WO2012046814A1 - 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置 - Google Patents

多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置 Download PDF

Info

Publication number
WO2012046814A1
WO2012046814A1 PCT/JP2011/073124 JP2011073124W WO2012046814A1 WO 2012046814 A1 WO2012046814 A1 WO 2012046814A1 JP 2011073124 W JP2011073124 W JP 2011073124W WO 2012046814 A1 WO2012046814 A1 WO 2012046814A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
filler
resin sheet
adhesive layer
multilayer
Prior art date
Application number
PCT/JP2011/073124
Other languages
English (en)
French (fr)
Inventor
智雄 西山
竹澤 由高
片木 秀行
原 直樹
靖夫 宮崎
謙介 吉原
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to EP11830746.1A priority Critical patent/EP2626205A1/en
Priority to JP2012537764A priority patent/JP5348332B2/ja
Priority to US13/878,033 priority patent/US20130189514A1/en
Publication of WO2012046814A1 publication Critical patent/WO2012046814A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the present invention relates to a multilayer resin sheet and a manufacturing method thereof, a resin sheet laminate and a manufacturing method thereof, a cured multilayer resin sheet, a multilayer resin sheet with metal foil, and a semiconductor device.
  • heat sinks and heat dissipation fins are indispensable for heat dissipation for stable operation of semiconductor devices used for central processing units of personal computers and motors of electric vehicles.
  • materials that can achieve both insulation and thermal conductivity.
  • organic materials are widely used for insulating materials such as printed boards on which semiconductor devices are mounted. Although these organic materials have high insulation properties, they have low thermal conductivity and do not contribute significantly to heat dissipation of semiconductor devices and the like.
  • inorganic materials such as inorganic ceramics are sometimes used for heat dissipation of semiconductor devices and the like. Although these inorganic materials have high thermal conductivity, it is difficult to say that their insulating properties are sufficient compared to organic materials, and materials that can achieve both high insulating properties and thermal conductivity are required.
  • a filler inorganic filler with high thermal conductivity
  • a cured product composed of a composite system of a general bisphenol A type epoxy resin and an alumina filler is known.
  • the conductivity can be achieved (see, for example, JP-A-2008-13759).
  • a cured product composed of a composite system of a special epoxy resin, an amine-based curing agent and an alumina filler is known, 9.4 W / mK in the xenon flash method and 10.4 W / m in the temperature wave thermal analysis method. It is supposed that a thermal conductivity of mK can be achieved (see, for example, JP-A-2008-13759).
  • a temperature wave A thermal conductivity of 6 W / mK to 11 W / mK can be achieved by thermal analysis (see, for example, JP-A-2008-189818).
  • boron nitride is a soft filler, the adhesive strength of the resin layer may decrease in the resin layer containing boron nitride.
  • the adhesive strength is maintained by providing a second adhesive layer substantially consisting only of an adhesive on at least one surface of the first adhesive layer containing the filler.
  • a second adhesive layer substantially consisting only of an adhesive on at least one surface of the first adhesive layer containing the filler.
  • the present invention provides a cured multilayer resin sheet that is excellent in all of thermal conductivity, adhesive strength, and insulation, a resin sheet laminate, a method for producing the same, and a multilayer resin sheet that can form the cured multilayer resin sheet. This is the issue.
  • a first aspect of the present invention includes a resin layer containing an epoxy resin monomer, a curing agent, and a filler, and an adhesive layer disposed on at least one surface of the resin layer, and the filler is a laser diffraction method.
  • the filler is a laser diffraction method.
  • a particle size distribution measured using a filler having a particle size of 0.01 ⁇ m or more and less than 1 ⁇ m, 1 ⁇ m or more and less than 10 ⁇ m, and 10 ⁇ m or more and 100 ⁇ m or less, and a particle size of 10 ⁇ m or more and 100 ⁇ m or less It is a multilayer resin sheet containing a boron nitride filler.
  • the multilayer resin sheet it is preferable that at least a part of the filler having a particle diameter of 10 ⁇ m or more and 100 ⁇ m or less enters the adhesive layer.
  • at least one of the epoxy resin monomers is an epoxy resin monomer having a mesogenic group, and at least one of the curing agents is a novolac resin.
  • the adhesive layer contains at least one of a modified polyimide resin, a modified polyamideimide resin, and an epoxy resin.
  • the second aspect of the present invention is an epoxy resin monomer, a curing agent, a first filler having a volume average particle diameter of 0.01 ⁇ m or more and less than 1 ⁇ m, a second filler having a volume average particle diameter of 1 ⁇ m or more and less than 10 ⁇ m, And a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less, a multilayer resin comprising a resin layer containing a third filler containing a boron nitride filler, and an adhesive layer disposed on at least one surface of the resin layer It is a sheet.
  • the adhesive layer contains at least one of a modified polyimide resin, a modified polyamideimide resin, and an epoxy resin.
  • a cured resin layer containing a reaction product of an epoxy resin monomer and a curing agent, a cured resin layer containing a filler, and an adhesive disposed on at least one surface of the cured resin layer.
  • the filler has a peak in each range of 0.01 ⁇ m or more and less than 1 ⁇ m, 1 ⁇ m or more and less than 10 ⁇ m, and 10 ⁇ m or more and 100 ⁇ m or less in a particle size distribution measured using a laser diffraction method,
  • the filler having a particle diameter of 10 ⁇ m or more and 100 ⁇ m or less includes a boron nitride filler, and at least a part thereof is a cured multilayer resin sheet that has entered the adhesive layer.
  • the cured multilayer resin sheet it is preferable that at least a part of the filler having a particle size of 10 ⁇ m or more and 100 ⁇ m or less is in contact with each other in the cured resin layer.
  • at least one of the epoxy resin monomers is an epoxy resin monomer having a mesogenic group, and at least one of the curing agents is a novolak resin.
  • the adhesive layer preferably contains at least one of a modified polyimide resin, a modified polyamideimide resin, and an epoxy resin.
  • the fourth aspect of the present invention is a resin cured product containing a reaction product of an epoxy resin monomer and a curing agent, a first filler having a volume average particle diameter of 0.01 ⁇ m or more and less than 1 ⁇ m, and a volume average particle diameter of 1 ⁇ m or more.
  • the multilayer resin sheet cured product includes an adhesive layer arranged, and at least a part of the third filler enters the adhesive layer.
  • the third filler is preferably in contact with each other in the cured resin layer.
  • the epoxy resin monomers is an epoxy resin monomer having a mesogenic group
  • at least one of the curing agents is a novolak resin.
  • the adhesive layer preferably contains at least one of a modified polyimide resin, a modified polyamideimide resin, and an epoxy resin.
  • the fifth aspect of the present invention is an epoxy resin monomer, a curing agent, a first filler having a volume average particle diameter of 0.01 ⁇ m or more and less than 1 ⁇ m, a second filler having a volume average particle diameter of 1 ⁇ m or more and less than 10 ⁇ m, And a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less, obtaining a resin layer containing a third filler containing boron nitride, and disposing an adhesive layer on at least one surface of the resin layer, And a step of allowing at least a part of the third filler to enter the adhesive layer.
  • the sixth aspect of the present invention is a resin sheet laminate having the multilayer resin sheet cured product and a metal plate or a heat radiating plate disposed on at least one surface of the multilayer resin sheet cured product.
  • a step of obtaining a laminate by disposing a metal plate or a heat sink on the adhesive layer of the multilayer resin sheet, and at least one of the boron nitride filler in the adhesive layer. It is a manufacturing method of the resin sheet laminated body which has the process of entering a part.
  • 8th aspect of this invention is a multilayer resin sheet with metal foil which has metal foil on the adhesive material layer of the said multilayer resin sheet.
  • 9th aspect of this invention is a semiconductor device provided with a semiconductor element and the said multilayer resin sheet hardened
  • a cured multilayer resin sheet excellent in all of thermal conductivity, adhesive strength, and insulation, and a method for producing the same, a highly thermally conductive resin sheet laminate and a method for producing the same, and the cured multilayer resin sheet are formed. Can be provided.
  • the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.
  • the multilayer resin sheet of the present invention comprises a resin layer containing an epoxy resin monomer, a curing agent and a filler, and an adhesive layer disposed on at least one surface of the resin layer, and the filler is subjected to a laser diffraction method.
  • a filler having a peak in each range of 0.01 ⁇ m to less than 1 ⁇ m, 1 ⁇ m to less than 10 ⁇ m, and 10 ⁇ m to 100 ⁇ m and having a particle size of 10 ⁇ m to 100 ⁇ m is nitrided Contains boron filler.
  • the multilayer resin sheet of the present invention is an epoxy resin monomer, a curing agent, a first filler having a volume average particle diameter of 0.01 ⁇ m or more and less than 1 ⁇ m, a second filler having a volume average particle diameter of 1 ⁇ m or more and less than 10 ⁇ m, And a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less, comprising a resin layer containing a third filler containing a boron nitride filler, and an adhesive layer disposed on at least one surface of the resin layer. It is also preferable.
  • the multilayer resin sheet is excellent in storage stability before curing, and can achieve high thermal conductivity after being cured by thermocompression bonding to an adherend.
  • the adhesive strength of the sheet can be improved by providing the adhesive layer on the resin layer to form a multilayer resin sheet. This is because the adhesive layer can be made of a resin having a high adhesive strength and a low elastic modulus and absorbing a difference in linear expansion from the adherend.
  • the heat conductive adhesive sheet in order to improve the adhesive strength, it is also possible to use a resin having excellent adhesiveness and make the heat conductive resin layer compatible with both adhesiveness and thermal conductivity.
  • a resin having excellent adhesiveness and make the heat conductive resin layer compatible with both adhesiveness and thermal conductivity.
  • it is indispensable to highly fill the filler in order to impart high thermal conductivity.
  • the melt viscosity of the resin layer increases or the resin sheet becomes hard and brittle, so it can be said that the thermal conductivity and the adhesive strength are contradictory characteristics.
  • the adhesive layer without filler When the adhesive layer without filler is simply provided on the resin layer, the adhesive layer is thermally insulated because the thermal conductivity of the adhesive layer is much smaller than that of the resin layer containing filler, and the cured multilayer There are cases where the thermal conductivity in the thickness direction of the entire resin sheet is significantly reduced. On the other hand, thermal conductivity can be improved by making the thickness of the adhesive layer thinner than the thickness of the resin layer.
  • the thinning of the adhesive layer has physical limitations, and it is difficult to form a multilayer resin sheet having excellent thermal conductivity by thinning the adhesive layer.
  • the inventors have invented a multilayer resin sheet having the above-described configuration.
  • the filler in the resin layer moves to the adhesive layer side in the thickness direction of the multilayer resin sheet, thereby At least a part of the filler particles can enter the adhesive layer, and the filler particles can be moved to the vicinity of the surface of the multilayer resin sheet.
  • a laminate having higher thermal conductivity can be obtained while sufficiently exhibiting adhesiveness to the adherend.
  • the third filler in the resin layer enters the adhesive layer by the heat and pressure treatment, and the filler moves to the vicinity of the outermost surface of the multilayer resin sheet, so that only the heat conductive resin layer is adhered.
  • Thermal conductivity equivalent to that of time can be expressed.
  • the third filler entering the adhesive layer is boron nitride, it can be deformed along the adhesion surface of the adherend, so that the thermal conductivity at the interface between the adhesive layer and the adherend is very good. become. Therefore, even if the adherend has a rough surface, the effects of the present invention such as thermal conductivity, insulation, and adhesiveness can be sufficiently obtained.
  • the particle size of the third filler is controlled to 10 ⁇ m to 100 ⁇ m, and the overall filler filling rate is within the total solid content volume of the resin layer.
  • the content is preferably 30% by volume to 85% by volume or more.
  • the total solid volume of the resin layer means the total volume of nonvolatile components constituting the resin layer.
  • the multilayer resin sheet is preferably in a state where the resin composition contained in the resin layer and the resin composition contained in the adhesive layer are semi-cured.
  • the semi-cured state means that the viscosity of the resin layer is 10 5 Pa ⁇ s to 10 7 Pa ⁇ s at room temperature (25 degrees), and when heated from 100 ° C. to 180 ° C. The resin component is softened to develop tackiness. If the heating is continued as it is, the curing reaction proceeds and the viscosity rises to 10 7 Pa ⁇ s or more and expresses adhesiveness.
  • the viscosity can be measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature rising rate 5 ° C./min).
  • the adhesive layer 3 is disposed on both surfaces of the resin layer containing the filler 1 and the resin composition 2.
  • the filler 1 does not enter the adhesive layer before being bonded to the adherend.
  • the adhesive layer 3 is disposed on both surfaces of the resin layer containing the filler 1 and the resin composition 2, and the filler 4 entering the adhesive layer 3.
  • the multilayer resin sheet has the configuration shown in FIG. 16, it is possible to further improve the thermal conductivity while exhibiting sufficient adhesive force.
  • the multilayer resin sheet preferably has a configuration as shown in FIG. 15 or FIG. 16, and particularly preferably has a configuration as shown in FIG.
  • the resin layer 10 in the present invention includes a filler 1 including a third filler, a first filler, and a second filler, an epoxy resin monomer, a curing agent, and the like.
  • Resin composition 2 includes a filler 1 including a third filler, a first filler, and a second filler, an epoxy resin monomer, a curing agent, and the like.
  • the resin layer preferably contains at least three fillers having different volume average particle diameters.
  • the first filler has a volume average particle size of 0.01 ⁇ m or more and less than 1 ⁇ m, but from the viewpoint of dispersibility, it is preferably 0.05 ⁇ m or more and 0.8 ⁇ m or less, and the viewpoint of filling properties. Therefore, it is more preferably 0.1 ⁇ m or more and 0.6 ⁇ m or less.
  • the second filler has a volume average particle size of 1 ⁇ m or more and less than 10 ⁇ m, preferably from 2 ⁇ m to 8 ⁇ m from the viewpoint of resin melt viscosity, and from 2 ⁇ m to 6 ⁇ m from the viewpoint of filling properties. Is more preferable.
  • the third filler has a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less, preferably from 15 ⁇ m to 60 ⁇ m from the viewpoint of insulation, and from 20 ⁇ m to 50 ⁇ m from the viewpoint of thermal conductivity. Is more preferable. By including three kinds of fillers having different volume average particle diameters, the thermal conductivity is effectively improved.
  • the filler contained in the resin layer has the above-described configuration
  • the particle diameter distribution of the whole filler contained in the resin layer is measured by taking the particle diameter on the horizontal axis and the frequency on the vertical axis
  • a particle size distribution having a peak in each of a particle diameter range of 0.01 ⁇ m to 1 ⁇ m, a range of 1 ⁇ m to less than 10 ⁇ m, and a range of 10 ⁇ m to 100 ⁇ m can be shown.
  • the volume average particle diameter of the filler in the present invention is measured by direct measurement using a laser diffraction method or cross-sectional observation of the resin layer.
  • a laser diffraction scattering particle size distribution measuring device for example, LS230 manufactured by Beckman Coulter, Inc.
  • the filler component is extracted from the resin composition using an organic solvent or the like, nitric acid, aqua regia, or the like, and sufficiently dispersed with an ultrasonic disperser or the like.
  • the volume average particle size of the filler can be quantified.
  • the cross section of the resin layer, the multilayer resin sheet, or a cured product thereof can be observed with a scanning electron microscope and measured.
  • these resin layers are embedded in a transparent epoxy resin and polished with a polisher or slurry to expose a cross section of the resin layer.
  • the filler particle size can be quantified.
  • it is desirable to perform three-dimensional structural analysis by continuously performing two-dimensional cross-sectional observation using an FIB apparatus (focused ion beam SEM) or the like.
  • FIG. 18 and FIG. 19 show an example of the filler particle size distribution contained in the resin layer of the multilayer resin sheet.
  • the particle size distribution is in a range where the particle size is 0.01 ⁇ m or more and less than 1 ⁇ m, a particle size is 1 ⁇ m or more and less than 10 ⁇ m and a particle size is 10 ⁇ m or more and 100 ⁇ m or less. There is a peak.
  • the multilayer resin sheet can sufficiently exhibit functions such as heat conduction and insulation.
  • the first filler, the second filler, and the third filler each have the volume average particle diameter, but from the viewpoint of thermal conductivity and insulation, the volume of the first filler.
  • the ratio of the volume average particle size of the second filler to the average particle size is preferably 5 to 50, and the filling property and heat From the viewpoint of conductivity, it is more preferably 8-20.
  • the ratio of the volume average particle diameter of the third filler to the volume average particle diameter of the second filler volume average particle diameter of the third filler / volume of the third filler
  • the average particle diameter is preferably 3 to 40, more preferably 5 to 30.
  • the first filler, the second filler, and the third filler are not particularly limited as long as each has a predetermined volume average particle size, and exhibits a wide particle size distribution. Or a narrow particle size distribution.
  • the filler in the present invention preferably contains the first filler, the second filler, and the third filler as a whole filler. That is, when the particle size distribution of the whole filler is measured, a peak corresponding to the first filler having a volume average particle size of 0.01 ⁇ m or more and less than 1 ⁇ m and a second filler having a volume average particle size of 1 ⁇ m or more and less than 10 ⁇ m It is preferable that at least three peaks, ie, a peak corresponding to ⁇ and a peak corresponding to a third filler having a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less, are observed.
  • the filler of such an embodiment may be configured by mixing the first filler, the second filler, and the third filler, which show a single peak in the particle size distribution, for example. You may comprise using the filler which has a 2 or more peak.
  • the content ratio of the first filler is 1% to 15% and the content ratio of the second filler is 10% to 40%.
  • the content ratio of the third filler is preferably 45% to 80%, and from the viewpoint of filling property and thermal conductivity, the content ratio of the first filler is 6% to 15%, More preferably, the content ratio of the filler is 18% to 35%, and the content ratio of the third filler is 50% to 70%.
  • the thermal conductivity can be improved more effectively by increasing the content ratio of the third filler as much as possible and then increasing the content ratio of the second filler.
  • thermal conductivity improves more effectively by including at least three kinds of fillers having different volume average particle diameters at a specific content ratio (volume basis).
  • the first filler and the second filler are not particularly limited as long as they are insulating inorganic compounds, but preferably have high thermal conductivity.
  • Specific examples of the first filler and the second filler include aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, talc, mica, aluminum hydroxide, barium sulfate and the like. Of these, aluminum oxide, boron nitride, and aluminum nitride are preferable from the viewpoint of thermal conductivity.
  • the third filler only needs to contain at least boron nitride, and may further contain an inorganic compound having other insulating properties in addition to boron nitride.
  • boron nitride By including boron nitride, the thermal conductivity is dramatically improved. For example, this can be considered as follows.
  • Boron nitride has a Mohs hardness of 2, which is lower and softer than other insulating ceramics such as alumina and aluminum nitride (for example, hardness 8).
  • the boron nitride having a spherical shape or round shape has a shape in which primary particles are aggregated, and there are voids inside the particles, which are harder than the molten resin, but the particles themselves are easily deformed. .
  • the fillers can easily approach each other, it becomes easy to form a continuous structure of the third filler containing boron nitride inside the resin layer, and it can be considered that the thermal conductivity is dramatically improved. .
  • the particle shape of the filler is not particularly limited, and examples thereof include a spherical shape, a round shape, a crushed shape, a flake shape, and an aggregated particle shape. Of these, spherical and round shapes are preferable from the viewpoint of filling properties and thermal conductivity.
  • the filler in the present invention has a volume average particle diameter of the first filler of 0.01 ⁇ m or more and less than 1 ⁇ m, a volume average particle diameter of the second filler of 1 ⁇ m or more and less than 10 ⁇ m, and a volume average particle of the third filler.
  • the diameter is preferably 10 ⁇ m or more and 100 ⁇ m or less, and the content ratio of the first filler, the second filler, and the third filler is 1% to 15%, 10% to 40%, respectively, on a volume basis, More preferably, it is 45% to 80%.
  • the volume average particle diameter of the first filler is 0.01 ⁇ m or more and 0.6 ⁇ m or less
  • the volume average particle diameter of the second filler is 2 ⁇ m or more and 6 ⁇ m or less
  • the volume average particle diameter of the third filler is
  • the content ratio of the first filler, the second filler, and the third filler is 6% to 15%, 18% to 35%, and 50% on a volume basis, respectively. More preferably, it is ⁇ 70%.
  • the total content of the filler in the resin layer is not particularly limited, and is preferably 30% by volume to 85% by volume in the total solid content of the resin layer from the viewpoint of thermal conductivity and adhesiveness. From the viewpoint of thermal conductivity, it is more preferably 50% by volume to 80% by volume.
  • the total solid content of the resin layer means the total amount of non-volatile components among the components constituting the resin layer.
  • epoxy resin monomer The resin layer in the present invention contains at least one epoxy resin monomer (hereinafter sometimes simply referred to as “epoxy resin”).
  • epoxy resin a commonly used general epoxy resin can be used without particular limitation. Among these, it is preferable that the resin has a low viscosity before curing and is excellent in filler filling property and moldability, and has high heat conductivity after heat curing in addition to high heat resistance and adhesiveness.
  • Specific examples of general epoxy resins include glycidyl ethers such as bisphenol A type, F type, S type and AD type, hydrogenated bisphenol A type glycidyl ether, phenol novolac type glycidyl ether, cresol novolac type glycidyl.
  • Examples include ethers, bisphenol A type novolac type glycidyl ethers, naphthalene type glycidyl ethers, biphenol type glycidyl ethers, dihydroxypentadiene type glycidyl ethers, and the like.
  • a polyfunctional epoxy resin is preferable for the purpose of increasing the Tg (glass transition temperature) and increasing the thermal conductivity.
  • an epoxy resin obtained by epoxidizing a phenol novolac, a phenolic novolac type, an epoxy resin, a cresol novolac type epoxy resin, or the like may be a triphenol type epoxy resin.
  • the epoxy resin which has a mesogenic group is also mentioned as an epoxy resin which expresses high thermal conductivity.
  • the epoxy resin in the present invention may contain a liquid epoxy resin, which makes it possible to lower the resin softening point during the A stage or the B stage. Specifically, the handleability of the sheet may be improved.
  • the liquid epoxy resin may have low Tg and thermal conductivity, the content of the liquid epoxy resin can be appropriately selected in consideration of the physical properties of the cured resin.
  • a resin preferable from the viewpoint of thermal conductivity is at least one of an epoxy resin having a mesogenic group and a triphenol novolac type epoxy resin.
  • the mesogenic group herein is not particularly limited as long as it can form a higher-order structure derived from the mesogenic group in the cured resin when the epoxy resin monomer forms a cured resin together with the curing agent. Absent.
  • the higher order structure here means a state in which molecules are aligned after the resin composition is cured.
  • a crystal structure or a liquid crystal structure exists in the cured resin.
  • the presence of such a crystal structure or liquid crystal structure can be directly confirmed by, for example, observation with a polarizing microscope under crossed Nicols or X-ray scattering.
  • the presence of the elastic modulus of storage can be confirmed indirectly by a small change in temperature.
  • the mesogenic group examples include a biphenyl group, a terphenyl group, a terphenyl analog, an anthracene group, and a group in which these are connected by an azomethine group or an ester group.
  • high thermal conductivity can be achieved by using an epoxy resin monomer having a mesogenic group as an epoxy resin monomer and forming a cured resin together with a curing agent.
  • an epoxy resin monomer having a mesogenic group in the molecule forms a cured resin together with a curing agent (preferably, a novolak resin described later), so that the highly regularity derived from the mesogenic group in the cured resin is high.
  • a curing agent preferably, a novolak resin described later
  • epoxy resin monomer having a mesogenic group examples include 4,4′-biphenol glycidyl ether, 1- ⁇ (3-methyl-4-oxiranylmethoxy) phenyl ⁇ -4- (4-oxira Nylmethoxyphenyl) -1-cyclohexene, 4- (oxiranylmethoxy) benzoic acid-1,8-octanediylbis (oxy-1,4-phenylene) ester, 2,6-bis [4- [4- [ 2- (oxiranylmethoxy) ethoxy] phenyl] phenoxy] pyridine and the like.
  • 1- ⁇ (3-methyl-4-oxiranylmethoxy) phenyl ⁇ -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene is particularly preferable from the viewpoint of improving thermal conductivity.
  • the content of the epoxy resin monomer in the resin layer is not particularly limited, but from the viewpoint of thermal conductivity and adhesiveness, it is 3% by mass to 30% by mass in the total solid content constituting the resin layer. From the viewpoint of thermal conductivity, it is more preferably 5% by mass to 25% by mass.
  • the resin layer in the present invention contains at least one curing agent.
  • the curing agent is not particularly limited as long as it is a compound that can react with an epoxy resin monomer to form a cured resin.
  • novolak resin aromatic amine curing agent, aliphatic amine curing agent, mercaptan curing agent, polyaddition curing agent such as acid anhydride curing agent, and latent curing such as imidazole and TPP.
  • An agent or the like can be used.
  • it is preferable that at least 1 sort (s) of novolak resin is included as a hardening
  • the novolak resin is not particularly limited as long as it is a novolak resin usually used as a curing agent for epoxy resins. Especially, it is preferable that it is at least 1 sort (s) of the compound which has a structural unit represented by the following general formula (I) from a heat conductive and insulating viewpoint.
  • R 1 represents an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group, aryl group and aralkyl group represented by R 1 may further have a substituent if possible.
  • the substituent include an alkyl group, an aryl group, a halogen atom, and a hydroxyl group.
  • m represents an integer of 0 to 2, and when m is 2, two R 1 s may be the same or different. In the present invention, m is preferably 0 or 1, and more preferably 0.
  • the novolak resin preferably contains at least one compound having the structural unit represented by the general formula (I), but two kinds of compounds having the structural unit represented by the general formula (I). The above may be included.
  • the novolak resin preferably includes a partial structure derived from resorcinol as the phenolic compound, but may further include at least one partial structure derived from a phenolic compound other than resorcinol.
  • phenolic compounds other than resorcinol include phenol, cresol, catechol, and hydroquinone.
  • the novolak resin may contain a single partial structure or a combination of two or more thereof.
  • the partial structure derived from the phenolic compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the benzene ring portion of the phenolic compound. The position where the hydrogen atom is removed is not particularly limited.
  • the partial structure derived from a phenolic compound other than resorcinol includes phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4 from the viewpoint of thermal conductivity and adhesiveness.
  • -A partial structure derived from at least one selected from trihydroxybenzene and 1,3,5-trihydroxybenzene, preferably a partial structure derived from at least one selected from catechol and hydroquinone are more preferable, and catechol resorcinol novolak resin or hydroquinone resorcinol novolak resin is more preferable.
  • the content ratio of the partial structure derived from resorcinol in the novolak resin is not particularly limited, but from the viewpoint of thermal conductivity, the content ratio of the partial structure derived from resorcinol to the total mass of the novolak resin is 55% by mass or more. It is preferable to be 80% by mass or more from the viewpoint of further high thermal conductivity.
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, a phenyl group, or an aralkyl group.
  • the alkyl group, phenyl group, aryl group and aralkyl group represented by R 2 and R 3 may further have a substituent if possible, and examples of the substituent include an alkyl group, an aryl group, a halogen atom, An atom, a hydroxyl group, etc. can be mentioned.
  • the number average molecular weight of the novolak resin is preferably 800 or less from the viewpoint of thermal conductivity, more preferably 300 or more and 700 or less from the viewpoint of resin viscosity, thermal conductivity, and glass transition temperature. From the viewpoint of high thermal conductivity, it is more preferably from 350 to 550.
  • the novolak resin containing the compound having the structural unit represented by the general formula (I) may contain a monomer that is a phenolic compound constituting the novolak resin.
  • the content ratio of the monomer that is a phenolic compound constituting the novolak resin (hereinafter, sometimes referred to as “monomer content ratio”) is not particularly limited, but from the viewpoint of moldability, thermal conductivity, and glass transition temperature, novolak is used. It is preferably 5% by mass to 80% by mass in the resin, more preferably 15% by mass to 60% by mass from the viewpoint of high thermal conductivity and glass transition temperature, and further higher thermal conductivity and glass. From the viewpoint of the transition temperature, the content is more preferably 20% by mass to 50% by mass.
  • the monomer content ratio is 20% by mass or more, an increase in the viscosity of the novolak resin is suppressed, and the adhesiveness of the filler is further improved. Moreover, by being 50 mass% or less, a higher-order higher-order structure is formed by the crosslinking reaction in the case of hardening, and the outstanding heat conductivity and heat resistance can be achieved.
  • resorcinol As a monomer of the phenolic compound constituting the novolak resin, resorcinol, catechol, and hydroquinone can be exemplified, and at least resorcinol is preferably contained as a monomer.
  • the content of the curing agent in the resin layer is not particularly limited, but is preferably 1% by mass to 10% by mass in the total solid content of the resin layer from the viewpoint of thermal conductivity and adhesiveness. More preferably, it is ⁇ 8% by mass.
  • the content of the curing agent in the resin layer is also preferably 0.8 to 1.2, and preferably 0.9 to 1.1, on an equivalent basis with respect to the epoxy resin monomer. More preferred.
  • the resin layer in the present invention may further contain at least one silane coupling agent.
  • silane coupling agent By including a silane coupling agent, the bondability between the resin component including the epoxy resin and the novolac resin and the filler can be further improved, and higher thermal conductivity and stronger adhesiveness can be achieved.
  • the silane coupling agent is not particularly limited as long as it is a compound having a functional group that binds to a resin component and a functional group that binds to a filler, and a commonly used silane coupling agent can be used.
  • the functional group bonded to the filler include trialkoxysilyl groups such as a trimethoxysilyl group and a triethoxysilyl group.
  • the functional group bonded to the resin component include an epoxy group, an amino group, a mercapto group, a ureido group, and an aminophenyl group.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl).
  • a silane coupling agent oligomer represented by SC-6000KS2 manufactured by Hitachi Chemical Coated Sands Co., Ltd.
  • These silane coupling agents can be used alone or in combination of two or more.
  • the content ratio of the silane coupling agent in the resin layer is not particularly limited, but is 0.02% by mass to 0.83% by mass with respect to the total solid content of the resin layer from the viewpoint of thermal conductivity. It is preferably 0.04% by mass to 0.42% by mass.
  • the content ratio of the silane coupling agent with respect to the filler is preferably 0.02% by mass to 1% by mass from the viewpoints of thermal conductivity, insulation, and moldability, and from the viewpoint of high thermal conductivity. More preferably, it is 0.05 mass% to 0.5 mass%.
  • the resin layer in the present invention can contain other components as necessary in addition to the essential components.
  • examples of other components include organic solvents, curing accelerators, and dispersants.
  • Method for preparing resin layer As a method for preparing the resin layer in the present invention, a commonly used method for producing a resin sheet can be used without particular limitation.
  • a resin composition is prepared by mixing the epoxy resin monomer, the curing agent (preferably a novolac resin), the filler, other components included as necessary, and an organic solvent. Is formed into a sheet shape, and at least a part of the organic solvent is removed (dried), whereby the resin layer can be prepared.
  • the resin layer in the present invention is preferably obtained by removing (drying) at least a part of the organic solvent from the sheet-like resin composition layer formed from the resin composition further containing the organic solvent. Furthermore, it is preferable that the resin composition constituting the resin layer is in a semi-cured state (B stage) by subjecting the resin layer from which at least a part of the organic solvent has been removed to heat and pressure treatment.
  • organic solvent is removed in the drying process at the time of preparing the resin layer, and if it remains in a large amount, it affects the thermal conductivity and the insulation performance. Therefore, those having a low boiling point and vapor pressure are desirable. . Further, if it is completely removed at the time of drying, the resin layer becomes hard and the adhesion performance is lost, so it is necessary to adapt to the drying method and drying conditions. Furthermore, it can also select suitably by the kind of resin to be used, the kind of filler, the drying property at the time of resin layer preparation, etc.
  • alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-propanol and cyclohexanol
  • ketone solvents such as methyl ethyl ketone, cyclohexanone and cyclopentanone
  • dimethylformamide and dimethyl Nitrogen solvents such as acetamide can be preferably used.
  • a method of mixing and dispersing the components constituting the resin composition it can be carried out by appropriately combining dispersers such as a normal stirrer, a raking machine, a triple roll, a ball mill and the like.
  • the resin layer in the present invention is, for example, formed by applying a resin composition containing the filler onto a support to form a coating layer, and removing (drying) at least a part of the organic solvent from the coating layer. It can be prepared by molding into. Moreover, the support body for protecting an adhesive surface can be provided in the single side
  • the film thickness of the resin layer in the present invention can be appropriately selected according to the purpose, but is, for example, 50 ⁇ m to 400 ⁇ m, and preferably 100 ⁇ m to 250 ⁇ m.
  • the support examples include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. These films may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, etching treatment, mold release treatment and the like as necessary. Further, a metal such as a copper foil or an aluminum plate can be used as the support.
  • the film thickness is not particularly limited and is appropriately determined based on the knowledge of those skilled in the art depending on the film thickness of the resin layer to be formed and the use of the multilayer resin sheet.
  • the thickness is preferably 10 ⁇ m to 150 ⁇ m, more preferably 30 ⁇ m to 110 ⁇ m, from the viewpoint of good performance and easy handling.
  • the method for applying the resin composition and the method for drying the resin composition can be appropriately selected from commonly used methods without particular limitations.
  • a comma coater, a die coater, dip coating, etc. are mentioned as a coating method
  • a drying method includes heat drying under normal pressure or reduced pressure, natural drying, freeze drying, and the like.
  • the resin layer may be composed of a single coating layer formed on the support, or may be a two-layer overcoat. Further, it may be constituted by laminating two or more coating layers formed on the support.
  • the resin layer is preferably in a semi-cured state of the resin composition contained in the resin layer.
  • the handleability is improved by being a resin layer in a semi-cured state (B stage state).
  • B stage state There is no restriction
  • the method of heat-pressing using a hot press or a laminate can be mentioned.
  • the heating and pressing conditions for making the resin composition constituting the resin layer semi-cured can be appropriately selected depending on the configuration of the resin composition.
  • the heating temperature is 80 ° C. to 180 ° C.
  • the pressure is 0.1 MPa to 100 MPa
  • Heating and pressing can be performed under conditions of 0.3 to 30 minutes.
  • the multilayer resin sheet of the present invention includes an adhesive layer on at least one surface of the resin layer.
  • the resin constituting the adhesive layer is not particularly limited as long as it is an adhesive resin, but is preferably an insulating resin.
  • Examples of the polyimide resin include Iupicoat FS-100L (manufactured by Ube Industries), Semicofine SP-300, SP-400, SP-800 (manufactured by Toray Industries, Inc.), Uimide series (manufactured by Unitika Ltd.), and the like.
  • Products represented by Examples of the polyamideimide resin and the modified polyamideimide resin include Viromax series (manufactured by Toyobo Co., Ltd.) and Torlon (manufactured by Solvay Advanced Polymers). Among these, from the viewpoint of high heat resistance and high adhesiveness, it is preferable to use a modified polyamideimide resin represented by the KS series (manufactured by Hitachi Chemical Co., Ltd.).
  • the polyimide resin, polyamideimide resin, and modified polyamideimide resin that are suitably used for the adhesive layer may be used singly or in combination of two or more. These resins are usually in a varnish state in which the resin is dissolved in a solvent, and can be used as an adhesive layer by forming a film by directly applying to a support such as a PET film and drying the solvent.
  • an epoxy resin which is a typical thermosetting adhesive resin may be used.
  • an epoxy resin composition containing an epoxy resin, its curing agent, glycidyl acrylate, and a curing agent accelerator may be used as the adhesive layer.
  • an epoxy resin composition containing an epoxy resin, its curing agent, glycidyl acrylate, and a curing agent accelerator may be used as the adhesive layer.
  • the epoxy resin used in the adhesive layer of the present invention is not particularly limited as long as it is cured and exhibits an adhesive action.
  • a bisphenol A type or bisphenol F type liquid resin having a molecular weight of 500 or less because the fluidity during lamination can be improved.
  • a polyfunctional epoxy resin may be added for the purpose of increasing the Tg (glass transition temperature), and examples of the polyfunctional epoxy resin include phenol novolac type epoxy resins and cresol novolac type epoxy resins.
  • the epoxy resin curing agent can be appropriately selected from those usually used as epoxy resin curing agents.
  • examples thereof include polyamide, acid anhydride, phenol novolac, polysulfide, boron trifluoride, and bisphenol A, bisphenol F, and bisphenol S, which are compounds having two or more phenolic hydroxyl groups in one molecule.
  • a curing accelerator it is preferable to use a curing accelerator together with the curing agent.
  • various imidazoles are preferably used.
  • imidazole include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate and the like.
  • Imidazoles are commercially available from Shikoku Kasei Kogyo Co., Ltd. under the trade names 2E4MZ, 2PZ-CN, and 2PZ-CNS.
  • the epoxy resin used for the adhesive layer is preferably a high molecular weight epoxy resin containing a high molecular weight resin compatible with the epoxy resin.
  • the high molecular weight resin compatible with the epoxy resin include a high molecular weight epoxy resin, a highly polar functional group-containing rubber, and a highly polar functional group-containing reactive rubber.
  • the functional group-containing reactive rubber having a large polarity include an acrylic-modified rubber obtained by adding a functional group having a large polarity such as a carboxyl group to an acrylic rubber.
  • having compatibility with the epoxy resin means a property of forming a homogeneous mixture without separating from the epoxy resin after curing and separating into two or more phases.
  • the weight average molecular weight of the high molecular weight resin is not particularly limited. From the viewpoint of reducing the tackiness of the adhesive layer in the B stage and improving the flexibility during curing, the weight average molecular weight is preferably 30,000 or more.
  • the high molecular weight epoxy resin is a high molecular weight epoxy resin having a molecular weight of 30,000 to 80,000. Furthermore, for ultra high molecular weight epoxy resins having a molecular weight exceeding 80,000, Japanese Patent Publication No. 7-59617, Japanese Patent Publication No. 7-59618, See Japanese Patent Publication Nos. 7-59619, 7-59620, 7-64911, and 7-68327. In addition, as a functional group-containing reactive rubber having a large polarity, a carboxyl group-containing acrylic rubber is commercially available from Nagase ChemteX Corporation under the trade name HTR-860P.
  • the addition amount of the high molecular weight resin having compatibility with the epoxy resin and having a weight average molecular weight of 30,000 or more is preferably 10 parts by mass or more when the resin constituting the adhesive layer is 100 parts by mass. Moreover, it is preferable that it is 40 mass parts or less. When the amount is 10 parts by mass or more, it is possible to prevent insufficient flexibility of a phase containing epoxy resin as a main component (hereinafter referred to as epoxy resin phase), reduction in tackiness, and deterioration in insulation due to cracks or the like. Moreover, the fall of Tg of an epoxy resin phase can be prevented as it is 40 mass parts or less.
  • the weight average molecular weight of the high molecular weight epoxy resin is preferably 20,000 or more and 500,000 or less. In this range, the strength and flexibility in sheet form and film form can be suppressed from decreasing, and tackiness can be suppressed from increasing.
  • the adhesive layer may contain at least one filler.
  • the filler is not particularly limited as long as it is an inorganic compound having an insulating property, but preferably has a high thermal conductivity.
  • Specific examples of the filler include aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, talc, mica, aluminum hydroxide, barium sulfate and the like. Of these, aluminum oxide, boron nitride, and aluminum nitride are preferable from the viewpoint of thermal conductivity.
  • 1 type may be individual, or 2 or more types may be used together.
  • the volume average particle diameter of the filler contained in the adhesive layer is not particularly limited.
  • the thickness is preferably 0.1 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the filler content in the adhesive layer is preferably 50% by volume or less from the viewpoint of balancing adhesiveness and thermal conductivity. Further, from the viewpoint of thermal conductivity, it is preferably 20% by volume or more and 50% by volume or less.
  • the multilayer resin sheet of the present invention is characterized in that an adhesive layer is disposed on at least one surface of the resin layer.
  • an adhesive layer is disposed on at least one surface of the resin layer.
  • the resin layer and the adhesive layer formed into a film as described above are bonded together, and the solvent is dried after the resin varnish is directly applied to the surface of the resin layer.
  • a method of arranging an adhesive layer In the present invention, from the viewpoint of workability and the like, it is preferable to prepare a film-like adhesive material layer in advance and bond it to the resin layer.
  • an adhesive layer sheet with a support can be formed by applying a coating solution containing an adhesive resin on the support and using this.
  • the thickness of the adhesive layer is not particularly limited, but is preferably 3 ⁇ m to 16 ⁇ m, more preferably 4 ⁇ m to 14 ⁇ m from the viewpoint of thermal conductivity and adhesiveness.
  • a film-like adhesive layer is laminated on the resin layer using a hot press, a laminator, or the like.
  • a method of laminating a product can be mentioned.
  • Conditions for heating and pressing performed in the laminating process can be appropriately selected according to the configurations of the resin layer and the adhesive layer. For example, it is preferable to heat and pressurize at a heating temperature of 80 ° C. to 200 ° C., a pressure of 0.2 MPa to 20 MPa, and a reduced pressure (for example, 30 kPa or less).
  • the multilayer resin sheet in the present invention can be provided with a support for protecting the surface of the adhesive layer on one side or both sides. Thereby, a multilayer resin sheet can be protected from the adhesion and the impact of foreign matter on the adhesive surface from the external environment.
  • the said support body is peeled and used.
  • the support may be disposed on the adhesive layer after forming the adhesive layer, and when the adhesive layer is formed using an adhesive layer sheet with a support, The support can be used as it is as a support for the multilayer resin sheet.
  • the first production method of the multilayer resin sheet includes an epoxy resin monomer, a curing agent, a first filler having a volume average particle diameter of 0.01 ⁇ m or more and less than 1 ⁇ m, and a second filler having a volume average particle diameter of 1 ⁇ m or more and less than 10 ⁇ m. And a step of obtaining a resin layer having a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less and containing a third filler containing boron nitride, and an adhesive layer is disposed on at least one surface of the resin layer And includes other processes as necessary.
  • the step of obtaining the resin layer is the same as the method for preparing the resin layer described above.
  • at least a part of the third filler particles may not enter the adhesive layer or may enter. From the viewpoint of preventing the deformation of the adherend by suppressing the resin flow at the time of bonding or reducing the pressure of the pressure bonding, it is preferable that at least a part of the third filler enters the adhesive layer.
  • the resin layer and the adhesive layer formed into a film as described above are bonded together, and the resin varnish is directly applied to the surface of the resin layer.
  • Examples include a method of arranging the adhesive layer by drying the solvent later.
  • a method of providing an adhesive layer on the resin layer using a film-like adhesive layer for example, a press device, a laminating device, a rubber roll press device, a metal roll press device, a vacuum press device, etc.
  • stacked the layer and the film-form adhesive material layer can be mentioned.
  • the conditions for heating and pressurizing when the adhesive layer is provided on the resin layer are, for example, a heating temperature of 60 ° C. to 220 ° C., a pressure of 0.1 MPa to 100 MPa, and a treatment time of 0.1 minutes to 60 minutes. It is preferable that More preferably, the temperature is 80 ° C.
  • the pressure is 0.2 MPa to 80 MPa, and the treatment time is 0.15 minutes to 30 minutes.
  • the process of obtaining the said laminated body can be performed also at atmospheric pressure (under normal pressure), it is preferable to carry out under reduced pressure.
  • the decompression condition is preferably 30000 Pa or less, more preferably 10,000 Pa or less.
  • the first manufacturing method further includes a step of allowing at least a part of the third filler particles in the resin layer to enter the adhesive layer in the adhesive formed on the resin layer. .
  • the multilayer resin sheet obtained in this way at least a part of the third filler particles in the resin layer has entered the adhesive layer before being bonded to the adherend, thereby suppressing the resin flow during bonding. Further, the deformation of the adherend can be prevented by reducing the pressure bonding pressure.
  • Examples of a method for allowing the third filler particles in the resin layer to enter the adhesive layer by performing a heat and pressure treatment after forming the adhesive layer on the resin layer include, for example, a vacuum heating press and a metal heating roll. And the like.
  • the epoxy resin monomer and the curing agent are the resin composition 2, the first filler having a volume average particle size of 0.01 ⁇ m or more and less than 1 ⁇ m, and the volume average particle size is A resin layer 10 is obtained that contains the second filler that is 1 ⁇ m or more and less than 10 ⁇ m, and the filler 1 that has a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less and includes a third filler containing boron nitride.
  • the adhesive layer 3 is disposed on both surfaces of the resin layer 10.
  • the method for forming the adhesive layer 3 is as described above.
  • the resin sheet 40 in which the adhesive layer 3 is disposed on both surfaces of the resin layer 10 is heated and pressurized using a vacuum heating press or a metal heating roll, and the filler in the resin layer 10 is added to the adhesive layer 3. Make a part of it.
  • the multilayer resin sheet 40A in which the filler 4 which has penetrated into the adhesive material layer 3 exists can be manufactured.
  • the second production method of the multilayer resin sheet includes an epoxy resin monomer, a curing agent, a first filler having a volume average particle size of 0.01 ⁇ m or more and less than 1 ⁇ m, and a volume average particle size of 1 ⁇ m or more and less than 10 ⁇ m.
  • a step of obtaining a second filler and a resin layer having a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less and containing a third filler containing boron nitride, and an adhesive layer is disposed on at least one surface of the resin layer
  • the step of obtaining the resin layer is as described above.
  • the heating and pressurizing conditions are preferably a heating temperature of 80 ° C. to 220 ° C., a pressure of 1 MPa to 100 MPa, and a treatment time of 0.1 minutes to 60 minutes. More preferably, the temperature is 100 ° C. to 200 ° C., the pressure is 1.5 MPa to 80 MPa, and the treatment time is 0.3 minutes to 40 minutes. Further, it is more desirable that this condition is appropriately determined taking into account the press process described later.
  • the heating and pressurization can be performed at atmospheric pressure (under normal pressure), but is preferably performed under reduced pressure.
  • the decompression condition is preferably 30000 Pa or less, more preferably 10,000 Pa or less.
  • the epoxy resin monomer and the curing agent are the resin composition 2, the first filler having a volume average particle diameter of 0.01 ⁇ m or more and less than 1 ⁇ m, and the volume average particle diameter is A resin layer 10 is obtained that contains the second filler that is 1 ⁇ m or more and less than 10 ⁇ m, and the filler 1 that has a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less and includes a third filler containing boron nitride.
  • the adhesive layer 3 is formed on both surfaces of the resin layer 10 by controlling the heating and pressurizing conditions when the adhesive layer is provided as described above, and the filler in the resin layer 10 is formed in the adhesive layer 3. Make a part of it. Thereby, as shown in FIG. 14B, a multilayer resin sheet 40A in which the filler 4 entering the adhesive layer 3 is present can be manufactured.
  • the multilayer resin sheet in the present invention can be used as follows.
  • the adhesive layer side of the multilayer resin sheet is disposed so as to face an adherend such as a metal plate, and is heated and pressed.
  • a laminate can be obtained (laminate formation step).
  • it can be set as a multilayer resin sheet laminated body hardened
  • the conditions for the heat and pressure treatment in the curing step are not particularly limited as long as the resin layer is cured.
  • the heating temperature is 80 ° C. to 250 ° C.
  • the pressure is 1 MPa to 100 MPa
  • the treatment time is 0.1 minutes to 360 minutes. More preferably, the temperature is 100 ° C. to 220 ° C., the pressure is 1.5 MPa to 80 MPa, and the treatment time is 10 minutes to 240 minutes.
  • the curing step can be performed at atmospheric pressure (under normal pressure), but is preferably performed under reduced pressure.
  • the decompression condition is preferably 30000 Pa or less, more preferably 10,000 Pa or less.
  • the heat conductivity and heat resistance can be further improved by further heat treatment.
  • the heat treatment can be performed at 100 ° C. to 250 ° C. for 10 minutes to 300 minutes.
  • the heating and pressing conditions in the laminate forming step are not particularly limited, but can be performed as follows.
  • the heating temperature is 60 ° C. to 200 ° C.
  • the pressure is 1 MPa to 100 MPa
  • the treatment time is 0.1 minutes to 360 minutes.
  • the temperature is 80 ° C. to 180 ° C.
  • the pressure is 1 MPa to 30 MPa
  • the treatment time is 0.5 minutes to 240 minutes.
  • a heating process is performed to allow at least a part of the third filler in the resin layer to enter the adhesive layer. It is preferable to perform pressure treatment.
  • the heating and pressing conditions in this case are as follows.
  • the heating temperature is 60 ° C. to 200 ° C.
  • the pressure is 0.5 MPa to 200 MPa
  • the treatment time is 0.1 minutes to 20 minutes. More preferably, the temperature is 80 ° C. to 180 ° C., the pressure is 1 MPa to 100 MPa, and the treatment time is 0.1 minute to 15 minutes.
  • the heating and pressing conditions in the laminate forming step are not particularly limited, but can be performed as follows.
  • the heating temperature is 100 ° C. to 250 ° C.
  • the pressure is 1 MPa to 100 MPa
  • the treatment time is 0.1 minutes to 20 minutes. More preferably, the temperature is 70 to 220 ° C., the pressure is 1 to 60 MPa, and the treatment time is 0.2 to 10 minutes.
  • the heating and pressing conditions in this case are as follows. It is preferable that the heating temperature is 60 ° C. to 200 ° C., the pressure is 1.5 MPa to 100 MPa, and the treatment time is 0.1 minutes to 20 minutes. More preferably, the temperature is 80 ° C. to 180 ° C., the pressure is 2 MPa to 80 MPa, and the treatment time is 0.2 minutes to 20 minutes. From the viewpoint of reducing the number of steps, a method of allowing at least a part of the third filler in the resin to enter the adhesive layer together with the laminate forming step is preferable.
  • the multilayer resin sheet of the present invention has an adhesive layer formed on only one side
  • adherends may be arranged on both sides.
  • the adherend can be disposed on both surfaces.
  • An example of the laminated body formation process in these cases will be described with reference to the drawings.
  • the first adherend 72, the multilayer resin sheet 70, and the second adherend 73 are laminated in this order, and the first adherend 72 and the second adherend 73 are laminated. Is heated and pressed so as to sandwich the multilayer resin sheet 70, whereby the first adherend 72, the multilayer resin sheet 80 and the second adherend 73 as shown in FIG. A laminated body can be obtained.
  • the adherend is not particularly limited.
  • metals such as copper, aluminum, chromium copper, nickel-plated metal plates, polyimide, epoxy, triazine, melanin, nylon, ABS and other resins, alumina, nitriding
  • ceramics such as boron, magnesium oxide, silicon nitride, and aluminum nitride, and composite materials that are mixtures thereof.
  • the multilayer resin sheet of the present invention has a high thermal conductivity, and can form a cured product of a highly thermally conductive multilayer resin sheet that can withstand severe thermal shock during mounting and actual driving. Expansion to heat radiation materials for hybrid vehicle inverters, which are expected to increase in demand, heat radiation materials for industrial equipment inverters, or heat radiation materials for LEDs is expected.
  • the multilayer resin sheet cured product of the present invention includes a cured resin derived from an epoxy resin monomer and a curing agent, a cured resin layer containing a filler, and an adhesive layer disposed on at least one surface of the cured resin layer. And comprising.
  • the filler is a first filler having a volume average particle diameter of 0.01 ⁇ m or more and less than 1 ⁇ m, a second filler having a volume average particle diameter of 1 ⁇ m or more and less than 10 ⁇ m, and a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less.
  • a third filler containing boron nitride. Furthermore, at least a part of the third filler penetrates into the adhesive layer.
  • the third fillers are preferably in contact with each other at points in the resin layer, and more preferably in contact with each other so that they can conduct heat with each other.
  • the contact with the surface so as to be able to conduct heat here means that the third fillers are close to each other and deformed as shown in the cross-sectional SEM photograph of the cured multilayer resin sheet in FIG. Indicates that the surfaces are facing each other. Thermal conductivity improves more because at least some of the third fillers are in contact with each other.
  • the third filler 56 is deformed and follows along the shape of the surface of the copper foil 57 near the interface between the copper foil 57 and the multilayer resin sheet, which is an adherend, and this is connected to the filler near the center of the sheet. It can be seen that the network is formed.
  • the boron nitride filler contained in the third filler is assumed to be 100 times higher in thermal conductivity than the resin alone. If a network of fillers can be formed, a heat conduction path that does not involve resin is formed, so that the heat conductivity can be dramatically improved.
  • a hard filler such as alumina cannot be used, it cannot be deformed, and therefore the filler may not be able to approach the vicinity of the interface with the adherend such as copper foil. Therefore, it is difficult to form a filler network and it is difficult to improve thermal conductivity. Therefore, it is preferable to include a deformable boron nitride filler.
  • FIG. 5 is a cross-sectional SEM photograph of a multilayer resin sheet cured product formed by pasting a copper foil as an adherend on both surfaces of the multilayer resin sheet and then applying heat and pressure.
  • the third filler not only the third filler but also at least a part of the filler including the first filler and the second filler are in contact with each other, for example, the first filler, One filler and the third filler may be in contact with each other.
  • Examples of a method for configuring the cured resin layer so that at least a part of the third fillers are in contact with each other include, for example, a method for appropriately selecting the filler content in the resin layer, a method for appropriately selecting the filler mixing ratio, Examples thereof include a method for appropriately selecting the ratio between the flexible filler and the hard filler, a method for heat-pressing a resin layer containing the filler, and the like, and these methods may be appropriately combined.
  • the third filler particles enters the adhesive layer 3.
  • the third filler 4 existing in the vicinity of the surface facing the adhesive layer 3 is part of the particles as an adhesive. It enters the layer 3 and is in a state where it is contained in both the cured resin layer 2 ⁇ / b> A and the adhesive layer 3.
  • the third filler 4 entering the adhesive layer 3 can enter the vicinity of the outermost surface of the adhesive layer 3, but the outermost surface of the multilayer resin sheet cured product 20 is the third filler as shown in FIG. Is preferably not exposed, and the surface of the cured multilayer resin sheet 20 is preferably covered with a cured product of the adhesive layer 3.
  • the thermal conductivity of the cured multilayer resin sheet as a whole is improved, and the adhesiveness and insulation are excellent.
  • the third filler that exists in the vicinity of the surface of the surface facing the adhesive layer is included only in the resin layer, but these are in the adhesive layer. Including the third filler that has entered, it is preferable that they are in contact with each other, and are preferably in contact with each other in a thermally conductive state.
  • the third filler has entered the adhesive layer, the third filler is exposed from the resin layer and enters the adhesive layer, and the third filler particles are both in the resin layer and the adhesive layer.
  • the third filler may enter the adhesive layer together with the resin component constituting the resin layer, and may be included in both the resin layer and the adhesive layer.
  • the filler particles may be in contact with the adhesive layer via the resin component constituting the resin layer, or may be in a state where both states are mixed.
  • the state in which at least a part of the third filler contained in the resin layer has entered the adhesive layer is, for example, perpendicular to the boundary surface between the resin layer and the adhesive layer of the cured multilayer resin sheet.
  • the cross section can be determined by observing the cross section using a scanning electron microscope (SEM) and an electron beam X-ray microanalyzer (XMA), and determining the distribution state of the filler, the boundary between the resin layer and the adhesive layer, and the structure thereof. It is also possible to detect an element contained only in the adhesive layer and separate the adhesive layer from the heat conductive layer. For example, when a silicon-modified polyamideimide resin is used for the adhesive layer, the interface can be separated by detecting silicon elements.
  • determination may be made by combining chemical analysis such as microinfrared spectroscopy, elemental analysis, and gravimetric analysis.
  • chemical analysis such as microinfrared spectroscopy, elemental analysis, and gravimetric analysis.
  • the component can be analyzed by separating the resin component and the filler component by infrared spectroscopy, using gravimetric analysis, spectroscopic analysis, and chemical analysis, and analyzing them in combination.
  • the adhesive layer and the heat conductive layer can be separated, and it can be confirmed whether or not at least a part of the third filler has entered the adhesive layer.
  • the resin sheet laminate of the present invention comprises the multilayer resin sheet cured product and a metal plate or a heat radiating plate disposed on at least one surface of the multilayer resin sheet cured product.
  • the thermal conductivity and the insulation are excellent, the adhesive strength between the cured multilayer resin sheet and the metal plate or the heat radiating plate is good, and the thermal shock resistance is also excellent.
  • the details of the cured multilayer resin sheet laminate are as described.
  • the metal plate or the heat radiating plate include a copper plate, an aluminum plate, and a ceramic plate.
  • the thickness of a metal plate or a heat sink is not specifically limited.
  • a metal plate or a heat sink is arrange
  • the method for producing a resin sheet laminate of the present invention includes a step of disposing a metal plate or a heat sink on the adhesive layer of the multilayer resin sheet, and a step of curing the resin layer by applying heat to the multilayer resin sheet. And a method for producing a resin sheet laminate. Details of each step are as described above.
  • FIG. 6 shows a heat dissipation base in which the power semiconductor chip 110 is disposed on the water cooling jacket 120 via the copper plate 104 disposed via the solder layer 112, the multilayer resin sheet cured product 102 of the present invention, and the grease layer 108.
  • 1 is a schematic cross-sectional view illustrating a configuration example of a power semiconductor device 100 configured by stacking 106.
  • the heat dissipation base 106 can be configured using copper or aluminum having thermal conductivity. Examples of power semiconductor chips include IGBTs and thyristors.
  • FIG. 7 is a schematic cross-sectional view showing a configuration example of a power semiconductor device 150 configured by arranging cooling members on both surfaces of the power semiconductor chip 110.
  • the cooling member disposed on the upper surface of the power semiconductor chip 110 includes the two layers of copper plates 104. With such a configuration, generation of chip cracks and solder cracks can be more effectively suppressed.
  • the multilayer resin sheet cured product 102 and the water cooling jacket 120 are disposed via the grease layer 108, but the multilayer resin sheet cured product 102 and the water cooling jacket 120 may be disposed so as to be in direct contact with each other. .
  • FIG. 8 is a schematic cross-sectional view illustrating a configuration example of a power semiconductor device 200 configured by disposing cooling members on both surfaces of the power semiconductor chip 110.
  • the cooling members disposed on both surfaces of the power semiconductor chip 110 are each configured to include one layer of copper plate 104.
  • the cured multilayer resin sheet 102 and the water cooling jacket 120 are disposed via the grease layer 108, but the multilayer resin sheet cured product 102 and the water cooling jacket 120 may be disposed so as to be in direct contact with each other. .
  • FIG. 9 is a schematic cross-sectional view showing an example of the configuration of an LED light bar 300 configured using the cured resin of the present invention.
  • the LED light bar 300 includes a housing 138, a grease layer 136, an aluminum substrate 134, a resin sheet 132 of the present invention, and an LED chip 130 arranged in this order.
  • the LED chip 130 which is a heating element on the aluminum substrate 134 via the multilayer resin sheet cured product 132 of the present invention, heat can be efficiently radiated.
  • FIG. 10 is a schematic cross-sectional view illustrating a configuration example of the light emitting unit 350 of the LED bulb.
  • the light emitting part 350 of the LED bulb is configured by arranging a housing 138, a grease layer 136, an aluminum substrate 134, a cured multilayer resin sheet 132 of the present invention, a circuit layer 142, and an LED chip 130 in this order.
  • the FIG. 11 is a schematic cross-sectional view showing an example of the overall configuration of the LED bulb 450.
  • FIG. 12 is a schematic cross-sectional view showing an example of the configuration of the LED substrate 400.
  • the LED substrate 400 includes an aluminum substrate 134, a cured multilayer resin sheet 132 of the present invention, a circuit layer 142, and an LED chip 130 arranged in this order.
  • the LED chip 130 By disposing the LED chip 130 as a heating element on the aluminum substrate 134 via the circuit layer and the cured multilayer resin sheet 132 of the present invention, heat can be efficiently radiated.
  • ⁇ Resin layer> (Inorganic filler)
  • AA-18 Aluminum oxide
  • AA-3 Aluminum oxide
  • AA-04 Aluminum oxide
  • ⁇ m FS-3 Boron nitride
  • HP-40 Boron nitride
  • product name: HP40MF100 manufactured by Mizushima Alloy Iron Co., Ltd., volume average particle diameter 45 ⁇ m PTX-25: Boron nitride, product name: PTX-25,
  • CRN Catechol resorcinol novolak resin (containing 50% cyclohexanone (CHN)), synthetic product
  • TPP Triphenylphosphine (Wako Pure Chemical Industries)
  • PAM 3-phenylaminopropyltrimethoxysilane (silane coupling agent, product name: KBM-573, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • PET film product name 75E-0010CTR-4, manufactured by Fujimori Industry Co., Ltd.
  • Copper foil product name GTS 080, manufactured by Furukawa Electric Co., Ltd., thickness 80 ⁇ m
  • KS-7003 modified polyamideimide varnish, product name: KS-7003, manufactured by Hitachi Chemical (solid content 40%)
  • A-189 Mercapto-terminated silane coupling agent, product name: A-189, manufactured by Nihon Unicar Co., Ltd.
  • A-1160 Ureido-terminated silane coupling agent, product name: A-1160, manufactured by Nihon Unicar Co., Ltd. (solid 50%)
  • YD-8170C bisphenol F type epoxy resin, product name: YD-8170C, manufactured by Toto Kasei YDCN-703: Cresol novolac type epoxy resin, product name: YDCN-703, manufactured by Toto Kasei (solid content 60%)
  • LF-2882 bisphenol A type novolak, product name: LF-2882, manufactured by Dainippon Ink Co., Ltd. (solid content 60%)
  • HTR-860P-3 Acrylic rubber, Product name: HTR-860P-3, manufactured by Nagase ChemteX Corporation (solid content 12%)
  • PET film Product name A31, manufactured by Teijin DuPont Films, Ltd.
  • the obtained coating solution for resin layer formation was applied to a release surface of a PET (polyethylene terephthalate) film using a comma coater (manufactured by Hirano Tech Sheet Co., Ltd.) so that the thickness was about 110 ⁇ m, The organic solvent was removed by drying in a box oven for 10 minutes to form a resin layer on the PET film.
  • Adhesive Layer 2 Epoxy Adhesive Layer As epoxy resin, 24.2 parts YD-8170C, 13.5 parts YDCN-703, 30.67 parts LF-2882 as a curing agent, 0.083 parts 2PZCN as a curing accelerator, acrylic modified rubber Weighed 196.53 parts of HTR-860P-3, 0.21 part of A-189, 0.83 part of A-1160, and 231.58 parts of AO802 as a filler as a coupling agent. For 1 hour to obtain an adhesive layer coating solution.
  • a comma coater manufactured by Hirano Tech Seed Co., Ltd.
  • it is applied onto the PET film A31 that has been subjected to the mold release treatment, dried for about 6 minutes in a conveyor type drying furnace set at 100 ° C., and then adhered onto the PET film.
  • a material layer was formed to obtain an adhesive layer 2.
  • the thickness of the adhesive layer after drying was set to 10 ⁇ m.
  • the PET film on which the adhesive layer 1 obtained above is formed on both surfaces of the resin layer in the B stage state obtained above is laminated so that the adhesive layer faces the B stage sheet, and a laminator (name A 6 ⁇ m thick adhesive material layer 1 is pasted on both sides of the resin layer under the conditions of a temperature of 120 ° C., a pressure of 1.0 MPa, a degree of vacuum of ⁇ 1 kPa, and a time of 15 seconds using MVLP-600 / 700 manufactured by Kikai Seisakusho.
  • a multilayer resin sheet in a B-stage state was obtained.
  • the PET film was peeled off from both surfaces of the multilayer resin sheet obtained above, and a copper foil having a thickness of 80 ⁇ m was stacked on both surfaces, and then press treatment was performed (pressing process conditions: hot plate temperature 165 ° C., vacuum degree ⁇ 1 kPa, Pressure 10 MPa, treatment time 3 minutes). Then, in a box-type oven, cured sheet-like multilayer resin sheet with copper foil provided on both sides as a resin sheet laminate by step curing at 140 ° C. for 2 hours, 165 ° C. for 2 hours, and 190 ° C. for 2 hours 1a was obtained.
  • FIG. 4 the cross-sectional observation photograph by the scanning electron microscope of the multilayer resin sheet hardened
  • FIG. 1 shows a schematic cross-sectional view of a resin layer before providing an adhesive layer.
  • the resin layer 10 is in a state where the filler 1 is dispersed in the resin composition 2.
  • FIG. 2 is a schematic cross-sectional view of a cured multilayer resin sheet 20 obtained by pressing a multilayer resin sheet having the adhesive layer 3 provided on both sides of the resin layer.
  • a part of the third filler 4 enters the adhesive layer 3.
  • a part of the third filler is deformed and is in contact with each other.
  • Example 1a a cured multilayer resin sheet 1b having a copper foil provided on both sides was obtained in the same manner as in Experimental Example 1a except that the film thickness of the adhesive layer 1 was set to 12 ⁇ m.
  • Example 2b a cured multilayer resin sheet 2b in which copper foils were provided on both surfaces was obtained in the same manner as in Experimental Example 2a, except that the film thickness of the adhesive layer 1 was 12 ⁇ m.
  • Example 3b a cured multilayer resin sheet 3b in which copper foil was provided on both surfaces was obtained in the same manner as in Experimental Example 3a, except that the thickness of the adhesive layer 1 was 12 ⁇ m.
  • Example 3c a cured multilayer resin sheet 3c having copper foils on both sides was obtained in the same manner as in Experimental Example 3a, except that the adhesive layer 2 was used.
  • FIG. 5 shows a cross-sectional observation photograph of the multilayer resin sheet cured product 3d obtained in Experimental Example 3d using a scanning electron microscope. From FIG. 5, it can be seen that the third filler does not enter the adhesive layer 68 immediately below the copper foil 67. This state will be schematically described with reference to FIG. As shown in FIG. 3, filler 1 is present in cured resin layer 2 ⁇ / b> A, but filler 1 does not enter adhesive layer 3.
  • Example 4b a cured multilayer resin sheet 4b in which copper foil was provided on both surfaces was obtained in the same manner as in Experimental Example 4a, except that the film thickness of the adhesive layer 1 was 12 ⁇ m.
  • Example 5a In the production of the cured multilayer resin sheet in Experimental Example 3a, a laminator was used instead of a press machine (Imoto Seisakusho, IMC-1823 type), and laminating conditions were a hot plate temperature of 165 ° C., a vacuum degree of ⁇ 1 kPa, a pressure of 10 MPa, A B-stage multilayer resin sheet was obtained with a treatment time of 3 minutes, and the press treatment conditions for the resulting B-stage multilayer resin sheet were as follows: hot plate temperature 180 ° C., vacuum degree ⁇ 1 kPa, pressure 10 MPa, treatment time Except having set it as 3 minutes, it carried out similarly to Experimental example 3a, and obtained the multilayer resin sheet hardened
  • Example 5b a cured multilayer resin sheet 5b in which copper foils were provided on both surfaces was obtained in the same manner as in Experimental Example 5a, except that the film thickness of the adhesive layer 1 was 12 ⁇ m.
  • Example 6b a multilayer resin sheet cured product 6b provided with copper foil on both surfaces was obtained in the same manner as in Experimental Example 6a except that the film thickness of the adhesive layer 1 was set to 12 ⁇ m.
  • Example 7a In Experimental Example 5a, the same procedure as in Experimental Example 5a was conducted, except that 17.38 parts of PNAP was used instead of 19.39 parts of MOPOC as the epoxy resin monomer, and the blending amount of curing agent 1 was changed to 13.06 parts. And the multilayer resin sheet hardened
  • Example 7b a multilayer resin sheet cured product 7b having copper foils on both sides was obtained in the same manner as in Experimental Example 7a except that the adhesive layer 2 was used instead of the adhesive layer 1.
  • Example 8a (Formation of resin layer) A resin layer forming coating solution was prepared in the same manner as in Experimental Example 7a. This coating solution is applied on the release surface of a PET (polyethylene terephthalate) film with a comma coater so that the thickness is about 110 ⁇ m, and dried in a box oven at 100 ° C. for 10 minutes to remove the organic solvent. A resin layer was formed on the PET film.
  • a PET polyethylene terephthalate
  • the resin layers are stacked so that the resin layers face each other, and a hot press apparatus (hot plate temperature 165 ° C., vacuum degree ⁇ 1 kPa, pressure 15 MPa, treatment
  • the adhesive layer 1 was stuck on one surface of the resin layer under the condition of 3 minutes to obtain a B-stage multilayer resin sheet, and the thickness of the resin layer of the obtained multilayer resin sheet was 105 ⁇ m. Except having used the obtained multilayer resin sheet, it carried out similarly to Experimental example 5a, and obtained multilayer resin sheet hardened
  • Example 8b a multilayer resin sheet cured product 8b in which copper foils were provided on both surfaces was obtained in the same manner as in Experimental Example 8a except that the adhesive layer 2 was used instead of the adhesive layer 1.
  • Example 9a In the production of the multilayer resin sheet in Experimental Example 1a, a laminator was used instead of a press machine (Imoto Seisakusho, IMC-1823 type), and laminating conditions were hot plate temperature 165 ° C., vacuum degree ⁇ 1 kPa, pressure 10 MPa, processing time. Copper foil was provided on both sides in the same manner as in Experimental Example 1a except that the time was 3 minutes and the pressing conditions were a hot plate temperature of 165 ° C., a degree of vacuum ⁇ 1 kPa, a pressure of 1 MPa, and a processing time of 3 minutes. A multilayer resin sheet cured product 9a was obtained.
  • Example 9b a multilayer resin sheet cured product 9b in which a copper foil was provided on both surfaces was obtained in the same manner as in Experimental Example 9a, except that the film thickness of the adhesive layer was 12 ⁇ m.
  • Example 10a In Experimental Example 1a, the same procedure as in Experimental Example 1a was performed except that 19.52 parts of BGPE was used instead of 19.39 parts of MOPOC as the epoxy resin monomer, and the blending amount of the curing agent was changed to 11.71 parts. And the multilayer resin sheet hardened
  • Example 10b a multilayer resin sheet cured product 10b in which copper foil was provided on both surfaces was obtained in the same manner as in Experimental Example 10a except that the film thickness of the adhesive layer was 12 ⁇ m.
  • Example 11 a sheet-shaped cured resin 11 having copper foils on both sides was obtained in the same manner as in Experimental Example 1a, except that the adhesive layer was not provided on both sides of the B stage sheet, which is a resin layer. It was.
  • Example 12 a cured resin sheet 12 having a copper foil on both sides is obtained in the same manner as in Experimental Example 2a, except that the adhesive layer is not provided on both sides of the B stage sheet that is a resin layer. It was.
  • Example 3a a sheet-like cured resin 13 having copper foils on both sides is obtained in the same manner as in Experimental Example 3a, except that the adhesive layer is not provided on both sides of the B stage sheet that is a resin layer. It was.
  • Example 14 a sheet-shaped cured resin 14 having copper foil provided on both sides is obtained in the same manner as in Experimental Example 4a, except that the adhesive layer is not provided on both sides of the B stage sheet that is a resin layer. It was.
  • Example 15a In the preparation of the resin layer in Experimental Example 11, instead of 46.04 parts of boron nitride (FS-3), 83.29 parts (AA04, third filler) of aluminum oxide having the same volume fraction as boron nitride (AA04) A cured multilayer resin sheet 15a having copper foils on both sides was obtained in the same manner as in Experimental Example 11 except that a volume-based mixing ratio of 6.6: 1) was used.
  • a volume-based mixing ratio of 6.6: 1 was used.
  • Example 15b In the preparation of the resin layer in Experimental Example 1a, an experiment was performed except that 83.29 parts of aluminum oxide (AA-18) having the same volume fraction as boron nitride was used instead of 46.04 parts of boron nitride (FS-3). In the same manner as in Example 1a, a cured multilayer resin sheet 15b having copper foils on both sides was obtained.
  • AA-18 aluminum oxide
  • FS-3 boron nitride
  • Example 15c a cured multilayer resin sheet 15c having copper foil provided on both surfaces was obtained in the same manner as in Experimental Example 15b except that the film thickness of the adhesive layer 1 was set to 12 ⁇ m.
  • Example 15d a cured multilayer resin sheet 15d having copper foils on both sides was obtained in the same manner as in Experimental Example 15b except that the adhesive layer 2 was used.
  • the thermal conductivity was obtained from the product of the actually measured density, specific heat and thermal diffusivity, respectively, according to the heat conduction equation.
  • a method for measuring the thermal diffusivity is shown below. Only the copper was etched away from the obtained copper foil-clad resin sheet cured product using a sodium persulfate solution to obtain a sheet-shaped resin cured product.
  • the thermal diffusivity of the obtained cured resin was measured by a flash method using a Nanoflash LFA447 model manufactured by NETZSCH.
  • the measurement conditions are a measurement temperature of 25 ⁇ 1 ° C., a measurement voltage of 270 V, Amplitude 5000, and a pulse width of 0.06 ms.
  • the density was determined by the Archimedes method using a cured sheet from which the copper foil was removed. Furthermore, the specific heat was determined from the difference in the input heat quantity by a differential thermal analyzer (DSC) Pyris model 1 manufactured by Parkin Elmer. As measurement conditions, high-purity alumina was used as a reference, and measurement was performed in a nitrogen atmosphere at a heating rate of 5 ° C./min.
  • DSC differential thermal analyzer
  • the PET film was peeled off from both sides of the B-staged multilayer resin sheet obtained above, a metal plate was bonded, and the tensile shear strength was measured according to JIS K6850. Specifically, two copper plates of 100 mm ⁇ 25 mm ⁇ 3 mm were alternately stacked and bonded and cured on a multilayer resin sheet in a B-stage state of 12.5 mm ⁇ 25 mm. The shear strength was measured by using an AGC-100 type manufactured by Shimadzu Corporation and pulling this under the conditions of a test speed of 1 mm / min and a measurement temperature of 23 ° C. Adhesion and curing were performed as follows.
  • the multilayer resin sheet (B stage sheet) obtained above is stored for a predetermined period of time at room temperature, and when it is bent by being pressed against a cylinder with a radius of 20 mm, it can be used without depending on whether it can be bent or not. Judged.
  • the penetration of the filler into the adhesive layer was evaluated as follows. About the multilayer resin sheet obtained above, with respect to the boundary surface between the resin layer and the adhesive layer, two types of samples in a B-stage state before press-curing treatment and a cured product state after press-curing treatment Using a scanning electron microscope (SEM, manufactured by Oxford Instruments, INCA Energy 350) and an attached electron X-ray microanalyzer (XMA, acceleration voltage 20 kV, vapor deposition material Pt-Pd) The cross section was observed, and the presence or absence of the filler entering the adhesive layer was determined from the filler distribution state, the boundary between the resin layer and the adhesive layer, and the structure thereof.
  • SEM scanning electron microscope
  • XMA acceleration voltage 20 kV
  • Pt-Pd vapor deposition material
  • a B-stage multilayer resin sheet was dissolved in excess cyclohexanone to prepare a dispersion. This was filtered with a membrane filter to separate the solid matter and the liquid matter which were the filtrate, and the solid matter was taken out as a filler.
  • the particle size distribution of the obtained filler was measured by a wet method using a laser diffraction method. Specifically, the filler was dispersed in water with an ultrasonic disperser, and repeatedly measured and quantified by using a laser diffraction scattering particle size distribution measuring apparatus manufactured by Beckman Coulter (model number LS230). An example of a graph in which the measured particle size distribution is plotted on the horizontal axis and the frequency is plotted on the vertical axis is shown in FIGS.
  • FIG. 5 and FIG. 6 in the cured multilayer resin sheet in which an adhesive layer is provided on the surface of the resin layer and the filler in the resin layer is made to enter the adhesive layer by heat and pressure treatment Shows high thermal conductivity, and shows that the adhesive strength and the dielectric breakdown voltage are excellent in a well-balanced manner. On the other hand, it can be seen that the thermal conductivity decreases if the filler contained in the resin layer does not enter the adhesive layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 エポキシ樹脂モノマー、硬化剤及びフィラーを含む樹脂層と、前記樹脂層の少なくとも一方の面上に配置された接着材層とを備え、前記フィラーが、レーザー回折法を用いて測定される粒子径分布において、0.01μm以上1μm未満、1μm以上10μm未満、及び10μm以上100μm以下のそれぞれの範囲にピークを有し、前記10μm以上100μm以下の粒子径を有するフィラーが、窒化ホウ素フィラーを含む多層樹脂シートである。

Description

多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置
 本発明は、多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置に関する。
 半導体を用いた電子機器の小型化、大容量化、高性能化等の進行に伴い、高密度に実装された半導体からの発熱量は益々大きくなっている。例えば、パソコンの中央演算装置や電気自動車のモーターの制御に用いられる半導体装置の安定動作には、放熱のためにヒートシンクや放熱フィンが不可欠になっており、半導体装置とヒートシンク等を結合する部材として絶縁性と熱伝導性とを両立可能な素材が求められている。
 また一般に、半導体装置等が実装されるプリント基板等の絶縁材料には有機材料が広く用いられている。これらの有機材料は、絶縁性は高いものの熱伝導性が低く、半導体装置等の放熱への寄与は大きくなかった。一方、半導体装置等の放熱のために、無機セラミックス等の無機材料が用いられる場合がある。これらの無機材料は、熱伝導性は高いもののその絶縁性は有機材料と比較して十分とは言い難く、高い絶縁性と熱伝導性とを両立可能な材料が求められている。
 上記に関連して、樹脂にフィラーと呼ばれる熱伝導性の高い無機充填剤を複合した材料が種々検討されている。例えば、一般的なビスフェノールA型エポキシ樹脂とアルミナフィラーとの複合系からなる硬化物が知られており、キセノンフラッシュ法では3.8W/mK、温度波熱分析法では4.5W/mKの熱伝導率が達成可能とされている(例えば、特開2008-13759号公報参照)。同様に、特殊なエポキシ樹脂とアミン系の硬化剤とアルミナフィラーとの複合系からなる硬化物が知られており、キセノンフラッシュ法では9.4W/mK、温度波熱分析法では10.4W/mKの熱伝導率が達成可能とされている(例えば、特開2008-13759号公報参照)。
 さらに熱伝導性に優れた熱硬化性樹脂硬化物として、窒化ホウ素と、エポキシ樹脂、アミン系硬化剤、及び硬化触媒等のポリマー成分とが含有されている熱伝導性樹脂組成物において、温度波熱分析法で熱伝導率6W/mK~11W/mKを達成可能とされている(例えば、特開2008-189818号公報参照)。しかし、窒化ホウ素は柔らかいフィラーであるため、窒化ホウ素を含む樹脂層では樹脂層の接着強度が低下する恐れがある。
 さらにパワーモジュールに適する接着材層の構造として、フィラーを含む第一の接着材層の少なくとも片面に、実質的に接着材のみからなる第二の接着材層を設けることで、接着強度が維持されて、剥がれなどの発生を抑制することができるとされている(例えば、特開2009-21530号公報参照)。該公報にはこの接着材層の物性や評価法について記載がない。しかし接着材層がフィラーを含まないことから、シートの厚さ方向の熱伝導性が著しく低下する恐れがあること、また、第二の接着材層に熱可塑性樹脂を用いていることから、金属と化学的に接着しないため接着強度が低くなることが想定される。
 これらのことから特開2008-13759号公報,特開2008-189818号公報,及び特開2009-21530公報に記載の熱伝導性樹脂硬化物では、熱伝導性、接着強度、及び、絶縁性のすべてを高いレベルで満足することについて困難な場合があった。
 本発明は、熱伝導性、接着強度及び絶縁性のすべてに優れる多層樹脂シート硬化物、樹脂シート積層体及びその製造方法、並びに、該多層樹脂シート硬化物を形成し得る多層樹脂シートを提供することを課題とする。
 本発明は以下の態様を包含する。
 本発明の第一の態様は、エポキシ樹脂モノマー、硬化剤及びフィラーを含む樹脂層と、前記樹脂層の少なくとも一方の面上に配置された接着材層とを備え、前記フィラーが、レーザー回折法を用いて測定される粒子径分布において、0.01μm以上1μm未満、1μm以上10μm未満、及び10μm以上100μm以下のそれぞれの範囲にピークを有し、10μm以上100μm以下の粒子径を有するフィラーが、窒化ホウ素フィラーを含む多層樹脂シートである。
 前記多層樹脂シートは、前記10μm以上100μm以下の粒子径を有するフィラーの少なくとも一部が、前記接着材層中に入り込んでいることが好ましい。また前記多層樹脂シートは、前記エポキシ樹脂モノマーの少なくとも1種はメソゲン基を有するエポキシ樹脂モノマーであり、前記硬化剤の少なくとも1種はノボラック樹脂であることが好ましい。さらに前記多層樹脂シートは、前記接着材層が、変性ポリイミド樹脂、変性ポリアミドイミド樹脂及びエポキシ樹脂の少なくとも1種を含むことが好ましい。
 本発明の第二の態様は、エポキシ樹脂モノマー、硬化剤、体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素フィラーを含む第三のフィラーを含有する樹脂層と、前記樹脂層の少なくとも一方の面上に配置された接着材層とを備える多層樹脂シートである。
 前記多層樹脂シートは、前記第三のフィラーの少なくとも一部が、前記接着材層中に入り込んでいることが好ましい。また前記樹脂シートは、前記エポキシ樹脂モノマーの少なくとも1種はメソゲン基を有するエポキシ樹脂モノマーであり、前記硬化剤の少なくとも1種はノボラック樹脂であることが好ましい。さらに前記多層樹脂シートは、前記接着材層が、変性ポリイミド樹脂、変性ポリアミドイミド樹脂及びエポキシ樹脂の少なくとも1種を含むことが好ましい。
 本発明の第三の態様は、エポキシ樹脂モノマーと硬化剤との反応物を含む樹脂硬化物及びフィラーを含有する硬化樹脂層と、前記硬化樹脂層の少なくとも一方の面上に配置された接着材層とを備え、前記フィラーが、レーザー回折法を用いて測定される粒子径分布において、0.01μm以上1μm未満、1μm以上10μm未満、及び10μm以上100μm以下のそれぞれの範囲にピークを有し、10μm以上100μm以下の粒子径を有するフィラーが、窒化ホウ素フィラーを含み、その少なくとも一部が前記接着材層に入り込んでいる多層樹脂シート硬化物である。
 前記多層樹脂シート硬化物は、前記10μm以上100μm以下の粒子径を有するフィラーの少なくとも一部が、前記硬化樹脂層中で互いに接触している好ましい。また前記多層樹脂シート硬化物は、前記エポキシ樹脂モノマーの少なくとも1種はメソゲン基を有するエポキシ樹脂モノマーであり、前記硬化剤の少なくとも1種はノボラック樹脂であることが好ましい。さらに前記多層樹脂シート硬化物は、前記接着材層が、変性ポリイミド樹脂、変性ポリアミドイミド樹脂及びエポキシ樹脂の少なくとも1種を含むことが好ましい。
 本発明の第四の態様は、エポキシ樹脂モノマーと硬化剤との反応物を含む樹脂硬化物、体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素フィラーを含む第三のフィラーを含有する硬化樹脂層と、前記硬化樹脂層の少なくとも一方の面上に配置された接着材層とを備え、前記第三のフィラーの少なくとも一部が、前記接着材層中に入り込んでいる多層樹脂シート硬化物である。
 前記多層樹脂シート硬化物は、前記第三のフィラーの少なくとも一部が、前記硬化樹脂層中で互いに接触している好ましい。また前記多層樹脂シート硬化物は、前記エポキシ樹脂モノマーの少なくとも1種はメソゲン基を有するエポキシ樹脂モノマーであり、前記硬化剤の少なくとも1種はノボラック樹脂であることが好ましい。さらに前記多層樹脂シート硬化物は、前記接着材層が、変性ポリイミド樹脂、変性ポリアミドイミド樹脂及びエポキシ樹脂の少なくとも1種を含むことが好ましい。
 本発明の第五の態様は、エポキシ樹脂モノマー、硬化剤、体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素を含む第三のフィラーを含有する樹脂層を得る工程と、前記樹脂層の少なくとも一方の面上に接着材層を配置すると共に、前記接着材層中に前記第三のフィラーの少なくとも一部を入り込ませる工程とを有する多層樹脂シートの製造方法である。
 本発明の第六の態様は、前記多層樹脂シート硬化物と、前記多層樹脂シート硬化物の少なくとも一方の面上に配置された金属板又は放熱板とを有する樹脂シート積層体である。
 本発明の第七の態様は、前記多層樹脂シートの接着材層上に、金属板又は放熱板を配置して積層体を得る工程と、前記接着材層中に、前記窒化ホウ素フィラーの少なくとも一部を入り込ませる工程とを有する樹脂シート積層体の製造方法である。
 本発明の第八の態様は、前記多層樹脂シートの接着材層上に、金属箔を有する金属箔付き多層樹脂シートである。
 本発明の第九の態様は、半導体素子と、前記半導体素子上に配置された前記多層樹脂シート硬化物とを備える半導体装置である。
 本発明によれば、熱伝導性、接着強度及び絶縁性のすべてに優れる多層樹脂シート硬化物及びその製造方法、高熱伝導樹脂シート積層体及びその製造方法、並びに、該多層樹脂シート硬化物を形成しうる多層樹脂シートを提供することができる。
本発明にかかる樹脂層の構成の一例を示す模式断面図である。 本発明にかかる多層樹脂シート硬化物の構成の一例を示す模式断面図である。 本発明の実施形態と類似する構成を有する多層樹脂シート硬化物の構成の一例を示す模式断面図である。 本発明にかかる多層樹脂シート硬化物の断面SEM写真の一例である。 本発明の実施形態と類似する構成を有する多層樹脂シート硬化物の断面SEM写真の一例である。 本発明にかかる多層樹脂シートを用いて構成されたパワー半導体装置の構成の一例を示す模式断面図である。 本発明にかかる多層樹脂シートを用いて構成されたパワー半導体装置の構成の一例を示す模式断面図である。 本発明にかかる多層樹脂シートを用いて構成されたパワー半導体装置の構成の一例を示す模式断面図である。 本発明にかかる多層樹脂シートを用いて構成されたLEDライトバーの構成の一例を示す模式断面図である。 本発明にかかる多層樹脂シートを用いて構成されたLED電球の構成の一例を示す模式断面図である。 本発明にかかる多層樹脂シートを用いて構成されたLED電球の構成の一例を示す模式断面図である。 本発明にかかる多層樹脂シートを用いて構成されたLED基板の構成の一例を示す模式断面図である。 本発明にかかる多層樹脂シートの製造方法の工程図の一例を示す模式断面図である。 本発明にかかる多層樹脂シートの製造方法の工程図の一例を示す模式断面図である。 本発明にかかる多層樹脂シートの構成の一例を示す模式断面図である。 本発明にかかる多層樹脂シートの構成の一例を示す模式断面図である。 本発明にかかる樹脂シート積層体の製造方法の工程図の一例を示す模式断面図である。 本発明にかかる多層樹脂シートの樹脂層に含有されるフィラー粒子径分布の一例を示す図である。 本発明にかかる多層樹脂シートの樹脂層に含有されるフィラー粒子径分布一例を示す図である。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
<多層樹脂シート>
 本発明の多層樹脂シートは、エポキシ樹脂モノマー、硬化剤及びフィラーを含む樹脂層と、前記樹脂層の少なくとも一方の面上に配置された接着材層とを備え、前記フィラーが、レーザー回折法を用いて測定される粒子径分布において、0.01μm以上1μm未満、1μm以上10μm未満、及び10μm以上100μm以下のそれぞれの範囲にピークを有し、10μm以上100μm以下の粒子径を有するフィラーが、窒化ホウ素フィラーを含むものである。
 また本発明の多層樹脂シートは、エポキシ樹脂モノマー、硬化剤、体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素フィラーを含む第三のフィラーを含有する樹脂層と、前記樹脂層の少なくとも一方の面上に配置された接着材層とを備えていることもまた好ましい。
 かかる構成の多層樹脂シートであることにより、前記多層樹脂シートは、硬化前には保存安定性に優れ、被着物に熱圧着して硬化させた後においては高い熱伝導性を達成可能で、さらに接着強度及び絶縁性(絶縁破壊強度)に優れる。これは例えば、以下のように考えることができる。
 接着材層を樹脂層上に設けて多層樹脂シートとすることで、シートの接着強度を向上させることができる。これは前記接着材層には、接着強度が高く、更に、弾性率が低く被着物との線膨張差を吸収する樹脂を用いることができるためである。
 熱伝導性の接着シートにおいて、接着強度を向上するために、接着性に優れた樹脂を用い、熱伝導性の樹脂層に接着性と熱伝導性とを両立させる手法も考えられる。この場合は、高い熱伝導性付与のためにはフィラーを高充填することが不可欠である。しかしフィラーを高充填化すると、樹脂層の溶融粘度が増加したり、硬く脆い樹脂シートになったりすることから、熱伝導性と接着強度は相反する特性であるとも言える。
 単に樹脂層にフィラーのない接着材層を設けた場合には、接着材層の熱伝導性がフィラーを含む樹脂層よりも大幅に小さいため、接着材層が断熱してしまい、硬化後の多層樹脂シート全体としての厚さ方向の熱伝導性が大幅に低下してしまう場合がある。これに対して接着材層の厚さを樹脂層の厚さに比較して薄くすることで熱伝導性を向上させることができる。しかし接着材層の薄膜化には物理的な限界があり、接着材層の薄膜化によって優れた熱伝導性を有する多層樹脂シートを構成することは困難である。
 そこで前記構成のような多層樹脂シートを発明するに至った。前記多層樹脂シートを加熱加圧処理によって被着体に貼り付けて樹脂シート積層体を得る場合、樹脂層中のフィラーが多層樹脂シートの厚み方向の接着材層側に移動し、それによって第三のフィラー粒子の少なくとも一部を接着材層中に入り込ませることができ、フィラー粒子を多層樹脂シートの表面付近まで移動させることができる。その結果、被着体への接着性を十分に発現しつつ、さらに熱伝導性の高い積層体を得ることができる。これについて本願発明者らは以下のように考える。すなわち、多層樹脂シートを用いた場合、シート最表面には接着材層が存在するため、接着材層のみを接着した時と同等な接着力を発現させることができる。さらに、加熱加圧処理によって接着材層中に樹脂層中の第三のフィラーの一部が入り込み、多層樹脂シートの最表面近くまでフィラーが移動するため、熱伝導性の樹脂層のみを接着した時と同等な熱伝導性を発現することができる。さらに、接着材層に入り込む第三のフィラーが窒化ホウ素の場合、被着体の接着面に沿って変形することができるため、接着材層と被着体界面での熱伝導性は非常に良好になる。したがって、表面が粗い被着体であっても熱伝導性、絶縁性、接着性など本発明の効果を十分に得ることができる。
 樹脂層中の第三のフィラーを接着層中に入り込ませるには、第三のフィラー粒径を10μm~100μmに制御すること、及び、全体のフィラー充填率を、樹脂層の総固形分体積中において30体積%~85体積%以上にすることが好ましい。ここで樹脂層の総固形分体積とは、樹脂層を構成する不揮発性成分の総体積を意味する。
 さらに、前記多層樹脂シートは、樹脂層に含まれる樹脂組成物及び接着材層に含まれる樹脂組成物が半硬化した状態であることが好ましい。半硬化状態(Bステージ状態)の多層樹脂シートであることで、被着体への接着性及び該シートの取り扱い性が向上する。
 ここで半硬化状態(Bステージ状態)であるとは、樹脂層の粘度として常温(25度)においては、10Pa・s~10Pa・sであり、100℃から180℃に加熱すると樹脂成分が軟化して粘着性が発現する。そのまま加熱を続けると硬化反応が進行して粘度が10Pa・s以上に上昇して接着性を発現するものである。尚、上記粘度は、動的粘弾性測定(周波数1ヘルツ、荷重40g、昇温速度5℃/分)によって測定されうる。
 前記多層樹脂シートの構成例について図面を参照しながら説明する。図15に模式断面図を示す多層樹脂シート40においては、フィラー1と樹脂組成物2とを含む樹脂層の両面に接着材層3が配置されている。ここでフィラー1は被着体に貼り合わせる前において、接着材層に入り込んでいない。また図16に模式断面図を示す多層樹脂シート40Aにおいては、フィラー1と樹脂組成物2とを含む樹脂層の両面に接着材層3が配置され、接着材層3中に入り込んでいるフィラー4が存在する。前記多層樹脂シートを図16に示す構成とすることで、十分な接着力を発現しつつ、さらに熱伝導性を向上させることが可能となる。この理由について、本願発明者らは以下のように考える。多層樹脂シートを貼り合わせる前において第三のフィラーが接着材層に入り込んでいる場合、樹脂層中のフィラーが多層樹脂シートの最表面により移動しやすくなるためであると考える。すなわち、前記多層樹脂シートは図15又は図16のような構成を採っていることが好ましく、中でも上記理由により、図16のような構成を採っていることが特に好ましい。
[樹脂層]
 図1に模式断面図の一例を示すように、本発明における樹脂層10は、第三のフィラー、第一のフィラー及び第二のフィラーを含むフィラー1と、エポキシ樹脂モノマー及び硬化剤等を含む樹脂組成物2とを含む。
(フィラー)
 前記樹脂層は、少なくとも3種の体積平均粒子径が異なるフィラーを含むことが好ましい。前記フィラーのうち、第一のフィラーは、体積平均粒子径が0.01μm以上1μm未満であるが、分散性の観点から、0.05μm以上0.8μm以下であることが好ましく、充填性の観点から、0.1μm以上0.6μm以下であることがより好ましい。また第二のフィラーは、体積平均粒子径が1μm以上10μm未満であるが、樹脂溶融粘度の観点から、2μm以上8μm以下であることが好ましく、充填性の観点から、2μm以上6μm以下であることがより好ましい。さらに第三のフィラーは、体積平均粒子径が10μm以上100μm以下であるが、絶縁性の観点から、15μm以上60μm以下であることが好ましく、熱伝導性の観点から、20μm以上50μm以下であることがより好ましい。体積平均粒子径が異なる3種のフィラーを含むことで、熱伝導性が効果的に向上する。
 また前記樹脂層に含まれるフィラーが上記のような構成を有することで、横軸に粒子径を縦軸に頻度をとって、樹脂層に含まれるフィラー全体の粒子径分布を測定した場合に、粒子径が0.01μm以上1μm未満の範囲、1μm以上10μm未満の範囲及び10μm以上100μm以下の範囲のそれぞれにピークを有する粒子径分布を示すことができる。
 尚、本発明におけるフィラーの体積平均粒子径は、レーザー回折法、又は樹脂層の断面観察を用いて、直接実測することで測定される。レーザー回折法を用いる場合、まず樹脂組成物中のフィラーを抽出し、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製、LS230)を用いることで測定可能である。具体的には、有機溶剤等や硝酸、王水などを用いて、樹脂組成物中からフィラー成分を抽出し、超音波分散機などで十分に分散する。この分散液の粒子径分布を測定することで、フィラーの体積平均粒子粒径の定量が可能になる。
 また、樹脂層、多層樹脂シート又はそれらの硬化物の断面を走査型電子顕微鏡にて観察し、実測することで行うことができる。具体的には、これらの樹脂層を透明なエポキシ樹脂に埋め込み、ポリッシャーやスラリーなどで研磨して、樹脂層の断面を露出させる。この断面を直接観察することで、フィラー粒径の定量が可能になる。また、FIB装置(集束イオンビームSEM)などを用いて、二次元の断面観察を連続的に行い、三次元構造解析を行なうことが望ましい。
 図18及び図19に前記多層樹脂シートの樹脂層に含有されるフィラー粒子径分布の一例を示す。図18及び図19に示すように、粒子径が0.01μm以上1μm未満の範囲、粒子径が1μm以上10μm未満の範囲、及び粒子径が10μm以上100μm以下の範囲のそれぞれの範囲に粒子径分布のピークが存在する。このような粒子径分布を持っているフィラーを含む樹脂層を用いることで、前記多層樹脂シートは熱伝導、絶縁性等の機能を十分に発現することができる。
 本発明における前記第一のフィラー、第二のフィラー及び第三のフィラーは、それぞれ前記体積平均粒子径を有するものであるが、熱伝導性、絶縁性の観点から、前記第一のフィラーの体積平均粒子径に対する第二のフィラーの体積平均粒子径の比(第二のフィラーの体積平均粒子径/第一のフィラーの体積平均粒子径)が5~50であることが好ましく、充填性と熱伝導性の観点から、8~20であることがより好ましい。
 また熱伝導性、絶縁性の観点から、前記第二のフィラーの体積平均粒子径に対する第三のフィラーの体積平均粒子径の比(第三のフィラーの体積平均粒子径/第三のフィラーの体積平均粒子径)が3~40であることが好ましく、5~30であることがより好ましい。
 本発明において前記第一のフィラー、第二のフィラー及び第三のフィラーは、それぞれ所定の体積平均粒子径を有するものであれば、その粒径分布は特に制限されず、広い粒径分布を示すものであっても、狭い粒径分布を示すものであってもよい。
 また本発明におけるフィラーは、フィラー全体として前記第一のフィラー、第二のフィラー及び第三のフィラーを含むことが好ましい。すなわち、フィラー全体の粒子径分布を測定した場合に、体積平均粒子径が0.01μm以上1μm未満の第一のフィラーに対応するピークと、体積平均粒子径が1μm以上10μm未満の第二のフィラーに対応するピークと、体積平均粒子径が10μm以上100μm以下の第三のフィラーに対応するピークと、の少なくとも3つのピークが観測されることが好ましい。
 かかる態様のフィラーは、例えば、粒径分布において単一のピークを示す前記第一のフィラー、第二のフィラー及び第三のフィラーをそれぞれ混合して構成してもよく、また、粒径分布において2以上のピークを有するフィラーを用いて構成してもよい。
 また本発明においては、全フィラー中における体積基準の含有比率について、第一のフィラーの含有比率が1%~15%であって、第二のフィラーの含有比率が10%~40%であって、第三のフィラーの含有比率が45%~80%であることが好ましく、充填性、熱伝導性の観点から、第一のフィラーの含有比率が6%~15%であって、第二のフィラーの含有比率が18%~35%であって、第三のフィラーの含有比率が50%~70%であることがより好ましい。上記範囲とすることで、粘度上昇による成形性の悪化やボイド生成による絶縁性の悪化を防ぐことができる。
 また更に、第三のフィラー含有比率を極力高くし、次に第二のフィラーの含有比率を高くすることで、より効果的に熱伝導性が向上できる。このように体積平均粒子径が異なる少なくとも3種のフィラーを特定の含有比率(体積基準)で含むことで熱伝導性がより効果的に向上する。
 前記第一のフィラー及び第二のフィラーとしては、絶縁性を有する無機化合物であれば特に制限はないが、高い熱伝導性を有するものであることが好ましい。
 前記第一のフィラー及び第二のフィラーの具体例としては、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、タルク、マイカ、水酸化アルミニウム、硫酸バリウム等を挙げることができる。中でも、熱伝導性の観点から、酸化アルミニウム、窒化ホウ素、窒化アルミニウムが好ましい。また、これらのフィラーの材質としては、1種類単独であっても2種類以上を併用してもよい。
 また前記第三のフィラーとしては、少なくとも窒化ホウ素を含んでいればよく、窒化ホウ素に加えて、その他の絶縁性を有する無機化合物をさらに含んでいてもよい。窒化ホウ素を含むことで熱伝導性が飛躍的に向上する。これは例えば、以下のように考えることができる。窒化ホウ素のモース硬度が2と、他のアルミナや窒化アルミといった絶縁セラミックス(例えば、硬度8)と比較して低く、柔らかい。さらに球形や丸み状といった粒形の窒化ホウ素は1次粒子が凝集した形になっており、粒子内部に空洞が存在し、溶融した樹脂よりは硬いが粒子自体も変形し易いものになっている。このため、外力により容易に変形することができ、後述する加熱加圧工程、ラミネート工程、及びプレス工程の際に変形が可能であり、この際に、フィラー間の樹脂を排除する。このため、フィラー同士が容易に接近することができ、樹脂層の内部に窒化ホウ素を含む第三のフィラーの連続した構造が形成し易くなり、熱伝導性が飛躍的に向上すると考えることができる。
 前記フィラーの粒子形状としては特に制限はなく、球形、丸み状、破砕状、りん片状、凝集粒子形状などが挙げられる。中でも、充填性と熱伝導性の観点から、球形、丸み状が好ましい。
 本発明におけるフィラーは、第一のフィラーの体積平均粒子径が0.01μm以上1μm未満であり、第二のフィラーの体積平均粒子径が1μm以上10μm未満であり、第三のフィラーの体積平均粒子径が10μm以上100μm以下であることが好ましく、さらに、第一のフィラー、第二のフィラー、及び第三のフィラーの含有比率が体積基準でそれぞれ、1%~15%、10%~40%、45%~80%であることがより好ましい。また、第一のフィラーの体積平均粒子径が0.01μm以上0.6μm以下であり、第二のフィラーの体積平均粒子径が2μm以上6μm以下であり、第三のフィラーの体積平均粒子径が20μm以上50μm以下であることが好ましく、さらに、第一のフィラー、第二のフィラー、及び第三のフィラーの含有比率が体積基準でそれぞれ、6%~15%、18%~35%、50%~70%であることがより好ましい。
 本発明において前記樹脂層中のフィラーの総含有率としては特に制限されず、熱伝導性と接着性の観点から、樹脂層の全固形分中に30体積%~85体積%であることが好ましく、熱伝導性の観点から、50体積%~80体積%であることがより好ましい。
 尚、樹脂層の全固形分とは、樹脂層を構成する成分のうち、非揮発性成分の総量を意味する。
(エポキシ樹脂モノマー)
 本発明における樹脂層は、エポキシ樹脂モノマー(以下、単に「エポキシ樹脂」ということがある)の少なくとも1種を含む。前記エポキシ樹脂としては通常用いられる一般的なエポキシ樹脂を特に制限なく用いることができる。なかでも硬化前では低粘度でありフィラー充填性や成形性に優れ、熱硬化後には高い耐熱性や接着性に加えて高い熱伝導性を有するものであることが好ましい。
 一般的なエポキシ樹脂の具体例としては、ビスフェノールA型、F型、S型、AD型等のグリシジルエーテル、水素添加したビスフェノールA型のグリシジルエーテル、フェノールノボラック型のグリシジルエーテル、クレゾールノボラック型のグリシジルエーテル、ビスフェノールA型のノボラック型のグリシジルエーテル、ナフタレン型のグリシジルエーテル、ビフェノール型のグリシジルエーテル、ジヒドロキシペンタジエン型のグリシジルエーテルなどが挙げられる。
 この中でも、樹脂硬化物を構成した場合に、高Tg(ガラス転移温度)化、高熱伝導化を目的に多官能エポキシ樹脂が好ましい。例えば、フェノールノボラックをエポキシ化して得られるエポキシ樹脂として、フェノールノボラック型、エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等、トリフェノール型エポキシ樹脂が挙げられる。また、メソゲン基を有するエポキシ樹脂も高熱伝導を発現するエポキシ樹脂として挙げられる。
 また、本発明におけるエポキシ樹脂は液状エポキシ樹脂を含んでいてもよく、これによりAステージやBステージ時の樹脂軟化点を低下させることが可能となる。具体的には、シートの取り扱い性を向上させることがある。しかし、液状エポキシ樹脂はTgや熱伝導性が低い場合があるので、液状エポキシ樹脂の含有量は樹脂硬化物の物性との兼ね合いで適宜選択できる。
 前記エポキシ樹脂モノマーとして、熱伝導性の観点から好ましい樹脂は、メソゲン基を有するエポキシ樹脂及びトリフェノールノボラック型のエポキシ樹脂の少なくとも1種である。
 ここでいうメソゲン基は、エポキシ樹脂モノマーが硬化剤とともに樹脂硬化物を形成した場合に、樹脂硬化物中にメソゲン基に由来する高次構造を形成することができるものであれば、特に制限はない。
 尚、ここでいう高次構造とは、樹脂組成物の硬化後に分子が配向配列している状態を意味し、例えば、樹脂硬化物中に結晶構造や液晶構造が存在することである。このような結晶構造や液晶構造は、例えば、直交ニコル下での偏光顕微鏡による観察やX線散乱により、その存在を直接確認することができる。また貯蔵弾性率の温度に対する変化が小さくなることでも、間接的に存在を確認できる。
 前記メソゲン基として具体的には、ビフェニル基、ターフェニル基、ターフェニル類縁体、アントラセン基、及び、これらがアゾメチン基やエステル基で接続された基などが挙げられる。
 本発明においては、エポキシ樹脂モノマーとしてメソゲン基を有するエポキシ樹脂モノマーを用い、硬化剤とともに樹脂硬化物を構成することで、高い熱伝導性を達成することができる。これは例えば、以下のように考えることができる。すなわち、分子中にメソゲン基を有するエポキシ樹脂モノマーが、硬化剤(好ましくは、後述するノボラック樹脂)とともに樹脂硬化物を形成することで、樹脂硬化物中にメソゲン基に由来する規則性の高い高次構造を形成することができる。このため、絶縁樹脂における熱伝導の媒体であるフォノンの散乱を抑制することができ、これにより高い熱伝導性を達成することができると考えられる。
 前記メソゲン基を有するエポキシ樹脂モノマーとして、具体的には例えば、4,4’-ビフェノールグリシジルエーテル、1-{(3-メチル-4-オキシラニルメトキシ)フェニル}-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、4-(オキシラニルメトキシ)安息香酸-1,8-オクタンジイルビス(オキシ-1,4-フェニレン)エステル、2,6-ビス[4-[4-[2-(オキシラニルメトキシ)エトキシ]フェニル]フェノキシ]ピリジン等を挙げることができる。中でも、熱伝導性の向上の観点から、1-{(3-メチル-4-オキシラニルメトキシ)フェニル}-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセンであることが特に好ましい。
 前記樹脂層中におけるエポキシ樹脂モノマーの含有率としては特に制限はないが、熱伝導性と接着性の観点から、樹脂層を構成する全固形分中、3質量%~30質量%であることが好ましく、熱伝導性の観点から、5質量%~25質量%であることがより好ましい。
(硬化剤)
 本発明における樹脂層は、硬化剤の少なくとも1種を含む。前記硬化剤はエポキシ樹脂モノマーと反応して樹脂硬化物を形成可能な化合物であれば特に制限はない。具体的には例えば、ノボラック樹脂、芳香族アミン系硬化剤、脂肪族アミン系硬化剤、メルカプタン系硬化剤、酸無水物硬化剤などの重付加型硬化剤や、イミダゾール、TPPなどの潜在性硬化剤などを用いることができる。
 中でも、熱伝導性と絶縁性の観点から、ノボラック樹脂の少なくとも1種を硬化剤として含むことが好ましい。
 前記ノボラック樹脂としては、エポキシ樹脂の硬化剤として通常用いられるノボラック樹脂であれば特に制限はない。中でも、熱伝導性と絶縁性の観点から、下記一般式(I)で表される構造単位を有する化合物の少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(I)においてRは、アルキル基、アリール基、又はアラルキル基を表す。Rで表されるアルキル基、アリール基及びアラルキル基は、可能であれば置換基をさらに有していてもよく、該置換基としては、アルキル基、アリール基、ハロゲン原子、及び水酸基等を挙げることができる。
 mは0~2の整数を表し、mが2の場合、2つのRは同一であっても異なってもよい。本発明において、mは0又は1であることが好ましく、0であることがより好ましい。
 前記ノボラック樹脂は、上記一般式(I)で表される構造単位を有する化合物の少なくとも1種を含むものであることが好ましいが、上記一般式(I)で表される構造単位を有する化合物の2種以上を含むものであってもよい。
 前記ノボラック樹脂は、フェノール性化合物としてレゾルシノールに由来する部分構造を含むことが好ましいが、レゾルシノール以外のフェノール性化合物に由来する部分構造の少なくとも1種をさらに含んでいてもよい。レゾルシノール以外のフェノール性化合物としては、例えば、フェノール、クレゾール、カテコール、ヒドロキノン等を挙げることができる。前記ノボラック樹脂は、これらに由来する部分構造を1種単独でも、2種以上組み合わせて含んでいてもよい。
 ここでフェノール性化合物に由来する部分構造とは、フェノール性化合物のベンゼン環部分から水素原子を1個又は2個取り除いて構成される1価又は2価の基を意味する。尚、水素原子が取り除かれる位置は特に限定されない。
 本発明においてレゾルシノール以外のフェノール性化合物に由来する部分構造としては、熱伝導性、接着性の観点から、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、及び、1,3,5-トリヒドロキシベンゼンから選ばれる少なくとも1種に由来する部分構造であることが好ましく、カテコール及びヒドロキノンから選ばれる少なくとも1種に由来する部分構造であることがより好ましく、カテコールレゾルシノールノボラック樹脂又はヒドロキノンレゾルシノールノボラック樹脂であることが更に好ましい。
 また前記ノボラック樹脂におけるレゾルシノールに由来する部分構造の含有比率については特に制限はないが、熱伝導性の観点から、ノボラック樹脂の全質量に対するレゾルシノールに由来する部分構造の含有比率が55質量%以上であることが好ましく、更なる高い熱伝導性の観点から、80質量%以上であることがより好ましい。
 一般式(I)においてR及びRは、それぞれ独立して水素原子、アルキル基、アリール基、フェニル基又はアラルキル基を表す。R及びRで表されるアルキル基、フェニル基、アリール基及びアラルキル基は、可能であれば置換基をさらに有していてもよく、該置換基としては、アルキル基、アリール基、ハロゲン原子、及び水酸基等を挙げることができる。
 前記ノボラック樹脂の数平均分子量としては熱伝導性の観点から、800以下であることが好ましく、樹脂粘度と熱伝導性、ガラス転移温度の観点から、300以上700以下であることがより好ましく、更なる高い熱伝導性の観点から、350以上550以下であることがより好ましい。
 本発明における樹脂層において、上記一般式(I)で表される構造単位を有する化合物を含むノボラック樹脂は、ノボラック樹脂を構成するフェノール性化合物であるモノマーを含んでいてもよい。ノボラック樹脂を構成するフェノール性化合物であるモノマーの含有比率(以下、「モノマー含有比率」ということがある)としては特に制限はないが、成形性や熱伝導性、ガラス転移温度の観点から、ノボラック樹脂中の5質量%~80質量%であることが好ましく、高い熱伝導性やガラス転移温度の観点から、15質量%~60質量%であることがより好ましく、更なる高い熱伝導性やガラス転移温度の観点から、20質量%~50質量%であることがさらに好ましい。
 モノマー含有比率が20質量%以上であることで、ノボラック樹脂の粘度上昇を抑制し、前記フィラーの密着性がより向上する。また50質量%以下であることで、硬化の際における架橋反応により、より高密度な高次構造が形成され、優れた熱伝導性と耐熱性が達成できる。
 尚、ノボラック樹脂を構成するフェノール性化合物のモノマーとしては、レゾルシノール、カテコール、ヒドロキノンを挙げることができ、少なくともレゾルシノールをモノマーとして含むことが好ましい。
 また樹脂層中の硬化剤の含有率としては特に制限されないが、熱伝導性と接着性の観点から、樹脂層の全固形分中に1質量%~10質量%であることが好ましく1質量%~8質量%であることがより好ましい。
 また樹脂層中の硬化剤の含有量としては、前記エポキシ樹脂モノマーに対して、当量基準で、0.8~1.2であることもまた好ましく、0.9~1.1であることがより好ましい。
(シランカップリング剤)
 本発明における樹脂層は、シランカップリング剤の少なくとも1種をさらに含有してもよい。シランカップリング剤を含むことで、エポキシ樹脂及びノボラック樹脂を含む樹脂成分とフィラーの結合性がより向上し、より高い熱伝導性とより強い接着性を達成することができる。
 前記シランカップリング剤としては、樹脂成分と結合する官能基、及びフィラーと結合する官能基を有する化合物であれば特に制限はなく、通常用いられるシランカップリング剤を用いることができる。
 前記フィラーと結合する官能基としては、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基を挙げることができる。また前記樹脂成分と結合する官能基としては、エポキシ基、アミノ基、メルカプト基、ウレイド基、アミノフェニル基等を挙げることができる。
 シランカップリング剤として具体的には例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-メルカプトトリエトキシシラン、3-ウレイドプロピルトリエトキシシランなどを挙げることができる。
 またSC-6000KS2に代表されるシランカップリング剤オリゴマ(日立化成コーテットサンド社製)を使用することもできる。
 これらのシランカップリング剤は1種単独で用いても、又は2種類以上を併用することもできる。
 前記樹脂層におけるシランカップリング剤の含有比率としては、特に制限はないが、熱伝導性の観点から、樹脂層の全固形分に対して0.02質量%~0.83質量%であることが好ましく、0.04質量%~0.42質量%であることがより好ましい。
 かつ、フィラーに対してシランカップリング剤の含有比率は、熱伝導性、絶縁性、成形性の観点から、0.02質量%~1質量%であることが好ましく、高い熱伝導性の観点から0.05質量%~0.5質量%であることがより好ましい。
(その他の成分)
 本発明における樹脂層は、上記必須成分に加えて必要に応じてその他の成分を含むことができる。その他の成分としては、有機溶剤、硬化促進剤、分散剤等を挙げることができる。
(樹脂層の調製方法)
 本発明における樹脂層の調製方法としては、通常用いられる樹脂シートの製造方法を特
に制限なく用いることができる。
 例えば、前記エポキシ樹脂モノマーと、前記硬化剤(好ましくは、ノボラック樹脂)と、前記フィラーと、必要に応じて含まれるその他の成分と、有機溶剤とを混合して樹脂組成物を調製し、これをシート状に成形し、有機溶剤の少なくとも一部を除去(乾燥)することで、樹脂層を調製することができる。
 本発明における前記樹脂層は、有機溶剤をさらに含む樹脂組成物から形成されるシート状の樹脂組成物層から有機溶剤の少なくとも一部を除去(乾燥)して得られることが好ましい。さらに、有機溶剤の少なくとも一部が除去された樹脂層を加熱加圧処理することによって、樹脂層を構成する樹脂組成物を半硬化状態(Bステージ)としたものであることが好ましい。
 前記有機溶剤としては特に制限はなく、目的に応じて適宜選択することができる。前記有機溶剤は樹脂層の調製時の乾燥工程にて、除去されるものであり、大量に残留していると熱伝導性や絶縁性能に影響を及ぼすので、沸点や蒸気圧が低いものが望ましい。また乾燥時に完全に除去されてしまうと、樹脂層が硬くなり、接着性能が失われてしまうので、乾燥方法、乾燥条件との適合が必要である。
 さらに用いる樹脂の種類やフィラーの種類、樹脂層調製時の乾燥性等により適宜選択することもできる。
 具体的には例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-プロパノール、シクロヘキサノール等のアルコール類;メチルエチルケトン、シクロヘキサノン、シクロペンタノン等のケトン系溶剤;ジメチルホルムアミドやジメチルアセトアミド等の窒素系溶剤を好ましく用いることができる。
 また樹脂組成物を構成する成分を混合、分散する方法としては、通常の撹拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜組み合わせて行うことができる。
 本発明における樹脂層は、例えば、前記フィラーを含む樹脂組成物を支持体上に、塗布して塗布層を形成し、塗布層から有機溶剤の少なくとも一部を除去(乾燥)して、シート状に成形することで調製することができる。また、シート状に成形された樹脂層の片面、もしくは、両面には接着面を保護するための支持体を設けることができる。これにより、外的環境からの接着面への異物の付着や衝撃から樹脂組成物を保護することができる。
 また本発明における樹脂層の膜厚は目的に応じて適宜選択できるが、例えば、50μm~400μmであり、100μm~250μmであることが好ましい。
 前記支持体としては例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルムなどのプラスチックフィルム等が挙げられる。これらのフィルムに対して、必要に応じてプライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理、離型処理等の表面処理を行ってもよい。また前記支持体として、銅箔やアルミ板等の金属を用いることもできる。
 前記支持体がフィルムである場合、その膜厚は、特に制限はなく、形成する樹脂層の膜厚や多層樹脂シートの用途によって適宜、当業者の知識に基づいて定められるものであるが、経済性がよく、取り扱い性が良い点で、好ましくは10μm~150μm、より好ましくは30μm~110μmである。
 前記樹脂組成物の塗布方法、乾燥方法については特に制限なく通常用いられる方法を適宜選択することができる。例えば、塗布方法としてはコンマコータやダイコータ、ディップ塗工等が挙げられ、乾燥方法としては、常圧下や減圧下での加熱乾燥、自然乾燥や凍結乾燥等が挙げられる。
 前記樹脂層は、支持体上に形成された1層の塗布層からなるものであってよく、2層重ね塗りをしたものであってもよい。また、支持体上に形成された塗布層を2層以上張り合わせて構成されたものであってもよい。
 さらに本発明において前記樹脂層は、樹脂層に含まれる樹脂組成物が半硬化した状態であることが好ましい。半硬化状態(Bステージ状態)の樹脂層であることで取り扱い性が向上する。
 前記樹脂層を半硬化状態にする方法には特に制限はない。例えば、熱プレスやラミネートを用いて加熱加圧処理する方法を挙げることができる。樹脂層を構成する樹脂組成物を半硬化状態とする加熱加圧条件は、樹脂組成物の構成に応じて適宜選択できるが、例えば、加熱温度80℃~180℃、圧力0.1MPa~100MPa、0.3分~30分間の条件で加熱加圧処理することができる。
[接着材層]
 本発明の多層樹脂シートは、前記樹脂層の少なくとも一方の面上に接着材層を備える。前記接着材層を構成する樹脂としては、接着性を有する樹脂であれば特に制限はないが、絶縁性を有する樹脂であることが好ましい。中でも接着性、絶縁性及び耐熱性の観点から、ポリイミド樹脂、ポリアミドイミド樹脂、変性ポリアミドイミド樹脂、及びエポキシ樹脂の少なくとも1種を含むことが好ましい。これらは1種単独でも2種類以上混合して用いてもよい。接着性の観点からポリイミド樹脂、変性ポリアミドイミド樹脂、及びエポキシ樹脂からなる群より選ばれる少なくとも1種であることがより好ましい。
 前記ポリイミド樹脂としては、例えば、ユピコートFS-100L(宇部興産株式会社製)、セミコファインSP-300、SP-400、SP-800(東レ株式会社製)、Uイミドシリーズ(ユニチカ株式会社製)などに代表される製品等を挙げることができる。またポリアミドイミド樹脂や変性ポリアミドイミド樹脂としては、バイロマックスシリーズ(東洋紡績株式会社製)、トーロン(ソルベイアドバンスドポリマーズ社製)等を挙げることができる。中でも、高耐熱性、高接着性の観点から、KSシリーズ(日立化成工業株式会社製)に代表される変性ポリアミドイミド樹脂を用いることが好ましい。
 前記接着材層に好適に用いられる、ポリイミド樹脂、ポリアミドイミド樹脂、及び変性ポリアミドイミド樹脂は、1種単独でも、2種以上を混合して用いてもよい。またこれらの樹脂は、通常、樹脂が溶剤に溶解したワニス状態であり、PETフィルム等の支持体に直接塗布し溶剤を乾燥させることによりフィルム化して接着材層として用いることができる。
 また、代表的な熱硬化系の接着性樹脂であるエポキシ樹脂を用いてもよい。具体的にはエポキシ樹脂、その硬化剤、グリシジルアクリレート、硬化剤促進剤を含むエポキシ樹脂組成物を接着層としてもよい。かかるエポキシ樹脂組成物の詳細については、例えば、特開2002-134531号公報、特開2002-226796号公報、2003-221573号公報等の記載を参照することができる。
 本発明の接着材層において使用されるエポキシ樹脂は、硬化して接着作用を発現するものであればよく、特に制限はない。特に分子量が500以下のビスフェノールA型又はビスフェノールF型液状樹脂を用いると積層時の流動性を向上することができて好ましい。高Tg(ガラス転移温度)化を目的に多官能エポキシ樹脂を加えてもよく、多官能エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等が挙げられる。
 前記エポキシ樹脂の硬化剤は、エポキシ樹脂の硬化剤として通常用いられているものから適宜選択して使用できる。例えば、ポリアミド、酸無水物、フェノールノボラック、ポリスルフィッド、三弗化硼素及びフェノール性水酸基を1分子中に2個以上有する化合物であるビスフェノールA、ビスフェノールF、ビスフェノールS等が挙げられる。特に吸湿時の耐電食性に優れる観点から、フェノール樹脂であるフェノールノボラック樹脂、ビスフェノールノボラック樹脂又はクレゾールノボラック樹脂等を用いるのが好ましい。
 硬化剤とともに硬化促進剤を用いることが好ましい。硬化促進剤としては、各種イミダゾール類を用いるのが好ましい。イミダゾールとしては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート等が挙げられる。 イミダゾール類は、四国化成工業株式会社から、2E4MZ、2PZ-CN、2PZ-CNSという商品名で市販されている。
 接着材層に用いるエポキシ樹脂は、エポキシ樹脂と相溶性がある高分子量樹脂を含む高分子量エポキシ樹脂であることが好ましい。エポキシ樹脂と相溶性がある高分子量樹脂としては、高分子量エポキシ樹脂、極性の大きい官能基含有ゴム、極性の大きい官能基含有反応性ゴムなどが挙げられる。前記極性の大きい官能基含有反応性ゴムとしては、アクリルゴムにカルボキシル基のような極性が大きい官能基を付加したアクリル変性ゴムが挙げられる。
 ここで、エポキシ樹脂と相溶性があるとは、硬化後にエポキシ樹脂と分離して二つ以上の相に分かれることなく、均質混和物を形成する性質を言う。
 前記高分子量樹脂の重量平均分子量は特に制限されない。Bステージにおける接着材層のタック性の低減や硬化時の可撓性を向上させる観点から、重量平均分子量が3万以上であることが好ましい。
 高分子量エポキシ樹脂は、分子量が3万~8万の高分子量エポキシ樹脂、さらには、分子量が8万を超える超高分子量エポキシ樹脂については、特公平7-59617号、特公平7-59618号、特公平7-59619号、特公平7-59620号、特公平7-64911号、特公平7-68327号公報参照に記載がある。
 また、極性の大きい官能基含有反応性ゴムとして、カルボキシル基含有アクリルゴムは、ナガセケムテックス株式会社から、HTR-860Pという商品名で市販されている。
 上記エポキシ樹脂と相溶性がありかつ重量平均分子量が3万以上の高分子量樹脂の添加量は、接着材層を構成する樹脂を100質量部とした場合に、10質量部以上であることが好ましく、また40質量部以下であることが好ましい。
 10質量部以上であると、エポキシ樹脂を主成分とする相(以下エポキシ樹脂相という)の可撓性の不足、タック性の低減やクラック等による絶縁性の低下を防止することができる。また、40質量部以下であると、エポキシ樹脂相のTgの低下を防止することができる。
 高分子量エポキシ樹脂の重量平均分子量は、2万以上50万以下であることが好ましい。この範囲では、シート状、フィルム状での強度や可撓性が低下を抑制でき、タック性が増大することを抑制できる。
 前記接着材層はフィラーの少なくとも1種を含有してもよい。前記フィラーは絶縁性を有する無機化合物であれば特に制限はないが、高い熱伝導性を有するものであることが好ましい。フィラーの具体例としては、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、タルク、マイカ、水酸化アルミニウム、硫酸バリウム等を挙げることができる。中でも、熱伝導性の観点から、酸化アルミニウム、窒化ホウ素、窒化アルミニウムが好ましい。また、これらのフィラーの材質としては、1種類単独であっても、2種類以上を併用してもよい。
 接着材層が含有するフィラーの体積平均粒子径は特に制限されない。例えば、熱伝導性の観点から、0.1μm~10μmであることが好ましく、0.5μm~5μmであることがより好ましい。
 本発明においてフィルム化した接着材層を用いる場合、接着層における、フィラーの含有率は、接着性と熱伝導性のバランスをとる観点から、50体積%以下であることが好ましい。さらに熱伝導性の観点から、20体積%以上50体積%以下であることが好ましい。
 本発明の多層樹脂シートは、樹脂層の少なくとも一方の面上に接着材層が配置されて成ることを特徴とする。前記接着材層を配置する方法としては、前記樹脂層と上記のようにしてフィルム化した接着材層とを貼り合わせる方法、前記樹脂層の表面に前記樹脂ワニスを直接塗布した後に溶剤を乾燥させて接着材層を配置する方法などが挙げられる。
 本発明においては、作業性などの点から、予めフィルム状の接着材層を調製し、これを樹脂層に貼り合わせる方法であることが好ましい。フィルム状の接着材層としては、例えば、支持体上に接着性を有する樹脂を含む塗布液を塗布して支持体付きの接着材層シートを構成してこれを用いることができる。
 また接着材層の膜厚には特に制限はないが、熱伝導性と接着性の観点から、3μm~16μmであることが好ましく、4μm~14μmであることがより好ましい。
 フィルム状の接着材層を用いて、前記樹脂層上に接着材層を設ける方法としては、例えば、熱プレス、ラミネータ等を用いて、前記樹脂層の上にフィルム状の接着材層を積層したものをラミネート処理する方法を挙げることができる。
 ラミネート処理で行う加熱加圧の条件は、樹脂層及び接着材層の構成に応じて適宜選択できる。例えば、加熱温度80℃~200℃、圧力0.2MPa~20MPa、減圧下(例えば、30kPa以下)に加熱加圧処理することが好ましい。
 本発明における多層樹脂シートは、その片面、もしくは、両面には接着材層の表面を保護するための支持体を設けることができる。これにより、外的環境からの接着面への異物の付着や衝撃から多層樹脂シートを保護することができる。尚、前記多層樹脂シートを使用する場合には、前記支持体を剥離して用いる。
 前記支持体は、接着材層を形成した後に接着材層上に配置してもよく、また接着材層を支持体付きの接着材層シートを用いて形成する場合には、接着材層シートの支持体をそのまま多層樹脂シートの支持体として用いることができる。
<多層樹脂シートの製造方法>
 前記多層樹脂シートの第一の製造方法は、エポキシ樹脂モノマー、硬化剤、体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素を含む第三のフィラーを含有する樹脂層を得る工程と、前記樹脂層の少なくとも一方の面上に接着材層を配置する工程とを有し、必要に応じてその他の工程を含んで構成される。
 前記樹脂層を得る工程については既述の樹脂層の調製方法と同様である。前記第一の製造方法で得られる多層樹脂シートは、前記第三のフィラー粒子の少なくとも一部が前記接着材層に入り込んでいなくてもよく、入り込んでいてもよい。接着時の樹脂フローの抑制や圧着圧力の低減により被着材の変形を防ぐ観点から、第三のフィラーの少なくとも一部が接着材層に入り込んでいることが好ましい。
 前記樹脂層上に前記接着材層を配置する方法としては、前記樹脂層と上記のようにしてフィルム化した接着材層とを貼り合わせる方法、前記樹脂層の表面に前記樹脂ワニスを直接塗布した後に溶剤を乾燥させて接着材層を配置する方法などが挙げられる。
 本発明においては、作業性などの点から、予めフィルム状の接着材層を調製し、これを前記樹脂層の少なくとも一方の面上に設ける方法であることが好ましい。
 フィルム状の接着材層を用いて、前記樹脂層上に接着材層を設ける方法としては、例えば、プレス装置、ラミネート装置、ゴムロールプレス装置、金属ロールプレス装置、真空プレス装置等を用いて、樹脂層及びフィルム状の接着材層を積層したものを加熱加圧する方法を挙げることができる。前記樹脂層上に接着材層を設ける際に加熱加圧する条件としては、例えば、加熱温度を60℃~220℃とし、圧力を0.1MPa~100MPaとして、処理時間を0.1分~60分間とすることが好ましい。より好ましくは温度が80℃~180℃、圧力が0.2MPa~80MPa、処理時間が0.15分~30分間である。
 また前記積層体を得る工程は、大気圧(常圧下)でも行うことが可能であるが、減圧下で行うことが好ましい。減圧条件としては30000Pa以下であることが好ましく、10000Pa以下であることがより好ましい。
 前記第一の製造方法は、前記樹脂層上に形成された前記接着材中に、樹脂層中の第三のフィラー粒子の少なくとも一部を接着材層中に入り込ませる工程をさらに有することが好ましい。これにより得られる多層樹脂シートは、被着体に貼り合わせる前において、樹脂層中の第三のフィラー粒子の少なくとも一部が接着材層に入り込んでいることになり、接着時の樹脂フローの抑制や圧着圧力の低減により被着材の変形を防ぐことができる。
 前記樹脂層上に接着材層を形成した後に加熱加圧処理を行うことで樹脂層中の第三のフィラー粒子を接着材層中に入り込ませる方法としては、例えば、真空加熱プレスや金属加熱ロールを用いることなどが挙げられる。
 樹脂層中の第三のフィラー粒子の少なくとも一部を接着材層中に入り込ませる工程を有する第一の製造方法の一例について図面を参照しながら説明する。図13(a)では、既述のようにして、エポキシ樹脂モノマー及び硬化剤を樹脂組成物2と、体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素を含む第三のフィラーを含むフィラー1を含有する樹脂層10を得る。次いで図13(b)に示すように前記樹脂層10の両面に接着材層3を配置する。接着材層3の形成方法は既述のとおりである。次いで樹脂層10の両面に接着材層3が配置された樹脂シート40を真空加熱プレスや金属加熱ロールを用いて、加熱加圧処理して接着材層3中に、樹脂層10中のフィラーの一部を入り込ませる。これにより図13(c)に示すように接着材層3中に入り込んでいるフィラー4が存在する多層樹脂シート40Aを製造することができる。
 また前記多層樹脂シートの第二の製造方法は、エポキシ樹脂モノマー、硬化剤、体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素を含む第三のフィラーを含有する樹脂層を得る工程と、前記樹脂層の少なくとも一方の面上に接着材層を配置すると共に、前記接着材層中に前記第三のフィラーの少なくとも一部を入り込ませる工程とを有し、必要に応じてその他の工程を含んで構成される。
 前記樹脂層を得る工程については既述の通りである。
 また、前記樹脂層上に接着材層を設けると共に、前記第三のフィラーの少なくとも一部を前記接着材層中に入り込ませる方法としては、例えば、前記樹脂層上に接着材層を設ける際の加熱加圧する条件を、加熱温度を80℃~220℃とし、圧力を1MPa~100MPaとして、処理時間を0.1分~60分間とすることが好ましい。より好ましくは温度が100℃~200℃、圧力が1.5MPa~80MPa、処理時間が0.3分~40分間である。またこの条件は、後述するプレス工程との兼ね合いを取って適宜決定することが更に望ましい。
 また加熱加圧は、大気圧(常圧下)でも行うことが可能であるが、減圧下に行うことが好ましい。減圧条件としては30000Pa以下であることが好ましく、10000Pa以下であることがより好ましい。
 前記第二の製造方法の一例について図面を参照しながら説明する。図14(a)では、既述のようにして、エポキシ樹脂モノマー及び硬化剤を樹脂組成物2と、体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素を含む第三のフィラーを含むフィラー1を含有する樹脂層10を得る。次いで上述のように接着材層を設ける際の加熱加圧する条件を制御することで前記樹脂層10の両面に接着材層3を形成すると共に接着材層3中に、樹脂層10中のフィラーの一部を入り込ませる。これにより図14(b)に示すように接着材層3中に入り込んでいるフィラー4が存在する多層樹脂シート40Aを製造することができる。
<多層樹脂シートの使用方法>
 本発明における多層樹脂シートは、次のように使用することができる。例えば、樹脂層の一方の面に接着材層が形成された多層樹脂シートの場合、金属板などの被着体に前記多層樹脂シートの接着材層側面が対向するように配置し、加熱加圧処理を行うことにより積層体を得ることができる(積層体形成工程)。この段階において、第三のフィラーの少なくとも一部が接着材層に入り込んでいる多層樹脂シート積層体を得ることが好ましい。さらに、加熱加圧処理を行うことによって多層樹脂シート積層体硬化物とすることができる(硬化工程)。上記硬化工程における加熱加圧処理の条件は、樹脂層が硬化されるものであれば特に制限されない。例えば、加熱温度を80℃~250℃とし、圧力を1MPa~100MPaとして、処理時間を0.1分~360分間とすることが好ましい。より好ましくは温度が100℃~220℃、圧力が1.5MPa~80MPa、処理時間が10分~240分間である。
 また硬化工程は、大気圧(常圧下)でも行うことが可能であるが、減圧下に行うことが好ましい。減圧条件としては30000Pa以下であることが好ましく、10000Pa以下であることがより好ましい。
 硬化工程後、さらに加熱処理を行うことで熱伝導性及び耐熱性をより向上させることができる。前記加熱処理は、例えば、100℃~250℃、10分~300分間加熱処理することができる。また、熱伝導性の観点から、メソゲン骨格を有するエポキシ樹脂の配向し易い温度を含むことが好ましく、特に、100℃~160℃と160℃~250℃の少なくとも2段階の加熱を行うことがより好ましく、100℃以上150℃未満と、150℃以上180℃未満と、180℃以上220℃以下の少なくとも3段階の加熱を行うことがさらに好ましい。
[第三のフィラーが接着材層に入り込んでいる多層樹脂シートの場合]
 樹脂層中の第三のフィラーの少なくとも一部が接着材層に入り込んでいる多層樹脂シートを用いる場合、積層体形成工程における加熱加圧条件は特に制限されないが、次のように行うことができる。例えば、加熱温度を60℃~200℃とし、圧力を1MPa~100MPaとして、処理時間を0.1分~360分間とすることが好ましい。熱伝導性保持の観点から、80℃~180℃、圧力が1MPa~30MPa、処理時間が0.5分~240分間であることが好ましい。
[第三のフィラーが接着材層に入り込んでいない多層樹脂シートの場合]
 樹脂層中の第三のフィラーの少なくとも一部が接着材層に入り込んでいない多層樹脂シートを用いる場合、樹脂層中の第三のフィラーの少なくとも一部を接着材層に入り込ませるための加熱加圧処理を行うことが好ましい。この場合の加熱加圧条件は次のようになる。加熱温度を60℃~200℃とし、圧力を0.5MPa~200MPaとして、処理時間を0.1分~20分間とすることが好ましい。より好ましくは温度が80℃~180℃、圧力が1MPa~100MPa、処理時間が0.1分~15分間である。これにより、樹脂層中の第三のフィラーの少なくとも一部が接着材層に入り込んだ多層樹脂シート積層体を得ることができる。
 続いて、前記積層体形成工程における加熱加圧条件は特に制限されないが、次のように行うことができる。例えば、加熱温度を100℃~250℃とし、圧力を1MPa~100MPaとして、処理時間を0.1分~20分間とすることが好ましい。より好ましくは温度が70℃~220℃、圧力が1MPa~60MPa、処理時間が0.2分~10分間である。
 尚、上記積層体形成工程においては、積層体形成工程と共に樹脂層中の第三のフィラーの少なくとも一部を接着材層に入り込ませてもよい。この場合の加熱加圧条件は次のようになる。加熱温度を60℃~200℃とし、圧力を1.5MPa~100MPaとして、処理時間を0.1分~20分間とすることが好ましい。より好ましくは温度が80℃~180℃、圧力が2MPa~80MPa、処理時間が0.2分~20分間である。工程数の削減の観点から、積層体形成工程と共に樹脂中の第三のフィラーの少なくとも一部を接着材層に入り込ませる方法が好ましい。
 本発明における多層樹脂シートが片面のみに接着材層が形成されている場合でも両面に被着体を配置してもよい。また、その両面に接着材層が形成されている場合においても、両面に被着体を配置することができる。これらの場合の積層体形成工程の一例について図面を参照しながら説明する。図17(a)に示すように第一の被着体72、多層樹脂シート70及び第二の被着体73をこの順に積層し、第一の被着体72及び第二の被着体73が多層樹脂シート70を挟むように加熱加圧することで、図17(b)に示すような第一の被着体72、多層樹脂シート80及び第二の被着体73がこの順に積層接着された積層体を得ることができる。
 前記被着体としては特に制限されないが、例えば、銅やアルミニウム,クロム銅やニッケルメッキされた金属板などの金属や、ポリイミド、エポキシ、トリアジン、メラニン、ナイロン、ABSなどの樹脂や、アルミナ、窒化ホウ素、酸化マグネシウム、窒化ケイ素、窒化アルミなどのセラミックやそれらの混合物である複合材料などが挙げられる。
 本発明の多層樹脂シートは、高い熱伝導性を有するとともに、実装時及び実駆動時などの過酷な熱衝撃にも耐え得る高熱伝導の多層樹脂シート硬化物を形成可能であり、今後加速的な需要増が見込まれるハイブリッド自動車インバータ用放熱材や、産業機器インバータ用放熱材料、又はLED用放熱材料への展開が期待される。
<多層樹脂シート硬化物>
 本発明の多層樹脂シート硬化物は、エポキシ樹脂モノマー及び硬化剤に由来する樹脂硬化物、並びに、フィラーを含む硬化樹脂層と、前記硬化樹脂層の少なくとも一方の面上に配置された接着材層と、を備える。また前記フィラーが、体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び、体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素を含む第三のフィラーを含んでいる。さらに前記第三のフィラーの少なくとも一部が、前記接着材層中に入り込んでいる。
 本発明において、前記第三のフィラーの少なくとも一部は、樹脂層中で互いに点で接触していることが好ましく、互いに熱伝導可能なように面で接触していることがより好ましい。ここでいう熱伝導可能なように面で接触しているとは、図5に多層樹脂シート硬化物の断面SEM写真の一例を示す様に、第三のフィラー同士が近づいて存在し、変形して面同士で向き合っている状態であることを示す。第三のフィラーの少なくとも一部が互いに接触していることで熱伝導性がより向上する。また、被着体である銅箔57と多層樹脂シートの界面付近において第三のフィラー56が銅箔57表面の形状に沿って変形、追従しており、これがシート中央付近のフィラーと繋がり、フィラーのネットワークが形成されていることがわかる。ここで、第三のフィラーに含まれる窒化ホウ素フィラーは樹脂単体よりも熱伝導性が100倍以上高いとされる。フィラーのネットワークを形成できると、樹脂を介さない熱伝導のパスが形成されるため、熱伝導性が飛躍的に向上できる。一方で、アルミナのような硬いフィラーを用いると変形できないため、銅箔等の被着材との界面付近にフィラーは接近できない場合がある。 そのため、フィラーのネットワークは形成することは難しく、熱伝導性は向上し難いと考えられる。したがって、変形可能な窒化ホウ素フィラーを含むことが好ましい。
 更に、変形したフィラーは熱伝導性の低い接着材層に含まれることになるが、フィラーネットワークが形成されているので、接着材層の樹脂の熱伝導性の影響をほとんど受けない。これは前述した様に、熱伝導パスが形成されており、フィラー中を熱が伝わるためである。
 なお、図5は、多層樹脂シートの両面に被着体として銅箔を張り付けた後に、加熱加圧処理して多層樹脂シート硬化物を形成したものの断面SEM写真である。
 本発明においては第三のフィラーのみならず、前記第一のフィラー及び第二のフィラーも含めたフィラーの少なくとも一部が互いに接触していることもまた好ましく、例えば、第一のフィラー同士、第一のフィラーと第三のフィラーが接触していてもよい。
 第三のフィラーの少なくとも一部が互いに接触するように硬化樹脂層を構成する方法としては、例えば、樹脂層におけるフィラーの含有率を適宜選択する方法、フィラーの混合比率を適宜選択する方法、特に、柔軟なフィラーと硬いフィラーの比率を適宜選択する方法、フィラーを含む樹脂層を加熱加圧処理する方法等を挙げることができ、これらの方法を適宜組み合わせてもよい。
 本発明の多層樹脂シート硬化物20においては、図2に模式断面図を示すように、前記第三のフィラー粒子の少なくとも一部が、接着材層3中に入り込んでいる。すなわち樹脂硬化物層2Aに含まれる第三のフィラーのうち、接着材層3と対向する面の表面近傍に存在する第三のフィラー4の少なくとも一部については、その粒子としての一部分が接着材層3中に入り込み、樹脂硬化物層2Aと接着材層3の両方に含まれた状態となっている。接着材層3中に入り込んでいる第三のフィラー4は接着材層3の最表面近くまで入り込むことができるが、図2のように、多層樹脂シート硬化物20の最表面は第三のフィラーが露出していないことが好ましく、多層樹脂シート硬化物20の表面は接着材層3の硬化物に覆われていることが好ましい。
 第三のフィラーの少なくとも一部が、接着材層中に入り込んでいることで、多層樹脂シート硬化物全体としての熱伝導性が向上し、接着性と絶縁性に優れる。
 また第三のフィラーのうち、接着材層と対向する面の表面近傍以外に存在する第三のフィラーは樹脂層中にのみに含まれた状態となっているが、これらは接着材層中に入り込んだ第三のフィラーを含めて、互いに接触した状態となっていることが好ましく、熱伝導可能な状態で接触していることが好ましい。
 ここで第三のフィラーが接着材層中に入り込んでいるとは、第三のフィラーが樹脂層から露出して接着材層中に入り込み、第三のフィラー粒子が樹脂層と接着材層の両方にそれぞれ接触した状態で樹脂層と接着材層の両方に含まれた状態であってもよく、また、第三のフィラーが樹脂層を構成する樹脂成分とともに接着材層中に入り込み、第三のフィラー粒子が樹脂層を構成する樹脂成分を介して接着材層と接触している状態であってもよく、さらに、両方の状態が混在した状態であってもよい。
 樹脂層に含まれる第三のフィラーの少なくとも一部が、接着材層中に入り込んでいる状態は、例えば、多層樹脂シート硬化物の、樹脂層と接着材層との境界面に対して垂直な断面について、走査型電子顕微鏡(SEM)と電子線X線マイクロアナライザ(XMA)を用いて断面観察し、フィラーの分布状態や樹脂層と接着層の境界及びその構造から判断することができる。また、接着材層のみに含まれている元素を検出して、接着材層と熱伝導層と切り分けることもできる。例えば、シリコン変性のポリアミドイミド樹脂を接着材層に用いた場合ならば、シリコンの元素を検出することで、界面を切り分けることができる。未知試料ならば、顕微赤外分光法や元素分析、重量分析などの化学分析を組み合わせて判断してもよい。例えば、赤外分光法にて樹脂成分とフィラー成分とを切り分け、重量分析、分光分析、化学分析を用い、またこれらを組み合わせて分析をすることで、成分の分析が可能で有ると考える。このように接着材層と熱伝導層を切り分け、接着材層に第三のフィラーの少なくとも一部が入り込んでいるかどうかを確認することができる。
<樹脂シート積層体>
 本発明の樹脂シート積層体は、前記多層樹脂シート硬化物と、前記多層樹脂シート硬化物の少なくとも一方の面上に配置された金属板又は放熱板とを有することを特徴とする。かかる構成であることで、熱伝導性と絶縁性に優れ、さらに多層樹脂シート硬化物と、金属板又は放熱板との接着強度が良好で、さらに熱衝撃耐性にも優れる。
 前記多層樹脂シート積層体硬化物の詳細については、記述の通りである。
 前記金属板又は放熱板としては、銅板、アルミ板、セラミック板などが挙げられる。なお、金属板又は放熱板の厚みは特に限定されない。また、金属板又は放熱板として、銅箔やアルミ箔などの金属箔を使用してもよい。
 本発明においては、多層樹脂シート硬化物の少なくとも一方の面上に金属板又は放熱板が配置されるが、両方の面上に配置されることが好ましい。
<樹脂シート積層体の製造方法>
 本発明の樹脂シート積層体の製造方法は、前記多層樹脂シートの接着材層上に、金属板又は放熱板を配置する工程と、前記多層樹脂シートに熱を与えて前記樹脂層を硬化する工程と、を有する樹脂シート積層体の製造方法である。
 それぞれの工程の詳細については、既述の通りである。
 図6~図8に、本発明の多層樹脂シート硬化物を用いて構成されるパワー半導体装置の構成例を示す。
 図6は、パワー半導体チップ110が、はんだ層112を介して配置された銅板104と、本発明の多層樹脂シート硬化物102と、グリース層108を介して水冷ジャケット120上に配置された放熱ベース106とが積層されて構成されたパワー半導体装置100の構成例を示す模式断面図である。パワー半導体チップ110を含む発熱体が本発明の多層樹脂シート硬化物102を介して放熱部材と接触していることで、効率よく放熱が行なわれる。尚、前記放熱ベース106は、熱伝導性を有する銅やアルミニウムを用いて構成することができる。またパワー半導体チップとしては、IGBTやサイリスタ等を挙げることができる。
 図7は、パワー半導体チップ110の両面に、冷却部材を配置して構成されたパワー半導体装置150の構成例を示す模式断面図である。パワー半導体装置150においては、パワー半導体チップ110の上面に配置される冷却部材が、2層の銅板104を含んで構成されている。かかる構成であることにより、チップ割れやはんだ割れの発生を、より効果的に抑制することができる。図8では多層樹脂シート硬化物102と水冷ジャケット120とがグリース層108を介して配置されているが、多層樹脂シート硬化物102と水冷ジャケット120とが直接接触するように配置されていてもよい。
 図8は、パワー半導体チップ110の両面に、冷却部材を配置して構成されたパワー半導体装置200の構成例を示す模式断面図である。パワー半導体装置200においては、パワー半導体チップ110の両面に配置される冷却部材が、それぞれ1層の銅板104を含んで構成されている。図9では多層樹脂シート硬化物102と水冷ジャケット120とがグリース層108を介して配置されているが、多層樹脂シート硬化物102と水冷ジャケット120とが直接接触するように配置されていてもよい。
 図9は、本発明の樹脂硬化物を用いて構成されるLEDライトバー300の構成の一例を示す模式断面図である。LEDライトバー300は、ハウジング138と、グリース層136と、アルミニウム基板134と、本発明の樹脂シート132と、LEDチップ130とがこの順に配置されて構成される。発熱体であるLEDチップ130が本発明の多層樹脂シート硬化物132を介してアルミニウム基板134上に配置されることで、効率よく放熱することができる。
 図10は、LED電球の発光部350の構成例を示す模式断面図である。LED電球の発光部350は、ハウジング138と、グリース層136と、アルミニウム基板134と、本発明の多層樹脂シート硬化物132と、回路層142と、LEDチップ130とがこの順に配置されて構成される。
 また図11は、LED電球450の全体の構成の一例を示す模式断面図である。
 図12は、LED基板400の構成の一例を示す模式断面図である。LED基板400は、アルミニウム基板134と、本発明の多層樹脂シート硬化物132と、回路層142と、LEDチップ130とがこの順に配置されて構成される。発熱体であるLEDチップ130が回路層と本発明の多層樹脂シート硬化物132を介してアルミニウム基板134上に配置されることで、効率よく放熱することができる。
実験例
 以下、本発明を具体的に説明するが、本発明はこれらの実験例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。
 またエポキシ樹脂モノマーの合成法は、特開2005-206814号公報及び特開2005-29778号公報等を参考にした。カテコールレゾルシノールノボラック樹脂の製造方法は、特開2006-131852号公報、特表2010-518183号公報等を参考にした。
 以下に多層樹脂シートの作製に用いた材料とその略号を示す。
<樹脂層>
(無機充填剤)
 ・AA-18:酸化アルミニウム、製品名:AA-18、住友化学株式会社製、体積平均粒子径18μm
 ・AA-3:酸化アルミニウム、製品名:AA-3、住友化学株式会社製、体積平均粒子径3μm
 ・AA-04:酸化アルミニウム、製品名:AA-04、住友化学株式会社製、体積平均粒子径0.4μm
 ・FS-3:窒化ホウ素、製品名:FS-3、水島合金鉄株式会社製、体積平均粒子径76μm
 ・HP-40:窒化ホウ素、製品名:HP40MF100、水島合金鉄株式会社製、体積平均粒子径45μm
 ・PTX-25:窒化ホウ素、製品名:PTX-25、モメンティブ株式会社製、体積平均粒子径25μm
(硬化剤)
 ・CRN:カテコールレゾルシノールノボラック樹脂(シクロヘキサノン(CHN)50%含有)、合成品
(エポキシ樹脂モノマー)
 ・BPGE:4,4’-ビフェノール型エポキシ樹脂、製品名:YL6121H、三菱化学株式会社製
 ・PNAP:トリフェニルメタン型エポキシ樹脂、製品名:EPPN-502H、日本化薬製
 ・MOPOC:1-{(3-メチル-4-オキシラニルメトキシ)フェニル}-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、合成品
 尚、MOPOCは、特開2005-206814号公報及び特開2005-29778号公報等を参考にして調製した。
(添加剤)
 ・TPP:トリフェニルフォスフィン(和光純薬製)
 ・PAM:3-フェニルアミノプロピルトリメトキシシラン(シランカップリング剤、製品名:KBM-573、信越化学工業製)
(溶剤)
 ・MEK:メチルエチルケトン(和光純薬製、1級)
 ・CHN:シクロヘキサノン(和光純薬製、1級)
(支持体)
 ・PETフィルム:製品名75E-0010CTR-4、藤森工業株式会社製
 ・銅箔:製品名GTS 080、古河電工株式会社製、厚さ80μm
<接着材層>
(変性ポリアミドイミド系接着材層用材料)
 ・KS-7003:変性ポリアミドイミドワニス、製品名:KS-7003、日立化成工業製(固形分量40%)
(エポキシ樹脂系接着材層用材料)
(フィラー)
 ・AO802:酸化アルミニウム、製品名:AO802、東洋インキ製造株式会社製、体積平均粒子径0.7μm、固形分量76%
(カップリング剤)
 ・A-189:メルカプト末端シランカップリング剤、製品名:A-189、日本ユニカー株式会社製
 ・A-1160:ウレイド末端シランカップリング剤、製品名:A-1160、日本ユニカー株式会社製(固形分量50%)
(エポキシ樹脂モノマー)
 ・YD-8170C:ビスフェノールF型エポキシ樹脂、製品名:YD-8170C、東都化成製
 ・YDCN-703:クレゾールノボラック型エポキシ樹脂、製品名:YDCN-703、東都化成製(固形分量60%)
(硬化剤)
 ・LF-2882:ビスフェノールA型ノボラック、製品名:LF-2882、大日本インキ株式会社製(固形分量60%)
(硬化促進剤)
 ・2-フェニル-4-シアノイミダゾール:2PZ-CN、四国化成工業株式会社製
(アクリル変性ゴム)
 ・HTR-860P-3:アクリルゴム、製品名:HTR-860P-3、ナガセケムテックス株式会社製(固形分量12%)
(溶剤)
 ・CHN:シクロヘキサノン(和光純薬製、1級)
(支持体)
 ・PETフィルム:製品名A31、帝人デュポンフィルム株式会社製
(ノボラック樹脂の合成)
<合成例1>
 窒素雰囲気下でセパラブルフラスコにモノマーとしてレゾルシノール105g(0.95mol)とカテコール5g(0.05mol)、触媒としてシュウ酸 0.11g(0.1wt%)、溶剤としてメタノール 15gを量り取った後、内容物を攪拌し、40℃以下になるように油浴で冷却しながらホルマリン30g(約0.33mol、F/P=0.33)を加えた。2時間攪拌した後、油浴を100℃にして、加温しながら水及びメタノールを減圧留去した。水及びメタノールが出なくなったことを確認した後、CHNを用いてノボラック樹脂と質量比が50%となる溶液を作製し、カテコールレゾルシノールノボラック樹脂溶液(CRN)を得た。
 GPCによる分子量測定で、得られた生成物の数平均分子量は484で、繰り返し単位数はn=3.9であった。またモノマー含有比率は40%であった。H-NMRの測定により、繰り返し単位に水酸基が2.1含まれることが分かった。水酸基当量は62g/eqであった。
<実験例1a>
(樹脂層の調製)
 酸化アルミニウム混合物(AA-3(第二のフィラー):AA-04(第一のフィラー);体積基準混合比2.4:1)42.91部と、窒化ホウ素(FS-3、第三のフィラー)46.04部(AA-04に対する体積基準混合比6.6:1)と、シランカップリング剤(PAM;KBM-573)0.13部と、硬化剤(ノボラック樹脂:合成品)としてモノマー含有比率が40%であるCRNのCHN溶液11.96部(固形分50%)と、MEK44.77部と、CHN9.29部とを混合し、均一になったことを確認した後に、エポキシ樹脂モノマーとしてMOPOC19.39部と、TPP0.20部と、をさらに加えて混合した後、40時間~60時間ボールミル粉砕を行って、樹脂組成物として樹脂層形成用塗工液を得た。
 得られた樹脂層形成用塗工液を、コンマコータ(ヒラノテクシート株式会社製)を用いてPET(ポリエチレンテレフタレート)フィルムの離型面上に厚みが約110μmになるように塗布し、100℃のボックス型オーブンで10分乾燥して、有機溶媒を除去して、PETフィルム上に樹脂層を形成した。
 上記で得られた樹脂層が形成されたPETフィルムを2枚用い、樹脂層同士が対向するように重ねて、熱プレス装置(熱板130℃、圧力1MPa、処理時間1分)を用いて、加熱加圧処理して貼り合わせた後、PETフィルムを剥がして、厚さが200μmであるBステージ状態の樹脂層を得た。
(接着材層1の調製 ポリアミドイミド樹脂系接着材層)
 変性ポリアミドイミド樹脂ワニス(日立化成工業株式会社製、品名:KS7003、固形分40質量%)を、コンマコータ(ヒラノテクシード株式会社製)を用いて、離形処理を施したPETフィルムA31上に塗布した。130~140℃に設定したコンベヤ式乾燥炉で約8分間乾燥を行い、PETフィルム上に接着材層を形成して接着材フィルムを得た。膜厚はコンマコータとPETフィルムとのギャップを調整することにより、乾燥後の接着材層の膜厚が6μmと12μmである2種類の接着材層1を作製した。
(接着材層2の調製 エポキシ系接着材層)
 エポキシ樹脂として、YD-8170Cを24.2部、YDCN-703を13.5部、硬化剤としてLF-2882を30.67部、硬化促進剤として、2PZCNを0.083部、アクリル変性ゴムとしてHTR-860P-3を196.53部、カップリング剤として、A-189を0.21部、A-1160を0.83部、フィラーとしてAO802を231.58部をそれぞれ計量して、ミキサにて1時間混合して、接着材層用塗工液を得た。次に、コンマコータ(ヒラノテクシード株式会社製)を用いて、離形処理を施したPETフィルムA31上に塗布し、100℃に設定したコンベヤ式乾燥炉で約6分間乾燥を行い、PETフィルム上に接着材層を形成して接着材層2を得た。尚、乾燥後の接着材層の膜厚は10μmとなるようにした。
(多層樹脂シートの作製)
 上記で得られたBステージ状態の樹脂層の両面に、上記で得られた接着材層1が形成されたPETフィルムを、接着材層がBステージシートに対向するようにそれぞれ重ね、ラミネータ(名機製作所製,MVLP-600/700)を用いて、温度120℃、圧力1.0MPa、真空度≦1kPa、時間15秒間の条件で、樹脂層の両面に厚さ6μmの接着材層1を貼り付けて、Bステージ状態の多層樹脂シートを得た。
 上記で得られた多層樹脂シートの両面からPETフィルムを剥がし、その両面に80μm厚の銅箔を重ねた後、プレス処理を行った(プレス工程条件:熱板温度165℃、真空度≦1kPa、圧力10MPa、処理時間3分)。その後ボックス型オーブン中で、140℃で2時間、165℃で2時間、190℃で2時間のステップキュアにより、樹脂シート積層体として両面に銅箔が設けられたシート状の多層樹脂シート硬化物1aを得た。
 図4に、多層樹脂シート硬化物1aの走査型電子顕微鏡による断面観察写真を示す。図4に示すように多層樹脂シート硬化物50においては、硬化樹脂層中に第一のフィラーと第二のフィラーの混合物55が存在し、さらに第三のフィラー56の一部が、接着材層57中に入り込んでいる。この状態を模式的に図1及び図2を用いて説明する。
 図1に接着材層を設ける前の樹脂層の模式断面図を示す。図1に示すように、樹脂層10は、樹脂組成物2中にフィラー1が分散した状態となっている。
 また図2に、樹脂層の両面に接着材層3を設けた多層樹脂シートをプレス処理して得られる多層樹脂シート硬化物20の模式断面図を示す。図2に示すように、プレス処理後の多層樹脂シート硬化物20においては、接着材層3中に第三のフィラー4の一部が入り込んでいる。さらに樹脂硬化物層2A中のフィラーにおいては、第三のフィラーの一部が変形して互いに接触した状態になっている。
<実験例1b>
 実験例1aにおいて、接着材層1の膜厚を12μmとしたこと以外は実験例1aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物1bを得た。
<実験例1c、1d>
 実験例1a及び1bにおける多層樹脂シート硬化物の作製において、プレス処理条件を(熱板温度165℃、真空度≦1kPa、圧力1MPa、処理時間3分)としたこと以外は、実験例1a及び実験例1bとそれぞれ同様にして、両面に銅箔が設けられた多層樹脂シート硬化物1c及び1dをそれぞれ得た。
 得られた多層樹脂シート硬化物1c及び1dでは、樹脂層中の第三のフィラーは接着材層中に入り込んでいなかった。
<実験例2a>
 実験例1aにおいて、窒化ホウ素(FS-3、第三のフィラー)46.04部の代わりに、窒化ホウ素混合物(FS-3:HP-40=1:1(質量比)、第三のフィラー)46.04部(AA-04に対する体積基準混合比3.3:3.3:1)を用いたこと以外は実験例1aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物2aを得た。
<実験例2b>
 実験例2aにおいて、接着材層1の膜厚を12μmとしたこと以外は実験例2aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物2bを得た。
<実験例2c、2d>
 実験例2a及び2bにおける多層樹脂シート硬化物の作製において、プレス処理条件を(熱板温度165℃、真空度≦1kPa、圧力1MPa、処理時間3分)としたこと以外は、実験例2a及び実験例2bとそれぞれ同様にして、両面に銅箔が設けられた多層樹脂シート硬化物2c及び2dをそれぞれ得た。
 得られた多層樹脂シート硬化物2c及び2dでは、樹脂層中の第三のフィラーは接着材層中に入り込んでいなかった。
<実験例3a>
 実験例1aにおいて、窒化ホウ素(FS-3)46.04部の代わりに、窒化ホウ素(HP-40、第三のフィラー)46.04部(AA-04に対する体積基準混合比6.6:1)を用いたこと以外は実験例1aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物3aを得た。
<実験例3b>
 実験例3aにおいて、接着材層1の膜厚を12μmとしたこと以外は実験例3aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物3bを得た。
<実験例3c>
 実験例3aにおいて、接着材層2を用いたこと以外は実験例3aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物3cを得た。
<実験例3d、3e、3f>
 実験例3a及び実験例3b、実験例3cにおける多層樹脂シート硬化物の作製において、プレス処理条件を(熱板温度165℃、真空度≦1kPa、圧力1MPa、処理時間3分)としたこと以外は、実験例3a、実験例3b及び実験例3cとそれぞれ同様にして、両面に銅箔が設けられた多層樹脂シート硬化物3d、3e及び3fをそれぞれ得た。
 得られた多層樹脂シート硬化物3d、3e及び3fでは、樹脂層中の第三のフィラーは接着材層中に入り込んでいなかった。
 図5に、実験例3dで得られた多層樹脂シート硬化物3dの走査型電子顕微鏡による断面観察写真を示す。図5から、銅箔67直下の接着層68に第三のフィラーが入り込んでいないことが分かる。この状態を、模式的に図3を用いて説明する。図3に示すように硬化樹脂層2A中にはフィラー1が存在するが、接着材層3中にはフィラー1が入り込んでいない。
<実験例4a>
  実験例1aにおいて、窒化ホウ素(FS-3)46.04部の代わりに、窒化ホウ素(PTX-25、第三のフィラー)46.04部(AA-04に対する体積基準混合比6.6:1)を用いたこと以外は実験例1aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物4aを得た。
<実験例4b>
 実験例4aにおいて、接着材層1の膜厚を12μmとしたこと以外は実験例4aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物4bを得た。
<実験例4c、4d>
 実験例4a及び4bにおける多層樹脂シート硬化物の作製において、プレス処理条件を(熱板温度165℃、真空度≦1kPa、圧力1MPa、処理時間3分)としたこと以外は、実験例4a及び実験例4bとそれぞれ同様にして、両面に銅箔が設けられた多層樹脂シート硬化物4c及び4dをそれぞれ得た。
 得られた多層樹脂シート硬化物4c及び4dでは、樹脂層中の第三のフィラーは接着材層中に入り込んでいなかった。
<実験例5a>
 実験例3aにおける多層樹脂シート硬化物の作製において、ラミネータの代わりにプレス機(井本製作所製、IMC-1823型)を用い、ラミネート処理条件を熱板温度165℃、真空度≦1kPa、圧力10MPa、処理時間3分としてBステージ状態の多層樹脂シートを得たこと、及び、得られたBステージ状態の多層樹脂シートに対するプレス処理条件を熱板温度180℃、真空度≦1kPa、圧力10MPa、処理時間3分としたこと以外は実験例3aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物5aを得た。
<実験例5b>
 実験例5aにおいて、接着材層1の膜厚を12μmとしたこと以外は実験例5aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物5bを得た。
<実験例6a>
 実験例5aにおいて、エポキシ樹脂モノマーとしてMOPOC 19.39部の代わりに、BPGEを19.52部用い、また硬化剤1の配合量を11.52部に変更したこと以外は実験例5aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物6aを得た。
<実験例6b>
 実験例6aにおいて、接着材層1の膜厚を12μmとしたこと以外は実験例6aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物6bを得た。
<実験例7a>
 実験例5aにおいて、エポキシ樹脂モノマーとしてMOPOC 19.39部の代わりに、PNAP 17.38部を用い、また硬化剤1の配合量を13.06部に変更したこと以外は実験例5aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物7aを得た。
<実験例7b>
 実験例7aにおいて、接着材層1の代わりに、接着材層2を用いたこと以外は実験例7aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物7bを得た。
<実験例8a>
(樹脂層の形成)
 樹脂層形成用塗工液を実験例7aと同様に作製をした。 この塗工液をコンマコータにてPET(ポリエチレンテレフタレート)フィルムの離形面上に厚みが約110μmになるように塗布し、100℃のボックス型オーブンで10分間乾燥して、有機溶媒を除去してPETフィルム上に樹脂層を形成した。
 樹脂層が形成されたPETフィルムと厚さ6μmの接着材層1を用い、樹脂層同士が対向するように重ねて、熱プレス装置(熱板温度165℃、真空度≦1kPa、圧力15MPa、処理時間3分の条件で、樹脂層の片面に接着材層1を貼り付けて、Bステージ状態の多層樹脂シートを得た。得られた多層樹脂シートの樹脂層の厚さは105μmであった。
 得られた多層樹脂シートを用いたこと以外は、実験例5aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物8aを得た。
<実験例8b>
 実験例8aにおいて、接着材層1の代わりに、接着材層2を用いたこと以外は実験例8aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物8bを得た。
<実験例9a>
 実験例1aにおける多層樹脂シートの作製において、ラミネータの代わりにプレス機(井本製作所製、IMC-1823型)を用い、ラミネート処理条件を熱板温度165℃、真空度≦1kPa、圧力10MPa、処理時間3分としたこと、および、プレス処理条件を熱板温度165℃、真空度≦1kPa、圧力1MPa、処理時間3分としたこと以外は実験例1aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物9aを得た。
<実験例9b>
 実験例9aにおいて、接着材層の膜厚を12μmとしたこと以外は実験例9aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物9bを得た。
<実験例10a>
 実験例1aにおいて、エポキシ樹脂モノマーとしてMOPOC 19.39部の代わりに、BGPEを19.52部用い、また硬化剤の配合量を11.71部に変更したこと以外は実験例1aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物10aを得た。
<実験例10b>
 実験例10aにおいて、接着材層の膜厚を12μmとしたこと以外は実験例10aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物10bを得た。
<実験例11>
 実験例1aにおいて、樹脂層であるBステージシートの両面に接着材層を設けなかったこと以外は実験例1aと同様にして、両面に銅箔が設けられたシート状の樹脂硬化物11を得た。
<実験例12>
 実験例2aにおいて、樹脂層であるBステージシートの両面に接着材層を設けなかったこと以外は実験例2aと同様にして、両面に銅箔が設けられたシート状の樹脂硬化物12を得た。
<実験例13>
 実験例3aにおいて、樹脂層であるBステージシートの両面に接着材層を設けなかったこと以外は実験例3aと同様にして、両面に銅箔が設けられたシート状の樹脂硬化物13を得た。
<実験例14>
 実験例4aにおいて、樹脂層であるBステージシートの両面に接着材層を設けなかったこと以外は実験例4aと同様にして、両面に銅箔が設けられたシート状の樹脂硬化物14を得た。
<実験例15a>
 実験例11における樹脂層の調製において、窒化ホウ素(FS-3)46.04部の代わりに、窒化ホウ素と同体積分率の酸化アルミニウム(AA-18、第三のフィラー)83.29部(AA04に対する体積基準混合比6.6:1)を用いたこと以外は実験例11と同様にして、両面に銅箔が設けられた多層樹脂シート硬化物15aを得た。
<実験例15b>
 実験例1aにおける樹脂層の調製において、窒化ホウ素(FS-3)46.04部の代わりに、窒化ホウ素と同体積分率の酸化アルミニウム(AA-18)83.29部を用いたこと以外は実験例1aと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物15bを得た。
<実験例15c>
 実験例15bにおいて、接着材層1の膜厚を12μmとしたこと以外は実験例15bと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物15cを得た。
<実験例15d>
 実験例15bにおいて、接着材層2を用いたこと以外は実験例15bと同様にして、両面に銅箔が設けられた多層樹脂シート硬化物15dを得た。
<評価>
 上記で得られた両面に銅箔が設けられた多層樹脂シート硬化物及びBステージ状態の多層樹脂シート等について、以下の評価を行った。評価結果を表1~表3に示す。
(熱伝導率)
 熱伝導率は熱伝導方程式により、それぞれ実測した密度、比熱と熱拡散率の積から求めた。最初に熱拡散率の測定方法を以下に示す。得られた銅箔貼り樹脂シート硬化物から、銅のみを過硫酸ナトリウム溶液を用いてエッチング除去し、シート状の樹脂硬化物を得た。得られた樹脂硬化物の熱拡散率をNETZSCH社製Nanoflash LFA447型を用いて、フラッシュ法により測定した。測定条件としては、測定温度25±1℃、測定電圧270V、Amplitude5000、パルス幅0.06msである。
 また密度は同様に銅箔を除去したシート硬化物を用いて、アルキメデス法により求めた。さらに比熱を示差熱分析装置(DSC)Parkin Elmer社製Pyris 1型による入力熱量の差により求めた。測定条件としては、高純度アルミナをリファレンスとし、窒素雰囲気下、昇温速度5℃/分にて測定した。
(絶縁耐圧)
 上記で得られた両面に銅箔が設けられた多層樹脂シート硬化物から、過硫酸ナトリウム溶液を用いて銅箔をエッチング除去し、シート状の樹脂硬化物を得た。得られた樹脂硬化物の交流下での絶縁耐圧をヤマヨ試験機製YST-243-100RHOを用いて測定した。測定条件としては、昇圧速度1kV/秒、測定温度23℃±2℃、フロリナートFC-77(フッ素系不活性液体、住友スリーエム株式会社製)中にて測定を行った。
(せん断強度)
 上記で得られたBステージ状態の多層樹脂シートの両面からPETフィルムを剥がし、金属板を貼り合わせ、JIS K6850に準拠して、引っ張りせん断接強さの測定を行った。具体的には100mm×25mm×3mmの銅板2枚を12.5mm×25mmのBステージ状態の多層樹脂シートに互い違いに重ねて接着、硬化した。これを株式会社島津製作所AGC-100型を用いて、試験速度1mm/分、測定温度23℃の条件で引っ張ることでせん断強度の測定を行った。
 なお、接着、硬化は以下のようにして行った。真空熱プレス(熱板温度165℃、真空度≦1kPa、圧力4MPa、処理時間3分)を行った後、ボックス型オーブン中で、140℃で2時間、165℃で2時間,190℃で2時間のステップキュアにより行った。
(可使時間)
 上記で得られた多層樹脂シート(Bステージシート)について、常温で所定時間保存した後、半径20mmの円柱に押し付けて曲げた場合に、割れが発生せず曲げられるかの可否で可使時間を判定した。
(接着材層中のフィラー)
 接着材層中へのフィラーの入り込みを以下のようにして評価した。上記で得られた多層樹脂シートについて、プレス硬化処理をする前のBステージ状態及びプレス硬化処理した後の硬化物状態の2種のサンプルについて、樹脂層と接着材層との境界面に対して垂直な断面について、走査型電子顕微鏡(SEM、オックスフォード・インストゥルメンツ株式会社製、INCA Energy 350)と付属の電子線X線マイクロアナライザ(XMA、加速電圧20kV、蒸着物質Pt-Pd)を用いて断面観察し、フィラーの分布状態や樹脂層と接着層の境界及びその構造から、接着材層へのフィラーの入り込みの有無を判断した。
(フィラーの粒子径分布)
 Bステージ状態の多層樹脂シートを過剰のシクロヘキサノンに溶解して分散液を作製した。これをメンブレンフィルターにてろ過して、ろ物である固形物と液状物とを分離し、固形物をフィラーとして取り出した。得られたフィラーの粒子径分布を、レーザー回折法にて湿式法で測定した。具体的にはフィラーを水中に超音波分散機にて分散し、ベックマン・コールター社製(型番LS230)レーザー回折散乱粒度分布測定装置を用いて繰り返し5回測定し、定量した。測定された粒子径分布を横軸に粒子径を縦軸に頻度をとったグラフの一例を図18及び図19に示した。
 実験例1a~実験例15dで得られた多層樹脂シートの樹脂層の粒子径分布の全てにおいて、0.01μm以上1μm未満、1μm以上10μm未満及び10μm以上100μm以下の範囲にそれぞれピークが存在することが確認された。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 表1から表3、図5及び図6から、樹脂層の表面に接着材層を設けて、加熱加圧処理して樹脂層中のフィラーを接着材層に入り込ませた多層樹脂シート硬化物においては、高い熱伝導性を示し、接着強度及び絶縁破壊電圧がバランスよく優れていることがわかる。一方、樹脂層に含まれるフィラーが接着材層中に入り込んでいないと熱伝導性が低下することが分かる。
 日本国特許出願2010-226601号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (21)

  1.  エポキシ樹脂モノマー、硬化剤及びフィラーを含む樹脂層と、前記樹脂層の少なくとも一方の面上に配置された接着材層とを備え、
     前記フィラーが、レーザー回折法を用いて測定される粒子径分布において、0.01μm以上1μm未満、1μm以上10μm未満、及び10μm以上100μm以下のそれぞれの範囲にピークを有し、
     10μm以上100μm以下の粒子径を有するフィラーが、窒化ホウ素フィラーを含む多層樹脂シート。
  2.  前記10μm以上100μm以下の粒子径を有するフィラーの少なくとも一部が、前記接着材層中に入り込んでいる請求項1に記載の多層樹脂シート。
  3.  前記エポキシ樹脂モノマーの少なくとも1種はメソゲン基を有するエポキシ樹脂モノマーであり、前記硬化剤の少なくとも1種はノボラック樹脂である請求項1又は請求項2に記載の多層樹脂シート。
  4.  前記接着材層は、変性ポリイミド樹脂、変性ポリアミドイミド樹脂及びエポキシ樹脂からなる群より選ばれる少なくとも1種を含む請求項1~請求項3のいずれか1項に記載の多層樹脂シート。
  5.  エポキシ樹脂モノマー、硬化剤、
     体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、
     体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び
     体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素フィラーを含む第三のフィラーを含有する樹脂層と、
     前記樹脂層の少なくとも一方の面上に配置された接着材層と、
    を備える多層樹脂シート。
  6.  前記第三のフィラーの少なくとも一部が、前記接着材層中に入り込んでいる請求項5に記載の多層樹脂シート。
  7.  前記エポキシ樹脂モノマーの少なくとも1種はメソゲン基を有するエポキシ樹脂モノマーであり、前記硬化剤の少なくとも1種はノボラック樹脂である請求項5又は請求項6に記載の多層樹脂シート。
  8.  前記接着材層は、変性ポリイミド樹脂、変性ポリアミドイミド樹脂及びエポキシ樹脂からなる群より選ばれる少なくとも1種を含む請求項5~請求項7のいずれか1項に記載の多層樹脂シート。
  9.  エポキシ樹脂モノマーと硬化剤との反応物を含む樹脂硬化物及びフィラーを含有する硬化樹脂層と、前記硬化樹脂層の少なくとも一方の面上に配置された接着材層とを備え、
     前記フィラーが、レーザー回折法を用いて測定される粒子径分布において、0.01μm以上1μm未満、1μm以上10μm未満、及び10μm以上100μm以下のそれぞれの範囲にピークを有し、
     10μm以上100μm以下の粒子径を有するフィラーが、窒化ホウ素フィラーを含み、その少なくとも一部が前記接着材層に入り込んでいる多層樹脂シート硬化物。
  10.  前記10μm以上100μm以下の粒子径を有するフィラーの少なくとも一部は、前記硬化樹脂層中で互いに接触している請求項9に記載の多層樹脂シート硬化物。
  11.  前記エポキシ樹脂モノマーの少なくとも1種はメソゲン基を有するエポキシ樹脂モノマーであり、前記硬化剤の少なくとも1種はノボラック樹脂である請求項9又は請求項10に記載の多層樹脂シート硬化物。
  12.  前記接着材層は、変性ポリイミド樹脂、変性ポリアミドイミド樹脂及びエポキシ樹脂からなる群より選ばれる少なくとも1種を含む請求項9~請求項11のいずれか1項に記載の多層樹脂シート硬化物。
  13.  エポキシ樹脂モノマーと硬化剤との反応物を含む樹脂硬化物、
     体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、
     体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び
     体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素フィラーを含む第三のフィラーを含有する硬化樹脂層と、
     前記硬化樹脂層の少なくとも一方の面上に配置された接着材層と、を備え、
     前記第三のフィラーの少なくとも一部が、前記接着材層中に入り込んでいる多層樹脂シート硬化物。
  14.  前記第三のフィラーの少なくとも一部は、前記硬化樹脂層中で互いに接触している請求項13に記載の多層樹脂シート硬化物。
  15.  前記エポキシ樹脂モノマーの少なくとも1種はメソゲン基を有するエポキシ樹脂モノマーであり、前記硬化剤の少なくとも1種はノボラック樹脂である請求項13又は請求項14に記載の多層樹脂シート硬化物。
  16.  前記接着材層は、変性ポリイミド樹脂、変性ポリアミドイミド樹脂及びエポキシ樹脂からなる群より選ばれる少なくとも1種を含む請求項13~請求項15のいずれか1項に記載の多層樹脂シート硬化物。
  17.  エポキシ樹脂モノマー、硬化剤、
     体積平均粒子径が0.01μm以上1μm未満である第一のフィラー、
     体積平均粒子径が1μm以上10μm未満である第二のフィラー、及び
     体積平均粒子径が10μm以上100μm以下であり、窒化ホウ素フィラーを含む第三のフィラーを含有する樹脂層を得る工程と、
     前記樹脂層の少なくとも一方の面上に接着材層を配置する工程と、
     前記接着材層中に前記第三のフィラーの少なくとも一部を入り込ませる工程と、
    を有する多層樹脂シートの製造方法。
  18.  請求項9~請求項16のいずれか1項に記載の多層樹脂シート硬化物と、前記多層樹脂シート硬化物の少なくとも一方の面上に配置された金属板又は放熱板とを有する樹脂シート積層体。
  19.  請求項1~請求項8のいずれか1項に記載の多層樹脂シートの接着材層上に、金属板又は放熱板を配置して積層体を得る工程と、
     前記接着材層中に、前記窒化ホウ素フィラーの少なくとも一部を入り込ませる工程と、
    を有する樹脂シート積層体の製造方法。
  20.  請求項1~請求項8のいずれか1項に記載の多層樹脂シートの接着材層上に、金属箔を有する金属箔付き多層樹脂シート。
  21.  半導体素子と、
     前記半導体素子上に配置された請求項9~請求項16のいずれか1項に記載の多層樹脂シート硬化物と、
    を備える半導体装置。
PCT/JP2011/073124 2010-10-06 2011-10-06 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置 WO2012046814A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11830746.1A EP2626205A1 (en) 2010-10-06 2011-10-06 Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
JP2012537764A JP5348332B2 (ja) 2010-10-06 2011-10-06 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置
US13/878,033 US20130189514A1 (en) 2010-10-06 2011-10-06 Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010226601 2010-10-06
JP2010-226601 2010-10-06

Publications (1)

Publication Number Publication Date
WO2012046814A1 true WO2012046814A1 (ja) 2012-04-12

Family

ID=45927808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073124 WO2012046814A1 (ja) 2010-10-06 2011-10-06 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置

Country Status (5)

Country Link
US (1) US20130189514A1 (ja)
EP (1) EP2626205A1 (ja)
JP (2) JP5348332B2 (ja)
TW (1) TWI462831B (ja)
WO (1) WO2012046814A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251023A (ja) * 2011-05-31 2012-12-20 Nhk Spring Co Ltd 回路基板用絶縁樹脂組成物、回路基板用絶縁シート、回路基板用積層板及び金属ベース回路基板
JP2013018991A (ja) * 2011-03-28 2013-01-31 Hitachi Chemical Co Ltd 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置、並びにled装置
JP2013032496A (ja) * 2011-06-27 2013-02-14 Nitto Shinko Kk 熱硬化性樹脂組成物、熱伝導性シート、及び、半導体モジュール
JP2013048257A (ja) * 2010-10-06 2013-03-07 Hitachi Chemical Co Ltd 半導体装置
JP2013133437A (ja) * 2011-12-27 2013-07-08 Hitachi Chemical Co Ltd 樹脂シート、樹脂付金属箔、樹脂硬化物、金属基板、led基板、及び、樹脂付金属箔の製造方法
US20130233599A1 (en) * 2012-03-08 2013-09-12 Samsung Electro-Mechanics Co., Ltd. Substrate for power module
WO2014208694A1 (ja) * 2013-06-27 2014-12-31 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート構造体、樹脂シート構造体硬化物、樹脂シート構造体硬化物の製造方法、半導体装置、及びled装置
KR20150002485A (ko) * 2013-06-25 2015-01-07 더 벅퀴스트 컴퍼니 열전도성 유전성 인터페이스
KR20150022478A (ko) * 2013-08-23 2015-03-04 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
JP2016172824A (ja) * 2015-03-17 2016-09-29 日本化薬株式会社 ポリイミド樹脂組成物、及びそれを用いた接着フィルム
WO2016190260A1 (ja) * 2015-05-22 2016-12-01 日立化成株式会社 エポキシ樹脂組成物、熱伝導材料前駆体、bステージシート、プリプレグ、放熱材料、積層板、金属基板、及びプリント配線板
JP2017057340A (ja) * 2015-09-18 2017-03-23 日本化薬株式会社 ポリイミド樹脂組成物、及びそれを用いた接着フィルム
JP2017145990A (ja) * 2016-02-16 2017-08-24 日本特殊陶業株式会社 グロープラグ
WO2017208907A1 (ja) * 2016-06-02 2017-12-07 日立化成株式会社 樹脂組成物及び積層体の製造方法
JP2018029149A (ja) * 2016-08-19 2018-02-22 三菱電機株式会社 電力用半導体装置およびその製造方法
KR20180120184A (ko) 2016-03-09 2018-11-05 토요잉크Sc홀딩스주식회사 열 전도성 절연 시트, 그 제조 방법, 및 중간 적층체
KR20210089741A (ko) * 2019-01-23 2021-07-16 후지필름 가부시키가이샤 조성물, 열전도 시트, 열전도층 부착 디바이스
WO2022149435A1 (ja) * 2021-01-06 2022-07-14 デンカ株式会社 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法
JP2022180564A (ja) * 2017-04-28 2022-12-06 積水化学工業株式会社 熱硬化性シート及び硬化シートの製造方法
WO2024062923A1 (ja) * 2022-09-21 2024-03-28 東レ株式会社 フィルム、積層体、プラズマ処理装置、及び積層体の製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549068B (zh) * 2009-09-29 2016-05-04 日立化成工业株式会社 树脂组合物、树脂片以及树脂固化物及其制造方法
EP2641736A4 (en) * 2010-11-18 2014-07-02 Hitachi Chemical Co Ltd MULTILAYER RESIN FOIL AND RESIN FOIL LAMINATE
JP6413249B2 (ja) * 2014-02-03 2018-10-31 住友ベークライト株式会社 熱伝導性シートおよび半導体装置
DE112014006446B4 (de) 2014-03-07 2021-08-05 Mitsubishi Electric Corporation Halbleiteranordnung
JP6356456B2 (ja) * 2014-03-27 2018-07-11 デクセリアルズ株式会社 熱伝導性シートの製造方法
JP6657616B2 (ja) * 2014-07-02 2020-03-04 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
TWI710595B (zh) * 2014-12-08 2020-11-21 日商昭和電工材料股份有限公司 環氧樹脂組成物、樹脂薄片、預浸體、附有樹脂的金屬箔、金屬基板、及電力半導體裝置
JP6424600B2 (ja) * 2014-12-09 2018-11-21 トヨタ自動車株式会社 半導体装置
WO2016159934A1 (en) * 2015-03-27 2016-10-06 Hewlett-Packard Development Company, L.P. Circuit package
US20180148622A1 (en) * 2015-05-25 2018-05-31 Hitachi Chemical Company, Ltd. Resin composition, resin sheet, prepreg, insulator, resin sheet cured product, and heat dissipator
KR102451929B1 (ko) * 2015-12-24 2022-10-07 주식회사 두산 폴리이미드 수지, 이를 이용한 금속 적층체 및 이를 포함하는 인쇄회로기판
WO2017111343A1 (ko) * 2015-12-24 2017-06-29 주식회사 두산 폴리이미드 수지, 이를 이용한 금속 적층체 및 이를 포함하는 인쇄회로기판
JP6501075B2 (ja) 2016-02-24 2019-04-17 パナソニックIpマネジメント株式会社 樹脂構造体とその構造体を用いた電子部品及び電子機器
CN113817264A (zh) * 2016-04-04 2021-12-21 积水化学工业株式会社 树脂成型体
JP6710828B2 (ja) * 2016-04-06 2020-06-17 北川工業株式会社 熱伝導シート、および、熱伝導シートの製造方法
CN109312164B (zh) * 2016-07-05 2022-05-03 纳美仕有限公司 膜用树脂组合物、膜、带有基材的膜、金属/树脂层叠体、树脂固化物、半导体装置以及膜的制造方法
EP3505575B1 (de) * 2017-12-29 2020-09-16 Daw Se Beschichtungsstoffe, beschichtungen aus diesen beschichtungsstoffen sowie deren verwendung
TWI826621B (zh) * 2019-03-22 2023-12-21 日商帝人股份有限公司 絕緣片及其製造方法
JP7273586B2 (ja) * 2019-03-29 2023-05-15 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物
KR20210108221A (ko) * 2020-02-25 2021-09-02 현대자동차주식회사 양면 냉각형 파워모듈
CN114369335A (zh) * 2022-01-13 2022-04-19 郴州加宁科技有限公司 一种igbt用散热板及其制备工艺

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759620B2 (ja) 1990-09-12 1995-06-28 日立化成工業株式会社 高分子量エポキシ樹脂の製造方法
JPH0759619B2 (ja) 1990-09-10 1995-06-28 日立化成工業株式会社 高分子量エポキシ樹脂の製造方法
JPH0759618B2 (ja) 1990-09-10 1995-06-28 日立化成工業株式会社 高分子量エポキシ樹脂の製造方法
JPH0759617B2 (ja) 1990-09-10 1995-06-28 日立化成工業株式会社 高分子量エポキシ樹脂の製造方法
JPH0764911B2 (ja) 1990-09-12 1995-07-12 日立化成工業株式会社 高分子量エポキシ樹脂の製造方法
JPH0768327B2 (ja) 1990-09-11 1995-07-26 日立化成工業株式会社 超高分子量エポキシ樹脂の製造方法
JP2001348488A (ja) * 2000-06-06 2001-12-18 Matsushita Electric Works Ltd 熱伝導性樹脂組成物、プリプレグ、放熱性回路基板及び放熱性発熱部品
JP2002134531A (ja) 1996-10-08 2002-05-10 Hitachi Chem Co Ltd 半導体装置、半導体チップ搭載用基板、それらの製造法、接着剤、および、両面接着フィルム
JP2002226796A (ja) 2001-01-29 2002-08-14 Hitachi Chem Co Ltd ウェハ貼着用粘着シート及び半導体装置
JP2003221573A (ja) 2001-11-12 2003-08-08 Hitachi Chem Co Ltd 接合材料及びこれを用いた半導体装置
JP2005029778A (ja) 2003-06-20 2005-02-03 Pokka Corp 抗酸化剤、抗菌剤、抗腫瘍剤及び飲食品
JP2005206814A (ja) 2003-12-24 2005-08-04 Sumitomo Chemical Co Ltd エポキシ化合物および該エポキシ化合物を硬化せしめてなるエポキシ樹脂硬化物
JP2005281467A (ja) * 2004-03-29 2005-10-13 Toshiba Corp 高熱伝導性樹脂、および部材、ならびにそれらを用いた電気機器および半導体装置
JP2005343983A (ja) * 2004-06-02 2005-12-15 Denki Kagaku Kogyo Kk 無機質粉末及びその用途
JP2006131852A (ja) 2004-11-09 2006-05-25 Kanazawa Univ レゾルシノールノボラック誘導体
JP2007262398A (ja) * 2006-03-01 2007-10-11 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
JP2008013759A (ja) 2006-06-07 2008-01-24 Sumitomo Chemical Co Ltd エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP2008031359A (ja) * 2006-07-31 2008-02-14 Techno Polymer Co Ltd 放熱シャーシ
JP2008153430A (ja) * 2006-12-18 2008-07-03 Mitsubishi Electric Corp 放熱基板並びに熱伝導性シートおよびこれらを用いたパワーモジュール
JP2008189818A (ja) 2007-02-05 2008-08-21 Nitto Denko Corp 熱伝導性樹脂組成物および熱伝導性シートとその製造方法
JP2008266378A (ja) * 2007-04-17 2008-11-06 Denki Kagaku Kogyo Kk 組成物、それを用いた金属ベース回路基板
JP2009021530A (ja) 2007-07-13 2009-01-29 Sumitomo Electric Ind Ltd 絶縁性樹脂膜およびパワーモジュール
JP2010518183A (ja) 2006-11-09 2010-05-27 インドスペック ケミカル コーポレイション レゾルシノール樹脂の安定化方法及びそれから製造されるゲル組成物
JP2010226601A (ja) 2009-03-25 2010-10-07 Nec Corp 携帯電話システム
JP2011090868A (ja) * 2009-10-22 2011-05-06 Denki Kagaku Kogyo Kk 絶縁シート、回路基板及び絶縁シートの製造方法
JP2011177929A (ja) * 2010-02-26 2011-09-15 Nippon Steel Chem Co Ltd 金属−絶縁樹脂基板及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481019B2 (ja) * 2004-01-21 2010-06-16 電気化学工業株式会社 混合粉末及びその用途
JP2008010897A (ja) * 2007-09-28 2008-01-17 Mitsubishi Electric Corp 絶縁シートおよびこれを用いたパワーモジュール
JP2010053224A (ja) * 2008-08-27 2010-03-11 Kyocera Chemical Corp 熱伝導性樹脂シート、熱伝導板、熱伝導性プリント配線板及び放熱部材
DE112008004155T5 (de) * 2008-11-25 2012-07-12 Denki Kagaku Kogyo Kabushiki Kaisha Verfahren zum Herstellen eines Substrats für eine Baugruppe mit lichtemittierendem Elementsowie Baugruppe mit lichtemittierendem Element unter Verwendung eines derartigen Substrats
CN104962037A (zh) * 2009-02-25 2015-10-07 松下电器产业株式会社 热传导性组合物和使用它的散热板、散热基板、电路模块、热传导性组合物的制造方法
WO2011010672A1 (ja) * 2009-07-24 2011-01-27 住友ベークライト株式会社 樹脂組成物、樹脂シート、プリプレグ、金属張積層板、プリント配線板及び半導体装置
CN102549068B (zh) * 2009-09-29 2016-05-04 日立化成工业株式会社 树脂组合物、树脂片以及树脂固化物及其制造方法
EP2626205A1 (en) * 2010-10-06 2013-08-14 Hitachi Chemical Co., Ltd. Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
KR101957532B1 (ko) * 2010-12-01 2019-03-12 도레이 카부시키가이샤 접착제 조성물, 접착제 시트 및 이들을 사용한 반도체 장치

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759619B2 (ja) 1990-09-10 1995-06-28 日立化成工業株式会社 高分子量エポキシ樹脂の製造方法
JPH0759618B2 (ja) 1990-09-10 1995-06-28 日立化成工業株式会社 高分子量エポキシ樹脂の製造方法
JPH0759617B2 (ja) 1990-09-10 1995-06-28 日立化成工業株式会社 高分子量エポキシ樹脂の製造方法
JPH0768327B2 (ja) 1990-09-11 1995-07-26 日立化成工業株式会社 超高分子量エポキシ樹脂の製造方法
JPH0759620B2 (ja) 1990-09-12 1995-06-28 日立化成工業株式会社 高分子量エポキシ樹脂の製造方法
JPH0764911B2 (ja) 1990-09-12 1995-07-12 日立化成工業株式会社 高分子量エポキシ樹脂の製造方法
JP2002134531A (ja) 1996-10-08 2002-05-10 Hitachi Chem Co Ltd 半導体装置、半導体チップ搭載用基板、それらの製造法、接着剤、および、両面接着フィルム
JP2001348488A (ja) * 2000-06-06 2001-12-18 Matsushita Electric Works Ltd 熱伝導性樹脂組成物、プリプレグ、放熱性回路基板及び放熱性発熱部品
JP2002226796A (ja) 2001-01-29 2002-08-14 Hitachi Chem Co Ltd ウェハ貼着用粘着シート及び半導体装置
JP2003221573A (ja) 2001-11-12 2003-08-08 Hitachi Chem Co Ltd 接合材料及びこれを用いた半導体装置
JP2005029778A (ja) 2003-06-20 2005-02-03 Pokka Corp 抗酸化剤、抗菌剤、抗腫瘍剤及び飲食品
JP2005206814A (ja) 2003-12-24 2005-08-04 Sumitomo Chemical Co Ltd エポキシ化合物および該エポキシ化合物を硬化せしめてなるエポキシ樹脂硬化物
JP2005281467A (ja) * 2004-03-29 2005-10-13 Toshiba Corp 高熱伝導性樹脂、および部材、ならびにそれらを用いた電気機器および半導体装置
JP2005343983A (ja) * 2004-06-02 2005-12-15 Denki Kagaku Kogyo Kk 無機質粉末及びその用途
JP2006131852A (ja) 2004-11-09 2006-05-25 Kanazawa Univ レゾルシノールノボラック誘導体
JP2007262398A (ja) * 2006-03-01 2007-10-11 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
JP2008013759A (ja) 2006-06-07 2008-01-24 Sumitomo Chemical Co Ltd エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP2008031359A (ja) * 2006-07-31 2008-02-14 Techno Polymer Co Ltd 放熱シャーシ
JP2010518183A (ja) 2006-11-09 2010-05-27 インドスペック ケミカル コーポレイション レゾルシノール樹脂の安定化方法及びそれから製造されるゲル組成物
JP2008153430A (ja) * 2006-12-18 2008-07-03 Mitsubishi Electric Corp 放熱基板並びに熱伝導性シートおよびこれらを用いたパワーモジュール
JP2008189818A (ja) 2007-02-05 2008-08-21 Nitto Denko Corp 熱伝導性樹脂組成物および熱伝導性シートとその製造方法
JP2008266378A (ja) * 2007-04-17 2008-11-06 Denki Kagaku Kogyo Kk 組成物、それを用いた金属ベース回路基板
JP2009021530A (ja) 2007-07-13 2009-01-29 Sumitomo Electric Ind Ltd 絶縁性樹脂膜およびパワーモジュール
JP2010226601A (ja) 2009-03-25 2010-10-07 Nec Corp 携帯電話システム
JP2011090868A (ja) * 2009-10-22 2011-05-06 Denki Kagaku Kogyo Kk 絶縁シート、回路基板及び絶縁シートの製造方法
JP2011177929A (ja) * 2010-02-26 2011-09-15 Nippon Steel Chem Co Ltd 金属−絶縁樹脂基板及びその製造方法

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048257A (ja) * 2010-10-06 2013-03-07 Hitachi Chemical Co Ltd 半導体装置
JP2013018991A (ja) * 2011-03-28 2013-01-31 Hitachi Chemical Co Ltd 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置、並びにled装置
JP2012251023A (ja) * 2011-05-31 2012-12-20 Nhk Spring Co Ltd 回路基板用絶縁樹脂組成物、回路基板用絶縁シート、回路基板用積層板及び金属ベース回路基板
JP2013032496A (ja) * 2011-06-27 2013-02-14 Nitto Shinko Kk 熱硬化性樹脂組成物、熱伝導性シート、及び、半導体モジュール
JP2013133437A (ja) * 2011-12-27 2013-07-08 Hitachi Chemical Co Ltd 樹脂シート、樹脂付金属箔、樹脂硬化物、金属基板、led基板、及び、樹脂付金属箔の製造方法
US20130233599A1 (en) * 2012-03-08 2013-09-12 Samsung Electro-Mechanics Co., Ltd. Substrate for power module
KR102264624B1 (ko) * 2013-06-25 2021-06-15 헨켈 아이피 앤드 홀딩 게엠베하 열전도성 유전성 인터페이스
EP2819158A3 (en) * 2013-06-25 2015-04-22 The Bergquist Company Thermally conductive dielectric interface
KR20160091859A (ko) * 2013-06-25 2016-08-03 헨켈 아이피 앤드 홀딩 게엠베하 열전도성 유전성 인터페이스
KR101682761B1 (ko) * 2013-06-25 2016-12-05 헨켈 아이피 앤드 홀딩 게엠베하 열전도성 유전성 인터페이스
US9693481B2 (en) 2013-06-25 2017-06-27 Henkel IP & Holding GmbH Thermally conductive dielectric interface
KR20150002485A (ko) * 2013-06-25 2015-01-07 더 벅퀴스트 컴퍼니 열전도성 유전성 인터페이스
US9745411B2 (en) 2013-06-27 2017-08-29 Hitachi Chemical Company, Ltd. Resin composition, resin sheet, cured resin sheet, resin sheet structure, cured resin sheet structure, method for producing cured resin sheet structure, semiconductor device, and LED device
US20160177024A1 (en) * 2013-06-27 2016-06-23 Hitachi Chemical Company, Ltd. Resin composition, resin sheet, cured resin sheet, resin sheet structure, cured resin sheet structure, method for producing cured resin sheet structure, semiconductor device, and led device
WO2014208694A1 (ja) * 2013-06-27 2014-12-31 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート構造体、樹脂シート構造体硬化物、樹脂シート構造体硬化物の製造方法、半導体装置、及びled装置
JPWO2014208694A1 (ja) * 2013-06-27 2017-02-23 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート構造体、樹脂シート構造体硬化物、樹脂シート構造体硬化物の製造方法、半導体装置、及びled装置
KR20150022478A (ko) * 2013-08-23 2015-03-04 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
KR102104524B1 (ko) * 2013-08-23 2020-04-24 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
JP2016172824A (ja) * 2015-03-17 2016-09-29 日本化薬株式会社 ポリイミド樹脂組成物、及びそれを用いた接着フィルム
CN107614563A (zh) * 2015-05-22 2018-01-19 日立化成株式会社 环氧树脂组合物、导热材料前体、b阶片、预浸渍体、散热材料、层叠板、金属基板和印刷配线板
US10584228B2 (en) 2015-05-22 2020-03-10 Hitachi Chemical Company, Ltd. Epoxy resin composition, thermally-conductive material precursor, B-stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board
WO2016190260A1 (ja) * 2015-05-22 2016-12-01 日立化成株式会社 エポキシ樹脂組成物、熱伝導材料前駆体、bステージシート、プリプレグ、放熱材料、積層板、金属基板、及びプリント配線板
US11840619B2 (en) 2015-05-22 2023-12-12 Resonac Corporation Epoxy resin composition, thermally-conductive material precursor, B-stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board
JP2017057340A (ja) * 2015-09-18 2017-03-23 日本化薬株式会社 ポリイミド樹脂組成物、及びそれを用いた接着フィルム
JP2017145990A (ja) * 2016-02-16 2017-08-24 日本特殊陶業株式会社 グロープラグ
KR20180120184A (ko) 2016-03-09 2018-11-05 토요잉크Sc홀딩스주식회사 열 전도성 절연 시트, 그 제조 방법, 및 중간 적층체
US10759151B2 (en) 2016-03-09 2020-09-01 Toyo Ink Sc Holdings Co., Ltd. Thermal conductive insulating sheet, method for producing same, and intermediate laminate
WO2017208907A1 (ja) * 2016-06-02 2017-12-07 日立化成株式会社 樹脂組成物及び積層体の製造方法
JP2018029149A (ja) * 2016-08-19 2018-02-22 三菱電機株式会社 電力用半導体装置およびその製造方法
JP2022180564A (ja) * 2017-04-28 2022-12-06 積水化学工業株式会社 熱硬化性シート及び硬化シートの製造方法
JP7510241B2 (ja) 2017-04-28 2024-07-03 積水化学工業株式会社 硬化シートの製造方法
KR20210089741A (ko) * 2019-01-23 2021-07-16 후지필름 가부시키가이샤 조성물, 열전도 시트, 열전도층 부착 디바이스
KR102579529B1 (ko) 2019-01-23 2023-09-15 후지필름 가부시키가이샤 조성물, 열전도 시트, 열전도층 부착 디바이스
JP7291304B2 (ja) 2021-01-06 2023-06-14 デンカ株式会社 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法
JPWO2022149435A1 (ja) * 2021-01-06 2022-07-14
WO2022149435A1 (ja) * 2021-01-06 2022-07-14 デンカ株式会社 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法
WO2024062923A1 (ja) * 2022-09-21 2024-03-28 東レ株式会社 フィルム、積層体、プラズマ処理装置、及び積層体の製造方法

Also Published As

Publication number Publication date
EP2626205A1 (en) 2013-08-14
JP5971067B2 (ja) 2016-08-17
JPWO2012046814A1 (ja) 2014-02-24
TW201219211A (en) 2012-05-16
TWI462831B (zh) 2014-12-01
JP5348332B2 (ja) 2013-11-20
JP2013048257A (ja) 2013-03-07
US20130189514A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5971067B2 (ja) 半導体装置
JP6402763B2 (ja) 多層樹脂シート、樹脂シート積層体、多層樹脂シート硬化物及びその製造方法、金属箔付き多層樹脂シート、並びに半導体装置
KR101854948B1 (ko) 수지 조성물, 수지 시트, 수지 시트 경화물, 수지 시트 적층체, 수지 시트 적층체 경화물 및 그 제조 방법, 반도체 장치, 그리고 led 장치
KR102081876B1 (ko) 수지 조성물, 수지 시트, 금속박 구비 수지 시트, 수지 경화물 시트, 구조체, 및 동력용 또는 광원용 반도체 디바이스
WO2011040415A1 (ja) 多層樹脂シート及びその製造方法、多層樹脂シート硬化物の製造方法、並びに、高熱伝導樹脂シート積層体及びその製造方法
WO2011040416A1 (ja) 樹脂組成物、樹脂シート、ならびに、樹脂硬化物およびその製造方法
KR20160024917A (ko) 수지 조성물, 수지 시트, 수지 시트 경화물, 수지 시트 구조체, 수지 시트 구조체 경화물, 수지 시트 구조체 경화물의 제조 방법, 반도체 장치 및 led 장치
JP2013216038A (ja) 多層樹脂シート及びそれを用いた多層樹脂シート硬化物、樹脂シート積層体、半導体装置
JP5821856B2 (ja) 多層樹脂シート及び樹脂シート積層体
JP6536045B2 (ja) 樹脂組成物、樹脂シート及び樹脂シート硬化物
JP5888584B2 (ja) 樹脂組成物、樹脂シート、プリプレグシート、樹脂硬化物シート、構造体、および動力用又は光源用半導体デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012537764

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13878033

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011830746

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011830746

Country of ref document: EP