WO2022149435A1 - 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法 - Google Patents

窒化ホウ素粉末、放熱シート及び放熱シートの製造方法 Download PDF

Info

Publication number
WO2022149435A1
WO2022149435A1 PCT/JP2021/046762 JP2021046762W WO2022149435A1 WO 2022149435 A1 WO2022149435 A1 WO 2022149435A1 JP 2021046762 W JP2021046762 W JP 2021046762W WO 2022149435 A1 WO2022149435 A1 WO 2022149435A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
nitride powder
particle size
maximum point
point
Prior art date
Application number
PCT/JP2021/046762
Other languages
English (en)
French (fr)
Inventor
光祐 和田
清隆 藤
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to EP21917656.7A priority Critical patent/EP4253315A4/en
Priority to JP2022570166A priority patent/JP7291304B2/ja
Priority to CN202180088577.0A priority patent/CN116670233B/zh
Priority to US18/266,099 priority patent/US20240026198A1/en
Publication of WO2022149435A1 publication Critical patent/WO2022149435A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/21Attrition-index or crushing strength of granulates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler

Definitions

  • the present invention is a heat dissipation sheet obtained by molding a boron nitride powder containing at least aggregated boron nitride particles formed by aggregating hexagonal boron nitride primary particles, and a heat conductive resin composition containing the boron nitride powder and a resin.
  • the present invention relates to a heat radiating sheet obtained by molding a sex resin composition and a method for manufacturing the heat radiating sheet.
  • heat-generating electronic components such as power devices, transistors, thyristors, and CPUs
  • heat-generating electronic components such as power devices, transistors, thyristors, and CPUs
  • (1) the insulating layer of the printed wiring board on which the heat-generating electronic component is mounted is made highly thermally conductive
  • the heat-generating electronic component or the printed wiring on which the heat-generating electronic component is mounted is mounted.
  • a silicone resin or an epoxy resin filled with ceramic powder is used as the insulating layer and thermal interface material of the printed wiring board.
  • Patent Document 1 describes a boron nitride powder in which primary particles of boron nitride are aggregated, and has a peak A existing in a region of 5 ⁇ m or more and less than 30 ⁇ m and a peak A of 50 ⁇ m or more and less than 100 ⁇ m in a volume-based particle size distribution.
  • a boron nitride powder having a peak B present in the region is disclosed.
  • an object of the present invention is to provide a boron nitride powder for obtaining a heat-dissipating sheet having excellent thermal conductivity, a heat-dissipating sheet having excellent thermal conductivity, and a method for manufacturing a heat-dissipating sheet having excellent thermal conductivity. ..
  • the maximum point adjacent to the first maximum point is the second maximum point, the maximum point adjacent to the second maximum point is the third maximum point, and the first maximum point is the first maximum point. Absolute value of the difference between the grain size of the first local minimum point between the point and the second maximum point and the grain size of the second local minimum point between the second maximum point and the third maximum point.
  • a method for producing a heat-dissipating sheet which comprises a step of producing a heat-conducting resin composition sheet by molding into a heat-conducting resin composition sheet, and a step of heating and pressurizing the heat-conducting resin composition sheet under vacuum.
  • a boron nitride powder for obtaining a heat-dissipating sheet having excellent thermal conductivity, a heat-dissipating sheet having excellent thermal conductivity, and a method for manufacturing a heat-dissipating sheet having excellent thermal conductivity.
  • FIG. 1 is a conceptual diagram of the particle size distribution of the boron nitride powder of the present invention.
  • FIG. 1 is a conceptual diagram showing the particle size distribution of the boron nitride powder of the present invention.
  • the vertical axis of the particle size distribution shown in FIG. 1 is linear, and the horizontal axis is logarithmic.
  • the particle size distribution of the boron nitride powder shown in FIG. 1 is merely a conceptual diagram and does not limit the boron nitride powder of the present invention.
  • the boron nitride powder of the present invention is a boron nitride powder containing at least agglomerated boron nitride particles formed by aggregating hexagonal boron nitride primary particles.
  • the particle size distribution of the boron nitride powder of the present invention is the first maximum point (MAX1), the second maximum point (MAX2) having a larger particle size than the first maximum point (MAX1), and the second maximum point (MAX2).
  • MAX3 the third maximal point having a particle size larger than the second maximal point (MAX2).
  • the particle size of the first maximum point (MAX1) is 0.4 ⁇ m or more and less than 10 ⁇ m
  • the particle size of the second maximum point (MAX2) is 10 ⁇ m or more and less than 40 ⁇ m
  • the third maximum point (MAX3) is 40 ⁇ m or more and 110 ⁇ m or less.
  • the particle size distribution of the boron nitride powder of the present invention includes a first maximum point (MAX1), a second maximum point (MAX2) having a larger particle size than the first maximum point (MAX1), and a second maximum point (MAX2). It has at least a third maximal point (MAX3) having a particle size larger than the maximal point (MAX2) of 2.
  • the particle size distribution of the boron nitride powder does not have at least one of the first maximum point (MAX1), the second maximum point (MAX2), and the third maximum point (MAX3), the heat dissipation sheet
  • the filling property of the boron nitride powder inside is lowered, and the thermal conductivity of the heat dissipation sheet is deteriorated.
  • the particle size of the first maximum point (MAX1) is 0.4 ⁇ m or more and less than 10 ⁇ m.
  • the particle size of the first maximum point (MAX1) is preferably 2.0 to 8.0 ⁇ m, and more preferably 3.0 to 6.0 ⁇ m.
  • the particle size of the second maximum point (MAX2) is 10 ⁇ m or more and less than 40 ⁇ m.
  • the particle size of the second maximum point (MAX2) is less than 10 ⁇ m or 40 ⁇ m or more, the filling property of the boron nitride powder in the heat radiating sheet is lowered, and the thermal conductivity of the heat radiating sheet is deteriorated.
  • the particle size of the second maximum point (MAX2) is preferably 15 to 36 ⁇ m, more preferably 18 to 30 ⁇ m.
  • the particle size of the third maximum point (MAX3) is 40 to 110 ⁇ m.
  • the particle size of the third maximum point (MAX3) is less than 40 ⁇ m or more than 110 ⁇ m, the filling property of the boron nitride powder in the heat radiating sheet is lowered, and the thermal conductivity of the heat radiating sheet is deteriorated.
  • the particle size of the third maximum point (MAX3) is preferably 50 to 100 ⁇ m, more preferably 65 to 90 ⁇ m.
  • the maximum point adjacent to the first maximum point (MAX1) is the second maximum point (MAX2)
  • the maximum point adjacent to the second maximum point (MAX2) is the third maximum point (MAX3).
  • the absolute value of the difference from the particle size of the second local minimum point (MIN2) between them is preferably 15 to 60 ⁇ m.
  • the absolute value of the difference between the particle size of the first minimum point (MIN1) and the particle size of the second minimum point (MIN2) is 15 to 60 ⁇ m, the filling property of the boron nitride powder in the heat dissipation sheet is further improved. This makes it possible to further improve the thermal conductivity of the heat dissipation sheet.
  • the absolute value of the difference between the particle size of the first minimum point (MIN1) and the particle size of the second minimum point (MIN2) is preferably 19 to 53 ⁇ m, more preferably 25 to 25. It is 40 ⁇ m.
  • the half width of the peak having the third maximum point (MAX3) is preferably 20 to 60 ⁇ m.
  • the half width of the peak having the third maximum point (MAX3) is 20 to 60 ⁇ m, the filling property of the boron nitride powder in the heat radiating sheet can be further improved, and the thermal conductivity of the heat radiating sheet is further improved. Can be.
  • the half width of the peak having the third maximum point (MAX3) is preferably 24 to 55 ⁇ m, more preferably 40 to 50 ⁇ m.
  • the half-value width of the peak having the third maximum point (MAX3) is the width of the peak at half the frequency of the third maximum point (MAX3).
  • the absolute value of the difference from the particle size is preferably 3 to 30 ⁇ m.
  • the reference numeral D10 indicates the particle size at which the integrated amount of frequency is 10%, and the maximum point of the particle size distribution of the boron nitride powder having the smallest particle size is the first.
  • the maximum point (MAX1) the maximum point having the second smallest particle size in the particle size distribution of the boron nitride powder, is the second maximum point (MAX2), and the maximum point having the smallest particle size and the second smallest particle size.
  • the minimum point between the small maximum points is the first minimum point (MIN1).
  • the absolute value of the difference in particle size is 3 to 30 ⁇ m, the filling property of the boron nitride powder in the heat radiating sheet can be further enhanced, and the thermal conductivity of the heat radiating sheet can be further improved. From this point of view, the absolute value of the difference in particle size is preferably 5 to 24 ⁇ m, more preferably 6 to 15 ⁇ m.
  • the integrated amount (V1) of the frequency between the peak start and the peak end at the peak having the first maximum point (MAX1) is preferably 2 to 25% by volume.
  • the integrated amount (V1) is 2 to 25% by volume, the filling property of the boron nitride powder in the heat radiating sheet can be further enhanced, and the thermal conductivity of the heat radiating sheet can be further improved. From such a viewpoint, the integrated amount (V1) is more preferably 5 to 20% by volume.
  • the peak start at the peak having the first maximum point (MAX1) is the minimum point on the side where the particle size is smaller than the first maximum point (MAX1).
  • the peak start is the end (DS) on the side where the particle size of the particle size distribution is small.
  • the peak end at the peak having the first maximum point (MAX1) is the minimum point (MIN1) on the side where the particle size is larger than the first maximum point (MAX1).
  • the integrated amount of frequency (V1) is the grain size of the minimum point on the side where the particle size is smaller than the first maximum point (MAX1) or the grain at the end (DS) on the side where the particle size of the particle size distribution is small.
  • the particle size is relative to the first maximum point (MAX1). Is a value obtained by subtracting the frequency of the particle size of the minimum point (MIN1) on the larger side.
  • the frequency of the particle size of the minimum point (MIN1) on the side where the particle size is larger than the first maximum point (MAX1) is subtracted from the peak start at the peak having the first maximum point (MAX1).
  • the first maximum point (MAX1) in both the integrated amount of frequency between the peak and the peak end and the integrated amount of the frequency between the peak start and the peak end at the peak having the second maximum point (MAX2). This is to prevent the frequency of the particle size of the minimum point (MIN1) on the side having the larger particle size from being added.
  • the integrated amount (V2) of the frequency between the peak start and the peak end at the peak having the second maximum point (MAX2) is preferably 15 to 50% by volume.
  • the integrated amount (V2) is 15 to 50% by volume, the filling property of the boron nitride powder in the heat radiating sheet can be further enhanced, and the thermal conductivity of the heat radiating sheet can be further improved. From such a viewpoint, the integrated amount (V2) is more preferably 20 to 45% by volume.
  • the peak start at the peak having the second maximum point (MAX2) is the minimum point (MIN1) on the side where the particle size is smaller than the second maximum point (MAX2).
  • the peak end at the peak having the second maximum point (MAX2) is the minimum point (MIN2) on the side where the particle size is larger than the second maximum point (MAX2).
  • the integrated amount of frequency (V2) is determined from the particle size of the minimum point (MIN1) on the side where the particle size is smaller than the second maximum point (MAX2) to the second maximum point (MAX2). From the integrated amount of frequency to the particle size of the minimum point (MIN2) on the side with a large particle size, the particle size of the minimum point (MIN2) on the side with a large particle size with respect to the second maximum point (MAX2) It is the value obtained by subtracting the frequency.
  • the frequency of the particle size of the minimum point (MIN2) on the side where the particle size is larger than the second maximum point (MAX2) is subtracted from the peak start at the peak having the second maximum point (MAX2).
  • the second maximum point (MAX2) in both the integrated amount of frequency between the peak and the peak end and the integrated amount of the frequency between the peak start and the peak end at the peak having the third maximum point (MAX3). This is to prevent the frequency of the particle size of the minimum point (MIN2) on the side having the larger particle size from being added.
  • the integrated amount (V3) of the frequency between the peak start and the peak end at the peak having the third maximum point (MAX3) is preferably 30 to 80% by volume.
  • the integrated amount (V3) is 30 to 80% by volume, the filling property of the boron nitride powder in the heat radiating sheet can be further improved, and the thermal conductivity of the heat radiating sheet is further improved. Can be done. From such a viewpoint, the integrated amount (V3) is more preferably 45 to 75% by volume.
  • the peak start at the peak having the third maximum point (MAX3) is the minimum point (MIN2) on the side where the particle size is smaller than the third maximum point (MAX3).
  • the peak end at the peak having the third maximum point (MAX3) is the minimum point on the side where the particle size is larger than the third maximum point (MAX3).
  • the peak end is the end (DE) on the side where the particle size is large in the particle size distribution.
  • the integrated amount of frequency (V3) is determined from the particle size of the minimum point (MIN2) on the side where the particle size is smaller than the third maximum point (MAX3) to the third maximum point (MAX3).
  • the frequency of the particle size of the minimum point on the side where the particle size is larger than the third maximum point (MAX3) is subtracted from the peak start to the peak end at the peak having the third maximum point (MAX3).
  • the crushing strength of the aggregated boron nitride particles in the boron nitride powder of the present invention is preferably 5 to 18 MPa.
  • the crushing strength of the aggregated boron nitride particles is 5 MPa or more, it is possible to suppress the destruction of the aggregated boron nitride particles during the production of the heat dissipation sheet.
  • the crushing strength of the aggregated boron nitride particles is 18 MPa or less, the resin can sufficiently penetrate into the aggregated boron nitride particles in the heat radiating sheet, and air remains in the aggregated boron nitride particles in the heat radiating sheet. Can be suppressed.
  • the crushing strength of the aggregated boron nitride particles in the boron nitride powder of the present invention is preferably 6 to 15 MPa, more preferably 7 to 13 MPa.
  • the crushing strength of the aggregated boron nitride particles can be measured by the method described in Examples described later.
  • the particle size distribution of the boron nitride powder of the present invention has other maximum points in addition to the above-mentioned first to third maximum points. May be good.
  • the boron nitride powder of the present invention has, for example, a first boron nitride powder having a particle size distribution having the first maximum point, a second boron nitride powder having a particle size distribution having the second maximum point, and a particle size distribution. It can be produced by preparing each of the third boron nitride powder having the third maximum point and mixing the prepared first to third boron nitride powders.
  • the second and third boron nitride powders are preferably boron nitride powders containing at least aggregated boron nitride particles formed by agglomerating hexagonal boron nitride primary particles, respectively.
  • the first boron nitride powder may be aggregated boron nitride particles, but is preferably hexagonal boron nitride primary particles.
  • the maximum point of each of the first to third boron nitride powders means the apex of the peak in the particle size distribution of each of the first to third boron nitride powders.
  • the particle size distribution of the first to third boron nitride powders is measured in the same manner as the particle size distribution of the boron nitride powder described above.
  • the volume ratio of the third boron nitride powder is larger than the volume ratio of the second boron nitride powder, and the volume ratio of the second boron nitride powder is larger than the volume ratio of the first boron nitride powder.
  • the first to third boron nitride powders may be mixed so as to increase the amount. Thereby, the filling property of the boron nitride powder can be further improved.
  • the volume ratio of the third boron nitride powder is preferably 30 to 80 parts by volume with respect to a total of 100 parts by volume of the first to third boron nitride powders from the viewpoint of improving the thermal conductivity of the heat dissipation sheet.
  • the volume ratio of the second boron nitride powder is preferably 15 to 50 parts by volume with respect to a total of 100 parts by volume of the first to third boron nitride powders from the viewpoint of improving the thermal conductivity of the heat dissipation sheet. It is more preferably 20 to 45 parts by volume, and even more preferably 25 to 35 parts by volume.
  • the volume ratio of the first boron nitride powder is preferably 2 to 25 parts by volume with respect to a total of 100 parts by volume of the first to third boron nitride powders from the viewpoint of improving the thermal conductivity of the heat dissipation sheet. It is more preferably 5 to 20 parts by volume, and even more preferably 8 to 15 parts by volume.
  • Each of the first to third boron nitride powders has, for example, a crushing step of crushing massive boron carbide, a nitriding step of nitriding the crushed boron carbide to obtain boron nitride, and decarburizing the boron nitride. It can be manufactured by a manufacturing method including a decarburization step.
  • lumpy carbon boron (boron carbide lump) is crushed using a general crusher or crusher.
  • a boron carbide powder having a desired maximum point can be obtained.
  • the maximum point of the boron carbide powder can be measured in the same manner as the maximum point of the boron nitride powder described above.
  • the first to third boron nitride powder having the above-mentioned maximum point can be obtained.
  • boron carbide is obtained by firing the boron carbide powder in an atmosphere where the nitriding reaction proceeds and under pressure conditions.
  • the atmosphere in the nitriding step is an atmosphere in which the nitriding reaction proceeds, and may be, for example, nitrogen gas, ammonia gas, or the like, and may be one kind alone or a combination of two or more kinds thereof.
  • the atmosphere is preferably nitrogen gas from the viewpoint of ease of nitriding and cost.
  • the content of nitrogen gas in the atmosphere is preferably 95% by volume or more, more preferably 99.9% by volume or more.
  • the pressure in the nitriding step is preferably 0.6 MPa or more, more preferably 0.7 MPa or more, preferably 1.0 MPa or less, and more preferably 0.9 MPa or less.
  • the pressure is more preferably 0.7 to 1.0 MPa.
  • the firing temperature in the nitriding step is preferably 1800 ° C. or higher, more preferably 1900 ° C. or higher, preferably 2400 ° C. or lower, and more preferably 2200 ° C. or lower.
  • the firing temperature is more preferably 1800 to 2200 ° C.
  • the pressure conditions and the calcination temperature are preferably 1800 ° C. or higher and 0.7 to 1.0 MPa because the nitriding of boron carbide proceeds more preferably and the conditions are industrially appropriate.
  • the firing time in the nitriding step is appropriately selected within a range in which nitriding proceeds sufficiently, and may be preferably 6 hours or more, more preferably 8 hours or more, preferably 30 hours or less, and more preferably 20 hours or less.
  • the boron nitride obtained in the nitriding step is heat-treated to be held at a predetermined holding temperature for a certain period of time in an atmosphere of normal pressure or higher. This makes it possible to obtain aggregated boron nitride particles formed by agglomerating decarburized and crystallized hexagonal boron nitride primary particles.
  • the atmosphere in the decarburization process is a normal pressure (atmospheric pressure) atmosphere or a pressurized atmosphere.
  • the pressure may be, for example, 0.5 MPa or less, preferably 0.3 MPa or less.
  • the temperature is raised to a predetermined temperature (a temperature at which decarburization can be started), and then the temperature is further raised to the holding temperature at a predetermined temperature rise rate.
  • the predetermined temperature temperature at which decarburization can be started
  • the rate of raising the temperature from a predetermined temperature (temperature at which decarburization can be started) to the holding temperature may be, for example, 5 ° C./min or less, preferably 4 ° C./min or less, 3 ° C./min or less, or 2 ° C. It may be less than / minute.
  • the holding temperature is preferably 1800 ° C. or higher, more preferably 2000 ° C. or higher, from the viewpoint that grain growth is likely to occur well and the thermal conductivity of the obtained boron nitride powder can be further improved.
  • the holding temperature may be preferably 2200 ° C. or lower, more preferably 2100 ° C. or lower.
  • the holding time at the holding temperature is appropriately selected within a range in which crystallization proceeds sufficiently, for example, it may be more than 0.5 hours, and from the viewpoint that grain growth is likely to occur well, it is preferably 1 hour or more, more preferably. It is 3 hours or more, more preferably 5 hours or more, and particularly preferably 10 hours or more.
  • the holding time at the holding temperature may be, for example, less than 40 hours, which can reduce the decrease in particle strength due to excessive grain growth, and is preferably 30 hours or less, more preferably 20 hours or less from the viewpoint of cost reduction. It's less than an hour.
  • a boron source in addition to the boron nitride obtained in the nitriding step as a raw material, a boron source may be mixed to perform decarburization and crystallization.
  • Boron sources include boric acid, boron oxide, or mixtures thereof. In this case, other additives used in the art may be further used, if necessary.
  • the mixing ratio of boron nitride and the boron source is appropriately selected.
  • the ratio of boric acid or boron oxide may be, for example, 100 parts by mass or more, preferably 150 parts by mass or more, based on 100 parts by mass of boron carbide. Further, for example, it may be 300 parts by mass or less, preferably 250 parts by mass or less.
  • the boron nitride powder obtained as described above may be classified by a sieve so that the boron nitride powder having a desired particle size distribution can be obtained (classification step). As a result, the first to third boron nitride powders having a desired maximum point can be more preferably obtained.
  • the obtained boron nitride powder of the present invention can be obtained by mixing the obtained first to third boron nitride powders.
  • the mixing method is not particularly limited as long as the first to third boron nitride powders can be uniformly mixed.
  • the first to third boron nitride powders may be mixed using a container rotary type mixing device, or the first to third boron nitride powders may be mixed using a container fixed type mixing device.
  • the first to third boron nitride powders may be mixed using a fluid motion type mixing device.
  • the heat dissipation sheet of the present invention is formed by molding a heat conductive resin composition containing the boron nitride powder of the present invention and a resin.
  • the resin of the heat conductive resin composition examples include epoxy resin, silicone resin (including silicone rubber), acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide (for example, polyimide, etc.).
  • polyamideimide, polyetherimide, etc. polyester (eg, polybutylene terephthalate, polyethylene terephthalate, etc.), polyphenylene ether, polyphenylene sulfide, total aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide-modified resin, ABS resin.
  • AAS Acrylonitrile-acrylic rubber / styrene
  • AES Acrylonitrile / ethylene / propylene / diene rubber-styrene resin
  • silicone resin is preferable from the viewpoint of heat resistance, flexibility, and adhesion to a heat sink or the like.
  • the silicone resin is preferably one that is vulcanized with an organic peroxide and cured.
  • the viscosity of the heat conductive resin composition at 25 ° C. is, for example, 100,000 cp or less from the viewpoint of improving the flexibility of the sheet-shaped molded product.
  • the content of the boron nitride powder in the heat conductive resin composition with respect to the total 100% by volume of the boron nitride powder and the resin is preferably 30 to 85% by volume, more preferably 40 to 80% by volume.
  • the content of the boron nitride powder is 30% by volume or more, the thermal conductivity is improved and sufficient heat dissipation performance can be easily obtained.
  • the content of the boron nitride powder is 85% by volume or less, it is possible to reduce the tendency for voids to occur during molding, and it is possible to reduce the deterioration of insulating properties and mechanical strength.
  • the content of the resin with respect to the total 100% by volume of the boron nitride powder and the resin is preferably 15 to 70% by volume, more preferably 20 to 60% by volume.
  • the thermally conductive resin composition may further contain a solvent.
  • the solvent is not particularly limited as long as it can dissolve the resin and is easily removed from the applied heat conductive resin composition after the heat conductive resin composition is applied.
  • examples of the solvent include toluene, xylene, chlorine-based hydrocarbons and the like. Toluene is preferred among these solvents from the viewpoint of easy removal.
  • the content of the solvent can be appropriately selected depending on the desired viscosity of the thermally conductive resin composition.
  • the content of the solvent is, for example, 40 to 200 parts by mass with respect to 100 parts by mass of the components other than the solvent of the heat conductive resin composition.
  • the thermally conductive resin composition may contain components other than the boron nitride powder, the resin component and the solvent.
  • the other components are inorganic fillers, additives, impurities, etc. other than the boron nitride powder, and the content of the other components is preferably 5 parts by mass or less with respect to 100 parts by mass in total of the boron nitride powder and the resin. Yes, more preferably 3 parts by mass or less, still more preferably 1 part by mass or less.
  • the thickness of the heat dissipation sheet of the present invention is preferably 100 to 1200 ⁇ m.
  • the thickness of the heat radiating sheet is 100 ⁇ m or more, the heat radiating sheet can be reliably brought into close contact with the heat-generating electronic component.
  • the thickness of the heat radiating sheet is 1200 ⁇ m or less, the heat radiating property of the heat radiating sheet can be further improved.
  • the thickness of the heat dissipation sheet of the present invention is more preferably 150 to 800 ⁇ m, still more preferably 200 to 600 ⁇ m.
  • the method for producing a heat radiating sheet of the present invention is a step (A) of blending the boron nitride powder of the present invention and a resin to prepare a heat conductive resin composition, and molding the heat conductive resin composition into a sheet.
  • a step (B) for producing the heat conductive resin composition sheet, and a step (C) for heating and pressurizing the heat conductive resin composition sheet under vacuum are included.
  • Step (A) In the step (A), the boron nitride powder of the present invention and the resin are blended to prepare a thermally conductive resin composition. Since the boron nitride powder and the resin used in the step (A) have already been described, the description thereof will be omitted.
  • the heat conductive resin composition is formed into a sheet to prepare a heat conductive resin composition sheet.
  • the thermally conductive resin composition can be formed into a sheet by the doctor blade method or calendar processing.
  • the thermally conductive resin composition passes through the calendar roll, some of the aggregated boron nitride particles may be peeled off from the aggregated boron nitride particles in the thermally conductive resin composition. Therefore, it is preferable to mold the thermally conductive resin composition into a sheet by the doctor blade method.
  • the heat conductive resin composition sheet is heated and pressurized under vacuum.
  • the filling property of the boron nitride powder in the heat radiating sheet can be further improved, and the thermal conductivity of the heat radiating sheet can be further improved.
  • the microvoids in the heat radiating sheet can be reduced, so that the thermal conductivity of the heat radiating sheet can be further improved and the insulating property of the heat radiating sheet can be improved.
  • the pressure in the vacuum environment when heating and pressurizing the heat conductive resin composition sheet is preferably 0.1 to 5 kPa. It is more preferably 0.1 to 3 kPa.
  • the heating temperature of the heat conductive resin composition sheet is preferably 120 to 200 ° C, more preferably 130 to 180 ° C.
  • the pressure at the time of pressurizing the heat conductive resin composition sheet is preferably 80 to 250 kg / cm 2 , and more preferably 100 to 200 kg / cm 2 .
  • the particle size distribution of the boron nitride powder was measured using a laser diffraction / scattering method particle size distribution measuring device (LS-13 320) manufactured by Beckman Coulter Co., Ltd. Then, from the obtained particle size distribution, the frequency between the peak start and the peak end at the peak having the first to third maximum points (the first to third maximum values) and the first to third maximum points. (1st to 3rd frequency integration amount), the minimum point between the particle size where the frequency integration amount is 10%, the maximum point with the smallest particle size, and the maximum point with the second smallest particle size.
  • the crushing strength of the aggregated boron nitride particles was measured according to JIS R1639-5: 2007. Specifically, after spraying the aggregated boron nitride particles on a sample table of a microcompression tester (“MCT-W500” manufactured by Shimadzu Corporation), five aggregated boron nitride particles were selected and a compression test was performed one by one. ..
  • the crushing strengths of the five inorganic filler components were weibull plotted according to JIS R1625: 2010, and the crushing strength at which the cumulative fracture rate was 63.2% was defined as the crushing strength of the aggregated boron nitride particles.
  • the dielectric breakdown voltage of the heat dissipation sheet was evaluated based on the values measured in a short-time fracture test (room temperature 23 ° C.) according to the method described in JIS C2110-1: 2016. The results are shown in Table 1.
  • the evaluation criteria for insulation are as follows. ⁇ : Dielectric breakdown voltage is 10 kV or more ⁇ : Dielectric breakdown voltage is 5 kV or more and less than 10 kV ⁇ : Dielectric breakdown voltage is less than 5 kV
  • Thermal conductivity The thermal resistance of the heat dissipation sheet was evaluated according to the method described in ASTM D5470: 2017 and based on the measured values. The results are shown in Table 1. The evaluation criteria for thermal conductivity are as follows. ⁇ : Thermal conductivity is 5 W / (m ⁇ K) or more ⁇ : Thermal conductivity is 3 W / (m ⁇ K) or more and less than 5 W / (m ⁇ K) ⁇ : Thermal conductivity is 3 W / (m ⁇ K) Less than
  • Boron nitride powders A to W having one maximum point which are raw materials for the boron nitride powder having a plurality of maximum points, were prepared as follows.
  • Boron nitride powder A was produced by boron carbide synthesis, pressure nitriding step, and decarburization crystallization step as described below.
  • Boric acid orthoboric acid
  • HS100 acetylene black
  • the synthesized boron carbide mass is pulverized with a ball mill for 3 hours, sieved to a particle size of 75 ⁇ m or less using a sieve net, washed with an aqueous nitrate solution to remove impurities such as iron, and then filtered and dried to have an average particle size of 0.
  • a 5 ⁇ m boron carbide powder was prepared.
  • Boron nitride (B 4 ) is obtained by filling the synthesized boron carbide into a crucible nitride and then heating it in a nitrogen gas atmosphere at 2000 ° C. and 9 atm (0.8 MPa) for 10 hours using a resistance heating furnace. CN 4 ) was obtained.
  • the synthesized aggregated boron nitride particles were decomposed and crushed by 15 with a Henschel mixer, and then classified with a nylon sieve having a sieve mesh of 150 ⁇ m using a sieve net. Boron nitride powder A was obtained by crushing and classifying the fired product.
  • the average particle size (D50) of the obtained boron nitride powder A measured by the laser scattering method was 1.0 ⁇ m.
  • the obtained boron nitride powder A was scaly particles.
  • Boron nitride powder E was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 5 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder E measured by the laser scattering method was 8.0 ⁇ m.
  • the obtained boron nitride powder E was scaly particles.
  • Boron nitride powder F was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 10 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder F measured by the laser scattering method was 15 ⁇ m.
  • the obtained boron nitride powder F was agglomerated particles formed by agglomerating primary particles.
  • Boron nitride powder G was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 15 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder G measured by the laser scattering method was 20 ⁇ m.
  • the obtained boron nitride powder G was agglomerated particles formed by agglomerating primary particles.
  • Boron nitride powder H was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 20 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder H measured by the laser scattering method was 25 ⁇ m.
  • the obtained boron nitride powder H was agglomerated particles formed by agglomerating primary particles.
  • Boron nitride powder I was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 25 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder I measured by the laser scattering method was 30 ⁇ m.
  • the obtained boron nitride powder I was agglomerated particles formed by agglomerating primary particles.
  • Boron nitride powder J was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 30 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder J measured by the laser scattering method was 36 ⁇ m.
  • the obtained boron nitride powder J was agglomerated particles formed by agglomerating primary particles.
  • Boron nitride powder K was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 33 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder K measured by the laser scattering method was 38 ⁇ m.
  • the obtained boron nitride powder K was agglomerated particles formed by agglomerating primary particles.
  • Boron nitride powder L was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 40 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder L measured by the laser scattering method was 55 ⁇ m.
  • the obtained boron nitride powder L was agglomerated particles formed by agglomerating primary particles.
  • Boron nitride powder M was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 27 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder M measured by the laser scattering method was 32 ⁇ m.
  • the obtained boron nitride powder M was agglomerated particles formed by agglomerating primary particles.
  • the half width of the peak of the particle size distribution of the boron nitride powder M was 26 ⁇ m.
  • Boron nitride powder N was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 40 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder N measured by the laser scattering method was 48 ⁇ m.
  • the obtained boron nitride powder N was agglomerated particles formed by agglomerating primary particles.
  • the half width of the peak of the particle size distribution of the boron nitride powder N was 24 ⁇ m.
  • Boron nitride powder O was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 43 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder O measured by the laser scattering method was 50 ⁇ m.
  • the obtained boron nitride powder O was agglomerated particles formed by agglomerating primary particles.
  • the half width of the peak of the particle size distribution of the boron nitride powder O was 52 ⁇ m.
  • Boron nitride powder P was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 45 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder P measured by the laser scattering method was 55 ⁇ m.
  • the obtained boron nitride powder P was agglomerated particles formed by agglomerating primary particles.
  • the half width of the peak of the particle size distribution of the boron nitride powder P was 26 ⁇ m.
  • Boron nitride powder Q was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 70 ⁇ m was used and sieved to 150 ⁇ m or less.
  • the average particle size (D50) of the obtained boron nitride powder Q measured by the laser scattering method was 78 ⁇ m.
  • the obtained boron nitride powder Q was agglomerated particles formed by agglomerating primary particles.
  • the half width of the peak of the particle size distribution of the boron nitride powder Q was 46 ⁇ m.
  • Boron nitride powder R was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 65 ⁇ m was used and sieved to 150 ⁇ m or less.
  • the average particle size (D50) of the obtained boron nitride powder R measured by the laser scattering method was 88 ⁇ m.
  • the obtained boron nitride powder R was agglomerated particles formed by agglomerating primary particles.
  • the half width of the peak of the particle size distribution of the boron nitride powder R was 15 ⁇ m.
  • Boron nitride powder S was prepared by the same method as boron nitride powder A, except that boron carbide powder having an average particle diameter of 70 ⁇ m was used and sieved to 75 ⁇ m or more and 150 ⁇ m or less.
  • the average particle size (D50) of the obtained boron nitride powder S measured by the laser scattering method was 90 ⁇ m.
  • the obtained boron nitride powder S was agglomerated particles formed by agglomerating primary particles.
  • the half width of the peak of the particle size distribution of the boron nitride powder S was 55 ⁇ m.
  • Boron nitride powder T was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 38 ⁇ m was used and sieved to 150 ⁇ m or less.
  • the average particle size (D50) of the obtained boron nitride powder T measured by the laser scattering method was 90 ⁇ m.
  • the obtained boron nitride powder T was agglomerated particles formed by agglomerating primary particles.
  • the half width of the peak of the particle size distribution of the boron nitride powder T was 38 ⁇ m.
  • Boron nitride powder U was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 75 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder U measured by the laser scattering method was 100 ⁇ m.
  • the obtained boron nitride powder U was agglomerated particles formed by agglomerating primary particles.
  • the half width of the peak of the particle size distribution of the boron nitride powder U was 31 ⁇ m.
  • Boron nitride powder V was prepared in the same manner as boron nitride powder A, except that boron carbide powder having an average particle diameter of 115 ⁇ m was used.
  • the average particle size (D50) of the obtained boron nitride powder V measured by the laser scattering method was 150 ⁇ m.
  • the obtained boron nitride powder V was agglomerated particles formed by agglomerating primary particles.
  • the half width of the peak of the particle size distribution of the boron nitride powder V was 35 ⁇ m.
  • Boron nitride powders A to V were mixed at the blending ratios shown in Tables 1 and 2 to prepare boron nitride powders 1 to 18.
  • % Silicone resin 1, 1 part by volume of curing agent (2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, manufactured by Chemical Nurion Co., Ltd., trade name " Trigonox 101 "), 0.5 parts by volume of silane coupling agent with respect to 100 parts by volume of boron nitride powder (dimethyldimethoxysilane, manufactured by Dow Toray Co., Ltd., trade name” DOWNSIL Z-6329 Silane ", 25 ° C.
  • a pet film having a thickness of 0.05 mm was laminated on the surface of the heat conductive resin composition of the sheet-shaped molded body with the pet film to prepare a laminated body.
  • the layer structure of this laminate was a pet film / a heat conductive resin composition / a pet film.
  • the obtained laminate was heated and pressed for 30 minutes under a vacuum (pressure 3.5 kPa), a temperature of 150 ° C., and a pressure of 160 kg / cm 2 , and the pet films on both sides were peeled off to obtain a thickness.
  • a 1.0 mm sheet was used. Then, it was subjected to secondary heating at normal pressure and 150 ° C. for 4 hours to obtain a heat dissipation sheet.
  • the particle size of the first maximum point is 0.4 ⁇ m or more and less than 10 ⁇ m
  • the particle size of the second maximum point is 10 ⁇ m or more and less than 40 ⁇ m
  • the particle size of the third maximum point is It was found that the thermal conductivity of the heat dissipation sheet was improved by using the boron nitride powder having a particle size of 40 ⁇ m or more and 110 ⁇ m or less. Furthermore, it was found that the insulation of the heat dissipation sheet was improved by using the boron nitride powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Ceramic Products (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明の窒化ホウ素粉末は、六方晶窒化ホウ素一次粒子が凝集してなる凝集窒化ホウ素粒子を少なくとも含む窒化ホウ素粉末であり、窒化ホウ素粉末の粒度分布が、第1の極大点(MAX1)、第1の極大点よりも粒径が大きい第2の極大点(MAX2)、及び第2の極大点よりも粒径が大きい第3の極大点(MAX3)を少なくとも有し、第1の極大点の粒径が0.4μm以上10μm未満であり、第2の極大点の粒径が10μm以上40μm未満であり、第3の極大点の粒径が40μm以上110μm以下である。本発明の放熱シートは本発明の窒化ホウ素粉末と樹脂とを含む熱伝導性樹脂組成物を成形してなるものである。本発明の放熱シートの製造方法は、本発明の窒化ホウ素粉末と樹脂とを配合して熱伝導性樹脂組成物を作製する工程、熱伝導性樹脂組成物をシート状に成形して、熱伝導性樹脂組成物シートを作製する工程、及び熱伝導性樹脂組成物シートを真空下で加熱及び加圧する工程を含む。本発明によれば、熱伝導性が優れた放熱シートを得るための窒化ホウ素粉末、熱伝導性が優れた放熱シート及び熱伝導性が優れた放熱シートの製造方法を提供することができる。

Description

窒化ホウ素粉末、放熱シート及び放熱シートの製造方法
 本発明は、六方晶窒化ホウ素一次粒子が凝集してなる凝集窒化ホウ素粒子を少なくとも含む窒化ホウ素粉末、その窒化ホウ素粉末と樹脂とを含む熱伝導性樹脂組成物を成形してなる放熱シート熱伝導性樹脂組成物を成形してなる放熱シート及びその放熱シートの製造方法に関する。
 パワーデバイス、トランジスタ、サイリスタ、CPU等の発熱性電子部品においては、使用時に発生する熱を如何に効率的に放熱するかが重要な課題となっている。従来から、このような放熱対策としては、(1)発熱性電子部品を実装するプリント配線板の絶縁層を高熱伝導化する、(2)発熱性電子部品または発熱性電子部品を実装したプリント配線板を電気絶縁性の熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付ける、ことが一般的に行われてきた。プリント配線板の絶縁層及び熱インターフェース材としては、シリコーン樹脂やエポキシ樹脂にセラミックス粉末を充填させたものが使用されている。
 セラミックス粉末としては、高熱伝導率、高絶縁性、低比誘電率等の特性を有している窒化ホウ素粉末が注目されている。例えば、特許文献1には、窒化ホウ素の一次粒子が凝集してなる窒化ホウ素粉末であって、体積基準の粒度分布において、5μm以上30μm未満の領域に存在するピークAと、50μm以上100μm未満の領域に存在するピークBとを有する、窒化ホウ素粉末が開示されている。
特開2020-164365号公報
 特許文献1に記載の窒化ホウ素粉末を用いて、熱伝導性が優れた放熱シートを得ることができる。しかし、近年の電子機器の小型化、及び発熱性電子部品の発熱量の増加に伴い、熱伝導性がさらに優れた放熱シートが求められている。
 そこで、本発明は、熱伝導性が優れた放熱シートを得るための窒化ホウ素粉末、熱伝導性が優れた放熱シート及び熱伝導性が優れた放熱シートの製造方法を提供することを目的とする。
 本発明者らは、鋭意研究を進めたところ、特定の粒度分布を有する窒化ホウ素粉末が上記課題を解決できることを見出した。
 本発明は、上記の知見に基づくものであり、以下を要旨とする。
[1]六方晶窒化ホウ素一次粒子が凝集してなる凝集窒化ホウ素粒子を少なくとも含む窒化ホウ素粉末であって、前記窒化ホウ素粉末の粒度分布が、第1の極大点、前記第1の極大点よりも粒径が大きい第2の極大点、及び前記第2の極大点よりも粒径が大きい第3の極大点を少なくとも有し、前記第1の極大点の粒径が0.4μm以上10μm未満であり、前記第2の極大点の粒径が10μm以上40μm未満であり、前記第3の極大点の粒径が40μm以上110μm以下である窒化ホウ素粉末。
[2]前記窒化ホウ素粉末の粒度分布における頻度の積算量が10%となる粒径と、前記窒化ホウ素粉末の粒度分布の最も粒径が小さい極大点及び2番目に粒径が小さい極大点の間の極小点の粒径との差の絶対値が3~30μmである上記[1]に記載の窒化ホウ素粉末。
[3]前記第1の極大点に隣接する極大点が前記第2の極大点であり、前記第2の極大点に隣接する極大点が前記第3の極大点であり、前記第1の極大点及び前記第2の極大点の間の第1の極小点の粒径と前記第2の極大点及び前記第3の極大点の間の第2の極小点の粒径との差の絶対値が15~60μmである上記[1]又は[2]に記載の窒化ホウ素粉末。
[4]前記第3の極大点を有するピークの半値幅が20~60μmである上記[1]~[3]のいずれか1つに記載の窒化ホウ素粉末。
[5]前記凝集窒化ホウ素粒子の圧壊強度が5~18MPaである上記[1]~[4]のいずれか1つに記載の窒化ホウ素粉末。
[6]上記[1]~[5]のいずれか1つに記載の窒化ホウ素粉末と樹脂とを含む熱伝導性樹脂組成物を成形してなる放熱シート。
[7]上記[1]~[5]のいずれか1つに記載の窒化ホウ素粉末と樹脂とを配合して熱伝導性樹脂組成物を作製する工程、前記熱伝導性樹脂組成物をシート状に成形して、熱伝導性樹脂組成物シートを作製する工程、及び前記熱伝導性樹脂組成物シートを真空下で加熱及び加圧する工程を含む放熱シートの製造方法。
 本発明によれば、熱伝導性が優れた放熱シートを得るための窒化ホウ素粉末、熱伝導性が優れた放熱シート及び熱伝導性が優れた放熱シートの製造方法を提供することができる。
図1は、本発明の窒化ホウ素粉末の粒度分布の概念図である。
[窒化ホウ素粉末]
 図1を参照して、本発明の窒化ホウ素粉末を説明する。図1は、本発明の窒化ホウ素粉末の粒度分布を示す概念図である。図1に示す粒度分布の縦軸はリニアであり、横軸は対数である。なお、図1に示す窒化ホウ素粉末の粒度分布は、あくまでも概念図であり、本発明の窒化ホウ素粉末を限定しない。
 本発明の窒化ホウ素粉末は、六方晶窒化ホウ素一次粒子が凝集してなる凝集窒化ホウ素粒子を少なくとも含む窒化ホウ素粉末である。図1に示すように、本発明の窒化ホウ素粉末の粒度分布は、第1の極大点(MAX1)、第1の極大点(MAX1)よりも粒径が大きい第2の極大点(MAX2)、及び第2の極大点(MAX2)よりも粒径が大きい第3の極大点(MAX3)を少なくとも有する。そして、第1の極大点(MAX1)の粒径が0.4μm以上10μm未満であり、第2の極大点(MAX2)の粒径が10μm以上40μm未満であり、第3の極大点(MAX3)の粒径が40μm以上110μm以下である。これにより、放熱シート中の窒化ホウ素粉末の充填性を高めることができ、放熱シートの熱伝導性を優れたものとすることができる。なお、本発明の窒化ホウ素粉末の粒度分布は、後述の実施例の方法により、測定することができる。
 上述したように、本発明の窒化ホウ素粉末の粒度分布は、第1の極大点(MAX1)、第1の極大点(MAX1)よりも粒径が大きい第2の極大点(MAX2)、及び第2の極大点(MAX2)よりも粒径が大きい第3の極大点(MAX3)を少なくとも有する。窒化ホウ素粉末の粒度分布が、第1の極大点(MAX1)、第2の極大点(MAX2)及び第3の極大点(MAX3)の中の少なくとも1つの極大点を有さないと、放熱シート中の窒化ホウ素粉末の充填性が低下し、放熱シートの熱伝導性が悪くなる。
 第1の極大点(MAX1)の粒径は0.4μm以上10μm未満である。第1の極大点(MAX1)の粒径が0.4μm未満または10μm以上であると、放熱シート中の窒化ホウ素粉末の充填性が低下し、放熱シートの熱伝導性が悪くなる。このような観点から、第1の極大点(MAX1)の粒径は、好ましくは2.0~8.0μmであり、より好ましくは3.0~6.0μmである。
 第2の極大点(MAX2)の粒径は10μm以上40μm未満である。第2の極大点(MAX2)の粒径が10μm未満または40μm以上であると、放熱シート中の窒化ホウ素粉末の充填性が低下し、放熱シートの熱伝導性が悪くなる。このような観点から、第2の極大点(MAX2)の粒径は、好ましくは15~36μmであり、より好ましくは18~30μmである。
 第3の極大点(MAX3)の粒径は40~110μmである。第3の極大点(MAX3)の粒径が40μm未満または110μm超であると、放熱シート中の窒化ホウ素粉末の充填性が低下し、放熱シートの熱伝導性が悪くなる。このような観点から、第3の極大点(MAX3)の粒径は、好ましくは50~100μmであり、より好ましくは65~90μmである。
 第1の極大点(MAX1)に隣接する極大点が第2の極大点(MAX2)であり、第2の極大点(MAX2)に隣接する極大点が第3の極大点(MAX3)であり、第1の極大点(MAX1)及び第2の極大点(MAX2)の間の第1の極小点(MIN1)の粒径と第2の極大点(MAX2)及び第3の極大点(MAX3)の間の第2の極小点(MIN2)の粒径との差の絶対値は、好ましくは15~60μmである。第1の極小点(MIN1)の粒径と第2の極小点(MIN2)の粒径との差の絶対値が15~60μmであると、放熱シート中の窒化ホウ素粉末の充填性をさらに高めることができ、放熱シートの熱伝導性をさらに優れたものとすることができる。このような観点から、第1の極小点(MIN1)の粒径と第2の極小点(MIN2)の粒径との差の絶対値は、好ましくは19~53μmであり、より好ましくは25~40μmである。
 第3の極大点(MAX3)を有するピークの半値幅は、好ましくは20~60μmである。第3の極大点(MAX3)を有するピークの半値幅が20~60μmであると、放熱シート中の窒化ホウ素粉末の充填性をさらに高めることができ、放熱シートの熱伝導性をさらに優れたものとすることができる。このような観点から、第3の極大点(MAX3)を有するピークの半値幅は、好ましくは24~55μmであり、より好ましくは40~50μmである。なお、第3の極大点(MAX3)を有するピークの半値幅は、第3の極大点(MAX3)の頻度の半分の頻度におけるピークの幅である。
 窒化ホウ素粉末の粒度分布における頻度の積算量が10%となる粒径と、窒化ホウ素粉末の粒度分布の最も粒径が小さい極大点及び2番目に粒径が小さい極大点の間の極小点の粒径との差の絶対値は、好ましくは3~30μmである。例えば、図1に示す窒化ホウ素粉末の粒度分布の場合、符号D10は頻度の積算量が10%となる粒径を示し、窒化ホウ素粉末の粒度分布の最も粒径が小さい極大点は第1の極大点(MAX1)であり、窒化ホウ素粉末の粒度分布の2番目に粒径が小さい極大点は第2の極大点(MAX2)であり、最も粒径が小さい極大点及び2番目に粒径が小さい極大点の間の極小点は、第1の極小点(MIN1)である。上記粒径の差の絶対値が3~30μmであると、放熱シート中の窒化ホウ素粉末の充填性をさらに高めることができ、放熱シートの熱伝導性をさらに優れたものとすることができる。このような観点から、上記粒径の差の絶対値は、好ましくは5~24μmであり、より好ましくは6~15μmである。
 第1の極大点(MAX1)を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量(V1)は好ましくは2~25体積%である。上記積算量(V1)が2~25体積%であると、放熱シート中の窒化ホウ素粉末の充填性をさらに高めることができ、放熱シートの熱伝導性をさらに優れたものとすることができる。このような観点から、上記積算量(V1)は、より好ましくは5~20体積%である。なお、第1の極大点(MAX1)を有するピークにおけるピークスタートは、第1の極大点(MAX1)に対して粒径が小さい側にある極小点である。第1の極大点(MAX1)に対して粒径が小さい側に極小点がない場合は、ピークスタートは粒度分布の粒径が小さい側の端(DS)である。また、第1の極大点(MAX1)を有するピークにおけるピークエンドは、第1の極大点(MAX1)に対して粒径が大きい側にある極小点(MIN1)である。そして、頻度の積算量(V1)は、第1の極大点(MAX1)に対して粒径が小さい側にある極小点の粒径もしくは粒度分布の粒径が小さい側の端(DS)の粒径から、第1の極大点(MAX1)に対して粒径が大きい側にある極小点(MIN1)の粒径までの頻度の積算量から、第1の極大点(MAX1)に対して粒径が大きい側にある極小点(MIN1)の粒径の頻度を引き算した値である。なお、第1の極大点(MAX1)に対して粒径が大きい側にある極小点(MIN1)の粒径の頻度を引き算するのは、第1の極大点(MAX1)を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量及び第2の極大点(MAX2)を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量の両方で、第1の極大点(MAX1)に対して粒径が大きい側にある極小点(MIN1)の粒径の頻度が加算されるのを防ぐためである。
 第2の極大点(MAX2)を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量(V2)は好ましくは15~50体積%である。上記積算量(V2)が15~50体積%であると、放熱シート中の窒化ホウ素粉末の充填性をさらに高めることができ、放熱シートの熱伝導性をさらに優れたものとすることができる。このような観点から、上記積算量(V2)は、より好ましくは20~45体積%である。なお、第2の極大点(MAX2)を有するピークにおけるピークスタートは、第2の極大点(MAX2)に対して粒径が小さい側にある極小点(MIN1)である。また、第2の極大点(MAX2)を有するピークにおけるピークエンドは、第2の極大点(MAX2)に対して粒径が大きい側にある極小点(MIN2)である。そして、頻度の積算量(V2)は、第2の極大点(MAX2)に対して粒径が小さい側にある極小点(MIN1)の粒径から、第2の極大点(MAX2)に対して粒径が大きい側にある極小点(MIN2)の粒径までの頻度の積算量から、第2の極大点(MAX2)に対して粒径が大きい側にある極小点(MIN2)の粒径の頻度を引き算した値である。なお、第2の極大点(MAX2)に対して粒径が大きい側にある極小点(MIN2)の粒径の頻度を引き算するのは、第2の極大点(MAX2)を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量及び第3の極大点(MAX3)を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量の両方で、第2の極大点(MAX2)に対して粒径が大きい側にある極小点(MIN2)の粒径の頻度が加算されるのを防ぐためである。
 第3の極大点(MAX3)を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量(V3)は好ましくは30~80体積%である。上記積算量(V3)が30~80体積%であるとであると、放熱シート中の窒化ホウ素粉末の充填性をさらに高めることができ、放熱シートの熱伝導性をさらに優れたものとすることができる。このような観点から、上記積算量(V3)はより好ましくは45~75体積%である。なお、第3の極大点(MAX3)を有するピークにおけるピークスタートは、第3の極大点(MAX3)に対して粒径が小さい側にある極小点(MIN2)である。また、第3の極大点(MAX3)を有するピークにおけるピークエンドは、第3の極大点(MAX3)に対して粒径が大きい側にある極小点である。第3の極大点(MAX3)に対して粒径が大きい側に極小点がない場合は、ピークエンドは粒度分布の粒径が大きい側の端(DE)である。そして、頻度の積算量(V3)は、第3の極大点(MAX3)に対して粒径が小さい側にある極小点(MIN2)の粒径から、第3の極大点(MAX3)に対して粒径が大きい側にある極小点の粒径までの頻度の積算量から、第3の極大点(MAX3)に対して粒径が大きい側にある極小点の粒径の頻度を引き算した値、または、第3の極大点(MAX3)に対して粒径が小さい側にある極小点(MIN2)の粒径から、粒度分布の粒径が大きい側の端(PE)の粒径までの頻度の積算量である。なお、第3の極大点(MAX3)に対して粒径が大きい側にある極小点の粒径の頻度を引き算するのは、第3の極大点(MAX3)を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量、及び第3の極大点(MAX3)に隣接する、第3の極大点に対して粒径が大きい側にある極大点を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量の両方で、第3の極大点(MAX3)に対して粒径が大きい側にある極小点の粒径の頻度が加算されるのを防ぐためである。
 本発明の窒化ホウ素粉末における凝集窒化ホウ素粒子の圧壊強度は、好ましくは5~18MPaである。凝集窒化ホウ素粒子の圧壊強度が5MPa以上であると、放熱シート製造中に凝集窒化ホウ素粒子が破壊されることを抑制できる。凝集窒化ホウ素粒子の圧壊強度が18MPa以下であると、放熱シート中の凝集窒化ホウ素粒子の中に樹脂を十分侵入させることができ、放熱シート中の凝集窒化ホウ素粒子の中に空気が残留することを抑制できる。このような観点から、本発明の窒化ホウ素粉末における凝集窒化ホウ素粒子の圧壊強度は、好ましくは6~15MPaであり、より好ましくは7~13MPaである。なお、凝集窒化ホウ素粒子の圧壊強度は、後述の実施例に記載の方法で測定することができる。
 放熱シート中の窒化ホウ素粉末の充填性を高めることができる限り、本発明の窒化ホウ素粉末の粒度分布は、上述の第1~3の極大点に加えて、他の極大点を有していてもよい。
[窒化ホウ素粉末の製造方法]
 本発明の窒化ホウ素粉末の製造方法の一例を以下説明する。
 本発明の窒化ホウ素粉末は、例えば、粒度分布が上記第1の極大点を有する第1の窒化ホウ素粉末、粒度分布が上記第2の極大点を有する第2の窒化ホウ素粉末、及び粒度分布が上記第3の極大点を有する第3の窒化ホウ素粉末をそれぞれ作製し、作製した第1~3の窒化ホウ素粉末を混合することにより、製造することができる。
 第1~3の窒化ホウ素粉末のうち、第2及び3の窒化ホウ素粉末は、それぞれ六方晶窒化ホウ素一次粒子が凝集してなる凝集窒化ホウ素粒子を少なくとも含む窒化ホウ素粉末であることが好ましい。また、第1の窒化ホウ素粉末は、凝集窒化ホウ素粒子でたってもよいが、六方晶窒化ホウ素一次粒子であることが好ましい。第1~3の窒化ホウ素粉末それぞれの極大点は、第1~3の窒化ホウ素粉末それぞれの粒度分布においてピークの頂点を意味する。第1~3の窒化ホウ素粉末の粒度分布は、上述した窒化ホウ素粉末の粒度分布と同様にして測定される。
 混合工程では、第3の窒化ホウ素粉末の体積割合が第2の窒化ホウ素粉末の体積割合より多くなるように、そして第2の窒化ホウ素粉末の体積割合が第1の窒化ホウ素粉末の体積割合より多くなるように、第1~3の窒化ホウ素粉末を混合してもよい。これにより、窒化ホウ素粉末の充填性をさらに高めることができる。第3の窒化ホウ素粉末の体積割合は、放熱シートの熱伝導率を向上させる観点から、第1~3の窒化ホウ素粉末の合計100体積部に対して、好ましくは30~80体積部であり、より好ましくは45~75体積部であり、さらに好ましくは50~70体積部である。第2の窒化ホウ素粉末の体積割合は、放熱シートの熱伝導率を向上させる観点から、第1~3の窒化ホウ素粉末の合計100体積部に対して、好ましくは15~50体積部であり、より好ましくは20~45体積部であり、さらに好ましくは25~35体積部である。第1の窒化ホウ素粉末の体積割合は、放熱シートの熱伝導率を向上させる観点から、第1~3の窒化ホウ素粉末の合計100体積部に対して、好ましくは2~25体積部であり、より好ましくは5~20体積部であり、さらに好ましくは8~15体積部である。
 第1~3の窒化ホウ素粉末のそれぞれは、例えば、塊状の炭化ホウ素を粉砕する粉砕工程と、粉砕された炭化ホウ素を窒化して炭窒化ホウ素を得る窒化工程と、炭窒化ホウ素を脱炭させる脱炭工程とを備える製造方法により製造することができる。
 粉砕工程では、塊状の炭素ホウ素(炭化ホウ素塊)を一般的な粉砕機または解砕機を用いて粉砕する。このとき、例えば、粉砕時間及び炭化ホウ素塊の仕込み量を調整することにより、所望の極大点を有する炭化ホウ素粉末を得ることができる。なお、炭化ホウ素粉末の極大点は、上述した窒化ホウ素粉末の極大点と同様に測定することができる。このように、炭化ホウ素粉末の極大点を所望の窒化ホウ素粉末の極大点に近づけるよう調整することにより、上述した極大点を有する第1~3の窒化ホウ素粉末が得られる。
 続いて、窒化工程では、窒化反応を進行させる雰囲気下かつ加圧条件下で、炭化ホウ素粉末を焼成することにより、炭窒化ホウ素を得る。
 窒化工程における雰囲気は、窒化反応を進行させる雰囲気であり、例えば、窒素ガス及びアンモニアガス等であってよく、これらの一種単独または2種以上の組合せであってよい。当該雰囲気は、窒化のしやすさとコストの観点から、好ましくは窒素ガスである。当該雰囲気中の窒素ガスの含有量は、好ましくは95体積%以上、より好ましくは99.9体積%以上である。
 窒化工程における圧力は、好ましくは0.6MPa以上、より好ましくは0.7MPa以上であり、好ましくは1.0MPa以下、より好ましくは0.9MPa以下である。当該圧力は、さらに好ましくは0.7~1.0MPaである。窒化工程における焼成温度は、好ましくは1800℃以上、より好ましくは1900℃以上であり、好ましくは2400℃以下、より好ましくは2200℃以下である。焼成温度は、さらに好ましくは1800~2200℃である。圧力条件及び焼成温度は、炭化ホウ素の窒化をさらに好適に進行させ、工業的にも適切な条件であることから、好ましくは、1800℃以上かつ0.7~1.0MPaである。
 窒化工程における焼成時間は、窒化が十分に進む範囲で適宜選定され、好ましくは6時間以上、より好ましくは8時間以上であり、好ましくは30時間以下、より好ましくは20時間以下であってよい。
 脱炭工程では、窒化工程にて得られた炭窒化ホウ素を、常圧以上の雰囲気にて、所定の保持温度で一定時間保持する熱処理を行う。これにより、脱炭かつ結晶化された六方晶窒化ホウ素一次粒子が凝集してなる凝集窒化ホウ素粒子を得ることができる。
 脱炭工程における雰囲気は、常圧(大気圧)の雰囲気または加圧された雰囲気である。加圧された雰囲気の場合、圧力は、例えば0.5MPa以下、好ましくは0.3MPa以下であってよい。
 脱炭工程では、例えば、まず、所定の温度(脱炭開始可能な温度)まで昇温した後に、所定の昇温速度で保持温度までさらに昇温する。所定の温度(脱炭開始可能な温度)は、系に応じて設定可能であり、例えば、1000℃以上であってよく、1500℃以下であってよく、好ましくは1200℃以下である。所定の温度(脱炭開始可能な温度)から保持温度へ昇温する速度は、例えば5℃/分以下であってよく、好ましくは、4℃/分以下、3℃/分以下、または2℃/分以下であってもよい。
 保持温度は、粒成長が良好に起こりやすく、得られる窒化ホウ素粉末の熱伝導率をさらに向上できる観点から、好ましくは1800℃以上、より好ましくは2000℃以上である。保持温度は、好ましくは2200℃以下、より好ましくは2100℃以下であってよい。
 保持温度における保持時間は、結晶化が十分に進む範囲で適宜選定され、例えば、0.5時間超えであってよく、粒成長が良好に起こりやすい観点から、好ましくは1時間以上、より好ましくは3時間以上、さらに好ましくは5時間以上、特に好ましくは10時間以上である。保持温度における保持時間は、例えば40時間未満であってよく、粒成長が進みすぎて粒子強度が低下することを低減でき、また、コスト削減の観点から、好ましくは30時間以下、より好ましくは20時間以下である。
 脱炭工程においては、原料として、窒化工程で得られた炭窒化ホウ素に加えて、ホウ素源を混合して脱炭及び結晶化を行ってもよい。ホウ素源としては、ホウ酸、酸化ホウ素、またはその混合物が挙げられる。この場合、必要に応じて当該技術分野で用いられるその他の添加物をさらに用いてもよい。
 炭窒化ホウ素とホウ素源との混合割合は、適宜選定される。ホウ素源としてホウ酸または酸化ホウ素を用いる場合、ホウ酸または酸化ホウ素の割合は、炭窒化ホウ素100質量部に対して、例えば100質量部以上であってよく、好ましくは150質量部以上であり、また、例えば300質量部以下であってよく、好ましくは250質量部以下である。
 以上のようにして得られる窒化ホウ素粉末に対して、篩によって所望の粒度分布を有する窒化ホウ素粉末が得られるように分級する工程(分級工程)を実施してもよい。これにより、所望の極大点を有する第1~3の窒化ホウ素粉末がさらに好適に得られる。
 得られた第1~3の窒化ホウ素粉末を混合して、本発明の窒化ホウ素粉末を得ることができる。混合方法は、第1~3の窒化ホウ素粉末を均一に混合することができれば、特に限定されない。例えば、容器回転型混合装置を用いて第1~3の窒化ホウ素粉末を混合してもよいし、容器固定型混合装置を用いて第1~3の窒化ホウ素粉末を混合してもよいし、流体運動型混合装置を用いて第1~3の窒化ホウ素粉末を混合してもよい。
[放熱シート]
 本発明の放熱シートは、本発明の窒化ホウ素粉末と樹脂とを含む熱伝導性樹脂組成物を成形してなるものである。
(樹脂)
 熱伝導性樹脂組成物の樹脂には、例えば、エポキシ樹脂、シリコーン樹脂(シリコーンゴムを含む)、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリアミド(例えば、ポリイミド、ポリアミドイミド、ポリエーテルイミド等)、ポリエステル(例えば、ポリブチレンテレフタレート、ポリエチレンテレフタレート等)、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂などが挙げられる。これらの中で、耐熱性、柔軟性及びヒートシンク等への密着性の観点から、シリコーン樹脂が好ましい。シリコーン樹脂は有機過酸化物による加硫して硬化するものが好ましい。また、熱伝導性樹脂組成物の25℃における粘度は、シート状の成形体の柔軟性を改善する観点から、例えば、100,000cp以下である。
 熱伝導性樹脂組成物における窒化ホウ素粉末および樹脂の合計100体積%に対する窒化ホウ素粉末の含有量は、30~85体積%が好ましく、40~80体積%がより好ましい。窒化ホウ素粉末の含有量が30体積%以上の場合、熱伝導率が向上し、十分な放熱性能が得られやすい。また、窒化ホウ素粉末の含有量が85体積%以下の場合、成形時に空隙が生じやすくなることを低減でき、絶縁性や機械強度が低下することを低減できる。また、窒化ホウ素粉末および樹脂の合計100体積%に対する樹脂の含有量は、15~70体積%が好ましく、20~60体積%がより好ましい。
(溶媒)
 熱伝導性樹脂組成物の粘度を調節するために、熱伝導性樹脂組成物は溶媒をさらに含んでもよい。溶媒は、樹脂を溶解でき、熱伝導性樹脂組成物を塗布したのち、塗布した熱伝導性樹脂組成物から容易に除去されるものであれば特に限定されない。樹脂がシリコーン樹脂である場合、溶媒には、例えば、トルエン、キシレン、塩素系炭化水素などが挙げられる。除去が容易であるという観点から、これらの溶媒の中でトルエンが好ましい。溶媒の含有量は、熱伝導性樹脂組成物の目的とする粘度により適宜選択することができる。溶媒の含有量は、例えば、熱伝導性樹脂組成物の溶媒以外の成分100質量部に対して40~200質量部である。
 なお、熱伝導性樹脂組成物は、窒化ホウ素粉末、樹脂成分および溶媒以外の成分が含まれてもよい。その他の成分は、窒化ホウ素粉末以外の無機フィラー、添加剤、不純物等であり、その他の成分の含有量は、窒化ホウ素粉末および樹脂の合計100質量部に対して、好ましくは5質量部以下であり、より好ましくは3質量部以下であり、さらに好ましくは1質量部以下である。
(放熱シートの厚さ)
 本発明の放熱シートの厚さは、好ましくは100~1200μmである。放熱シートの厚さが100μm以上であると、放熱シートを発熱性電子部品により確実に密着させることができる。放熱シートの厚さが1200μm以下であると、放熱シートの放熱性をさらに良好にすることができる。そのような観点から、本発明の放熱シートの厚さは、より好ましくは150~800μmであり、さらに好ましくは200~600μmである。
[放熱シートの製造方法]
 本発明の放熱シートの製造方法は、本発明の窒化ホウ素粉末と樹脂とを配合して熱伝導性樹脂組成物を作製する工程(A)、熱伝導性樹脂組成物をシート状に成形して、熱伝導性樹脂組成物シートを作製する工程(B)、及び熱伝導性樹脂組成物シートを真空下で加熱及び加圧する工程(C)を含む。
(工程(A))
 工程(A)では、本発明の窒化ホウ素粉末と樹脂とを配合して熱伝導性樹脂組成物を作製する。工程(A)で使用する窒化ホウ素粉末及び樹脂については、既に説明したので、説明を省略する。
(工程(B))
 工程(B)では、熱伝導性樹脂組成物をシート状に成形して、熱伝導性樹脂組成物シートを作製する。例えば、ドクターブレード法またはカレンダー加工によって熱伝導性樹脂組成物をシート状に成形することができる。しかし、熱伝導性樹脂組成物がカレンダーロールを通過する際、熱伝導性樹脂組成物中の凝集窒化ホウ素粒子から凝集窒化ホウ素粒子の一部が剥がれるおそれがある。したがって、ドクターブレード法により熱伝導性樹脂組成物をシート状に成形することが好ましい。
(工程(C))
 工程(C)では、熱伝導性樹脂組成物シートを真空下で加熱及び加圧する。これにより、放熱シート中の窒化ホウ素粉末の充填性をさらに高めることができ、放熱シートの熱伝導性をさらに優れたものとすることができる。また、これにより、放熱シート中のマイクロボイドも低減できるので、放熱シートの熱伝導性をさらに優れたものとすることができるとともに、放熱シートの絶縁性を改善することができる。窒化ホウ素粉末の充填性の改善の観点及び放熱シート中のマイクロボイドの低減の観点から、熱伝導性樹脂組成物シートを加熱及び加圧する際の真空環境の圧力は、好ましくは0.1~5kPaであり、より好ましくは0.1~3kPaである。また、熱伝導性樹脂組成物シートの加熱温度は、好ましくは120~200℃であり、より好ましくは130~180℃である。さらに、熱伝導性樹脂組成物シートの加圧する際の圧力は、好ましくは80~250kg/cmであり、より好ましくは100~200kg/cmである。
 以下、本発明について、実施例及び比較例により、詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
(粒度分布)
 窒化ホウ素粉末の粒度分布をベックマン・コールター株式会社製レーザー回折散乱法粒度分布測定装置、(LS-13 320)を用いて測定した。そして、得られた粒度分布から、第1~3の極大点の粒径(第1~3の極大値)、第1~3の極大点を有するピークにおけるピークスタートからピークエンドまでの間の頻度の積算量(第1~3の頻度の積算量)、頻度の積算量が10%となる粒径と、最も粒径が小さい極大点及び2番目に粒径が小さい極大点の間の極小点の粒径との差の絶対値(D10と最初の極小値間距離)、第1の極小点の粒径と第2の極小点の粒径との差の絶対値(極小値間距離)、第3の極大点を有するピークの半値幅(極大値3の半値幅)を求めた。
(圧壊強度)
 凝集窒化ホウ素粒子の圧壊強度は、JIS R1639-5:2007に準拠して測定した。具体的には、凝集窒化ホウ素粒子を微小圧縮試験器(「MCT-W500」株式会社島津製作所製)の試料台に散布後、凝集窒化ホウ素粒子を5個選び出し、1粒ずつ圧縮試験を行った。そして、圧壊強度(σ:MPa)は、粒子内の位置によって変化する無次元数(α=2.48)と圧壊試験力(P:N)と粒径(d:μm)からσ=α×P/(π×d)の式を用いて算出した。JIS R1625:2010に準拠して5個の無機フィラー成分の圧壊強度をワイブルプロットし、累積破壊率が63.2%となる圧壊強度を凝集窒化ホウ素粒子の圧壊強度とした。
 実施例及び比較例の放熱シートに対して以下の評価を行った。
(絶縁性)
 放熱シートの絶縁破壊電圧を、JIS C2110-1:2016に記載の方法に準拠し、短時間破壊試験(室温23℃)にて測定した値に基づき、評価した。結果を表1に示す。
 絶縁性の評価基準は厚さ以下の通りである。
  ◎:絶縁破壊電圧が10kV以上
  ○:絶縁破壊電圧が5kV以上、10kV未満
  ×:絶縁破壊電圧が5kV未満
(熱伝導性)
 放熱シートの熱抵抗を、ASTM D5470:2017に記載の方法に準拠し、測定した値に基づき、評価した。結果を表1に示す。
 熱伝導性の評価基準は以下の通りである。
  ◎:熱伝導率が5W/(m・K)以上
  ○:熱伝導率が3W/(m・K)以上、5W/(m・K)未満
  ×:熱伝導率が3W/(m・K)未満
 以下のようにして、複数の極大点を有する窒化ホウ素粉末の原料となる、1つの極大点を有する窒化ホウ素粉末A~Wを作製した。
(窒化ホウ素粉末A)
 以下のように、炭化ホウ素合成、加圧窒化工程、脱炭結晶化工程にて、窒化ホウ素粉末Aを作製した。
(炭化ホウ素合成)
 新日本電工株式会社製オルトホウ酸(以下ホウ酸)100質量部と、デンカ株式会社製アセチレンブラック(HS100)35質量部とをヘンシェルミキサーを用いて混合したのち、黒鉛ルツボ中に充填し、アーク炉にて、アルゴン雰囲気で、2200℃にて5時間加熱し炭化ホウ素(BC)を合成した。合成した炭化ホウ素塊をボールミルで3時間粉砕し、篩網を用いて粒径75μm以下に篩分け、さらに硝酸水溶液で洗浄して鉄分等不純物を除去後、濾過・乾燥して平均粒子径0.5μmの炭化ホウ素粉末を作製した。
(加圧窒化工程)
 合成した炭化ホウ素を窒化ホウ素ルツボに充填した後、抵抗加熱炉を用い、窒素ガスの雰囲気で、2000℃、9気圧(0.8MPa)の条件で10時間加熱することにより炭窒化ホウ素(BCN)を得た。
(脱炭結晶化工程)
 合成した炭窒化ホウ素100質量部と、ホウ酸90質量部とをヘンシェルミキサーを用いて混合したのち、窒化ホウ素ルツボに充填し、抵抗加熱炉を用い0.2MPaの圧力条件で、窒素ガスの雰囲気で、室温から1000℃までの昇温速度を10℃/min、1000℃からの昇温速度を2℃/minで昇温し、焼成温度2020℃、保持時間10時間で加熱することにより、一次粒子が凝集して塊状になった凝集窒化ホウ素粒子を合成した。合成した凝集窒化ホウ素粒子をヘンシェルミキサーにより15分解砕をおこなった後、篩網を用いて、篩目150μmのナイロン篩にて分級を行った。焼成物を解砕及び分級することより、窒化ホウ素粉末Aを得た。
 得られた窒化ホウ素粉末Aのレーザー散乱法により測定した平均粒子径(D50)は1.0μmであった。SEM観察の結果、得られた窒化ホウ素粉末Aは鱗片状の粒子であった。
(窒化ホウ素粉末B)
 合成した炭化ホウ素塊をボールミルで2時間粉砕し平均粒子径1μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Bを作製した。なお、得られた窒化ホウ素粉末Bのレーザー散乱法により測定した平均粒子径(D50)は2.0μmであった。SEM観察の結果、得られた窒化ホウ素粉末Bは鱗片状の粒子であった。
(窒化ホウ素粉末C)
 合成した炭化ホウ素塊をボールミルで1時間粉砕し平均粒子径2μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Cを作製した。なお、得られた窒化ホウ素粉末Cのレーザー散乱法により測定した平均粒子径(D50)は3.0μmであった。SEM観察の結果、得られた窒化ホウ素粉末Cは鱗片状の粒子であった。
(窒化ホウ素粉末D)
 合成した炭化ホウ素塊をボールミルで0.5時間粉砕し平均粒子径3μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Dを作製した。なお、得られた窒化ホウ素粉末Dのレーザー散乱法により測定した平均粒子径(D50)は4.5μmであった。SEM観察の結果、得られた窒化ホウ素粉末Dは鱗片状の粒子であった。
(窒化ホウ素粉末E)
 平均粒子径5μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Eを作製した。なお、得られた窒化ホウ素粉末Eのレーザー散乱法により測定した平均粒子径(D50)は8.0μmであった。SEM観察の結果、得られた窒化ホウ素粉末Eは鱗片状の粒子であった。
(窒化ホウ素粉末F)
 平均粒子径10μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Fを作製した。なお、得られた窒化ホウ素粉末Fのレーザー散乱法により測定した平均粒子径(D50)は15μmであった。SEM観察の結果、得られた窒化ホウ素粉末Fは、一次粒子が凝集してなる凝集粒子であった。
(窒化ホウ素粉末G)
 平均粒子径15μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Gを作製した。なお、得られた窒化ホウ素粉末Gのレーザー散乱法により測定した平均粒子径(D50)は20μmであった。SEM観察の結果、得られた窒化ホウ素粉末Gは、一次粒子が凝集してなる凝集粒子であった。
(窒化ホウ素粉末H)
 平均粒子径20μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Hを作製した。なお、得られた窒化ホウ素粉末Hのレーザー散乱法により測定した平均粒子径(D50)は25μmであった。SEM観察の結果、得られた窒化ホウ素粉末Hは、一次粒子が凝集してなる凝集粒子であった。
(窒化ホウ素粉末I)
 平均粒子径25μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Iを作製した。なお、得られた窒化ホウ素粉末Iのレーザー散乱法により測定した平均粒子径(D50)は30μmであった。SEM観察の結果、得られた窒化ホウ素粉末Iは、一次粒子が凝集してなる凝集粒子であった。
(窒化ホウ素粉末J)
 平均粒子径30μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Jを作製した。なお、得られた窒化ホウ素粉末Jのレーザー散乱法により測定した平均粒子径(D50)は36μmであった。SEM観察の結果、得られた窒化ホウ素粉末Jは、一次粒子が凝集してなる凝集粒子であった。
(窒化ホウ素粉末K)
 平均粒子径33μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Kを作製した。なお、得られた窒化ホウ素粉末Kのレーザー散乱法により測定した平均粒子径(D50)は38μmであった。SEM観察の結果、得られた窒化ホウ素粉末Kは、一次粒子が凝集してなる凝集粒子であった。
(窒化ホウ素粉末L)
 平均粒子径40μmの炭化ホウ素粉末を用いたを除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Lを作製した。なお、得られた窒化ホウ素粉末Lのレーザー散乱法により測定した平均粒子径(D50)は55μmであった。SEM観察の結果、得られた窒化ホウ素粉末Lは、一次粒子が凝集してなる凝集粒子であった。
(窒化ホウ素粉末M)
平均粒子径27μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Mを作製した。なお、得られた窒化ホウ素粉末Mのレーザー散乱法により測定した平均粒子径(D50)は32μmであった。SEM観察の結果、得られた窒化ホウ素粉末Mは、一次粒子が凝集してなる凝集粒子であった。また、窒化ホウ素粉末Mの粒度分布のピークの半値幅は26μmであった。
(窒化ホウ素粉末N)
 平均粒子径40μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Nを作製した。なお、得られた窒化ホウ素粉末Nのレーザー散乱法により測定した平均粒子径(D50)は48μmであった。SEM観察の結果、得られた窒化ホウ素粉末Nは、一次粒子が凝集してなる凝集粒子であった。また、窒化ホウ素粉末Nの粒度分布のピークの半値幅は24μmであった。
(窒化ホウ素粉末O)
 平均粒子径43μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Oを作製した。なお、得られた窒化ホウ素粉末Oのレーザー散乱法により測定した平均粒子径(D50)は50μmであった。SEM観察の結果、得られた窒化ホウ素粉末Oは、一次粒子が凝集してなる凝集粒子であった。また、窒化ホウ素粉末Oの粒度分布のピークの半値幅は52μmであった。
(窒化ホウ素粉末P)
 平均粒子径45μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Pを作製した。なお、得られた窒化ホウ素粉末Pのレーザー散乱法により測定した平均粒子径(D50)は55μmであった。SEM観察の結果、得られた窒化ホウ素粉末Pは、一次粒子が凝集してなる凝集粒子であった。また、窒化ホウ素粉末Pの粒度分布のピークの半値幅は26μmであった。
(窒化ホウ素粉末Q)
 平均粒子径70μmの炭化ホウ素粉末を用いた点、150μm以下に篩分けした点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Qを作製した。なお、得られた窒化ホウ素粉末Qのレーザー散乱法により測定した平均粒子径(D50)は78μmであった。SEM観察の結果、得られた窒化ホウ素粉末Qは、一次粒子が凝集してなる凝集粒子であった。また、窒化ホウ素粉末Qの粒度分布のピークの半値幅は46μmであった。
(窒化ホウ素粉末R)
 平均粒子径65μmの炭化ホウ素粉末を用いた点、150μm以下に篩分けした点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Rを作製した。なお、得られた窒化ホウ素粉末Rのレーザー散乱法により測定した平均粒子径(D50)は88μmであった。SEM観察の結果、得られた窒化ホウ素粉末Rは、一次粒子が凝集してなる凝集粒子であった。また、窒化ホウ素粉末Rの粒度分布のピークの半値幅は15μmであった。
(窒化ホウ素粉末S)
 平均粒子径70μmの炭化ホウ素粉末を用いた点、75μm以上、150μm以下に篩分けした点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Sを作製した。なお、得られた窒化ホウ素粉末Sのレーザー散乱法により測定した平均粒子径(D50)は90μmであった。SEM観察の結果、得られた窒化ホウ素粉末Sは、一次粒子が凝集してなる凝集粒子であった。また、窒化ホウ素粉末Sの粒度分布のピークの半値幅は55μmであった。
(窒化ホウ素粉末T)
 平均粒子径38μmの炭化ホウ素粉末を用いた点、150μm以下に篩分けした点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Tを作製した。なお、得られた窒化ホウ素粉末Tのレーザー散乱法により測定した平均粒子径(D50)は90μmであった。SEM観察の結果、得られた窒化ホウ素粉末Tは、一次粒子が凝集してなる凝集粒子であった。また、窒化ホウ素粉末Tの粒度分布のピークの半値幅は38μmであった。
(窒化ホウ素粉末U)
 平均粒子径75μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Uを作製した。なお、得られた窒化ホウ素粉末Uのレーザー散乱法により測定した平均粒子径(D50)は100μmであった。SEM観察の結果、得られた窒化ホウ素粉末Uは、一次粒子が凝集してなる凝集粒子であった。また、窒化ホウ素粉末Uの粒度分布のピークの半値幅は31μmであった。
(窒化ホウ素粉末V)
平均粒子径115μmの炭化ホウ素粉末を用いた点を除いて、窒化ホウ素粉末Aと同様な方法で窒化ホウ素粉末Vを作製した。なお、得られた窒化ホウ素粉末Vのレーザー散乱法により測定した平均粒子径(D50)は150μmであった。SEM観察の結果、得られた窒化ホウ素粉末Vは、一次粒子が凝集してなる凝集粒子であった。また、窒化ホウ素粉末Vの粒度分布のピークの半値幅は35μmであった。
 表1及び表2に示す配合割合で、窒化ホウ素粉末A~Vを混合して、窒化ホウ素粉末1~18を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(放熱シートの作製)
 得られた窒化ホウ素粉末及び液状シリコーン樹脂(メチルビニルポリシロキサン、ダウ・東レ株式会社製、商品名「CF-3110」)の合計100体積%に対して、60体積%の窒化ホウ素粉末及び40体積%のシリコーン樹脂1、シリコーン樹脂100質量部に対して1質量部の硬化剤(2,5-ジメチルー2,5-ビス(t-ブチルパーオキシ)ヘキサン、化薬ヌーリオン株式会社製、商品名「トリゴノックス101」)、窒化ホウ素粉末の合計100質量部に対して0.5質量部のシランカップリング剤(ジメチルジメトキシシラン、ダウ・東レ株式会社製、商品名「DOWSIL Z-6329 Silane」、25℃における粘度:1cp)、シランカップリング剤100質量部に対して15質量部の水、並びに上述の原料の合計100質量部に対して110質量部のトルエンを攪拌機(HEIDON社製、商品名「スリーワンモーター」)に投入し、タービン型撹拌翼を用いて15時間混合して熱伝導性樹脂組成物のスラリーを作製した。
 そして、ドクターブレード法により、上記スラリーを厚さ0.05mmのペットフィルム(キャリアフィルム)上に厚さ1.0mmで塗工し、75℃で5分乾燥させて、ペットフィルム付きのシート状成形体を作製した。ペットフィルム付きのシート状成形体の熱伝導性樹脂組成物面に厚さ0.05mmのペットフィルムを積層し、積層体を作製した。なお、この積層体の層構造はペットフィルム/熱伝導性樹脂組成物/ペットフィルムであった。次いで、得られた積層体に対して、真空下(圧力3.5kPa)、温度150℃、圧力160kg/cmの条件で30分間の加熱プレスを行い、両面のペットフィルムを剥離して厚さ1.0mmのシートとした。次いで、それを常圧、150℃で4時間の2次加熱を行い、放熱シートとした。
 得られた窒化ホウ素粉末及び放熱シートの評価結果を表3及び4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例の放熱シートの評価結果から、第1の極大点の粒径が0.4μm以上10μm未満であり、第2の極大点の粒径が10μm以上40μm未満であり、第3の極大点の粒径が40μm以上110μm以下である窒化ホウ素粉末を用いることにより放熱シートの熱伝導性が改善されることがわかった。さらに、上記窒化ホウ素粉末を用いることにより、放熱シートの絶縁性も改善されることがわかった。

 

Claims (7)

  1.  六方晶窒化ホウ素一次粒子が凝集してなる凝集窒化ホウ素粒子を少なくとも含む窒化ホウ素粉末であって、
     前記窒化ホウ素粉末の粒度分布が、第1の極大点、前記第1の極大点よりも粒径が大きい第2の極大点、及び前記第2の極大点よりも粒径が大きい第3の極大点を少なくとも有し、
     前記第1の極大点の粒径が0.4μm以上10μm未満であり、
     前記第2の極大点の粒径が10μm以上40μm未満であり、
     前記第3の極大点の粒径が40μm以上110μm以下である窒化ホウ素粉末。
  2.  前記窒化ホウ素粉末の粒度分布における頻度の積算量が10%となる粒径と、前記窒化ホウ素粉末の粒度分布の最も粒径が小さい極大点及び2番目に粒径が小さい極大点の間の極小点の粒径との差の絶対値が3~30μmである請求項1に記載の窒化ホウ素粉末。
  3.  前記第1の極大点に隣接する極大点が前記第2の極大点であり、
     前記第2の極大点に隣接する極大点が前記第3の極大点であり、
     前記第1の極大点及び前記第2の極大点の間の第1の極小点の粒径と前記第2の極大点及び前記第3の極大点の間の第2の極小点の粒径との差の絶対値が15~60μmである請求項1又は2に記載の窒化ホウ素粉末。
  4.  前記第3の極大点を有するピークの半値幅が20~60μmである請求項1~3のいずれか1項に記載の窒化ホウ素粉末。
  5.  前記凝集窒化ホウ素粒子の圧壊強度が5~18MPaである請求項1~4のいずれか1項に記載の窒化ホウ素粉末。
  6.  請求項1~5のいずれか1項に記載の窒化ホウ素粉末と樹脂とを含む熱伝導性樹脂組成物を成形してなる放熱シート。
  7.  請求項1~5のいずれか1項に記載の窒化ホウ素粉末と樹脂とを配合して熱伝導性樹脂組成物を作製する工程、
     前記熱伝導性樹脂組成物をシート状に成形して、熱伝導性樹脂組成物シートを作製する工程、及び
     前記熱伝導性樹脂組成物シートを真空下で加熱及び加圧する工程を含む放熱シートの製造方法。

     
PCT/JP2021/046762 2021-01-06 2021-12-17 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法 WO2022149435A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21917656.7A EP4253315A4 (en) 2021-01-06 2021-12-17 BORON NITRIDE POWDER, HEAT DISSIPATION FILM AND METHOD FOR PRODUCING A HEAT DISSIPATION FILM
JP2022570166A JP7291304B2 (ja) 2021-01-06 2021-12-17 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法
CN202180088577.0A CN116670233B (zh) 2021-01-06 2021-12-17 氮化硼粉末、散热片材及散热片材的制造方法
US18/266,099 US20240026198A1 (en) 2021-01-06 2021-12-17 Boron nitride powder, heat dissipation sheet, and method for producing heat dissipation sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021000881 2021-01-06
JP2021-000881 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022149435A1 true WO2022149435A1 (ja) 2022-07-14

Family

ID=82357280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046762 WO2022149435A1 (ja) 2021-01-06 2021-12-17 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法

Country Status (5)

Country Link
US (1) US20240026198A1 (ja)
EP (1) EP4253315A4 (ja)
JP (1) JP7291304B2 (ja)
CN (1) CN116670233B (ja)
WO (1) WO2022149435A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116589864A (zh) * 2023-05-22 2023-08-15 苏州博濬新材料科技有限公司 一种能够维持高导热性的导热性树脂组合物制备方法
WO2024203533A1 (ja) * 2023-03-27 2024-10-03 デンカ株式会社 熱伝導性シート
WO2024203513A1 (ja) * 2023-03-27 2024-10-03 デンカ株式会社 熱伝導性シート及び凝集窒化ホウ素粒子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189818A (ja) * 2007-02-05 2008-08-21 Nitto Denko Corp 熱伝導性樹脂組成物および熱伝導性シートとその製造方法
WO2012046814A1 (ja) * 2010-10-06 2012-04-12 日立化成工業株式会社 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置
JP2018043899A (ja) * 2016-09-13 2018-03-22 株式会社トクヤマ 六方晶窒化ホウ素粉末
JP2018526496A (ja) * 2015-08-07 2018-09-13 スリーエム イノベイティブ プロパティズ カンパニー 熱伝導性感圧接着剤
WO2020196643A1 (ja) * 2019-03-27 2020-10-01 デンカ株式会社 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
JP2020164365A (ja) * 2019-03-29 2020-10-08 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物
JP2020169230A (ja) * 2019-04-01 2020-10-15 住友ベークライト株式会社 熱伝導性シート

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466028B2 (ja) * 1996-08-27 2003-11-10 三井化学株式会社 窒化ホウ素粉末及びその製造方法
WO2008047809A1 (fr) * 2006-10-17 2008-04-24 Denki Kagaku Kogyo Kabushiki Kaisha Graisse
CN105026312B (zh) * 2013-03-07 2018-03-20 电化株式会社 氮化硼粉末及含有该氮化硼粉末的树脂组合物
CN107922743B (zh) * 2015-08-26 2019-03-08 电化株式会社 导热性树脂组合物
CN108473308B (zh) * 2016-02-22 2021-10-29 昭和电工株式会社 六方晶氮化硼粉末、其制造方法、树脂组合物及树脂片
EP3524573B1 (en) * 2016-10-07 2022-05-04 Denka Company Limited Boron nitride aggregated grain, method for producing same, and thermally conductive resin composition using same
WO2018164123A1 (ja) * 2017-03-07 2018-09-13 株式会社トクヤマ 粗大粒子を含まない窒化アルミニウム粉末
EP3696140B1 (en) * 2017-10-13 2021-07-21 Denka Company Limited Boron nitride powder, method for producing same, and heat-dissipating member produced using same
JP7389014B2 (ja) * 2018-02-26 2023-11-29 デンカ株式会社 絶縁放熱シート
EP3647265A4 (en) * 2018-09-07 2020-09-16 Showa Denko K.K. HEXAGONAL BORON NITRIDE POWDER, ITS PRODUCTION PROCESS, COMPOSITION AND HEAT DISSIPATING MATERIAL USING IT
JP7467980B2 (ja) 2019-02-27 2024-04-16 三菱ケミカル株式会社 窒化ホウ素凝集粉末、放熱シート及び半導体デバイスの製造方法
DE102019204191A1 (de) * 2019-03-27 2020-10-01 Siemens Aktiengesellschaft Gießharz, Formstoff daraus, Verwendung dazu und eine elektrische Isolierung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189818A (ja) * 2007-02-05 2008-08-21 Nitto Denko Corp 熱伝導性樹脂組成物および熱伝導性シートとその製造方法
WO2012046814A1 (ja) * 2010-10-06 2012-04-12 日立化成工業株式会社 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置
JP2018526496A (ja) * 2015-08-07 2018-09-13 スリーエム イノベイティブ プロパティズ カンパニー 熱伝導性感圧接着剤
JP2018043899A (ja) * 2016-09-13 2018-03-22 株式会社トクヤマ 六方晶窒化ホウ素粉末
WO2020196643A1 (ja) * 2019-03-27 2020-10-01 デンカ株式会社 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
JP2020164365A (ja) * 2019-03-29 2020-10-08 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物
JP2020169230A (ja) * 2019-04-01 2020-10-15 住友ベークライト株式会社 熱伝導性シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4253315A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203533A1 (ja) * 2023-03-27 2024-10-03 デンカ株式会社 熱伝導性シート
WO2024203513A1 (ja) * 2023-03-27 2024-10-03 デンカ株式会社 熱伝導性シート及び凝集窒化ホウ素粒子
CN116589864A (zh) * 2023-05-22 2023-08-15 苏州博濬新材料科技有限公司 一种能够维持高导热性的导热性树脂组合物制备方法

Also Published As

Publication number Publication date
EP4253315A1 (en) 2023-10-04
CN116670233A (zh) 2023-08-29
CN116670233B (zh) 2024-08-09
JPWO2022149435A1 (ja) 2022-07-14
EP4253315A4 (en) 2024-07-03
JP7291304B2 (ja) 2023-06-14
US20240026198A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
WO2022149435A1 (ja) 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法
JP6682644B2 (ja) 窒化ホウ素塊状粒子、その製造方法及びそれを用いた熱伝導樹脂組成物
CN111212811B (zh) 氮化硼粉末、其制造方法及使用其的散热构件
JPWO2020004600A1 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
WO2020196643A1 (ja) 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
JP2022106113A (ja) 窒化ホウ素粉末、熱伝導性樹脂組成物、放熱シート及び電子部品構造体
CN112888655A (zh) 氮化硼纳米材料及树脂组合物
JP2020164365A (ja) 窒化ホウ素粉末及び樹脂組成物
WO2021251494A1 (ja) 熱伝導性樹脂組成物及び放熱シート
WO2022149434A1 (ja) 放熱シート及び放熱シートの製造方法
JP7090831B1 (ja) 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート
WO2022149553A1 (ja) 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート
JP2022106117A (ja) 放熱シート及び放熱シートの製造方法
JP7101871B2 (ja) 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
JP2022106118A (ja) 放熱シート及び放熱シートの製造方法
WO2021251495A1 (ja) 放熱シート
WO2024203519A1 (ja) 熱伝導性シートの製造方法
WO2024203527A1 (ja) 熱伝導性シートの製造方法
WO2023085322A1 (ja) 窒化ホウ素粉末
WO2024203513A1 (ja) 熱伝導性シート及び凝集窒化ホウ素粒子
WO2024203533A1 (ja) 熱伝導性シート
WO2023085326A1 (ja) 放熱シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570166

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18266099

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180088577.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021917656

Country of ref document: EP

Effective date: 20230628

NENP Non-entry into the national phase

Ref country code: DE