WO2017208907A1 - 樹脂組成物及び積層体の製造方法 - Google Patents

樹脂組成物及び積層体の製造方法 Download PDF

Info

Publication number
WO2017208907A1
WO2017208907A1 PCT/JP2017/019240 JP2017019240W WO2017208907A1 WO 2017208907 A1 WO2017208907 A1 WO 2017208907A1 JP 2017019240 W JP2017019240 W JP 2017019240W WO 2017208907 A1 WO2017208907 A1 WO 2017208907A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy
resin layer
group
resin
Prior art date
Application number
PCT/JP2017/019240
Other languages
English (en)
French (fr)
Inventor
一也 木口
智雄 西山
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60477771&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017208907(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2017557019A priority Critical patent/JP6372626B2/ja
Priority to KR1020187036584A priority patent/KR102049714B1/ko
Priority to US16/305,443 priority patent/US10590232B2/en
Priority to CN201780034153.XA priority patent/CN109312053B/zh
Publication of WO2017208907A1 publication Critical patent/WO2017208907A1/ja
Priority to US16/677,811 priority patent/US10851200B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/04Epoxynovolacs

Definitions

  • the present invention relates to a resin composition and a method for producing a laminate.
  • a laminate in which a resin layer for insulation or the like is disposed between a pair of members is used for various applications as a component of an electronic device and an electric device (see, for example, Patent Document 1).
  • Such a laminated body was manufactured by affixing both members through a film-form resin composition.
  • the properties required for the resin composition used in the above method are that a resin layer having excellent adhesion to the member can be formed without unevenness (applicability), and spreads outside the applied region after application to the member. It is difficult (shape retention).
  • the applicability of the resin composition is generally improved as the viscosity is low, and the shape retention is generally improved as the viscosity is high. Therefore, there is room for study in designing a resin composition satisfying both characteristics.
  • thermal conductivity is required for the resin layer formed from the resin composition.
  • a technique of highly filling a filler in a resin composition has been studied.
  • the viscosity increases and the coatability may be impaired.
  • the present invention has a coating composition and shape retention suitable for forming a resin layer of a laminate, and a resin composition capable of forming a resin layer having good thermal conductivity, and this It is an object of the present invention to provide a method for manufacturing a laminate using the above.
  • a thixotropic index at 25 ° C. is 3 to 10, and is formed by applying the resin layer of a laminate including a pair of members and a resin layer disposed between the pair of members.
  • the resin composition For the resin composition.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the resin composition which can form the resin layer which has the applicability
  • a method for producing a laminate is provided.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” or “film” refers to a part of the region in addition to the case where the layer or the film is formed when the region where the layer or film exists is observed. It is also included when it is formed only.
  • laminate indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the number of structural units indicates an integer value for a single molecule, but indicates a rational number that is an average value as an aggregate of a plurality of types of molecules.
  • a resin sheet obtained by further heating and pressing a resin sheet obtained by drying a resin composition layer formed from the resin composition may be referred to as a B stage sheet.
  • B stage refer to the provisions of JIS K6900: 1994.
  • surface roughness (Rz) refer to the definition of (Rzjis) in JIS B 0601-2001.
  • the resin composition of the present embodiment has a thixotropic index of 3 to 10 at 25 ° C., the resin layer of the laminate having a pair of members and a resin layer disposed between the pair of members. It is for apply
  • the resin composition of this embodiment has a thixotropic index at 25 ° C. of 3 to 10, so that it has excellent applicability to members constituting the laminate and excellent shape retention after application. For this reason, the resin layer excellent in the adhesiveness with respect to a member can be formed in a predetermined position. Therefore, for example, even when the members constituting the laminate are separated into pieces in advance, a resin layer having excellent adhesion can be formed at a predetermined position.
  • the members constituting the laminate are “individualized” means that the size and shape of the member before the resin layer is formed are the size of the member in the finally obtained laminate and It means that it has a shape.
  • Thixotropic index at 25 ° C. 25 °C, 25 °C for viscosity A (Pa ⁇ s) measured under conditions of 5min -1 (rpm), under the conditions of 0.5 min -1 (rpm) It is the ratio (viscosity B / viscosity A) of the measured viscosity B (Pa ⁇ s).
  • the thixotropic index at 25 ° C. is preferably 3 to 10, and more preferably 5 to 7.
  • the viscosity of the resin composition at 25 ° C. and 5 min ⁇ 1 (rpm) is preferably 0.6 Pa ⁇ s to 3.5 Pa ⁇ s, preferably 0.8 Pa ⁇ s to 3 Pa ⁇ s. More preferably, it is more preferably 1 Pa ⁇ s to 2.5 Pa ⁇ s.
  • the viscosity and thixotropic index of the resin composition can be adjusted by changing, for example, the type and amount of the components of the resin composition.
  • Resins contained in the resin composition include thermosetting resins such as epoxy resins, phenol resins, urea resins, melamine resins, urethane resins, silicone resins, and unsaturated polyester resins.
  • the resin contained in the resin composition may be one type or two or more types. From the viewpoint of electrical insulation and adhesiveness, the resin composition preferably contains an epoxy resin.
  • the resin composition may contain components other than the resin, such as a filler, as necessary.
  • the material of the pair of members in the laminate formed using the resin composition is not particularly limited, and examples thereof include metals, semiconductors, glasses, resins, and composites thereof.
  • the shape in particular of a pair of member is not restrict
  • the materials and shapes of the pair of members may be the same or different.
  • the thickness of the resin layer formed using the resin composition is not particularly limited. From the viewpoint of sufficiently obtaining the effects (insulating properties, etc.) obtained by providing the resin layer, it is preferable that the thickness is large, and from the viewpoint of manufacturing cost, the thickness is preferable. For example, it may be in the range of 80 ⁇ m to 300 ⁇ m. In this specification, the thickness of the resin layer can be measured by a known method, and is the number average value of the values measured at five points.
  • the use of the laminate having a resin layer formed using the resin composition of the present embodiment is not particularly limited.
  • a semiconductor device can be given.
  • semiconductor devices it is suitably used for components with particularly high heat generation density.
  • the method for producing a laminate using the resin composition of the present embodiment is not particularly limited.
  • the resin composition comprises a resin layer forming step of forming a resin layer on the first member, and a member arranging step of arranging a second member on the resin layer. Used in the method.
  • a resin composition is applied on the first member to form a resin layer.
  • the method for applying the resin composition is not particularly limited, and methods such as a dispensing method, a printing method, a transfer method, a spray method, and an electrostatic coating method can be applied depending on the application. From the viewpoint of the adhesion of the resin layer to the first member, there is a method in which the resin composition is applied on the first member in a composition (varnish) containing a resin and a solvent, and dried to remove the solvent. preferable.
  • the resin layer forming step preferably includes a step of heating the resin layer.
  • a step of heating the resin layer volatile components such as a solvent contained in the resin layer are efficiently removed.
  • the resin component in the resin layer reacts to increase the viscosity and the followability to the second member is reduced to some extent, but it is good by bringing the second member having a small surface roughness into contact with the resin layer. Good adhesion can be ensured.
  • the method of heating the resin layer is not particularly limited, but a method of bringing the resin layer into a B-stage state is preferable.
  • the method and conditions for bringing the resin layer into the B stage state are not particularly limited. From the viewpoint of forming a resin layer having a smooth surface and reduced thickness unevenness, a method of heating while pressing the first member and the resin layer formed thereon with a pair of hot plates is preferable.
  • the second member is placed on the resin layer formed on the first member.
  • the method for arranging the second member is not particularly limited.
  • the resin layer After disposing the second member on the resin layer formed on the first member, the resin layer is cured to obtain a laminate.
  • the method for curing the resin layer is not particularly limited.
  • the second member may be sandwiched between a pair of hot plates in a state where the second member is disposed on the resin layer and heated while being pressed.
  • a resin composition is applied on the first member 1 to form a resin layer 2.
  • the first member 1 on which the resin layer 2 is formed is sandwiched between a pair of hot plates 3 and 4 and heated while being pressed to bring the resin layer 2 into a B-stage state.
  • the second member 5 is disposed on the resin layer 2, sandwiched between the pair of hot plates 6 and 7 in this state, and heated while being pressurized to cure the resin layer 2, A laminate is obtained.
  • the laminate manufactured using the resin composition of the present embodiment may be used as it is or may be cut into a desired shape and separated.
  • a method for obtaining an individualized laminate (1) a method in which a first member before forming a resin layer and a second member before being arranged on the resin layer are individually separated, (2) (3) Resin layer, after forming a resin layer on the first member and then separating the laminate of the first member and the resin layer into individual pieces and placing the separated second member on the resin layer Examples include a method in which the second member is disposed on the substrate and the laminate obtained by curing the resin layer is singulated.
  • a method in which the first member before the resin layer is formed and the second member before the resin layer is arranged on the resin layer is preferably divided into pieces.
  • the first member in the state of being separated It is preferable to form a resin layer according to the shape of the member. Since the resin composition of this embodiment has a thixotropic index at 25 ° C. of 3 to 10, a resin layer can be formed at a predetermined position even in such a case.
  • the resin composition includes a resin layer forming step of forming a resin layer on the first member, and a member arranging step of arranging a second member on the resin layer, and the following conditions ( It is suitably used in a method for producing a laminate satisfying at least one of 1) and (2).
  • the surface roughness (Rz) of the surface in contact with the resin layer of the first member is larger than the surface roughness (Rz) of the surface in contact with the resin layer of the second member.
  • the surface roughness (Rz) of the surface in contact with the resin layer of the second member is 30 ⁇ m or less.
  • the surface roughness (Rz) of the first member and the second member is not particularly limited as long as at least one of the conditions (1) and (2) is satisfied, and is included in the resin layer. It can be selected according to the type of resin to be obtained, the degree of adhesion required for the laminate, and the like.
  • the surface roughness of the portion having the maximum surface roughness is defined as the surface roughness of the member.
  • the surface roughness (Rz) of the first member may be, for example, 5 ⁇ m or more, 10 ⁇ m, or 20 ⁇ m or more.
  • the surface roughness (Rz) of the first member may be, for example, 80 ⁇ m or less.
  • the surface roughness (Rz) of the second member may be, for example, 20 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less.
  • the surface roughness (Rz) of the second member may be 3 ⁇ m or more, for example.
  • the first member and the second member may be subjected to a surface roughening treatment.
  • a surface roughening treatment In general, as the surface roughness of the surface where the member is in contact with the resin layer is larger, the anchor effect that is manifested by the resin layer entering into the irregularities on the surface of the member increases, and the adhesive strength tends to increase. As a result, it can be expected to improve the shear strength for evaluating the adhesive force mainly applied in the planar direction of the resin layer, and the peel strength for evaluating the adhesive force mainly applied in the vertical direction of the resin layer.
  • the member subjected to the surface roughening treatment may be obtained using a material having a rough surface or may be obtained by roughening a material having a smooth surface.
  • the surface roughening treatment method is not particularly limited, and may be performed by a physical method or a chemical method. Physical methods include file processing, sandblasting, laser irradiation, and the like. Examples of the chemical treatment include magnesium treatment, CZ treatment, blackening treatment, etching treatment and the like when the material is copper. When the material is aluminum, alumite treatment is exemplified.
  • the method of surface treatment is not limited to these, and physical treatment or chemical treatment is performed alone, physical treatment and chemical treatment are combined, or two or more chemical treatments are combined. Or two or more physical processes may be combined.
  • the surface which contacts the resin layer of the first member and the second member may be provided with a surface treatment agent.
  • Surface treatment agents include solid or liquid thermosetting resin monomer coating and thermoplastic resin solvent coating, silanol coupling agent, titanate coupling agent, aluminosilicate agent, leveling for the purpose of improving the wettability of the resin. And surface protecting agents such as agents.
  • the resin composition of the present embodiment may be an epoxy resin composition that includes an epoxy monomer and a curing agent.
  • Epoxy monomer The epoxy monomer contained in the epoxy resin composition may be one type alone or two or more types. Moreover, what the epoxy monomer was in the state of the oligomer or the prepolymer may be included.
  • the type of epoxy monomer is not particularly limited, and can be selected according to the use of the laminate.
  • an epoxy monomer having a mesogenic skeleton and having two glycidyl groups in one molecule (hereinafter also referred to as a specific epoxy monomer) may be used.
  • a resin layer formed using an epoxy resin composition containing a specific epoxy monomer tends to exhibit high thermal conductivity.
  • the “mesogen skeleton” indicates a molecular structure that may exhibit liquid crystallinity. Specific examples include a biphenyl skeleton, a phenylbenzoate skeleton, an azobenzene skeleton, a stilbene skeleton, and derivatives thereof.
  • An epoxy resin composition containing an epoxy monomer having a mesogenic skeleton tends to form a higher-order structure at the time of curing and tends to achieve higher thermal conductivity when a cured product is produced.
  • Specific epoxy monomers include, for example, biphenyl type epoxy monomers and tricyclic type epoxy monomers.
  • Biphenyl type epoxy monomers include 4,4'-bis (2,3-epoxypropoxy) biphenyl, 4,4'-bis (2,3-epoxypropoxy) -3,3 ', 5,5'-tetramethyl An epoxy monomer obtained by reacting biphenyl, epichlorohydrin and 4,4′-biphenol or 4,4 ′-(3,3 ′, 5,5′-tetramethyl) biphenol, ⁇ -hydroxyphenyl- ⁇ -hydropoly ( Biphenyldimethylene-hydroxyphenylene) and the like.
  • Biphenyl type epoxy resins are named according to product names such as “YX4000”, “YL6121H” (Mitsubishi Chemical Corporation), “NC-3000”, “NC-3100” (Nippon Kayaku Co., Ltd.). The thing marketed is mentioned.
  • Examples of the tricyclic epoxy monomer include epoxy monomers having a terphenyl skeleton, 1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 1- Examples include (3-methyl-4-oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -benzene, compounds represented by the following general formula (I), and the like.
  • the specific epoxy monomer is preferably capable of forming a higher order structure and capable of forming a smectic structure when used alone as an epoxy monomer and cured. Is more preferable.
  • examples of such an epoxy monomer include compounds represented by the following general formula (I).
  • the epoxy resin composition contains a compound represented by the following general formula (I)
  • higher thermal conductivity can be achieved.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 or 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and all 4 are further hydrogen atoms. preferable.
  • any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms
  • at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
  • the higher order structure is a state in which the constituent elements are arranged microscopically, and corresponds to, for example, a crystal phase and a liquid crystal phase. Whether or not such a higher-order structure exists can be easily determined by observation with a polarizing microscope. That is, when an interference pattern due to depolarization is observed in the observation in the crossed Nicol state, it can be determined that a higher order structure exists.
  • the higher order structure usually exists in an island shape in the resin, and forms a domain structure. Each island forming the domain structure is called a higher-order structure.
  • the structural units constituting the higher order structure are generally bonded by a covalent bond.
  • High-order structures with high regularity derived from the mesogenic skeleton include nematic structures and smectic structures.
  • the nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only alignment order.
  • the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure with a constant period.
  • the direction of the period of the layer structure is uniform inside the structure having the same period of the smectic structure. That is, the order of molecules is higher in the smectic structure than in the nematic structure.
  • the smectic structure has a higher thermal conductivity than the nematic structure. That is, the order of the molecule is higher in the smectic structure than in the nematic structure, and the thermal conductivity of the cured product is higher in the case of showing the smectic structure. Since the epoxy resin composition containing the compound represented by the general formula (I) can react with a curing agent to form a smectic structure, it is considered that high thermal conductivity can be exhibited.
  • Whether or not a smectic structure can be formed using the epoxy resin composition can be determined by the following method.
  • X-ray diffraction measurement is performed using an X-ray analyzer (for example, manufactured by Rigaku Corporation) using a CuK ⁇ 1 line and a tube voltage of 40 kV, a tube current of 20 mA, and 2 ⁇ in the range of 0.5 ° to 30 °.
  • a diffraction peak exists in the range of 2 ⁇ of 1 ° to 10 °, it is determined that the periodic structure includes a smectic structure. Note that in the case of a highly ordered high-order structure derived from a mesogenic structure, a diffraction peak appears in the range of 2 ⁇ of 1 ° to 30 °.
  • the epoxy resin composition contains two or more types of specific epoxy monomers and a curing agent, and the two or more types of specific epoxy monomers are compatible with each other, and react with the curing agent to form a smectic structure.
  • An epoxy resin composition that can be formed (hereinafter, also referred to as “specific epoxy resin composition”) may be used.
  • the specific epoxy resin composition has a low melting point and excellent thermal conductivity after curing.
  • two or more types of epoxy monomers mean two or more types of epoxy monomers having different molecular structures. However, epoxy monomers having a stereoisomer (optical isomer, geometric isomer, etc.) relationship do not fall under “two or more epoxy monomers” and are regarded as the same type of epoxy monomer.
  • the specific epoxy resin composition has a low melting point and excellent thermal conductivity after curing is not clear, but two or more specific epoxy monomers are compatible with each other to form a smectic structure. It is considered that the melting point of the previous specific epoxy resin composition can be lowered and high thermal conductivity can be exhibited after curing.
  • the specific epoxy resin composition contains two or more specific epoxy monomers, and the specific epoxy monomers are compatible with each other.
  • the melting point of a mixture of two or more types of specific epoxy monomers compatible with each other (hereinafter also referred to as “epoxy monomer mixture”) is the specific epoxy having the highest melting point among the specific epoxy monomers constituting the epoxy monomer mixture. There is a phenomenon that the melting point of the monomer becomes lower. Therefore, it becomes possible to exhibit the low melting point of the specific epoxy resin composition.
  • the thermal conductivity when the specific epoxy resin composition is semi-cured or cured is higher than the thermal conductivity when the specific epoxy monomer alone constituting the epoxy monomer mixture is semi-cured or cured. It becomes possible to do.
  • the epoxy monomer mixture includes three or more types of specific epoxy monomers, it is sufficient that the epoxy monomer mixture composed of all the specific epoxy monomers constituting the epoxy monomer mixture is compatible as a whole. Any two selected specific epoxy monomers may not be compatible with each other.
  • compatible means phase separation derived from a specific epoxy monomer when the specific epoxy resin composition is semi-cured or cured after the epoxy monomer mixture is melted and naturally cooled. Means that no condition is observed. Moreover, even if each specific epoxy monomer is phase-separated in the epoxy monomer mixture before making a semi-cured product or a cured product, when a phase-separated state is not observed when making a semi-cured product or a cured product, It is determined that the specific epoxy monomers contained in the monomer mixture are compatible with each other.
  • Whether or not the specific epoxy monomers are compatible with each other can be determined by the presence or absence of a phase separation state when the specific epoxy resin composition is made into a semi-cured product or a cured product. For example, it can be judged by observing a semi-cured product or a cured product of a specific epoxy resin composition at a curing temperature described later using an optical microscope. More specifically, the determination can be made by the following method. The epoxy monomer mixture is melted by heating above the temperature at which the epoxy monomer mixture transitions to the isotropic phase, and then the molten epoxy monomer mixture is allowed to cool naturally.
  • the curing temperature can be appropriately selected according to the specific epoxy resin composition.
  • the curing temperature is preferably 100 ° C. or higher, more preferably 100 ° C. to 250 ° C., and still more preferably 120 ° C. to 210 ° C.
  • the melting point of the epoxy monomer mixture composed of the specific epoxy monomers in a compatible combination is lower than the melting point of the specific epoxy monomer having the highest melting point among the specific epoxy monomers constituting the epoxy monomer mixture.
  • the melting point refers to the temperature at which an epoxy monomer undergoes a phase transition from a liquid crystal phase to an isotropic phase in an epoxy monomer having a liquid crystal phase.
  • an epoxy monomer having no liquid crystal phase it indicates the temperature at which the state of the substance changes from a solid (crystalline phase) to a liquid (isotropic phase).
  • the liquid crystal phase is one of the phases located between the crystalline state (crystalline phase) and the liquid state (isotropic phase).
  • the presence or absence of a liquid crystal phase can be determined by a method of observing a change in the state of a substance in the process of raising the temperature from room temperature (for example, 25 ° C.) using a polarizing microscope. In the observation in the crossed Nicols state, interference fringes due to depolarization are seen in the crystal phase and the liquid crystal phase, and the isotropic phase appears in the dark field. The transition from the crystal phase to the liquid crystal phase can be confirmed by the presence or absence of fluidity. In other words, the expression of the liquid crystal phase means that the liquid crystal phase has a fluidity and has a temperature region where interference fringes due to depolarization are observed.
  • the specific epoxy monomer or the epoxy monomer mixture has fluidity and has a temperature region where interference fringes due to depolarization are observed, the specific epoxy monomer Alternatively, it is determined that the epoxy monomer mixture has a liquid crystal phase.
  • the temperature range is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 40 ° C. or higher.
  • the temperature region is 10 ° C. or higher, high thermal conductivity tends to be achieved. Furthermore, the wider the temperature region, the higher the thermal conductivity, which is preferable.
  • the melting point of the specific epoxy monomer or epoxy monomer mixture can be determined by using a differential scanning calorimeter (DSC) in a temperature range from 25 ° C. to 350 ° C. under a temperature rising rate of 10 ° C./min. It is measured as a temperature at which an energy change (endothermic reaction) occurs with a phase transition.
  • DSC differential scanning calorimeter
  • the two or more types of specific epoxy monomers contained in the specific epoxy resin composition are compatible with each other, and are not particularly limited as long as they can form a smectic structure by reacting with a curing agent described later. It can be selected from epoxy monomers having a skeleton.
  • the specific epoxy monomer can be selected from those exemplified above.
  • the specific epoxy resin composition is different from the compound represented by the general formula (I) and the compound represented by the general formula (I) as two or more kinds of specific epoxy monomers, and is represented by the general formula (I). It is preferable to contain a specific epoxy monomer that is compatible with the compound (hereinafter referred to as “specific epoxy monomer different from the compound represented by the general formula (I)”).
  • the epoxy resin composition contains a compound represented by the general formula (I) and a specific epoxy monomer different from the compound represented by the general formula (I), thereby effectively reducing the melting point and heat conductivity. It is possible to achieve both improvements.
  • the content of the specific epoxy monomer in the epoxy monomer mixture is not particularly limited as long as it can form a smectic structure by reaction between the epoxy monomer mixture and a curing agent described later, and can be selected as appropriate. From the viewpoint of lowering the melting point, the content of the specific epoxy monomer is preferably 5% by mass or more, more preferably 10% by mass to 90% by mass, more preferably 100% by mass with respect to the total mass of the epoxy monomer mixture. % Is more preferable.
  • the total content of the specific epoxy monomer in the epoxy resin composition is not particularly limited. From the viewpoint of thermosetting and thermal conductivity, the total content of the specific epoxy monomer is preferably 3% by mass to 10% by mass with respect to the total mass of the epoxy resin composition, and 3% by mass to 8% by mass. It is more preferable that
  • the epoxy resin composition contains a curing agent.
  • the curing agent is not particularly limited as long as it is a compound capable of curing reaction with a specific epoxy monomer, and a commonly used curing agent can be appropriately selected and used.
  • Specific examples of the curing agent include acid anhydride curing agents, amine curing agents, phenol curing agents, polyaddition curing agents such as mercaptan curing agents, and catalytic curing agents such as imidazole. These curing agents may be used alone or in combination of two or more.
  • the amine-based curing agent those usually used as curing agents for epoxy monomers can be used without particular limitation, and commercially available ones may be used.
  • the amine curing agent is preferably a polyfunctional curing agent having two or more functional groups, and from the viewpoint of thermal conductivity, is a polyfunctional curing agent having a rigid skeleton. It is more preferable.
  • bifunctional amine curing agent examples include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 4,4′-diamino-3,3.
  • Examples include '-dimethoxybiphenyl, 4,4'-diaminophenyl benzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene and the like.
  • thermo conductivity it is preferably at least one selected from the group consisting of 4,4′-diaminodiphenylmethane, 1,5-diaminonaphthalene and 4,4′-diaminodiphenylsulfone, More preferred is 5-diaminonaphthalene.
  • phenol and a novolac phenol resin can be used.
  • the phenol curing agent include monofunctional compounds such as phenol, o-cresol, m-cresol, and p-cresol; bifunctional compounds such as catechol, resorcinol, and hydroquinone; 1,2,3-trihydroxybenzene, 1, And trifunctional compounds such as 2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene.
  • a phenol novolak resin obtained by connecting these phenol curing agents with a methylene chain or the like to form a novolak can be used.
  • the phenol novolak resin include resins obtained by novolacizing one phenol compound such as cresol novolak resin, catechol novolak resin, resorcinol novolak resin, hydroquinone novolak resin; catechol resorcinol novolak resin, resorcinol hydroquinone novolak resin, etc. Examples thereof include resins obtained by novolacizing two or more phenol compounds.
  • the phenol novolak resin When a phenol novolak resin is used as the phenolic curing agent, the phenol novolak resin has a structural unit represented by at least one selected from the group consisting of the following general formulas (II-1) and (II-2) It is preferable to include a compound.
  • R 21 and R 24 each independently represents an alkyl group, an aryl group or an aralkyl group.
  • R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • m21 and m22 each independently represents an integer of 0-2.
  • n21 and n22 each independently represents an integer of 1 to 7.
  • the alkyl group may be linear, branched or cyclic.
  • the aryl group may have a structure containing a hetero atom in the aromatic ring. In this case, a heteroaryl group in which the total number of heteroatoms and carbon is 6 to 12 is preferable.
  • the alkylene group in the aralkyl group may be any of a chain, a branched chain, and a cyclic group.
  • the aryl group in the aralkyl group may have a structure containing a hetero atom in the aromatic ring. In this case, a heteroaryl group in which the total number of heteroatoms and carbon is 6 to 12 is preferable.
  • R 21 and R 24 each independently represents an alkyl group, an aromatic group (aryl group), or an aralkyl group. These alkyl group, aromatic group and aralkyl group may further have a substituent if possible. Examples of the substituent include an alkyl group (except when R 21 and R 24 are alkyl groups), an aromatic group, a halogen atom, and a hydroxyl group.
  • m21 and m22 each independently represents an integer of 0 to 2, and when m21 or m22 is 2, two R 21 or R 24 may be the same or different.
  • m21 and m22 are each independently preferably 0 or 1, and more preferably 0.
  • n21 and n22 are the numbers of structural units represented by the above general formulas (II-1) and (II-2) contained in the phenol novolac resin, and each independently represents an integer of 1 to 7.
  • R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group, aryl group and aralkyl group represented by R 22 , R 23 , R 25 and R 26 may further have a substituent, if possible.
  • the substituent include an alkyl group (provided that R 22 , R 23 , R 25 and R 26 are alkyl groups), an aryl group, a halogen atom, a hydroxyl group and the like.
  • R 22 , R 23 , R 25 and R 26 are each independently a hydrogen atom, an alkyl group, from the viewpoint of storage stability and thermal conductivity, Alternatively, it is preferably an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and further preferably a hydrogen atom. Furthermore, from the viewpoint of heat resistance, at least one of R 22 and R 23 is preferably an aryl group, more preferably an aryl group having 6 to 12 carbon atoms.
  • R 25 and R 26 is preferably an aryl group, and more preferably an aryl group having 6 to 12 carbon atoms.
  • the aryl group may have a structure containing a hetero atom in the aromatic ring. In this case, a heteroaryl group in which the total number of heteroatoms and carbon is 6 to 12 is preferable.
  • the phenolic curing agent may contain one type of compound having the structural unit represented by the above general formula (II-1) or general formula (II-2) alone, or may contain two or more types. Preferably, it contains at least one compound having a structural unit derived from resorcinol represented by the general formula (II-1).
  • the compound having the structural unit represented by the general formula (II-1) may further include at least one partial structure derived from a phenol compound other than resorcinol.
  • examples of the partial structure derived from a phenol compound other than resorcinol include phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trimethyl. Examples thereof include partial structures derived from hydroxybenzene and 1,3,5-trihydroxybenzene. The partial structures derived from these may be contained singly or in combination of two or more.
  • the compound having the structural unit represented by the general formula (II-2) may include at least one partial structure derived from a phenol compound other than catechol.
  • examples of the partial structure derived from a phenol compound other than catechol include, for example, phenol, cresol, resorcinol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trimethyl. Examples thereof include partial structures derived from hydroxybenzene and 1,3,5-trihydroxybenzene. The partial structures derived from these may be contained singly or in combination of two or more.
  • the partial structure derived from the phenol compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the benzene ring portion of the phenol compound.
  • the position where the hydrogen atom is removed is not particularly limited.
  • the content of the partial structure derived from resorcinol is not particularly limited. From the viewpoint of the elastic modulus, the content of the partial structure derived from resorcinol is preferably 55% by mass or more based on the total mass of the compound having the structural unit represented by the general formula (II-1), and the glass transition temperature From the viewpoint of (Tg) and the linear expansion coefficient, it is more preferably 80% by mass or more, and from the viewpoint of thermal conductivity, it is further preferably 90% by mass or more.
  • the phenol novolac resin more preferably includes a novolac resin having a partial structure represented by at least one selected from the group consisting of the following general formulas (III-1) to (III-4).
  • n31 to n34 each independently represent a positive integer and represent the number of each structural unit contained.
  • Ar 31 to Ar 34 each independently represent a group represented by the following general formula (III-a) or a group represented by the following general formula (III-b).
  • R 31 and R 34 each independently represent a hydrogen atom or a hydroxyl group.
  • R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • a curing agent having a partial structure represented by at least one of general formula (III-1) to general formula (III-4) is produced as a by-product by a production method described later in which a divalent phenol compound is novolakized. It can be generated.
  • the partial structures represented by the general formulas (III-1) to (III-4) may be included as the main chain skeleton of the compound, or may be included as a part of the side chain. Furthermore, each structural unit constituting the partial structure represented by any one of the above general formulas (III-1) to (III-4) may be included randomly or regularly. It may be contained in a block shape. In the above general formulas (III-1) to (III-4), the hydroxyl substitution position is not particularly limited as long as it is on the aromatic ring.
  • a plurality of Ar 31 to Ar 34 may all be the same atomic group or include two or more atomic groups. Also good. Ar 31 to Ar 34 each independently represents a group represented by any one of the above general formulas (III-a) and (III-b).
  • R 31 and R 34 are each independently a hydrogen atom or a hydroxyl group, but are preferably a hydroxyl group from the viewpoint of thermal conductivity. Further, the substitution positions of R 31 and R 34 are not particularly limited.
  • R 32 and R 33 in the above general formula (III-a) and general formula (III-b) each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in R 32 and R 33 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. , N-hexyl group, n-heptyl group, and n-octyl group.
  • the substitution positions of R 32 and R 33 in general formula (III-a) and general formula (III-b) are not particularly limited.
  • Ar 31 to Ar 34 in the general formula (III-a) and the general formula (III-b) are groups derived from dihydroxybenzene (in the general formula (III-a), from the viewpoint of achieving higher thermal conductivity.
  • One type is preferable.
  • group derived from dihydroxybenzene means a divalent group formed by removing two hydrogen atoms from the aromatic ring portion of dihydroxybenzene, and the position at which the hydrogen atom is removed is not particularly limited. Further, the “group derived from dihydroxynaphthalene” has the same meaning.
  • Ar 31 to Ar 34 are more preferably each independently a group derived from dihydroxybenzene, and 1,2-dihydroxybenzene (catechol) More preferably, it is at least one selected from the group consisting of a group derived from the above and a group derived from 1,3-dihydroxybenzene (resorcinol).
  • Ar 31 to Ar 34 preferably include at least a group derived from resorcinol from the viewpoint of particularly improving thermal conductivity.
  • the structural unit represented by n31 to n34 preferably contains a group derived from resorcinol.
  • the compound having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) includes a structural unit derived from resorcinol, it is derived from resorcinol
  • the content of the structural unit containing the group is, in terms of elastic modulus, in the whole compound having the structure represented by at least one of the above general formulas (III-1) to (III-4) It is preferably 55% by mass or more, more preferably 80% by mass or more from the viewpoint of Tg and linear expansion coefficient, and further preferably 90% by mass or more from the viewpoint of thermal conductivity.
  • the total value of mx and nx is preferably 20 or less, more preferably 15 or less, and still more preferably 10 or less from the viewpoint of fluidity.
  • the lower limit of the total value of m and n is not particularly limited.
  • Mx and nx represent the number of structural units and indicate how much the corresponding structural unit is added in the molecule. Therefore, an integer value is shown for a single molecule. Note that mx and nx in (mx / nx) and (mx + nx) indicate rational numbers that are average values in the case of an assembly of a plurality of types of molecules.
  • the phenol novolak resin having a partial structure represented by at least one selected from the group consisting of the above general formulas (III-1) to (III-4) is particularly substituted or unsubstituted in Ar 31 to Ar 34
  • a curing agent having a low melting point can be obtained as compared with a novolak phenol resin or the like.
  • Whether or not the phenol novolac resin has a partial structure represented by any one of the general formulas (III-1) to (III-4) is determined by field desorption ionization mass spectrometry (FD-MS). The determination can be made based on whether or not the fragment component includes a component corresponding to the partial structure represented by any of the general formulas (II-1) to (II-4).
  • FD-MS field desorption ionization mass spectrometry
  • the molecular weight of the phenol novolac resin having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is not particularly limited.
  • the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and even more preferably 350 to 1500.
  • the weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and further preferably 400 to 1500.
  • Mn and Mw are measured by a usual method using GPC (gel permeation chromatography).
  • the hydroxyl equivalent of the phenol novolac resin having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is not particularly limited. From the viewpoint of the crosslinking density involved in heat resistance, the hydroxyl group equivalent is preferably 45 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and 55 g / eq to 120 g / eq. More preferably, it is eq.
  • a hydroxyl equivalent means the value measured based on JISK0070: 1992.
  • the phenol novolac resin may contain a monomer that is a phenol compound constituting the phenol novolac resin.
  • the content of the monomer that is a phenol compound constituting the phenol novolac resin (hereinafter also referred to as “monomer content”) is not particularly limited. From the viewpoint of thermal conductivity and moldability, the monomer content in the phenol novolac resin is preferably 5% by mass to 80% by mass, more preferably 15% by mass to 60% by mass, and 20% by mass. More preferably, it is ⁇ 50 mass%.
  • the monomer content is 80% by mass or less, the amount of monomers that do not contribute to crosslinking decreases during the curing reaction, and the high molecular weight material that contributes to crosslinking occupies a large amount. It is formed and the thermal conductivity is improved.
  • the monomer content is 5% by mass or more, it is easy to flow during molding, so that the adhesion with the inorganic filler contained as necessary is further improved, and more excellent thermal conductivity and heat resistance. Tend to be achieved.
  • the content of the curing agent in the epoxy resin composition is not particularly limited.
  • the ratio of the number of active hydrogen equivalents of the amine curing agent (amine equivalent number) to the number of epoxy groups equivalent of the epoxy monomer (amine equivalent number / epoxy equivalent number) Is preferably 0.5 to 2.0, more preferably 0.8 to 1.2.
  • the curing agent is a phenolic curing agent
  • the number of equivalents of epoxy groups is preferably 0.5 to 2.0, and more preferably 0.8 to 1.2.
  • the epoxy resin composition may contain a curing accelerator.
  • a curing agent and a curing accelerator in combination, it can be further sufficiently cured.
  • the kind and content of the curing accelerator are not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, and storage property.
  • Specific examples include imidazole compounds, tertiary amine compounds, organic phosphine compounds, complexes of organic phosphine compounds and organic boron compounds, and the like.
  • it is preferably at least one selected from the group consisting of an organic phosphine compound and a complex of an organic phosphine compound and an organic boron compound.
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, and tris (dialkylphenyl).
  • Phosphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine And alkyldiarylphosphine.
  • an organic phosphine compound and an organic boron compound include tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetra-p-tolylborate, tetrabutylphosphonium / tetraphenylborate, and tetraphenylphosphonium.
  • One of these curing accelerators may be used alone, or two or more thereof may be used in combination.
  • the mixing ratio should be determined without any particular restrictions depending on the characteristics (for example, how much flexibility is required) required for the semi-cured epoxy resin composition. Can do.
  • the content of the curing accelerator in the epoxy resin composition is not particularly limited.
  • the content of the curing accelerator is preferably 0.5% by mass to 1.5% by mass of the total mass of the epoxy monomer and the curing agent, and 0.5% by mass to 1% by mass. More preferably, the content is 0.6% by mass to 1% by mass.
  • the epoxy resin composition may include an inorganic filler. By including the inorganic filler, the epoxy resin composition can achieve high thermal conductivity.
  • the inorganic filler may be non-conductive or conductive. Use of a non-conductive inorganic filler tends to suppress a decrease in insulation. Moreover, it exists in the tendency for thermal conductivity to improve more by using a conductive inorganic filler.
  • non-conductive inorganic filler examples include aluminum oxide (alumina), magnesium oxide, aluminum nitride, boron nitride, silicon nitride, silica (silicon oxide), silicon oxide, aluminum hydroxide, and barium sulfate.
  • conductive inorganic filler examples include gold, silver, nickel, and copper.
  • the inorganic filler is preferably at least one selected from the group consisting of aluminum oxide (alumina), boron nitride, magnesium oxide, aluminum nitride, and silica (silicon oxide). More preferably, it is at least one selected from the group consisting of boron nitride and aluminum oxide (alumina).
  • These inorganic fillers may be used alone or in combination of two or more.
  • the inorganic filler having a small particle diameter is packed in the voids of the inorganic filler having a large particle diameter, thereby filling the inorganic filler more densely than using only the inorganic filler having a single particle diameter. It becomes possible to exhibit higher thermal conductivity.
  • aluminum oxide when aluminum oxide is used as the inorganic filler, aluminum oxide having a volume average particle diameter of 16 ⁇ m to 20 ⁇ m is oxidized in the inorganic filler by 60 volume% to 75 volume% and volume average particle diameter of 2 ⁇ m to 4 ⁇ m.
  • the volume average particle diameter (D50) of the inorganic filler can be measured using a laser diffraction method.
  • the inorganic filler in the epoxy resin composition is extracted and measured using a laser diffraction / scattering particle size distribution analyzer (for example, trade name: LS230, manufactured by Beckman Coulter, Inc.).
  • LS230 laser diffraction / scattering particle size distribution analyzer
  • the inorganic filler component is extracted from the epoxy resin composition and sufficiently dispersed with an ultrasonic disperser, etc., and the weight cumulative particle size distribution curve of this dispersion liquid Measure.
  • the volume average particle diameter (D50) refers to the particle diameter at which accumulation is 50% from the small diameter side in the volume cumulative distribution curve obtained from the above measurement.
  • the content of the inorganic filler is preferably more than 50% by volume, more than 70% by volume, and 90% by volume when the total volume of the epoxy resin composition is 100% by volume. The following is more preferable.
  • the content of the inorganic filler exceeds 50% by volume, higher thermal conductivity can be achieved.
  • the content of the inorganic filler is 90% by volume or less, the flexibility of the epoxy resin composition and the insulating property tend to be suppressed.
  • the epoxy resin composition may contain at least one silane coupling agent.
  • the silane coupling agent has a role of forming a covalent bond between the surface of the inorganic filler and the surrounding resin (equivalent to a binder agent), an improvement in thermal conductivity, and prevents moisture penetration. It can be thought that it plays a role of improving sex.
  • the type of silane coupling agent is not particularly limited, and a commercially available product may be used.
  • the terminal is an epoxy group, an amino group, a mercapto group. It is preferable to use a silane coupling agent having a ureido group and a hydroxyl group.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane.
  • silane coupling agent oligomers manufactured by Hitachi Chemical Techno Service Co., Ltd. represented by trade name: SC-6000KS2. These silane coupling agents may be used alone or in combination of two or more.
  • the epoxy resin composition may contain other components in addition to the above components, if necessary.
  • examples of other components include a solvent, an elastomer, a dispersant, and an anti-settling agent.
  • the solvent is not particularly limited as long as it does not inhibit the curing reaction of the epoxy resin composition, and a commonly used organic solvent can be appropriately selected and used.
  • Mn and Mw weight average molecular weight were measured as follows. Mn and Mw were measured using a high performance liquid chromatography (manufactured by Hitachi, Ltd., trade name: L6000) and a data analyzer (manufactured by Shimadzu Corporation, trade name: C-R4A). As analytical GPC columns, G2000HXL and G3000HXL (trade names) manufactured by Tosoh Corporation were used. The sample concentration was 0.2% by mass, tetrahydrofuran was used as the mobile phase, and the measurement was performed at a flow rate of 1.0 mL / min. A calibration curve was prepared using a polystyrene standard sample, and Mn and Mw were calculated using polystyrene conversion values.
  • the hydroxyl equivalent was measured as follows.
  • the hydroxyl equivalent was measured by acetyl chloride-potassium hydroxide titration method.
  • the determination of the titration end point was performed by potentiometric titration instead of the coloring method using an indicator because the solution color was dark.
  • the hydroxyl group of the measurement resin is acetylated in a pyridine solution, the excess reagent is decomposed with water, and the resulting acetic acid is titrated with a potassium hydroxide / methanol solution.
  • the obtained CRN is a mixture of compounds having a partial structure represented by at least one of the general formulas (III-1) to (III-4), and Ar is represented by the general formula (III-a )
  • R 31 is a hydroxyl group
  • R 32 and R 33 are hydrogen atoms, a group derived from 1,2-dihydroxybenzene (catechol) and a group derived from 1,3-dihydroxybenzene (resorcinol)
  • TPP Triphenylphosphine [Wako Pure Chemical Industries, Ltd., trade name]
  • KBM-573 3-phenylaminopropyltrimethoxysilane [silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd., trade name]
  • Example 1 (Preparation of epoxy resin composition)
  • monomer A and monomer B were mixed so that an epoxy equivalent was 8: 2, and an epoxy monomer mixture 1 was obtained.
  • the epoxy monomer mixture 1 was compatible at 140 ° C., which is the curing temperature of the epoxy resin composition.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • epoxy monomers (monomer A and monomer B) and curing agent When the density of the mixture with (CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated, it was 72% by volume.
  • PET polyethylene terephthalate
  • the PET film was peeled off from the B-stage resin layer, and a copper foil was placed thereon so that the roughened surface was opposed to the resin layer.
  • vacuum thermocompression bonding press temperature: 180 ° C., degree of vacuum: 1 kPa, press pressure: 15 MPa, pressurization time: 6 minutes
  • the copper foil of the produced cured epoxy resin composition with copper foil was removed by etching to obtain a sheet-like cured epoxy resin composition (cured resin sheet).
  • the obtained resin sheet cured product was cut into 10 mm length and 10 mm width to obtain a sample.
  • the thermal diffusivity was evaluated by a xenon flash method (trade name: LFA447 nanoflash, manufactured by NETZSCH). From the product of this value, the density measured by the Archimedes method, and the specific heat measured by DSC (Differential Scanning Calorimeter; product name: DSC Pyris 1 manufactured by Perkin Elmer), the thickness of the cured resin sheet is determined. The thermal conductivity was determined. The results are shown in Table 1.
  • the copper foil of the produced cured epoxy resin composition with copper foil was removed by etching to obtain a sheet-like cured epoxy resin composition (cured resin sheet).
  • the obtained resin sheet cured product was cut into 10 mm length and 10 mm width to obtain a sample.
  • the sample was subjected to X-ray diffraction measurement (using an X-ray diffractometer manufactured by Rigaku Corporation) with a tube voltage of 40 kV, a tube current of 20 mA, and 2 ⁇ of 2 ° to 30 ° using a CuK ⁇ 1 wire. It was confirmed that a smectic structure was formed depending on the presence or absence of a diffraction peak in a range of ⁇ 10 °.
  • Examples 2 to 8, Comparative Examples 1 and 2 Epoxy resin compositions of Examples 2 to 8 and Comparative Examples 1 and 2 were prepared in the same manner as in Example 1 except that the amount of the solvent (CHN) was changed. Using the prepared epoxy resin composition, the viscosity, coatability, shape retention, and thermal conductivity were measured or evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the epoxy resin compositions of the examples having a thixotropic index of 3 to 10 at 25 ° C. had good evaluations of coatability and shape retention.
  • the epoxy resin composition of Comparative Example 1 having a thixotropic index at 25 ° C. of less than 3 had a low applicability evaluation.
  • the epoxy resin composition of Comparative Example 2 having a thixotropic index of 10 at 25 ° C. had a low evaluation of shape retention. From the above results, it was found that the resin composition of the present embodiment has applicability and shape retention suitable for forming the resin layer of the laminate.

Abstract

25℃でのチクソトロピック指数が3~10であり、一対の部材と、前記一対の部材の間に配置される樹脂層と、を有する積層体の前記樹脂層を塗布して形成するための、樹脂組成物。

Description

樹脂組成物及び積層体の製造方法
 本発明は、樹脂組成物及び積層体の製造方法に関する。
 電子機器及び電気機器の部品として、一対の部材の間に絶縁等を目的とする樹脂層が配置された積層体が種々の用途に用いられている(例えば、特許文献1参照)。このような積層体は、フィルム状の樹脂組成物を介して双方の部材を貼り付けることで製造されていた。
特許第5431595号
 近年、上記積層体を製造するに当たって、フィルム状の樹脂組成物に代えて液状の樹脂組成物を用いた方法が検討されている。この方法では、まず一方の部材の上に液状の樹脂組成物を塗布し、次いでその樹脂組成物上にもう一方の部材を配置することで製造される。
 上記の方法に使用される樹脂組成物に求められる特性としては、部材との密着性に優れる樹脂層をムラなく形成可能であること(塗布性)、部材への塗布後に塗布した領域外に広がりにくいこと(形状保持性)等が挙げられる。樹脂組成物の塗布性は一般に粘度が低いほど向上し、形状保持性は一般に粘度が高いほど向上するため、両特性を満たす樹脂組成物の設計に検討の余地がある。
 また、上記積層体において、樹脂組成物から形成される樹脂層に熱伝導性が求められる場合がある。良好な熱伝導性を付与するために、例えば、樹脂組成物中にフィラーを高充填させる手法が検討されている。しかしながら、フィラーを高充填させると粘度が高くなり、塗布性が損なわれる場合があった。
 本発明は上記事情に鑑み、積層体の樹脂層を形成するのに適した塗布性と形状保持性を有し、かつ良好な熱伝導性を有する樹脂層を形成可能な樹脂組成物、及びこれを用いる積層体の製造方法を提供することを課題とする。
 上記課題を提供するための具体的な手段には、以下の実施態様が含まれる。
<1>25℃でのチクソトロピック指数が3~10であり、一対の部材と、前記一対の部材の間に配置される樹脂層と、を有する積層体の前記樹脂層を塗布して形成するための、樹脂組成物。
<2>25℃、5min-1(rpm)での粘度が0.6Pa・s~3.5Pa・sである、<1>に記載の樹脂組成物。
<3>エポキシ樹脂を含む、<1>又は<2>に記載の樹脂組成物。
<4>メソゲン骨格を有するエポキシモノマーと、硬化剤と、を含む、<1>~<3>のいずれか1項に記載の樹脂組成物。
<5>前記メソゲン骨格を有するエポキシモノマーは下記一般式(I)で表される化合物を含む、<4>に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000002

 
 一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。
<6>前記硬化剤はフェノールノボラック樹脂を含む、<4>又は<5>に記載の樹脂組成物。
<7>第一部材の上に<1>~<6>のいずれか1項に記載の樹脂組成物を用いて樹脂層を形成する樹脂層形成工程と、前記樹脂層の上に第二部材を配置する部材配置工程と、を含む積層体の製造方法。
 本発明によれば、積層体の樹脂層を形成するのに適した塗布性と形状保持性を有し、かつ良好な熱伝導性を有する樹脂層を形成可能な樹脂組成物、及びこれを用いる積層体の製造方法が提供される。
本実施形態の樹脂組成物を用いる積層体の製造工程の一例を示す図である。 本実施形態の樹脂組成物を用いる積層体の製造工程の一例を示す図である。 本実施形態の樹脂組成物を用いる積層体の製造工程の一例を示す図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 また本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 構造単位数は、単一の分子については整数値を示すが、複数種の分子の集合体としては平均値である有理数を示す。
 樹脂組成物から形成された樹脂組成物層を乾燥して得られる樹脂シートを更に加熱加圧処理して得られる樹脂シートをBステージシートと称する場合がある。
 なお、Bステージについては、JIS K6900:1994の規定を参照するものとする。
 本明細書において表面粗さ(Rz)の定義については、JIS B 0601-2001の(Rzjis)の規定を参照する。
<樹脂組成物>
 本実施形態の樹脂組成物は、25℃でのチクソトロピック指数が3~10であり、一対の部材と、前記一対の部材の間に配置される樹脂層と、を有する積層体の前記樹脂層を塗布して形成するためのものである。
 本実施形態の樹脂組成物は、25℃でのチクソトロピック指数が3~10であることにより、積層体を構成する部材への塗布性に優れ、かつ塗布後の形状保持性に優れている。このため、部材に対する密着性に優れる樹脂層を所定の位置に形成できる。従って、例えば、積層体を構成する部材があらかじめ個片化されている場合であっても、密着力に優れる樹脂層を所定の位置に形成できる。
 本明細書において積層体を構成する部材が「個片化された」とは、樹脂層を形成する前の部材の大きさ及び形状が、最終的に得られる積層体における当該部材の大きさ及び形状となっていることを意味する。
 本明細書において25℃でのチクソトロピック指数は、25℃、5min-1(rpm)の条件で測定される粘度A(Pa・s)に対する25℃、0.5min-1(rpm)の条件で測定される粘度B(Pa・s)の比(粘度B/粘度A)である。25℃でのチクソトロピック指数は、3~10であることが好ましく、5~7であることがより好ましい。
 塗布性の観点からは、樹脂組成物の25℃、5min-1(rpm)での粘度は0.6Pa・s~3.5Pa・sであることが好ましく、0.8Pa・s~3Pa・sであることがより好ましく、1Pa・s~2.5Pa・sであることがさらに好ましい。
 樹脂組成物の粘度及びチクソトロピック指数は、例えば、樹脂組成物の成分の種類、量等を変更することによって調節できる。
 樹脂組成物に含まれる樹脂としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ウレタン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂が挙げられる。樹脂組成物に含まれる樹脂は、1種であっても2種以上であってもよい。電気絶縁性と接着性の観点からは、樹脂組成物はエポキシ樹脂を含むことが好ましい。樹脂組成物は、必要に応じてフィラー等の樹脂以外の成分を含んでもよい。
 樹脂組成物を用いて形成される積層体における、一対の部材の材質は特に制限されず、金属、半導体、ガラス、樹脂、これらの複合体等が挙げられる。一対の部材の形状は特に制限されず、板、箔、フィルム等が挙げられる。一対の部材における各々の材質及び形状は、同じであっても異なっていてもよい。
 樹脂組成物を用いて形成される樹脂層の厚みは、特に制限されない。樹脂層を設けることによる効果(絶縁性等)を充分に得る観点からは厚みが大きいほど好ましく、製造コストの観点からは厚みが薄いほど好ましい。例えば、80μm~300μmの範囲であってよい。本明細書において樹脂層の厚みは公知の方法により測定でき、5点で測定した値の数平均値とする。
 本実施形態の樹脂組成物を用いて形成される樹脂層を有する積層体の用途は、特に制限されない。例えば、半導体装置が挙げられる。半導体装置の中でも、特に発熱密度が高い部品に好適に用いられる。
<積層体の製造方法>
 本実施形態の樹脂組成物を用いて積層体を製造する方法は、特に制限されない。ある実施態様では、樹脂組成物は、第一部材の上に樹脂層を形成する樹脂層形成工程と、前記樹脂層の上に第二部材を配置する部材配置工程と、を含む積層体の製造方法に用いられる。
 樹脂層形成工程では、第一部材の上に樹脂組成物を塗布して樹脂層を形成する。樹脂組成物を塗布する方法は特に制限されず、ディスペンス法、印刷法、転写法、スプレー法、静電塗布法等の方法を用途に応じて適用できる。第一部材に対する樹脂層の密着性の観点からは、樹脂と溶媒とを含む組成物(ワニス)の状態で樹脂組成物を第一部材の上に塗布し、乾燥して溶媒を除去する方法が好ましい。
 第一部材の上に樹脂層を形成した後の工程における作業性の観点からは、樹脂層形成工程は、樹脂層を加熱する工程を含むことが好ましい。樹脂層を加熱することにより、樹脂層に含まれる溶剤等の揮発成分が効率的に除去される。加熱を行うと樹脂層中の樹脂成分が反応して粘度が上昇し、第二部材への追従性がある程度低下するが、表面粗さが小さい第二部材を樹脂層に接触させることにより、良好な密着性を確保することができる。
 樹脂層を加熱する方法は特に制限されないが、樹脂層をBステージの状態にする方法が好ましい。樹脂層をBステージの状態にする方法及び条件は、特に制限されない。表面が平滑で厚みムラが抑えられた樹脂層を形成する観点からは、第一部材とその上に形成された樹脂層とを一対の熱板で挟み、加圧しながら加熱する方法が好ましい。
 部材配置工程では、第一部材の上に形成された樹脂層の上に第二部材を配置する。第二部材を配置する方法は、特に制限されない。
 第一部材の上に形成された樹脂層の上に第二部材を配置した後、樹脂層を硬化させて積層体を得る。樹脂層を硬化させる方法は、特に制限されない。例えば、樹脂層の上に第二部材が配置された状態で一対の熱板で挟み、加圧しながら加熱することで行ってもよい。
 本実施形態の樹脂組成物を用いて積層体を製造する工程の一例について、図面を参照して説明する。ただし、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 まず、図1に示すように、第一部材1の上に樹脂組成物を塗布し、樹脂層2を形成する。次いで、図2に示すように、樹脂層2が形成された第一部材1を一対の熱板3、4で挟み、加圧しながら加熱して樹脂層2をBステージの状態にする。次いで、図3に示すように、樹脂層2の上に第二部材5を配置し、この状態で一対の熱板6、7で挟み、加圧しながら加熱して樹脂層2を硬化させて、積層体を得る。
 本実施形態の樹脂組成物を用いて製造される積層体は、そのままの状態で使用しても、所望の形状に切断して個片化された状態であってもよい。個片化された積層体を得る方法としては、(1)樹脂層を形成する前の第一部材と、樹脂層上に配置する前の第二部材をあらかじめ個片化する方法、(2)第一部材の上に樹脂層を形成した後に、第一部材と樹脂層の積層体を個片化し、個片化された第二部材を樹脂層の上に配置する方法、(3)樹脂層の上に第二部材を配置し、樹脂層を硬化させて得られた積層体を個片化する方法、等が挙げられる。
 個片化工程において樹脂層の破損、樹脂層への異物の混入等が生じて樹脂層の性能(絶縁性等)が損なわれるのを防ぐ観点からは、樹脂層の切断を伴わない(1)樹脂層を形成する前の第一部材と、樹脂層上に配置する前の第二部材をあらかじめ個片化する方法が好ましい。
 上記の(1)樹脂層を形成する前の第一部材と、樹脂層上に配置する前の第二部材をあらかじめ個片化する方法を採用する場合は、個片化された状態の第一部材の形状にあわせて樹脂層を形成することが好ましい。本実施形態の樹脂組成物は25℃でのチクソトロピック指数が3~10であるため、このような場合であっても所定の位置に樹脂層を形成することができる。
 ある実施態様では、樹脂組成物は、第一部材の上に樹脂層を形成する樹脂層形成工程と、前記樹脂層の上に第二部材を配置する部材配置工程と、を含み、下記条件(1)及び(2)の少なくとも一方を満たす積層体の製造方法に好適に用いられる。
(1)第一部材の樹脂層と接する面の表面粗さ(Rz)が、第二部材の樹脂層と接する面の表面粗さ(Rz)よりも大きい。
(2)第二部材の樹脂層と接する面の表面粗さ(Rz)が30μm以下である。
 上記の製造方法が条件(1)を満たす場合、第一部材の上に形成された樹脂層の第二部材の表面形状への追従性が低下していても、追従性が低下する前の樹脂層は表面粗さが大きい方の第一部材の上に形成され、表面粗さが小さい方の第二部材は追従性が低下した後の樹脂層の上に配置される。第一部材及び第二部材と、樹脂層とを接触させる順序を上記の製造方法のようにすることで、各部材に対する樹脂層の密着性に優れる積層体を得ることができる。
 上記の積層体の製造方法が条件(2)を満たす場合、第一部材の上に形成された樹脂層の第二部材の表面形状への追従性が低下していても、第二部材の樹脂層と接する面の表面粗さ(Rz)が30μm以下であることで、充分な密着性が得られる。
 上記の積層体の製造方法において、第一部材と第二部材の表面粗さ(Rz)は、条件(1)及び(2)の少なくとも一方を満たすのであれば特に制限されず、樹脂層に含まれる樹脂の種類、積層体に求められる密着性の程度等に応じて選択できる。ここで、各部材の樹脂層と接する面内に2種類以上の素材からなる部分が存在していたり、同一素材からなっていても2箇所以上に電極が存在していたりするために、表面粗さの異なる部分が2箇所以上存在する場合には、表面粗さが最大となる部分の表面粗さをその部材の表面粗さとする。
 第一部材の表面粗さ(Rz)は、例えば、5μm以上であってよく、10μmであってよく、20μm以上であってよい。第一部材の表面粗さ(Rz)は、例えば、80μm以下であってよい。
 第二部材の表面粗さ(Rz)は、例えば、20μm以下であってよく、10μm以下であってよく、5μm以下であってよい。第二部材の表面粗さ(Rz)は、例えば、3μm以上であってよい。
 第一部材及び第二部材は、表面粗化処理がされていてもよい。一般に、部材が樹脂層と接する面の表面粗さが大きいほど、樹脂層が部材の表面の凹凸に入り込むことで発現するアンカー効果がより大きくなり、接着強度が高くなる傾向にある。その結果、樹脂層の主に平面方向に掛かる接着力を評価するせん断強度、樹脂層の主に垂直方向に掛かる接着力を評価する引き剥がしピール強度等の向上が期待できる。なお、部材と樹脂層とを接合する際にボイドの発生が少ないことが好ましく、ボイドの発生無しに密着出来ることがより好ましい。部材と樹脂層とを接合する際のボイドの発生が少ないと、絶縁性が向上する傾向にある。
 表面粗化処理がされた部材は、もともと表面が粗い素材を用いて得ても、平滑な表面を有する素材を粗化して得てもよい。表面租化処理の方法は特に制限されず、物理的手法により行っても、化学的手法により行ってもよい。物理的手法としては、やすりがけ、サンドブラスト処理、レーザー照射等が挙げられる。化学的処理としては、素材が銅である場合はマグダミット処理、CZ処理、黒化処理、エッチング処理等が挙げられる。素材がアルミニウムである場合は、アルマイト処理が挙げられる。表面処理の手法はこれらに限定されず、物理的処理又は化学的な処理を単独で行っても、物理的処理と化学的な処理を組み合わせて行っても、2種以上の化学処理を組み合わせて行っても、2種以上の物理的処理を組み合わせて行ってもよい。
 第一部材及び第二部材の樹脂層と接する面は、表面処理剤が付与されていてもよい。表面処理剤としては、樹脂の濡れ性向上を目的とする固形又は液状の熱硬化性樹脂のモノマー塗布及び熱可塑性樹脂の溶剤塗布、シラノールカップリング剤、チタネート性カップリング剤、アルミノシリケート剤、レベリング剤等の表面保護剤などが挙げられる。
<エポキシ樹脂組成物>
 本実施形態の樹脂組成物は、エポキシモノマーと、硬化剤と、を含むエポキシ樹脂組成物であってもよい。
[エポキシモノマー]
 エポキシ樹脂組成物に含まれるエポキシモノマーは、1種単独でも、2種以上であってもよい。また、エポキシモノマーがオリゴマー又はプレポリマーの状態になったものを含んでいてもよい。
 エポキシモノマーの種類は特に制限されず、積層体の用途等に応じて選択できる。樹脂層に高い熱伝導性が求められる場合は、メソゲン骨格を有し、且つ、1分子内に2個のグリシジル基を有するエポキシモノマー(以下、特定エポキシモノマーともいう)を用いてもよい。特定エポキシモノマーを含むエポキシ樹脂組成物を用いて形成される樹脂層は、高い熱伝導率を示す傾向にある。
 本明細書において「メソゲン骨格」とは、液晶性を発現する可能性のある分子構造を示す。具体的には、ビフェニル骨格、フェニルベンゾエート骨格、アゾベンゼン骨格、スチルベン骨格、これらの誘導体等が挙げられる。メソゲン骨格を有するエポキシモノマーを含むエポキシ樹脂組成物は、硬化時に高次構造を形成し易く、硬化物を作製した場合に、より高い熱伝導率を達成できる傾向にある。
 特定エポキシモノマーとしては、例えば、ビフェニル型エポキシモノマー及び3環型エポキシモノマーが挙げられる。
 ビフェニル型エポキシモノマーとしては、4,4’-ビス(2,3-エポキシプロポキシ)ビフェニル、4,4’-ビス(2,3-エポキシプロポキシ)-3,3’,5,5’-テトラメチルビフェニル、エピクロルヒドリンと4,4’-ビフェノール又は4,4’-(3,3’,5,5’-テトラメチル)ビフェノールとを反応させて得られるエポキシモノマー、α-ヒドロキシフェニル-ω-ヒドロポリ(ビフェニルジメチレン-ヒドロキシフェニレン)等が挙げられる。ビフェニル型エポキシ樹脂としては、「YX4000」、「YL6121H」(以上、三菱化学株式会社製)、「NC-3000」、「NC-3100」(以上、日本化薬株式会社製)等の製品名により市販されているものが挙げられる。
 3環型エポキシモノマーとしては、ターフェニル骨格を有するエポキシモノマー、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-ベンゼン、下記一般式(I)で表される化合物等が挙げられる。
 より高い熱伝導率を達成する観点から、特定エポキシモノマーは、エポキシモノマーとして1種単独で用いて硬化したときに、高次構造を形成可能であることが好ましく、スメクチック構造を形成可能であることがより好ましい。このようなエポキシモノマーとしては、下記一般式(I)で表される化合物を挙げることができる。エポキシ樹脂組成物が下記一般式(I)で表される化合物を含むことにより、より高い熱伝導率を達成することが可能となる。
Figure JPOXMLDOC01-appb-C000003

 
 一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。R~Rはそれぞれ独立に、水素原子又は炭素数1又は2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることが更に好ましい。また、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個すべてが水素原子であることが更に好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
 なお、一般式(I)で表される化合物の好ましい例は、例えば、特開2011-74366号公報に記載されている。具体的に、一般式(I)で表される化合物としては、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート及び4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)-3-メチルベンゾエートからなる群より選択される少なくとも1種の化合物が好ましい。
 ここで、高次構造とは、その構成要素がミクロに配列している状態のことであり、例えば、結晶相及び液晶相が相当する。このような高次構造が存在しているか否かは、偏光顕微鏡での観察によって容易に判断することが可能である。すなわち、クロスニコル状態での観察において、偏光解消による干渉模様が見られる場合は高次構造が存在していると判断できる。高次構造は、通常では樹脂中に島状に存在しており、ドメイン構造を形成している。そして、ドメイン構造を形成している島のそれぞれを高次構造体という。高次構造体を構成する構造単位同士は、一般的には共有結合で結合されている。
 メソゲン骨格に由来する規則性の高い高次構造には、ネマチック構造、スメクチック構造等がある。ネマチック構造は分子長軸が一様な方向に向いており、配向秩序のみを持つ液晶構造である。これに対して、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、一定周期の層構造を有する液晶構造である。また、スメクチック構造の同一の周期の構造内部では、層構造の周期の方向が一様である。すなわち、分子の秩序性は、ネマチック構造よりもスメクチック構造の方が高い。秩序性の高い高次構造が半硬化物又は硬化物中に形成されると、熱伝導の媒体であるフォノンが散乱するのを抑制することができる。このため、ネマチック構造よりもスメクチック構造の方が、熱伝導率が高くなる。
 すなわち、分子の秩序性はネマチック構造よりもスメクチック構造の方が高く、硬化物の熱伝導性もスメクチック構造を示す場合の方が高くなる。一般式(I)で表される化合物を含むエポキシ樹脂組成物は、硬化剤と反応して、スメクチック構造を形成できるので、高い熱伝導率を発揮できると考えられる。
 エポキシ樹脂組成物を用いてスメクチック構造の形成が可能であるか否かは、下記の方法により判断することができる。
 CuKα1線を用い、管電圧40kV、管電流20mA、2θが0.5°~30°の範囲で、X線解析装置(例えば、株式会社リガク製)を用いてX線回折測定を行う。2θが1°~10°の範囲に回折ピークが存在する場合には、周期構造がスメクチック構造を含んでいると判断される。なお、メソゲン構造に由来する規則性の高い高次構造を有する場合には、2θが1°~30°の範囲に回折ピークが現れる。
 エポキシ樹脂組成物は、2種以上の特定エポキシモノマーと、硬化剤と、含有し、前記2種以上の特定エポキシモノマーは、互いに相溶可能であり、前記硬化剤と反応することによりスメクチック構造を形成可能である、エポキシ樹脂組成物(以下、「特定エポキシ樹脂組成物」とも称する)であってもよい。特定エポキシ樹脂組成物は、融点が低く、かつ硬化後の熱伝導性に優れている。
 本明細書において「2種以上のエポキシモノマー」とは、分子構造が異なる2種以上のエポキシモノマーを意味する。ただし、立体異性体(光学異性体、幾何異性体等)の関係にあるエポキシモノマーは「2種以上のエポキシモノマー」に該当せず、同一種類のエポキシモノマーとみなす。
 特定エポキシ樹脂組成物が、融点が低く、硬化後の熱伝導性に優れている理由は明らかではないが、2種以上の特定エポキシモノマーが互いに相溶し、スメクチック構造を形成することで、硬化前の特定エポキシ樹脂組成物の融点を低下させ、硬化後に高い熱伝導性を発揮することができると考えられる。
 特定エポキシ樹脂組成物は2種以上の特定エポキシモノマーを含み、特定エポキシモノマーは互いに相溶可能である。互いに相溶可能な2種以上の特定エポキシモノマーを混合した混合物(以下、「エポキシモノマー混合物」ともいう。)の融点は、エポキシモノマー混合物を構成する特定エポキシモノマーのうち、最も融点が高い特定エポキシモノマーの融点よりも低くなる現象が見られる。したがって、特定エポキシ樹脂組成物の低融点化を発揮することが可能となる。
 また、特定エポキシ樹脂組成物を半硬化物又は硬化物にしたときの熱伝導率は、エポキシモノマー混合物を構成する特定エポキシモノマー単体を半硬化物又は硬化物にしたときの熱伝導率よりも高くすることが可能となる。
 エポキシモノマー混合物が3種以上の特定エポキシモノマーを含む場合、エポキシモノマー混合物を構成する全ての特定エポキシモノマーからなるエポキシモノマー混合物の全体として相溶可能であればよく、3種以上の特定エポキシモノマーから選択される任意の2種の特定エポキシモノマーが互いに相溶可能でなくともよい。
 本明細書において「相溶可能」とは、エポキシモノマー混合物を溶融させて、自然冷却した後に、特定エポキシ樹脂組成物を半硬化物又は硬化物とした場合に、特定エポキシモノマーに由来する相分離状態が観察されないことを意味する。また、半硬化物又は硬化物とする前のエポキシモノマー混合物において、各特定エポキシモノマーが相分離していても、半硬化物又は硬化物としたときに、相分離状態が観察されなければ、エポキシモノマー混合物に含まれる特定エポキシモノマーは互いに相溶可能であると判断する。
 本明細書における「特定エポキシモノマーが互いに相溶可能である」とは、特定エポキシ樹脂組成物の硬化温度において、エポキシモノマー混合物を構成する各特定エポキシモノマーが相分離していない状態になることが可能であることを意味する。
 特定エポキシモノマーが互いに相溶可能であるか否かは、特定エポキシ樹脂組成物を半硬化物又は硬化物にしたときの相分離状態の有無によって判断することができる。例えば、光学顕微鏡を用いて後述する硬化温度における特定エポキシ樹脂組成物の半硬化物又は硬化物を観察することで判断できる。より詳細には、以下の方法により判断することができる。エポキシモノマー混合物を、エポキシモノマー混合物が等方相に転移する温度以上に熱して溶融させ、次いで、溶融したエポキシモノマー混合物を自然冷却させる。この過程において、特定エポキシ樹脂組成物を用いて半硬化物又は硬化物を形成する際の温度、即ち、硬化温度における、特定エポキシ樹脂組成物の半硬化物又は硬化物の光学顕微鏡像(倍率:100倍)を観察し、エポキシモノマー混合物に含まれる各特定エポキシモノマーが相分離しているか否かを観察することで判断する。
 硬化温度は、特定エポキシ樹脂組成物に応じて適宜選択することができる。硬化温度としては、100℃以上であることが好ましく、100℃~250℃であることがより好ましく、120℃~210℃であることが更に好ましい。
 上記方法の他に、特定エポキシモノマーが互いに相溶可能であるか否かは、エポキシモノマー混合物に由来する半硬化物又は硬化物を、走査型電子顕微鏡(SEM)を用いて観察することによって調べることができる。エポキシモノマー混合物に由来する半硬化物又は硬化物の断面を、例えば、ダイヤモンドカッターで切り出した後、研磨紙及びスラリーを用いて研磨し、その断面の状態を、SEMを用いて例えば、2000倍の倍率で観察する。相分離する組み合わせのエポキシモノマーからなるエポキシモノマー混合物に由来する半硬化物又は硬化物である場合、相分離している様子が観察できる。
 また、相溶可能な組み合わせの特定エポキシモノマーからなるエポキシモノマー混合物の融点は、エポキシモノマー混合物を構成する特定エポキシモノマーの中で、最も融点が高い特定エポキシモノマーの融点よりも低くなる現象が見られる。ここでいう融点とは、液晶相を有するエポキシモノマーでは、エポキシモノマーが液晶相から等方相へと相転移するときの温度を指す。また、液晶相を有さないエポキシモノマーでは、物質が固体(結晶相)から液体(等方相)へと状態変化するときの温度を指す。
 液晶相とは、結晶状態(結晶相)と液体状態(等方相)との中間に位置する相のひとつであり、分子の配向方向は何らかの秩序は保っているものの、3次元的な位置の秩序を失った状態を指す。
 液晶相の有無は、室温(例えば、25℃)から昇温させていく過程における物質の状態変化を、偏光顕微鏡を用いて観察する方法によって判別できる。クロスニコル状態での観察において、結晶相及び液晶相は、偏光解消による干渉縞が見られ、等方相は暗視野に見える。また、結晶相から液晶相への転移は、流動性の有無により確認できる。つまり、液晶相を発現するとは、流動性を有し、かつ偏光解消による干渉縞が観察される温度領域を有していることである。
 すなわち、クロスニコル状態での観察において、特定エポキシモノマー又はエポキシモノマー混合物が流動性を有し、且つ偏光解消による干渉縞が観察される温度領域を持っていることが確認されれば、特定エポキシモノマー又はエポキシモノマー混合物は液晶相を有すると判断する。
 エポキシモノマー混合物が液晶相を有する場合、その温度領域の幅は、10℃以上であることが好ましく、20℃以上であることがより好ましく、40℃以上であることが更に好ましい。温度領域が10℃以上であると、高い熱伝導率を達成できる傾向にある。更に、温度領域の幅は広ければ広いほど、より高熱伝導率が得られ易く好ましい。
 また、特定エポキシモノマー又はエポキシモノマー混合物の融点は、示差走査熱量測定装置(DSC)を用いて、25℃~350℃までの温度範囲を、10℃/分の昇温速度の条件で示差走査熱量測定を行い、相転移に伴うエネルギー変化(吸熱反応)が起こる温度として測定される。特定エポキシモノマー又はエポキシモノマー混合物の融点が120℃以上であると、作業性及び反応性の観点から好ましくない。
 特定エポキシモノマーが互いに相溶可能であること、即ち、エポキシモノマー混合物に由来する半硬化物又は硬化物において、特定エポキシモノマーが互いに相分離していない状態であると、特定エポキシモノマーに硬化剤、必要に応じて含まれる無機充填材等を加えて特定エポキシ樹脂組成物を構成した場合でも、特定エポキシ樹脂組成物の半硬化物又は硬化物において、特定エポキシモノマーが互いに相分離していない状態となる。
 特定エポキシ樹脂組成物に含まれる2種以上の特定エポキシモノマーは、互いに相溶可能であり、後述する硬化剤と反応することによりスメクチック構造を形成可能であれば特に制限はなく、通常用いられるメソゲン骨格を有するエポキシモノマーから選択することができる。例えば、特定エポキシモノマーとして上に例示したものから選択することができる。
 特定エポキシ樹脂組成物は、2種以上の特定エポキシモノマーとして、一般式(I)で表される化合物と、一般式(I)で表される化合物と異なり、かつ、一般式(I)で表される化合物と相溶可能な特定エポキシモノマー(以下、「一般式(I)で表される化合物と異なる特定エポキシモノマー」という。)と、を含むことが好ましい。エポキシ樹脂組成物は一般式(I)で表される化合物と、一般式(I)で表される化合物と異なる特定エポキシモノマーと、を含むことで、効果的に低融点化及び熱伝導率性の向上の両立を図ることが可能になる。
 一般式(I)で表される化合物と、一般式(I)で表される化合物と異なる特定エポキシモノマーと、の混合比率としては、低融点化及び熱伝導率性の向上の両立を図る観点から、エポキシ当量数比で、5:5~9.5:0.5(一般式(I)で表される化合物:一般式(I)で表される化合物と異なる特定エポキシモノマー)の範囲であることが好ましく、6:4~9:1の範囲であることがより好ましく、7:3~9:1の範囲であることが更に好ましい。
 エポキシモノマー混合物中の特定エポキシモノマーの含有率は、エポキシモノマー混合物と後述の硬化剤とが反応して、スメクチック構造を形成可能であれば特に制限はなく、適宜選択することができる。低融点化の観点より、特定エポキシモノマーの含有率は、エポキシモノマー混合物の全質量に対して5質量%以上であることが好ましく、10質量%~90質量%であることがより好ましく、100質量%であることが更に好ましい。
 エポキシ樹脂組成物中の特定エポキシモノマーの総含有率は、特に制限はない。熱硬化性及び熱伝導率の観点から、特定エポキシモノマーの総含有率は、エポキシ樹脂組成物の全質量に対して3質量%~10質量%であることが好ましく、3質量%~8質量%であることがより好ましい。
[硬化剤]
 エポキシ樹脂組成物は、硬化剤を含有する。硬化剤は、特定エポキシモノマーと硬化反応が可能な化合物であれば特に制限されず、通常用いられる硬化剤を適宜選択して用いることができる。硬化剤の具体例としては、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤等の重付加型硬化剤、イミダゾール等の触媒型硬化剤などが挙げられる。これらの硬化剤は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。
 中でも耐熱性の観点から、硬化剤としては、アミン系硬化剤及びフェノール系硬化剤からなる群より選択される少なくとも1種を用いることが好ましく、更に、保存安定性の観点から、フェノール系硬化剤の少なくとも1種を用いることがより好ましい。
 アミン系硬化剤としては、エポキシモノマーの硬化剤として通常用いられるものを特に制限なく用いることができ、市販されているものを用いてもよい。中でも硬化性の観点から、アミン系硬化剤としては、2以上の官能基を有する多官能硬化剤であることが好ましく、更に熱伝導性の観点から、剛直な骨格を有する多官能硬化剤であることがより好ましい。
 2官能のアミン系硬化剤としては、具体的には、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン等が挙げられる。
 中でも、熱伝導率の観点から、4,4’-ジアミノジフェニルメタン及び1,5-ジアミノナフタレン及び4,4’-ジアミノジフェニルスルフォンからなる群より選択される少なくとも1種であることが好ましく、1,5-ジアミノナフタレンであることがより好ましい。
 フェノール系硬化剤としては、エポキシモノマーの硬化剤として通常用いられるものを特に制限なく用いることができ、市販されているものを用いてもよい。例えば、フェノール及びそれらをノボラック化したフェノール樹脂を用いることができる。
 フェノール硬化剤としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等の単官能の化合物;カテコール、レゾルシノール、ハイドロキノン等の2官能の化合物;1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能の化合物などが挙げられる。また、硬化剤としては、これらフェノール硬化剤をメチレン鎖等で連結してノボラック化したフェノールノボラック樹脂を用いることができる。
 フェノールノボラック樹脂としては、具体例には、クレゾールノボラック樹脂、カテコールノボラック樹脂、レゾルシノールノボラック樹脂、ヒドロキノンノボラック樹脂等の1種のフェノール化合物をノボラック化した樹脂;カテコールレゾルシノールノボラック樹脂、レゾルシノールヒドロキノンノボラック樹脂等の2種又はそれ以上のフェノール化合物をノボラック化した樹脂などが挙げられる。
 フェノール系硬化剤としてフェノールノボラック樹脂が用いられる場合、フェノールノボラック樹脂は、下記一般式(II-1)及び(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000004

 
 一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立に、アルキル基、アリール基又はアラルキル基を示す。R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を示す。m21及びm22はそれぞれ独立に0~2の整数を示す。n21及びn22はそれぞれ独立に1~7の整数を示す。
 アルキル基は、直鎖状、分岐鎖状、及び環状のいずれであってもよい。
 アリール基は、芳香族環にヘテロ原子を含む構造であってもよい。この場合、ヘテロ原子と炭素の合計数が6~12となるヘテロアリール基であることが好ましい。
 アラルキル基におけるアルキレン基は、鎖状、分岐鎖状、及び環状のいずれであってもよい。アラルキル基におけるアリール基は、芳香族環にヘテロ原子を含む構造であってもよい。この場合、ヘテロ原子と炭素の合計数が6~12となるヘテロアリール基であることが好ましい。
 上記一般式(II-1)及び一般式(II-2)において、R21及びR24はそれぞれ独立に、アルキル基、芳香族基(アリール基)、又はアラルキル基を表す。これらアルキル基、芳香族基、及びアラルキル基は、可能であれば更に置換基を有していてもよい。置換基としては、アルキル基(但し、R21及びR24が、アルキル基の場合を除く)、芳香族基、ハロゲン原子、水酸基等を挙げることができる。
 m21及びm22はそれぞれ独立に、0~2の整数を表し、m21又はm22が2の場合、2つのR21又はR24は同一であっても異なっていてもよい。m21及びm22は、それぞれ独立に、0又は1であることが好ましく、0であることがより好ましい。
 n21及びn22はフェノールノボラック樹脂に含まれる上記一般式(II-1)及び(II-2)で表される構造単位の数であり、それぞれ独立に、1~7の整数を表す。
 上記一般式(II-1)及び一般式(II-2)において、R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基、又はアラルキル基を表す。R22、R23、R25及びR26で表されるアルキル基、アリール基、及びアラルキル基は、可能であれば更に置換基を有していてもよい。置換基としては、アルキル基(但し、R22、R23、R25及びR26が、アルキル基の場合を除く)、アリール基、ハロゲン原子、水酸基等を挙げることができる。
 一般式(II-1)及び一般式(II-2)におけるR22、R23、R25及びR26は、保存安定性と熱伝導性の観点から、それぞれ独立に、水素原子、アルキル基、又はアリール基であることが好ましく、水素原子、炭素数1~4であるアルキル基又は炭素数6~12であるアリール基であることがより好ましく、水素原子であることが更に好ましい。
 更に、耐熱性の観点から、R22及びR23の少なくとも一方はアリール基であることが好ましく、炭素数6~12であるアリール基であることがより好ましい。また、R25及びR26の少なくとも一方は、同様にアリール基であることが好ましく、炭素数6~12であるアリール基であることがより好ましい。
 なお、上記アリール基は芳香族環にヘテロ原子を含む構造であってもよい。この場合、ヘテロ原子と炭素の合計数が6~12となるヘテロアリール基であることが好ましい。
 フェノール系硬化剤は、上記一般式(II-1)又は一般式(II-2)で表される構造単位を有する化合物を1種単独で含んでもよく、2種以上を含んでいてもよい。好ましくは、上記一般式(II-1)で表されるレゾルシノールに由来する構造単位を有する化合物の少なくとも1種を含む場合である。
 一般式(II-1)で表される構造単位を有する化合物は、レゾルシノール以外のフェノール化合物に由来する部分構造の少なくとも1種を更に含んでいてもよい。上記一般式(II-1)において、レゾルシノール以外のフェノール化合物に由来する部分構造としては、例えば、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、及び1,3,5-トリヒドロキシベンゼンに由来する部分構造が挙げられる。これらに由来する部分構造は、1種単独でも、2種以上を組み合わせて含んでいてもよい。
 また、上記一般式(II-2)で表される構造単位を有する化合物は、カテコール以外のフェノール化合物に由来する部分構造の少なくとも1種を含んでいてもよい。上記一般式(II-2)において、カテコール以外のフェノール化合物に由来する部分構造としては、例えば、フェノール、クレゾール、レゾルシノール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、及び1,3,5-トリヒドロキシベンゼンに由来する部分構造が挙げられる。これらに由来する部分構造は、1種単独でも、2種以上を組み合わせて含んでいてもよい。
 ここで、フェノール化合物に由来する部分構造とは、フェノール化合物のベンゼン環部分から1個又は2個の水素原子を取り除いて構成される1価又は2価の基を意味する。なお、水素原子が取り除かれる位置は特に制限されない。
 また、上記一般式(II-1)で表される構造単位を有する化合物において、レゾルシノールに由来する部分構造の含有率については特に制限されない。弾性率の観点から、上記一般式(II-1)で表される構造単位を有する化合物の全質量に対するレゾルシノールに由来する部分構造の含有率が55質量%以上であることが好ましく、ガラス転移温度(Tg)と線膨張率の観点から、80質量%以上であることがより好ましく、熱伝導性の観点から、90質量%以上であることが更に好ましい。
 更に、フェノールノボラック樹脂は、下記一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有するノボラック樹脂を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000007

 
 
Figure JPOXMLDOC01-appb-C000008

 
 一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34は、それぞれ独立に、正の整数を示し、それぞれの構造単位が含有される数を示す。また、Ar31~Ar34は、それぞれ独立に、下記一般式(III-a)で表される基又は下記一般式(III-b)で表される基を示す。
Figure JPOXMLDOC01-appb-C000009

 
 一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に、水素原子又は水酸基を示す。R32及びR33は、それぞれ独立に、水素原子又は炭素数1~8のアルキル基を示す。
 一般式(III-1)~一般式(III-4)のうち少なくとも1つで表される部分構造を有する硬化剤は、2価のフェノール化合物をノボラック化する後述の製造方法によって副生成的に生成可能なものである。
 一般式(III-1)~一般式(III-4)で表される部分構造は、化合物の主鎖骨格として含まれていてもよく、又は側鎖の一部として含まれていてもよい。更に、上記一般式(III-1)~一般式(III-4)のいずれか1つで表される部分構造を構成するそれぞれの構成単位は、ランダムに含まれていてもよいし、規則的に含まれていてもよいし、ブロック状に含まれていてもよい。また、上記一般式(III-1)~一般式(III-4)において、水酸基の置換位置は芳香族環上であれば特に制限されない。
 一般式(III-1)~一般式(III-4)のそれぞれについて、複数存在するAr31~Ar34は全て同一の原子団であってもよいし、2種以上の原子団を含んでいてもよい。なお、Ar31~Ar34は、それぞれ独立に、上記一般式(III-a)及び一般式(III-b)のいずれか1つで表される基を表す。
 一般式(III-a)及び一般式(III-b)におけるR31及びR34はそれぞれ独立に、水素原子又は水酸基であるが、熱伝導性の観点から水酸基であることが好ましい。また、R31及びR34の置換位置は特に制限されない。
 上記一般式(III-a)及び一般式(III-b)におけるR32及びR33はそれぞれ独立に、水素原子又は炭素数1~8であるアルキル基を示す。R32及びR33における炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、及びn-オクチル基が挙げられる。また、一般式(III-a)及び一般式(III-b)におけるR32及びR33の置換位置は特に制限されない。
 一般式(III-a)及び一般式(III-b)におけるAr31~Ar34は、より優れた熱伝導性を達成する観点から、ジヒドロキシベンゼンに由来する基(一般式(III-a)においてR31が水酸基であって、R32及びR33が水素原子である基)、及びジヒドロキシナフタレンに由来する基(一般式(III-b)においてR34が水酸基である基)から選択される少なくとも1種であることが好ましい。
 ここで、「ジヒドロキシベンゼンに由来する基」とは、ジヒドロキシベンゼンの芳香環部分から水素原子を2つ取り除いて構成される2価の基を意味し、水素原子が取り除かれる位置は特に制限されない。また、「ジヒドロキシナフタレンに由来する基」についても同様の意味である。
 また、エポキシ樹脂組成物の生産性及び流動性の観点からは、Ar31~Ar34は、それぞれ独立に、ジヒドロキシベンゼンに由来する基であることがより好ましく、1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基からなる群より選択される少なくとも1種であることが更に好ましい。特に、熱伝導性を特に高める観点から、Ar31~Ar34は、少なくともレゾルシノールに由来する基を含むことが好ましい。また、熱伝導性を特に高める観点から、n31~n34で表される構造単位は、レゾルシノールに由来する基を含んでいることが好ましい。
 上記一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有する化合物が、レゾルシノールに由来する構造単位を含む場合、レゾルシノールに由来する基を含む構造単位の含有率は、弾性率の観点から、上記一般式(III-1)~一般式(III-4)のうち少なくとも1つで表される構造を有する化合物全質中において55質量%以上であることが好ましく、Tg及び線膨張率の観点から、80質量%以上であることがより好ましく、熱伝導性の観点から、90質量%以上であることが更に好ましい。
 一般式(III-1)~一般式(III-4)におけるmx及びnx(xは31、32、33又は34のいずれかの同一の値)の比は、流動性の観点から、mx/nx=20/1~1/5であることが好ましく、20/1~5/1であることがより好ましく、20/1~10/1であることが更に好ましい。また、mx及びnxの合計値は、流動性の観点から20以下であることが好ましく、15以下であることがより好ましく、10以下であることが更に好ましい。なお、m及びnの合計値の下限値は特に制限されない。
 mx及びnxは構造単位数を表し、対応する構造単位が、分子中にどの程度付加されているかを示すものである。したがって、単一の分子については整数値を示す。なお、(mx/nx)及び(mx+nx)におけるmx及びnxは、複数種の分子の集合体の場合には、平均値である有理数を示す。
 上記一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有するフェノールノボラック樹脂は、特にAr31~Ar34が置換又は非置換のジヒドロキシベンゼン及び置換又は非置換のジヒドロキシナフタレンの少なくともいずれか1種である場合、これらを単純にノボラック化したフェノール樹脂等と比較して、その合成が容易であり、融点の低い硬化剤が得られる傾向にある。したがって、このようなフェノール樹脂を硬化剤として含むことで、エポキシ樹脂組成物の製造及び取り扱いも容易になる等の利点がある。
 なお、フェノールノボラック樹脂が一般式(III-1)~一般式(III-4)のいずれかで表される部分構造を有するか否かは、電界脱離イオン化質量分析法(FD-MS)によって、そのフラグメント成分として、上記一般式(II-1)~一般式(II-4)のいずれかで表される部分構造に相当する成分が含まれるか否かによって判断することができる。
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有するフェノールノボラック樹脂の分子量は特に制限されない。流動性の観点から、数平均分子量(Mn)としては2000以下であることが好ましく、1500以下であることがより好ましく、350~1500であることが更に好ましい。また、重量平均分子量(Mw)としては2000以下であることが好ましく、1500以下であることがより好ましく、400~1500であることが更に好ましい。Mn及びMwは、GPC(ゲルパーミエーションクロマトグラフィ)を用いた通常の方法により測定される。
 一般式(III-1)~一般式(III-4)からなる群より選択されるうち少なくとも1つで表される部分構造を有するフェノールノボラック樹脂の水酸基当量は特に制限されない。耐熱性に関与する架橋密度の観点から、水酸基当量は平均値で45g/eq~150g/eqであることが好ましく、50g/eq~120g/eqであることがより好ましく、55g/eq~120g/eqであることが更に好ましい。なお、本明細書において、水酸基当量は、JIS K0070:1992に準拠して測定された値をいう。
 フェノールノボラック樹脂は、フェノールノボラック樹脂を構成するフェノール化合物であるモノマーを含んでいてもよい。フェノールノボラック樹脂を構成するフェノール化合物であるモノマーの含有率(以下、「モノマー含有率」ともいう。)としては特に制限されない。熱伝導性及び成形性の観点から、フェノールノボラック樹脂中のモノマー含有率は、5質量%~80質量%であることが好ましく、15質量%~60質量%であることがより好ましく、20質量%~50質量%であることが更に好ましい。
 モノマー含有率が80質量%以下であると、硬化反応の際に架橋に寄与しないモノマーが少なくなり、架橋に寄与する高分子量体が多くを占めることになるため、より高密度な高次構造が形成され、熱伝導率が向上にある。また、モノマー含有率が5質量%以上であることで、成形の際に流動し易いため、必要に応じて含まれる無機充填材との密着性がより向上し、より優れた熱伝導性と耐熱性が達成される傾向にある。
 エポキシ樹脂組成物中の硬化剤の含有量は特に制限されない。例えば、硬化剤がアミン系硬化剤の場合は、アミン系硬化剤の活性水素の当量数(アミン当量数)と、エポキシモノマーのエポキシ基の当量数との比(アミン当量数/エポキシ当量数)が0.5~2.0となることが好ましく、0.8~1.2となることがより好ましい。また、硬化剤がフェノール系硬化剤の場合は、フェノール系硬化剤のフェノール性水酸基の当量(フェノール性水酸基当量数)と、エポキシモノマーのエポキシ基当量数との比(フェノール性水酸基の当量数/エポキシ基の当量数)が0.5~2.0となることが好ましく、0.8~1.2となることがより好ましい。
(硬化促進剤)
 エポキシ樹脂組成物は、硬化促進剤を含んでもよい。硬化剤と硬化促進剤とを併用することで、更に十分に硬化させることができる。硬化促進剤の種類及び含有量は特に制限されず、反応速度、反応温度及び保管性の観点から、適切なものを選択することができる。
 具体的には、イミダゾール化合物、第3級アミン化合物、有機ホスフィン化合物、有機ホスフィン化合物と有機ボロン化合物との錯体等が挙げられる。中でも、耐熱性の観点から、有機ホスフィン化合物、及び有機ホスフィン化合物と有機ボロン化合物との錯体からなる群より選択される少なくとも1つであることが好ましい。
 有機ホスフィン化合物としては、具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。
 また、有機ホスフィン化合物と有機ボロン化合物との錯体としては、具体的には、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ-p-トリルボレート、テトラブチルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・n-ブチルトリフェニルボレート、ブチルトリフェニルホスホニウム・テトラフェニルボレート、メチルトリブチルホスホニウム・テトラフェニルボレート等が挙げられる。
 これら硬化促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 硬化促進剤の2種以上を組み合わせて用いる場合、混合割合は半硬化エポキシ樹脂組成物に求める特性(例えば、どの程度の柔軟性を必要とするか)に応じて特に制限されることなく決めることができる。
 エポキシ樹脂組成物が硬化促進剤を含む場合、エポキシ樹脂組成物中の硬化促進剤の含有率は特に制限されない。成形性の観点からは、硬化促進剤の含有率は、エポキシモノマーと硬化剤の合計質量の0.5質量%~1.5質量%であることが好ましく、0.5質量%~1質量%であることがより好ましく、0.6質量%~1質量%であることが更に好ましい。
(無機充填材)
 エポキシ樹脂組成物は、無機充填材を含んでもよい。無機充填材を含むことにより、エポキシ樹脂組成物は、高い熱伝導率を達成することができる。
 無機充填材は非導電性であっても、導電性であってもよい。非導電性の無機充填材を使用することによって絶縁性の低下が抑制される傾向にある。また、導電性の無機充填材を使用することによって熱伝導性がより向上する傾向にある。
 非導電性の無機充填材として具体的には、酸化アルミニウム(アルミナ)、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、シリカ(酸化ケイ素)、酸化ケイ素、水酸化アルミニウム、硫酸バリウム等が挙げられる。また導電性の無機充填材としては、金、銀、ニッケル、銅等が挙げられる。中でも熱伝導率の観点から、無機充填材としては、酸化アルミニウム(アルミナ)、窒化ホウ素、酸化マグネシウム、窒化アルミニウム及びシリカ(酸化ケイ素)からなる群より選択される少なくとも1種であることが好ましく、窒化ホウ素及び酸化アルミニウム(アルミナ)からなる群より選択される少なくとも1種であることがより好ましい。
 これら無機充填材は、1種を単独で用いてもよく、2種以上を組み合わせて用いることができる。
 無機充填材は、2種以上の互いに体積平均粒子径の異なるものを混合して用いることが好ましい。これにより大粒子径の無機充填材の空隙に小粒子径の無機充填材がパッキングされることによって、単一粒子径の無機充填材のみを使用するよりも無機充填剤が密に充填されるため、より高熱伝導率を発揮することが可能となる。
 具体的には、無機充填材として酸化アルミニウムを使用する場合、無機充填材中に、体積平均粒子径16μm~20μmの酸化アルミニウムを60体積%~75体積%、体積平均粒子径2μm~4μmの酸化アルミニウムを10体積%~20体積%、体積平均粒子径0.3μm~0.5μmの酸化アルミニウムを10体積%~20体積%の範囲の割合で混合することによって、より最密充填化が可能となる。
 更に、無機充填材として窒化ホウ素及び酸化アルミニウムを併用する場合、無機充填材中に、体積平均粒子径20μm~100μmの窒化ホウ素を60体積%~90体積%、体積平均粒子径2μm~4μmの酸化アルミニウムを5体積%~20体積%、体積平均粒子径0.3μm~0.5μmの酸化アルミニウムを5体積%~20体積%の範囲の割合で混合することによって、より高熱伝導化が可能となる。無機充填材の体積平均粒子径は、レーザー回折式粒度分布測定装置を用いて通常の条件で測定される。
 無機充填材の体積平均粒子径(D50)は、レーザー回折法を用いて測定することができる。例えば、エポキシ樹脂組成物中の無機充填剤を抽出し、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製、商品名:LS230)を用いて測定する。具体的には、有機溶剤、硝酸、王水等を用い、エポキシ樹脂組成物中から無機充填剤成分を抽出し、超音波分散機等で十分に分散し、この分散液の重量累積粒度分布曲線を測定する。
 体積平均粒子径(D50)は、上記測定より得られた体積累積分布曲線において、小径側から累積が50%となる粒子径をいう。
 エポキシ樹脂組成物が無機充填材を含む場合、その含有率は特に制限されない。中でも熱伝導性の観点から、無機充填材の含有率は、エポキシ樹脂組成物の全体積を100体積%とした場合に、50体積%を超えることが好ましく、70体積%を超え、90体積%以下であることがより好ましい。
 
 無機充填剤の含有率が50体積%を超えると、より高い熱伝導率を達成することが可能となる。一方、無機充填剤の含有率が90体積%以下であると、エポキシ樹脂組成物の柔軟性の低下、及び絶縁性の低下を抑制する傾向にある。
(シランカップリング剤)
 エポキシ樹脂組成物は、シランカップリング剤の少なくとも1種を含んでいてもよい。シランカップリング剤は、無機充填材の表面とその周りを取り囲む樹脂との間で共有結合を形成する役割(バインダ剤に相当)、熱伝導率の向上、及び水分の侵入を妨げることによって絶縁信頼性を向上させる働きを果たすと考えることができる。
 シランカップリング剤の種類としては特に限定されず、市販されているものを用いてもよい。特定エポキシモノマーと硬化剤との相溶性、及び樹脂層と無機充填材との界面での熱伝導欠損を低減することを考慮すると、本実施形態においては、末端にエポキシ基、アミノ基、メルカプト基、ウレイド基及び水酸基を有するシランカップリング剤を用いることが好適である。
 シランカップリング剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシランなどを挙げられる。また、商品名:SC-6000KS2に代表されるシランカップリング剤オリゴマ(日立化成テクノサービス株式会社製)等も挙げられる。これらシランカップリング剤は1種単独で用いても、2種以上を組み合わせてもよい。
(その他の成分)
 エポキシ樹脂組成物は、必要に応じて、上記成分に加えてその他の成分を含んでいてもよい。その他の成分としては、例えば、溶剤、エラストマ、分散剤、及び沈降防止剤を挙げることができる。
 溶剤としては、エポキシ樹脂組成物の硬化反応を阻害しないものであれば特に制限はなく、通常用いられる有機溶剤を適宜選択して用いることができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下にエポキシ樹脂組成物の作製に用いた材料とその略号を示す。
(メソゲン骨格を有するエポキシモノマーA(モノマーA))
 ・[4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、エポキシ当量:212g/eq、特開2011-74366号公報に記載の方法により製造]
Figure JPOXMLDOC01-appb-C000010

 
(メソゲン骨格を有するエポキシモノマーB(モノマーB))
 ・YL6121H[ビフェニル型エポキシモノマー、三菱化学株式会社製、エポキシ当量:172g/eq]
(無機充填材)
 ・AA-3[アルミナ粒子、住友化学株式会社製、D50:3μm]
 ・AA-04[アルミナ粒子、住友化学株式会社製、D50:0.40μm]
 ・HP-40[窒化ホウ素粒子、水島合金鉄株式会社製、D50:40μm]
(硬化剤)
 ・CRN[カテコールレゾルシノールノボラック(質量基準の仕込み比:カテコール/レゾルシノール=5/95)樹脂、シクロヘキサノン50質量%含有]
<CRNの合成方法>
 撹拌機、冷却器及び温度計を備えた3Lのセパラブルフラスコに、レゾルシノール627g、カテコール33g、37質量%ホルムアルデヒド水溶液316.2g、シュウ酸15g、水300gを入れ、オイルバスで加温しながら100℃に昇温した。104℃前後で還流し、還流温度で4時間反応を続けた。その後、水を留去しながらフラスコ内の温度を170℃に昇温した。170℃を保持しながら8時間反応を続けた。反応後、減圧下20分間濃縮を行い、系内の水等を除去し、目的であるフェノールノボラック樹脂CRNを得た。
 また、得られたCRNについて、FD-MS(電界脱離イオン化質量分析法)により構造を確認したところ、一般式(III-1)~一般式(III-4)で表される部分構造すべての存在が確認できた。
 なお、上記反応条件では、一般式(III-1)で表される部分構造を有する化合物が最初に生成し、これが更に脱水反応することで一般式(III-2)~一般式(III-4)のうちの少なくとも1つで表される部分構造を有する化合物が生成すると考えられる。
 得られたCRNについて、Mn(数平均分子量)及びMw(重量平均分子量)の測定を次のようにして行った。
 Mn及びMwの測定は、高速液体クロマトグラフィ(株式会社日立製作所製、商品名:L6000)及びデータ解析装置(株式会社島津製作所製、商品名:C-R4A)を用いて行った。分析用GPCカラムは東ソー株式会社製のG2000HXL及びG3000HXL(以上、商品名)を使用した。試料濃度は0.2質量%、移動相にはテトラヒドロフランを用い、流速1.0mL/minで測定を行った。ポリスチレン標準サンプルを用いて検量線を作成し、それを用いてポリスチレン換算値でMn及びMwを計算した。
 得られたCRNについて、水酸基当量の測定を次のようにして行った。
 水酸基当量は、塩化アセチル-水酸化カリウム滴定法により測定した。なお、滴定終点の判断は溶液の色が暗色のため、指示薬による呈色法ではなく、電位差滴定によって行った。具体的には、測定樹脂の水酸基をピリジン溶液中塩化アセチル化した後に、過剰の試薬を水で分解し、生成した酢酸を水酸化カリウム/メタノール溶液で滴定したものである。
 得られたCRNは、一般式(III-1)~一般式(III-4)のうちの少なくとも1つで表される部分構造を有する化合物の混合物であり、Arが、一般式(III-a)においてR31が水酸基であり、R32及びR33が水素原子である1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基であり、低分子希釈剤として単量体成分(レゾルシノール)を35質量%含む硬化剤(水酸基当量62g/eq、数平均分子量422、重量平均分子量564)を含むノボラック樹脂であった。
(硬化促進剤)
 ・TPP:トリフェニルホスフィン[和光純薬工業株式会社製、商品名]
(添加剤)
 ・KBM-573:3-フェニルアミノプロピルトリメトキシシラン[シランカップリング剤、信越化学工業株式会社製、商品名]
(溶剤)
 ・CHN:シクロヘキサノン
(支持体)
 ・PETフィルム[帝人デュポンフィルム株式会社製、商品名:A53、厚さ50μm]
 ・銅箔[古河電工株式会社製、厚さ:105μm、GTSグレード]
<実施例1>
(エポキシ樹脂組成物の調製)
 メソゲン骨格を有するエポキシモノマーとして、モノマーAとモノマーBとをエポキシ当量が8:2となるように混合してエポキシモノマー混合物1を得た。後述の方法により相溶性を確認したところ、エポキシモノマー混合物1は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を有していた。
 エポキシモノマー混合物1を8.19質量%と、硬化剤としてCRNを4.80質量%と、硬化促進剤としてTPPを0.09質量%と、無機充填材としてHP-40を39.95質量%と、AA-3を9.03質量%と、AA-04を9.03質量%と、添加剤としてKBM-573を0.06質量%と、溶剤としてCHNを28.85質量%と、を混合し、ワニス状のエポキシ樹脂組成物を調製した。
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシモノマー(モノマーA及びモノマーB)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。
(評価用の銅箔付硬化エポキシ樹脂組成物の作製)
 エポキシ樹脂組成物を、ディスペンサー(武蔵エンジニアリング株式会社製の商品名:SHOTMASTER300DS-S)を用いて、乾燥後の樹脂層の大きさが45mm×45mm、厚さが400μmとなるように、銅箔の粗化面上に付与した。その後、オーブン(ESPEC社製の商品名:SPHH-201)を用い、常温(20℃~30℃)で5分、更に130℃で5分間乾燥させた。
 次いで、乾燥後の樹脂層の上にポリエチレンテレフタラート(PET)フィルムを設置し、真空プレスにて熱間加圧(プレス温度:150℃、真空度:1kPa、プレス圧:15MPa、加圧時間:1分)を行い、樹脂層をBステージの状態にした。
 次いで、Bステージ状態の樹脂層からPETフィルムを剥がし、その上に銅箔を、粗化面が樹脂層に対向するように配置した。この状態で、真空プレスにて真空熱圧着(プレス温度:180℃、真空度:1kPa、プレス圧:15MPa、加圧時間:6分)した。その後、大気圧条件下で、150℃で2時間、210℃で4時間加熱して、銅箔付硬化エポキシ樹脂組成物を得た。
(熱伝導率の測定)
 作製した銅箔付硬化エポキシ樹脂組成物の銅箔をエッチングして取り除き、シート状の硬化エポキシ樹脂組成物(樹脂シート硬化物)を得た。得られた樹脂シート硬化物を縦10mm、横10mmに切って試料を得た。試料をグラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社製の商品名:LFA447 nanoflash)にて熱拡散率を評価した。この値と、アルキメデス法で測定した密度と、DSC(示差走査熱量測定装置;Perkin Elmer社製の商品名:DSC Pyris1)にて測定した比熱との積から、樹脂シート硬化物の厚さ方向の熱伝導率を求めた。結果を表1に示す。
(スメクチック構造形成の確認)
 作製した銅箔付硬化エポキシ樹脂組成物の銅箔をエッチングして取り除き、シート状の硬化エポキシ樹脂組成物(樹脂シート硬化物)を得た。得られた樹脂シート硬化物を縦10mm、横10mmに切って試料を得た。試料をCuKα1線を用い、管電圧40kV、管電流20mA、2θが2°~30°の範囲でX線回折測定(株式会社リガク製X線回折装置を使用)を行い、2θが2°~10°の範囲での回折ピークの有無により、スメクチック構造が形成されていることを確認した。
(液晶相の確認)
 上記で得られたエポキシモノマー混合物を加熱しながら、加熱中のエポキシモノマー混合物の状態変化を、偏光顕微鏡(オリンパス株式会社製、「BS51」)を用いてクロスニコル状態で観察(倍率:100倍)したところ、偏光解消による干渉縞を示したままで流動性を帯びた状態となる結晶相から液晶相への転移が、120℃で観察された。また、更に加熱を続けたところ、暗視野に変化する液晶相から等方相への転移が、170℃で観察された。以上の結果から、エポキシモノマー混合物は、120℃~170℃で液晶相を示すことを確認した。
(融点の測定)
 上記で得られたエポキシモノマー混合物について、示差走査熱量測定装置(パーキンエルマ社製、「DSC7」)を用いて測定した。測定温度範囲25℃~350℃、昇温速度10℃/分、流量20±5ml/minの窒素雰囲気下の条件で、アルミニウム製のパンに密閉した3mg~5mgの試料の示差走査熱量測定を行い、相転移に伴うエネルギー変化が起こる温度(吸熱反応ピークの温度)を融点(相転移温度)とした。融点は111℃であり、モノマーA単独で測定した場合の融点(125℃)よりも低かった。
(相溶性)
 上記で得られたエポキシモノマー混合物について、等方相転移温度以上に加熱して溶融させた。その後、自然冷却しながら、エポキシ樹脂組成物の硬化温度である140℃における硬化物の状態を顕微鏡(オリンパス株式会社製、BS51)で観察(倍率:100倍)した。エポキシモノマー混合物の相分離は観察されなかった。以上の結果から、エポキシモノマー混合物は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を示すことを確認した。
(粘度の測定)
 作製したエポキシ樹脂組成物の25℃、5min-1(rpm)における粘度Aと、25℃、0.5min-1(rpm)における粘度Bとを、E型粘度計(東機産業株式会社製の商品名:TV-33)を用いて測定した。また、得られた値からチクソトロピック指数(B/A)を算出した。結果を表1に示す。
(塗布性の評価)
 エポキシ樹脂組成物の塗布性を下記の基準に従って評価した。結果を表1に示す。
「OK」・・・塗布した直後のエポキシ樹脂組成物の塗布面においてかすれが見られなかった場合
「NG」・・・塗布した直後のエポキシ樹脂組成物の塗布面においてかすれが見られた場合、又はエポキシ樹脂組成物がディスペンサーにて詰まってしまい、塗布できなかった場合
(形状保持性の評価)
 エポキシ樹脂組成物の形状保持性を下記の基準に従って評価した。結果を表1に示す。
「OK」・・・銅箔の光沢面に1mLのエポキシ樹脂組成物を銅箔の2cm上から滴下し、濡れ広がりが半径30mm未満であった場合
「NG」・・・銅箔の光沢面に1mLのエポキシ樹脂組成物を銅箔の2cm上から滴下し、濡れ広がりが半径30mm以上であった場合
<実施例2~8、比較例1、2>
 溶剤(CHN)の量を変更した以外は実施例1と同様にして実施例2~8、比較例1、2のエポキシ樹脂組成物を調製した。
 調製したエポキシ樹脂組成物を用いて、実施例1と同様にして粘度、塗布性、形状保持性及び熱伝導率を測定又は評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000011

 
 表1に示すように、25℃でのチクソトロピック指数が3~10である実施例のエポキシ樹脂組成物は、塗布性と形状保持性の評価が良好であった。
 25℃でのチクソトロピック指数が3未満である比較例1のエポキシ樹脂組成物は、塗布性の評価が低かった。
 25℃でのチクソトロピック指数が10を超える比較例2のエポキシ樹脂組成物は、形状保持性の評価が低かった。
 以上の結果から、本実施形態の樹脂組成物は、積層体の樹脂層を形成するのに適した塗布性と形状保持性を有することがわかった。
 1…第一部材
 2…樹脂層
 3、4…熱板
 5…第二部材
 6、7…熱板
 日本国特許出願第2016-111372号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (7)

  1.  25℃でのチクソトロピック指数が3~10であり、一対の部材と、前記一対の部材の間に配置される樹脂層と、を有する積層体の前記樹脂層を塗布して形成するための、樹脂組成物。
  2.  25℃、5min-1(rpm)での粘度が0.6Pa・s~3.5Pa・sである、請求項1に記載の樹脂組成物。
  3.  エポキシ樹脂を含む、請求項1又は請求項2に記載の樹脂組成物。
  4.  メソゲン骨格を有するエポキシモノマーと、硬化剤と、を含む、請求項1~請求項3のいずれか1項に記載の樹脂組成物。
  5.  前記メソゲン骨格を有するエポキシモノマーは下記一般式(I)で表される化合物を含む、請求項4に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

     
     一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。
  6.  前記硬化剤はフェノールノボラック樹脂を含む、請求項4又は請求項5に記載の樹脂組成物。
  7.  第一部材の上に請求項1~請求項6のいずれか1項に記載の樹脂組成物を用いて樹脂層を形成する樹脂層形成工程と、前記樹脂層の上に第二部材を配置する部材配置工程と、を含む積層体の製造方法。
PCT/JP2017/019240 2016-06-02 2017-05-23 樹脂組成物及び積層体の製造方法 WO2017208907A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017557019A JP6372626B2 (ja) 2016-06-02 2017-05-23 樹脂組成物及び積層体の製造方法
KR1020187036584A KR102049714B1 (ko) 2016-06-02 2017-05-23 수지 조성물 및 적층체의 제조 방법
US16/305,443 US10590232B2 (en) 2016-06-02 2017-05-23 Resin composition and method of producing laminate
CN201780034153.XA CN109312053B (zh) 2016-06-02 2017-05-23 树脂组合物以及层叠体的制造方法
US16/677,811 US10851200B2 (en) 2016-06-02 2019-11-08 Resin composition and method of producing laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-111372 2016-06-02
JP2016111372 2016-06-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/305,443 A-371-Of-International US10590232B2 (en) 2016-06-02 2017-05-23 Resin composition and method of producing laminate
US16/677,811 Division US10851200B2 (en) 2016-06-02 2019-11-08 Resin composition and method of producing laminate

Publications (1)

Publication Number Publication Date
WO2017208907A1 true WO2017208907A1 (ja) 2017-12-07

Family

ID=60477771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019240 WO2017208907A1 (ja) 2016-06-02 2017-05-23 樹脂組成物及び積層体の製造方法

Country Status (6)

Country Link
US (2) US10590232B2 (ja)
JP (2) JP6372626B2 (ja)
KR (1) KR102049714B1 (ja)
CN (1) CN109312053B (ja)
TW (1) TWI759305B (ja)
WO (1) WO2017208907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151754A (ja) * 2018-03-05 2019-09-12 日立化成株式会社 樹脂組成物膜、樹脂シート、bステージシート、cステージシート、樹脂付金属箔、金属基板及びパワー半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312053B (zh) * 2016-06-02 2019-12-13 日立化成株式会社 树脂组合物以及层叠体的制造方法
KR102609888B1 (ko) * 2018-01-04 2023-12-05 엘지이노텍 주식회사 방열 기판

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222582A (ja) * 1998-02-09 1999-08-17 Yokohama Rubber Co Ltd:The 繊維シート補強工法用含浸接着樹脂組成物
JP2010005836A (ja) * 2008-06-25 2010-01-14 Nippon Paint Co Ltd 建材ボードの上に形成される絵柄印刷塗膜およびその形成方法
JP2011074366A (ja) * 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
WO2012046814A1 (ja) * 2010-10-06 2012-04-12 日立化成工業株式会社 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置
WO2015141797A1 (ja) * 2014-03-20 2015-09-24 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置並びにled装置
WO2016002865A1 (ja) * 2014-07-03 2016-01-07 株式会社イーテック 2液混合型接着剤

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431595A (en) 1977-08-15 1979-03-08 Hitachi Denshi Ltd Fixing method of electric wire in electronic instruments
JP2935919B2 (ja) * 1991-05-31 1999-08-16 住友ベークライト株式会社 絶縁樹脂ペースト
JPH1030083A (ja) * 1996-07-15 1998-02-03 Yokohama Rubber Co Ltd:The 絶縁耐熱性接着剤
EP2108688A4 (en) * 2007-01-12 2011-09-07 Sekisui Chemical Co Ltd ADHESIVE FOR ELECTRONIC COMPONENTS
KR20110025836A (ko) 2008-07-03 2011-03-11 헨켈 코포레이션 은 코팅된 박편상 물질로 충전된 전도성 경화성 조성물 및 다이 부착에서의 그의 용도
TWI496168B (zh) 2008-07-03 2015-08-11 Henkel IP & Holding GmbH 觸變型導電組合物
CN102272908A (zh) * 2009-03-23 2011-12-07 日立化成工业株式会社 晶片接合用树脂浆料、使用该浆料的半导体装置的制造方法及半导体装置
EP2484724A4 (en) 2009-09-29 2017-08-09 Hitachi Chemical Company, Ltd. Multilayer resin sheet and method for producing same, method for producing multilayer resin sheet cured product, and highly thermally conductive resin sheet laminate and method for producing same
JP5557324B2 (ja) * 2010-09-01 2014-07-23 信越化学工業株式会社 ダイボンド剤及び光半導体装置
WO2012108320A1 (ja) * 2011-02-10 2012-08-16 住友ベークライト株式会社 プリアプライド用封止樹脂組成物、半導体チップおよび半導体装置
TWI490268B (zh) 2011-03-28 2015-07-01 Hitachi Chemical Co Ltd 樹脂組成物、樹脂薄片、樹脂薄片硬化物、樹脂薄片層合體、樹脂薄片層合體硬化物及其製造方法、半導體裝置及led裝置
JP2013179272A (ja) 2012-02-08 2013-09-09 Hitachi Chemical Co Ltd 太陽電池モジュールの製造方法、及び樹脂組成物
JP6102082B2 (ja) 2012-04-26 2017-03-29 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP5941341B2 (ja) 2012-06-04 2016-06-29 株式会社呉竹 書道用液
CN106463479A (zh) 2013-12-27 2017-02-22 汉高知识产权控股有限责任公司 在电子产品中芯片接合的方法
JP5806760B1 (ja) 2014-05-29 2015-11-10 田中貴金属工業株式会社 熱伝導性導電性接着剤組成物
JP2016088978A (ja) 2014-10-31 2016-05-23 京セラケミカル株式会社 導電性樹脂組成物およびそれを用いた電子部品装置
JP6473322B2 (ja) * 2014-11-21 2019-02-20 ナミックス株式会社 硬化性樹脂組成物、ディスペンス用ダイアタッチ材、および半導体装置
CN109312053B (zh) * 2016-06-02 2019-12-13 日立化成株式会社 树脂组合物以及层叠体的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222582A (ja) * 1998-02-09 1999-08-17 Yokohama Rubber Co Ltd:The 繊維シート補強工法用含浸接着樹脂組成物
JP2010005836A (ja) * 2008-06-25 2010-01-14 Nippon Paint Co Ltd 建材ボードの上に形成される絵柄印刷塗膜およびその形成方法
JP2011074366A (ja) * 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
WO2012046814A1 (ja) * 2010-10-06 2012-04-12 日立化成工業株式会社 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置
WO2015141797A1 (ja) * 2014-03-20 2015-09-24 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置並びにled装置
WO2016002865A1 (ja) * 2014-07-03 2016-01-07 株式会社イーテック 2液混合型接着剤

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151754A (ja) * 2018-03-05 2019-09-12 日立化成株式会社 樹脂組成物膜、樹脂シート、bステージシート、cステージシート、樹脂付金属箔、金属基板及びパワー半導体装置
JP7114940B2 (ja) 2018-03-05 2022-08-09 昭和電工マテリアルズ株式会社 樹脂組成物膜の製造方法、樹脂シートの製造方法、bステージシートの製造方法、cステージシートの製造方法、樹脂付金属箔の製造方法及び金属基板の製造方法

Also Published As

Publication number Publication date
TWI759305B (zh) 2022-04-01
CN109312053B (zh) 2019-12-13
US20200071455A1 (en) 2020-03-05
US20190338069A1 (en) 2019-11-07
TW201817759A (zh) 2018-05-16
CN109312053A (zh) 2019-02-05
US10851200B2 (en) 2020-12-01
JP6372626B2 (ja) 2018-08-15
US10590232B2 (en) 2020-03-17
JPWO2017208907A1 (ja) 2018-06-14
JP2018172695A (ja) 2018-11-08
KR102049714B1 (ko) 2019-11-28
KR20190003788A (ko) 2019-01-09

Similar Documents

Publication Publication Date Title
JP7201029B2 (ja) エポキシ樹脂組成物、樹脂シート、プリプレグ、樹脂付金属箔、金属基板、及びパワー半導体装置
JP5431595B2 (ja) 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置、並びにled装置
WO2017209208A1 (ja) 積層体の製造方法
TWI462947B (zh) B階片、附樹脂金屬箔、金屬基板、及led基板
JP2013227451A (ja) エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
KR20160024917A (ko) 수지 조성물, 수지 시트, 수지 시트 경화물, 수지 시트 구조체, 수지 시트 구조체 경화물, 수지 시트 구조체 경화물의 제조 방법, 반도체 장치 및 led 장치
JP2013014671A (ja) 樹脂組成物シート、金属箔付樹脂組成物シート、メタルベース配線板材料、メタルベース配線板、及び電子部材
US10851200B2 (en) Resin composition and method of producing laminate
JP7115538B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、樹脂シート、bステージシート、cステージシート、硬化物、樹脂付金属箔、金属基板、及びパワー半導体装置
WO2017209210A1 (ja) エポキシ樹脂組成物、bステージシート、硬化エポキシ樹脂組成物、樹脂シート、樹脂付金属箔、及び金属基板
TWI820139B (zh) 樹脂組成物、樹脂構件、樹脂薄片、b階段薄片、c階段薄片、附有樹脂之金屬箔、金屬基板及電力半導體裝置
JP7114940B2 (ja) 樹脂組成物膜の製造方法、樹脂シートの製造方法、bステージシートの製造方法、cステージシートの製造方法、樹脂付金属箔の製造方法及び金属基板の製造方法
WO2017209209A1 (ja) 積層体の製造方法
WO2019106835A1 (ja) 樹脂組成物及び積層体の製造方法
JP2018030929A (ja) エポキシ樹脂組成物、樹脂シート、bステージシート、硬化物、cステージシート、樹脂付金属箔、及び金属基板
JP2019147932A (ja) 樹脂組成物、樹脂シート、bステージシート、cステージシート、樹脂付金属箔、金属基板及びパワー半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017557019

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187036584

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17806464

Country of ref document: EP

Kind code of ref document: A1