition, for example, heptane).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA)
  • data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Let the obtained volume average particle diameter be an average particle diameter.
  • JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level and measured, and the average value is adopted. In addition, the measurement from the produced all-solid-state secondary battery is performed, for example, after disassembling the battery and peeling off the electrode, then measuring the electrode material according to the method for measuring the average particle diameter of the polymer particles, This can be done by eliminating the measured value of the average particle diameter of the particles other than the polymer particles that have been measured.
  • a commercial item can be used for the binder used for this invention. Moreover, it can also prepare by a conventional method.
  • the solid electrolyte composition of the present invention preferably contains a dispersion medium.
  • the dispersion medium should just be what disperse
  • Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, Examples include 2-methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
  • ether compound solvents examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene.
  • Glycol monomethyl ether tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.
  • dialkyl ethers dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.
  • cyclic ethers tetrahydrofuran, geo Sun (1,2, including 1,3- and 1,4-isomers of), etc.
  • Examples of the amide compound solvent include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amino compound solvent include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Examples of the aromatic compound solvent include benzene, toluene, xylene, mesitylene and the like.
  • Examples of the aliphatic compound solvent include hexane, heptane, octane, decane, and the like.
  • Examples of the nitrile compound solvent include acetonitrile, propyronitrile, isobutyronitrile, and the like.
  • ester compound solvent examples include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, and butyl pentanoate.
  • non-aqueous dispersion medium examples include the above aromatic compound solvents and aliphatic compound solvents.
  • amino compound solvents, ether compound solvents, ketone compound solvents, aromatic compound solvents, and aliphatic compound solvents are preferable, and ether compound solvents, aromatic compound solvents, and aliphatic compound solvents are more preferable.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher, at normal pressure (1 atm).
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the dispersion medium in the solid electrolyte composition can be appropriately set in consideration of the balance between the viscosity of the solid electrolyte composition and the drying load. Generally, it is preferably 20 to 99% by mass, more preferably 25 to 70% by mass, and particularly preferably 30 to 60% by mass in the solid electrolyte composition.
  • the solid electrolyte composition of the present invention may contain an active material capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the periodic table.
  • the active material includes a positive electrode active material and a negative electrode active material, and a transition metal oxide that is a positive electrode active material or a metal oxide that is a negative electrode active material is preferable.
  • a solid electrolyte composition containing an active material positive electrode active material, negative electrode active material
  • an electrode layer composition positive electrode layer composition, negative electrode layer composition.
  • the positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide or an element that can be complexed with Li such as sulfur.
  • the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V). More preferred.
  • this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halide phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.10 Al 0.05 O 2 (lithium nickel cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobaltate [NMC]) and LiNi 0.5 Mn 0.5 O 2 (manganese) Lithium nickelate).
  • transition metal oxides having (MB) spinel structure include LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8. .
  • Examples of (MC) lithium-containing transition metal phosphate compounds include olivine-type phosphate iron salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
  • Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO, NMC or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited.
  • the thickness can be 0.1 to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined appropriately according to the designed battery capacity.
  • the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and even more preferably 50 to 85% by mass at 100% by mass. Preferably, it is 55 to 80% by mass.
  • the negative electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance and a lithium alloy such as a lithium aluminum alloy, and , Metals such as Sn, Si, and In that can form an alloy with lithium.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) -based resin, furfuryl alcohol resin, etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • an amorphous oxide of a metalloid element and a chalcogenide are more preferable.
  • Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and the deterioration of the electrodes is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the said carbonaceous material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a normal pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, and a sieve are preferably used.
  • pulverizing wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centered on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, and lithium. An alloyable metal is preferable.
  • a Si-based negative electrode it is preferable to apply a Si-based negative electrode.
  • a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of Li ion occlusion per unit weight increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be determined appropriately according to the designed battery capacity.
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, more preferably 20 to 80% by mass, and more preferably 30 to 80% at a solid content of 100% by mass. More preferably, it is 40% by weight, and still more preferably 40-75% by weight.
  • the surface of the positive electrode active material and / or the negative electrode active material may be surface-coated with a surface coating agent.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Si, or Li, and specifically include titanate spinel, tantalum oxide, niobium oxide, and the like. Examples thereof include lithium niobate compounds. More specifically, Li 4 Ti 5 O 12 , LiTaO 3 , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TiO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 and LiBO 2 and the like.
  • the electrode surface containing a positive electrode active material and / or a negative electrode active material may be surface-treated with sulfur, phosphorus, or the like.
  • the solid electrolyte composition of the present invention may appropriately contain a conductive aid used for improving the electronic conductivity of the active material, as necessary.
  • a conductive aid used for improving the electronic conductivity of the active material
  • a general conductive auxiliary agent can be used.
  • electronic conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber and carbon nanotube Carbon fibers such as graphene and carbonaceous materials such as graphene and fullerene, metal powders such as copper and nickel, or metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene and polyphenylene derivatives May be used. Moreover, 1 type of these may be used and 2 or more types may be used.
  • the solid electrolyte composition of the present invention contains a conductive aid, the content of the conductive aid
  • the solid electrolyte composition of the present invention preferably contains a lithium salt (supporting electrolyte).
  • a lithium salt usually used in this type of product is preferably used without particular limitation, and examples thereof include the lithium salt described in the binder particles.
  • This lithium salt is not included in the binder particles (the polymer forming the binder particles) (for example, it is present alone in the solid electrolyte layer composition), and the lithium salt is included in the binder particles. Is different.
  • the content of the lithium salt is preferably 0 part by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • the method for producing a solid electrolyte composition of the present invention includes a step (a1) of dispersing an inorganic solid electrolyte in the presence of a dispersion medium to form a slurry, and adding a compound having an anion polymerizable functional group to the obtained slurry.
  • Step (b1) Slurry in the step (a1) can be performed by mixing the inorganic solid electrolyte and the dispersion medium using various mixers.
  • the mixing apparatus is not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill.
  • the mixing conditions are not particularly limited. For example, when a ball mill is used, the mixing is preferably performed at 150 to 700 rpm (rotation per minute) for 1 to 24 hours.
  • step (b1) it is preferable to mix a compound having an anion polymerizable functional group into the slurry, and the above mixing apparatus can be used.
  • the mixing conditions are not particularly limited as long as the compound having an anion polymerizable functional group is not cured by the progress of anion polymerization. For example, when a ball mill is used, mixing is performed at 50 to 200 rpm (rotation per minute) for 1 to 30 minutes. It is preferable to do.
  • a solid electrolyte composition containing other components such as a particle dispersant, it is preferable to add and mix it with the inorganic solid electrolyte and the dispersion medium before step (b1). It is more preferable to disperse together with the inorganic solid electrolyte.
  • a solid electrolyte composition containing an active material When preparing a solid electrolyte composition containing an active material, it is preferably added and mixed to the resulting slurry after step (a1), together with a compound having an anionically polymerizable functional group in step (b1). It is more preferable to mix.
  • Storage of the prepared solid electrolyte composition is not particularly limited as long as curing due to the progress of anionic polymerization does not occur, but 35 ° C. or less (more preferably 25 ° C. or less, more preferably less than 5 ° C.) after preparation. It is preferable to store in Moreover, it is preferable to use it for preparation of a solid electrolyte containing sheet and / or preparation of an all-solid secondary battery within one month (5 ° C. storage) after preparation.
  • the compound having an anion-polymerizable functional group used in the present invention is advancing anion polymerization using an anionic functional group present on the surface of the inorganic solid electrolyte and / or active material (preferably the surface of the solid particle) as an anionic polymerization initiating species.
  • an anionic polymer hereinafter also referred to as an anionic polymer.
  • PS 4 3- in Li 3 PS 4 and P 3 S 11 7- in Li 7 P 3 S 11 may become an anionic polymerization initiation species, and oxidation if -based, for example, Li 7 La 3 Zr 2 O 12 in (LLT) (La 3 Zr 2 O 12) 7- , but also, Li 5 La 3 Ta 2 O 12 in (LLZ) (La 3 Ta 2 O 12 ) 5- can be an anionic polymerization initiating species.
  • an anionic polymerization initiation step a covalent bond is formed between the inorganic solid electrolyte and the anionic polymer, and a stronger binding property is expressed.
  • an inorganic solid electrolyte and a polymer having a high molecular weight are added, a bond is not formed between the inorganic solid electrolyte and the polymer, and thus high binding properties cannot be exhibited.
  • the solid electrolyte composition of the present invention can also contain an anionic polymerization initiator for the purpose of promoting anionic polymerization.
  • the anionic polymerization initiator is not particularly limited as long as it can generate anions.
  • strong anionic polymerization initiators include potassium, alkyl (aryl) potassium, sodium, alkyl (aryl) sodium, lithium, alkyl (aryl) lithium, Grignard reagent, dialkyl (aryl) magnesium, trialkyl (aryl) aluminum, Examples include dialkyl zinc, alkoxy (aryloxy) potassium, alkoxy (aryloxy) sodium, alkoxy (aryloxy) lithium, alkylthio (arylthio) potassium, alkylthio (arylthio) sodium and alkylthio (arylthio) lithium.
  • weak anionic polymerization initiators include pyridines, amines, carboxylic acids, carboxylic acid metal salts, thiocarboxylic acid metal salts, alkylthiols, and water.
  • the addition amount is preferably from 0.1 mol% to 10 mol%, more preferably from 1 mol% to 3 mol%, based on the compound having an anion polymerizable functional group.
  • a polymer is formed.
  • An anionic polymer has a chemical bond between solid particle surfaces, such as an inorganic solid electrolyte.
  • R 11A and R 12A each independently represent a monovalent electron withdrawing group
  • R 13B represents a monovalent electron withdrawing group or —R 14B — * 2
  • R 14B represents R A divalent electron withdrawing group in which the bonding site to the carbon atom to which 13B and R 14B are bonded is electron withdrawing. * 2 indicates a bond.
  • R 11A and R 12A , R 13B and R 14B may be linked to each other to form a ring.
  • R 11A , R 12A , R 13B and R 14B in the general formulas (2A) and (2B) have the same meaning as R 1A , R 2A , R 3B and R 4B in the general formulas (1A) and (1B). is there. Note that * 2 in the above general formula (2B) is a bond corresponding to * 1 in the above general formula (1B).
  • anionic polymerization of the compound having an anion polymerizable functional group represented by the above general formula (1a) or (1b) proceeds, whereby the repeating unit represented by the following general formula (2a) or (2b) An anionic polymer having is formed.
  • An anionic polymer has a chemical bond between solid particle surfaces, such as an inorganic solid electrolyte.
  • R 11 and R 12 are each independently substituted with a nitro group, a cyano group, —C ( ⁇ O) OR 15 , —C ( ⁇ O) R 16 , an alkyl group substituted with a fluoro group, or a fluoro group.
  • R 15 and R 16 each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxycarbonyl group or an acyl group.
  • R 11 and R 12 may be linked to form a ring.
  • Z represents a group represented by the following general formula (2b-z).
  • R a1 represents a hydrogen atom or an organic group
  • X 1 is shows the m 1 + n 1 valent linking group
  • m 1 is an integer of 0 ⁇ 10
  • n 1 is an integer of 2-10.
  • R 13 has the same meaning as R 11 .
  • R 14 represents * —C ( ⁇ O) OR 17 —, * —C ( ⁇ O) R 18 —, an alkylene group substituted with a fluoro group or an arylene group substituted with a fluoro group, and R 17 and R 18 Each independently represents a single bond, an alkylene group or an arylene group.
  • * Indicates a bonding site to the carbon atom to which R 13 and R 14 are bonded.
  • R 13 and R 14 may be linked to form a ring. ** indicates the binding site on the X 1.
  • R 11 to R 18 and each substituent in R a1 are R 1 to R 8 in the above general formulas (1a) and (1b). And the description of each substituent in R a can be preferably applied. Further, n 1 , m 1 and X 1 in the general formula (2b) have the same meanings as n, m and X in the general formula (1b).
  • Anionic polymerization may be started in any step of a grinding step using a ball mill for preparing the composition, a heating step different from the composition preparation, and a step of heating the coating film of the composition. It is preferable that the reaction is completed (cured) in the state of the solid electrolyte-containing sheet.
  • the conditions commonly used in anionic polymerization can be used as the polymerization conditions for the compound having an anion polymerizable functional group.
  • the reaction temperature is preferably 50 ° C. to 180 ° C., more preferably 80 ° C. to 150 ° C.
  • the reaction time is preferably 5 minutes to 3 hours, more preferably 10 minutes to 1 hour. .
  • anionic polymer used in the present invention are preferably anionic polymers having the following structural units, but the present invention is not limited thereto.
  • the numerical value next to the parenthesis represents the mass ratio.
  • Solid electrolyte-containing sheet has an inorganic solid electrolyte having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and a specific repeating unit that binds to the inorganic solid electrolyte described above.
  • Anionic polymer Anionic polymer.
  • the anionic polymer is preferably an anionic polymer having a repeating unit represented by the above general formula (2A) or (2B), and an anionic polymer having a repeating unit represented by the above general formula (2a) or (2b). Coalescence is more preferred.
  • the content of the repeating unit containing a cyano group is preferably 0 to less than 2% by mass or more than 30% by mass and 100% by mass or less, and more than 30% by mass and 100% by mass or less. More preferred.
  • the repeating unit containing a cyano group is a repeating unit in which R 11A and / or R 12A in the general formula (2A) has a cyano group, and a cyano group in R 13B and / or R 14B in the general formula (2B).
  • the solid electrolyte-containing sheet of the present invention may contain the other functional additives described above.
  • the content of the anionic polymer in the solid electrolyte-containing sheet is preferably less than 5% by mass at a solid content of 100% by mass, considering the reduction in interfacial resistance and the effect of maintaining battery characteristics (improving cycle characteristics). It is more preferably less than 3% by mass, further preferably less than 2% by mass, particularly preferably less than 1.5% by mass, and most preferably less than 1.2% by mass. Although there is no restriction
  • the solid electrolyte-containing sheet of the present invention can be suitably used for an all-solid-state secondary battery, and includes various modes depending on the application.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery
  • a sheet preferably used for an electrode or a laminate of an electrode and a solid electrolyte layer an electrode sheet for an all-solid secondary battery Etc.
  • these various sheets may be collectively referred to as an all-solid secondary battery sheet.
  • the all-solid-state secondary battery sheet is a sheet having a solid electrolyte layer or an active material layer (electrode layer) on a base material.
  • the all-solid-state secondary battery sheet may have other layers as long as it has a substrate and a solid electrolyte layer or an active material layer. It classifies into a secondary battery electrode sheet. Examples of other layers include a protective layer, a current collector, and a coat layer (current collector, solid electrolyte layer, active material layer) and the like.
  • Examples of the solid electrolyte sheet for an all-solid secondary battery include a sheet having a solid electrolyte layer and a protective layer in this order on a base material.
  • the substrate is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include the materials described in the above current collector, sheet bodies (plate-like bodies) such as organic materials and inorganic materials, and the like.
  • the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • the inorganic material include glass and ceramic.
  • the configuration and layer thickness of the solid electrolyte layer of the all-solid-state secondary battery sheet are the same as the configuration and layer thickness of the solid electrolyte layer described later in the all-solid-state secondary battery of the present invention.
  • This sheet is obtained by forming (coating and drying) the solid electrolyte composition of the present invention on a base material (which may be via another layer) to form a solid electrolyte layer on the base material. It is done.
  • the solid electrolyte composition of the present invention can be prepared by the above-described method.
  • the electrode sheet for an all-solid secondary battery of the present invention is a metal as a current collector for forming the active material layer of the all-solid-state secondary battery of the present invention.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte The aspect which has a layer and an active material layer in this order is also included.
  • the configuration and the layer thickness of each layer constituting the electrode sheet are the same as the configuration and the layer thickness of each layer described later in the all solid state secondary battery of the present invention.
  • the electrode sheet is obtained by forming (coating and drying) the solid electrolyte composition containing the active material of the present invention on a metal foil to form an active material layer on the metal foil.
  • the method for preparing the solid electrolyte composition containing the active material is the same as the method for preparing the solid electrolyte composition except that the active material is used.
  • the compound having an anion polymerizable functional group is preferably read as an anionic polymer with respect to the component species to be contained and the content ratio thereof. Otherwise, it is the same as that in the solid content of the solid electrolyte composition.
  • the all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode active material layer on a positive electrode current collector.
  • the negative electrode has a negative electrode active material layer on a negative electrode current collector. At least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is preferably formed of the solid electrolyte composition of the present invention.
  • the negative electrode active material layer and / or the positive electrode active material layer is more preferably formed of the solid electrolyte composition of the present invention
  • the positive electrode active material layer is more preferably formed of the solid electrolyte composition of the present invention.
  • the active material layer and / or the solid electrolyte layer formed of the solid electrolyte composition are preferably the same as those in the solid content of the solid electrolyte composition with respect to the component species to be contained and the content ratio thereof.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of the present embodiment includes a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 stacked in this order as viewed from the negative electrode side.
  • the adjacent layers are in direct contact with each other.
  • lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons can be supplied to the working part 6.
  • a light bulb is adopted as a model for the operation site 6 and is lit by discharge.
  • any of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is formed of the solid electrolyte composition of the present invention. That is, when the solid electrolyte layer 3 is formed of the solid electrolyte composition of the present invention, the solid electrolyte layer 3 includes an inorganic solid electrolyte and an anionic polymer.
  • the solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material.
  • the solid electrolyte layer 3 it is considered that an anionic polymer chemically bonded to the inorganic solid electrolyte at the terminal exists between solid particles such as the inorganic solid electrolyte and the active material contained in the adjacent active material layer. . Therefore, the interfacial resistance between the solid particles is reduced and the binding property is increased.
  • the positive electrode active material layer 4 and / or the negative electrode active material layer 2 are formed of the solid electrolyte composition of the present invention, the positive electrode active material layer 4 and the negative electrode active material layer 2 are respectively a positive electrode active material or a negative electrode active material. And an inorganic solid electrolyte and an anionic polymer.
  • the active material layer contains an inorganic solid electrolyte
  • the ionic conductivity can be improved.
  • an anionic polymer chemically bonded to the inorganic solid electrolyte at the terminal exists between the solid particles. Therefore, the interfacial resistance between the solid particles is reduced and the binding property is increased.
  • the inorganic solid electrolyte and the anionic polymer contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same or different from each other.
  • either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer.
  • One or both of the positive electrode active material and the negative electrode active material may be simply referred to as an active material or an electrode active material.
  • any one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer in the all-solid-state secondary battery includes the compound having the anion polymerizable functional group, solid particles such as an inorganic solid electrolyte, and the like. It is produced using a solid electrolyte composition containing For this reason, the binding property between solid particles can be improved, and as a result, good cycle characteristics in an all-solid secondary battery can also be realized. Although its action and mechanism are not clear but estimated, it can be considered as follows.
  • the all solid state secondary battery of the present invention exhibits high binding properties.
  • the contact between the solid particles is maintained by the covalent bond formed between the solid particle surface such as the inorganic solid electrolyte and the anionic polymer, and the interfacial resistance between the solid particles is reduced. The rise is considered to be suppressed.
  • the all-solid-state secondary battery of this invention shows the outstanding cycling characteristics. In particular, when active material particles that expand and contract due to charge and discharge are included, an increase in interfacial resistance between the solid particles is more effectively suppressed, and the all-solid-state secondary battery is considered to exhibit better cycle characteristics.
  • the thickness of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is not particularly limited. Considering general battery dimensions, the thickness of each of the above layers is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 is 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel and titanium, as well as the surface of aluminum or stainless steel treated with carbon, nickel, titanium or silver (formation of a thin film) Among them, aluminum and aluminum alloys are more preferable.
  • the material for forming the negative electrode current collector is treated with carbon, nickel, titanium or silver on the surface of aluminum, copper, copper alloy or stainless steel. What was made to do is preferable, and aluminum, copper, copper alloy, and stainless steel are more preferable.
  • the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
  • Each layer may be composed of a single layer or a plurality of layers.
  • the basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing.
  • the housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy and stainless steel can be mentioned, for example.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
  • a solid electrolyte-containing sheet containing an inorganic solid electrolyte and an anionic polymer by curing a coating film containing an inorganic solid electrolyte and a compound having an anion polymerizable functional group as the anionic polymerization proceeds Is formed.
  • an inorganic solid electrolyte acting as an anionic polymerization initiator is bonded to a polymer terminal.
  • the first aspect and the second aspect are preferably exemplified below.
  • 1st aspect The process (1 (alpha)) which apply
  • each said process is explained in full detail.
  • the anionic polymerization in the steps (1 ⁇ ) and (2 ⁇ ) proceeds slowly even at room temperature, but it is preferable to proceed by heating.
  • the coating film containing the inorganic solid electrolyte and the compound having an anion-polymerizable functional group becomes a gel, and is further cured as the anionic polymerization proceeds.
  • the curing means that the anionic polymerization is sufficiently progressed to be cured from a gel to a cured product.
  • the temperature is preferably 50 ° C. to 180 ° C., more preferably 80 ° C. to 150 ° C.
  • the heating time is preferably 5 minutes to 3 hours, more preferably 10 minutes to 1 hour.
  • the coating film and / or the sheet is dried simultaneously with the progress of the anionic polymerization, and a solid electrolyte-containing sheet from which the solvent component such as the dispersion medium is removed is obtained.
  • a step for removing a solvent component such as a dispersion medium is required separately.
  • the gap between the inorganic solid electrolyte particles formed in steps (2 ⁇ ) and (2 ⁇ ) is impregnated with a compound having an anion-polymerizable functional group, brought into contact, and then cured by the progress of anion polymerization. Is the method.
  • the inorganic solid electrolyte and the dispersion medium in the step (2 ⁇ ) can be preferably applied.
  • the slurrying conditions in the step (2 ⁇ ) the slurrying conditions described in the preparation of the solid electrolyte composition described above can be preferably applied.
  • the content of the inorganic solid electrolyte in the slurry is preferably 50 to 95% by mass, more preferably 5 to 90% by mass, and further preferably 60 to 90% by mass.
  • a component such as the above-mentioned active material, particle dispersant and binder (excluding a compound having an anion polymerizable functional group) is slurried in the presence of a dispersion medium. It is also preferable to make it.
  • the content of each component in the slurry the content in the above-mentioned solid electrolyte composition can be preferably applied.
  • the description of preparation of the said solid electrolytic composition is applicable about the process of slurry adjustment. That is, when the slurry obtained in the step (2 ⁇ ) contains a compound having an anionically polymerizable functional group, the step (2 ⁇ ) includes steps (a1) and (b1) in the preparation of the solid electrolytic composition. including.
  • the drying step can be appropriately adjusted depending on the dispersion medium and the like. For example, it is preferable to dry at 50 ° C. to 180 ° C. for 1 minute to 1 hour. Moreover, it is preferable to leave still and dry.
  • the thickness of the coating film formed in the step (2 ⁇ ) is not particularly limited, but is preferably adjusted to 20 ⁇ m to 500 ⁇ m in the step of impregnating the solution in the step (2 ⁇ ).
  • the solution of the compound having an anion polymerizable functional group in the step (2 ⁇ ) is a solution in which at least a compound having an anion polymerizable functional group is dissolved in a solvent.
  • the solvent is not particularly limited as long as it dissolves the compound having an anion polymerizable functional group, but the dispersion medium described in the above solid electrolyte composition can be preferably applied.
  • the concentration of the solution of the compound having an anion polymerizable functional group in the step (2 ⁇ ) is not limited as long as it can be impregnated in the gap between the inorganic solid electrolyte particles formed in the steps (2 ⁇ ) and (2 ⁇ ).
  • the mass is preferably from 10% by mass to 10% by mass.
  • a solid electrolyte-containing sheet that is a sheet having a base material and a solid electrolyte layer can be produced.
  • the method described in the production of the all-solid secondary battery can be used.
  • Manufacture of the all-solid-state secondary battery and the electrode sheet for all-solid-state secondary batteries can be performed by the manufacturing method of the said solid electrolyte containing sheet
  • the all-solid-state secondary battery can be produced by a conventional method except that the production method for the solid electrolyte-containing sheet is included.
  • the all-solid-state secondary battery and the all-solid-state secondary battery electrode sheet can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention.
  • any one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer may be produced by the above-described method for producing a solid electrolyte-containing sheet, and the other layers are solid electrolyte compositions that are not the present invention. And may be prepared by conventional methods. This will be described in detail below.
  • the all-solid-state secondary battery of the present invention includes (intervenes) a method in which the solid electrolyte composition of the present invention is applied onto a metal foil serving as a current collector and a coating film is formed (film formation).
  • a positive electrode active material layer is formed by applying a solid electrolyte composition containing a positive electrode active material as a positive electrode material (positive electrode layer composition) on a metal foil that is a positive electrode current collector.
  • a positive electrode sheet for a secondary battery is prepared.
  • a solid electrolyte composition for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer.
  • a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (negative electrode layer composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
  • each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery.
  • Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode active material layer is formed by applying a solid electrolyte composition containing a negative electrode active material as a negative electrode material (a composition for a negative electrode layer) on a metal foil that is a negative electrode current collector. A negative electrode sheet for a secondary battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition is applied on a substrate to produce a solid electrolyte sheet for an all-solid secondary battery comprising a solid electrolyte layer. Furthermore, it laminates
  • An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are produced. Subsequently, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be manufactured by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery.
  • the method for applying the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating. At this time, the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • a dispersion medium By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
  • each layer or all-solid secondary battery After applying the solid electrolyte composition or after producing the all-solid-state secondary battery. Moreover, it is also preferable to pressurize in the state which laminated
  • An example of the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa. Moreover, you may heat the apply
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
  • each composition may be apply
  • the atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point -20 ° C. or lower), and inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • a restraining tool screw tightening pressure or the like
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, mini-disc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio and backup power source.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, and medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military uses or space use. Moreover, it can also combine with a solar cell.
  • An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery using a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state using the above-described Li—PS glass, LLT, LLZ, etc. It is divided into secondary batteries.
  • the inorganic solid electrolyte is distinguished from the above-described electrolyte (polymer electrolyte) using a polymer compound such as polyethylene oxide as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above-described Li—PS glass, LLT, and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations is sometimes called an electrolyte, but it is distinguished from the electrolyte as the ion transport material.
  • electrolyte salt or “supporting electrolyte”.
  • the electrolyte salt include LiTFSI (lithium bistrifluoromethanesulfonylimide).
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • a solid electrolyte composition when it is referred to as a solid electrolyte composition, it basically refers to a composition (typically a paste) that is a material for forming a solid electrolyte layer or the like, and an electrolyte layer or the like formed by curing the composition. Shall not be included in this.
  • Example 1 ⁇ Preparation example of solid electrolyte composition>
  • Into a 45 mL zirconia container manufactured by Fritsch, 180 pieces of zirconia beads having a diameter of 5 mm are charged, 9.0 g of an inorganic solid electrolyte and 18 g of a dispersion medium are added, and then the container is set on a planetary ball mill P-7 manufactured by Fritsch. And mixing at a rotation speed of 300 rpm for 2 hours. To this, 0.36 g of an additive was added, and further mixing was continued at 150 rpm for 5 minutes to prepare solid electrolyte compositions S-1 to S-10, T-1 and T-2.
  • solid electrolyte composition T-2 was charged with 0.036 g (not shown in the table) of perhexyl D (thermal radical polymerization initiator, manufactured by NOF Corporation) at the same timing as the charging of the active material. And mixed to prepare a solid electrolyte composition.
  • Table 1 shows the components and blending mass ratios of each solid electrolyte composition.
  • LLT Li 0.5 La 0.5 TiO 3 (manufactured by Toshima Seisakusho)
  • LPS Li—PS system glass LLZ synthesized above: Li 7 La 3 Zr 2 O 12
  • LCO LiCoO 2 (lithium cobaltate)
  • NCA LiNi 0.85 Co 0.10 Al 0.05 O 2 (nickel cobalt lithium aluminum oxide)
  • B-1 Ethyl 2-cyanoacrylate
  • B-2 Butyl 2-trifluoromethyl acrylate
  • B-3 Diethyl 2-methylenemalonate
  • B-4 Bis (2-trifluoromethylacrylic acid) -1,4 -Butanediyl
  • E-1 acrylic acid
  • Binding Test A 180 ° peel strength test (JIS Z0237-2009) was performed on the obtained solid electrolyte-containing sheet.
  • An adhesive tape (width 24 mm, length 300 mm) (trade name: Cellotape (registered trademark) CT-24, manufactured by Nichiban Co., Ltd.) was attached to the surface of the solid electrolyte-containing sheet on which the solid electrolyte composition was cured.
  • the present invention containing an inorganic solid electrolyte and a specific anionic polymer produced using the solid electrolyte composition of the present invention containing an inorganic solid electrolyte and a compound having an anion polymerizable functional group.
  • the solid electrolyte containing sheet had high adhesion and excellent binding properties.
  • seat excellent in binding property was able to be produced with the manufacturing method of the solid electrolyte containing sheet
  • c11 is a sheet prepared in advance using a comparative solid electrolyte composition T-1 containing a cyano group-containing polymer, which is a polymer, and does not contain a specific anionic polymer.
  • This solid electrolyte-containing sheet No. c11 had low adhesion and insufficient binding properties. This is probably because the dispersibility of the cyano group-containing polymer is low, and no chemical bond is formed between the inorganic solid electrolyte and the polymer.
  • the solid electrolyte-containing sheet No. c12 is a sheet produced using the comparative solid electrolyte composition T-2 containing a radical polymerizable monomer, and does not contain a specific anionic polymer. This solid electrolyte-containing sheet No.
  • c12 had low adhesive force and its binding property was not sufficient. This is probably because no chemical bond is formed between the inorganic solid electrolyte and the radical polymer. Moreover, the solid electrolyte containing sheet No. produced without using the manufacturing method of the solid electrolyte containing sheet of this invention. c11 and c12 were inferior in binding property.
  • Each all-solid secondary battery after initialization was charged at a current density of 0.2 mA / cm 2 until the battery voltage reached 4.2 V, then the battery voltage at a current density of 0.2 mA / cm 2 2.5V Discharged until reached. This charging / discharging was made into 1 cycle, and charging / discharging was repeated. In this charge / discharge cycle, the number of cycles when the discharge capacity reached less than 80 when the discharge capacity in the first cycle after initialization was set to 100 was evaluated according to the following criteria. In addition, evaluation "C" or more is a pass level of this test.
  • a positive electrode layer not containing a specific anionic polymer was formed using a comparative solid electrolyte composition T-1 containing a cyano group-containing polymer which is a polymer in advance.
  • This all-solid-state secondary battery No. c21 did not have sufficient cycle characteristics. This is probably because the dispersibility of the cyano group-containing polymer is low, and no chemical bond is formed between the inorganic solid electrolyte and the polymer. All solid state secondary battery No. for comparison.
  • a positive electrode layer not containing a specific anion polymer was formed using a comparative solid electrolyte composition T-2 containing a radical polymerizable monomer. This all-solid-state secondary battery No.
  • c22 did not have sufficient cycle characteristics. This is probably because no chemical bond is formed between the inorganic solid electrolyte and the radical polymer. Moreover, the all-solid-state secondary battery No. 1 for comparison produced without going through the method for producing the solid electrolyte-containing sheet of the present invention was used. c21 and c22 did not have sufficient cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、アニオン重合性官能基を有する化合物とを含有する固体電解質組成物、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、無機固体電解質と結合する特定のアニオン重合体とを含有する固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法。

Description

固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
 本発明は、固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電または過放電により電池内部で短絡が生じ発火するおそれもあり、信頼性と安全性のさらなる向上が求められている。
 かかる状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質および正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車や大型蓄電池等への応用が期待されている。
 上記のような各利点から、次世代のリチウムイオン電池として全固体二次電池の開発が進められている(非特許文献1)。これらの全固体二次電池において、負極の活物質層、固体電解質層、及び正極の活物質層のいずれかの層を、無機固体電解質および/または活物質と特定の高分子化合物等のバインダー粒子(結着剤)とを含有する材料で形成することが、提案されている。例えば、特許文献1には、硫化物固体電解質材料と、二重結合を有するモノマーまたはオリゴマー、およびラジカル重合開始剤を有する結着剤組成物とを含有する組成物を塗布し、ラジカル重合し、硬化して得られる固体電解質材料含有シートおよび固体電池が記載されている。特許文献2には、固体電解質と、ニトリル基を有する重合単位を特定の割合で含んでなる重合体とをいずれかの層に含有する全固体二次電池が記載されている。
国際公開第2010/089891号 国際公開第2012/026583号
NEDO技術開発機構,燃料電池・水素技術開発部,蓄電技術開発室「NEDO次世代自動車用蓄電池技術開発 ロードマップ2013」(平成25年8月)
 近年、全固体二次電池の開発が急速に進行しており、全固体二次電池に求められる性能も高くなっている。特に、電極活物質層及び固体電解質層が固体粒子で形成される全固体二次電池においては、電池のサイクル特性を向上するため、固体粒子間の結着性を高めることが望まれている。
 本発明は、全固体二次電池において、固体粒子間の結着性を向上することができ、サイクル特性を向上することができる固体電解質組成物を提供することを課題とする。また、本発明は、結着性及び/又はサイクル特性に優れる固体電解質含有シート及び全固体二次電池を提供することを課題とする。さらに、本発明は、上記固体電解質組成物、上記固体電解質含有シート及び全固体二次電池それぞれの製造方法を提供することを課題とする。
 本発明者らが鋭意検討した結果、特定の無機固体電解質と、アニオン重合性官能基を有する化合物とを含有する固体電解質組成物を用いることにより、固体粒子間における高い結着性を有し、高いサイクル特性を有する全固体二次電池を実現できることを見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
(1)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、アニオン重合性官能基を有する化合物とを含有する固体電解質組成物。
(2)アニオン重合性官能基を有する化合物が下記一般式(1a)または(1b)で表される(1)に記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000004
上記式中、R~Rは各々独立に1価の電子求引性基を示し、Rは、RおよびRが結合する炭素原子との結合部位が電子求引性である、2価の電子求引性基を示し、Rは水素原子または有機基を示す。Xはm+n価の連結基を示し、mは0~10の整数、nは2~10の整数である。RおよびR、RおよびRは、それぞれ連結して環を形成していてもよい。
(3)アニオン重合性官能基を有する化合物が下記条件を満たす(2)に記載の固体電解質組成物。
(条件)
~Rが各々独立にニトロ基、シアノ基、-C(=O)OR、-C(=O)R、フルオロ基で置換されたアルキル基、または、ニトロ基、シアノ基、-C(=O)OR、-C(=O)Rおよびフルオロ基の少なくともいずれかで置換されたアリール基であり、Rが*-C(=O)OR-、*-C(=O)R-、フルオロ基で置換されたアルキレン基、または、ニトロ基、シアノ基、-C(=O)OR、-C(=O)Rおよびフルオロ基の少なくともいずれかで置換されたアリーレン基である。RおよびRは各々独立に水素原子、アルキル基またはアリール基であり、RおよびRは各々独立に単結合、アルキレン基またはアリーレン基である。*は、RおよびRが結合する炭素原子との結合部位を示す。
(4)アニオン重合性官能基を有する化合物が、アニオン重合性官能基を1分子中に2つ以上有する(1)~(3)のいずれか1つに記載の固体電解質組成物。
(5)アニオン重合性官能基を有する化合物の分子量が100以上1,000以下である(1)~(4)のいずれか1つに記載の固体電解質組成物。
(6)固体電解質組成物中の全固形分に対するアニオン重合性官能基を有する化合物の含有量が2質量%未満である(1)~(5)のいずれか1つに記載の固体電解質組成物。
(7)分散媒体を含有する(1)~(6)のいずれか1つに記載の固体電解質組成物。
(8)活物質を含有する(1)~(7)のいずれか1つに記載の固体電解質組成物。
(9)粒子分散剤を含有する(1)~(8)のいずれか1つに記載の固体電解質組成物。
(10)無機固体電解質が硫化物系無機固体電解質である(1)~(9)のいずれか1つに記載の固体電解質組成物。
(11)無機固体電解質を分散媒体の存在下で分散して、スラリー化する工程と、
 得られたスラリーに、アニオン重合性官能基を有する化合物を加える工程とを含む固体電解質組成物の製造方法。
(12)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、無機固体電解質と結合する下記一般式(2A)または(2B)で表される繰り返し単位を有するアニオン重合体とを含有する固体電解質含有シート。
Figure JPOXMLDOC01-appb-C000005
上記式中、R11AおよびR12Aは各々独立に1価の電子求引性基を示し、R13Bは1価の電子求引性基または-R14B-*を示し、R14Bは、R13BおよびR14Bが結合する炭素原子との結合部位が電子求引性である、2価の電子求引性基を示す。*は結合手を示す。
11AおよびR12A、R13BおよびR14Bは、それぞれ連結して環を形成していてもよい。
(13) (1)~(10)のいずれか1つに記載の固体電解質組成物を基材上に塗布し、塗膜を形成する工程と、
 上記塗膜をアニオン重合の進行により硬化させる工程とを含む固体電解質含有シートの製造方法。
(14)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質を分散媒体の存在下で分散して、スラリー化する工程と、
 得られたスラリーを基材上に塗布し、塗膜を形成する工程と、
 形成した塗膜上に、アニオン重合性官能基を有する化合物の溶液を塗布して含浸させ、シートを形成する工程と、
 形成したシートをアニオン重合の進行により硬化させる工程とを含む固体電解質含有シートの製造方法。
(15)負極活物質層、固体電解質層および正極活物質層をこの順に有してなる全固体二次電池であって、
 上記の負極活物質層、固体電解質層および正極活物質層のうち少なくとも1層が、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、無機固体電解質と結合する下記一般式(2A)または(2B)で表される繰り返し単位を有するアニオン重合体とを含有する全固体二次電池。
Figure JPOXMLDOC01-appb-C000006
上記式中、R11AおよびR12Aは各々独立に1価の電子求引性基を示し、R13Bは1価の電子求引性基または-R14B-*を示し、R14Bは、R13BおよびR14Bが結合する炭素原子との結合部位が電子求引性である、2価の電子求引性基を示す。*は結合手を示す。
11AおよびR12A、R13BおよびR14Bは、それぞれ連結して環を形成していてもよい。
(16)一般式(2A)または(2B)で表される繰り返し単位中、シアノ基を含有する繰り返し単位の含有割合が30質量%超である(15)に記載の全固体二次電池。
(17) (13)または(14)に記載の固体電解質含有シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、メタアクリル及び/又はアクリルを意味する。また、単に「アクリロイル」又は「(メタ)アクリロイル」と記載するときは、メタアクリロイル及び/又はアクリロイルを意味する。
 本明細書において、特定の符号で表示された置換基および連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。
 本明細書において、質量平均分子量(Mw)は、特段の断りがない限り、GPCによってポリスチレン換算の分子量として計測することができる。このとき、GPC装置HLC-8220(東ソー(株)社製)を用い、カラムはG3000HXL+G2000HXLを用い、23℃で流量は1mL/minで、RIで検出することとする。溶離液としては、THF(テトラヒドロフラン)、クロロホルム、NMP(N-メチル-2-ピロリドン)、m-クレゾール/クロロホルム(湘南和光純薬(株)社製)から選定することができ、溶解するものであればTHFを用いることとする。
 本発明の固体電解質組成物は、全固体二次電池における固体電解質層及び/又は活物質層の材料として用いたときに、固体粒子間の結着性を高め、充放電の繰り返しに起因する固体粒子間の界面抵抗の上昇を抑制し、サイクル特性を向上できるという優れた効果を奏する。また、本発明の固体電解質含有シート及び全固体二次電池は、結着性及び/又はサイクル特性に優れる。
 また、本発明の製造方法によれば、本発明の、固体電解質組成物、固体電解質含有シート及び全固体二次電池それぞれを好適に製造することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。
[固体電解質組成物]
 本発明の固体電解質組成物は、周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質と、アニオン重合性官能基を有する化合物とを含む。以下、その好ましい実施形態について説明する。
(無機固体電解質)
 本発明の固体電解質組成物は、無機固体電解質を含有する。
 無機固体電解質の固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導度材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質およびリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、カチオン及びアニオンに解離又は遊離していない。この点で、電解液やポリマー中でカチオン及びアニオンが解離又は遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族又は第2族に属する金属元素のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導度を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができ、アニオン重合性官能基を有する化合物に対する良好なアニオン重合開始剤として作用する観点から、硫化物系無機固体電解質が好ましく用いられる。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族又は第2族に属する金属元素のイオン伝導度を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導度を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 例えば下記式(1)で示される組成を満たすリチウムイオン伝導無機固体電解質が挙げられ、好ましい。
   La1b1c1d1e1 (1)
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。
 Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。中でも、B、Sn、Si、Al又はGeが好ましく、Sn、Al又はGeがより好ましい。
 Aは、I、Br、Cl又はFを示し、I又はBrが好ましく、Iが特に好ましい。
 L、M及びAは、それぞれ、上記元素の1種又は2種以上とすることができる。
 a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~1:1:2~12:0~5を満たす。a1はさらに、1~9が好ましく、1.5~4がより好ましい。b1は0~0.5が好ましい。d1はさらに、3~7が好ましく、3.25~4.5がより好ましい。e1はさらに、0~3が好ましく、0~1がより好ましい。
 式(1)において、L、M、P、S及びAの組成比は、好ましくはb1、e1が0であり、より好ましくはb1=0、e1=0で且つa1、c1及びd1の比がa1:c1:d1=1~9:1:3~7であり、さらに好ましくはb1=0、e1=0で且つa1:c1:d1=1.5~4:1:3.25~4.5である。各元素の組成比は、後述するように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、[1]硫化リチウム(LiS)と硫化リン(例えば五硫化二燐(P))、[2]硫化リチウムと単体燐及び単体硫黄の少なくとも一方、又は[3]硫化リチウムと硫化リン(例えば五硫化二燐(P))と単体燐及び単体硫黄の少なくとも一方、の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは65:35~85:15、より好ましくは68:32~77:23である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度をより高めることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 硫化物系無機固体電解質の具体的な化合物例としては、例えば、LiSと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。より具体的には、LiS-P、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPOおよびLi10GeP12などが挙げられる。その中でも、LiS-P、LiS-GeS-Ga、LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPO4、LiS-LiI-LiO-P、LiS-LiO-P、LiS-LiPO-Pおよび/またはLiS-GeS-P、Li10GeP12からなる結晶質、非晶質若しくは結晶質と非晶質混合の原料組成物が、高いリチウムイオン伝導度を有するので好ましい。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法及び溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 中でも、LiS-P、LGPS(Li10GeP12)およびLiS-P-SiS等が好ましい。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族又は第2族に属する金属元素のイオン伝導度を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に限定されないが、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 さらに、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
 その中でも、LLT、LixbLaybZrzbbb mbnb(Mbb、xb、yb、zb、mb及びnb上記の通りである。)、LLZ、LiBO、LiBO-LiSOおよびLixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xd、yd、zd、ad、md及びndは上記の通りである。)が好ましく、LLZ、LLT、LAGP(Li1.5Al0.5Ge1.5(PO)およびLATP([Li1.4TiSi0.42.612]-AlPO)がより好ましい。
 無機固体電解質は粒子であることが好ましい。粒子状の無機固体電解質の体積平均粒子径は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質の体積平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 無機固体電解質の固体電解質組成物中における含有量は、界面抵抗の低減及び電池特性維持効果(サイクル特性の向上)の両立を考慮したとき、固形分100質量%において、5質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 また、固体電解質組成物中の無機固体電解質の含有量は、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。上限としては、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。
 ただし、正極活物質又は負極活物質を含有する場合、固体電解質組成物中の無機固体電解質の含有量は、正極活物質又は負極活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 なお、本明細書において固形分とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒体以外の成分を指す。
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(アニオン重合性官能基を有する化合物)
 本発明の固体電解質組成物は、アニオン重合性官能基を有する化合物を含有する。
 アニオン重合性とは、アニオンを重合開始種として、アニオンによる付加反応を介してモノマー単位が連続的に結合を形成する性質をいう。
 一般的に、ビニルモノマーのラジカル重合性、アニオン重合性およびカチオン重合性は、ビニル基に結合している置換基の共鳴安定化および極性の効果によって決まることが知られている。Q-eスキームはこのことを経験的なパラメータとして定量化している。Qはモノマーの共役効果(共鳴安定化の程度)、eはモノマーの極性効果を示す。Q-eスキームによれば、Q値が2.0以上であり、かつe値が0.8以上であるモノマーが、アニオン重合性を発現しやすい。なかでも、Q値が4.0以上であり、かつe値が0.9以上であるモノマーがよりアニオン重合性を発現しやすい。現実的な上限値は、Q値が15以下であり、かつe値が4.0以下である。
 本発明に用いられるアニオン重合性官能基を有する化合物としては、上記好ましいQ値およびe値を有するビニルモノマー、ならびに上記好ましいQ値およびe値を有するビニルモノマーを置換基として有する化合物が好ましい。
 具体的には、本発明に用いられるアニオン重合性官能基を有する化合物は、下記条件1または2を満たすことがより好ましく、後述の一般式(1a)または(1b)で表されることがさらに好ましい。このような構造を有することで、無機固体電解質に含まれる金属カチオンの対アニオンが、アニオン重合性官能基の有する二重結合に付加しやすく、その後、アニオン重合により成長が進行し、ポリマーや架橋構造が形成される。上記反応の結果、本発明に用いられるアニオン重合性官能基は無機固体電解質と直接共有結合を形成しているため、本発明の固体電解質組成物を用いて作製した全固体二次電池は、優れた結着性およびサイクル特性を示す。
1)下記条件1または2を満たす、アニオン重合性官能基を有する化合物
(条件1):下記一般式(1A)で表される、アニオン重合性官能基を有する化合物。
(条件2):アニオン重合性官能基として、下記一般式(1B)で表される基を有する化合物。
Figure JPOXMLDOC01-appb-C000007
 上記式中、R1AおよびR2Aは各々独立に1価の電子求引性基を示し、R3Bは1価の電子求引性基または-R4B-*を示し、R4Bは、R3BおよびR4Bが結合する炭素原子との結合部位が電子求引性である、2価の電子求引性基を示す。*はアニオン重合性官能基としての結合手を示す。
 R1AおよびR2A、R3BおよびR4Bは、それぞれ連結して環を形成していてもよい。
 上記条件2を満たす、アニオン重合性官能基を有する化合物は、上記一般式(1B)で表される基を化合物中のいずれに有していてもよい。
 その態様としては、例えば、化合物中に上記一般式(1B)で表される基を1つ以上有する単官能化合物および2つ以上有する多官能化合物が挙げられる。また、別の態様としては、ポリマー主鎖及び/又は側鎖に上記一般式(1B)で表される基を有するポリマーが挙げられる。合成上の観点からは、ポリマー側鎖に上記一般式(1B)で表される基を有するポリマーが好ましく挙げられる。ここで、ポリマーは本発明の効果を奏する限りどのような構造であってもよく、例えば、ランダム、交互、ブロックおよびグラフトのいずれの共重合体でもよい。また、ポリマー鎖は炭素-炭素結合に限らず、アミド結合、エステル結合、ウレタン結合およびウレア結合等を有していてもよい。
 以下、R1A、R2AおよびR3Bにおける1価の電子求引性基、ならびに、R4Bにおける2価の電子求引性基について詳細を説明する。
i)1価の電子求引性基
 R1A、R2AおよびR3Bにおける1価の電子求引性基は、固体電解質組成物を取り扱う際の安定性と、固体電解質組成物を塗布した際の硬化性との両立の観点から、各々独立に、ニトロ基、シアノ基、-C(=O)OR、-C(=O)R、フルオロ基で置換されたアルキル基、ならびに、ニトロ基、シアノ基、-C(=O)OR、-C(=O)Rおよびフルオロ基の少なくともいずれかで置換されたアリール基のいずれかが好ましい。ここで、RおよびRは、各々独立に、水素原子、アルキル基またはアリール基を示す。
 1価の電子求引性基ならびにRおよびRにおける置換基としては、後述の置換基Pの記載を好ましく適用することができる。1価の電子求引性基ならびにRおよびRにおける置換基のより好ましい炭素数等を以下に示す。
 フルオロ基で置換されたアルキル基において、置換基(フルオロ基)の数は、特に限定されず、1個以上で、置換される前のアルキル基が有する水素原子数以下であることが好ましく、1~5個がより好ましく、1~3個がさらに好ましい。アルキル基を構成する炭素数としては、1~16が好ましく、1~12がより好ましく、1~8がさらに好ましく、1~6が特に好ましく、1~3が最も好ましい。R~Rにおけるフルオロ基で置換されたアルキル基は、パーフルオロアルキル基が好ましい。
 具体的には、例えば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、2-フルオロエチル、1,1-ジフルオロエチル、1,2-ジフルオロエチルおよびペンタフルオロエチルが挙げられる。
 ニトロ基、シアノ基、-C(=O)OR、-C(=O)Rおよびフルオロ基の少なくともいずれかで置換されたアリール基において、置換基の数は、特に限定されず、1個以上で、置換される前のアリール基が有する水素原子数以下であることが好ましく、1~5個がより好ましい。アリール基を構成する炭素数としては、6~18が好ましく、6~14がより好ましく、6~12が特に好ましい。置換基位置番号は、フェニル基においては2位、4位及び/又は6位が好ましく、4位がより好ましい。なかでも、ニトロ基、シアノ基およびフルオロ基の少なくともいずれかで置換されたアリール基が好ましく、ニトロ基、シアノ基およびフルオロ基の少なくともいずれかで置換されたフェニル基が好ましい。
 具体的には、例えば、2-ニトロフェニル、2-シアノフェニル、2-フルオロフェニル、4-ニトロフェニル、4-シアノフェニル、4-フルオロフェニル、2,4-ジフルオロフェニル、2,4-ジニトロフェニル、2,4-ジシアノフェニル、2,4,6-トリフルオロフェニルおよび1-フルオロ-2-ナフチルが挙げられる。
 RおよびRにおけるアルキル基としては、アルキル基(炭素数は1~20が好ましく、1~16がより好ましく、1~8がさらに好ましく、1~6が特に好ましく、1~3が最も好ましい。)、シクロアルキル基(炭素数は3~20が好ましい。)およびアラルキル基(炭素数は7~23が好ましい。)が挙げられる。具体的には、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、t-ブチル、n-オクチル、ドデシル、ヘプタデシル、シクロヘキシル、イソボルニルおよびベンジルが挙げられる。アルキル基は無置換アルキル基および置換アルキル基のいずれでもよい。
 アリール基としては、炭素数6~18が好ましく、炭素数6~14がより好ましく、炭素数6~12が特に好ましい。具体的には、例えば、フェニル、トリルおよびナフチルが挙げられる。アリール基は無置換アリール基および置換アリール基のいずれでもよいが、置換アリール基としては、上述のフルオロ基で置換されたアリール基が好ましく挙げられる。
 RおよびRは、各々独立に水素原子、アルキル基またはアリール基であり、水素原子またはアルキル基が好ましい。
 RおよびRはアルキル基がさらに好ましく、下記官能基群Iから選択される少なくとも1種の官能基で置換されたアルキル基であることが特に好ましい。
<官能基群I>
ヒドロキシ基、メルカプト基、カルボキシ基、スルホン酸基、リン酸基、アミノ基、シアノ基、イソシアネート基、酸無水物基、エポキシ基、オキセタニル基、アルコキシ基、カルボニル基、3環以上の環構造を有する基、アミド結合、ウレア結合、ウレタン結合、イミド結合、イソシアヌレート結合。
 ここで、官能基とはヒドロキシ基等の官能基とアミド結合等の結合の両方を意味する。
 また、酸無水物基とは、ジカルボン酸の酸無水物から得られる基(少なくとも1つの水素原子を結合手「-」に置き換えた基)を意味する。
 アミノ基は、炭素数は0~12が好ましく、0~6がより好ましく、0~2が特に好ましい。
 スルホン酸基はそのエステルや塩でもよい。エステルの場合、炭素数は1~24が好ましく、1~12がより好ましく、1~6が特に好ましい。
 リン酸基はそのエステルや塩でもよい。エステルの場合、炭素数は1~24が好ましく、1~12がより好ましく、1~6が特に好ましい。
 その他の官能基については、後述の置換基Pの好ましい記載を適用することができる。
 なお、上記官能基は、置換基として存在しても、連結基として存在していてもよい。例えば、アミノ基は2価のイミノ基または3価の窒素原子として存在してもよい。
 3環以上の環構造を有する基は、コレステロール環構造を有する基、または芳香族基が3つ以上縮環した構造を有する基が好ましく、コレステロール残基またはピレニル基がより好ましい。
 上記官能基群から選択される官能基としては、ヒドロキシ基、カルボキシ基、スルホン酸基、リン酸基、シアノ基、アルコキシ基および3環以上の環構造を有する基のいずれかであることが好ましく、カルボキシ基、スルホン酸基、リン酸基および3環以上の環構造を有する基のいずれかであることがより好ましい。
ii)2価の電子求引性基
 R4Bにおける2価の電子求引性基は、*-C(=O)OR-、*-C(=O)R-、フルオロ基で置換されたアルキレン基、ならびに、ニトロ基、シアノ基、-C(=O)OR、-C(=O)Rおよびフルオロ基の少なくともいずれかで置換されたアリーレン基のいずれかが好ましい。ここで、RおよびRは、上述の1価の電子求引性基におけるRおよびRと同義であり、RおよびRは、各々独立に単結合、アルキレン基またはアリーレン基を示す。*は、R3BおよびR4Bが結合する炭素原子との結合部位を示す。
 R4Bにおける2価の電子求引性基としては、後述の置換基Pにおける1つの水素原子を結合手「-」に置き換えた、R3BおよびR4Bが結合する炭素原子との結合部位が電子求引性である2価の基の記載を好ましく適用することができる。R4Bにおける2価の電子求引性基のより好ましい炭素数等を以下に示す。
 フルオロ基で置換されたアルキレン基において、置換基(フルオロ基)の数は、特に限定されず、1個以上で、置換される前のアルキレン基が有する水素原子数以下であることが好ましく、1~4個がより好ましく、1~2個がさらに好ましい。アルキレン基を構成する炭素数としては、1~16が好ましく、1~12がより好ましく、1~8がさらに好ましく、1~6が特に好ましく、1~3が最も好ましい。R4Bにおけるフルオロ基で置換されたアルキレン基は、パーフルオロアルキレン基であることが好ましい。
 具体的には、例えば、フルオロメチレン、ジフルオロメチレン、フルオロエチレン、1,1-ジフルオロエチレン、1,2-ジフルオロエチレンおよびテトラフルオロエチレンが挙げられる。
 ニトロ基、シアノ基、-C(=O)OR、-C(=O)Rおよびフルオロ基の少なくともいずれかで置換されたアリーレン基において、置換基の数は、特に限定されず、1個以上で、置換される前のアリーレン基が有する水素原子数以下であることが好ましく、1~4個がより好ましい。アリーレン基を構成する炭素数としては、6~18が好ましく、6~14がより好ましく、6~12が特に好ましい。置換基位置番号としては、フェニレン基においては、R3BおよびR4Bが結合する炭素原子と結合する遊離原子価炭素の番号を1とすると、2位、4位及び6位の少なくともいずれかに置換基を有することが好ましく、2位および4位の少なくともいずれかに置換基を有することがより好ましい。なかでも、ニトロ基、シアノ基およびフルオロ基の少なくともいずれかで置換されたアリーレン基が好ましく、ニトロ基、シアノ基およびフルオロ基の少なくともいずれかで置換されたフェニレン基が好ましい。
 具体的には、例えば、2-ニトロ-1,3(または1,4)-フェニレン、2-シアノ-1,3(または1,4)-フェニレン、2-フルオロ-1,3(または1,4)-フェニレン、4-ニトロ-1,3(または1,2)-フェニレン、4-シアノ-1,3(または1,2)-フェニレン、4-フルオロ-1,3(または1,2)-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,3-ジニトロ-1,4-フェニレン、2,3-ジシアノ-1,4-フェニレンおよび1-フルオロ-ナフタレン-2,6-ジイルが挙げられる。
 RおよびRにおけるアルキレン基としては、炭素数1~16が好ましく、炭素数1~12がより好ましく、炭素数1~8がさらに好ましく、炭素数1~6が特に好ましく、1~3が最も好ましい。具体的には、例えば、メチレン、エチレン、n-プロピレン、イソプロピレン、n-ブチレン、t-ブチレンおよびn-オクチレンが挙げられる。アルキレン基は無置換アルキレン基および置換アルキレン基のいずれでもよいが、置換アルキレン基としては、上述のフルオロ基で置換されたアルキレン基が好ましく挙げられる。
 アリーレン基としては、炭素数6~18が好ましく、炭素数6~14がより好ましく、炭素数6~12が特に好ましい。具体的には、例えば、フェニレン、トリレンおよびナフタレンジイルが挙げられる。アリーレン基は無置換アリーレン基および置換アリーレン基のいずれでもよいが、置換アリーレン基としては、上述のフルオロ基で置換されたアリーレン基が好ましく挙げられる。
 Rは、単結合、アルキレン基またはアリーレン基であり、単結合またはアルキレン基が好ましい。
 Rとしては、単結合またはアルキレン基が好ましい。
 特に好ましいR1AおよびR2Aの組み合わせは、R1Aがシアノ基、トリフルオロメチル基および-C(=O)ORのいずれかであり、R2Aが-C(=O)ORである。
 また、R3Bは1価の電子求引性基であることが好ましく、特に好ましいR3BおよびR4Bの組み合わせは、R3Bがシアノ基、トリフルオロメチル基および-C(=O)ORのいずれかであり、R4Bが*-C(=O)OR-である。
 このような置換基の組み合わせを有するアニオン重合性官能基を有する化合物は、固体電解質組成物を取り扱う際の安定性と、固体電解質組成物を塗布した際の硬化性とを両立することができる。
2)一般式(1a)または(1b)で表される、アニオン重合性官能基を有する化合物
Figure JPOXMLDOC01-appb-C000008
 上記式中、R~Rは各々独立に1価の電子求引性基を示し、Rは、RおよびRが結合する炭素原子との結合部位が電子求引性である、2価の電子求引性基を示し、Rは水素原子または有機基を示す。Xはm+n価の連結基を示し、mは0~10の整数、nは2~10の整数である。RおよびR、RおよびRは、それぞれ連結して環を形成していてもよい。
 R~Rにおける1価の電子求引性基およびRにおける2価の電子求引性基は、上記一般式(1A)および(1B)における1価の電子求引性基および2価の電子求引性基と同義である。
 Rにおける有機基としては、例えば、アルキル基、アリール基、-C(=O)ORおよび-C(=O)Rが挙げられる。
 Rは、水素原子、アルキル基または-C(=O)Rが好ましく、アルキル基または-C(=O)Rがより好ましい。RおよびRは下記官能基群IIから選択される少なくとも1種の官能基で置換されたアルキル基であることが好ましい。
<官能基群II>
ヒドロキシ基、メルカプト基、カルボキシ基、スルホン酸基、リン酸基、アミノ基、シアノ基、イソシアネート基、酸無水物基、エポキシ基、オキセタニル基、アルコキシ基、カルボニル基、3環以上の環構造を有する基、アミド結合、ウレア結合、ウレタン結合、イミド結合、イソシアヌレート結合。
 上記官能基群IIにおける官能基の詳細は、上述の官能基群Iにおける記載を好ましく適用することができる。
 nは2~60の整数が好ましく、2~10の整数がより好ましい。
 mは0~10の整数が好ましく、0~4の整数がより好ましい。
 Xは2~60価の有機基が好ましく、3~12価の有機基がより好ましい。
 Xにおけるn+m価の連結基としては、例えば、下記一般式(Q-1)~(Q-19)で表される多環有機基、下記一般式(Q-20)~(Q-38)で表されるペンタエリトリトール残基、ジペンタエリトリトール残基、ジアミノアルキレン残基およびトリメチロールアルカン残基等、下記一般式(H-1)~(H-3)で表される環状シロキサン残基ならびに下記一般式(P-1)~(P-8)で表されるシルセスキオキサン残基などが好ましく挙げられる。
 なお、下記一般式(Q-1)~(Q-38)におけるYならびに下記一般式(H-1)~(H-3)および(P-1)~(P~8)におけるRは、任意の連結基であり、RまたはRとの結合部位を示す。
 任意の連結基とは、例えば、単結合、アルキレン基(炭素数は1~18が好ましく、1~10がより好ましい。)、-O-、-C(=O)-、-C(=O)O-および-S-が挙げられ、単結合、アルキレン基または-O-が好ましい。
 下記一般式中におけるa~fは繰り返し数を表し、各々独立に、2~20が好ましく、3~10がより好ましい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 上記条件1を満たすアニオン重合性官能基を有する化合物の具体例としては、例えば、2-メチレンマロノニトリル、HC=C(COOR(2-メチレンマロン酸、2-メチレンマロン酸ジメチル、2-メチレンマロン酸ジエチル、2-メチレンマロン酸ジイソプロピル、2-メチレンマロン酸ブチル、2-メチレンマロン酸t-ブチルおよび2-メチレンマロン酸シクロヘキシル等)、HC=C(CN)(COOR)(2-シアノアクリル酸、2-シアノアクリル酸メチル、2-シアノアクリル酸エチル、2-シアノアクリル酸プロピル、2-シアノアクリル酸イソプロピル、2-シアノアクリル酸ブチル、2-シアノアクリル酸ベンジル、2-シアノアクリル酸メトキシエチル、2-シアノアクリル酸t-ブチル、2-シアノアクリル酸イソボルニル、2-シアノアクリル酸シクロヘキシル、2-シアノアクリル酸ドデシルおよび2-シアノアクリル酸ステアリル等)、HC=C(CF)(COOR)(2-(トリフルオロメチル)アクリル酸、2-(トリフルオロメチル)アクリル酸メチル、2-(トリフルオロメチル)アクリル酸エチル、2-(トリフルオロメチル)アクリル酸ヒドロキシエチル、2-(トリフルオロメチル)アクリル酸シアノエチル、2-(トリフルオロメチル)アクリル酸カルボキシエチル、2-(トリフルオロメチル)アクリル酸ピレニルメチル、2-(トリフルオロメチル)アクリル酸コレステロイル、2-(トリフルオロメチル)アクリル酸プロピル、2-(トリフルオロメチル)アクリル酸イソプロピル、2-(トリフルオロメチル)アクリル酸ブチル、2-(トリフルオロメチル)アクリル酸ベンジル、2-(トリフルオロメチル)アクリル酸メトキシエチル、2-(トリフルオロメチル)アクリル酸t-ブチル、2-(トリフルオロメチル)アクリル酸イソボロニル、2-(トリフルオロメチル)アクリル酸シクロヘキシル、2-(トリフルオロメチル)アクリル酸ドデシルおよび2-(トリフルオロメチル)アクリル酸ステアリル等)、HC=C(CNO)(COOR)(2-(4-ニトロフェニル)アクリル酸、2-(4-ニトロフェニル)アクリル酸メチル、2-(4-ニトロフェニル)アクリル酸エチル、2-(4-ニトロフェニル)アクリル酸プロピル、2-(4-ニトロフェニル)アクリル酸イソプロピル、2-(4-ニトロフェニル)アクリル酸ブチル、2-(4-ニトロフェニル)アクリル酸ベンジル、2-(4-ニトロフェニル)アクリル酸メトキシエチル、2-(4-ニトロフェニル)アクリル酸t-ブチル、2-(4-ニトロフェニル)アクリル酸イソボルニル、2-(4-ニトロフェニル)アクリル酸シクロヘキシル、2-(4-ニトロフェニル)アクリル酸ドデシル、2-(4-ニトロフェニル)アクリル酸ステアリル、2-(4-ニトロフェニル)アクリル酸カルボキシエチル、2-(4-ニトロフェニル)アクリル酸ピレニルメチルおよび2-(4-ニトロフェニル)アクリル酸コレステロイル等)ならびにHC=C(CCN)(COOR)(2-(4-シアノフェニル)アクリル酸、2-(4-シアノフェニル)アクリル酸メチル、2-(4-シアノフェニル)アクリル酸エチル、2-(4-シアノフェニル)アクリル酸プロピル、2-(4-シアノフェニル)アクリル酸イソプロピル、2-(4-シアノフェニル)アクリル酸ブチル、2-(4-シアノフェニル)アクリル酸ベンジル、2-(4-シアノフェニル)アクリル酸メトキシエチル、2-(4-シアノフェニル)アクリル酸t-ブチル、2-(4-シアノフェニル)アクリル酸イソボルニル、2-(4-シアノフェニル)アクリル酸シクロヘキシル、2-(4-シアノフェニル)アクリル酸ドデシル、2-(4-シアノフェニル)アクリル酸ステアリル、2-(4-シアノフェニル)アクリル酸カルボキシエチル、2-(4-シアノフェニル)アクリル酸ピレニルメチルおよび2-(4-シアノフェニル)アクリル酸コレステロイル等)が挙げられる。
 上記条件2を満たすアニオン重合性官能基を有する化合物の具体例としては、以下の化合物が挙げられるが、本発明はこれらに限定して解釈されるものではない。なお、(b-14)~(b-16)において、括弧横の数値は質量比を表す。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 本明細書において置換または無置換を明記していない置換基(連結基についても同様)については、その基に適宜の置換基を有していてもよい意味である。これは置換または無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Pが挙げられる。
 置換基Pとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、ただし本明細書においてアルキル基というときには通常シクロアルキル基を含む意味である。)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、アラルキル基(好ましくは炭素数7~23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、環構成原子として酸素原子、硫黄原子および窒素原子から選択される少なくとも1つを有する5又は6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラニル、テトラヒドロフラニル、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等、ただし本明細書においてアルコキシ基というときには通常アリーロイル基を含む意味である。)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素原子数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル等)、アリーロイル基(好ましくは炭素原子数7~23のアリーロイル基、例えば、ベンゾイル等、ただし本明細書においてアシル基というときには通常アリーロイル基を含む意味である。)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ等)、アリーロイルオキシ基(好ましくは炭素原子数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等、ただし本明細書においてアシルオキシ基というときには通常アリーロイルオキシ基を含む意味である。)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルスルファニル基(好ましくは炭素原子数1~20のアルキルスルファニル基、例えば、メチルスルファニル、エチルスルファニル、イソプロピルスルファニル、ベンジルスルファニル等)、アリールスルファニル基(好ましくは炭素原子数6~26のアリールスルファニル基、例えば、フェニルスルファニル、1-ナフチルスルファニル、3-メチルフェニルスルファニル、4-メトキシフェニルスルファニル等)、アルキルスルホニル基(好ましくは炭素原子数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素原子数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素原子数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素原子数6~42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素原子数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素原子数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素原子数0~20のホスホリル基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素原子数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素原子数0~20のホスフィニル基、例えば、-P(R)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルイミノ基((メタ)アクリルアミド基)、ヒドロキシ基、スルファニル基、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
 また、これらの置換基Pで挙げた各基は、上記の置換基Pがさらに置換していてもよい。
 化合物、置換基および連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基および/またはアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
 本発明に用いられるアニオン重合性官能基を有する化合物は、上記一般式(1B)で表されるアニオン重合性官能基を2つ以上有する化合物が好ましく、上記一般式(1b)で表されることがより好ましい。これらのアニオン重合性官能基を有する化合物は、アニオン重合性官能基を1分子中に2つ以上有するため、アニオン重合による強固な架橋体、すなわち強固な硬化膜が形成され、結着性とサイクル寿命を向上できる点から好ましい。
 上記一般式(1A)または(1a)で表されるアニオン重合性官能基を有する化合物は、例えば、対応するアニオン重合性カルボン酸を塩化チオニルまたはフタル酸ジクロリド存在下で酸クロ化したのち蒸留精製し、これに2,6-ルチジンとアルコール類で処理することでエステル化することで得ることができる。
 上記一般式(1b)で表されるアニオン重合性官能基を有する化合物は、例えば、以下の方法により合成することができる。すなわち、多分岐型骨格(スター型、ハイパーブランチ型およびデンドリマー型)の母核となるXにおける末端部分が、ヒドロキシ基、カルボキシ基、アミノ基およびメルカプト基等の求核性官能基である化合物、または、ハロゲン原子(Cl、Br、I)、-OTsおよび-OMs等の脱離基を有する化合物に対して、アニオン重合性官能基と上記化合物のXにおける末端部分との反応性官能基(ヒドロキシ基、カルボキシ基、アミノ基およびメルカプト基等)とを有する化合物を反応させることで得られる。ここで、Tsはトシル基、Msはメシル基を表す。
 例えば、ヒドロキシ基とカルボキシ基の反応からエステル結合、アミノ基とカルボキシ基の反応からアミド結合、メルカプト基とカルボキシ基の反応からチオエステル結合を形成することにより、一般式(1b)で表されるアニオン重合性官能基を有する化合物が得られる。
 ハロゲン原子(Cl、Br、I)、-OTsおよび-OMs等の脱離基に対しては、ヒドロキシ基、アミノ基およびメルカプト基を反応させることで、それぞれ、エーテル結合、アミド結合、チオエーテル結合を形成させ、一般式(1b)で表されるアニオン重合性官能基を有する化合物が得られる。
 アニオン重合性官能基として、上記一般式(1B)で表されるアニオン重合性官能基を有する化合物も、上記一般式(1b)で表されるアニオン重合性官能基を有する化合物と同様の方法により合成することができる。
 本発明に用いられるアニオン重合性官能基を有する化合物の分子量は、アニオン重合の速度及び/又は架橋速度、また、不揮発性の観点から、100~200,000が好ましく、100~5,000がより好ましく、100~1,000がさらに好ましい。
 アニオン重合性官能基を有する化合物が繰返し単位を有する場合には、分子量とは質量平均分子量を意味する。質量平均分子量は、例えば、GPCを用いて測定することができる。
 本発明に用いられるアニオン重合性官能基を有する化合物の固体電解質組成物中における含有量は、十分な結着性を与えつつイオン伝導度を阻害しにくい観点から、固形分100質量%において、5質量%未満が好ましく、3質量%未満がより好ましく、2質量%未満が特に好ましい。下限値に特に制限はないが、0.1質量%以上が好ましい。
 本発明に用いられるアニオン重合性官能基を有する化合物は1種を単独で用いても、2種以上を組み合わせて用いてもよい。2種以上の組み合わせの中では、上記HC=C(CN)(COOR)と上記HC=C(CF)(COOR)の組み合わせが好ましく、シアノアクリレートとトリフルオロメチルアクリレートの組み合わせが最も好ましい。この場合、全てのアニオン重合性官能基中、シアノ基を有するアニオン重合性官能基の含有割合は、0~2質量%または30質量%超え100質量%以下であることが好ましく、30質量%超え100質量%以下であることがより好ましい。
 また、本発明の固体電解質組成物は、後述する他の機能性添加剤を含有してもよい。
 本発明に用いられるアニオン重合性官能基を有する化合物を含有する固体電解質組成物を用いて形成される全固体二次電池は、前述のように、高い結着性および優れたサイクル特性を示す。
(粒子分散剤)
 本発明の固体電解質組成物は、粒子分散剤を含有することも好ましい。
 粒子分散剤とは、正極活物質または負極活物質と、化学的結合または物理的吸着により表面に偏在化している有機化合物で、反応性不飽和結合を有していることが好ましい。粒子分散剤を添加することで、無機固体電解質および電極活物質のいずれかの濃度が高い場合にも凝集を抑制し、均一な電極層及び/又は固体電解質層を形成することができ、全固体二次電池の出力向上に効果を奏する。
 また、本発明に用いられるアニオン重合性官能基を有する化合物と、アニオン付加が可能な反応性不飽和結合を有する粒子分散剤とを併用することも、無機固体電解質と活物質間の結着性をより高めることができるため好ましい。これは、粒子分散剤におけるアニオン付加が可能な反応性不飽和結合が、アニオン重合性官能基を有する化合物の成長末端に付加して共有結合を形成することで、無機固体電解質と活物質間が、アニオン重合体を介して共有結合で連結されるためと考えられる。
 粒子分散剤は、分子量70以上3000未満の低分子またはオリゴマーからなり、下記官能基群(A)で示される官能基の少なくとも1種を含有することが好ましく、分子量70以上3000未満の低分子またはオリゴマーからなり、下記官能基群(A)で示される官能基の少なくとも1種と上記のアニオン付加が可能な反応性不飽和結合とを同一分子内に含有することがより好ましい。
官能基群(A):酸性基(例えば、カルボキシ基、スルホン酸基、リン酸基)、塩基性窒素原子を有する基、アルコキシシリル基、エポキシ基、オキセタニル基、イソシアネート基、シアノ基、スルファニル基、ヒドロキシ基および3環以上の縮環炭化水素基(例えば、ピレニル基)
 粒子分散剤の分子量としては、好ましくは70以上3000未満であり、より好ましくは100以上2000未満であり、さらに好ましくは500以上1000未満である。分子量が大きすぎると、粒子の凝集が生じやすくなり全固体二次電池の出力が低下するおそれがある。また、分子量が小さすぎると、固体電解質組成物を塗布し乾燥する段階で揮発しやすくなる。
 なお、オリゴマーの場合には、分子量とは質量平均分子量を意味する。質量平均分子量は、例えば、GPCを用いて測定することができる。
 上記官能基群(A)のなかでも酸性基、塩基性窒素原子を有する基、シアノ基および3環以上の縮環炭化水素基が好ましく、酸性基、塩基性窒素原子を有する基およびシアノ基がより好ましく、さらに好ましくは酸性基である。酸性基のなかでもカルボキシ基が最も好ましい。
 粒子分散剤が有するアニオン付加が可能な不飽和結合を有する基としては、例えば(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基およびスチリル基が挙げられ、好ましい。
 粒子分散剤の具体例としては、(メタ)アクリル酸、(メタ)アクリル酸(2-ピレニル)メチル、エリトリトールテトラアクリレートのカルボン酸部分変性体(アクリレート3置換、カルボン酸1置換体)およびジペンタエリトリトールヘキサメタクリレートのカルボン酸部分変性体(メタクリレート4置換、カルボン酸2置換体)が挙げられ、好ましい。
 粒子分散剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 固体電解質組成物中における含有量は、固体電解質組成物スラリーの分散安定性の観点から、固形分100質量%において、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることが特に好ましい。また、イオン伝導度を阻害しにくい観点から、上記含有量の上限としては、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることが特に好ましい。
(バインダー)
 本発明の固体電解質組成物は、バインダーを含有することも好ましい。
 本発明で使用するバインダーは、有機ポリマーであれば特に限定されない。
 本発明に用いることができるバインダーは、通常、電池材料の正極または負極用結着剤として用いられるバインダーが好ましく、特に制限はなく、例えば、以下に述べる樹脂からなるバインダーが好ましい。
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンの共重合物(PVdF-HFP)などが挙げられる
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム(ブタジエン-アクリロニトリル共重合体とも称す。)、ポリブタジエン、ポリイソプレンなどが挙げられる。
 アクリル樹脂としては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸イソプロピル、ポリ(メタ)アクリル酸イソブチル、ポリ(メタ)アクリル酸ブチル、ポリ(メタ)アクリル酸ヘキシル、ポリ(メタ)アクリル酸オクチル、ポリ(メタ)アクリル酸ドデシル、ポリ(メタ)アクリル酸ステアリル、ポリ(メタ)アクリル酸2-ヒドロキシエチル、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ベンジル、ポリ(メタ)アクリル酸グリシジル、ポリ(メタ)アクリル酸ジメチルアミノプロピル、およびこれらの樹脂を構成するモノマーの共重合体などが挙げられる。
 またそのほかのビニル系モノマーとの共重合体も好適に用いられる。例えば(メタ)アクリル酸メチル-スチレン共重合体、(メタ)アクリル酸メチル-アクリロニトリル共重合体および(メタ)アクリル酸ブチル-アクリロニトリル-スチレン共重合体などが挙げられる。
 上記ラジカル重合系ポリマー以外に、重縮合系ポリマーも用いることができる。重縮合系ポリマーとはたとえば、ウレタン樹脂、ウレア樹脂、アミド樹脂、イミド樹脂、ポリエステル樹脂、などを好適に用いることができる。
 重縮合系ポリマーはハードセグメント部位とソフトセグメント部位を有することが好ましい。ハードセグメント部位は分子間水素結合を形成しうる部位を示し、ソフトセグメント部位は一般的にガラス転移温度(Tg)が室温(25±5℃)以下で分子量が400以上の柔軟な部位を示す。
 これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 上記バインダーのガラス転移温度は、上限は50℃以下が好ましく、0℃以下がさらに好ましく、-20℃以下が最も好ましい。下限は-100℃以上が好ましく、-70℃以上がさらに好ましく、-50℃以上が特に好ましい。
 ガラス転移温度(Tg)は、乾燥試料を用いて、示差走査熱量計「X-DSC7000」(商品名、SII・ナノテクノロジー(株)社製)を用いて下記の条件で測定する。測定は同一の試料で2回実施し、2回目の測定結果を採用する。
    測定室内の雰囲気:窒素(50mL/min)
    昇温速度:5℃/min
    測定開始温度:-100℃
    測定終了温度:200℃
    試料パン:アルミニウム製パン
    測定試料の質量:5mg
    Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定する。
 上記バインダーを構成するポリマーの水分濃度は、100ppm(質量基準)以下が好ましく、Tgは100℃以下が好ましい。
 また、上記バインダーを構成するポリマーは、晶析させて乾燥させてもよく、ポリマー溶液をそのまま用いてもよい。金属系触媒(ウレタン化、ポリエステル化触媒=スズ、チタン、ビスマス)は少ない方が好ましい。重合時に少なくするか、晶析で触媒を除くことで、共重合体中の金属濃度を、100ppm(質量基準)以下とすることが好ましい。
 ポリマーの重合反応に用いる溶媒は、特に限定されない。なお、無機固体電解質および活物質と反応しないこと、さらにそれらを分解しない溶媒を用いることが望ましい。例えば、炭化水素系溶媒(トルエン、ヘプタン、キシレン)、エステル系溶媒(酢酸エチル、プロピレングリコールモノメチルエーテルアセテート)、エーテル系溶媒(テトラヒドロフラン、ジオキサン、1,2-ジエトキシエタン)、ケトン系溶媒(アセトン、メチルエチルケトン、シクロヘキサノン)、ニトリル系溶媒(アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル)およびハロゲン系溶媒(ジクロロメタン、クロロホルム)などを用いることができる。
 上記バインダーを構成するポリマーの質量平均分子量は10,000以上が好ましく、20,000以上がより好ましく、50,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。
 本発明において、ポリマーの分子量は、特に断らない限り、質量平均分子量を意味する。
 バインダーの固体電解質組成物中での含有量は、全固体二次電池に用いたときの良好な界面抵抗の低減性とその維持性を考慮すると、固形成分100質量%において、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。上限としては、電池特性の観点から、20質量%以下が好ましく、10質量%以下がより好ましく、10質量%以下がさらに好ましい。
 本発明では、バインダーの質量に対する、無機固体電解質と必要により含有させる電極活物質の合計質量(総量)の質量比[(無機固体電解質の質量+電極活物質の質量)/バインダーの質量]は、1,000~1の範囲が好ましい。この比率はさらに500~2がより好ましく、100~10がさらに好ましい。
 上記バインダーは粒子形状を保持している、ポリマー粒子であることも好ましい。本発明では、ポリ(メタ)アクリル酸メチル(PMMA)、メタクリル酸メチル-メタクリル酸共重合体(PMMA-PMA)またはメタクリル酸メチル-メタクリル酸リン酸エチル共重合体(PMMA-PHM)が好ましく用いられる。
 ここで、「ポリマー粒子」とは、後述の分散媒体に添加しても完全に溶解せず、粒子状のまま分散媒体に分散し、0.01μm超の平均粒子径を示すものを指す。
 ポリマー粒子は固形を保持していれば、形状は限定されない。ポリマー粒子は単一分散であっても多分散であってもよい。ポリマー粒子は真球状であっても扁平形状であってもよく、さらに無定形であってもよい。ポリマー粒子の表面は平滑であっても凹凸形状を形成していてもよい。ポリマー粒子はコアシェル構造を取ってもよく、コア(内核)とシェル(外殻)が同様の材料で構成されていても、異なる材質で構成されていてもよい。また中空であっても良く、中空率についても限定されない。
 ポリマー粒子は、界面活性剤、乳化剤または分散剤の存在下で重合する方法、分子量の増大に伴い結晶状に析出させる方法、によって合成することができる。
 また、既存のポリマーを機械的に破砕する方法またはポリマー液を再沈殿によって微粒子状にする方法を用いてもよい。
 ポリマー粒子の平均粒子径は、0.01μm~100μmが好ましく、0.05μm~50μmがより好ましく、0.1μm~20μmがさらに好ましく、0.2μm~10μmが特に好ましい。
 本発明に用いられるポリマー粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件および定義に基づくものとする。
 ポリマー粒子を任意の溶媒(固体電解質組成物の調製に用いる分散媒体。例えば、ヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
 なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記ポリマー粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していたポリマー粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
 なお、本発明に用いられるバインダーは市販品を用いることができる。また、常法により調製することもできる。
(分散媒体)
 本発明の固体電解質組成物は、分散媒体を含有することが好ましい。
 分散媒体は、固体電解質組成物に含まれる各成分を分散させるものであればよく、例えば、各種の有機溶媒が挙げられる。分散媒体の具体例としては下記のものが挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
 アミノ化合物溶媒としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレンなどが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物溶媒としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸ブチル、ペンタン酸ブチルなどが挙げられる。
 非水系分散媒体としては、上記芳香族化合物溶媒、脂肪族化合物溶媒等が挙げられる。
 本発明においては、中でも、アミノ化合物溶媒、エーテル化合物溶媒、ケトン化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒が好ましく、エーテル化合物溶媒、芳香族化合物溶媒及び脂肪族化合物溶媒がさらに好ましい。本発明においては、硫化物系無機固体電解質を用いて、さらに上記の特定の有機溶媒を選定することが好ましい。この組み合わせを選定することにより、硫化物系無機固体電解質に対して活性な官能基が含まれないため硫化物系無機固体電解質を安定に取り扱え、好ましい。
 分散媒体は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることがさらに好ましい。
 上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明において、固体電解質組成物中の分散媒体の含有量は、固体電解質組成物の粘度と乾燥負荷とのバランスを考慮して適宜に設定することができる。一般的には、固体電解質組成物中、20~99質量%が好ましく、25~70質量%がより好ましく、30~60質量%が特に好ましい。
(活物質)
 本発明の固体電解質組成物には、周期律表第1族又は第2族に属する金属元素のイオンの挿入放出が可能な活物質を含有してもよい。活物質としては、以下に説明するが、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質である金属酸化物が好ましい。
 本発明において、活物質(正極活物質、負極活物質)を含有する固体電解質組成物を、電極層用組成物(正極層用組成物、負極層用組成物)ということがある。
 -正極活物質-
 本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、硫黄などのLiと複合化できる元素などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、CuおよびVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、PまたはBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物および(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])およびLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiCoMnO4、LiFeMn、LiCuMn、LiCrMnおよびLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePOおよびLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類ならびにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩およびLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiOおよびLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO、NMC又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 正極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量がさらに好ましく、55~80質量%が特に好ましい。
 -負極活物質-
 本発明の固体電解質組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体およびリチウムアルミニウム合金等のリチウム合金、並びに、Sn、SiおよびIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵および放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維および活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、SbおよびBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、SbおよびSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 本発明においては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。なお、本発明において、上記炭素質材料は1種単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミルおよび旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式および湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵および放出できる炭素材料、リチウム、リチウム合金ならびにリチウムと合金可能な金属が好適に挙げられる。
 本発明においては、Si系の負極を適用することが好ましい。一般的にSi負極は、炭素負極(黒鉛およびアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位重量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましく、30~80質量%であることがより好ましく、40~75質量%であることがさらに好ましい。
 正極活物質及び/又は負極活物質の表面は表面被覆剤で表面被覆されていてもよい。表面被覆剤としては、例えば、Ti、Nb、Ta、W、Zr、SiまたはLiを含有する金属酸化物が挙げられ、具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物およびニオブ酸リチウム系化合物等が挙げられる。より具体的には、LiTi12、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoOおよびLiBO等が挙げられる。
 また、正極活物質及び/又は負極活物質を含む電極表面は硫黄やリン等で表面処理されていてもよい。
(導電助剤)
 本発明の固体電解質組成物は、活物質の電子導電性を向上させる等のために用いられる導電助剤を適宜必要に応じて含有してもよい。導電助剤としては、一般的な導電助剤を用いることができる。例えば、電子伝導性材料である、天然黒鉛および人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラックおよびファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維およびカーボンナノチューブなどの炭素繊維類ならびにグラフェンおよびフラーレンなどの炭素質材料であってもよいし、銅およびニッケルなどの金属粉または金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレンおよびポリフェニレン誘導体などの導電性高分子を用いてもよい。またこれらの内1種を用いてもよいし、2種以上を用いてもよい。
 本発明の固体電解質組成物が導電助剤を含む場合、固体電解質組成物中の導電助剤の含有量は、0~10質量%が好ましい。
(リチウム塩)
 本発明の固体電解質組成物は、リチウム塩(支持電解質)を含有することも好ましい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が特に制限なく好ましく用いられ、例えば、上記バインダー粒子で説明したリチウム塩が挙げられる。
 このリチウム塩は、上記バインダー粒子(バインダー粒子を形成する上記ポリマー)に内包されていない(固体電解質層組成物中に例えば単独で存在している)点で、バインダー粒子に内包されているリチウム塩とは異なる。
 リチウム塩の含有量は、固体電解質100質量部に対して、0質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(固体電解質組成物の調製)
 本発明の固体電解質組成物の製造方法は、無機固体電解質を分散媒体の存在下で分散して、スラリー化する工程(a1)と、得られたスラリーにアニオン重合性官能基を有する化合物を加える工程(b1)とを含む。
 工程(a1)におけるスラリー化は、各種の混合機を用いて無機固体電解質と分散媒体とを混合することにより行うことができる。混合装置としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダーおよびディスクミルが挙げられる。混合条件は特に制限されないが、例えば、ボールミルを用いた場合、150~700rpm(rotation per minute)で1時間~24時間混合することが好ましい。
 工程(b1)においては、アニオン重合性官能基を有する化合物をスラリーに混合することが好ましく、上記混合装置を用いることができる。
 混合条件は、アニオン重合の進行によりアニオン重合性官能基を有する化合物が硬化しない限り、特に制限されないが、例えば、ボールミルを用いた場合、50~200rpm(rotation per minute)で1分~30分混合することが好ましい。
 粒子分散剤等のその他の成分を含有する固体電解質組成物を調製する場合には、工程(b1)の前に無機固体電解質および分散媒体に添加および混合しておくことが好ましく、工程(a1)で無機固体電解質と共に分散しておくことがより好ましい。
 活物質を含有する固体電解質組成物を調製する場合には、工程(a1)の後、得られたスラリーに添加および混合することが好ましく、工程(b1)でアニオン重合性官能基を有する化合物と共に混合することがより好ましい。
 調製した固体電解質組成物の保存は、アニオン重合の進行による硬化が生じない限り特に制限されるものではないが、調製後、35℃以下(25℃以下がより好ましく、5℃未満がさらに好ましい)で保存することが好ましい。また、調製後1ヶ月(5℃保存)以内に、固体電解質含有シートの作製及び/又は全固体二次電池の作製に用いることが好ましい。
(アニオン重合反応)
 本発明に用いられるアニオン重合性官能基を有する化合物は、無機固体電解質及び/又は活物質の表面(好ましくは固体粒子表面)に存在するアニオン性官能基をアニオン重合開始種とするアニオン重合の進行により、ポリマー(以下、アニオン重合体とも称す。)を形成する。
 無機固体電解質の場合、硫化物系であれば、例えば、LiPSにおけるPS -が、また、Li11におけるP11 -がアニオン重合開始種となりうり、酸化物系であれば、例えば、LiLaZr12(LLT)における(LaZr127-が、また、LiLaTa12(LLZ)における(LaTa125-がアニオン重合開始種となりうる。このようなアニオン重合開始段階を経ることで無機固体電解質とアニオン重合体の間には共有結合が形成され、より強固な結着性を発現する。無機固体電解質と、あらかじめ高分子量化したポリマーを添加した場合には無機固体電解質とポリマーの間に結合が形成されないため高い結着性は発現できない。
 本発明の固体電解質組成物は、無機固体電解質以外に、アニオン重合を促進させる目的でアニオン重合開始剤を含有することもできる。
 アニオン重合開始剤は、アニオンを発生しうるものであれば特に限定されない。強いアニオン重合開始剤としては、たとえば、カリウム、アルキル(アリール)カリウム、ナトリウム、アルキル(アリール)ナトリウム、リチウム、アルキル(アリール)リチウム、グリニャール試薬、ジアルキル(アリール)マグネシウム、トリアルキル(アリール)アルミニウム、ジアルキル亜鉛、アルコキシ(アリールオキシ)カリウム、アルコキシ(アリールオキシ)ナトリウム、アルコキシ(アリールオキシ)リチウム、アルキルチオ(アリールチオ)カリウム、アルキルチオ(アリールチオ)ナトリウムおよびアルキルチオ(アリールチオ)リチウムが挙げられる。弱いアニオン重合開始剤としては、ピリジン類、アミン類、カルボン酸類、カルボン酸金属塩、チオカルボン酸金属塩およびアルキルチオールおよび水などがあげられる。
 添加量としては、アニオン重合性官能基を有する化合物に対して0.1モル%~10モル%が好ましく、より好ましくは1モル%~3モル%である。
 具体的には、前述の条件1または2を満たすアニオン重合性官能基を有する化合物のアニオン重合が進行することにより、それぞれ下記一般式(2A)または(2B)で表される繰り返し単位を有するアニオン重合体が形成される。アニオン重合体は、無機固体電解質等の固体粒子表面と間に化学結合を有する。
Figure JPOXMLDOC01-appb-C000016
 上記式中、R11AおよびR12Aは各々独立に1価の電子求引性基を示し、R13Bは1価の電子求引性基または-R14B-*を示し、R14Bは、R13BおよびR14Bが結合する炭素原子との結合部位が電子求引性である、2価の電子求引性基を示す。*は結合手を示す。
 R11AおよびR12A、R13BおよびR14Bは、それぞれ連結して環を形成していてもよい。
 上記一般式(2A)および(2B)におけるR11A、R12A、R13BおよびR14Bは、前述の一般式(1A)および(1B)におけるR1A、R2A、R3BおよびR4Bと同義である。なお、上記一般式(2B)における*は前述の一般式(1B)における*に対応する結合手である。
 また、前述の一般式(1a)または(1b)で表されるアニオン重合性官能基を有する化合物のアニオン重合が進行することにより、下記一般式(2a)または(2b)で表される繰り返し単位を有するアニオン重合体が形成される。アニオン重合体は、無機固体電解質等の固体粒子表面と間に化学結合を有する。
Figure JPOXMLDOC01-appb-C000017
 上記式中、R11およびR12は各々独立にニトロ基、シアノ基、-C(=O)OR15、-C(=O)R16、フルオロ基で置換されたアルキル基またはフルオロ基で置換されたアリール基を示し、R15およびR16は各々独立に水素原子、アルキル基、アリール基、アルコキシカルボニル基またはアシル基を示す。R11およびR12は、連結して環を形成していてもよい。
 Zは下記一般式(2b-z)で表される基を表す。Ra1は水素原子または有機基を示し、Xはm+n価の連結基を示し、mは0~10の整数、nは2~10の整数である。
Figure JPOXMLDOC01-appb-C000018
 上記式中、R13は上記R11と同義である。R14は*-C(=O)OR17-、*-C(=O)R18-、フルオロ基で置換されたアルキレン基またはフルオロ基で置換されたアリーレン基を示し、R17およびR18は各々独立に単結合、アルキレン基またはアリーレン基を示す。*は、R13およびR14が結合する炭素原子との結合部位を示す。R13およびR14は、連結して環を形成していてもよい。**はXとの結合部位を示す。
 上記一般式(2a)、(2b)および(2b-z)中のR11~R18およびRa1における各置換基は、前述の一般式(1a)および(1b)中のR~RおよびRにおける各置換基の記載を好ましく適用することができる。
 また、上記一般式(2b)におけるn、mおよびXは、前述の一般式(1b)におけるn、mおよびXと同義である。
 アニオン重合は、組成物を調製する際のボールミルを用いた粉砕工程、組成物調製とは別の加熱工程、組成物の塗膜を加熱する工程のいずれの工程で開始されてもよいが、後述する固体電解質含有シートの状態で反応が完了(硬化)していることが好ましい。
 アニオン重合性官能基を有する化合物の重合条件は、アニオン重合で常用される条件を用いることができる。例えば、アニオン重合を完了させる観点からは、反応温度は50℃~180℃が好ましく、80℃~150℃がより好ましく、反応時間は5分~3時間が好ましく、10分~1時間がより好ましい。
 本発明に用いられるアニオン重合体としては、具体的には、以下の構造単位を有するアニオン重合体が好ましく挙げられるが、本発明がこれにより限定して解釈されるものではない。ここで、括弧横の数値は質量比を表す。
Figure JPOXMLDOC01-appb-C000019
[固体電解質含有シート]
 本発明の固体電解質含有シートは、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、前述の、無機固体電解質と結合する、特定の繰り返し単位を有するアニオン重合体とを含有する。
 アニオン重合体としては、上記一般式(2A)または(2B)で表される繰り返し単位を有するアニオン重合体が好ましく、上記一般式(2a)または(2b)で表される繰り返し単位を有するアニオン重合体がより好ましい。
 上記一般式(1B)で表されるアニオン重合性官能基を2つ以上有する化合物または1分子中に2以上のアニオン重合性基を有する一般式(1b)で表されるアニオン重合性官能基を有する化合物からは、アニオン重合反応の進行により、架橋された網目状構造を有する上記一般式(2B)または一般式(2b)で表される繰り返し単位を有するアニオン重合体が形成される。
 アニオン重合体は、1種又は2種以上含有されていてもよい。この場合、一般式(2A)または(2B)で表されるアニオン重合性官能基由来の繰り返し単位中、および、一般式(2a)または(2b-z)で表されるアニオン重合性官能基由来の繰り返し単位中、シアノ基を含有する繰り返し単位の含有割合は、0~2質量%未満または30質量%超え100質量%以下であることが好ましく、30質量%超え100質量%以下であることがより好ましい。
 ここで、シアノ基を含有する繰り返し単位とは、一般式(2A)におけるR11A及び/またはR12Aがシアノ基を有する繰り返し単位、一般式(2B)におけるR13B及び/またはR14Bにシアノ基を有する繰り返し単位、一般式(2a)におけるR11及び/またはR12がシアノ基を有する繰り返し単位、ならびに、一般式(2b-z)におけるR13及び/またはR14にシアノ基を有する繰り返し単位を意味する。
 また、本発明の固体電解質含有シートは、前述のその他の機能性添加剤を含有してもよい。
 アニオン重合体の固体電解質含有シート中での含有量は、界面抵抗の低減および電池特性維持効果(サイクル特性の向上)の両立を考慮したとき、固形分100質量%において、5質量%未満が好ましく、3質量%未満がより好ましく、2質量%未満がさらに好ましく、1.5質量%未満が特に好ましく、1.2質量%未満が最も好ましい。下限値に特に制限はないが、0.1質量%以上が好ましい。
[全固体二次電池用シート]
 本発明の固体電解質含有シートは、全固体二次電池に好適に用いることができ、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう)、電極又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
 全固体二次電池用シートは、基材上に固体電解質層又は活物質層(電極層)を有するシートである。この全固体二次電池用シートは、基材と固体電解質層又は活物質層を有していれば、他の層を有してもよいが、活物質層を有するものは後述する全固体二次電池用電極シートに分類する。他の層としては、例えば、保護層、集電体、コート層(集電体、固体電解質層、活物質層)等が挙げられる。
 全固体二次電池用固体電解質シートとして、例えば、固体電解質層と保護層とを基材上に、この順で有するシートが挙げられる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、上記集電体で説明した材料、有機材料および無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレンおよびセルロース等が挙げられる。無機材料としては、例えば、ガラスおよびセラミック等が挙げられる。
 全固体二次電池用シートの固体電解質層の構成および層厚は、後述の、本発明の全固体二次電池において説明する固体電解質層の構成および層厚と同じである。
 このシートは、本発明の固体電解質組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 ここで、本発明の固体電解質組成物は、上記の方法によって、調製できる。
 本発明の全固体二次電池用電極シート(単に「本発明の電極シート」ともいう。)は、本発明の全固体二次電池の活物質層を形成するための、集電体としての金属箔上に活物質層を有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートを構成する各層の構成および層厚は、後述の、本発明の全固体二次電池において説明する各層の構成および層厚と同じである。
 電極シートは、本発明の、活物質を含有する固体電解質組成物を金属箔上に製膜(塗布乾燥)して、金属箔上に活物質層を形成することにより、得られる。活物質を含有する固体電解質組成物を調製する方法は、活物質を用いること以外は、上記固体電解質組成物を調製する方法と同じである。
 本発明の固体電解質組成物で形成された活物質層及び/又は固体電解質層は、好ましくは、含有する成分種及びその含有量比について、アニオン重合性官能基を有する化合物をアニオン重合体に読み替える以外は、固体電解質組成物の固形分におけるものと同じである。
[全固体二次電池]
 本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質組成物で形成されることが好ましい。中でも、負極活物質層および/または正極活物質層が本発明の固体電解質組成物で形成されることがより好ましく、正極活物質層が本発明の固体電解質組成物で形成されることがさらに好ましい。
 固体電解質組成物で形成された活物質層および/または固体電解質層は、好ましくは、含有する成分種及びその含有量比について、固体電解質組成物の固形分におけるものと同じである。
 以下に、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4および正極集電体5を、この順に積層してなる構造を有しており、隣接する層同士は直に接触している。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子を供給することができる。図示した全固体二次電池の例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。
〔正極活物質層、固体電解質層、負極活物質層〕
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれかが本発明の固体電解質組成物で形成されている。
 すなわち、固体電解質層3が本発明の固体電解質組成物で形成されている場合、固体電解質層3は、無機固体電解質とアニオン重合体とを含む。固体電解質層は、通常、正極活物質及び/又は負極活物質を含まない。固体電解質層3中では、無機固体電解質に末端で化学結合したアニオン重合体が、無機固体電解質および隣接する活物質層中に含まれる活物質等の固体粒子の間に存在していると考えられる。そのため、固体粒子間の界面抵抗が低減され、結着性が高くなっている。
 正極活物質層4及び/又は負極活物質層2が本発明の固体電解質組成物で形成されている場合、正極活物質層4及び負極活物質層2は、それぞれ、正極活物質又は負極活物質を含み、さらに、無機固体電解質とアニオン重合体とを含む。活物質層が無機固体電解質を含有するとイオン伝導度を向上させることができる。活物質層中には、固体粒子間等に、無機固体電解質に末端で化学結合したアニオン重合体が存在していると考えられる。そのため、固体粒子間の界面抵抗が低減され、結着性が高くなっている。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質及びアニオン重合体は、それぞれ、互いに同種であっても異種であってもよい。
 本発明において、正極活物質層及び負極活物質層のいずれか、又は、両方を合わせて、単に、活物質層又は電極活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は、両方を合わせて、単に、活物質又は電極活物質と称することがある。
 本発明においては、全固体二次電池における負極活物質層、正極活物質層及び固体電解質層のいずれかの層が、上記アニオン重合性官能基を有する化合物と、無機固体電解質等の固体粒子とを含有する固体電解質組成物を用いて作製される。このため、固体粒子間の結着性を向上することができ、その結果、全固体二次電池における良好なサイクル特性をも実現できる。
 その作用、メカニズムは定かではなく推定ではあるが、次のように、考えられる。
 すなわち、無機固体電解質等の固体粒子表面に存在するアニオン性官能基がアニオン重合開始種として作用することで、固体粒子とアニオン重合性官能基を有する化合物との間に共有結合が形成された活性種が生成すると考えられる。その後、固体粒子間に分散されたアニオン重合性官能基を有する化合物が活性種と反応し、アニオン重合が進行することで、アニオン重合体が形成されると考えられる。形成されたアニオン重合体は、無機固体電解質等の固体粒子表面と末端で化学結合し、固体粒子間の隙間を埋めるように存在しているため、固体粒子間の強固な結着性を発現すると考えられる。このため、あらかじめ高分子量化されたポリマーに固体粒子を分散させた場合、および、ラジカル重合性モノマーと固体粒子を含有する組成物のラジカル重合を進行させることによりラジカル重合ポリマーを形成する場合に比べて、本発明の全固体二次電池は高い結着性を示すと考えられる。
 また、充放電の繰返しに対しても、無機固体電解質等の固体粒子表面とアニオン重合体との間に形成された共有結合により、固体粒子間の接触が維持され、固体粒子間の界面抵抗の上昇が抑制されると考えられる。このため、本発明の全固体二次電池は優れたサイクル特性を示すと考えられる。特に、充放電により膨張収縮する活物質の粒子を含む場合に、固体粒子間の界面抵抗の上昇がより効果的に抑制され、全固体二次電池はより優れたサイクル特性を示すと考えられる。
 正極活物質層4、固体電解質層3および負極活物質層2の厚さは特に限定されない。一般的な電池の寸法を考慮すると、上記各層の厚さは10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3及び負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。
〔集電体(金属箔)〕
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウムまたはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウムおよびアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウム、銅、銅合金またはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金およびステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
〔筐体〕
 上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金およびステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[固体電解質含有シートの製造]
 本発明においては、無機固体電解質とアニオン重合性官能基を有する化合物とを含有する塗膜を、アニオン重合の進行により硬化させることで、無機固体電解質とアニオン重合体とを含有する固体電解質含有シートが形成される。このアニオン重合体は、ポリマー末端にアニオン重合開始剤として作用する無機固体電解質が結合している。
 上記観点から、本発明の固体電解質含有シートの製造方法としては、以下第1の態様および第2の態様が好ましく挙げられる。
i)第1の態様
 本発明の固体電解質組成物を基材上に塗布し、塗膜を形成する工程(1α)と、
 形成した塗膜をアニオン重合の進行により硬化させる工程(1β)とを含む固体電解質含有シートの製造方法。
ii)第2の態様
 無機固体電解質を分散媒体の存在下で分散しスラリー化する工程(2γ)と、
 得られたスラリーを基材上に塗布し、塗膜を形成する工程(2δ)と、
 形成した塗膜上に、アニオン重合性官能基を有する化合物の溶液を塗布して含浸させ、シートを形成する工程(2α)と、
 形成したシートをアニオン重合の進行により硬化させる工程(2β)とを含む固体電解質含有シートの製造方法。
 以下、上記各工程について、詳述する。
 工程(1β)および(2β)におけるアニオン重合は、室温でも緩やかに進行するが、加熱することで進行させることが好ましい。アニオン重合が進行することで、無機固体電解質とアニオン重合性官能基を有する化合物とを含有する塗膜はゲル状となり、さらにアニオン重合が進行することで硬化される。
 ここで、硬化とは、アニオン重合が十分に進行することにより、ゲル状から硬化物へと硬化されることを意味する。
 加熱によりアニオン重合を進行させる場合、温度は50℃~180℃が好ましく、80℃~150℃がより好ましく、加熱時間は5分~3時間が好ましく、10分~1時間がより好ましい。この加熱工程により、アニオン重合の進行と同時に塗膜及び/又はシートが乾燥され、分散媒体等の溶媒成分が除去された固体電解質含有シートが得られる。室温によりアニオン重合を進行させる場合等には、別途、分散媒体等の溶媒成分を除去する工程が必要となる。
 第2の態様は、工程(2γ)および(2δ)で形成された無機固体電解質粒子間の隙間にアニオン重合性官能基を有する化合物を含浸させ、接触させた後にアニオン重合の進行により硬化させる製造方法である。この態様により、活物質及び/又は無機固体電解質が接している無機接触界面には影響を及ぼさず、固体電解質含有シートにもともと含まれる空隙(活物質及び/又は無機固体電解質が存在していない空間)のみを埋めることができるので、イオン伝導を阻害することなく強固な結着性を発揮することができる。
 工程(2γ)における無機固体電解質および分散媒体としては、上述の固体電解質組成物で記載した無機固体電解質および分散媒体を好ましく適用することができる。また、工程(2γ)におけるスラリー化の条件としては、上述の固体電解質組成物の調製で記載したスラリー化の条件を好ましく適用することができる。
 スラリー中における無機固体電解質の含有量は、50~95質量%が好ましく、5~90質量%がより好ましく、60~90質量%がさらに好ましい。
 工程(2γ)においては、無機固体電解質以外の成分として、上述の活物質、粒子分散剤およびバインダー等(ただし、アニオン重合性官能基を有する化合物を除く)の成分を分散媒体の存在下でスラリー化することも好ましい。この場合、スラリー中における各成分の含有量は、上述の固体電解質組成物中における含有量を好ましく適用することができる。また、スラリー調整の工程については、上記固体電解組成物の調製の記載を適用することができる。すなわち、工程(2γ)で得られるスラリーがアニオン重合性官能基を有する化合物を含有する場合には、工程(2γ)は、上記固体電解組成物の調製における工程(a1)と工程(b1)とを含む。
 工程(2δ)で塗膜を形成した後に、塗膜の乾燥工程を有することも好ましい。乾燥工程としては、分散媒体等により適宜調節することができるが、例えば、50℃~180℃で、1分~1時間乾燥することが好ましい。また、静置して乾燥することが好ましい。
 工程(2δ)で形成する塗膜の厚みは、特に制限されないが、工程(2α)で溶液を含浸させる段階で、20μm~500μmとなるように調整することが好ましい。
 工程(2α)におけるアニオン重合性官能基を有する化合物の溶液とは、少なくともアニオン重合性官能基を有する化合物が溶媒に溶解した溶液である。溶媒としては、アニオン重合性官能基を有する化合物を溶解する限り、特に制限されないが、上述の固体電解質組成物で記載した分散媒体を好ましく適用することができる。なお、アニオン重合性官能基を有する化合物以外の成分として、活物質、粒子分散剤およびバインダー等の成分を含有していてもよい。
 工程(2α)におけるアニオン重合性官能基を有する化合物の溶液の濃度は、工程(2γ)および(2δ)で形成された無機固体電解質粒子間の隙間に含浸させることができる限り制限されないが、1質量%~10質量%であることが好ましい。
 上記態様により、基材と固体電解質層とを有するシートである固体電解質含有シートを作製することができる。
 その他、塗布等の工程については、下記全固体二次電池の製造に記載の方法を使用することができる。
[全固体二次電池及び全固体二次電池用電極シートの製造]
 全固体二次電池及び全固体二次電池用電極シートの製造は、上記固体電解質含有シートの製造方法により行うことができる。
 すなわち、本発明の固体電解質組成物が活物質を含有する場合には、上記工程(1α)及び工程(2δ)においては、基材ではなく集電体上に塗布することが好ましい。この場合には、固体電解質層と活物質層を含有するシートである全固体二次電池用電極シートを作製することができる。
 また、全固体二次電池の製造は、上記固体電解質含有シートの製造方法を含む以外は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。なお、正極活物質層、固体電解質層および負極活物質層のいずれかの層が、上記固体電解質含有シートの製造方法により作製されればよく、その他の層は、本発明でない固体電解質組成物を用いて、常法により作製されてもよい。以下詳述する。
 本発明の全固体二次電池は、本発明の固体電解質組成物等を、集電体となる金属箔上に塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極層用組成物)として、正極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。さらに、固体電解質層の上に、負極用材料(負極層用組成物)として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極層用組成物)として、負極活物質を含有する固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。さらに、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。さらに、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
(各層の形成(成膜))
 固体電解質組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布およびバーコート塗布が挙げられる。
 このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
 固体電解質組成物を塗布した後、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒体をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒体が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布しても良いし、塗布乾燥プレスを同時および/または逐次行っても良い。別々の基材に塗布した後に、転写により積層してもよい。
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)および不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
(初期化)
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
〔全固体二次電池の用途〕
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオおよびバックアップ電源が挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラおよび医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。さらに、各種軍需用または宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 中でも、高容量かつ高レート放電特性が要求されるアプリケーションに適用されることが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い安全性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の安全性が求められる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。
 全固体二次電池とは、正極、負極および電解質がともに固体で構成された二次電池をいう。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S系ガラス、LLTおよびLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に高分子化合物を適用することは妨げられず、正極活物質、負極活物質および/または無機固体電解質粒子のバインダー粒子として高分子化合物を適用することができる。
 無機固体電解質とは、上述した、ポリエチレンオキサイド等の高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S系ガラス、LLTおよびLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがあるが、上記のイオン輸送材料としての電解質と区別するときにはこれを「電解質塩」又は「支持電解質」と呼ぶ。電解質塩としては例えばLiTFSI(リチウムビストリフルオロメタンスルホニルイミド)が挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。また、特に固体電解質組成物というときには、基本的に固体電解質層等を形成するための材料となる組成物(典型的にはペースト状)を指し、上記組成物を硬化して形成した電解質層等はこれに含まれないものとする。
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。また、「室温」は25℃を意味する。
 (硫化物系無機固体電解質LPSの合成)
 アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li-P-Sガラス、LPSと表記することがある。)6.20gを得た。
[実施例1]
<固体電解質組成物の調製例>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、無機固体電解質9.0g、分散媒体18gを投入した後に、フリッチュ社製遊星ボールミルP-7に容器をセットし、回転数300rpmで2時間混合した。これに添加剤0.36gを加え、さらに回転数150rpmで5分間混合を続け、各固体電解質組成物S-1~S-10、T-1およびT-2を調製した。
 なお、固体電解質組成物が活物質を含有する場合は、添加剤の投入と同じタイミングで活物質を投入して混合し、固体電解質組成物を調製した。
 また、固体電解質組成物T-2は、活物質の投入と同じタイミングでパーヘキシルD(熱ラジカル重合開始剤、日油(株)社製)0.036g(表中には記載せず)を投入して混合し、固体電解質組成物を調製した。
<粒子分散剤を含有する固体電解質組成物の調製例>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、無機固体電解質9.0g、粒子分散剤0.18g、分散媒体18gを投入した後に、フリッチュ社製遊星ボールミルP-7に容器をセットし、回転数300rpmで2時間混合した。これに添加剤0.36gを加え、さらに回転数150rpmで5分間混合を続け、各固体電解質組成物S-11およびS-12を調製した。
 なお、活物質は、添加剤の投入と同じタイミングで投入して混合し、固体電解質組成物を調製した。
 下記表1に、各固体電解質組成物の成分と配合質量比を示す。
Figure JPOXMLDOC01-appb-T000020
<表の注>
LLT:Li0.5La0.5TiO(豊島製作所社製)
LPS:上記で合成したLi-P-S系ガラス
LLZ:LiLaZr12
LCO:LiCoO(コバルト酸リチウム)
NCA:LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム)
B-1:2-シアノアクリル酸エチル
B-2:2-トリフルオロメチルアクリル酸ブチル
B-3:2-メチレンマロン酸ジエチル
B-4:ビス(2-トリフルオロメチルアクリル酸)-1,4-ブタンジイル
E-1:アクリル酸
E-2:アクリル酸(2-ピレニル)メチル
ポリブタジエン-アクリロニトリル共重合体:日本ゼオン社製、共重合比(質量比)(ブタジエン:アクリロニトリル=71.0:29.0)、Mw120,000、なお表では「共重合体」を省略して記載している。
「-」:成分を含有していないことを示す。
*1:アニオン重合性官能基を有する化合物、バインダーおよびラジカル重合性モノマーを添加剤として記載する。
*2:2種の添加剤を括弧に記載の質量比で添加。
<固体電解質含有シートの作製>
1)通常の塗布方法
 上記で調製した固体電解質組成物を集電体であるステンレス鋼(SUS)箔上に塗工した。
 表2に記載の温度および時間で重合(硬化処理)を行うことで、固体電解質組成物を硬化し、120℃で10分加熱することで固体電解質組成物を乾燥し、固体電解質含有層とSUS箔の積層構造を有する各固体電解質含有シートNo.101~112、c11およびc12を作製した。ここで、固体電解質含有層の厚みは200μm、SUS箔の厚みは20μmであった。
2)アニオン重合モノマーの二層塗布方法
 上記で調製した固体電解質組成物1.8gをSUS箔上に塗工した。その後、室温下で1時間静置して塗膜を乾燥させ、厚み200μmの塗膜を形成した。
 引き続き、上記で得られた塗膜上に、2-シアノアクリル酸エチル0.38gのトルエン溶液(5質量%希釈液)を塗工し、含浸させ、表2に記載の温度および時間でアニオン重合(硬化処理)を進行させることで組成物を硬化し、各塗膜を乾燥させた。これにより、固体電解質含有層とSUS箔の積層構造を有する各固体電解質含有シートNo.113および114を作製した。ここで、固体電解質含有層の厚みは210μm、SUS箔の厚みは20μmであった。
[試験例1] 結着性試験
 得られた固体電解質含有シートについて180°ピール強度試験(JIS Z0237-2009)を行った。
 固体電解質含有シートの固体電解質組成物が硬化された面に粘着テープ(幅24mm、長さ300mm)(商品名:セロテープ(登録商標)CT-24、ニチバン社製)を貼り付けた。テープの端を把持して180°に折り返して固体電解質含有シートから25mmはがした後、下記試験機に設置した下側の治具にその粘着テープをはがした部分の固体電解質含有シートの片端を固定し、上側の治具に粘着テープを固定した。
 300mm/分の負荷速度で試験を実施した。測定開始後25mm粘着テープを引き剥がした後、固体電解質含有シートから引きはがされた25mmの粘着テープについて、長さ0.05mmごとの粘着力測定値を平均し、引きはがし粘着力の値(平均ピール強度(N))とした。
 平均ピール強度を下記評価基準により評価した。なお、平均ピール強度が高いほど結着力が高いことを示す。評価「B」以上が本試験の合格レベルである。
 ピール強度は標準タイプデジタルフォースゲージZTS-5Nと、縦型電動計測スタンドMX2シリーズ(いずれも商品名、イマダ社製)を組み合わせて行った。
-評価基準-
  A:2.0N以上
  B:1.0N以上2.0N未満
  C:0.5N以上1.0N未満
  D:0.5N未満
Figure JPOXMLDOC01-appb-T000021
<表の注>
*1:シアノ基含有ポリマーを用いているため、硬化処理は行っていない。
*2:ラジカル重合による硬化処理の温度および時間
 表2の結果から、無機固体電解質とアニオン重合性官能基を有する化合物とを含む本発明の固体電解質組成物を用いて作製した、無機固体電解質と特定のアニオン重合体とを含有する本発明の固体電解質含有シートは、密着力が高く、結着性に優れていた。また、本発明の固体電解質含有シートの製造方法により、結着性に優れた固体電解質含有シートを作製できた。
 これに対して、比較の為の固体電解質含有シートNo.c11は、あらかじめ重合体であるシアノ基含有ポリマーを含有する比較の固体電解質組成物T-1を用いて作製したシートであり、特定のアニオン重合体を含有しない。この固体電解質含有シートNo.c11は、密着力が低く、結着性が十分ではなかった。シアノ基含有ポリマーの分散性が低く、無機固体電解質とポリマーとの間に化学結合が形成されていないためと考えられる。また、比較の為の固体電解質含有シートNo.c12は、ラジカル重合性モノマーを含有する比較の固体電解質組成物T-2を用いて作製したシートであり、特定のアニオン重合体を含有しない。この固体電解質含有シートNo.c12は、密着力が低く、結着性が十分ではなかった。無機固体電解質とラジカル重合体との間に化学結合が形成されていないためと考えられる。また、本発明の固体電解質含有シートの製造方法によらないで作製した固体電解質含有シートNo.c11およびc12は、結着性が劣っていた。
<全固体二次電池の製造>
 上記で作製した各固体電解質含有シートを直径14.5mmの円板状に切り出して電極とし、固体電解質層として上記で合成したLi-P-S系ガラス、対極としてLiホイルを組み込み、160MPaで加圧した。得られた全固体二次電池用シートをスペーサーとワッシャーを組み込んだステンレス製の2032型コインケースに入れて、各全固体二次電池No.201~210、c21およびc22を作製した。
[試験例2] サイクル特性の評価
 上記で作製した全固体二次電池のサイクル特性を、東洋システム社製の充放電評価装置「TOSCAT-3000(商品名)」により測定した。充電は電流密度0.1mA/cmで電池電圧が3.6Vに達するまで行った。放電は電流密度0.1mA/cmで電池電圧が2.5Vに達するまで行った。上記条件で3サイクル充放電を繰り返すことで初期化を行った。
 初期化後の各全固体二次電池について、電流密度0.2mA/cmで電池電圧が4.2Vに達するまで充電し、次いで、電流密度0.2mA/cmで電池電圧が2.5Vに達するまで放電した。この充放電を1サイクルとして、充放電を繰り返した。
 この充放電サイクルにおいて、初期化後1サイクル目の放電容量を100としたときの、放電容量が80未満に達した際のサイクル数を、以下の基準で評価した。なお、評価「C」以上が本試験の合格レベルである。
-評価基準-
  A:30回以上
  B:20回以上30回未満
  C:10回以上20回未満
  D:10回未満
Figure JPOXMLDOC01-appb-T000022
<表の注>
*1:二層塗布方法により作製したことを示す。
 表3の結果から、アニオン重合性官能基を有する化合物と無機固体電解質とを含む本発明の固体電解質組成物を用いて、無機固体電解質と特定のアニオン重合体とを含有する正極活物質層を形成した本発明の全固体二次電池は、サイクル特性に優れていた。このように、本発明の固体電解質組成物を用いて製造した全固体二次電池は、固体粒子間の結着性が高く、サイクル特性にも優れた。また、本発明の固体電解質含有シートの製造方法を介することで、固体粒子間の結着性が高く、サイクル特性にも優れた全固体二次電池を製造できた。
 これに対して、比較の為の全固体二次電池No.c21は、あらかじめ重合体であるシアノ基含有ポリマーを含有する比較の固体電解質組成物T-1を用いて、特定のアニオン重合体を含有しない正極層を形成した。この全固体二次電池No.c21は、サイクル特性が十分ではなかった。シアノ基含有ポリマーの分散性が低く、無機固体電解質とポリマーとの間に化学結合が形成されていないためと考えられる。比較の為の全固体二次電池No.c21は、ラジカル重合性モノマーを含有する比較の固体電解質組成物T-2を用いて、特定のアニオン重合体を含有しない正極層を形成した。この全固体二次電池No.c22は、サイクル特性が十分ではなかった。無機固体電解質とラジカル重合体との間に化学結合が形成されていないためと考えられる。また、本発明の固体電解質含有シートの製造方法を介しないで製造した、比較の為の全固体二次電池No.c21およびc22は、サイクル特性が十分でなかった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年3月8日に日本国で特許出願された特願2016-044282に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 コインケース
12 全固体二次電池用シート
13 サイクル特性測定用セル(コイン電池)

Claims (17)

  1.  周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、アニオン重合性官能基を有する化合物とを含有する固体電解質組成物。
  2.  前記アニオン重合性官能基を有する化合物が下記一般式(1a)または(1b)で表される請求項1に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
    上記式中、R~Rは各々独立に1価の電子求引性基を示し、Rは、RおよびRが結合する炭素原子との結合部位が電子求引性である、2価の電子求引性基を示し、Rは水素原子または有機基を示す。Xはm+n価の連結基を示し、mは0~10の整数、nは2~10の整数である。
    およびR、RおよびRは、それぞれ連結して環を形成していてもよい。
  3.  前記アニオン重合性官能基を有する化合物が下記条件を満たす請求項2に記載の固体電解質組成物。
    (条件)
    前記R~Rが各々独立にニトロ基、シアノ基、-C(=O)OR、-C(=O)R、フルオロ基で置換されたアルキル基、または、ニトロ基、シアノ基、-C(=O)OR、-C(=O)Rおよびフルオロ基の少なくともいずれかで置換されたアリール基であり、前記Rが*-C(=O)OR-、*-C(=O)R-、フルオロ基で置換されたアルキレン基、または、ニトロ基、シアノ基、-C(=O)OR、-C(=O)Rおよびフルオロ基の少なくともいずれかで置換されたアリーレン基である。前記のRおよびRは各々独立に水素原子、アルキル基またはアリール基であり、前記のRおよびRは各々独立に単結合、アルキレン基またはアリーレン基である。*は、RおよびRが結合する炭素原子との結合部位を示す。
  4.  前記アニオン重合性官能基を有する化合物が、前記アニオン重合性官能基を1分子中に2つ以上有する請求項1~3のいずれか1項に記載の固体電解質組成物。
  5.  前記アニオン重合性官能基を有する化合物の分子量が100以上1,000以下である請求項1~4のいずれか1項に記載の固体電解質組成物。
  6.  前記固体電解質組成物中の全固形分に対する前記アニオン重合性官能基を有する化合物の含有量が2質量%未満である請求項1~5のいずれか1項に記載の固体電解質組成物。
  7.  分散媒体を含有する請求項1~6のいずれか1項に記載の固体電解質組成物。
  8.  活物質を含有する請求項1~7のいずれか1項に記載の固体電解質組成物。
  9.  粒子分散剤を含有する請求項1~8のいずれか1項に記載の固体電解質組成物。
  10.  前記無機固体電解質が硫化物系無機固体電解質である請求項1~9のいずれか1項に記載の固体電解質組成物。
  11.  無機固体電解質を分散媒体の存在下で分散して、スラリー化する工程と、
     得られたスラリーに、アニオン重合性官能基を有する化合物を加える工程とを含む固体電解質組成物の製造方法。
  12.  周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、前記無機固体電解質と結合する下記一般式(2A)または(2B)で表される繰り返し単位を有するアニオン重合体とを含有する固体電解質含有シート。
    Figure JPOXMLDOC01-appb-C000002
    上記式中、R11AおよびR12Aは各々独立に1価の電子求引性基を示し、R13Bは1価の電子求引性基または-R14B-*を示し、R14Bは、R13BおよびR14Bが結合する炭素原子との結合部位が電子求引性である、2価の電子求引性基を示す。*は結合手を示す。
    11AおよびR12A、R13BおよびR14Bは、それぞれ連結して環を形成していてもよい。
  13.  請求項1~10のいずれか1項に記載の固体電解質組成物を基材上に塗布し、塗膜を形成する工程と、
     前記塗膜をアニオン重合の進行により硬化させる工程とを含む固体電解質含有シートの製造方法。
  14.  周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質を分散媒体の存在下で分散して、スラリー化する工程と、
     得られたスラリーを基材上に塗布し、塗膜を形成する工程と、
     形成した塗膜上に、アニオン重合性官能基を有する化合物の溶液を塗布して含浸させ、シートを形成する工程と、
     形成したシートをアニオン重合の進行により硬化させる工程とを含む固体電解質含有シートの製造方法。
  15.  負極活物質層、固体電解質層および正極活物質層をこの順に有してなる全固体二次電池であって、
     前記の負極活物質層、固体電解質層および正極活物質層のうち少なくとも1層が、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、前記無機固体電解質と結合する下記一般式(2A)または(2B)で表される繰り返し単位を有するアニオン重合体とを含有する、全固体二次電池。
    Figure JPOXMLDOC01-appb-C000003
    上記式中、R11AおよびR12Aは各々独立に1価の電子求引性基を示し、R13Bは1価の電子求引性基または-R14B-*を示し、R14Bは、R13BおよびR14Bが結合する炭素原子との結合部位が電子求引性である、2価の電子求引性基を示す。*は結合手を示す。
    11AおよびR12A、R13BおよびR14Bは、それぞれ連結して環を形成していてもよい。
  16.  前記一般式(2A)または(2B)で表される繰り返し単位中、シアノ基を含有する繰り返し単位の含有割合が30質量%超である請求項15に記載の全固体二次電池。
  17.  請求項13または14に記載の固体電解質含有シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
PCT/JP2017/008845 2016-03-08 2017-03-06 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法 WO2017154851A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780015831.8A CN108780918B (zh) 2016-03-08 2017-03-06 固体电解质组合物、含有固体电解质的片材、全固态二次电池以及这些的制造方法
JP2018504482A JP6615313B2 (ja) 2016-03-08 2017-03-06 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
US16/123,023 US10833351B2 (en) 2016-03-08 2018-09-06 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-044282 2016-03-08
JP2016044282 2016-03-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/123,023 Continuation US10833351B2 (en) 2016-03-08 2018-09-06 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2017154851A1 true WO2017154851A1 (ja) 2017-09-14

Family

ID=59790591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008845 WO2017154851A1 (ja) 2016-03-08 2017-03-06 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法

Country Status (4)

Country Link
US (1) US10833351B2 (ja)
JP (1) JP6615313B2 (ja)
CN (1) CN108780918B (ja)
WO (1) WO2017154851A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125468A (ja) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 リチウム電池用負極スラリー
WO2020022195A1 (ja) * 2018-07-27 2020-01-30 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、及び全固体二次電池、並びに固体電解質含有シート及び全固体二次電池の製造方法
JP2020021655A (ja) * 2018-08-01 2020-02-06 株式会社日本触媒 電解液、アルカリ金属イオン二次電池、及び電解液用添加剤
US11522216B2 (en) 2018-01-05 2022-12-06 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6971732B2 (ja) * 2017-09-12 2021-11-24 関西ペイント株式会社 二次電池用硫黄化合物固体電解質分散ペースト、これを用いた二次電池用硫黄化合物固体電解質層及びこれを用いた全固体二次電池
KR101894385B1 (ko) * 2017-10-11 2018-09-04 울산과학기술원 이차 전지용 음극의 제조 방법 및 이를 이용하여 제조된 이차 전지용 음극
CN112334999B (zh) * 2018-11-22 2023-06-06 出光兴产株式会社 固体电解质的制造方法及电解质前体
CN110112421B (zh) * 2019-05-13 2022-05-13 浙江锋锂新能源科技有限公司 一种非接触式混合固液电解质锂蓄电池及其制备方法
CN110797576B (zh) * 2019-11-08 2020-11-27 广州天赐高新材料股份有限公司 一种高电压锂离子电池电解液及锂离子电池
US11387439B2 (en) * 2020-01-22 2022-07-12 Toyota Jidosha Kabushiki Kaisha Anode layer and all solid state battery
CN114006028A (zh) * 2020-07-28 2022-02-01 中国石油化工股份有限公司 改性无机快离子导体及其制备方法和应用
CN114447416A (zh) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 改性无机快离子导体及其制备方法和应用
EP4095971A1 (en) * 2021-01-28 2022-11-30 LG Energy Solution, Ltd. Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102027A1 (ja) * 2010-02-16 2011-08-25 住友電気工業株式会社 非水電解質電池、およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091730A1 (en) * 2006-02-10 2007-08-16 Fujifilm Corporation Organic-inorganic hybrid composition, method for producing the same, molding and optical component
US8283388B2 (en) 2009-02-09 2012-10-09 Toyota Jidosha Kabushiki Kaisha Method for producing solid electrolyte material-containing sheet
JP5768815B2 (ja) 2010-08-27 2015-08-26 日本ゼオン株式会社 全固体二次電池
JP5120522B2 (ja) * 2010-11-29 2013-01-16 Jsr株式会社 電池用バインダー組成物、電池電極用スラリー、固体電解質組成物、電極及び全固体型電池
JP6167791B2 (ja) * 2012-09-25 2017-07-26 セントラル硝子株式会社 ビス(パーフルオロアルキルスルホニル)メチル基を含む化合物および塩の製造方法、それを用いた固体電解質膜

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102027A1 (ja) * 2010-02-16 2011-08-25 住友電気工業株式会社 非水電解質電池、およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11522216B2 (en) 2018-01-05 2022-12-06 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
JP2019125468A (ja) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 リチウム電池用負極スラリー
WO2020022195A1 (ja) * 2018-07-27 2020-01-30 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、及び全固体二次電池、並びに固体電解質含有シート及び全固体二次電池の製造方法
CN112292779A (zh) * 2018-07-27 2021-01-29 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及后两者的制造方法
JPWO2020022195A1 (ja) * 2018-07-27 2021-04-08 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、及び全固体二次電池、並びに固体電解質含有シート及び全固体二次電池の製造方法
JP2020021655A (ja) * 2018-08-01 2020-02-06 株式会社日本触媒 電解液、アルカリ金属イオン二次電池、及び電解液用添加剤
JP7251934B2 (ja) 2018-08-01 2023-04-04 株式会社日本触媒 電解液、アルカリ金属イオン二次電池、及び電解液用添加剤

Also Published As

Publication number Publication date
US10833351B2 (en) 2020-11-10
CN108780918A (zh) 2018-11-09
JP6615313B2 (ja) 2019-12-11
JPWO2017154851A1 (ja) 2019-01-17
US20190006700A1 (en) 2019-01-03
CN108780918B (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
JP6615313B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
JP6591687B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
WO2017099247A1 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
JPWO2017099248A1 (ja) 固体電解質組成物、バインダー粒子、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、これらの製造方法
JP6621443B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
WO2016017758A1 (ja) 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
JPWO2019098009A1 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2020067107A1 (ja) 全固体二次電池の製造方法、並びに、全固体二次電池用電極シート及びその製造方法
JP7165747B2 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
WO2019203183A1 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP6957742B2 (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
WO2022071392A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7008080B2 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
JP7455871B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
US20210083323A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
JP6587555B2 (ja) 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法
WO2017130832A1 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP6982682B2 (ja) 固体電解質組成物、全固体二次電池用シート、及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
JP7003151B2 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP6709134B2 (ja) ポリマー、固体電解質、固体電解質組成物、無機固体電解質組成物、固体電解質含有シート、二次電池、全固体二次電池、固体電解質含有シートの製造方法、無機固体電解質含有シートの製造方法、二次電池の製造方法および全固体二次電池の製造方法
JP6623083B2 (ja) 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法
JP7096367B2 (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
WO2022065477A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021193826A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504482

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763191

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763191

Country of ref document: EP

Kind code of ref document: A1