WO2012033133A1 - リチウムイオン電池用外装材 - Google Patents

リチウムイオン電池用外装材 Download PDF

Info

Publication number
WO2012033133A1
WO2012033133A1 PCT/JP2011/070393 JP2011070393W WO2012033133A1 WO 2012033133 A1 WO2012033133 A1 WO 2012033133A1 JP 2011070393 W JP2011070393 W JP 2011070393W WO 2012033133 A1 WO2012033133 A1 WO 2012033133A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
acid
adhesive
film
base material
Prior art date
Application number
PCT/JP2011/070393
Other languages
English (en)
French (fr)
Inventor
鈴田 昌由
拓也 村木
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45810730&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012033133(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP11823607.4A priority Critical patent/EP2615658B1/en
Priority to US13/818,135 priority patent/US8920959B2/en
Priority to KR1020137005877A priority patent/KR101832531B1/ko
Priority to JP2012533008A priority patent/JP5928336B2/ja
Priority to CN201180042862.5A priority patent/CN103098257B/zh
Publication of WO2012033133A1 publication Critical patent/WO2012033133A1/ja
Priority to HK13109103.0A priority patent/HK1181923A1/xx

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a packaging material for a lithium ion battery.
  • This application includes Japanese Patent Application No. 2010-201079 filed in Japan on September 8, 2010, Japanese Patent Application No. 2010-201080 filed in Japan on September 8, 2010, and Japanese Application on July 20, 2011. Claim priority based on Japanese Patent Application No. 2011-158849 filed, the contents of which are incorporated herein.
  • lithium-ion secondary batteries that can be made ultra-thin and miniaturized despite their high energy. Battery is also being developed actively. Conventionally, a metal can type has been used as a packaging material for a lithium ion battery.
  • a multilayer film having a multilayer structure for example, a heat-resistant substrate layer / aluminum foil layer / sealant (heat-bonding film) layer
  • a molded product hereinafter also referred to as “deep-drawn molded product”
  • Such a deep-drawn molded product is advantageous in that it has high heat dissipation and low cost in addition to the above-described advantages, and application to a battery of a hybrid vehicle or an electric vehicle with a small environmental load is also being studied.
  • the lithium ion battery using the laminate film for example, in a deep-drawn molded product, together with a positive electrode material, a negative electrode material and a separator as a battery main body part, such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, etc.
  • a positive electrode material such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, etc.
  • An electrolyte layer made of an electrolyte solution in which a lithium salt is dissolved in an aprotic solvent or a polymer gel impregnated with the electrolyte solution is housed, and then heat sealed by heat sealing.
  • the electrolytic solution is highly permeable to a sealant layer made of a heat-fusible film.
  • the penetrated electrolytic solution may reduce the laminate strength between the aluminum foil layer and the sealant layer, and the electrolytic solution may eventually leak to the outside.
  • lithium salts such as LiPF 6 and LiBF 4 are used as the lithium salt that is an electrolyte.
  • the lithium salt is hydrolyzed to generate hydrofluoric acid, which causes corrosion of the metal surface and a decrease in laminate strength between the layers of the multilayer film.
  • a packaging material for a lithium ion battery having a multilayer structure such as a laminate film
  • it is required to suppress corrosion of a metal foil (aluminum foil) caused by an electrolytic solution and a decrease in laminate strength between layers.
  • the exterior material is required to have resistance to the electrolytic solution and hydrofluoric acid.
  • a chromate treatment using hexavalent chromium on the surface of the aluminum foil layer has been conventionally used.
  • hexavalent chromium has been treated as an environmentally hazardous substance, as in the case of the Rohs regulations and REACH regulations in Europe.
  • trivalent chromium is used for chromate treatment.
  • this technique is used as a starting material for trivalent chromium to form a hexavalent chromium treatment layer.
  • lithium ion batteries can be miniaturized because of their high energy density.
  • the energy density of a lithium ion battery is determined by how the cell and electrolyte can be contained in one battery, and the amount of inclusion is obtained by molding a lithium ion battery exterior material to obtain a deep-drawn molded product. It depends on the forming depth. Drawing is generally performed with a mold, but if the molding depth is too deep, cracks and pinholes are generated in the stretched parts of the outer packaging material for lithium ion batteries, and the reliability of the battery is lost. . Therefore, in order to achieve both battery reliability and energy density, the lithium battery exterior material is required to have excellent deep drawability. In particular, when a lithium ion battery is applied to an electric vehicle, etc., it is desired to obtain a large current, but on the other hand, it is desired to obtain excellent long-term storage stability.
  • Exterior material As a base material layer, a stretched film having specific tensile strength and elongation in four directions of 0 °, 45 °, 90 °, and 135 ° with respect to the stretch direction and having less mechanical property directionality was used. Exterior material (Patent Document 1). (Ii) An exterior material using a heat-resistant resin film having an impact strength of 30000 J / m or more as a base material layer (Patent Document 2). (Iii) An exterior material using a biaxially stretched polyamide film having a density of 1142 to 1146 kg / cm 3 as a base material layer (Patent Document 3). (Iv) An exterior material using a stretched heat-resistant resin film having a shrinkage rate of 2 to 20% as a base material layer (Patent Document 4).
  • the exterior material is required to have excellent moldability.
  • the molding depth can be increased when the exterior material is molded into a battery shape in order to increase the capacity of the batteries. Desired. Molding of the exterior material is generally performed by drawing with a mold, but if the molding depth is too deep at this time, cracks and pinholes are generated in the stretched part by molding, and the reliability as a battery is lost. . Therefore, it is important how the molding depth can be increased without impairing reliability.
  • large-sized applications such as electric vehicles, there is a demand for higher energy density from the viewpoint of battery performance for taking out a large current, but particularly excellent reliability and long-term storage stability are also required.
  • a biaxially stretched polyamide film with a dynamic friction coefficient, rupture strength, elongation at break, shrinkage rate, impact strength, density, and refractive index of the surface of the substrate layer is used for the substrate layer.
  • Various exterior materials such as existing exterior materials are known (Patent Documents 2, 4, 5 to 10). However, there is a demand for further improving the formability of the exterior material, particularly in large applications.
  • the heat-resistant resin film used for the exterior material (ii) is, for example, a commercially available stretched polyamide resin-based film generally having an impact strength of 30000 J / m or more.
  • the existing exterior material does not always provide excellent deep drawability.
  • the exterior material (iii) may not have excellent deep drawability.
  • the heat-resistant resin stretched film has a large heat shrinkage rate, and heat is applied in the baking process or the like in battery production. There is a risk of curling.
  • the present invention is a lithium ion battery exterior material that has sufficient electrolyte resistance without performing chromate treatment, has excellent deep drawability, is of high quality, can be easily manufactured, and has excellent productivity.
  • the purpose is to provide.
  • Another object of the present invention is to provide a packaging material for a lithium ion battery having excellent moldability.
  • An aluminum foil layer (AL) provided with a first adhesive layer (AD-1) containing an adhesive on one surface of the base material layer (SB), and a corrosion prevention treatment layer (CL) on at least one surface;
  • a second adhesive layer (AD-2) containing an adhesive or an adhesive resin, and a sealant layer (SL) are sequentially laminated
  • the said base material layer (SB) has the following film base material (A), The exterior material for lithium ion batteries characterized by the above-mentioned.
  • Film substrate (A) difference in the elongation ( ⁇ 1) to the yield point and the elongation ( ⁇ 2) to the fracture point ( ⁇ 2) measured according to JIS-K7127 in at least one of the MD direction and the TD direction ( ⁇ 2) A film substrate wherein ⁇ 1) is 100% or more.
  • the film base (A) is a resin composition (a1) in which an ethylene copolymer resin obtained by copolymerizing maleic anhydride is blended with a polyamide resin, or an aliphatic polyester is blended with a polyamide resin.
  • [5] The exterior packaging material for a lithium ion battery according to [3], wherein the aliphatic polyester is polycaprolactone.
  • An aluminum foil layer (AL) provided with a first adhesive layer (AD-1) containing an adhesive on one surface of the base material layer (SB), and a corrosion prevention treatment layer (CL) on at least one surface;
  • a second adhesive layer (AD-2) containing an adhesive or an adhesive resin, and a sealant layer (SL) are sequentially laminated,
  • the said base material layer (SB) has the following film base material (A), The exterior material for lithium ion batteries characterized by the above-mentioned.
  • Aluminum foil provided with a first adhesive layer (AD-1) formed of an adhesive on at least one surface side of the base material layer (SB) and a corrosion prevention treatment layer (CL) on at least one surface A layer (AL), a second adhesive layer (AD-2) formed of an adhesive resin or an adhesive, and a sealant layer (SL) are sequentially laminated,
  • the lithium ion battery exterior material in which the base material layer (SB) has a stretched polyamide film in which the ratio ⁇ d / ⁇ of the dispersion component ⁇ d of surface free energy to the surface free energy ⁇ is 80% or less.
  • the outer packaging material for lithium ion batteries of the present invention has sufficient electrolyte resistance without performing chromate treatment, has excellent deep drawability, is high quality, can be easily manufactured, and is highly productive. Excellent. Moreover, the exterior material for lithium ion batteries of this invention has the outstanding moldability.
  • the packaging material 1 of the present embodiment is an aluminum foil in which a corrosion prevention treatment layer 14 is provided on one surface of a base material layer 11 on the side opposite to the first adhesive layer 12 and the base material layer 11.
  • a corrosion prevention treatment layer 14 is provided on one surface of a base material layer 11 on the side opposite to the first adhesive layer 12 and the base material layer 11.
  • This is a laminate in which the layer 13, the second adhesive layer 15, and the sealant layer 16 are sequentially laminated.
  • the base material layer 11 is a layer having the following film base material (A).
  • Film substrate (A) difference between the elongation to the yield point ( ⁇ 1) and the elongation to the fracture point ( ⁇ 2) measured in accordance with JIS-K7127 in at least one of the MD direction or the TD direction ( A film substrate in which ⁇ 2- ⁇ 1) is 100% or more. That is, in the evaluation of tensile strain characteristics measured in accordance with JIS-K7127, the film substrate (A) has a length that extends from the yield point to the break point, which is the length in the unstretched state. It is the film base material which is more than this.
  • the film substrate (A) may be a film substrate in which only the difference ( ⁇ 2- ⁇ 1) in the MD direction is 100% or more, and only the difference ( ⁇ 2- ⁇ 1) in the TD direction is 100% or more. Or a film substrate having the difference ( ⁇ 2 ⁇ 1) of 100% or more in both the MD direction and the TD direction.
  • the present inventor has squeezed the film base material of the base material layer with plastic deformation in the cold forming of the exterior material. It has been found that the elongation physical property from the yield point to the breaking point, which switches to the deformation region, is extremely important.
  • the elongation physical property described in Patent Document 1 is the elongation in the entire deformation region including the elastic deformation region and the plastic deformation region.
  • the film substrate (A) is excellent in toughness because the difference in elongation ( ⁇ 2 ⁇ 1) is 100% or more in at least one of the MD direction and the TD direction. Therefore, by using a film base material (A) for the base material layer 11, the deep drawability of the exterior material 1 is improved.
  • the difference in elongation ( ⁇ 2 ⁇ 1) of the film substrate (A) is preferably 120% or more.
  • the breaking stress measured according to JIS-K7127 of the film substrate (A) is preferably 100 MPa or more, more preferably 200 MPa or more, from the viewpoint of improving the molding drawing depth.
  • the difference in elongation ( ⁇ 2 ⁇ 1) of the film substrate (A) can be adjusted by the material design of the film substrate (A).
  • the resin composition (a2) is preferable.
  • flexibility compared with a polyamide resin and was excellent in compatibility is preferable.
  • the polyamide resin is a thermoplastic polymer compound having an amide bond (—CONH—) in the molecule.
  • the polyamide resin is not particularly limited, and a polyamide resin having oriented crystallinity is preferable. Specifically, poly ⁇ -capramide (nylon 6), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebamide (nylon 610), polyaminoundecamide (nylon 11), polylaurylamide (nylon) 12), polymetaxylylene adipamide (MXD6), and copolymers thereof. Of these, nylon 6 and nylon 66 are preferable as the polyamide resin.
  • ethylene copolymer copolymer As the ethylene copolymer resin copolymerized with maleic anhydride, which is blended with the polyamide resin in the resin composition (a1), an ethylene- ⁇ , ⁇ unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer (hereinafter referred to as “ethylene copolymer copolymer”) is used. , Also referred to as “copolymer (a11)”).
  • the ⁇ , ⁇ unsaturated carboxylic acid alkyl ester is preferably an ⁇ , ⁇ unsaturated carboxylic acid ester having an alkyl group having 1 to 4 carbon atoms.
  • the ⁇ , ⁇ unsaturated carboxylic acid is preferably a monocarboxylic acid or dicarboxylic acid having 3 to 8 carbon atoms, and a metal salt or acid anhydride thereof may be used. Specific examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic anhydride and the like.
  • the ⁇ , ⁇ unsaturated carboxylic acid alkyl ester is preferably methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, or butyl methacrylate.
  • the ratio of the ⁇ , ⁇ unsaturated carboxylic acid alkyl ester to the total monomers used for the polymerization of the copolymer (a11) is preferably 4.9 to 40% by mass, more preferably 10 to 35% by mass. If the proportion of the ⁇ , ⁇ unsaturated carboxylic acid alkyl ester is not less than the lower limit of the above range, the flexibility of the copolymer (a11) is improved, and the film substrate (A) using the resin composition (a1) It is easy to obtain the effect of improving the physical properties. When the proportion of the ⁇ , ⁇ unsaturated carboxylic acid alkyl ester is not more than the upper limit of the above range, the production of the copolymer (a11) becomes easy.
  • the ratio of maleic anhydride to the total monomers used for the polymerization of the copolymer (a11) is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass. If the ratio of maleic anhydride is more than the lower limit of the said range, the compatibility of a polyamide resin and a copolymer (a11) will improve. If the ratio of maleic anhydride is below the upper limit of the said range, the workability of a resin composition (a1) will improve.
  • copolymer (a11) examples include Lexpearl ET made by Nippon Polyethylene.
  • the blending ratio of the ethylene copolymer resin obtained by copolymerizing maleic anhydride in the resin composition (a1) is preferably 0.1 to 5% by mass, and 0.5 to 3% with respect to 100% by mass of the polyamide resin.
  • the mass% is more preferable. If the said mixture ratio is more than the lower limit of the said range, the modification
  • Polycaprolactone is preferable as the aliphatic polyester blended in the polyamide resin in the resin composition (a2).
  • Polycaprolactone is a linear polyester compound composed of repeating units represented by — (CH 2 ) 5 —COO—, which is obtained by ring-opening polymerization of ⁇ -caprolactone.
  • the molecular weight of polycaprolactone is preferably 5,000 to 100,000, and more preferably 10,000 to 70,000. If the molecular weight of polycaprolactone is not less than the lower limit of the above range, the effect of improving the strength properties of the film substrate (A) using the resin composition (a2) can be easily obtained. If the molecular weight of polycaprolactone is not more than the upper limit of the above range, the strength properties of the film substrate (A) will be improved.
  • polycaprolactone examples include Plaxel manufactured by Daicel Chemical.
  • the blending ratio of the aliphatic polyester in the resin composition (a2) is preferably 0.1 to 5% by mass and more preferably 0.5 to 3% by mass with respect to 100% by mass of the polyamide resin. If the said mixture ratio is more than the lower limit of the said range, the modification
  • a method of adjusting the difference in elongation ( ⁇ 2 ⁇ 1) of the film substrate (A) other than the material setting For example, a film base having a difference in elongation ( ⁇ 2 ⁇ 1) of 100% or more by a stretching method (sequential biaxial stretching or simultaneous biaxial stretching, etc.), a biaxial stretching method in which a stretching ratio, a heat setting temperature, and the like are controlled.
  • the method of obtaining material (A) is mentioned.
  • a polyamide resin may be used alone as a material for the film substrate (A).
  • Polyamide resin alone, or the resin composition (a1) or resin composition (a2) obtained by dry blending or melt blending is subjected to extrusion melt film formation by an extruder equipped with a T die.
  • the film-formed molten resin is rapidly cooled on a rotating cooling drum by a known casting method such as an air knife casting method or an electrostatic application casting method to obtain an unstretched film substrate.
  • a roll-type longitudinal stretching machine composed of a group of heating rollers having different peripheral speeds is used to preheat the unstretched film substrate, heated to a temperature equal to or higher than the glass transition point of the unstretched film substrate, and film cooling
  • the unstretched film base material is longitudinally stretched between cooling rolls for the purpose.
  • the film base material (A) is obtained by continuously guiding the longitudinally stretched film base material to a tenter, preheating at 50 to 70 ° C., and then transversely stretching at 60 to 110 ° C. If necessary, the ratio of the longitudinal draw ratio and the transverse draw ratio may be adjusted, and heat treatment and relaxation treatment may be performed at 210 to 220 ° C. in the tenter.
  • the stretching may be uniaxial stretching or biaxial stretching. Biaxial stretching is not limited to other than the aforementioned sequential biaxial, and may be simultaneous biaxial.
  • a biaxially stretched film substrate made of the resin composition (a1) or the resin composition (a2) is particularly preferable, but a stretching method (such as sequential biaxial stretching or simultaneous biaxial stretching).
  • a biaxially stretched film obtained by using a biaxial stretching method in which the stretching ratio, heat setting temperature and the like are controlled is also preferably used.
  • Specific examples of the film substrate (A) in which the difference in elongation ( ⁇ 2 ⁇ 1) is 100% or more by the stretching method include ON-U (biaxially stretched polyamide film) manufactured by Unitika, SNR (two Axially stretched polyamide film).
  • a film base material (A) in which the difference in elongation ( ⁇ 2 ⁇ 1) is 100% or more by the material design of the resin composition (a1) or resin composition (a2) described above the unit substrate manufactured by Unitika P (biaxially stretched polyamide film) and the like.
  • the thickness of the film substrate (A) is preferably 6 ⁇ m or more, more preferably 10 ⁇ m or more from the viewpoint of improving pinhole resistance and insulation.
  • the thickness of the film substrate (A) is preferably 50 ⁇ m or less, and more preferably 25 ⁇ m or less, from the viewpoint of the deep drawability of the exterior material 1.
  • Various additives such as a lubricant, an antistatic agent, an antiblocking agent, and inorganic fine particles may be added to the film base (A) as necessary, as long as the performance of the film is not adversely affected.
  • a manufacturing method of a film base material (A) it is not limited to the T-die casting method mentioned above, An inflation method etc. may be sufficient.
  • the base material layer 11 may be a layer made of the film base material (A) alone, or may be a layer made of a multilayer film in which the film base material (A) and another film base material are laminated.
  • the other film substrate include a polyester film, a polyolefin film, a polycarbonate film, and a fluororesin film.
  • the film base material (A) used for the base material layer 11, or the multilayer film of the film base material (A) and another film base material can be acrylic, urethane, polyvinylidene chloride (
  • a coating layer with a coating agent of an epoxy type or a polyester type may be provided.
  • the thickness of the coating layer is preferably 0.1 to 5 ⁇ m.
  • the first adhesive layer 12 is a layer that adheres the base material layer 11 and the aluminum foil layer 13.
  • a polyurethane-based adhesive in which a bifunctional or higher polyisocyanate compound is allowed to act on a main component such as polyester polyol, polyether polyol, acrylic polyol, and carbonate polyol is preferable.
  • polyester polyol include those obtained by polymerization of a dibasic acid and a diol compound.
  • dibasic acid examples include aliphatics such as succinic acid, glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid, and brassic acid, and aromatics such as isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid. And dibasic acids of the family. These dibasic acids may be used individually by 1 type, and may use 2 or more types together.
  • diol compound examples include ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol, and other aliphatic diols, cyclohexane.
  • diol compound examples include ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol, and other aliphatic diols, cyclohexane.
  • diol compounds may be used individually
  • polyester polyol a polyester urethane polyol in which the hydroxyl groups at both ends of the polyester polyol are chain-extended with a polyisocyanate compound may be used.
  • the polyisocyanate compound include 2,4- or 2,6-tolylene diisocyanate, xylylene diisocyanate, 4,4′-diphenylmethane diisocyanate, methylene diisocyanate, isopropylene diisocyanate, lysine diisocyanate, 2,2,4- Or, 2,4,4-trimethylhexamethylene diisocyanate, 1,6-hexamethylene diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, isopropylidene dicyclohexyl-4,4′-diisocyanate, etc.
  • these isocyanate compounds may be used as a simple substance, and may be used as an adduct body, a burette body, or an isocyanurate body comprising the isocyanate compound.
  • These polyisocyanate compounds may be used individually by 1 type, and may use 2 or more types together.
  • polyether polyol examples include ether-based polyols such as polyethylene glycol and polypropylene glycol. Further, a polyether urethane polyol obtained by chain-extending the ether polyol with the isocyanate compound may be used.
  • an acrylic polyol the copolymer which has poly (meth) acrylic acid as a main component is mentioned, for example.
  • a hydroxyl group-containing monomer such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate
  • an alkyl (meth) acrylate monomer the alkyl group is methyl Group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group and cyclohexyl group)
  • alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl Group, 2-ethylhexyl group, cyclohexyl group, etc
  • Examples of the carbonate polyol include a polyol obtained by reacting a carbonate compound and a diol compound.
  • Examples of the carbonate compound include dimethyl carbonate, diphenyl carbonate, and ethylene carbonate.
  • Examples of the diol compound include the same diol compounds as those exemplified as the diol compound forming the polyester polyol.
  • polycarbonate urethane polyol chain-extended with the isocyanate compound may be used as the carbonate polyol.
  • the above various polyols may be used alone or in combination of two or more depending on the required function and performance.
  • polyisocyanate compounds can be used as polyurethane adhesives by using polyisocyanate compounds as curing agents.
  • examples of the polyisocyanate used as the curing agent include the same polyisocyanate compounds listed as the chain extender.
  • the first adhesive layer 12 may contain a carbodiimide compound, an oxazoline compound, an epoxy compound, a phosphorus compound, a silane coupling agent, etc., in order to promote adhesion between the base material layer 11 and the aluminum foil layer 13. .
  • carbodiimide compound examples include N, N′-di-o-toluylcarbodiimide, N, N′-diphenylcarbodiimide, N, N′-di-2,6-dimethylphenylcarbodiimide, N, N′-bis (2 , 6-Diisopropylphenyl) carbodiimide, N, N′-dioctyldecylcarbodiimide, N-triyl-N′-cyclohexylcarbodiimide, N, N′-di-2,2-di-t-butylphenylcarbodiimide, N-triyl- N'-phenylcarbodiimide, N, N'-di-p-nitrophenylcarbodiimide, N, N'-di-p-aminophenylcarbodiimide, N, N'-di-p-hydroxyphenylcarbodiimide, N, N'- Examples thereof include di
  • oxazoline compound examples include monooxazolines such as 2-oxazoline, 2-methyl-2-oxazoline, 2-phenyl-2-oxazoline, 2,5-dimethyl-2-oxazoline, and 2,4-diphenyl-2-oxazoline.
  • monooxazolines such as 2-oxazoline, 2-methyl-2-oxazoline, 2-phenyl-2-oxazoline, 2,5-dimethyl-2-oxazoline, and 2,4-diphenyl-2-oxazoline.
  • 2,2 ′-(1,2-ethylene) -bis (2-oxazoline) 2,2 ′-(1, And dioxazoline compounds
  • epoxy compound examples include diglycidyl ethers of aliphatic diols such as 1,6-hexanediol, neopentyl glycol, and polyalkylene glycol; sorbitol, sorbitan, polyglycerol, pentaerythritol, diglycerol, glycerol, trimethylolpropane
  • Polyglycidyl ethers of aliphatic polyols such as: Polyglycidyl ethers of alicyclic polyols such as cyclohexanedimethanol; Aliphatic and aromatic such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, trimellitic acid, adipic acid, and sebacic acid
  • Examples of phosphorus compounds include tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylenephosphonite, bis (2 , 4-Di-t-butylphenyl) pentaerythritol-di-phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phosphite, 2,2-methylenebis (4 , 6-Di-tert-butylphenyl) octyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, 1,1,3-tris (2 -Methyl-4-ditridecyl phosphite-5-t-butyl-
  • silane coupling agent examples include vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycol.
  • attachment 12 may mix
  • the aluminum foil layer 13 As the aluminum foil layer 13, a general soft aluminum foil can be used, and further, an aluminum foil containing iron is preferably used from the viewpoint of imparting pinhole resistance and extensibility during molding.
  • the iron content in the aluminum foil (100% by mass) is preferably 0.1 to 9.0% by mass, and more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, pinhole resistance and spreadability are improved. If the iron content is 9.0% by mass or less, flexibility is improved.
  • the thickness of the aluminum foil layer 13 is preferably 9 to 200 ⁇ m, more preferably 15 to 100 ⁇ m, from the viewpoint of barrier properties, pinhole resistance and workability.
  • the aluminum foil layer 13 is preferably an aluminum foil that has been degreased from the viewpoint of resistance to electrolytic solution.
  • the degreasing treatment is roughly classified into a wet type and a dry type.
  • Examples of the wet type degreasing treatment include acid degreasing and alkali degreasing.
  • Examples of the acid used for acid degreasing include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid. These acids may be used individually by 1 type, and may use 2 or more types together. Moreover, you may mix
  • alkali used for alkali degreasing sodium hydroxide etc. are mentioned as a thing with a high etching effect, for example. Moreover, what mix
  • the wet type degreasing treatment is performed by an immersion method or a spray method.
  • Examples of the dry-type degreasing treatment include a method performed in a step of annealing aluminum.
  • frame treatment, corona treatment, and the like can be given.
  • a degreasing treatment in which pollutants are oxidatively decomposed and removed by active oxygen generated by irradiating ultraviolet rays having a specific wavelength is also included.
  • the degreasing treatment of the aluminum foil layer 13 may be performed only on one side or on both sides.
  • the corrosion prevention treatment layer 14 is basically a layer provided to prevent corrosion of the aluminum foil layer 13 due to the electrolytic solution or hydrofluoric acid.
  • the corrosion prevention treatment layer 14 is formed by, for example, a degreasing treatment, a hydrothermal alteration treatment, an anodizing treatment, a chemical conversion treatment, or a combination of these treatments.
  • Degreasing treatment includes acid degreasing or alkali degreasing. Examples of acid degreasing include a method of using an inorganic acid such as sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid alone, or a mixture thereof.
  • an acid degreasing agent in which a fluorine-containing compound such as monosodium ammonium difluoride is dissolved in the inorganic acid as an acid degreasing, not only the degreasing effect of aluminum is obtained, but also the passive aluminum A fluoride can be formed, which is effective in terms of resistance to hydrofluoric acid.
  • alkaline degreasing include a method using sodium hydroxide or the like.
  • the hydrothermal modification treatment include boehmite treatment in which an aluminum foil is immersed in boiling water to which triethanolamine is added.
  • the anodizing treatment include alumite treatment.
  • Examples of the chemical conversion treatment include a chromate treatment, a zirconium treatment, a titanium treatment, a vanadium treatment, a molybdenum treatment, a calcium phosphate treatment, a strontium hydroxide treatment, a cerium treatment, a ruthenium treatment, and various chemical conversion treatments composed of a mixed phase thereof. .
  • these hydrothermal modification treatment, anodizing treatment, and chemical conversion treatment it is preferable to perform the degreasing treatment in advance.
  • These chemical conversion treatments are not limited to the wet type, and may be performed by a coating type in which these treatment agents are mixed with a resin component.
  • the aluminum foil surface is dissolved by a treating agent to form an aluminum compound (boehmite, alumite) having excellent corrosion resistance. Therefore, since it becomes a form in which a co-continuous structure is formed from the aluminum foil layer 13 to the corrosion prevention treatment layer 14, it is included in the definition of the chemical conversion treatment, but is not included in the definition of the chemical conversion treatment as described later. It is also possible to form the corrosion prevention treatment layer 14 only by the technique.
  • a sol of a rare earth element oxide such as cerium oxide having an average particle size of 100 nm or less is used as a material that has an anticorrosion effect (inhibitor effect) of aluminum and is also suitable from an environmental viewpoint.
  • the method using is mentioned. By using this method, it is possible to impart an anticorrosion effect to a metal foil such as an aluminum foil even with a general coating method.
  • the rare earth element-based oxide sol examples include sols using various solvents such as water-based, alcohol-based, hydrocarbon-based, ketone-based, ester-based, and ether-based solvents. Among these, an aqueous sol is preferable.
  • an inorganic acid such as nitric acid, hydrochloric acid or phosphoric acid or a salt thereof, an organic acid such as acetic acid, malic acid, ascorbic acid or lactic acid is usually dispersed.
  • a material obtained by treating the surface of a sol particle of a rare earth element-based oxide is used.
  • phosphoric acid in particular, is improved in adhesion to the aluminum foil layer 13 using (1) dispersion stabilization of sol and (2) aluminum chelate ability of phosphoric acid in the exterior material 1. , (3) Electrolyte resistance imparted by capturing (passivation formation) aluminum ions eluted under the influence of hydrofluoric acid, (4) Corrosion prevention treatment layer 14 due to easy dehydration condensation of phosphoric acid even at low temperatures ( An improvement in the cohesive force of the oxide layer) is expected.
  • the phosphoric acid or a salt thereof include orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, and alkali metal salts and ammonium salts thereof.
  • condensed phosphoric acid such as trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid and ultrametaphosphoric acid, or alkali metal salts and ammonium salts thereof are preferable.
  • dry film-forming properties drying capacity and heat quantity
  • a sodium salt is more preferable.
  • a water-soluble salt is preferable.
  • the mixing ratio of phosphoric acid (or a salt thereof) to cerium oxide is preferably 1 to 100 parts by mass with respect to 100 parts by mass of cerium oxide. If the said compounding ratio is 1 mass part or more with respect to 100 mass parts of cerium oxides, cerium oxide sol will become more stable and the function of the exterior material 1 will become more favorable. As for the said mixture ratio, 5 mass parts or more are more preferable with respect to 100 mass parts of cerium oxides. Moreover, if the said mixture ratio is 100 mass parts or less with respect to 100 mass parts of cerium oxides, it will be easy to suppress the functional fall of a cerium oxide sol.
  • the blending ratio is more preferably 50 parts by mass or less, and further preferably 20 parts by mass or less, with respect to 100 parts by mass of cerium oxide.
  • the corrosion prevention treatment layer 14 formed of the rare earth oxide sol is an aggregate of inorganic particles, the cohesive force of the layer itself may be lowered even after a dry curing step. Therefore, in this case, the corrosion prevention treatment layer 14 is preferably combined with the following anionic polymer in order to supplement cohesive force.
  • anionic polymer the polymer which has a carboxy group is mentioned,
  • the copolymer which copolymerized poly (meth) acrylic acid (or its salt) or poly (meth) acrylic acid as a main component is mentioned.
  • the copolymer component of the copolymer includes alkyl (meth) acrylate monomers (alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.); (meth) acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide (alkyl groups include methyl, ethyl, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.), N-alkoxy (meth) acrylamide, N, N-dialkoxy (Meth) acrylamide, (the alkoxy group includes methoxy group, e
  • anionic polymers play a role of improving the stability of the corrosion prevention treatment layer 14 (oxide layer) obtained using the rare earth element oxide sol. This is achieved by the effect of protecting the hard and brittle oxide layer with an acrylic resin component and the effect of capturing ionic contamination (particularly sodium ions) derived from phosphate contained in the rare earth oxide sol (cation catcher). Is done. That is, when an alkali metal ion such as sodium or an alkaline earth metal ion is contained in the corrosion prevention treatment layer 14 obtained by using the rare earth element oxide sol, the corrosion prevention starts from the place containing the ion. The processing layer 14 is likely to deteriorate. Therefore, the resistance of the corrosion prevention treatment layer 14 is improved by fixing sodium ions and the like contained in the rare earth oxide sol by the anionic polymer.
  • the corrosion prevention treatment layer 14 combined with the anionic polymer and the rare earth element oxide sol has the same corrosion prevention performance as the corrosion prevention treatment layer 14 formed by subjecting the aluminum foil to chromate treatment.
  • the anionic polymer is preferably a structure in which a polyanionic polymer that is essentially water-soluble is crosslinked.
  • a crosslinking agent used for formation of this structure the compound which has an isocyanate group, a glycidyl group, a carboxy group, and an oxazoline group is mentioned, for example.
  • Examples of the compound having an isocyanate group include tolylene diisocyanate, xylylene diisocyanate or hydrogenated products thereof, hexamethylene diisocyanate, 4,4′diphenylmethane diisocyanate or hydrogenated products thereof, diisocyanates such as isophorone diisocyanate; or these isocyanates.
  • Polyisocyanates such as adducts obtained by reacting with polyhydric alcohols such as trimethylolpropane, burette obtained by reacting with water, or isocyanurate as a trimer; Examples thereof include blocked polyisocyanates obtained by blocking isocyanates with alcohols, lactams, oximes and the like.
  • Examples of the compound having a glycidyl group include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,4-butanediol, 1,6-hexanediol, Epoxy compounds in which epichlorohydrin is allowed to act on glycols such as neopentyl glycol; epoxy compounds in which epichlorohydrin is allowed to act on polyhydric alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol and sorbitol; terephthalic acid phthalate And epoxy compounds obtained by reacting dicarboxylic acids such as oxalic acid and adipic acid with epichlorohydrin.
  • Examples of the compound having a carboxy group include various aliphatic or aromatic dicarboxylic acids. Further, poly (meth) acrylic acid or alkali (earth) metal salt of poly (meth) acrylic acid may be used.
  • the compound having an oxazoline group for example, a low molecular compound having two or more oxazoline units, or a polymerizable monomer such as isopropenyl oxazoline, (meth) acrylic acid, (meth) acrylic acid alkyl ester And those obtained by copolymerizing acrylic monomers such as hydroxyalkyl (meth) acrylate.
  • the anionic polymer may be selectively reacted with an amine and a functional group to form a siloxane bond at the crosslinking point, like a silane coupling agent.
  • epoxy silane, amino silane, and isocyanate silane are preferable in
  • the ratio of these crosslinking agents to the anionic polymer is preferably 1 to 50 parts by mass and more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the anionic polymer.
  • the ratio of the crosslinking agent is 1 part by mass or more with respect to 100 parts by mass of the anionic polymer, a crosslinked structure is easily formed.
  • the ratio of the crosslinking agent is 50 parts by mass or less with respect to 100 parts by mass of the anionic polymer, the pot life of the coating liquid is improved.
  • the method of crosslinking the anionic polymer is not limited to the crosslinking agent, and may be a method of forming ionic crosslinking using a titanium or zirconium compound.
  • the anti-corrosion treatment layer represented by the chemical treatment represented by chromate treatment is an aluminum foil that uses a chemical conversion treatment agent that contains hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, or a salt thereof. Then, a chemical conversion treatment layer is formed on the aluminum foil by the action of chromium or a non-chromium compound.
  • the chemical conversion treatment uses an acid as the chemical conversion treatment agent, it involves deterioration of the working environment and corrosion of the coating apparatus.
  • the coating type corrosion prevention treatment layer 14 described above does not require an inclined structure to be formed on the aluminum foil layer 13.
  • the properties of the coating agent are not subject to restrictions such as acidity, alkalinity, and neutrality, and a good working environment can be realized.
  • the chromate treatment using a chromium compound is preferably the coating-type corrosion prevention treatment layer 14 from the viewpoint that an alternative is required for environmental hygiene.
  • the corrosion prevention treatment layer 14 may have a multilayer structure with a cationic polymer as necessary.
  • the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine-grafted acrylic resin obtained by grafting a primary amine on an acrylic main skeleton, polyallylamine or a derivative thereof, amino And cationic polymers such as phenol.
  • the cationic polymer is preferably used in combination with a crosslinking agent having a functional group capable of reacting with an amine / imine such as a carboxy group or a glycidyl group.
  • a polymer having a carboxylic acid that forms an ionic polymer complex with polyethyleneimine can also be used.
  • polycarboxylic acid (salt) such as polyacrylic acid or an ionic salt thereof
  • a copolymer having a carboxy group such as carboxymethylcellulose or an ionic salt thereof.
  • polyallylamine include homopolymers or copolymers of allylamine, allylamine amide sulfate, diallylamine, dimethylallylamine, and the like. These amines may be free amines or may be stabilized with acetic acid or hydrochloric acid.
  • the cationic polymer is also described as one component constituting the corrosion prevention treatment layer 14. The reason for this is that, as a result of intensive studies using various compounds to provide the electrolyte resistance and hydrofluoric acid resistance required for the exterior materials for lithium ion batteries, the cationic polymer itself also has electrolyte resistance and anti-fluorine resistance. This is because the compound was found to be capable of imparting acidity.
  • the combination of the components in the coating agent used for forming the coating type corrosion prevention treatment layer 14 is not particularly limited, and examples thereof include the following combinations (1) to (7).
  • the corrosion prevention treatment layer 14 is not limited to the above-described layer.
  • it may be formed by using a treating agent in which phosphoric acid and a chromium compound are blended in a resin binder (aminophenol or the like), such as a coating chromate which is a known technique. If this processing agent is used, it can be set as the layer which has both a corrosion prevention function and adhesiveness.
  • this processing agent in the above-described degreasing treatment, hydrothermal modification treatment, anodizing treatment, chemical conversion treatment, or a combination thereof, in order to improve adhesion, the cationic polymer and the anionic polymer are used to form a composite. It is good also as processing.
  • a layer made of a cationic polymer or an anionic polymer as a multilayer structure may be further laminated on the layer formed by the treatment.
  • both a corrosion prevention function and adhesion are achieved by using a coating agent in which a rare earth oxide sol and a polycationic polymer or polyanionic polymer are preliminarily made into one liquid. It can be a combined layer.
  • Mass per unit area of the corrosion prevention treatment layer 14 is preferably 0.005 ⁇ 0.200mg / m 2, more preferably 0.010 ⁇ 0.100mg / m 2. If the mass per unit area is 0.005 mg / m 2 or more, the aluminum foil layer 13 is easily given a corrosion prevention function. Moreover, even if the mass per unit area exceeds 0.200 mg / m 2 , the corrosion prevention function does not change much. On the other hand, when the rare earth oxide sol is used, if the coating film is thick, curing due to heat at the time of drying becomes insufficient, and there is a possibility that the cohesive force is lowered. In addition, about the thickness of the corrosion prevention process layer 14, it can convert from the specific gravity.
  • the second adhesive layer 15 is a layer that bonds the corrosion prevention treatment layer 14 and the sealant layer 16 together. When the corrosion prevention treatment layer is not formed on the sealant layer side of the aluminum foil layer, the aluminum foil layer and the sealant layer are bonded.
  • the second adhesive layer 15 is a layer containing an adhesive or an adhesive resin.
  • the exterior material 1 dry laminate type
  • the exterior material 1 thermal laminate type
  • the same adhesive as that used for the first adhesive layer 12 can be used.
  • an adhesive is used for the second adhesive layer 15, it is an adhesive that bonds the surface filled with the electrolytic solution, so that attention must be paid to swelling with the electrolytic solution and hydrolysis with hydrofluoric acid. There is. Therefore, it is preferable to use an adhesive using a main agent having a skeleton that is difficult to be hydrolyzed and an adhesive with improved crosslink density.
  • Examples of methods for improving the crosslinking density of the adhesive include, for example, dimer fatty acid or ester thereof, hydrogenated dimer fatty acid or ester thereof, reduced glycol of dimer fatty acid or ester thereof, or hydrogenation of dimer fatty acid or ester thereof
  • dimer fatty acid or ester thereof hydrogenated dimer fatty acid or ester thereof, reduced glycol of dimer fatty acid or ester thereof, or hydrogenation of dimer fatty acid or ester thereof
  • the method of obtaining a polyester polyol with the reduced glycol of a thing and a diol compound is mentioned. According to this method, the crosslinking density is improved by the bulky hydrophobic unit of the dimer fatty acid.
  • Dimer fatty acids are those obtained by dimerizing various unsaturated fatty acids, and examples of their structures include acyclic, monocyclic, polycyclic and aromatic ring types.
  • the dimerization structure of the raw material dimer fatty acid in the polyester polyol used for the second adhesive layer 15 is not particularly limited.
  • the kind of unsaturated fatty acid used as a starting material for dimer fatty acid is not particularly limited.
  • Unsaturated fatty acids include monounsaturated fatty acids such as crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid, nervonic acid; linoleic acid, eicosadienoic acid, docosadiene Diunsaturated fatty acids such as acids; triunsaturated fatty acids such as linolenic acid, vinolenic acid, eleostearic acid, mead acid, dihomo- ⁇ -linolenic acid, eicosatrienoic acid; stearidonic acid, arachidonic acid, eicosatetraene Tetraunsaturated fatty acids such as acids and adrenic acids; pentaunsaturated fatty acids such as boseopentaenoic acid, eicosabentaeno
  • the diol compound the diol compounds mentioned in the description of the polyester polyol of the first adhesive layer 12 can be used. Moreover, when improving a crosslinking density with the said dimer fatty acid, you may introduce
  • the dibasic acid the dibasic acids mentioned in the description of the polyester polyol of the first adhesive layer 12 can be used.
  • the adhesive for the second adhesive layer 15 a polyester urethane polyol in which the hydroxyl groups at both ends of the polyester polyol whose crosslink density has been improved by the above method is chain-extended with a polyisocyanate compound is also preferable.
  • the polyisocyanate compound As the polyisocyanate compound, the polyisocyanate compound mentioned in the description of the polyester urethane polyol of the first adhesive layer 12 can be used, and at least one selected from the group consisting of crude tolylene diisocyanate, crude diphenylmethane diisocyanate, and polymeric diphenylmethane diisocyanate is preferable. .
  • the polyisocyanate compounds mentioned in the description of the first adhesive layer 12 can be used, but in particular, the electrolytic solution resistance (particularly the solubility in the electrolytic solution, the swelling property).
  • the ratio of the curing agent in the adhesive forming the second adhesive layer 15 is preferably 1 to 100 parts by mass, and more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the main agent. If the ratio of the said hardening
  • the second adhesive layer 15 is formed of an adhesive, as in the case of the first adhesive layer 12, a carbodiimide compound, an oxazoline compound, an epoxy compound, a phosphorus compound, a silane coupling agent, etc. are used to promote adhesion. You may mix
  • the adhesive used in the second adhesive layer 15 is not limited to the above-described composition, and one that can withstand an electrolytic solution or hydrofluoric acid is used, and an adhesive based on a main agent such as polyolefin polyol or acrylic polyol is also applicable. is there.
  • examples of the adhesive resin include polyolefins that are unsaturated carboxylic acid derivative components derived from unsaturated carboxylic acids or acid anhydrides or esters thereof.
  • examples thereof include a modified polyolefin resin obtained by graft-modifying a resin in the presence of an organic peroxide.
  • examples of the polyolefin resin include low density polyethylene, medium density polyethylene, high density polyethylene, ethylene- ⁇ olefin copolymer, homo, block or random polypropylene, propylene- ⁇ olefin copolymer, and the like.
  • Examples of the compound used for graft-modifying the polyolefin resin include unsaturated carboxylic acids or acid anhydrides or esters thereof (hereinafter collectively referred to as “unsaturated carboxylic acid etc.”). Specific examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid and the like.
  • Saturated carboxylic acids such as maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic anhydride, etc.
  • Anhydride methyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dimethyl maleate, monomethyl maleate, diethyl fumarate, dimethyl itaconate, diethyl citraconic acid, dimethyl tetrahydrophthalic anhydride, bicyclo [2,2 , 1] Unsaturated carboxylic acids such as dimethyl-2-hept-2-ene-5,6-dicarboxylate And the like esters of.
  • the modified polyolefin resin can be produced by reacting 0.2 to 100 parts by mass of an unsaturated carboxylic acid or the like with 100 parts by mass of the base polyolefin resin under heating conditions in the presence of a radical initiator.
  • the reaction temperature for the modification reaction is preferably 50 to 250 ° C, more preferably 60 to 200 ° C.
  • the residence time of the extruder is preferably 2 minutes to 30 minutes, more preferably 5 to 10 minutes.
  • the denaturation reaction can be carried out under normal pressure or under pressure.
  • Examples of the radical initiator used in the modification reaction include organic peroxides.
  • Examples of the organic peroxide include alkyl peroxides, aryl peroxides, acyl peroxides, ketone peroxides, peroxyketals, peroxycarbonates, peroxyesters, and hydroperoxides. These organic peroxides can be appropriately selected according to temperature conditions and reaction time.
  • alkyl peroxides, peroxyketals, and peroxyesters are preferable, and di-t-butyl peroxide, 2,5-dimethyl-2,5-di-t- Butylperoxy-hexyne-3, dicumyl peroxide are more preferred.
  • the modified polyolefin resin obtained by graft modification as described above is typically a polyolefin resin modified with maleic anhydride, and examples include Mitsui Chemicals Admer, Mitsubishi Chemical Modic, and Nippon Polyethylene Adtex. These modified polyolefin resins utilize the reactivity of unsaturated carboxylic acid derivative components derived from grafted unsaturated carboxylic acids or acid anhydrides or esters thereof with polymers containing various metals or various functional groups. Thus, adhesion is imparted. Moreover, unlike adhesion by such a reaction, by adding various thermoplastic elastomers, the residual stress generated when laminating the modified polyolefin resin is released, and viscoelastic adhesion is improved. It is also possible.
  • thermoplastic elastomers include Mitsui Chemicals Tuffmer, Mitsubishi Chemical Zelas, Montell Catalloy, Mitsui Chemicals Notio, Sumitomo Chemical Tough Selenium, styrene elastomers, especially hydrogenated styrene elastomers (AK Elastomer Tuftec, Kuraray) Septon / Hibler, JSR Dynalon, Sumitomo Chemical Espolex, etc., Kraton Polymer Kraton G, etc.) are preferred.
  • blend various additives such as a flame retardant, a slip agent, an antiblocking agent, antioxidant, a light stabilizer, and a tackifier.
  • the sealant layer 16 is a layer that is bonded to the aluminum foil layer 14 on which the corrosion prevention treatment layer 14 is formed via the second adhesive layer 15, and provides a sealing property by heat sealing in the exterior material 1.
  • the component constituting the sealant layer 16 include polyolefins such as low density polyethylene, medium density polyethylene, high density polyethylene, ethylene- ⁇ olefin copolymer, homo, block, or random polypropylene, propylene- ⁇ olefin copolymer.
  • examples thereof include a resin, an ethylene-vinyl acetate copolymer, an ethylene- (meth) acrylic acid copolymer, or an esterified product or an ionic cross-linked product thereof.
  • the sealant layer 16 may be a single layer made of a material obtained by blending one or more of the above components, and may have a multilayer structure according to other required performance required for the sealant.
  • As the sealant layer 16 having a multilayer structure for example, a sealant layer in which a resin having gas barrier properties such as an ethylene-vinyl acetate copolymer portion or a completely saponified product, a polyvinyl acetate copolymer portion or a completely saponified product is interposed. Etc.
  • the manufacturing method of the packaging material 1 includes the following steps (I) to (III).
  • Step (I): The corrosion prevention treatment layer 14 is formed on one surface of the aluminum foil layer 13 by applying a coating agent having a degreasing treatment, a hydrothermal alteration treatment, an anodizing treatment, a chemical conversion treatment, or a corrosion prevention performance.
  • a coating agent having a degreasing treatment include annealing, spraying, and dipping.
  • the hydrothermal modification treatment and anodizing treatment include an immersion method.
  • a chemical conversion treatment method an immersion method, a spray method, a coating method, or the like can be selected according to the type of chemical conversion treatment.
  • the coating amount of the coating agent is preferably within a range that satisfies the mass per unit area of the corrosion prevention treatment layer 14 described above.
  • the base material temperature can be in the range of 60 to 300 ° C. depending on the drying conditions of the corrosion prevention treatment layer 14 to be used.
  • the base material layer 11 is formed by a technique such as dry lamination, non-solvent lamination, wet lamination using an adhesive that forms the first adhesive layer 12. Paste together.
  • the dry coating amount of the adhesive is preferably 1 to 10 g / m 2 and more preferably 3 to 7 g / m 2 .
  • an aging treatment may be performed in the range of room temperature to 100 ° C. to promote adhesion.
  • the dry coating amount of the adhesive is preferably 1 to 10 g / m 2 and more preferably 3 to 7 g / m 2 .
  • an aging treatment (curing) may be performed in the range of room temperature to 100 ° C. in order to promote adhesion.
  • the sealant layer 16 is bonded to the corrosion prevention treatment layer 14 side of the laminate through the adhesive resin by sand lamination using an extrusion laminating machine. .
  • adhesion between the aluminum foil layer 13 / corrosion prevention treatment layer 14 / second adhesive layer 15 / sealant layer 16 is improved, and the electrolytic solution resistance and hydrofluoric acid resistance are improved.
  • a method of passing through a drying furnace or baking furnace set to a high temperature for example, 100 ° C. or higher
  • a thermal lamination method thermal lamination method
  • a Yankee drum thermal drum
  • the heat treatment temperature is preferably set so that the maximum temperature of the laminate is not less than room temperature and not more than 20 ° C. higher than the melting point of the sealant layer 16. It is preferable to set so as to be in the range below the melting point.
  • the treatment time varies depending on the heat treatment temperature. The lower the heat treatment temperature, the longer the treatment time, and the higher the heat treatment temperature, the shorter the treatment time.
  • the packaging material 1 is obtained by the steps (I) to (III) described above.
  • the manufacturing method of the exterior material 1 is not limited to the method of sequentially performing the steps (I) to (III).
  • step (I) may be performed after performing step (II).
  • you may provide a corrosion prevention process layer on both surfaces of an aluminum foil layer.
  • you may perform process (II) after performing process (III).
  • the outer packaging material of the present invention described above has sufficient resistance to electrolytic solution without performing chromate treatment, and has excellent deep drawability.
  • the deep drawability of the exterior material is greatly influenced by the strength properties of the base material layer, which is the outermost layer.
  • the exterior material (i) the deep drawability can be improved by using a stretched film with less mechanical property direction as the base material layer 11, but the stretched film is manufactured by the inflation method. Limited.
  • the exterior material of the present invention has a difference between the elongation ( ⁇ 1) of the yield point and the elongation ( ⁇ 2) at the fracture point measured in accordance with JIS-K7127 in at least one of the MD direction and the TD direction.
  • the exterior material of the present invention is easy to manufacture because the film substrate (A) can be manufactured not only by the inflation method but also by the casting method.
  • the exterior material of the present invention does not need to have a particularly high heat shrinkage rate, curling and the like can be suppressed when heat is applied in a baking process or the like in battery manufacture.
  • the exterior material of the present invention is not limited to the exterior material 1 described above.
  • the corrosion prevention treatment layer only needs to be provided at least on the sealant layer side of the aluminum foil layer, and may be provided on both surfaces of the aluminum foil layer.
  • the packaging material 1 of the present embodiment is an aluminum foil in which a corrosion prevention treatment layer 14 is provided on one surface of a base material layer 11 on the side opposite to the first adhesive layer 12 and the base material layer 11. This is a laminate in which the layer 13, the second adhesive layer 15, and the sealant layer 16 are sequentially laminated.
  • the base material layer 11 is a layer having the following film base material (A).
  • a stretched polyamide film substrate that satisfies the relationship represented by the following formula (2).
  • the film base material (A) satisfies the above formulas (1) and (2), the tensile stress y at the breaking point is increased even if the film base has a low elongation x to the breaking point. Since the properties are supplemented, excellent deep drawability can be obtained. Moreover, even if the film base material (A) is a film base material (however, 200 MPa or more) having a small tensile stress y at the breaking point by satisfying the above formulas (1) and (2), up to the breaking point. Since the elongation x of the material supplements the strength properties, excellent deep drawability is obtained.
  • the tensile stress y at the breaking point is 200 MPa or more as shown in the formula (2). If the tensile stress y at the breaking point is 200 MPa or more, it can sufficiently withstand the stress applied at the time of deep drawing, and it is possible to suppress molding defects such as cracks.
  • the tensile stress y at the breaking point is preferably 250 MPa or more, and more preferably 300 MPa or more.
  • the elongation x to the breaking point varies depending on the tensile stress y at the breaking point, but is preferably 80% or more, more preferably 100% or more. If the elongation x up to the breaking point is not less than the lower limit of the above range, the moldability is improved.
  • the film substrate (A) is a stretched polyamide film substrate. That is, it is a film base material obtained by stretching a base material formed of a polyamide resin.
  • the polyamide resin is a thermoplastic polymer compound having an amide bond (—CONH—) in the molecule.
  • the polyamide resin is not particularly limited, and a polyamide resin having oriented crystallinity is preferable.
  • Polyamide resins include poly ⁇ -capramide (nylon 6), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebamide (nylon 610), polyaminoundecamide (nylon 11), polylaurylamide (nylon) 12), polymetaxylylene adipamide (MXD6), and copolymers thereof. Of these, nylon 6 and nylon 66 are particularly preferable as the polyamide resin.
  • the polyamide resin may be one type or two or more types.
  • various rubber components, compatibilizing agents, and the like may be blended with the film base material (A) as necessary in order to improve the strength properties.
  • various additives such as a lubricant, an antistatic agent, an antiblocking agent, and inorganic fine particles may be added as long as they do not adversely affect the performance of the film substrate (A).
  • a film base material (A) is manufactured by the method shown below, for example.
  • Polyamide resin is formed by extrusion melting with an extruder equipped with a T die, and the formed molten resin is rapidly cooled on a rotating cooling drum by a known casting method such as an air knife casting method or an electrostatic application casting method. Film formation is performed to obtain an unstretched film substrate.
  • a roll-type longitudinal stretching machine composed of a group of heating rollers having different peripheral speeds is used to preheat the unstretched film substrate, heated to a temperature equal to or higher than the glass transition point of the unstretched film substrate, and film cooling
  • the unstretched film base material is longitudinally stretched between cooling rolls for the purpose.
  • the film base material (A) is obtained by continuously guiding the longitudinally stretched film base material to a tenter, preheating at 50 to 70 ° C., and then transversely stretching at 60 to 110 ° C. If necessary, the ratio of the longitudinal draw ratio and the transverse draw ratio may be adjusted, and heat treatment and relaxation treatment may be performed at 210 to 220 ° C. in the tenter.
  • the method for producing the unstretched film substrate is not limited to the casting method, and for example, the unstretched film substrate may be produced by an inflation method in which a film substrate with less mechanical property directionality is easily obtained.
  • the stretching may be uniaxial stretching or biaxial stretching.
  • Biaxial stretching is not limited to other than the aforementioned sequential biaxial, and may be simultaneous biaxial.
  • the thickness of the film substrate (A) is preferably 6 ⁇ m or more, more preferably 10 ⁇ m or more from the viewpoint of improving pinhole resistance and insulation.
  • the thickness of the film substrate (A) is preferably 50 ⁇ m or less, and more preferably 25 ⁇ m or less, from the viewpoint of improving deep drawability.
  • the outer packaging material of the present invention described above has sufficient resistance to electrolytic solution without performing chromate treatment, and has excellent deep drawability.
  • the deep drawability of the exterior material is greatly influenced by the strength properties of the base material layer, which is the outermost layer.
  • the deep drawability can be improved by using a stretched film with less mechanical property direction as the base material layer 11, but the stretched film is manufactured by the inflation method. Limited.
  • the elongation x up to the breaking point and the tensile stress y at the breaking point which are measured in accordance with JIS-K7127, are the above formulas (1) and (2).
  • the exterior material of the present invention is excellent in productivity because the film substrate (A) can be manufactured not only by the inflation method but also by the casting method.
  • the exterior material of the present invention does not need to have a particularly high heat shrinkage rate, curling and the like can be suppressed when heat is applied in a baking process or the like in battery manufacture.
  • a lithium ion battery exterior material 10 (hereinafter also referred to as “exterior material 10”) of the present embodiment is provided on a first surface of a base material layer (SB) 11 described later on a first adhesive layer (AD) described later. -1) 12, an aluminum foil layer (AL) 13, a corrosion prevention treatment layer (CL) 14, a second adhesive layer (AD-2) 15, and a sealant layer (SL) 16 are sequentially laminated.
  • the innermost layer of the exterior material 10 is a sealant layer (SL) 16.
  • the base material layer (SB) 11 plays a role of imparting heat resistance in a sealing process at the time of manufacturing a lithium battery and suppressing generation of pinholes that may occur during processing and distribution.
  • the base material layer (SB) 11 has a stretched polyamide film (hereinafter also referred to as “stretched Ny film A”) in which the ratio ⁇ d / ⁇ of the surface free energy dispersion component ⁇ d to the surface free energy ⁇ is 80% or less. . Since the base material layer (SB) 11 has the stretched Ny film A, excellent moldability is obtained.
  • the surface free energy ⁇ of the stretched Ny film A and the dispersion force component ⁇ d of the surface free energy are water, methylene iodide, ⁇ -
  • the contact angle was measured on the film surface under the conditions of 20 ° C. and 50% RH, and the following formula (1) and the following formula introduced from the extended Fowkes formula and Young formula: Calculated from equation (2).
  • ⁇ , ⁇ d, ⁇ p, and ⁇ h are components of the surface free energy on the measurement surface of the film and its dispersion force, polarity force, and hydrogen bonding force.
  • is the contact angle of the measurement liquid on the measurement surface. The contact angle ⁇ is measured at five points on the same measurement surface, and is an average value.
  • the stretched film base material has greatly different strength physical properties depending on the stretching conditions (stretching ratio, stretching temperature, heat setting conditions, etc.), but the ratio of the molecular orientation state and crystallinity of the polymer molecular chain depending on the stretching conditions is the above ratio. It is presumed that ⁇ d / ⁇ is affected, and it is presumed that there is some correlation between the strength physical properties of the stretched film and the ratio ⁇ d / ⁇ .
  • the dispersion component ⁇ d of the surface free energy of the stretched Ny film A is preferably 40 mN / m or less from the viewpoint of moldability. Further, the contact angle ⁇ when ⁇ -bromonaphthalene is dropped on the surface of the stretched Ny film A is preferably 20 ° or more from the viewpoint of moldability.
  • the stretched Ny film A may be a uniaxially stretched polyamide film or a biaxially stretched polyamide film. Of these, a biaxially stretched polyamide film is preferable from the viewpoint of moldability.
  • the polyamide resin that forms the stretched Ny film A is not particularly limited, and examples thereof include a thermoplastic polymer compound having an amide bond (—CONH—) in the molecule. Of these, a polyamide resin having oriented crystallinity is preferable. Specific examples of the polyamide resin include poly ⁇ -capramide (nylon 6), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebamide (nylon 610), polyaminoundecamide (nylon 11), polylauryl. Examples include amide (nylon 12), polymetaxylylene adipamide (MXD6), and copolymers thereof. Among these, nylon 6 and nylon 66 are preferable from the viewpoint of moldability.
  • various rubber components, compatibilizers, and the like may be blended as necessary, for example, for the purpose of improving strength properties.
  • various additives such as a lubricant, an antistatic agent, an antiblocking agent, and inorganic fine particles may be added as long as the performance of the film is not adversely affected.
  • the base material layer (SB) 11 may be a layer composed only of the stretched Ny film A, or may be a layer composed of the stretched Ny film A and a laminated film of another film.
  • the other film is preferably a film made of an insulating resin, and examples thereof include stretched or unstretched films such as polyester films, polypropylene films, and polyamide films other than stretched Ny film A.
  • a stretched polyester film is preferable from the viewpoint of improving moldability, heat resistance, pinhole resistance, and insulation.
  • the other film is a stretched film, it may be a uniaxially stretched film or a biaxially stretched film.
  • the thickness of the base material layer (SB) 11 is preferably 6 to 40 ⁇ m, and more preferably 10 to 25 ⁇ m.
  • the thickness of the stretched Ny film A is preferably 6 ⁇ m or more from the viewpoint of moldability. Further, the thickness of the stretched Ny film A in this case is preferably 40 ⁇ m or less from the viewpoint of moldability.
  • the first adhesive layer (AD-1) 12 is a layer that adheres the base material layer (SB) 11 and the aluminum foil layer (AL) 13.
  • an adhesive for forming the first adhesive layer (AD-1) 12 for example, a polyurethane obtained by allowing a bifunctional or higher functional isocyanate compound to act on a main component such as polyester polyol, polyether polyol, acrylic polyol, and carbonate polyol. Resin.
  • the polyester polyol can be obtained by reacting one or more dibasic acids with one or more diols.
  • dibasic acids include aliphatic dibasic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid, and brassic acid; isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, etc. And aromatic dibasic acids.
  • diol examples include aliphatic diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, and dodecanediol; cyclohexanediol, Examples thereof include alicyclic diols such as hydrogenated xylylene glycol; aromatic diols such as xylylene glycol.
  • polyester urethane polyol which chain-extended by making the hydroxyl group of the both ends of the said polyester polyol react with 1 or more types of the bifunctional or more than isocyanate compound.
  • the bifunctional or higher isocyanate compound include 2,4- or 2,6-tolylene diisocyanate, xylylene diisocyanate, 4,4'-diphenylmethane diisocyanate, methylene diisocyanate, isopropylene diisocyanate, lysine diisocyanate, 2,2, 4- or 2,4,4-trimethylhexamethylene diisocyanate, 1,6-hexamethylene diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, isopropylidene dicyclohexyl-4,4′-diisocyanate, etc. Can be mentioned. Moreover, Moreover, Moreover
  • polyether polyol examples include polyethylene glycol, polypropylene glycol, and the like, and polyether urethane polyols obtained by chain-extending them by the action of the isocyanate compound.
  • acrylic polyol examples include a copolymer mainly composed of poly (meth) acrylic acid.
  • hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate; alkyl (meth) acrylate monomers (the alkyl group is methyl Group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group)); (meth) acrylamide, N- Alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide (alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-but
  • the carbonate polyol is obtained by reacting a carbonate compound and a diol.
  • the carbonate compound include dimethyl carbonate, diphenyl carbonate, and ethylene carbonate.
  • the diol include the same ones as mentioned for the polyester polyol.
  • polystyrene resin can be used according to the required function and performance, and can be used alone or in combination of two or more.
  • the curing agent that acts on the main agent include the isocyanate compounds mentioned as the chain extender.
  • the first adhesive layer (AD-1) 12 may contain a carbodiimide compound, an oxazoline compound, an epoxy compound, a phosphorus compound, a silane coupling agent, or the like for promoting adhesion.
  • the carbodiimide compound include N, N′-di-o-toluylcarbodiimide, N, N′-diphenylcarbodiimide, N, N′-di-2,6-dimethylphenylcarbodiimide, N, N′-bis (2 , 6-Diisopropylphenyl) carbodiimide, N, N′-dioctyldecylcarbodiimide, N-triyl-N′-cyclohexylcarbodiimide, N, N′-di-2,2-di-t-butylphenylcarbodiimide, N-triyl- N'-phenylcarbodiimide, N, N'-di-p-nitropheny
  • oxazoline compound examples include monooxazolines such as 2-oxazoline, 2-methyl-2-oxazoline, 2-phenyl-2-oxazoline, 2,5-dimethyl-2-oxazoline, and 2,4-diphenyl-2-oxazoline.
  • epoxy compound examples include diglycidyl ethers of aliphatic diols such as 1,6-hexanediol, neopentyl glycol, and polyalkylene glycol; sorbitol, sorbitan, polyglycerol, pentaerythritol, diglycerol, glycerol, trimethylolpropane, and the like Polyglycidyl ethers of aliphatic polyols; polyglycidyl ethers of alicyclic polyols such as cyclohexanedimethanol; aliphatic and aromatic such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, trimellitic acid, adipic acid, and sebacic acid Diglycidyl ester or polyglycidyl ester of polycarboxylic acid; resorcinol, bis- (p-hydroxyphenyl) methane, 2,2-bis- (p-(
  • Examples of phosphorus compounds include tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylenephosphonite, bis (2 , 4-Di-t-butylphenyl) pentaerythritol-di-phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phosphite, 2,2-methylenebis (4 , 6-Di-tert-butylphenyl) octyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, 1,1,3-tris (2 -Methyl-4-ditridecyl phosphite-5-t-butyl-
  • silane coupling agent examples include vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycol.
  • various additives and stabilizers may be blended depending on the performance required for the adhesive.
  • Aluminum foil layer (AL) 13 As the aluminum foil layer (AL) 13, a general soft aluminum foil can be used, and an aluminum foil containing iron is preferably used from the viewpoint that pinhole resistance and extensibility during molding can be imparted.
  • the iron content in the aluminum foil (100% by mass) is preferably 0.1 to 9.0% by mass, and more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, pinhole resistance and spreadability are improved. If the iron content is 9.0% by mass or less, flexibility is improved.
  • the thickness of the aluminum foil layer (AL) 13 is preferably 9 to 200 ⁇ m, more preferably 15 to 100 ⁇ m, from the viewpoint of barrier properties, pinhole resistance, and workability.
  • the degreasing treatment is roughly classified into a wet type and a dry type.
  • the wet type degreasing treatment include acid degreasing and alkali degreasing.
  • the acid used for acid degreasing include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid. These acids may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the dry-type degreasing treatment include a method performed in a step of annealing aluminum.
  • frame treatment, corona treatment, and the like can be given.
  • a degreasing treatment in which pollutants are oxidatively decomposed and removed by active oxygen generated by irradiating ultraviolet rays having a specific wavelength is also included.
  • the degreasing treatment of the aluminum foil layer (AL) 13 may be performed only on one side or on both sides.
  • the corrosion prevention treatment layer (CL) 14 is a layer provided to prevent corrosion of the aluminum foil layer (AL) 13 due to the electrolytic solution or hydrofluoric acid.
  • the corrosion prevention treatment layer (CL) 14 is formed by, for example, a degreasing treatment, a hydrothermal alteration treatment, an anodizing treatment, a chemical conversion treatment, or a combination of these treatments.
  • Degreasing treatment includes acid degreasing or alkali degreasing. Examples of the acid degreasing include a method in which the above-described inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid are used alone or in combination.
  • the acid degreasing agent which melt
  • dissolved fluorine-containing compounds such as monosodium ammonium difluoride
  • the alkaline degreasing include sodium hydroxide.
  • the hydrothermal modification treatment include boehmite treatment in which an aluminum foil is immersed in boiling water to which triethanolamine is added.
  • the anodizing treatment include alumite treatment.
  • Examples of the chemical conversion treatment include a chromate treatment, a zirconium treatment, a titanium treatment, a vanadium treatment, a molybdenum treatment, a calcium phosphate treatment, a strontium hydroxide treatment, a cerium treatment, a ruthenium treatment, and various chemical conversion treatments composed of a mixed phase thereof. .
  • a chromate treatment a zirconium treatment, a titanium treatment, a vanadium treatment, a molybdenum treatment, a calcium phosphate treatment, a strontium hydroxide treatment, a cerium treatment, a ruthenium treatment, and various chemical conversion treatments composed of a mixed phase thereof.
  • the aluminum foil surface is dissolved by a treating agent to form an aluminum compound (boehmite, alumite) having excellent corrosion resistance. Therefore, since it becomes a form in which a co-continuous structure is formed from the aluminum foil layer (AL) 13 to the corrosion prevention treatment layer (CL) 14, it is included in the definition of the chemical conversion treatment, but is included in the definition of the chemical conversion treatment as described later. It is also possible to form the anticorrosion treatment layer (CL) 14 only by a pure coating method.
  • a sol of a rare earth element oxide such as cerium oxide having an average particle size of 100 nm or less is used as a material that has an anticorrosion effect (inhibitor effect) of aluminum and is also suitable from an environmental viewpoint.
  • the method using is mentioned. By using this method, it is possible to impart an anticorrosion effect to a metal foil such as an aluminum foil even with a general coating method.
  • the rare earth element-based oxide sol examples include sols using various solvents such as water-based, alcohol-based, hydrocarbon-based, ketone-based, ester-based, and ether-based solvents. Among these, an aqueous sol is preferable.
  • inorganic acids such as nitric acid, hydrochloric acid and phosphoric acid or salts thereof, and organic acids such as acetic acid, malic acid, ascorbic acid and lactic acid are dispersed. Used as a stabilizer.
  • phosphoric acid in particular, is improved in adhesion to the aluminum foil layer 13 using (1) sol dispersion stabilization and (2) aluminum chelate ability of phosphoric acid in the exterior material 10. (3) Electrolyte solution resistance by capturing (passivation formation) of aluminum ions eluted under the influence of hydrofluoric acid, (4) Corrosion prevention treatment layer (CL) due to easy dehydration condensation of phosphoric acid even at low temperatures ) Improvement of cohesive strength of 14 (oxide layer) is expected.
  • the phosphoric acid or a salt thereof include orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, and alkali metal salts and ammonium salts thereof.
  • condensed phosphoric acid such as trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, and ultrametaphosphoric acid, or alkali metal salts and ammonium salts thereof are preferable for the functional expression in the outer packaging material 10.
  • dry film-forming property drying capacity, heat quantity
  • sodium salt is more preferable.
  • phosphate a water-soluble salt is preferable.
  • the mixing ratio of phosphoric acid (or a salt thereof) to cerium oxide is preferably 1 to 100 parts by mass with respect to 100 parts by mass of cerium oxide. If the said compounding ratio is 1 mass part or more with respect to 100 mass parts of cerium oxides, cerium oxide sol will become more stable and the function of the exterior material 10 will become more favorable. As for the said mixture ratio, 5 mass parts or more are more preferable with respect to 100 mass parts of cerium oxides. Moreover, if the said mixture ratio is 100 mass parts or less with respect to 100 mass parts of cerium oxides, it will be easy to suppress the functional fall of a cerium oxide sol.
  • the blending ratio is more preferably 50 parts by mass or less, and further preferably 20 parts by mass or less, with respect to 100 parts by mass of cerium oxide.
  • the corrosion prevention treatment layer (CL) 14 formed of the rare earth oxide sol is an aggregate of inorganic particles, there is a possibility that the cohesive force of the layer itself may be lowered even after a dry curing step. Therefore, the corrosion prevention treatment layer (CL) 14 in this case is preferably combined with the following anionic polymer or cationic polymer in order to supplement cohesion.
  • anionic polymer the polymer which has a carboxy group is mentioned, For example, the copolymer which copolymerized poly (meth) acrylic acid (or its salt) or poly (meth) acrylic acid as a main component is mentioned.
  • the copolymer component of the copolymer includes alkyl (meth) acrylate monomers (alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.); (meth) acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide (alkyl groups include methyl, ethyl, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.), N-alkoxy (meth) acrylamide, N, N-dialkoxy (Meth) acrylamide, (the alkoxy group includes methoxy group, e
  • anionic polymers play a role of improving the stability of the corrosion prevention treatment layer (CL) 14 (oxide layer) obtained using the rare earth element oxide sol. This is achieved by the effect of protecting the hard and brittle oxide layer with an acrylic resin component and the effect of capturing ionic contamination (particularly sodium ions) derived from phosphate contained in the rare earth oxide sol (cation catcher). Is done.
  • an alkali metal ion such as sodium or an alkaline earth metal ion
  • the location containing the ion is used as a starting point.
  • the corrosion prevention treatment layer (CL) 14 is likely to deteriorate. Therefore, the resistance of the corrosion prevention treatment layer (CL) 14 is improved by fixing sodium ions and the like contained in the rare earth oxide sol by the anionic polymer.
  • the corrosion prevention treatment layer (CL) 14 combined with the anionic polymer and the rare earth element oxide sol has the same corrosion prevention performance as the corrosion prevention treatment layer (CL) 14 formed by subjecting the aluminum foil to chromate treatment.
  • the anionic polymer is preferably a structure in which a polyanionic polymer that is essentially water-soluble is crosslinked.
  • a crosslinking agent used for formation of this structure the compound which has an isocyanate group, a glycidyl group, a carboxy group, and an oxazoline group is mentioned, for example.
  • Examples of the compound having an isocyanate group include tolylene diisocyanate, xylylene diisocyanate or hydrogenated products thereof, hexamethylene diisocyanate, 4,4′diphenylmethane diisocyanate or hydrogenated products thereof, diisocyanates such as isophorone diisocyanate; or these isocyanates.
  • Polyisocyanates such as adducts obtained by reacting with polyhydric alcohols such as trimethylolpropane, burette obtained by reacting with water, or isocyanurate as a trimer; Examples thereof include blocked polyisocyanates obtained by blocking isocyanates with alcohols, lactams, oximes and the like.
  • Examples of the compound having a glycidyl group include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,4-butanediol, 1,6-hexanediol, Epoxy compounds in which epichlorohydrin is allowed to act on glycols such as neopentyl glycol; epoxy compounds in which epichlorohydrin is allowed to act on polyhydric alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol and sorbitol; terephthalic acid phthalate And epoxy compounds obtained by reacting dicarboxylic acids such as oxalic acid and adipic acid with epichlorohydrin.
  • Examples of the compound having a carboxy group include various aliphatic or aromatic dicarboxylic acids. Further, poly (meth) acrylic acid or alkali (earth) metal salt of poly (meth) acrylic acid may be used.
  • the compound having an oxazoline group for example, a low molecular compound having two or more oxazoline units, or a polymerizable monomer such as isopropenyl oxazoline, (meth) acrylic acid, (meth) acrylic acid alkyl ester And those obtained by copolymerizing acrylic monomers such as hydroxyalkyl (meth) acrylate.
  • the anionic polymer may be selectively reacted with an amine and a functional group to form a siloxane bond at the crosslinking point, like a silane coupling agent.
  • epoxy silane, amino silane, and isocyanate silane are preferable in
  • the ratio of these crosslinking agents to the anionic polymer is preferably 1 to 50 parts by mass and more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the anionic polymer.
  • the ratio of the crosslinking agent is 1 part by mass or more with respect to 100 parts by mass of the anionic polymer, a crosslinked structure is easily formed.
  • the ratio of the crosslinking agent is 50 parts by mass or less with respect to 100 parts by mass of the anionic polymer, the pot life of the coating liquid is improved.
  • the method of crosslinking the anionic polymer is not limited to the crosslinking agent, and may be a method of forming ionic crosslinking using a titanium or zirconium compound.
  • Examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine-grafted acrylic resin obtained by grafting a primary amine on an acrylic main skeleton, polyallylamine or a derivative thereof, amino Phenol etc. are mentioned.
  • Examples of the polymer having a carboxylic acid that forms an ionic polymer complex with polyethyleneimine include, for example, polyacrylic acid (salt) such as polyacrylic acid or an ionic salt thereof, a copolymer in which a comonomer is introduced, carboxymethylcellulose, or Examples thereof include polysaccharides having a carboxy group such as ionic salts.
  • polyallylamine examples include homopolymers or copolymers of allylamine, allylamine amide sulfate, diallylamine, dimethylallylamine, and the like. These amines may be free amines or may be stabilized with acetic acid or hydrochloric acid. Moreover, you may use a maleic acid, sulfur dioxide, etc. as a copolymer component. Furthermore, the type which gave the thermal crosslinking property by partially methoxylating a primary amine can also be used, and aminophenol can also be used. In particular, allylamine or its derivative is preferable.
  • the cationic polymer is a compound that can impart electrolyte solution resistance and hydrofluoric acid resistance. This factor is presumed to be because aluminum ions are prevented from being damaged by supplementing fluorine ions with a cationic group (anion catcher).
  • the above-mentioned cationic polymer is a very preferable material from the viewpoint of improving adhesiveness.
  • the cationic polymer is water-soluble like the anionic polymer described above, it is preferable to form a crosslinked structure, and a crosslinking agent having various functional groups mentioned in the section of the anionic polymer is used. Thus, it becomes possible to impart water resistance to the cationic polymer.
  • a cationic polymer can also form a crosslinked structure, when a rare earth oxide sol is used as the corrosion prevention treatment layer (CL) 14, instead of using an anionic polymer as its protective layer, a cationic property is used.
  • a polymer may be used.
  • a combination of components in the coating agent used for forming the coating type corrosion prevention treatment layer (CL) 14 is not particularly limited, and examples thereof include the following combinations (1) to (7).
  • (6) A rare earth oxide and an anionic polymer are laminated and combined, and then a multilayer is formed with a cationic polymer.
  • a rare earth oxide and a cationic polymer are laminated and composited, and further multilayered with an anionic polymer.
  • the combination of (5) or (6) is preferable from the viewpoint of improving the adhesiveness.
  • the corrosion prevention treatment layer (CL) 14 is not limited to the above-described layer.
  • it may be formed by using a treating agent in which phosphoric acid and a chromium compound are blended in a resin binder (aminophenol or the like), such as a coating chromate which is a known technique. If this processing agent is used, it can be set as the layer which has both a corrosion prevention function and adhesiveness.
  • this processing agent in the above-described degreasing treatment, hydrothermal modification treatment, anodizing treatment, chemical conversion treatment, or a combination thereof, in order to improve adhesion, the cationic polymer and the anionic polymer are used to form a composite. It is good also as processing.
  • a layer made of a cationic polymer or an anionic polymer as a multilayer structure may be further laminated on the layer formed by the treatment.
  • both a corrosion prevention function and adhesion are achieved by using a coating agent in which a rare earth oxide sol and a polycationic polymer or polyanionic polymer are preliminarily made into one liquid. It can be a combined layer.
  • Mass per unit area of the corrosion prevention treatment layer (CL) 14 is preferably 0.005 ⁇ 0.200mg / m 2, more preferably 0.010 ⁇ 0.100mg / m 2.
  • the mass per unit area is 0.005 mg / m 2 or more, the aluminum foil layer (AL) 13 is easily imparted with a corrosion prevention function.
  • the corrosion prevention function does not change much.
  • the rare earth oxide sol is used, if the coating film is thick, curing due to heat at the time of drying becomes insufficient, and there is a possibility that the cohesive force is lowered.
  • the thickness of the corrosion prevention process layer 14 it can convert from the specific gravity.
  • the corrosion prevention treatment layer represented by chromate treatment which is represented by chromate treatment, is made of aluminum using a chemical conversion treatment agent blended with hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid or salts thereof.
  • the foil is treated, and then a chemical conversion treatment layer is formed on the aluminum foil by the action of chromium or a non-chromium compound.
  • the chemical conversion treatment uses an acid as the chemical conversion treatment agent, it involves deterioration of the working environment and corrosion of the coating apparatus.
  • the coating-type corrosion prevention treatment layer (CL) 14 described above does not require an inclined structure to be formed on the aluminum foil layer (AL) 13. Therefore, the properties of the coating agent are not subject to restrictions such as acidity, alkalinity, and neutrality, and a good working environment can be realized.
  • chromate treatment using chromium compounds requires alternatives from the standpoint of environmental hygiene, such as hexavalent chromium being handled as an environmentally hazardous substance in European RoHS and REACH regulations. In consideration of application to an electric vehicle in consideration of influence, a coating type corrosion prevention treatment layer (CL) 14 is preferable.
  • the second adhesive layer (AD-2) 15 is a layer that adheres the corrosion prevention treatment layer (CL) 14 and the sealant layer (SL) 16.
  • the second adhesive layer (AD-2) 15 is formed of an adhesive resin or an adhesive. That is, in the case of the thermal laminate / heat treatment configuration, the second adhesive layer (AD-2) 15 is formed of an adhesive resin, and in the case of the dry laminate configuration, the second adhesive layer (AD-2) 15 is formed of an adhesive. It is formed.
  • a polyolefin resin is graft-modified with one or more unsaturated carboxylic acid derivative components selected from the group consisting of unsaturated carboxylic acids, unsaturated carboxylic acid anhydrides, and unsaturated carboxylic acid esters.
  • Modified polyolefin resin hereinafter also referred to as “modified polyolefin resin (A)”.
  • the modified polyolefin resin (A) imparts adhesiveness by utilizing the reactivity of the grafted unsaturated carboxylic acid derivative component with various metals or polymers containing various functional groups.
  • polystyrene resin examples include low density polyethylene, medium density polyethylene, high density polyethylene, ethylene- ⁇ olefin copolymer, homo, block, or random polypropylene, propylene- ⁇ olefin copolymer.
  • Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid An acid etc. are mentioned.
  • Examples of the unsaturated carboxylic acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic anhydride Thing etc. are mentioned.
  • unsaturated carboxylic acid esters include methyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dimethyl maleate, monomethyl maleate, diethyl fumarate, dimethyl itaconate, diethyl citraconic acid, tetrahydrophthalic anhydride Dimethyl acid, dimethyl bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylate and the like.
  • the modified polyolefin resin (A) can be produced by graft polymerization (graft modification) of the unsaturated carboxylic acid derivative component to a base polyolefin resin in the presence of a radical initiator.
  • the ratio of the unsaturated carboxylic acid derivative component is preferably 0.2 to 100 parts by mass with respect to 100 parts by mass of the base polyolefin resin.
  • the reaction temperature is preferably 50 to 250 ° C, more preferably 60 to 200 ° C.
  • the reaction time is appropriately set depending on the production method. For example, in the case of melt graft polymerization using a twin screw extruder, the reaction time is preferably 2 to 30 minutes, more preferably 5 to 10 minutes within the residence time of the extruder. More preferred.
  • the graft modification can be carried out under normal pressure or pressurized conditions.
  • radical initiators used for graft modification include organic peroxides such as alkyl peroxides, aryl peroxides, acyl peroxides, ketone peroxides, peroxyketals, peroxycarbonates, peroxyesters, and hydroperoxides. . These organic peroxides can be appropriately selected and used depending on the reaction temperature and reaction time conditions described above.
  • alkyl peroxides, peroxyketals, and peroxyesters are preferred, and specifically, di-t-butyl peroxide, 2,5-dimethyl-2,5-di -T-Butylperoxy-hexyne-3, dicumyl peroxide are preferred.
  • the modified polyolefin resin (A) is preferably a modified polyolefin resin modified with maleic anhydride.
  • a modified polyolefin resin modified with maleic anhydride for example, “Admer” manufactured by Mitsui Chemicals, “Modic” manufactured by Mitsubishi Chemical, and “Adtex” manufactured by Nippon Polyethylene are suitable.
  • the modified polyolefin resin (A) contained in the adhesive resin layer (AR) 16 may be one type or two or more types.
  • thermoplastic elastomers examples include "Tuffmer” manufactured by Mitsui Chemicals, “Zeras” manufactured by Mitsubishi Chemical, “Cataloy” manufactured by Montell, “Notio” manufactured by Mitsui Chemicals, and tuftselenium manufactured by Sumitomo Chemical, styrene-based elastomers, particularly hydrogenated Styrenic elastomers ("Tuff Tech” manufactured by AK Elastomer, "Septon” / "Hibler” manufactured by Kuraray, "Dynalon” manufactured by JSR, “Esporex” manufactured by Sumitomo Chemical, “Clayton G” manufactured by Kraton Polymer, etc.) Is preferred.
  • the second adhesive layer (AD-2) 15 formed of the modified polyolefin resin (A) has various additions such as a flame retardant, a slip agent, an antiblocking agent, an antioxidant, a light stabilizer, and a tackifier.
  • An agent may be blended.
  • Examples of the adhesive used for the second adhesive layer (AD-2) 15 having a dry laminate structure include those mentioned for the first adhesive layer (AD-1) 12.
  • it is preferable to design a composition such as using a main agent having a skeleton that is difficult to hydrolyze and improving the crosslinking density.
  • Examples of methods for improving the crosslinking density of the adhesive include, for example, dimer fatty acid or ester thereof, hydrogenated dimer fatty acid or ester thereof, dimer fatty acid or ester reduced glycol, or dimer fatty acid or ester hydrogenation.
  • the method of obtaining a polyester polyol with the reduced glycol of a thing and a diol compound is mentioned. According to this method, the crosslinking density is improved by the bulky hydrophobic unit of the dimer fatty acid.
  • Dimer fatty acids are those obtained by dimerizing various unsaturated fatty acids, and examples of their structures include acyclic, monocyclic, polycyclic, and aromatic ring types.
  • the dimerization structure of the raw material dimer fatty acid in the polyester polyol used for the second adhesive layer (AD-2) 15 is not particularly limited.
  • the kind of unsaturated fatty acid used as a starting material for dimer fatty acid is not particularly limited.
  • Unsaturated fatty acids include monounsaturated fatty acids such as crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid, nervonic acid; linoleic acid, eicosadienoic acid, docosadiene Diunsaturated fatty acids such as acids; triunsaturated fatty acids such as linolenic acid, vinolenic acid, eleostearic acid, mead acid, dihomo- ⁇ -linolenic acid, eicosatrienoic acid; stearidonic acid, arachidonic acid, eicosatetraene Tetraunsaturated fatty acids such as acids and adrenic acids; pentaunsaturated fatty acids such as boseopentaenoic acid, eicosabentaeno
  • the diol compound the diol compounds mentioned in the description of the polyester polyol of the first adhesive layer (AD-1) 12 can be used. Moreover, when improving a crosslinking density with the said dimer fatty acid, you may introduce
  • the dibasic acid the dibasic acids mentioned in the description of the polyester polyol of the first adhesive layer (AD-1) 12 can be used.
  • the adhesive for the second adhesive layer (AD-2) 15 is also preferably a polyester urethane polyol in which the hydroxyl groups at both ends of the polyester polyol whose crosslinking density has been improved by the above method are chain-extended with a polyisocyanate compound.
  • the polyisocyanate compound can be selected from the group consisting of crude tolylene diisocyanate, crude diphenylmethane diisocyanate, and polymeric diphenylmethane diisocyanate. One or more of these are preferred.
  • the polyisocyanate compounds mentioned in the description of the first adhesive layer (AD-1) 12 can be used, and the electrolyte resistance (In particular, from the viewpoint of improving solubility and swelling in an electrolytic solution), one or more polyisocyanates selected from the group consisting of crude tolylene diisocyanate, crude diphenylmethane diisocyanate, and polymeric phenylmethane diisocyanate (hereinafter referred to as “polyisocyanate ( B) "), or an adduct of polyisocyanate (B) is preferred.
  • the second adhesive layer (AD-2) 15 has an improved crosslink density, a lower solubility and a swelling property with respect to the electrolytic solution, and an improved urethane group concentration to improve adhesion.
  • polyisocyanate (B) is preferable to use as a chain extender.
  • the ratio of the curing agent in the adhesive forming the second adhesive layer (AD-2) 15 is preferably 1 to 100 parts by mass, and more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the main agent. If the ratio of the said hardening
  • the second adhesive layer (AD-2) 15 is formed of an adhesive, as in the case of the first adhesive layer (AD-1) 12, a carbodiimide compound, an oxazoline compound, You may mix
  • the sealant layer (SL) 16 is bonded to the aluminum foil layer (AL) 13 on which the corrosion prevention treatment layer (CL) 14 is formed via the second adhesive layer (AD-2) 15. It is a layer that imparts sealing properties by heat sealing.
  • the components constituting the sealant layer (SL) 16 include, for example, low density polyethylene, medium density polyethylene, high density polyethylene, ethylene- ⁇ olefin copolymer, homo, block or random polypropylene, propylene- ⁇ olefin copolymer.
  • the sealant layer (SL) 16 may be a single layer made of a material obtained by blending one or more of the above components, or may have a multilayer structure according to other required performance required for the sealant.
  • the multilayer sealant layer (SL) 16 for example, an ethylene-vinyl acetate copolymer part or a completely saponified product, a resin having a gas barrier property such as a polyvinyl acetate copolymer part or a completely saponified product is interposed. And a sealant layer.
  • ⁇ Slip agent> The moldability of the exterior material 10 is also affected by the slipperiness with a mold for deep drawing. Therefore, in order to reduce the friction coefficient of the exterior material 10, it is preferable to apply a slip agent to one or both of the base material layer (SB) 11 and the sealant layer (SL) 16.
  • the slip agent include silicone, polymer wax, fatty acid amide (unsaturated fatty acid amide such as erucic acid amide) and the like.
  • the method of applying the slip agent include a method of applying by wet coating, a method of causing the sealant layer (SL) 16 to contain a slip agent, and causing precipitation by a bleed-out phenomenon.
  • the manufacturing method of the exterior material 10 is demonstrated.
  • the manufacturing method of the exterior material 10 is not limited to the following method.
  • Examples of the method for manufacturing the packaging material 10 include a method having the following steps (I) to (III).
  • II) On the opposite side of the aluminum foil layer (AL) 13 where the corrosion prevention treatment layer (CL) 14 is formed the base material layer (SB) 11 is provided via the first adhesive layer (AD-1) 12. The process of bonding.
  • a degreasing treatment include annealing, spraying, and dipping.
  • the hydrothermal modification treatment and anodizing treatment include an immersion method.
  • a chemical conversion treatment method an immersion method, a spray method, a coating method, or the like can be selected according to the type of chemical conversion treatment.
  • the coating amount of the coating agent is preferably within a range satisfying the mass per unit area of the corrosion prevention treatment layer (CL) 14 described above.
  • the base material temperature can be in the range of 60 to 300 ° C. depending on the drying conditions of the corrosion prevention treatment layer (CL) 14 to be used.
  • the base material layer (SB) 11 is bonded by a technique such as lamination or wet lamination.
  • the dry coating amount of the adhesive is preferably 1 to 10 g / m 2 and more preferably 3 to 7 g / m 2 .
  • an aging treatment (curing) may be performed in the range of room temperature to 100 ° C. to promote adhesion.
  • the dry coating amount of the adhesive is preferably 1 to 10 g / m 2 and more preferably 3 to 7 g / m 2 .
  • an aging treatment may be performed in the range of room temperature to 100 ° C. in order to promote adhesion.
  • the second adhesive layer (AD-2) 15 is formed of an adhesive resin
  • a sealant layer is formed on the corrosion prevention treatment layer (CL) 14 side of the laminate by sand lamination using an extrusion laminating machine.
  • (SL) 16 is bonded through an adhesive resin.
  • the base material layer (SB) 11, the first adhesive layer (AD-2) 12, the aluminum foil layer (AL) 13, the corrosion prevention treatment layer (CL) 14, the second adhesive layer (AD-2) It is preferable to heat-treat the laminate composed of 15 and the sealant layer (SL) 16.
  • the heat treatment improves adhesion between the aluminum foil layer (AL) 13 / corrosion prevention treatment layer (CL) 14 / second adhesive layer (AD-2) 15 / sealant layer (SL) 16, and the electrolytic solution Resistance and hydrofluoric acid resistance are improved.
  • a heat treatment method from the viewpoint of productivity and handling, a method of passing through a drying furnace or baking furnace set to a high temperature (for example, 100 ° C. or higher), a thermal lamination method (thermocompression bonding), or a Yankee drum (thermal drum) is used. The method is preferred.
  • the heat treatment temperature is preferably set so that the maximum temperature of the laminate is not less than room temperature and not more than 20 ° C. higher than the melting point of the sealant layer 16. It is preferable to set so as to be in the range below the melting point.
  • the treatment time varies depending on the heat treatment temperature. The lower the heat treatment temperature, the longer the treatment time, and the higher the treatment time, the shorter the treatment time.
  • the exterior material 10 is obtained by the steps (I) to (III) described above.
  • the manufacturing method of the exterior material 10 is not limited to the method of sequentially performing the steps (I) to (III).
  • step (I) may be performed after performing step (II).
  • the exterior material for a lithium ion battery of the present invention described above has excellent moldability.
  • the exterior material of the present invention is not limited to the exterior material 10 described above.
  • the corrosion prevention treatment layer may be provided at least on the sealant layer side of the aluminum foil layer, and may be provided on both surfaces of the aluminum foil layer.
  • Substrate SB-4 Biaxially stretched polyamide film (Unitika ON, thickness 15 ⁇ m).
  • Substrate SB-5 Axially stretched polyamide film (Unitika ON-U, thickness 15 ⁇ m).
  • Substrate SB-6 Biaxially stretched polyamide film (Unitika ON-P, thickness 15 ⁇ m).
  • Substrate SB-7 Biaxially stretched polyester film (Unitika PET, thickness 12 ⁇ m).
  • Substrate SB-8 Biaxially stretched polyamide film (SNR manufactured by Mitsubishi Plastics, thickness 25 ⁇ m).
  • Substrate SB-9 Biaxially stretched polyamide film (Mitsubishi Resin SNR, thickness 15 ⁇ m).
  • Table 1 shows the tensile strain characteristics (MD direction / TD direction only) measured in accordance with JIS-K 7127 of the substrates SB-1 to SB-3 and SB-8.
  • the base material SB-1 is a material having a good balance in both the MD direction and the TD direction, but is a material having a large elongation directionality (anisotropy) at 45 ° and 135 °.
  • the base material SB-2 and the base material SB-3 are 56-60% in terms of elongation with respect to the maximum value in each direction, and the strength is also in terms of the ratio of the minimum value with respect to the maximum value in each direction. It is 70% and is a material having a large mechanical strength in the MD direction and the TD direction.
  • the base materials SB-4 to SB-6 and SB-9 have the same tensile properties as the base materials SB-1 to SB-3 and SB-8, except that the thicknesses are different.
  • the substrates SB-2, SB-3, SB-5, SB-6, SB-8, and SB-9 are film substrates (A).
  • Adhesive AD-1 Polyurethane-based adhesive (manufactured by Toyo Ink) in which an adduct-based curing agent of tolylene diisocyanate is blended with a polyester polyol-based main agent.
  • Aluminum foil AL-1 An annealed and degreased 40 ⁇ m thick soft aluminum foil 8079 material (manufactured by Toyo Aluminum).
  • Treatment agent CL-1 “Sodium polyphosphate-stabilized cerium oxide sol” adjusted to a solid concentration of 10% by mass using distilled water as a solvent. The phosphate was 10 parts by mass with respect to 100 parts by mass of cerium oxide.
  • Treatment agent CL-2 90% by mass of “polyacrylic acid ammonium salt (manufactured by Toagosei Co., Ltd.)” adjusted to a solid content concentration of 5% by mass using distilled water as a solvent, and “acrylic-isopropenyl oxazoline copolymer” (Nippon Shokubai Co., Ltd.) A composition comprising 10% by mass.
  • Treatment agent CL-3 90% by mass of “polyallylamine (manufactured by Nittobo)” and “polyglycerol polyglycidyl ether (manufactured by Nagase ChemteX)” adjusted to a solid content concentration of 5% by mass using distilled water as a solvent A composition comprising 10% by mass.
  • Treatment agent CL-4 A chromium fluoride (CrF 3 ) was added to a water-soluble phenolic resin (manufactured by Sumitomo Bakelite) adjusted to a solid content concentration of 1% by mass using a 1% concentration phosphoric acid aqueous solution as a solvent.
  • a chemical conversion treatment agent having a concentration adjusted to 10 mg / m 2 as the amount of Cr present in the final dry film.
  • Adhesive AD-2 A mixture of a main component (trade name “SS-051”, manufactured by Mitsui Chemicals) consisting of a hydrogenated dimer fatty acid and a diol, and crude tolylene diisocyanate, crude (or polymeric) diphenylmethane diisocyanate, or An adhesive containing a curing agent composed of these adducts (trade name “SK-01”, manufactured by Mitsui Chemicals).
  • Film SL-1 Multilayer film (manufactured by Okamoto) comprising two types and three layers of random PP / block PP / random PP with a total thickness of 30 ⁇ m.
  • the coating amount was set to 70 to 100 mg / m 2 as a dry coating amount of the treatment agent (coating agent), and a baking treatment was performed at 150 to 250 ° C. according to the type of the treatment agent in the drying unit.
  • the final dry coating amount was set to 70 to 100 mg / m 2
  • the baking temperature condition was set to a range of 150 to 250 ° C.
  • Step (III): The exterior laminate 1 having a dry laminate structure has an adhesive AD-2 on the side of the corrosion prevention layer 14 in the laminate obtained in the step (II) and a dry application amount of 4 to 5 g / m 2 by gravure reverse coating. Is manufactured by laminating and laminating the film SL-1 and then applying the aging treatment to cure the adhesive AD-2, thereby bonding the sealant layer 16 through the second adhesive 15. did.
  • the exterior material 1 having a heat laminate structure is prepared by applying an adhesive resin AD-3 in a range of 260 ° C. to 300 ° C. on the corrosion prevention treatment layer 14 of the laminate obtained in the step (II) using an extrusion laminator.
  • the sealant layer 16 is bonded via the second adhesive layer 15, and then the temperature of the obtained laminate is determined by the thermal lamination method. It was manufactured by thermocompression bonding so as to be in the vicinity of the melting point, and the corrosion prevention treatment layer 14 and the second adhesive layer 15 were firmly adhered.
  • the mold 101 includes a female mold 110, a male mold 120, and an air cylinder 130.
  • the mold closing pressure by the air cylinder 130 was 0.5 to 0.8 MPa, and the stroke speed was 5 mm / second.
  • the drawing depth was 4.75 mm, 5.00 mm, 5.25 mm, 5.50 mm, 5.75 mm, 6.00 mm, and molding was performed 100 times continuously at each drawing depth.
  • Examples 1 to 9 and Comparative Examples 1 to 3 By the said manufacturing method, the exterior material of the structure shown in Table 2 was manufactured, and the moldability and electrolyte solution tolerance were evaluated.
  • “CL-1 / CL-2” in the corrosion prevention treatment layer 14 means that the aluminum foil AL-1 was first treated with the treatment agent CL-1 and then treated with the treatment agent CL-2. Means. The description of the corrosion prevention treatment layer 14 in other examples also has the same meaning.
  • “SB-7 / SB-4” in the base material layer 11 means a base material in which the base material SB-7 and the base material SB-4 are laminated with the same adhesive as the adhesive AD-1. This means that the substrate SB-4 side is the first adhesive layer 12 side. The description of the base material layer 11 in other examples also has the same meaning.
  • the treatment with the treatment agent CL-3 was performed to impart adhesion to the corrosion prevention treatment layer 14 and the second adhesion layer 15 made of an adhesive resin. . The evaluation results for each example are shown in Table 3.
  • Examples 1, 2, and 8 of the present invention having a base material layer 11 made of a single layer film are compared with the packaging material of Comparative Example 1 having the same configuration except for the base material layer 11.
  • Examples 3 to 7 and 9 of the present invention having the base material layer 11 made of a laminated film having a polyester film inferior in deep drawing formability are the same as those of Comparative Examples 2 and 3 having the same configuration except for the base material layer 11.
  • Comparative Examples 2 and 3 having the same configuration except for the base material layer 11.
  • a polyester film with excellent acid resistance, electrolyte resistance, and scratch resistance which is inferior in deep drawability
  • a polyamide film (film substrate ( A)) a multilayer film configuration provided in the outer layer may be required. From the above results, it was found that excellent deep drawability can be obtained even in this multilayer film configuration.
  • the exterior materials having the dry laminate structure and the heat laminate structure of Examples 1 to 6, 8, and 9 all have excellent long-term reliability equivalent to that of Example 7 in which the chromate treatment was performed in the electrolytic solution resistance evaluation.
  • Example 10 to 19 and Comparative Examples 4 to 9 The materials used in this example are as follows.
  • Base material layer 11 As the base material, the following film base material formed by a casting method was used.
  • Substrate SB-1 Biaxially stretched polyamide film (ON, manufactured by Unitika, thickness 25 ⁇ m).
  • Substrate SB-2 biaxially stretched polyamide film (NAP, manufactured by Toyobo, thickness 25 ⁇ m).
  • Substrate SB-3 Biaxially stretched polyamide film (RX, manufactured by Kojin, thickness 25 ⁇ m).
  • Substrate SB-4 Biaxially stretched polyamide film (N1152, manufactured by Toyobo, thickness 25 ⁇ m).
  • Substrate SB-5 biaxially stretched polyamide film (G100, manufactured by Idemitsu Petrochemical Co., Ltd., thickness 25 ⁇ m).
  • Substrate SB-6 Biaxially stretched polyamide film (SNR, manufactured by Mitsubishi Plastics, thickness 25 ⁇ m).
  • Substrate SB-7 Biaxially stretched polyamide film (ON-U, manufactured by Unitika, thickness 25 ⁇ m).
  • Substrate SB-8 Biaxially stretched polyamide film (ON-P, manufactured by Unitika, thickness 25 ⁇ m).
  • Substrate SB-9 Cast polyamide film (Diamilon C, manufactured by Mitsubishi Plastics, thickness 25 ⁇ m).
  • Substrate SB-10 Biaxially stretched polyamide film (ON, manufactured by Unitika, thickness 15 ⁇ m).
  • Substrate SB-11 Biaxially stretched polyamide film (RX, manufactured by Kojin, thickness 15 ⁇ m).
  • Substrate SB-12 Biaxially stretched polyamide film (ON-P, manufactured by Unitika, thickness 15 ⁇ m).
  • Substrate SB-13 Biaxially stretched polyester film (PET, manufactured by Unitika, thickness 12 ⁇ m).
  • Table 4 shows the tensile properties (tensile stress y at the breaking point, elongation to the breaking point x) measured in accordance with JIS-K7127 for each of the MD and TD directions of the substrates SB-1 to SB-9. Show.
  • the tensile properties of the substrates SB-10 to SB-12 are the same as those of the substrates SB-1, SB-3, and SB-8.
  • Substrates SB-3, SB-5 to SB-8, SB-11, and SB-12 are film substrates (A).
  • Adhesive AD-1 Polyurethane-based adhesive (manufactured by Toyo Ink) in which an adduct-based curing agent of tolylene diisocyanate is blended with a polyester polyol-based main agent.
  • Aluminum foil AL-1 An annealed and degreased 40 ⁇ m thick soft aluminum foil 8079 material (manufactured by Toyo Aluminum).
  • Treatment agent CL-1 “Sodium polyphosphate-stabilized cerium oxide sol” adjusted to a solid concentration of 10% by mass using distilled water as a solvent. The phosphate was 10 parts by mass with respect to 100 parts by mass of cerium oxide.
  • Treatment agent CL-2 90% by mass of “polyacrylic acid ammonium salt (manufactured by Toagosei Co., Ltd.)” adjusted to a solid content concentration of 5% by mass using distilled water as a solvent, and “acrylic-isopropenyl oxazoline copolymer” (Nippon Shokubai Co., Ltd.) A composition comprising 10% by mass.
  • Treatment agent CL-3 90% by mass of “polyallylamine (manufactured by Nittobo)” and “polyglycerol polyglycidyl ether (manufactured by Nagase ChemteX)” adjusted to a solid content concentration of 5% by mass using distilled water as a solvent A composition comprising 10% by mass.
  • Treatment agent CL-4 A chromium fluoride (CrF 3 ) was added to a water-soluble phenolic resin (manufactured by Sumitomo Bakelite) adjusted to a solid content concentration of 1% by mass using a 1% concentration phosphoric acid aqueous solution as a solvent.
  • a chemical conversion treatment agent having a concentration adjusted to 10 mg / m 2 as the amount of Cr present in the final dry film.
  • Adhesive AD-2 A mixture of a main component (trade name “SS-051”, manufactured by Mitsui Chemicals) consisting of a hydrogenated dimer fatty acid and a diol, and crude tolylene diisocyanate, crude (or polymeric) diphenylmethane diisocyanate, or An adhesive containing a curing agent composed of these adducts (trade name “SK-01”, manufactured by Mitsui Chemicals).
  • Film SL-1 Multilayer film (manufactured by Okamoto) comprising two types and three layers of random PP / block PP / random PP with a total thickness of 30 ⁇ m.
  • the coating amount was set to 70 to 100 mg / m 2 as a dry coating amount of the treatment agent (coating agent), and a baking treatment was performed at 150 to 250 ° C. according to the type of the treatment agent in the drying unit.
  • the final dry coating amount was set to 70 to 100 mg / m 2
  • the baking temperature condition was set to a range of 150 to 250 ° C.
  • Step (III): The exterior laminate 1 having a dry laminate structure has an adhesive AD-2 on the side of the corrosion prevention layer 14 in the laminate obtained in the step (II) and a dry coating amount of 4 to 5 g / m 2 by gravure reverse coating.
  • the film SL-1 is laminated and laminated, and then the adhesive AD-2 is cured by applying an aging treatment, whereby the sealant layer 16 is bonded through the second adhesive layer 15.
  • Manufactured The exterior material 1 having a heat laminate structure is prepared by applying an adhesive resin AD-3 in a range of 260 ° C. to 300 ° C. on the corrosion prevention treatment layer 14 of the laminate obtained in the step (II) using an extrusion laminator.
  • the sealant layer 16 is bonded via the second adhesive layer 15, and then the temperature of the obtained laminate is determined by the thermal lamination method. It was manufactured by thermocompression bonding so as to be in the vicinity of the melting point, and the corrosion prevention treatment layer 14 and the second adhesive layer 15 were firmly adhered.
  • the mold 101 includes a female mold 110, a male mold 120, and an air cylinder 130.
  • the mold closing pressure by the air cylinder 130 was 0.5 to 0.8 MPa, and the stroke speed was 5 mm / second.
  • the drawing depth was 4.75 mm, 5.00 mm, 5.25 mm, 5.50 mm, 5.75 mm, 6.00 mm, and molding was performed 100 times continuously at each drawing depth.
  • Example 10 to 19 and Comparative Examples 4 to 9 By the said manufacturing method, the exterior material of the structure shown in Table 5 was manufactured, and deep drawing moldability and electrolyte solution tolerance were evaluated.
  • “CL-1 / CL-2” of the corrosion prevention treatment layer 14 means that the aluminum foil AL-1 was first treated with the treatment agent CL-1 and then treated with the treatment agent CL-2. Means. The description of the corrosion prevention treatment layer 14 in other examples also has the same meaning.
  • “SB-13 / SB-11” in the base material layer 11 means a base material in which the base material SB-13 and the base material SB-11 are laminated with the same adhesive as the adhesive AD-1. This means that the substrate SB-11 side is the first adhesive layer 12 side. The description of the base material layer 11 in other examples also has the same meaning.
  • the treatment with the treatment agent CL-3 was performed in order to impart adhesion to the corrosion prevention treatment layer 14 and the second adhesion layer 15 made of an adhesive resin. The evaluation results for each example are shown in Table 6.
  • the packaging materials of Examples 10 to 14 having the base material layer 11 made of a single layer film base material (A) are the same as those of Comparative Examples 4 to 7 having the same configuration except for the base material layer 11. In comparison, molding was possible with a deep drawing depth of 0.50 to 0.75 mm.
  • the directionality of the mechanical properties is not limited. It shows that excellent deep drawability is obtained.
  • the formula (1) is satisfied, if the tensile stress y at the breaking point is less than 100, that is, the formula (2) is not satisfied, sufficient deep drawability cannot be obtained (Comparative Example). 7).
  • the exterior materials of Examples 15 to 19 having the base material layer 11 made of a laminated film obtained by laminating the film base material (A) and the polyester film inferior in deep drawability are the same except for the base material layer 11.
  • a polyester film having excellent acid resistance, electrolytic solution resistance, and scratch resistance is used for the film substrate (A), although it is inferior in deep drawability.
  • a multilayer film configuration provided in the outer layer may be required. From the above results, it was found that excellent deep drawability can be obtained even in this multilayer film configuration.
  • Examples 20 to 43, Comparative Examples 10 to 17 are Examples 20 to 43, and Examples 1 to 4 and Examples 17 to 20 are Comparative Examples 10 to 17.
  • Film SB-1 Biaxially stretched polyamide film (A1) (thickness 25 ⁇ m).
  • Film SB-2 Biaxially stretched polyamide film (A2) (thickness 25 ⁇ m).
  • Film SB-3 Biaxially stretched polyamide film (A3) (thickness 25 ⁇ m).
  • Film SB-4 Biaxially stretched polyamide film (A4) (thickness 25 ⁇ m).
  • Film SB-5 A biaxially stretched polyamide film (A1) (thickness 15 ⁇ m) and a PET film (thickness 12 ⁇ m) were laminated by a dry laminating method using an adhesive AD-1 (3 to 7 g / cm 2 ) described later. A thing was used.
  • Film SB-6 A biaxially stretched polyamide film (A2) (thickness 15 ⁇ m) and a PET film (thickness 12 ⁇ m) were laminated by a dry laminating method using an adhesive AD-1 (3 to 7 g / cm 2 ) described later. A thing was used.
  • Film SB-7 A biaxially stretched polyamide film (A3) (thickness 15 ⁇ m) and a PET film (thickness 12 ⁇ m) were laminated by a dry laminating method using an adhesive AD-1 (3 to 7 g / cm 2 ) described later. A thing was used.
  • Film SB-8 A biaxially stretched polyamide film (A4) (thickness 15 ⁇ m) and a PET film (thickness 12 ⁇ m) were laminated by a dry laminating method using an adhesive AD-1 (3 to 7 g / cm 2 ) described later. A thing was used.
  • Table 7 shows the surface free energy ⁇ , the dispersion force component ⁇ d and the ratio ⁇ d / d (unit:%) of the biaxially stretched polyamide films (A1) to (A4).
  • the calculation method is as follows. For the calculation, a “FindMinimum” command of “Mathematical”, which is numerical calculation software, was used. (Calculation method) Using three liquids of water, methylene iodide, and ⁇ -bromonaphthalene whose surface free energy and its components (dispersion force, polar force, hydrogen bonding force) are known, at 20 ° C.
  • ⁇ , ⁇ d, ⁇ p, and ⁇ h are components of the surface free energy on the measurement surface of the film and its dispersion force, polarity force, and hydrogen bonding force.
  • is the contact angle of the measurement liquid on the measurement surface. The contact angle ⁇ was measured at five locations on the same measurement surface, and the average was obtained.
  • the contact angle (BN) in Table 7 means the contact angle when ⁇ -bromonaphthalene is dropped on the film surface.
  • Adhesive AD-1 Polyurethane adhesive (manufactured by Toyo Ink Co., Ltd.) in which a tolylene diisocyanate adduct curing agent is blended with a polyester polyol main agent.
  • Aluminum foil AL-1 An annealed degreased 40 ⁇ m thick soft aluminum foil 8079 material (manufactured by Toyo Aluminum)
  • Treatment agent CL-1 “Sodium polyphosphate-stabilized cerium oxide sol” adjusted to a solid concentration of 10% by mass using distilled water as a solvent. The phosphate was 10 parts by mass with respect to 100 parts by mass of cerium oxide.
  • Treatment agent CL-2 90% by mass of “polyacrylic acid ammonium salt (manufactured by Toagosei Co., Ltd.)” adjusted to a solid content concentration of 5% by mass using distilled water as a solvent, and “acrylic-isopropenyl oxazoline copolymer” (Nippon Shokubai Co., Ltd.) A composition comprising 10% by mass.
  • Treatment agent CL-3 90% by mass of “polyallylamine (manufactured by Nittobo)” and “polyglycerol polyglycidyl ether (manufactured by Nagase ChemteX)” adjusted to a solid content concentration of 5% by mass using distilled water as a solvent A composition comprising 10% by mass.
  • Treatment agent CL-4 A chromium fluoride (CrF 3 ) was added to a water-soluble phenolic resin (manufactured by Sumitomo Bakelite) adjusted to a solid content concentration of 1% by mass using a 1% concentration phosphoric acid aqueous solution as a solvent.
  • a chemical conversion treatment agent having a concentration adjusted to 10 mg / m 2 as the amount of Cr present in the final dry film.
  • Adhesive resin (AD-22): Random polypropylene (PP) (Tm (AR) about 135 ° C.) which is the base resin, and modified PP obtained by graft modification with maleic anhydride. A modified polyolefin resin (manufactured by Mitsui Chemicals) with a blended elastomer was used.
  • Film SL-1 Multi-layer film of 2 types and 3 layers (made by Okamoto) made of random PP / block PP / random PP with a total thickness of 30 ⁇ m.
  • Slip agent F-1 erucic acid amide.
  • the coating amount was 0.010 to 100 mg / m 2 as a dry coating amount of the treatment agent (coating agent), and a baking treatment was performed at 150 to 200 ° C. in the drying unit depending on the type of the treatment agent.
  • the final dry coating amount was 0.010 to 100 mg / m 2
  • the baking temperature condition was also in the range of 150 to 200 ° C.
  • the adhesive AD-1 is 3-7 g / m 2 as a dry coating amount by gravure reverse coating. Then, various substrates were laminated in the configuration shown in Table 8 and laminated. Thereafter, by performing an aging treatment, the adhesive AD-1 was cured, and the base material layer (SB) was bonded through the first adhesive layer (AD-1).
  • the film SL-1 is laminated and laminated, and then the adhesive AD-21 is cured by applying an aging treatment, whereby the sealant is passed through the second adhesive layer (AD-2).
  • the layer (SL) was laminated and manufactured.
  • the exterior material of the heat laminate structure is obtained by extruding and laminating the adhesive resin AD-22 on the corrosion prevention treatment layer (CL) of the laminate obtained in the step (II) using an extrusion laminating machine.
  • the sealant layer (SL) is bonded via the second adhesive layer (AD-2), and then by a thermal lamination method under the conditions of 210 ° C. and 5 m / min.
  • the corrosion prevention treatment layer (CL) and the second adhesive layer (AD-2) are firmly adhered to each other.
  • dissolved with isopropyl alcohol was apply
  • Table 8 and Table 9 show the evaluation results of moldability.
  • CL-1 / CL-2 means that the aluminum foil AL-1 was treated with the treating agent CL-1 and then treated with the treating agent CL-2.
  • the description of the corrosion prevention treatment layer (CL) in other examples also has the same meaning.
  • the films (SB-5) to (SB-8) in the base material layer were all laminated with the PET film as the outermost surface.
  • the base material layer has a biaxially stretched polyamide film having a ratio ⁇ d / ⁇ of 80% or less
  • the base material layer has a ratio ⁇ d / ⁇ .
  • the moldability was excellent.
  • the outer packaging material for lithium ion batteries of the present invention has excellent deep-drawing moldability, and is not accompanied by generation of cracks or pinholes even when the energy density is particularly increased in order to extract a large current in an electric vehicle or the like. A high-quality deep-drawn molded product can be obtained. Further, the outer packaging material for a lithium battery of the present invention is advantageous in that excellent electrolytic solution resistance is achieved even when a chemical conversion treatment such as a chromate treatment is not performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明により、クロメート処理を行わなくても優れた電解液耐性を有し、かつ優れた深絞り成形性を有し高品質であり、容易に製造できるリチウムイオン電池用外装材が提供される。本発明の第1の態様であるリチウムイオン電池用外装材(1)は、基材層(11)、接着剤を含有する第1接着層(12)、アルミニウム箔層(13)、腐食防止処理層(14)、接着剤または接着性樹脂を含有する第2接着層(15)、およびシーラント層(16)が順次積層され、基材層(11)が、MD方向あるいはTD方向の少なくとも一方において、JIS-K7127に準拠して測定される降伏点までの伸度(α1)と破断点までの伸度(α2)の差(α2-α1)が100%以上であるフィルム基材(A)を有する。

Description

リチウムイオン電池用外装材
 本発明は、リチウムイオン電池用外装材に関する。
 本願は、2010年9月8日に日本に出願された特願2010-201079号、2010年9月8日に日本に出願された特願2010-201080号、2011年7月20日に日本に出願された特願2011-158849号に基づき優先権を主張し、その内容をここに援用する。
 パソコン、携帯電話等の携帯端末装置、ビデオカメラ等に用いられる民生用途の二次電池としては、高エネルギーながらも超薄型化、小型化が可能なリチウムイオン二次電池(以下、「リチウムイオン電池」ともいう。)が盛んに開発されている。リチウムイオン電池の外装材は、従来は金属製の缶タイプが用いられていた。しかし、軽量でかつ電池の形状を自由に選択できるという利点から、近年では多層構成のラミネートフィルム(例えば、耐熱性を有する基材層/アルミニウム箔層/シーラント(熱融着性フィルム)層のような構成)を冷間成形により深絞りにした成形品(以下、「深絞り成形品」ともいう。)が用いられるようになってきている。このような深絞り成形品は、前述した利点に加え、放熱性が高く、低コストである点でも有利であり、環境負荷が小さいハイブリッド車や電気自動車のバッテリーへの適用も検討されている。
 前記ラミネートフィルムを使用したリチウムイオン電池は、例えば、深絞り成形品中に、電池本体部分として正極材、負極材およびセパレーターと共に、炭酸プロピレン、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル等の非プロトン性溶媒にリチウム塩を溶解した電解液、もしくはその電解液を含浸させたポリマーゲルからなる電解質層が収められ、その後、ヒートシールにより熱封緘されて形成される。
 前記電解液は、熱融着性フィルムからなるシーラント層に対して浸透性が高い。シーラント層に電解液が浸透すると、浸透した電解液がアルミニウム箔層とシーラント層間のラミネート強度を低下させ、最終的に電解液が外部に漏れ出すことがある。また、電解質であるリチウム塩としては、LiPF、LiBF等のリチウム塩が用いられている。しかし、深絞り成形品内に水分が侵入すると、該リチウム塩が加水分解されてフッ酸が発生し、金属面の腐食、多層フィルムの各層間のラミネート強度の低下を引き起こす。
 このように、ラミネートフィルムのような多層構成のリチウムイオン電池用外装材では、電解液に起因する金属箔(アルミニウム箔)の腐食、および各層間のラミネート強度の低下を抑制することが求められる。また、外装材には電解液やフッ酸に対して耐性を有していることが求められる。
 リチウムイオン電池用外装材において、アルミニウム箔層と基材層との密着性を高める方法としては、従来、アルミニウム箔層の表面に六価クロムを使用したクロメート処理が用いられていた。しかし、近年、ヨーロッパにおけるRohs規制やREACH規制のように、六価クロムが環境有害物質として取り扱われるようになった。そのため、クロメート処理には三価クロムが使用されるようになっている。しかし、この手法は、三価クロムの出発物質として使用し、六価クロムの処理層を形成している。将来的にはクロム全廃へと動く可能性があり、また特に環境への影響を配慮した電気自動車への適用を考慮すると、クロム化合物を使用しない処理で、電解液やフッ酸に対する腐食防止性能を高める方法は重要である。
 一方、リチウムイオン電池は、エネルギー密度が高いことから小型化が可能である。リチウムイオン電池のエネルギー密度の高さは、一つの電池内にいかにセル、電解液を内包できるかで決定され、その内包量は、リチウムイオン電池用外装材を成形して深絞り成形品を得る際の成形深さにより決まる。絞り成形は一般的に金型で行われるが、成形深さが深すぎると、リチウムイオン電池用外装材における成形によって延伸した部分にクラックやピンホールが発生し、電池としての信頼性が失われる。そのため、電池の信頼性とエネルギー密度とを両立させるため、リチウム電池用外装材には優れた深絞り成形性が求められる。特に、リチウムイオン電池を電気自動車に適用する場合等は、大電流を取り出せるようにしたい反面、優れた長期保存安定性も得たいことから、深絞り成形性のさらなる向上が必要となる。
 深絞り成形性を高めた外装材としては、以下のものが示されている。
 (i)基材層として、延伸方向に対する0°、45°、90°、135°の4方向について特定の引張強度と伸度を有し、機械的性質の方向性が少ない延伸フィルムを用いた外装材(特許文献1)。
 (ii)基材層として、衝撃強度30000J/m以上の耐熱性樹脂フィルムを用いた外装材(特許文献2)。
 (iii)基材層として、密度1142~1146kg/cmの2軸延伸ポリアミドフィルムを用いた外装材(特許文献3)。
 (iv)基材層として、収縮率が2~20%の耐熱性樹脂延伸フィルムを用いた外装材(特許文献4)。
 また、外装材には優れた成型性が求められる。つまり、リチウム電池内にセル、電解液をいかに収容できるかでエネルギー密度が決まることから、それらの収容量をより多くするため、外装材を電池形状に成型する際により成型深さを深くできることが求められる。
外装材の成型は一般的に金型による絞り成型で行われるが、このとき成型深さが深すぎると、成型によって延伸した部分にクラックやピンホールが発生し、電池としての信頼性が失われる。そのため、いかに信頼性を損なわずに成型深さを深くできるかが重要となる。
特に、電気自動車等の大型用途では、大電流を取り出したいという電池性能面から、よりエネルギー密度を高めたいとの要望がある反面、特に優れた信頼性、長期保存安定性も同時に求められる。
 成型性を向上させた外装材としては、基材層の表面の動摩擦係数、破断強度、破断点伸度、収縮率、衝撃強度、密度、屈折率の二軸延伸ポリアミドフィルムを基材層に用いた外装材等の様々な外装材が知られている(特許文献2、4、5~10)。しかし、特に大型用途において、外装材の成型性をさらに向上させることが求められている。
特許第3567230号公報 特許第4431822号公報 特許第4422171号公報 特開2006-331897号公報 特開2002-56824号公報 特開2006-236938号公報 特開2008-53133号公報 特開2008-130436号公報 特許第4422171号公報 特開2009-59709号公報
 しかし、外装材(i)に使用する、機械的性質の方向性が少ない延伸フィルムの製造はインフレーション法に限定され、例えば、キャスト法では製造できずフィルムの製造方法に制約がある。また、外装材(ii)で使用する耐熱性樹脂フィルムは、例えば市販されている延伸ポリアミド樹脂系フィルムは一般的に衝撃強度が30000J/m以上であることから、この衝撃強度を有するフィルムを用いた外装材が優れた深絞り成形性を得るとは限らない。また、外装材(iii)も、優れた深絞り成形性が得られないことがある。また、外装材(iv)では、優れた深絞り成形性を達成するためには耐熱性樹脂延伸フィルムの熱収縮率が大きいことが必要であり、電池の製造におけるベーキング工程等で熱が加わった際にカール等が生じるおそれがある。
 本発明は、クロメート処理を行わなくても充分な電解液耐性を有し、かつ優れた深絞り成形性を有し高品質であり、容易に製造でき、生産性に優れるリチウムイオン電池用外装材の提供を目的とする。また本発明は、優れた成型性を有するリチウムイオン電池用外装材の提供を目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。
[1]基材層(SB)の一方の面に、接着剤を含有する第1接着層(AD-1)、少なくとも片面に腐食防止処理層(CL)を設けたアルミニウム箔層(AL)、接着剤または接着性樹脂を含有する第2接着層(AD-2)、およびシーラント層(SL)が順次積層され、
 前記基材層(SB)が、下記フィルム基材(A)を有することを特徴とするリチウムイオン電池用外装材。
 フィルム基材(A):MD方向あるいはTD方向の少なくとも一方において、JIS-K7127に準拠して測定される降伏点までの伸度(α1)と破断点までの伸度(α2)の差(α2-α1)が100%以上であるフィルム基材。
[2]前記フィルム基材(A)のJIS-K7127に準拠して測定される破断点応力が100MPa以上である、[1]に記載のリチウムイオン電池用外装材。
[3]前記フィルム基材(A)が、ポリアミド樹脂に、無水マレイン酸を共重合させたエチレン系共重合体樹脂を配合した樹脂組成物(a1)、またはポリアミド樹脂に、脂肪族ポリエステルを配合した樹脂組成物(a2)からなる二軸延伸フィルム基材である、[1]または[2]に記載のリチウムイオン電池用外装材。
[4]前記無水マレイン酸を共重合させたエチレン系共重合体が、エチレン-α,β不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体である、[3]に記載のリチウムイオン電池用外装材。
[5]前記脂肪族ポリエステルがポリカプロラクトンである、[3]に記載のリチウムイオン電池用外装材。
[6]前記ポリアミド樹脂が、ナイロン6またはナイロン66である、[3]~[5]のいずれかに記載のリチウムイオン電池用外装材。
[7]基材層(SB)の一方の面に、接着剤を含有する第1接着層(AD-1)、少なくとも片面に腐食防止処理層(CL)を設けたアルミニウム箔層(AL)、接着剤または接着性樹脂を含有する第2接着層(AD-2)、およびシーラント層(SL)が順次積層され、
 前記基材層(SB)が、下記フィルム基材(A)を有することを特徴とするリチウムイオン電池用外装材。
 フィルム基材(A):JIS-K7127に準拠して測定される、破断点までの伸度x(単位:%)と、破断点における引張応力y(単位:MPa)とが、下式(1)および下式(2)で表される関係を満たす延伸ポリアミドフィルム基材。
 y≧-2x+460 ・・・(1)
 y≧200 ・・・(2)
[8]基材層(SB)の少なくとも一方の面側に、接着剤により形成される第1の接着層(AD-1)、少なくとも片面に腐食防止処理層(CL)が設けられたアルミニウム箔層(AL)、接着性樹脂又は接着剤により形成される第2の接着層(AD-2)、並びにシーラント層(SL)が順次積層され、
 前記基材層(SB)が、表面自由エネルギーγに対する、表面自由エネルギーの分散成分γdの比率γd/γが80%以下の延伸ポリアミドフィルムを有するリチウムイオン電池用外装材。
[9] 前記延伸ポリアミドフィルムの表面自由エネルギーの分散成分γdが40mN/m以下である、[8]に記載のリチウムイオン電池用外装材。
[10] 前記延伸ポリアミドフィルムの表面にα-ブロモナフタレンを滴下したときの接触角が20°以上である、[8]又は[9]に記載のリチウムイオン電池用外装材。
[11] 前記延伸ポリアミドフィルムが二軸延伸ポリアミドフィルムである[8]~[10]のいずれか一項に記載のリチウムイオン電池用外装材。
 本発明のリチウムイオン電池用外装材は、クロメート処理を行わなくても充分な電解液耐性を有し、かつ優れた深絞り成形性を有し高品質であり、容易に製造でき、生産性に優れる。また本発明のリチウムイオン電池用外装材は、優れた成型性を有している。
本発明のリチウムイオン電池用外装材の一例を示した断面図である。 実施例の深絞り成形に使用した金型を示した斜視図である。 本発明のリチウムイオン電池用外装材の一例を示した断面図である。
 以下、本発明のリチウムイオン電池用外装材(以下、単に「外装材」ともいう。)の実施形態の一例である、本発明の実施態様1について詳細に説明する。
 本実施形態の外装材1は、図1に示すように、基材層11の一方の面に、第1接着層12、基材層11と反対側に腐食防止処理層14を設けたアルミニウム箔層13、第2接着層15、シーラント層16が順次積層された積層体である。
(基材層11)
 基材層11は、下記フィルム基材(A)を有する層である。
 フィルム基材(A):MD方向あるいはTD方向の少なくとも一方において、JIS-K7127に準拠して測定される、降伏点までの伸度(α1)と破断点までの伸度(α2)の差(α2-α1)が100%以上であるフィルム基材。
 つまり、フィルム基材(A)は、JIS-K7127に準拠して測定される引張歪特性の評価において、降伏点を迎えてから破断点を迎えるまでに伸びる長さが、未延伸状態時の長さ以上であるフィルム基材である。
 フィルム基材(A)は、MD方向についての前記差(α2-α1)のみが100%以上のフィルム基材であってもよく、TD方向についての前記差(α2-α1)のみが100%以上のフィルム基材であってもよく、MD方向とTD方向の両方について前記差(α2-α1)が100%以上のフィルム基材であってもよい。
 本発明者は、鋭意検討の結果、外装材の冷間成形では基材層のフィルム基材は塑性変形を伴いながら絞られていくため、該フィルム基材の引張評価における、弾性変形領域から塑性変形領域に切り替わる「降伏点から破断点まで」の伸び物性が極めて重要であることを見出した。(ちなみに、特許文献1に記載の伸び物性は、弾性変形領域と塑性変形領域を合わせた全変形領域における伸度である。)
 フィルム基材(A)は、MD方向あるいはTD方向の少なくとも一方において、前記伸度の差(α2-α1)が100%以上であることで、靭性に優れる。そのため、基材層11にフィルム基材(A)を使用することで、外装材1の深絞り成形性が向上する。フィルム基材(A)の前記伸度の差(α2-α1)は、120%以上が好ましい。
 また、フィルム基材(A)のJIS-K7127に準拠して測定される破断点応力は、成形絞り深さを向上させる点から、100MPa以上が好ましく、200MPa以上がより好ましい。
 フィルム基材(A)の前記伸度の差(α2-α1)は、フィルム基材(A)の材料設計によって調節できる。
 フィルム基材(A)の材料としては、ポリアミド樹脂に、無水マレイン酸を共重合させたエチレン系共重合体樹脂を配合した樹脂組成物(a1)、またはポリアミド樹脂に、脂肪族ポリエステルを配合した樹脂組成物(a2)が好ましい。このように、フィルム基材(A)の主成分をなすポリアミド樹脂に対し、ポリアミド樹脂に比べて軟質性を有し、相溶性に優れた成分を配合した樹脂組成物が好ましい。
 ポリアミド樹脂は、分子内にアミド結合(-CONH-)を有する熱可塑性高分子化合物である。ポリアミド樹脂としては、特に限定されず、配向結晶性を有するポリアミド樹脂が好ましい。
 具体的には、ポリε-カプラミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリアミノウンデカミド(ナイロン11)、ポリラウリルアミド(ナイロン12)、ポリメタキシリレンジアジパミド(MXD6)、およびそれらの共重合物等が挙げられる。なかでも、ポリアミド樹脂としては、ナイロン6、ナイロン66が好ましい。
 樹脂組成物(a1)においてポリアミド樹脂に配合する、無水マレイン酸を共重合させたエチレン系共重合体樹脂としては、エチレン-α,β不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体(以下、「共重合体(a11)」ともいう。)が好ましい。
 α,β不飽和カルボン酸アルキルエステルとしては、炭素数1~4のアルキル基を有するα,β不飽和カルボン酸のエステルが好ましい。α,β不飽和カルボン酸としては、炭素数3~8のモノカルボン酸またはジカルボン酸が好ましく、それらの金属塩または酸無水物を使用してもよい。具体的には、アクリル酸、メタクリル酸、マレイン酸、フマール酸、イタコン酸、無水マレイン酸等が挙げられる。
 α,β不飽和カルボン酸アルキルエステルとしては、メチルアクリレート、エチルアクリレート、ブチルアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレートが好ましい。
 共重合体(a11)の重合に使用する全単量体に対するα,β不飽和カルボン酸アルキルエステルの割合は、4.9~40質量%が好ましく、10~35質量%がより好ましい。α,β不飽和カルボン酸アルキルエステルの割合が前記範囲の下限値以上であれば、共重合体(a11)の軟質性が向上し、樹脂組成物(a1)を使用したフィルム基材(A)の強度物性の改質効果が得られやすい。α,β不飽和カルボン酸アルキルエステルの割合が前記範囲の上限値以下であれば、共重合体(a11)の製造が容易になる。
 共重合体(a11)の重合に使用する全単量体に対する無水マレイン酸の割合は、0.1~10質量%が好ましく、0.5~5質量%がより好ましい。無水マレイン酸の割合が前記範囲の下限値以上であれば、ポリアミド樹脂と共重合体(a11)の相溶性が向上する。無水マレイン酸の割合が前記範囲の上限値以下であれば、樹脂組成物(a1)の加工性が向上する。
 共重合体(a11)の具体例としては、日本ポリエチレン製のレクスパールET等が挙げられる。
 樹脂組成物(a1)における無水マレイン酸を共重合させたエチレン系共重合体樹脂の配合割合は、ポリアミド樹脂100質量%に対して、0.1~5質量%が好ましく、0.5~3質量%がより好ましい。前記配合割合が前記範囲の下限値以上であれば、ポリアミド樹脂によるフィルム基材(A)の強度物性の改質効果が得られやすい。また、前記配合割合が前記範囲の上限値以下であれば、経済性が向上する。なお、前記配合割合が5質量%を超えても、性能面はほとんど変わらない。
 樹脂組成物(a2)においてポリアミド樹脂に配合する脂肪族ポリエステルとしては、ポリカプロラクトンが好ましい。ポリカプロラクトンとは、ε-カプロラクトンの開環重合により得られる、-(CH-COO-で表される繰り返し単位からなる線状ポリエステル化合物である。
 ポリカプロラクトンの分子量は、5,000~100,000が好ましく、10,000~70,000がより好ましい。ポリカプロラクトンの分子量が前記範囲の下限値以上であれば、樹脂組成物(a2)を使用したフィルム基材(A)の強度物性の改質効果が得られやすい。ポリカプロラクトンの分子量が前記範囲の上限値以下であれば、フィルム基材(A)の強度物性が向上する。
 ポリカプロラクトンの具体例としては、ダイセル化学製のプラクセル等が挙げられる。
 樹脂組成物(a2)における脂肪族ポリエステルの配合割合は、ポリアミド樹脂100質量%に対して、0.1~5質量%が好ましく、0.5~3質量%がより好ましい。前記配合割合が前記範囲の下限値以上であれば、ポリアミド樹脂によるフィルム基材(A)の強度物性の改質効果が得られやすい。また、前記配合割合が前記範囲の上限値以下であれば、経済性が向上する。なお、前記配合割合が5質量%を超えても、性能面はほとんど変わらない。
 また、フィルム基材(A)の前記伸度の差(α2-α1)は、前記材料設定以外にも調節する方法がある。例えば、延伸方法(逐次二軸延伸または同時二軸延伸など)、延伸倍率、熱固定温度等を制御した二軸延伸方法によって、前記伸度の差(α2-α1)が100%以上のフィルム基材(A)を得る方法が挙げられる。該方法によりフィルム基材(A)を得る場合、フィルム基材(A)の材料としてポリアミド樹脂を単独で使用してもよい。
 例えば、以下に示す方法が挙げられる。
 ポリアミド樹脂単体、または、ドライブレンドもしくはメルトブレンドにより得られた前記樹脂組成物(a1)もしくは樹脂組成物(a2)を、Tダイを備えた押出機による押出溶融製膜する。次いで、製膜した溶融樹脂を、エアーナイフキャスト法、静電印加キャスト法等の公知のキャスティング法により、回転する冷却ドラム上で急冷製膜して未延伸フィルム基材を得る。次いで、周速の異なる加熱ローラ群からなるローラ式縦延伸機によって、未延伸フィルム基材を予熱し、該未延伸フィルム基材のガラス転移点以上の温度に加熱された延伸ロールと、フィルム冷却のための冷却ロールとの間で、未延伸フィルム基材を縦延伸する。さらに、縦延伸したフィルム基材を引き続きテンターに導き、50~70℃で予熱した後、60~110℃で横延伸することでフィルム基材(A)を得る。
 また、必要に応じて、縦延伸倍率と横延伸倍率の比率を調節し、さらにテンター内において210~220℃で熱処理およびリラックス処理を施してもよい。
 また、延伸は、一軸延伸でも二軸延伸でもよい。二軸延伸は、前述の逐次二軸以外には限定されず、同時二軸であってもよい。
 フィルム基材(A)としては、前記樹脂組成物(a1)または樹脂組成物(a2)からなる二軸延伸フィルム基材が特に好ましいが、延伸方法(逐次二軸延伸または同時二軸延伸など)、延伸倍率、熱固定温度等を制御した二軸延伸方法を用いることで得られた二軸延伸フィルムも好適に用いられる。
 延伸方法により前記伸度の差(α2-α1)を100%以上としたフィルム基材(A)の具体例としては、ユニチカ製ON-U(二軸延伸ポリアミドフィルム)、三菱樹脂製SNR(二軸延伸ポリアミドフィルム)等が挙げられる。また、上述した樹脂組成物(a1)または樹脂組成物(a2)の材料設計により前記伸度の差(α2-α1)を100%以上としたフィルム基材(A)としては、ユニチカ製ON-P(二軸延伸ポリアミドフィルム)等が挙げられる。
 フィルム基材(A)の厚みは、耐ピンホール性、絶縁性を向上させる点から、6μm以上が好ましく、10μm以上がより好ましい。また、フィルム基材(A)の厚みは、外装材1の深絞り成形性の点から、50μm以下が好ましく、25μm以下がより好ましい。
 フィルム基材(A)には、必要に応じて、フィルムの性能に悪影響を与えない範囲で、滑剤、帯電防止剤、ブロッキング防止剤、無機微粒子等の各種添加剤が添加されていてもよい。
 フィルム基材(A)の製造方法としては、前述したTダイキャスト法には限定されず、インフレーション法等であってもよい。
 基材層11は、フィルム基材(A)単独からなる層であってもよく、フィルム基材(A)と他のフィルム基材が積層された多層フィルムからなる層であってもよい。
 前記他のフィルム基材としては、ポリエステルフィルム、ポリオレフィンフィルム、ポリカーボネートフィルム、フッ素樹脂系フィルム等が挙げられる。
 他のフィルム基材を積層することで、基材フィルム(A)のポリアミドフィルムにはない性能を付与することもできる。例えば、ポリエチレンテレフタレート等のポリエステルフィルム基材により、耐スクラッチ性、耐酸性、耐電解液性が向上する。
 また、基材層11に使用するフィルム基材(A)、またはフィルム基材(A)と他のフィルム基材の多層フィルムは、各種コーティング手法により、アクリル系、ウレタン系、ポリ塩化ビニリデン系(共重合タイプ含む)、エポキシ系、ポリエステル系のコート剤によるコーティング層を設けてもよい。
 コーティング層の厚さは、0.1~5μmが好ましい。
(第1接着層12)
 第1接着層12は、基材層11と、アルミニウム箔層13とを接着する層である。第1接着12を構成する接着剤としては、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、カーボネートポリオール等の主剤に、2官能以上のポリイソシアネート化合物を作用させたポリウレタン系接着剤が好ましい。
 ポリエステルポリオールとしては、例えば、二塩基酸とジオール化合物の重合により得られるものが挙げられる。
 前記二塩基酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、ブラシル酸等の脂肪族系、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸等の芳香族系の二塩基酸が挙げられる。これらの二塩基酸は1種を単独で使用してもよく、2種以上を併用してもよい。
 前記ジオール化合物としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、メチルペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ドデカンジオール等の脂肪族系ジオール、シクロヘキサンジオール、水添キシリレングリコール等の脂環式系ジオール、キシリレングリコール等の芳香族系ジオール等が挙げられる。これらのジオール化合物は1種を単独で使用してもよく、2種以上を併用してもよい。
 また、ポリエステルポリオールとしては、前記ポリエステルポリオールの両末端の水酸基を、ポリイソシアネート化合物により鎖伸長したポリエステルウレタンポリオールを用いてもよい。
 前記ポリイソシアネート化合物としては、例えば、2,4-もしくは2,6-トリレンジイソシアネート、キシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、メチレンジイソシアネート、イソプロピレンジイソシアネート、リジンジイソシアネート、2,2,4-もしくは2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシル-4,4’-ジイソシアネート等が挙げられる。また、これらのイソシアネート化合物は、単体として使用してもよく、該イソシアネート化合物からなるアダクト体、ビューレット体、イソシアヌレート体として使用してもよい。
 これらのポリイソシアネート化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。
 ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール等のエーテル系のポリオールが挙げられる。また、該エーテル系のポリオールを、前記イソシアネート化合物により鎖伸長したポリエーテルウレタンポリオールを用いてもよい。
 アクリルポリオールとしては、例えば、ポリ(メタ)アクリル酸を主成分とする共重合体が挙げられる。(メタ)アクリル酸と共重合する成分としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の水酸基含有モノマー;アルキル(メタ)アクリレート系モノマー(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基が挙げられる。);(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等が挙げられる。)、N-アルコキシ(メタ)アクリルアミド、N,N-ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基等が挙げられる。)、N-メチロール(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド等のアミド基含有モノマー;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有モノマー;(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシラン等のシラン含有モノマー;(メタ)アクリロキシプロピルイソシアネート等のイソシアネート基含有モノマーが挙げられる。
 カーボネートポリオールとしては、例えば、カーボネート化合物とジオール化合物とを反応させて得られるポリオール等が挙げられる。
 カーボネート化合物としては、例えば、ジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられる。ジオール化合物としては、前記ポリエステルポリオールを形成するジオール化合物として挙げたものと同じものが挙げられる。また、カーボネートポリオールとしては、前記イソシアネート化合物により鎖伸長したポリカーボネートウレタンポリオールを用いてもよい。
 以上の各種ポリオールは、求められる機能や性能に応じて、1種を単独で使用してもよく、2種以上を併用してもよい。
 これらの主剤にポリイソシアネート化合物を硬化剤として用いることで、ポリウレタン系接着剤として使用できる。硬化剤として用いるポリイソシアネートとしては、鎖伸長剤として挙げたポリイソシアネート化合物と同じものが挙げられる。
 また、第1接着層12には、基材層11とアルミニウム箔層13の接着を促進するため、カルボジイミド化合物、オキサゾリン化合物、エポキシ化合物、リン化合物、シランカップリング剤等が含有されていてもよい。
 カルボジイミド化合物としては、例えば、N,N’-ジ-o-トルイルカルボジイミド、N,N’-ジフェニルカルボジイミド、N,N’-ジ-2,6-ジメチルフェニルカルボジイミド、N,N’-ビス(2,6-ジイソプロピルフェニル)カルボジイミド、N,N’-ジオクチルデシルカルボジイミド、N-トリイル-N’-シクロヘキシルカルボジイミド、N,N’-ジ-2,2-ジ-t-ブチルフェニルカルボジイミド、N-トリイル-N’-フェニルカルボジイミド、N,N’-ジ-p-ニトロフェニルカルボジイミド、N,N’-ジ-p-アミノフェニルカルボジイミド、N,N’-ジ-p-ヒドロキシフェニルカルボジイミド、N,N’-ジ-シクロヘキシルカルボジイミド、N,N’-ジ-p-トルイルカルボジイミド等が挙げられる。
 オキサゾリン化合物としては、例えば、2-オキサゾリン、2-メチル-2-オキサゾリン、2-フェニル-2-オキサゾリン、2,5-ジメチル-2-オキサゾリン、2,4-ジフェニル-2-オキサゾリン等のモノオキサゾリン化合物、2,2’-(1,3-フェニレン)-ビス(2-オキサゾリン)、2,2’-(1,2-エチレン)-ビス(2-オキサゾリン)、2,2’-(1,4-ブチレン)-ビス(2-オキサゾリン)、2,2’-(1,4-フェニレン)-ビス(2-オキサゾリン)等のジオキサゾリン化合物等が挙げられる。
 エポキシ化合物としては、例えば、1,6-ヘキサンジオール、ネオペンチルグリコール、ポリアルキレングリコール等の脂肪族のジオールのジグリシジルエーテル;ソルビトール、ソルビタン、ポリグリセロール、ペンタエリスリトール、ジグリセロール、グリセロール、トリメチロールプロパン等の脂肪族ポリオールのポリグリシジルエーテル;シクロヘキサンジメタノール等の脂環式ポリオールのポリグリシジルエーテル;テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、トリメリット酸、アジピン酸、セバシン酸等の脂肪族、芳香族の多価カルボン酸のジグリシジルエステルまたはポリグリシジルエステル;レゾルシノール、ビス-(p-ヒドロキシフェニル)メタン、2,2-ビス-(p-ヒドロキシフェニル)プロパン、トリス-(p-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(p-ヒドロキシフェニル)エタン等の多価フェノールのジグリシジルエーテルもしくはポリグリシジルエーテル;N,N’-ジグリシジルアニリン、N,N,N-ジグリシジルトルイジン、N,N,N’,N’-テトラグリシジル-ビス-(p-アミノフェニル)メタンのようなアミンのN-グリシジル誘導体;アミノフェールのトリグリシジル誘導体;トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、トリグリシジルイソシアヌレート、オルソクレゾール型エポキシ、フェノールノボラック型エポキシ等が挙げられる。
 リン系化合物としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレンホスフォナイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシル)ホスファイト、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチル-フェニル)ブタン、トリス(ミックスドモノおよびジ-ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4’-イソプロピリデンビス(フェニル-ジアルキルホスファイト)等が挙げられる。
 シランカップリング剤としては、例えば、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン等が挙げられる。
 また、第1接着12には、前記したものの他、接着剤に求められる性能に応じて、各種添加剤や安定剤が配合されていてもよい。
(アルミニウム箔層13)
 アルミニウム箔層13としては、一般の軟質アルミニウム箔を用いることができ、さらに耐ピンホール性、および成形時の延展性を付与できる点から、鉄を含むアルミニウム箔を用いることが好ましい。
 アルミニウム箔(100質量%)中の鉄の含有量は、0.1~9.0質量%が好ましく、0.5~2.0質量%がより好ましい。鉄の含有量が0.1質量%以上であれば耐ピンホール性、延展性が向上する。鉄の含有量が9.0質量%以下であれば、柔軟性が向上する。
 アルミニウム箔層13の厚さは、バリア性、耐ピンホール性、加工性の点から、9~200μmが好ましく、15~100μmがより好ましい。
 アルミニウム箔層13は、耐電解液性の点から、脱脂処理を施したアルミニウム箔を用いることが好ましい。脱脂処理としては、大きく区分するとウェットタイプとドライタイプに分けられる。
 ウェットタイプの脱脂処理としては、例えば、酸脱脂、アルカリ脱脂等が挙げられる。
 酸脱脂に使用する酸としては、例えば、硫酸、硝酸、塩酸、フッ酸等の無機酸が挙げられる。これらの酸は、1種を単独で使用してもよく、2種以上を併用してもよい。また、これらの無機酸には、アルミニウム箔のエッチング効果が向上する点から、必要に応じてFeイオンやCeイオン等の供給源となる各種金属塩を配合してもよい。
 アルカリ脱脂に使用するアルカリとしては、例えば、エッチング効果が高いものとして水酸化ナトリウム等が挙げられる。また、弱アルカリ系や界面活性剤を配合したものが挙げられる。
 ウェットタイプの脱脂処理は、浸漬法やスプレー法で行われる。
 ドライタイプの脱脂処理としては、例えば、アルミニウムを焼鈍処理する工程で行う方法等が挙げられる。また、該脱脂処理のほかにも、フレーム処理やコロナ処理等が挙げられる。さらには、特定波長の紫外線を照射して発生する活性酸素により、汚染物質を酸化分解・除去する脱脂処理も挙げられる。
 アルミニウム箔層13の脱脂処理は、片面のみに行ってもよく、両面に行ってもよい。
(腐食防止処理層14)
腐食防止処理層14は、基本的にはアルミニウム箔層13の電解液あるいはフッ酸による腐食を防止するために設けられる層である。腐食防止処理層14としては、例えば、脱脂処理、熱水変成処理、陽極酸化処理、化成処理、あるいはこれらの処理の組み合わせにより形成される。
 脱脂処理としては、酸脱脂あるいはアルカリ脱脂が挙げられる。酸脱脂としては、硫酸、硝酸、塩酸、フッ酸等の無機酸の単独、またはこれらの混合液を使用する方法等が挙げられる。また、酸脱脂として、一ナトリウム二フッ化アンモニウム等のフッ素含有化合物を前記無機酸で溶解させた酸脱脂剤を用いることで、アルミニウムの脱脂効果が得られるだけでなく、不動態であるアルミニウムのフッ化物を形成させることができ、耐フッ酸性という点で有効である。アルカリ脱脂としては、水酸化ナトリウム等を使用する方法が挙げられる。
 熱水変成処理としては、例えば、トリエタノールアミンを添加した沸騰水中にアルミニウム箔を浸漬処理するベーマイト処理が挙げられる。
 陽極酸化処理としては、例えば、アルマイト処理が挙げられる。
 化成処理としては、例えば、クロメート処理、ジルコニウム処理、チタニウム処理、バナジウム処理、モリブデン処理、リン酸カルシウム処理、水酸化ストロンチウム処理、セリウム処理、ルテニウム処理、あるいはこれらの混合相からなる各種化成処理等が挙げられる。
 これらの熱水変成処理、陽極酸化処理、化成処理を施す際は、事前に前記脱脂処理を施すことが好ましい。また、これらの化成処理は、湿式型に限らず、これらの処理剤を樹脂成分と混合した塗布型で行ってもよい。
 また、前記処理のうち、特に熱水変性処理、陽極酸化処理は、処理剤によってアルミニウム箔表面を溶解させ、耐腐食性に優れるアルミニウム化合物(ベーマイト、アルマイト)を形成させる。そのため、アルミニウム箔層13から腐食防止処理層14まで共連続構造を形成した形態になるので、化成処理の定義に包含されるが、後述するように化成処理の定義に含まれない、純粋なコーティング手法のみで腐食防止処理層14を形成することも可能である。該方法としては、例えば、アルミニウムの腐蝕防止効果(インヒビター効果)を有し、かつ、環境側面的にも好適な材料として、平均粒径100nm以下の酸化セリウムのような希土類元素系酸化物のゾルを用いる方法が挙げられる。該方法を用いることで、一般的なコーティング方法でも、アルミニウム箔等の金属箔に腐蝕防止効果を付与することが可能となる。
 前記希土類元素系酸化物のゾルとしては、例えば、水系、アルコール系、炭化水素系、ケトン系、エステル系、エーテル系等の各種溶媒を用いたゾルが挙げられる。なかでも、水系のゾルが好ましい。
 前記希土類元素系酸化物のゾルには、通常その分散を安定化させるために、硝酸、塩酸、リン酸等の無機酸またはその塩、酢酸、りんご酸、アスコルビン酸、乳酸等の有機酸が分散安定化剤として希土類元素系酸化物のゾル粒子の表面を処理しているものが用いられる。これらの分散安定化剤のうち、特にリン酸は、外装材1において、(1)ゾルの分散安定化、(2)リン酸のアルミキレート能力を利用したアルミニウム箔層13との密着性の向上、(3)フッ酸の影響で溶出したアルミニウムイオンを捕獲(不動態形成)することよる電解液耐性の付与、(4)低温でもリン酸の脱水縮合を起こしやすいことによる腐食防止処理層14(酸化物層)の凝集力の向上、等が期待される。
 前記リン酸またはその塩としては、オルトリン酸、ピロリン酸、メタリン酸、またはこれらのアルカリ金属塩やアンモニウム塩が挙げられる。なかでも、外装材1における機能発現には、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸、ウルトラメタリン酸等の縮合リン酸、またはこれらのアルカリ金属塩やアンモニウム塩が好ましい。また、前記希土類酸化物のゾルを用いて、各種コーティング法により希土類酸化物からなる腐食防止処理層14を形成させる時の乾燥造膜性(乾燥能力、熱量)を考慮すると、低温での脱水縮合性に優れる点から、ナトリウム塩がより好ましい。リン酸塩としては、水溶性の塩が好ましい。
 酸化セリウムに対するリン酸(あるいはその塩)の配合比は、酸化セリウム100質量部に対して、1~100質量部が好ましい。前記配合比が酸化セリウム100質量部に対して1質量部以上であれば、酸化セリウムゾルがより安定になり、外装材1の機能がより良好になる。前記配合比は、酸化セリウム100質量部に対して5質量部以上がより好ましい。また、前記配合比が酸化セリウム100質量部に対して100質量部以下であれば、酸化セリウムゾルの機能低下を抑制しやすい。前記配合比は、酸化セリウム100質量部に対して、50質量部以下がより好ましく、20質量部以下がさらに好ましい。
 前記希土類酸化物ゾルにより形成される腐食防止処理層14は、無機粒子の集合体であるため、乾燥キュアの工程を経ても層自身の凝集力が低くなるおそれがある。そこで、この場合の腐食防止処理層14は、凝集力を補うために、下記アニオン性ポリマーにより複合化されていることが好ましい。
 アニオン性ポリマーとしては、カルボキシ基を有するポリマーが挙げられ、例えば、ポリ(メタ)アクリル酸(あるいはその塩)、あるいはポリ(メタ)アクリル酸を主成分として共重合した共重合体が挙げられる。
 該共重合体の共重合成分としては、アルキル(メタ)アクリレート系モノマー(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等。);(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等。)、N-アルコキシ(メタ)アクリルアミド、N,N-ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基等。)、N-メチロール(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド等のアミド基含有モノマー;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の水酸基含有モノマー;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有モノマー;(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシラン等のシラン含有モノマー;(メタ)アクリロキシプロピルイソシアネート等のイソシアネート基含有モノマー等が挙げられる。
 これらアニオン性ポリマーは、希土類元素酸化物ゾルを用いて得られた腐食防止処理層14(酸化物層)の安定性を向上させる役割を果たす。これは、硬くて脆い酸化物層をアクリル系樹脂成分で保護する効果、および、希土類酸化物ゾルに含まれるリン酸塩由来のイオンコンタミ(特にナトリウムイオン)を捕捉する(カチオンキャッチャー)効果によって達成される。つまり、希土類元素酸化物ゾルを用いて得られた腐食防止処理層14中に、特にナトリウム等のアルカリ金属イオンやアルカリ土類金属イオンが含まれると、該イオンを含む場所を起点にして腐食防止処理層14が劣化しやすくなる。そのため、アニオン性ポリマーによって希土類酸化物ゾルに含まれるナトリウムイオン等を固定化することで、腐食防止処理層14の耐性が向上する。
 アニオン性ポリマーと希土類元素酸化物ゾルと組み合わせた腐食防止処理層14は、アルミニウム箔にクロメート処理を施して形成した腐食防止処理層14と同等の腐食防止性能を有する。アニオン性ポリマーは、本質的に水溶性であるポリアニオン性ポリマーが架橋された構造であることが好ましい。該構造の形成に用いる架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシ基、オキサゾリン基を有する化合物が挙げられる。
 イソシアネート基を有する化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネートあるいはその水素添加物、ヘキサメチレンジイソシアネート、4,4’ジフェニルメタンジイソシアネートあるいはその水素添加物、イソホロンジイソシアネート等のジイソシアネート類;あるいはこれらのイソシアネート類を、トリメチロールプロパン等の多価アルコールと反応させたアダクト体、水と反応させることで得られたビューレット体、あるいは三量体であるイソシアヌレート体等のポリイソシアネート類;あるいはこれらのポリイソシアネート類をアルコール類、ラクタム類、オキシム類等でブロック化したブロックポリイソシアネート等が挙げられる。
 グリシジル基を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等のグリコール類と、エピクロルヒドリンを作用させたエポキシ化合物;グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類と、エピクロルヒドリンを作用させたエポキシ化合物;フタル酸テレフタル酸、シュウ酸、アジピン酸等のジカルボン酸と、エピクロルヒドリンとを作用させたエポキシ化合物等が挙げられる。
 カルボキシ基を有する化合物としては、例えば、各種脂肪族あるいは芳香族ジカルボン酸等が挙げられる。また、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸のアルカリ(土類)金属塩を用いてもよい。
 オキサゾリン基を有する化合物としては、例えば、オキサゾリンユニットを2つ以上有する低分子化合物、あるいはイソプロペニルオキサゾリンのような重合性モノマーを用いる場合には、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキル等のアクリル系モノマーを共重合させたものが挙げられる。
 また、アニオン性ポリマーには、シランカップリング剤のように、アミンと官能基を選択的に反応させ、架橋点をシロキサン結合にさせてもよい。この場合、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-イソシアナートプロピルトリエトキシシラン等が使用できる。なかでも、特にアニオン性ポリマーあるいはその共重合物との反応性を考慮すると、エポキシシラン、アミノシラン、イソシアネートシランが好ましい。
 アニオン性ポリマーに対するこれらの架橋剤の比率は、アニオン性ポリマー100質量部に対して、1~50質量部が好ましく、10~20質量部がより好ましい。架橋剤の比率がアニオン性ポリマー100質量部に対して1質量部以上であれば、架橋構造が充分に形成されやすい。架橋剤の比率がアニオン性ポリマー100質量部に対して50質量部以下であれば、塗液のポットライフが向上する。
 アニオン性ポリマーを架橋する方法は、前記架橋剤に限らず、チタニウム、ジルコニウム化合物を用いてイオン架橋を形成する方法等であってもよい。
 クロメート処理に代表される化成処理による腐食防止処理層は、アルミニウム箔との傾斜構造を形成させるため、特にフッ酸、塩酸、硝酸、硫酸あるいはこれらの塩を配合した化成処理剤を用いてアルミニウム箔に処理を施し、次いでクロムやノンクロム系の化合物を作用させて化成処理層をアルミニウム箔に形成させるものである。しかし、前記化成処理は、化成処理剤に酸を用いていることから、作業環境の悪化やコーティング装置の腐食を伴う。一方、前述したコーティングタイプの腐食防止処理層14は、クロメート処理に代表される化成処理とは異なり、アルミニウム箔層13に対して傾斜構造を形成させる必要がない。そのため、コーティング剤の性状は、酸性、アルカリ性、中性等の制約を受けることがなく、良好な作業環境を実現できる。加えて、クロム化合物を用いるクロメート処理は、環境衛生上、代替案が求められている点からも、コーティングタイプの腐食防止処理層14が好ましい。
 また、腐食防止処理層14は、必要に応じて、カチオン性ポリマーにより多層構造としてもよい。
 カチオン性ポリマーとしては、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフトさせた1級アミングラフトアクリル樹脂、ポリアリルアミンあるいはこれらの誘導体、アミノフェノール等のカチオン性のポリマーが挙げられる。
 カチオン性ポリマーは、カルボキシ基やグリシジル基等のアミン/イミンと反応が可能な官能基を有する架橋剤と併用することが好ましい。カチオン性ポリマーと併用する架橋剤としては、ポリエチレンイミンとイオン高分子錯体を形成するカルボン酸を有するポリマーも使用でき、例えば、ポリアクリル酸あるいはそのイオン塩等のポリカルボン酸(塩)、あるいはこれにコモノマーを導入した共重合体、カルボキシメチルセルロースあるいはそのイオン塩等のカルボキシ基を有する多糖類等が挙げられる。ポリアリルアミンとしては、例えば、アリルアミン、アリルアミンアミド硫酸塩、ジアリルアミン、ジメチルアリルアミン等の単独重合体あるいは共重合体等が挙げられる。これらのアミンは、フリーのアミンであってもよく、酢酸あるいは塩酸による安定化物であってもよい。また、共重合体成分として、マレイン酸、二酸化硫黄等を使用してもよい。さらに、1級アミンを部分メトキシ化させることで熱架橋性を付与したタイプも使用でき、また、アミノフェノールも使用できる。特に、アリルアミンあるいはその誘導体が好ましい。
 本発明では、カチオン性ポリマーも腐食防止処理層14を構成する一構成要素として記載している。その理由は、リチウムイオン電池用外装材で要求される電解液耐性、フッ酸耐性を付与させるべく様々な化合物を用い鋭意検討を行った結果、カチオン性ポリマー自体にも、電解液耐性、耐フッ酸性を付与することが可能な化合物であることが判明したためである。この要因は、フッ素イオンをカチオン性基で補足する(アニオンキャッチャー)ことで、アルミニウム箔が損傷することを抑制しているためであると推測される。該理由から、腐食防止処理層14として希土類酸化物ゾルを用いた場合、その保護層として前記アニオン性ポリマーを用いる代わりに、カチオン性ポリマーを用いてもよい。
 また、前記アニオン性ポリマーまたはカチオン性ポリマーのいずれかのみを含むコーティング剤を使用して腐食防止処理層14を形成してもよい。
 前記コーティングタイプの腐食防止処理層14の形成に使用するコーティング剤における前記成分の組み合わせとしては、特に限定されず、例えば、下記(1)~(7)の組み合わせが挙げられる。
 (1)希土類酸化物ゾルのみ。
 (2)アニオン性ポリマーのみ。
 (3)カチオン性ポリマーのみ。
 (4)希土類酸化物とアニオン性ポリマーによる積層複合化。
 (5)希土類酸化物とカチオン性ポリマーによる積層複合化。
 (6)希土類酸化物とアニオン性ポリマーを使用して積層複合化した上に、さらにカチオン性ポリマーにより多層化。
 (7)希土類酸化物とカチオン性ポリマーを使用して積層複合化した上に、さらにアニオン性ポリマーにより多層化。
 また、腐食防止処理層14は、前述した層には限定されない。例えば、公知技術である塗布型クロメートのように、樹脂バインダー(アミノフェノール等)にリン酸とクロム化合物を配合した処理剤を用いて形成してもよい。該処理剤を用いれば、腐食防止機能と密着性の両方を兼ね備えた層とすることができる。また、前述した脱脂処理、熱水変成処理、陽極酸化処理、化成処理、またはこれらを組み合わせた処理において、密着性を向上させるために、前記カチオン性ポリマー、アニオン性ポリマーを使用して複合的な処理としてもよい。また、前記処理により形成した層に、さらに多層構造としてカチオン性ポリマー、アニオン性ポリマーによる層を積層させてもよい。また、塗液の安定性を考慮する必要があるものの、希土類酸化物ゾルとポリカチオン性ポリマーあるいはポリアニオン性ポリマーとを事前に一液化したコーティング剤を使用して腐食防止機能と密着性の両方を兼ね備えた層とすることができる。
 腐食防止処理層14の単位面積当たりの質量は、0.005~0.200mg/mが好ましく、0.010~0.100mg/mがより好ましい。前記単位面積当たりの質量が0.005mg/m以上であれば、アルミニウム箔層13に腐食防止機能を付与しやすい。また、前記単位面積当たりの質量が0.200mg/mを超えても、腐食防止機能はあまり変らない。一方、希土類酸化物ゾルを用いた場合には、塗膜が厚いと乾燥時の熱によるキュアが不充分となり、凝集力の低下を伴うおそれがある。なお、腐食防止処理層14の厚みについては、その比重から換算できる。
(第2接着層15)
 第2接着層15は、腐食防止処理層14とシーラント層16とを接着する層である。なお、アルミニウム箔層のシーラント層側に腐食防止処理層が形成されていない場合は、アルミニウム箔層とシーラント層を接着する。第2接着層15は、接着剤または接着性樹脂を含有する層である。第2接着層15を後述する接着剤により形成する場合、ドライラミネートにより外装材1(ドライラミネートタイプ)を形成できる。第2接着層15を後述する接着性樹脂により形成する場合、熱ラミネートにより外装材1(熱ラミネートタイプ)を形成できる。
 第2接着層15に使用する接着剤としては、第1接着層12に使用する接着剤と同じものが使用できる。ただし、第2接着層15に接着剤を使用する場合は、電解液が充填される側の面を貼り合せる接着剤であるため、電解液による膨潤や、フッ酸による加水分解に関して注意を払う必要がある。そのため、加水分解されにくい骨格を有する主剤を用いた接着剤、架橋密度を向上させた接着剤を用いることが好ましい。
 接着剤の架橋密度を向上させる方法の一例としては、例えば、ダイマー脂肪酸もしくはそのエステル、ダイマー脂肪酸もしくはそのエステルの水素添加物、ダイマー脂肪酸もしくはそのエステルの還元グリコール、またはダイマー脂肪酸もしくはそのエステルの水素添加物の還元グリコールと、ジオール化合物によりポリエステルポリオールを得る方法が挙げられる。該方法によれば、ダイマー脂肪酸の嵩高い疎水性ユニットにより架橋密度が向上する。
 ダイマー脂肪酸とは、各種不飽和脂肪酸を2量体化させたものであり、その構造としては非環型、単環型、多環型、芳香環型が挙げられる。第2接着層15に使用するポリエステルポリオールにおける原料のダイマー脂肪酸の2量化構造は特に限定されない。また、ダイマー脂肪酸の出発物質として使用する不飽和脂肪酸の種類も特に限定されない。
 不飽和脂肪酸としては、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸等のモノ不飽和脂肪酸;リノール酸、エイコサジエン酸、ドコサジエン酸等のジ不飽和脂肪酸;リノレン酸、ビノレン酸、エレオステアリン酸、ミード酸、ジホモ-γ-リノレン酸、エイコサトリエン酸等のトリ不飽和脂肪酸;ステアリドン酸、アラキドン酸、エイコサテトラエン酸、アドレン酸等のテトラ不飽和脂肪酸;ボセオペンタエン酸、エイコサベンタエン酸、オズボンド酸、イワシ酸、テトラコサベンタエン酸等のペンタ不飽和脂肪酸;ドコサヘキサエン酸、ニシン酸等のヘキサ不飽和脂肪酸等が挙げられる。
 ダイマー脂肪酸における二量体化する不飽和脂肪酸の組み合わせは、特に限定されず、同一の不飽和脂肪酸であってもよく、異なる不飽和脂肪酸であってもよい。
 ジオール化合物としては、第1接着層12のポリエステルポリオールの説明で挙げたジオール化合物が使用できる。
 また、前記ダイマー脂肪酸により架橋密度を向上させる場合には、ポリエステルポリオールの製造に通常使用される二塩基酸を導入してもよい。二塩基酸は、第1接着層12のポリエステルポリオールの説明で挙げた二塩基酸が使用できる。
 また、第2接着層15の接着剤としては、前記方法で架橋密度を向上させたポリエステルポリオールの両末端の水酸基を、ポリイソシアネート化合物により鎖伸長したポリエステルウレタンポリオールも好ましい。ポリイソシアネート化合物は、第1接着層12のポリエステルウレタンポリオールの説明で挙げたポリイソシアネート化合物が使用でき、クルードトリレンジイソシアネート、クルードジフェニルメタンジイソシアネート、およびポリメリックジフェニルメタンジイソシアネートからなる群から選ばれる1種以上が好ましい。
 第2接着層15を形成する接着剤に使用する硬化剤としては、第1接着層12の説明で挙げたポリイソシアネート化合物が使用できるが、特に電解液耐性(特に電解液に対する溶解性、膨潤性)を向上させる場合には、クルードトリレンジイソシアネート、クルードジフェニルメタンジイソシアネート、およびポリメリックフェニルメタンジイソシアネートからなる群から選ばれる1種以上のポリイソシアネート、または該ポリイソシアネートのアダクト体が好ましい。これにより、第2接着層15は、架橋密度が向上し、電解液に対する溶解性、膨潤性が低くなると共に、ウレタン基濃度が向上して密着性が向上する。
 第2接着層15を形成する接着剤における硬化剤の割合は、主剤100質量部に対して、1~100質量部が好ましく、5~50質量部がより好ましい。前記硬化剤の割合が前記範囲の下限値以上であれば、密着性、電解液耐性が向上する。前記硬化剤の割合が前記範囲の上限値以下であれば、100質量部以下であれば、未反応の硬化剤のイソシアネート基が第2接着層15の塗膜物性等に悪影響を及ぼすことを抑制しやすい。
 また、第2接着層15を接着剤により形成する場合は、第1接着層12と同様に、接着性の促進のため、カルボジイミド化合物、オキサゾリン化合物、エポキシ化合物、リン化合物、シランカップリング剤等を配合してもよい。
 第2接着層15で用いる接着剤は、上述した組成に限定されず、電解液やフッ酸に耐えられるものが使用され、ポリオレフィンポリオールやアクリルポリオールといった主剤をベースに用いた接着剤も適用可能である。
 また、第2接着層15を接着性樹脂により形成する場合、該接着性樹脂としては、例えば、不飽和カルボン酸もしくはその酸無水物またはそれらのエステルから導かれる不飽和カルボン酸誘導体成分であるポリオレフィン樹脂を、有機過酸化物の存在下でグラフト変性することにより得られる変性ポリオレフィン樹脂が挙げられる。
 ポリオレフィン樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-αオレフィン共重合体、ホモ、ブロック、あるいはランダムポリプロピレン、プロピレン-αオレフィン共重合体等が挙げられる。
 ポリオレフィン樹脂をグラフト変性する際に用いる化合物としては、不飽和カルボン酸またはその酸無水物あるいはそのエステル(以下、これらをまとめて「不飽和カルボン酸等」ともいう。)が挙げられる。具体的には、アクリル酸、メタクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸等の不飽和カルボン酸;無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物等の不飽和カルボン酸の無水物;アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、マレイン酸ジメチル、マレイン酸モノメチル、フマール酸ジエチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロ無水フタル酸ジメチル、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸ジメチル等の不飽和カルボン酸のエステル等が挙げられる。
 前記変性ポリオレフィン樹脂は、ラジカル開始剤の存在下、加熱条件において、ベースとなるポリオレフィン樹脂100質量部に対して、不飽和カルボン酸等の0.2~100質量部を反応させることで製造できる。
 変性反応の反応温度は、50~250℃が好ましく、60~200℃がより好ましい。
反応時間は製造方法によっても異なるが、二軸押出機による溶融グラフト反応の場合、押出機の滞留時間内が、2分~30分であることが好ましく、5~10分であることがより好ましい。
 また、変性反応は、常圧下、加圧下のいずれの条件下においても実施できる。
 前記変性反応に使用されるラジカル開始剤としては、例えば、有機過酸化物が挙げられる。有機過酸化物としては、例えば、アルキルパーオキサイド、アリールパーオキサイド、アシルパーオキサイド、ケトンパーオキサイド、パーオキシケタール、パーオキシカーボネート、パーオキシエステル、ハイドロパーオキサイドが挙げられる。
 これらの有機過酸化物は、温度条件と反応時間に応じて、適宜選択できる。例えば、二軸押出機による溶融グラフト反応の場合は、アルキルパーオキサイド、パーオキシケタール、パーオキシエステルが好ましく、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシ-ヘキシン-3、ジクミルペルオキシドがより好ましい。
 前述のようなグラフト変性により得られる変性ポリオレフィン樹脂としては、無水マレイン酸により変性されたポリオレフィン樹脂が代表的であり、三井化学製アドマー、三菱化学製モディック、日本ポリエチレン製アドテックス等が挙げられる。これらの変性ポリオレフィン樹脂は、グラフト化させた不飽和カルボン酸またはその酸無水物あるいはそのエステルから導かれる不飽和カルボン酸誘導体成分と、各種金属あるいは各種官能基を含有するポリマーとの反応性を利用して接着性を付与するものである。また、このような反応による接着とは異なり、各種熱可塑性エラストマーを配合することで、前記変性ポリオレフィン樹脂をラミネートする際に発生する残留応力を開放し、粘弾性的な接着性の改善を付与することも可能である。
 前記熱可塑性エラストマーとしては、三井化学製タフマー、三菱化学製ゼラス、モンテル製キャタロイ、三井化学製ノティオや、住友化学製タフセレン、スチレン系エラストマー、特に水添スチレン系エラストマー(AKエラストマー製タフテック、クラレ製セプトン/ハイブラー、JSR製ダイナロン、住友化学製エスポレックス等、クレイトンポリマー製クレイトンG等)が好ましい。
 また、接着性樹脂により第2接着層15を形成する場合、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等の各種添加剤を配合してもよい。
(シーラント層16)
シーラント層16は、第2接着層15を介して、腐食防止処理層14を形成したアルミニウム箔層14と貼り合わせられ、外装材1においてヒートシールによる封止性を付与する層である。
 シーラント層16を構成する成分としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-αオレフィン共重合体、ホモ、ブロック、あるいはランダムポリプロピレン、プロピレン-αオレフィン共重合体等のポリオレフィン樹脂、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体またはそのエステル化物もしくはイオン架橋物等が挙げられる。
 シーラント層16は、前記成分の1種あるいは2種以上をブレンドした材料からなる単層であってもよく、シーラントに求められる他の要求性能に応じて多層構造としてもよい。多層構造のシーラント層16としては、例えば、エチレン-酢酸ビニル共重合体の部分あるいは完全ケン化物、ポリ酢酸ビニル共重合体の部分あるいは完全ケン化物等のガスバリア性を有する樹脂を介在させたシーラント層等が挙げられる。
(製造方法)
 以下、外装材1の製造方法について説明する。ただし、外装材1の製造方法は以下の方法には限定されない。
 外装材1の製造方法は、下記工程(I)~(III)を有する。
 (I)アルミニウム箔層13上に、腐食防止処理層14を形成する工程。
 (II)アルミニウム箔層13における腐食防止処理層14を形成した側と反対側に、第1接着層12を介して基材層11を貼り合わせる工程。
 (III)アルミニウム箔層13の腐食防止処理層14側に、第2接着層15を介してシーラント層16を貼り合わせる工程。
 工程(I):
 アルミニウム箔層13の一方の面に、脱脂処理、熱水変成処理、陽極酸化処理、化成処理、あるいは腐食防止性能を有するコーティング剤を塗工することにより、腐食防止処理層14を形成する。
 脱脂処理の方法としては、焼鈍、スプレー法、浸漬法等が挙げられる。
 熱水変成処理、陽極酸化処理の方法としては、浸漬法等が挙げられる。
 化成処理の方法としては、化成処理のタイプに応じて、浸漬法、スプレー法、コート法等を選択できる。
 腐食防止性能を有するコーティング剤のコート法としては、グラビアコート、リバースコート、ロールコート、バーコート等、各種方法を採用できる。
 コーティング剤の塗布量は、前述した腐食防止処理層14の単位面積当たりの質量を満たす範囲内が好ましい。また、乾燥キュアが必要な場合は、用いる腐食防止処理層14の乾燥条件に応じて、母材温度として60~300℃の範囲で実施できる。
 工程(II):
 アルミニウム箔層13における腐食防止処理層14を形成した側と反対側に、第1接着層12を形成する接着剤を用いて、ドライラミネーション、ノンソルベントラミネーション、ウエットラミネーション等の手法で基材層11を貼り合わせる。接着剤のドライ塗布量は、1~10g/mが好ましく、3~7g/mがより好ましい。
 工程(II)では、接着性の促進のため、室温~100℃の範囲でエージング(養生)処理を行ってもよい。
 工程(III):
 第2接着層を接着剤により形成する場合は、基材層11、第1接着層12、アルミニウム箔層13および腐食防止処理層14がこの順に積層された積層体の腐食防止処理層14側に、ドライラミネーション、ノンソルベントラミネーション、ウエットラミネーション等の手法でシーラント層を貼り合わせる。接着剤のドライ塗布量は、1~10g/mが好ましく、3~7g/mがより好ましい。この場合も工程(II)と同様に、接着性の促進のため、室温~100℃の範囲でエージング(養生)処理を行ってもよい。
 また、第2接着層を接着性樹脂により形成する場合は、押出ラミネート機を用いたサンドラミネーションにより、前記積層体の腐食防止処理層14側に、シーラント層16を接着性樹脂を介して貼り合わせる。この場合、基材層11、第1接着層12、アルミニウム箔層13、腐食防止処理層14、第2接着層15およびシーラント層16からなる積層体には、熱処理を施すことが好ましい。該熱処理により、アルミニウム箔層13/腐食防止処理層14/第2接着層15/シーラント層16間での密着性が向上し、電解液耐性および耐フッ酸性が向上する。
 熱処理方法としては、生産性およびハンドリングの点から、高温(例えば100℃以上)に設定した乾燥炉やベーキング炉を通過させる方法、熱ラミネーション法(熱圧着)、ヤンキードラム(熱ドラム)に抱かせる方法が好ましい。
 熱処理温度は、前記積層体の最高到達温度が、室温以上、シーラント層16の融点より20℃高い温度以下の範囲となるように設定することが好ましく、接着性樹脂の融点以上、シーラント層16の融点以下の範囲となるように設定することが好ましい。
 処理時間は、熱処理温度によっても異なり、熱処理温度が低いほど長時間、熱処理温度が高いほど短時間が好ましい。
 以上説明した工程(I)~(III)により、外装材1が得られる。
 なお、外装材1の製造方法は、前記工程(I)~(III)を順次実施する方法には限定されない。例えば、工程(II)を行ってから工程(I)を行ってもよい。また、アルミニウム箔層の両面に腐食防止処理層を設けてもよい。また、工程(III)を行った後に工程(II)を行ってもよい。
 以上説明した本発明の外装材は、クロメート処理を行わなくても充分な電解液耐性を有し、かつ優れた深絞り成形性を有している。
 外装材の深絞り成形性は、最外層である基材層の強度物性が大きく影響する。前記外装材(i)のように、基材層11として機械的性質の方向性が少ない延伸フィルムを使用することで、深絞り成形性は改善できるが、該延伸フィルムは製造方法がインフレーション法に限定される。これに対し、本発明の外装材は、MD方向あるいはTD方向の少なくとも一方において、JIS-K7127に準拠して測定される降伏点の伸度(α1)と破断点の伸度(α2)の差(α2-α1)が100%以上のフィルム基材(A)を基材層として使用することで、該フィルム基材(A)の機械的性質の均一性が低くても優れた深絞り成形性が得られる。そのため、本発明の外装材は、フィルム基材(A)がインフレーション法に限らずキャスト法によっても製造できることから、製造が容易である。
 また、本発明の外装材は、特に熱収縮率を大きくする必要もないので、電池の製造におけるベーキング工程等で熱が加わった際にカール等が生じることも抑制できる。
 なお、本発明の外装材は、前述した外装材1には限定されない。例えば、腐食防止処理層は、少なくともアルミニウム箔層のシーラント層側に設けられていればよく、アルミニウム箔層の両面に設けられていてもよい。
 以下、本発明のリチウムイオン電池用外装材の実施形態の一例である、本発明の実施態様2について詳細に説明する。なお詳細な説明が無い点に関しては、上記本発明の実施態様1と同様である。
 本実施形態の外装材1は、図1に示すように、基材層11の一方の面に、第1接着層12、基材層11と反対側に腐食防止処理層14を設けたアルミニウム箔層13、第2接着層15、シーラント層16が順次積層された積層体である。
(基材層11)
 基材層11は、下記フィルム基材(A)を有する層である。
 フィルム基材(A):JIS-K7127に準拠して測定される、破断点までの伸度x(単位:%)と、破断点における引張応力y(単位:MPa)とが、下式(1)および下式(2)で表される関係を満たす延伸ポリアミドフィルム基材。
 y≧-2x+460 ・・・(1)
 y≧200 ・・・(2)
 フィルム基材(A)は、前記式(1)、(2)を満たしていることで、破断点までの伸度xが低いフィルム基材であっても、破断点における引張応力yがその伸特性を補うので、優れた深絞り成形性が得られる。また、フィルム基材(A)は、前記式(1)、(2)を満たしていることで、破断点における引張応力yが小さいフィルム基材(ただし200MPa以上)であっても、破断点までの伸度xがその強度物性を補うので、優れた深絞り成形性が得られる。
 破断点における引張応力yは、前記式(2)に示すように、200MPa以上である。
破断点における引張応力yが200MPa以上であれば、深絞り成形時に加わる応力に充分に耐えることができ、クラック等の成形不良が生じることを抑制できる。破断点における引張応力yは、250MPa以上が好ましく、300MPa以上がより好ましい。
 破断点までの伸度xは、破断点における引張応力yによっても異なるが、80%以上が好ましく、100%以上がより好ましい。破断点までの伸度xが前記範囲の下限値以上であれば、成形性が向上する。
 フィルム基材(A)は、延伸ポリアミドフィルム基材である。つまり、ポリアミド樹脂により形成された基材を、延伸して得られるフィルム基材である。
 ポリアミド樹脂は、分子内にアミド結合(-CONH-)を有する熱可塑性高分子化合物である。ポリアミド樹脂としては、特に限定されず、配向結晶性を有するポリアミド樹脂が好ましい。
 ポリアミド樹脂としては、ポリε-カプラミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリアミノウンデカミド(ナイロン11)、ポリラウリルアミド(ナイロン12)、ポリメタキシリレンジアジパミド(MXD6)、およびそれらの共重合物等が挙げられる。なかでも、ポリアミド樹脂としては、ナイロン6、ナイロン66が特に好ましい。
 ポリアミド樹脂は、1種でもよく、2種以上であってもよい。
 また、フィルム基材(A)には、強度物性の改善のために、必要に応じて各種ゴム成分、相溶化剤等を配合してもよい。また、フィルム基材(A)の性能に悪影響を与えない範囲であれば、滑剤、帯電防止剤、ブロッキング防止剤、無機微粒子等の各種添加剤を添加してもよい。
 フィルム基材(A)は、例えば、以下に示す方法で製造される。
ポリアミド樹脂を、Tダイを備えた押出機による押出溶融製膜し、製膜した溶融樹脂を、エアーナイフキャスト法、静電印加キャスト法等の公知のキャスティング法により、回転する冷却ドラム上で急冷製膜して未延伸フィルム基材を得る。次いで、周速の異なる加熱ローラ群からなるローラ式縦延伸機によって、未延伸フィルム基材を予熱し、該未延伸フィルム基材のガラス転移点以上の温度に加熱された延伸ロールと、フィルム冷却のための冷却ロールとの間で、未延伸フィルム基材を縦延伸する。さらに、縦延伸したフィルム基材を引き続きテンターに導き、50~70℃で予熱した後、60~110℃で横延伸することでフィルム基材(A)を得る。
 また、必要に応じて、縦延伸倍率と横延伸倍率の比率を調節し、さらにテンター内において210~220℃で熱処理およびリラックス処理を施してもよい。
 前記未延伸フィルム基材の製造方法は、前記キャスティング法には限定されず、例えば、機械物性の方向性が少ないフィルム基材が得られやすいインフレーション法より製造してもよい。
 また、延伸は、一軸延伸でも二軸延伸でもよい。二軸延伸は、前述の逐次二軸以外には限定されず、同時二軸であってもよい。
 フィルム基材(A)の厚みは、耐ピンホール性、絶縁性が向上する点から、6μm以上が好ましく、10μm以上がより好ましい。また、フィルム基材(A)の厚みは、深絞り成形性が向上する点から、50μm以下が好ましく、25μm以下がより好ましい。
 以上説明した本発明の外装材は、クロメート処理を行わなくても充分な電解液耐性を有し、かつ優れた深絞り成形性を有している。
 外装材の深絞り成形性は、最外層である基材層の強度物性が大きく影響する。前記外装材(i)のように、基材層11として機械的性質の方向性が少ない延伸フィルムを使用することで、深絞り成形性は改善できるが、該延伸フィルムは製造方法がインフレーション法に限定される。これに対し、本発明の外装材は、JIS-K7127に準拠して測定される、前記破断点までの伸度xと破断点における引張応力yとが、前記式(1)、(2)を満たす延伸ポリアミドフィルム基材(フィルム基材(A))を基材層として使用することで、該フィルム基材(A)の機械的性質の均一性が低くても優れた深絞り成形性が得られる。そのため、本発明の外装材は、フィルム基材(A)がインフレーション法に限らずキャスト法によっても製造できることから、生産性に優れている。
 また、本発明の外装材は、特に熱収縮率を大きくする必要もないので、電池の製造におけるベーキング工程等で熱が加わった際にカール等が生じることも抑制できる。
 以下、本発明のリチウムイオン電池用外装材の実施形態の一例である、本発明の実施態様3について詳細に説明する。
 本実施形態のリチウムイオン電池用外装材10(以下、「外装材10」ともいう。)は、後述する基材層(SB)11の一方の面側に、後述する第1の接着層(AD-1)12、アルミニウム箔層(AL)13、腐食防止処理層(CL)14、第2の接着層(AD-2)15及びシーラント層(SL)16が順次積層されている。外装材10の最内層はシーラント層(SL)16である。
<基材層(SB)>
 基材層(SB)11は、リチウム電池の製造時のシール工程における耐熱性を付与し、加工や流通の際に起こりうるピンホールの発生を抑制する役割を果たす。基材層(SB)11は、表面自由エネルギーγに対する、表面自由エネルギーの分散成分γdの比率γd/γが80%以下の延伸ポリアミドフィルム(以下、「延伸NyフィルムA」ともいう。)を有する。基材層(SB)11が延伸NyフィルムAを有することで、優れた成型性が得られる。
 延伸NyフィルムAの表面自由エネルギーγと、表面自由エネルギーの分散力成分γdは、表面自由エネルギー及びその各成分(分散力、極性力、水素結合力)が既知の水、ヨウ化メチレン、α-ブロモナフタレンの3種の液体を用い、20℃、50%RHの条件下で、フィルム表面にて接触角を測定し、拡張Fowkes式とYoungの式より導入される下式(1)、及び下式(2)から算出される。
 (γd・γd)1/2+(γp・γp)1/2+(γh・γh)1/2=γ(1+cosθ)/2 ・・・(1)
 γ=γd+γp+γh ・・・(2)
 ただし、前記式中、γ、γd、γp、γh(単位:mN/m)は、測定液の表面自由エネルギー及びその分散力、極性力、水素結合力の各成分である。γ、γd、γp、γh(単位:mN/m)は、フィルムの測定面上における表面自由エネルギー及びその分散力、極性力、水素結合力の各成分である。またθは測定面上における測定液の接触角である。接触角θは同一の測定面の5箇所について測定を行い、その平均値とする。
 前記比率γd/γが80%以下であることで優れた成型性が得られる要因は必ずしも明らかではない。延伸されたフィルム基材は、延伸条件(延伸倍率、延伸温度、ヒートセット条件等。)によって強度物性が大きく異なるが、延伸条件によるポリマー分子鎖の分子配向状態や結晶化度の変化が前記比率γd/γに影響を与えているものと推測され、延伸フィルムの強度物性と比率γd/γに何らかの相関があると推測される。
 延伸NyフィルムAの表面自由エネルギーの分散成分γdは、成型性の点から、40mN/m以下が好ましい。
 また、延伸NyフィルムAの表面にα-ブロモナフタレンを滴下したときの接触角θは、成型性の点から、20°以上が好ましい。
 延伸NyフィルムAは、一軸延伸ポリアミドフィルムであってもよく、二軸延伸ポリアミドフィルムであってもよい。なかでも、成型性点から、二軸延伸ポリアミドフィルムが好ましい。
 延伸NyフィルムAを形成するポリアミド樹脂としては、特に限定されず、例えば、分子内にアミド結合(-CONH-)を有する熱可塑性高分子化合物が挙げられる。なかでも、配向結晶性を有するポリアミド樹脂が好ましい。ポリアミド樹脂の具体例としては、ポリε-カプラミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリアミノウンデカミド(ナイロン11)、ポリラウリルアミド(ナイロン12)、ポリメタキシリレンジアジパミド(MXD6)、及びそれらの共重合物等が挙げられる。なかでも、成型性の点から、ナイロン6、ナイロン66が好ましい。
 延伸NyフィルムAには、強度物性の改善する目的等、必要に応じて各種ゴム成分、相溶化剤等が配合してもよい。また、フィルムの性能に悪影響を与えない範囲で、滑剤、帯電防止剤、ブロッキング防止剤、無機微粒子等の各種添加剤を添加してもよい。
 基材層(SB)11は、延伸NyフィルムAのみからなる層であってもよく、延伸NyフィルムAと、他のフィルムの積層フィルムからなる層であってもよい。他のフィルムとしては、絶縁性を有する樹脂からなるフィルムが好ましく、例えば、ポリエステルフィルム、ポリプロピレンフィルム、延伸NyフィルムA以外のポリアミドフィルム等の延伸又は未延伸フィルムが挙げられる。なかでも、他のフィルムとしては、成型性、耐熱性、耐ピンホール性、絶縁性を向上させる点から、延伸ポリエステルフィルムが好ましい。
 他のフィルムが延伸フィルムである場合、一軸延伸フィルムであってもよく、二軸延伸フィルムであってもよい。
 基材層(SB)11の厚さは、6~40μmが好ましく、10~25μmがより好ましい。
 基材層(SB)11が延伸NyフィルムAと他のフィルムの積層フィルムである場合、延伸NyフィルムAの厚さは、成型性の点から、6μm以上が好ましい。また、この場合の延伸NyフィルムAの厚さは、同じく成型性の点から、40μm以下が好ましい。
<第1の接着層(AD-1)>
 第1の接着層(AD-1)12は、基材層(SB)11とアルミニウム箔層(AL)13を接着する層である。第1の接着層(AD-1)12を形成する接着剤としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、カーボネートポリオール等の主剤に対し、2官能以上のイソシアネート化合物を作用させたポリウレタン樹脂が挙げられる。
 ポリエステルポリオールは、二塩基酸の1種以上とジオールの1種以上を反応させることで得られる。
 二塩基酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、ブラシル酸等の脂肪族系二塩基酸;イソフタル酸、テレフタル酸、ナフタレンジカルボン酸等の芳香族系二塩基酸等が挙げられる。
 ジオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、メチルペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ドデカンジオール等の脂肪族系ジオール;シクロヘキサンジオール、水添キシリレングリコール等の脂環式系ジオール;キシリレングリコール等の芳香族系ジオール等が挙げられる。
 また、前記ポリエステルポリオールの両末端の水酸基に、2官能以上のイソシアネート化合物の1種以上を反応させて鎖伸長したポリエステルウレタンポリオールを用いてもよい。
 2官能以上のイソシアネート化合物としては、例えば、2,4-もしくは2,6-トリレンジイソシアネート、キシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、メチレンジイソシアネート、イソプロピレンジイソシアネート、リジンジイソシアネート、2,2,4-もしくは2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシル-4,4’-ジイソシアネート等が挙げられる。また、これらイソシアネート化合物のアダクト体、ビューレット体、イソシアヌレート体を用いて鎖伸長したポリエステルウレタンポリオールでもよい。
 ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール等や、それらを前記イソシアネート化合物を作用させて鎖伸長したポリエーテルウレタンポリオール等が挙げられる。
 アクリルポリオールとしては、例えば、ポリ(メタ)アクリル酸を主成分とする共重合体が挙げられる。(メタ)アクリル酸と共重合する成分としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の水酸基含有モノマー;アルキル(メタ)アクリレート系モノマー(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基が挙げられる。);(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等が挙げられる。)、N-アルコキシ(メタ)アクリルアミド、N,N-ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基等が挙げられる。)、N-メチロール(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド等のアミド基含有モノマー;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有モノマー;(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシラン等のシラン含有モノマー;(メタ)アクリロキシプロピルイソシアネート等のイソシアネート基含有モノマーが挙げられる。
 カーボネートポリオールは、カーボネート化合物とジオールとを反応させることで得られる。カーボネート化合物としては、例えば、ジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられる。ジオールとしては、前記ポリエステルポリオールで挙げたものと同じものが挙げられる。
 また、前記カーボネート化合物とジオールにより得られたカーボネートポリオールを、前記イソシアネート化合物により鎖伸長したポリカーボネートウレタンポリオールを用いてもよい。
 これらの各種ポリオールは、求められる機能や性能に応じて使用でき、1種を単独で使用してもよく、2種以上を併用してもよい。
 前記主剤に作用させる硬化剤としては、例えば、前記鎖伸長剤として挙げたイソシアネート化合物等が挙げられる。
 第1の接着層(AD-1)12には、接着促進のため、カルボジイミド化合物、オキサゾリン化合物、エポキシ化合物、リン化合物、シランカップリング剤等を配合してもよい。
 カルボジイミド化合物としては、例えば、N,N’-ジ-o-トルイルカルボジイミド、N,N’-ジフェニルカルボジイミド、N,N’-ジ-2,6-ジメチルフェニルカルボジイミド、N,N’-ビス(2,6-ジイソプロピルフェニル)カルボジイミド、N,N’-ジオクチルデシルカルボジイミド、N-トリイル-N’-シクロヘキシルカルボジイミド、N,N’-ジ-2,2-ジ-t-ブチルフェニルカルボジイミド、N-トリイル-N’-フェニルカルボジイミド、N,N’-ジ-p-ニトロフェニルカルボジイミド、N,N’-ジ-p-アミノフェニルカルボジイミド、N,N’-ジ-p-ヒドロキシフェニルカルボジイミド、N,N’-ジ-シクロヘキシルカルボジイミド、およびN,N’-ジ-p-トルイルカルボジイミド等が挙げられる。
 オキサゾリン化合物としては、例えば、2-オキサゾリン、2-メチル-2-オキサゾリン、2-フェニル-2-オキサゾリン、2,5-ジメチル-2-オキサゾリン、2,4-ジフェニル-2-オキサゾリン等のモノオキサゾリン化合物;2,2’-(1,3-フェニレン)-ビス(2-オキサゾリン)、2,2’-(1,2-エチレン)-ビス(2-オキサゾリン)、2,2’-(1,4-ブチレン)-ビス(2-オキサゾリン)、2,2’-(1,4-フェニレン)-ビス(2-オキサゾリン)等のジオキサゾリン化合物等が挙げられる。
 エポキシ化合物としては、例えば、1,6-ヘキサンジオール、ネオペンチルグリコール、ポリアルキレングリコール等の脂肪族ジオールのジグリシジルエーテル;ソルビトール、ソルビタン、ポリグリセロール、ペンタエリスリトール、ジグリセロール、グリセロール、トリメチロールプロパン等の脂肪族ポリオールのポリグリシジルエーテル;シクロヘキサンジメタノール等の脂環式ポリオールのポリグリシジルエーテル;テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、トリメリット酸、アジピン酸、セバシン酸等の脂肪族、芳香族の多価カルボン酸のジグリシジルエステルまたはポリグリシジルエステル;レゾルシノール、ビス-(p-ヒドロキシフェニル)メタン、2,2-ビス-(p-ヒドロキシフェニル)プロパン、トリス-(p-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(p-ヒドロキシフェニル)エタン等の多価フェノールのジグリシジルエーテルもしくはポリグリシジルエーテル;N,N’-ジグリシジルアニリン、N,N,N-ジグリシジルトルイジン、N,N,N’,N’-テトラグリシジル-ビス-(p-アミノフェニル)メタン等のアミンのN-グリシジル誘導体;アミノフェールのトリグリシジル誘導体;トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、トリグリシジルイソシアヌレート、オルソクレゾール型エポキシ、フェノールノボラック型エポキシ等が挙げられる。
 リン系化合物としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレンホスフォナイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシル)ホスファイト、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチル-フェニル)ブタン、トリス(ミックスドモノおよびジ-ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4’-イソプロピリデンビス(フェニル-ジアルキルホスファイト)等が挙げられる。
 シランカップリング剤としては、例えば、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン等が挙げられる。
 また、その他、接着剤に求められる性能に応じて、各種添加剤や安定剤を配合してもよい。
<アルミニウム箔層(AL)>
 アルミニウム箔層(AL)13としては、一般の軟質アルミニウム箔を用いることができ、さらに耐ピンホール性、および成型時の延展性を付与できる点から、鉄を含むアルミニウム箔を用いることが好ましい。
 アルミニウム箔(100質量%)中の鉄の含有量は、0.1~9.0質量%が好ましく、0.5~2.0質量%がより好ましい。鉄の含有量が0.1質量%以上であれば耐ピンホール性、延展性が向上する。鉄の含有量が9.0質量%以下であれば、柔軟性が向上する。
 アルミニウム箔層(AL)13の厚さは、バリア性、耐ピンホール性、加工性の点から、9~200μmが好ましく、15~100μmがより好ましい。
 アルミニウム箔層(AL)13は、耐電解液性の点から、脱脂処理を施したアルミニウム箔を用いることが好ましい。脱脂処理としては、大きく区分するとウェットタイプとドライタイプに分けられる。
 ウェットタイプの脱脂処理としては、例えば、酸脱脂、アルカリ脱脂等が挙げられる。
 酸脱脂に使用する酸としては、例えば、硫酸、硝酸、塩酸、フッ酸等の無機酸が挙げられる。これらの酸は、1種を単独で使用してもよく、2種以上を併用してもよい。また、これらの無機酸には、アルミニウム箔のエッチング効果が向上する点から、必要に応じてFeイオンやCeイオン等の供給源となる各種金属塩を配合してもよい。
 アルカリ脱脂に使用するアルカリとしては、例えば、エッチング効果が高いものとして水酸化ナトリウム等が挙げられる。また、弱アルカリ系や界面活性剤を配合したものが挙げられる。
 ウェットタイプの脱脂処理は、浸漬法やスプレー法で行われる。
 ドライタイプの脱脂処理としては、例えば、アルミニウムを焼鈍処理する工程で行う方法等が挙げられる。また、該脱脂処理のほかにも、フレーム処理やコロナ処理等が挙げられる。さらには、特定波長の紫外線を照射して発生する活性酸素により、汚染物質を酸化分解、除去する脱脂処理も挙げられる。
 アルミニウム箔層(AL)13の脱脂処理は、片面のみに行ってもよく、両面に行ってもよい。
<腐食防止処理層>
 腐食防止処理層(CL)14は、アルミニウム箔層(AL)13の電解液あるいはフッ酸による腐食を防止するために設けられる層である。腐食防止処理層(CL)14としては、例えば、脱脂処理、熱水変成処理、陽極酸化処理、化成処理、あるいはこれらの処理の組み合わせにより形成される。
 脱脂処理としては、酸脱脂又はアルカリ脱脂が挙げられる。酸脱脂としては、上述した硫酸、硝酸、塩酸、フッ酸等の無機酸を単独あるいは混合して用いる方法等が挙げられる。また、酸脱脂として、一ナトリウム二フッ化アンモニウム等のフッ素含有化合物を前記無機酸で溶解させた酸脱脂剤を用いるてもよい。これにより、アルミニウムの脱脂効果だけでなく不動態であるアルミニウムのフッ化物が形成され、耐フッ酸性がさらに向上する。アルカリ脱脂としては、水酸化ナトリウム等が挙げられる。
 熱水変成処理としては、例えば、トリエタノールアミンを添加した沸騰水中にアルミニウム箔を浸漬処理するベーマイト処理が挙げられる。
 陽極酸化処理としては、例えば、アルマイト処理が挙げられる。
 化成処理としては、例えば、クロメート処理、ジルコニウム処理、チタニウム処理、バナジウム処理、モリブデン処理、リン酸カルシウム処理、水酸化ストロンチウム処理、セリウム処理、ルテニウム処理、あるいはこれらの混合相からなる各種化成処理等が挙げられる。
 これらの熱水変成処理、陽極酸化処理、化成処理を施す際は、事前に前記脱脂処理を施すことが好ましい。
 また、前記処理のうち、特に熱水変性処理、陽極酸化処理は、処理剤によってアルミニウム箔表面を溶解させ、耐腐食性に優れるアルミニウム化合物(ベーマイト、アルマイト)を形成させる。そのため、アルミニウム箔層(AL)13から腐食防止処理層(CL)14まで共連続構造を形成した形態になるので、化成処理の定義に包含されるが、後述するように化成処理の定義に含まれない、純粋なコーティング手法のみで腐食防止処理層(CL)14を形成することも可能である。該方法としては、例えば、アルミニウムの腐蝕防止効果(インヒビター効果)を有し、かつ、環境側面的にも好適な材料として、平均粒径100nm以下の酸化セリウムのような希土類元素系酸化物のゾルを用いる方法が挙げられる。該方法を用いることで、一般的なコーティング方法でも、アルミニウム箔等の金属箔に腐蝕防止効果を付与することが可能となる。
 前記希土類元素系酸化物のゾルとしては、例えば、水系、アルコール系、炭化水素系、ケトン系、エステル系、エーテル系等の各種溶媒を用いたゾルが挙げられる。なかでも、水系のゾルが好ましい。
 前記希土類元素系酸化物のゾルには、通常その分散を安定化させるために、硝酸、塩酸、リン酸等の無機酸またはその塩、酢酸、りんご酸、アスコルビン酸、乳酸等の有機酸が分散安定化剤として用いられる。これらの分散安定化剤のうち、特にリン酸は、外装材10において、(1)ゾルの分散安定化、(2)リン酸のアルミキレート能力を利用したアルミニウム箔層13との密着性の向上、(3)フッ酸の影響で溶出したアルミニウムイオンを捕獲(不動態形成)することよる電解液耐性の付与、(4)低温でもリン酸の脱水縮合を起こしやすいことによる腐食防止処理層(CL)14(酸化物層)の凝集力の向上、等が期待される。
 前記リン酸またはその塩としては、オルトリン酸、ピロリン酸、メタリン酸、またはこれらのアルカリ金属塩やアンモニウム塩が挙げられる。なかでも、外装材10における機能発現には、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸、ウルトラメタリン酸等の縮合リン酸、またはこれらのアルカリ金属塩やアンモニウム塩が好ましい。また、前記希土類酸化物のゾルを用いて、各種コーティング法により希土類酸化物からなる腐食防止処理層(CL)14を形成させる時の乾燥造膜性(乾燥能力、熱量)を考慮すると、低温での脱水縮合性に優れる点から、ナトリウム塩がより好ましい。リン酸塩としては、水溶性の塩が好ましい。
 酸化セリウムに対するリン酸(あるいはその塩)の配合比は、酸化セリウム100質量部に対して、1~100質量部が好ましい。前記配合比が酸化セリウム100質量部に対して1質量部以上であれば、酸化セリウムゾルがより安定になり、外装材10の機能がより良好になる。前記配合比は、酸化セリウム100質量部に対して5質量部以上がより好ましい。また、前記配合比が酸化セリウム100質量部に対して100質量部以下であれば、酸化セリウムゾルの機能低下を抑制しやすい。前記配合比は、酸化セリウム100質量部に対して、50質量部以下がより好ましく、20質量部以下がさらに好ましい。
 前記希土類酸化物ゾルにより形成される腐食防止処理層(CL)14は、無機粒子の集合体であるため、乾燥キュアの工程を経ても層自身の凝集力が低くなるおそれがある。そこで、この場合の腐食防止処理層(CL)14は、凝集力を補うために、下記アニオン性ポリマー又はカチオン性ポリマーにより複合化されていることが好ましい。
 アニオン性ポリマーとしては、カルボキシ基を有するポリマーが挙げられ、例えば、ポリ(メタ)アクリル酸(あるいはその塩)、あるいはポリ(メタ)アクリル酸を主成分として共重合した共重合体が挙げられる。
 該共重合体の共重合成分としては、アルキル(メタ)アクリレート系モノマー(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等。);(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等。)、N-アルコキシ(メタ)アクリルアミド、N,N-ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基等。)、N-メチロール(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド等のアミド基含有モノマー;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の水酸基含有モノマー;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有モノマー;(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシラン等のシラン含有モノマー;(メタ)アクリロキシプロピルイソシアネート等のイソシアネート基含有モノマー等が挙げられる。
 これらアニオン性ポリマーは、希土類元素酸化物ゾルを用いて得られた腐食防止処理層(CL)14(酸化物層)の安定性を向上させる役割を果たす。これは、硬くて脆い酸化物層をアクリル系樹脂成分で保護する効果、および、希土類酸化物ゾルに含まれるリン酸塩由来のイオンコンタミ(特にナトリウムイオン)を捕捉する(カチオンキャッチャー)効果によって達成される。つまり、希土類元素酸化物ゾルを用いて得られた腐食防止処理層(CL)14中に、特にナトリウム等のアルカリ金属イオンやアルカリ土類金属イオンが含まれると、該イオンを含む場所を起点にして腐食防止処理層(CL)14が劣化しやすくなる。そのため、アニオン性ポリマーによって希土類酸化物ゾルに含まれるナトリウムイオン等を固定化することで、腐食防止処理層(CL)14の耐性が向上する。
 アニオン性ポリマーと希土類元素酸化物ゾルと組み合わせた腐食防止処理層(CL)14は、アルミニウム箔にクロメート処理を施して形成した腐食防止処理層(CL)14と同等の腐食防止性能を有する。アニオン性ポリマーは、本質的に水溶性であるポリアニオン性ポリマーが架橋された構造であることが好ましい。該構造の形成に用いる架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシ基、オキサゾリン基を有する化合物が挙げられる。
 イソシアネート基を有する化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネートあるいはその水素添加物、ヘキサメチレンジイソシアネート、4,4’ジフェニルメタンジイソシアネートあるいはその水素添加物、イソホロンジイソシアネート等のジイソシアネート類;あるいはこれらのイソシアネート類を、トリメチロールプロパン等の多価アルコールと反応させたアダクト体、水と反応させることで得られたビューレット体、あるいは三量体であるイソシアヌレート体等のポリイソシアネート類;あるいはこれらのポリイソシアネート類をアルコール類、ラクタム類、オキシム類等でブロック化したブロックポリイソシアネート等が挙げられる。
 グリシジル基を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等のグリコール類と、エピクロルヒドリンを作用させたエポキシ化合物;グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類と、エピクロルヒドリンを作用させたエポキシ化合物;フタル酸テレフタル酸、シュウ酸、アジピン酸等のジカルボン酸と、エピクロルヒドリンとを作用させたエポキシ化合物等が挙げられる。
 カルボキシ基を有する化合物としては、例えば、各種脂肪族あるいは芳香族ジカルボン酸等が挙げられる。また、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸のアルカリ(土類)金属塩を用いてもよい。
 オキサゾリン基を有する化合物としては、例えば、オキサゾリンユニットを2つ以上有する低分子化合物、あるいはイソプロペニルオキサゾリンのような重合性モノマーを用いる場合には、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキル等のアクリル系モノマーを共重合させたものが挙げられる。
 また、アニオン性ポリマーには、シランカップリング剤のように、アミンと官能基を選択的に反応させ、架橋点をシロキサン結合にさせてもよい。この場合、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-イソシアナートプロピルトリエトキシシラン等が使用できる。なかでも、特にアニオン性ポリマーあるいはその共重合物との反応性を考慮すると、エポキシシラン、アミノシラン、イソシアネートシランが好ましい。
 アニオン性ポリマーに対するこれらの架橋剤の比率は、アニオン性ポリマー100質量部に対して、1~50質量部が好ましく、10~20質量部がより好ましい。架橋剤の比率がアニオン性ポリマー100質量部に対して1質量部以上であれば、架橋構造が充分に形成されやすい。架橋剤の比率がアニオン性ポリマー100質量部に対して50質量部以下であれば、塗液のポットライフが向上する。
 アニオン性ポリマーを架橋する方法は、前記架橋剤に限らず、チタニウム、ジルコニウム化合物を用いてイオン架橋を形成する方法等であってもよい。
 カチオン性ポリマーとしては、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフトさせた1級アミングラフトアクリル樹脂、ポリアリルアミンあるいはこれらの誘導体、アミノフェノール等が挙げられる。
 ポリエチレンイミンとイオン高分子錯体を形成するカルボン酸を有するポリマーとしては、例えば、ポリアクリル酸あるいはそのイオン塩等のポリカルボン酸(塩)、あるいはこれにコモノマーを導入した共重合体、カルボキシメチルセルロースあるいはそのイオン塩等のカルボキシ基を有する多糖類等が挙げられる。ポリアリルアミンとしては、例えば、アリルアミン、アリルアミンアミド硫酸塩、ジアリルアミン、ジメチルアリルアミン等の単独重合体あるいは共重合体等が挙げられる。これらのアミンは、フリーのアミンであってもよく、酢酸あるいは塩酸による安定化物であってもよい。また、共重合体成分として、マレイン酸、二酸化硫黄等を使用してもよい。さらに、1級アミンを部分メトキシ化させることで熱架橋性を付与したタイプも使用でき、また、アミノフェノールも使用できる。特に、アリルアミンあるいはその誘導体が好ましい。
 カチオン性ポリマーは、電解液耐性、耐フッ酸性を付与することが可能な化合物である。この要因は、フッ素イオンをカチオン性基で補足する(アニオンキャッチャー)ことで、アルミニウム箔が損傷することを抑制しているためであると推測される。
 上述したカチオン性ポリマーは、接着性の向上という点でも非常に好ましい材料である。また、カチオン性ポリマーについても、上述したアニオン性ポリマーと同様に水溶性であることから、架橋構造を形成させることが好ましく、アニオン性ポリマーの項で挙げた各種官能基を有する架橋剤を用いることで、カチオン性ポリマーに耐水性を付与することが可能になる。このように、カチオン性ポリマーも架橋構造を形成するようにできるため、腐食防止処理層(CL)14として希土類酸化物ゾルを用いた場合、その保護層としてアニオン性ポリマーを用いる代わりに、カチオン性ポリマーを用いてもよい。
 前記コーティングタイプの腐食防止処理層(CL)14の形成に使用するコーティング剤における成分の組み合わせとしては、特に限定されず、例えば、下記(1)~(7)の組み合わせが挙げられる。
 (1)希土類酸化物ゾルのみ。
 (2)アニオン性ポリマーのみ。
 (3)カチオン性ポリマーのみ。
 (4)希土類酸化物とアニオン性ポリマーの積層複合化。
 (5)希土類酸化物とカチオン性ポリマーの積層複合化。
 (6)希土類酸化物とアニオン性ポリマーを積層複合化した上に、さらにカチオン性ポリマーで多層化。
 (7)希土類酸化物とカチオン性ポリマーを積層複合化した上に、さらにアニオン性ポリマーで多層化。
 後述する第2の接着層(AD-2)に接着性樹脂を用いる場合、接着性が向上する点から、前記(5)又は(6)の組み合わせが好ましい。
 また、腐食防止処理層(CL)14は、前述した層には限定されない。例えば、公知技術である塗布型クロメートのように、樹脂バインダー(アミノフェノール等)にリン酸とクロム化合物を配合した処理剤を用いて形成してもよい。該処理剤を用いれば、腐食防止機能と密着性の両方を兼ね備えた層とすることができる。また、前述した脱脂処理、熱水変成処理、陽極酸化処理、化成処理、またはこれらを組み合わせた処理において、密着性を向上させるために、前記カチオン性ポリマー、アニオン性ポリマーを使用して複合的な処理としてもよい。また、前記処理により形成した層に、さらに多層構造としてカチオン性ポリマー、アニオン性ポリマーによる層を積層させてもよい。また、塗液の安定性を考慮する必要があるものの、希土類酸化物ゾルとポリカチオン性ポリマーあるいはポリアニオン性ポリマーとを事前に一液化したコーティング剤を使用して腐食防止機能と密着性の両方を兼ね備えた層とすることができる。
 腐食防止処理層(CL)14の単位面積当たりの質量は、0.005~0.200mg/mが好ましく、0.010~0.100mg/mがより好ましい。前記単位面積当たりの質量が0.005mg/m以上であれば、アルミニウム箔層(AL)13に腐食防止機能を付与しやすい。また、前記単位面積当たりの質量が0.200mg/mを超えても、腐食防止機能はあまり変らない。一方、希土類酸化物ゾルを用いた場合には、塗膜が厚いと乾燥時の熱によるキュアが不充分となり、凝集力の低下を伴うおそれがある。なお、腐食防止処理層14の厚みについては、その比重から換算できる。
 クロメート処理に代表される化成処理による腐食防止処理層は、アルミニウム箔との傾斜構造を形成させるために、特にフッ酸、塩酸、硝酸、硫酸あるいはこれらの塩を配合した化成処理剤を用いてアルミニウム箔に処理を施し、次いでクロムやノンクロム系の化合物を作用させて化成処理層をアルミニウム箔に形成させるものである。しかし、前記化成処理は、化成処理剤に酸を用いていることから、作業環境の悪化やコーティング装置の腐食を伴う。一方、前述したコーティングタイプの腐食防止処理層(CL)14は、クロメート処理に代表される化成処理とは異なり、アルミニウム箔層(AL)13に対して傾斜構造を形成させる必要がない。そのため、コーティング剤の性状は、酸性、アルカリ性、中性等の制約を受けることがなく、良好な作業環境を実現できる。加えて、クロム化合物を用いるクロメート処理は、ヨーロッパにおけるRoHS規制やREACH規制において六価クロムが環境有害物質として取り扱われるようになる等、環境衛生面から代替案が求められており、特に環境への影響を配慮した電気自動車への適用を考慮すると、コーティングタイプの腐食防止処理層(CL)14が好ましい。
<第2の接着層(AD-2)>
 第2の接着層(AD-2)15は、腐食防止処理層(CL)14とシーラント層(SL)16を接着する層である。第2の接着層(AD-2)15は、接着性樹脂又は接着剤により形成される。つまり、熱ラミネート/熱処理構成の場合、第2の接着層(AD-2)15が接着性樹脂により形成され、ドライラミネート構成の場合、第2の接着層(AD-2)15が接着剤により形成される。
 接着性樹脂としては、ポリオレフィン樹脂を、不飽和カルボン酸、不飽和カルボン酸の酸無水物、および不飽和カルボン酸のエステルからなる群から選ばれる1種以上の不飽和カルボン酸誘導体成分でグラフト変性した変性ポリオレフィン樹脂(以下、「変性ポリオレフィン樹脂(A)」ともいう。)が挙げられる。変性ポリオレフィン樹脂(A)は、グラフト化させた不飽和カルボン酸誘導体成分と、各種金属あるいは各種官能基を含有するポリマーとの反応性を利用して接着性を付与させるものである。
 前記ポリオレフィン樹脂としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-αオレフィン共重合体、ホモ、ブロック、あるいはランダムポリプロピレン、プロピレン-αオレフィン共重合体等が挙げられる。
 不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸等が挙げられる。
 不飽和カルボン酸の無水物としては、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物等が挙げられる。
 不飽和カルボン酸のエステルとしては、例えば、アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、マレイン酸ジメチル、マレイン酸モノメチル、フマール酸ジエチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロ無水フタル酸ジメチル、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸ジメチル等が挙げられる。
 変性ポリオレフィン樹脂(A)は、ラジカル開始剤の存在下、ベースとなるポリオレフィン樹脂に前記不飽和カルボン酸誘導体成分をグラフト重合(グラフト変性)することで製造できる。
 前記不飽和カルボン酸誘導体成分の割合は、ベースとなるポリオレフィン樹脂100質量部に対して、0.2~100質量部が好ましい。
 反応温度は、50~250℃が好ましく、60~200℃がより好ましい。
 反応時間は、製造方法に応じて適宜設定されるが、例えば二軸押出機による溶融グラフト重合の場合、押出機の滞留時間内、具体的には2~30分が好ましく、5~10分がより好ましい。
 なお、グラフト変性は、常圧、加圧のいずれの条件下においても実施できる。
 グラフト変性に用いるラジカル開始剤としては、アルキルパーオキサイド、アリールパーオキサイド、アシルパーオキサイド、ケトンパーオキサイド、パーオキシケタール、パーオキシカーボネート、パーオキシエステル、ハイドロパーオキサイド等の有機過酸化物が挙げられる。
 これらの有機過酸化物は、上述した反応温度や反応時間の条件によって適宜選択して用いることができる。例えば、二軸押出機による溶融グラフト重合の場合、アルキルパーオキサイド、パーオキシケタール、パーオキシエステルが好ましく、具体的にはジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシ-ヘキシン-3、ジクミルペルオキシドが好ましい。
 変性ポリオレフィン樹脂(A)としては、無水マレイン酸により変性された変性ポリオレフィン樹脂が好ましい。例えば三井化学社製「アドマー」、三菱化学社製「モディック」、日本ポリエチレン社製「アドテックス」等が適している。
 接着性樹脂層(AR)16に含まれる変性ポリオレフィン樹脂(A)は、1種でもよく、2種以上でもよい。
 また、変性ポリオレフィン樹脂(A)に、各種熱可塑性エラストマーを配合することで、ラミネートする際に発生する残留応力を開放し、第2の接着層(AD-2)15の粘弾性的な接着性を向上させることができる。
 前記熱可塑性エラストマーとしては、三井化学社製「タフマー」、三菱化学社製「ゼラス」、モンテル社製「キャタロイ」、三井化学社製「ノティオ」や住友化学製タフセレン、スチレン系エラストマー、特に水添スチレン系エラストマー(AKエラストマー社製「タフテック」、クラレ社製「セプトン」/「ハイブラー」、JSR社製「ダイナロン」、住友化学社製「エスポレックス」、クレイトンポリマー社製「クレイトンG」等。)が好ましい。
 また、変性ポリオレフィン樹脂(A)により形成する第2の接着層(AD-2)15には、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等の各種添加剤を配合してもよい。
 ドライラミネート構成の第2の接着層(AD-2)15に用いる接着剤としては、例えば、第1の接着層(AD-1)12で挙げたものが挙げられる。特に、電解液による膨潤やフッ酸による加水分解の抑制が容易な点から、加水分解し難い骨格を有する主剤を用いる、架橋密度を向上させる、等の組成設計を行うことが好ましい。
 接着剤の架橋密度を向上させる方法の一例としては、例えば、ダイマー脂肪酸もしくはそのエステル、ダイマー脂肪酸もしくはそのエステルの水素添加物、ダイマー脂肪酸もしくはそのエステルの還元グリコール、又はダイマー脂肪酸もしくはそのエステルの水素添加物の還元グリコールと、ジオール化合物によりポリエステルポリオールを得る方法が挙げられる。該方法によれば、ダイマー脂肪酸の嵩高い疎水性ユニットにより架橋密度が向上する。
 ダイマー脂肪酸とは、各種不飽和脂肪酸を二量体化させたものであり、その構造としては非環型、単環型、多環型、芳香環型が挙げられる。第2の接着層(AD-2)15に使用するポリエステルポリオールにおける原料のダイマー脂肪酸の二量化構造は特に限定されない。また、ダイマー脂肪酸の出発物質として使用する不飽和脂肪酸の種類も特に限定されない。
 不飽和脂肪酸としては、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸等のモノ不飽和脂肪酸;リノール酸、エイコサジエン酸、ドコサジエン酸等のジ不飽和脂肪酸;リノレン酸、ビノレン酸、エレオステアリン酸、ミード酸、ジホモ-γ-リノレン酸、エイコサトリエン酸等のトリ不飽和脂肪酸;ステアリドン酸、アラキドン酸、エイコサテトラエン酸、アドレン酸等のテトラ不飽和脂肪酸;ボセオペンタエン酸、エイコサベンタエン酸、オズボンド酸、イワシ酸、テトラコサベンタエン酸等のペンタ不飽和脂肪酸;ドコサヘキサエン酸、ニシン酸等のヘキサ不飽和脂肪酸等が挙げられる。
 ダイマー脂肪酸における二量体化する不飽和脂肪酸の組み合わせは、特に限定されず、同一の不飽和脂肪酸であってもよく、異なる不飽和脂肪酸であってもよい。
 ジオール化合物としては、第1の接着層(AD-1)12のポリエステルポリオールの説明で挙げたジオール化合物が使用できる。
 また、前記ダイマー脂肪酸により架橋密度を向上させる場合には、ポリエステルポリオールの製造に通常使用される二塩基酸を導入してもよい。二塩基酸は、第1の接着層(AD-1)12のポリエステルポリオールの説明で挙げた二塩基酸が使用できる。
 また、第2の接着層(AD-2)15の接着剤としては、前記方法で架橋密度を向上させたポリエステルポリオールの両末端の水酸基を、ポリイソシアネート化合物により鎖伸長したポリエステルウレタンポリオールも好ましい。ポリイソシアネート化合物は、第1の接着層(AD-1)12のポリエステルウレタンポリオールの説明で挙げたポリイソシアネート化合物が使用でき、クルードトリレンジイソシアネート、クルードジフェニルメタンジイソシアネート、及びポリメリックジフェニルメタンジイソシアネートからなる群から選ばれる1種以上が好ましい。
 第2の接着層(AD-2)15を形成する接着剤に使用する硬化剤としては、第1の接着層(AD-1)12の説明で挙げたポリイソシアネート化合物が使用でき、電解液耐性(特に電解液に対する溶解性、膨潤性)が向上する点から、クルードトリレンジイソシアネート、クルードジフェニルメタンジイソシアネート、およびポリメリックフェニルメタンジイソシアネートからなる群から選ばれる1種以上のポリイソシアネート(以下、「ポリイソシアネート(B)」ともいう。)、またはポリイソシアネート(B)のアダクト体が好ましい。これにより、第2の接着層(AD-2)15は、架橋密度が向上し、電解液に対する溶解性、膨潤性が低くなると共に、ウレタン基濃度が向上して密着性が向上する。
 また、主剤として、ポリエステルポリオールを鎖伸長したポリエステルウレタンポリオールを用いる場合、鎖伸長剤としてポリイソシアネート(B)を用いることが好ましい。
 第2の接着層(AD-2)15を形成する接着剤における硬化剤の割合は、主剤100質量部に対して、1~100質量部が好ましく、5~50質量部がより好ましい。前記硬化剤の割合が前記範囲の下限値以上であれば、密着性、電解液耐性が向上する。前記硬化剤の割合が前記範囲の上限値以下であれば、100質量部以下であれば、未反応の硬化剤のイソシアネート基が第2の接着層(AD-2)15の硬さ等に悪影響を及ぼすことを抑制しやすい。
 また、第2の接着層(AD-2)15を接着剤により形成する場合は、第1の接着層(AD-1)12と同様に、接着性の促進のため、カルボジイミド化合物、オキサゾリン化合物、エポキシ化合物、リン化合物、シランカップリング剤等を配合してもよい。
<シーラント層(SL)16>
 シーラント層(SL)16は、第2の接着層(AD-2)15を介して、腐食防止処理層(CL)14を形成したアルミニウム箔層(AL)13と貼り合わせられ、外装材10においてヒートシールによる封止性を付与する層である。
 シーラント層(SL)16を構成する成分としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-αオレフィン共重合体、ホモ、ブロック、あるいはランダムポリプロピレン、プロピレン-αオレフィン共重合体等のポリオレフィン樹脂、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体またはそのエステル化物もしくはイオン架橋物等が挙げられる。
 シーラント層(SL)16は、前記成分の1種あるいは2種以上をブレンドした材料からなる単層であってもよく、シーラントに求められる他の要求性能に応じて多層構造としてもよい。多層構造のシーラント層(SL)16としては、例えば、エチレン-酢酸ビニル共重合体の部分あるいは完全ケン化物、ポリ酢酸ビニル共重合体の部分あるいは完全ケン化物等のガスバリア性を有する樹脂を介在させたシーラント層等が挙げられる。
<スリップ剤>
 外装材10の成型性には、深絞り成型を行う金型との滑り性も影響する。そのため、外装材10の摩擦係数を小さくするため、基材層(SB)11とシーラント層(SL)16のいずれか一方、又は両方にスリップ剤を付与することが好ましい。スリップ剤としては、例えば、シリコーン、高分子ワックス、脂肪酸アミド(エルカ酸アミド等の不飽和脂肪酸アミド等。)等が挙げられる。
 スリップ剤を付与する方法としては、例えば、ウエットコートにより塗布する方法、シーラント層(SL)16にスリップ剤を含有させ、ブリードアウト現象により析出させる方法等が挙げられる。
(製造方法)
 以下、外装材10の製造方法について説明する。ただし、外装材10の製造方法は以下の方法には限定されない。
 外装材10の製造方法としては、例えば、下記工程(I)~(III)を有する方法が挙げられる。
 (I)アルミニウム箔層(AL)13上に、腐食防止処理層(CL)14を形成する工程。
 (II)アルミニウム箔層(AL)13における腐食防止処理層(CL)14を形成した側と反対側に、第1の接着層(AD-1)12を介して基材層(SB)11を貼り合わせる工程。
 (III)アルミニウム箔層(AL)13の腐食防止処理層(CL)14側に、第2の接着層(AD-2)15を介してシーラント層(CL)16を貼り合わせる工程。
 工程(I):
 アルミニウム箔層(AL)13の一方の面に、脱脂処理、熱水変成処理、陽極酸化処理、化成処理、あるいは腐食防止性能を有するコーティング剤を塗工することにより、腐食防止処理層(CL)14を形成する。
 脱脂処理の方法としては、焼鈍、スプレー法、浸漬法等が挙げられる。
 熱水変成処理、陽極酸化処理の方法としては、浸漬法等が挙げられる。
 化成処理の方法としては、化成処理のタイプに応じて、浸漬法、スプレー法、コート法等を選択できる。
 腐食防止性能を有するコーティング剤のコート法としては、グラビアコート、リバースコート、ロールコート、バーコート等、各種方法を採用できる。
 コーティング剤の塗布量は、前述した腐食防止処理層(CL)14の単位面積当たりの質量を満たす範囲内が好ましい。また、乾燥キュアが必要な場合は、用いる腐食防止処理層(CL)14の乾燥条件に応じて、母材温度として60~300℃の範囲で実施できる。
 工程(II):
 アルミニウム箔層(AL)13における腐食防止処理層(CL)14を形成した側と反対側に、第1の接着層(AD-1)12を形成する接着剤を用いて、ドライラミネーション、ノンソルベントラミネーション、ウエットラミネーション等の手法で基材層(SB)11を貼り合わせる。接着剤のドライ塗布量は、1~10g/mが好ましく、3~7g/mがより好ましい。
 工程(II)では、接着性の促進のため、室温~100℃の範囲でエージング(養生)処理を行ってもよい。
 工程(III):
 第2の接着層(AD-2)15を接着剤により形成する場合は、基材層(SB)11、第1の接着層(AD-1)12、アルミニウム箔層(AL)13および腐食防止処理層(CL)14がこの順に積層された積層体の腐食防止処理層(CL)14側に、ドライラミネーション、ノンソルベントラミネーション、ウエットラミネーション等の手法でシーラント層を貼り合わせる。接着剤のドライ塗布量は、1~10g/mが好ましく、3~7g/mがより好ましい。この場合も工程(II)と同様に、接着性の促進のため、室温~100℃の範囲でエージング(養生)処理を行ってもよい。
 また、第2の接着層(AD-2)15を接着性樹脂により形成する場合は、押出ラミネート機を用いたサンドラミネーションにより、前記積層体の腐食防止処理層(CL)14側に、シーラント層(SL)16を接着性樹脂を介して貼り合わせる。この場合、基材層(SB)11、第1の接着層(AD-2)12、アルミニウム箔層(AL)13、腐食防止処理層(CL)14、第2の接着層(AD-2)15およびシーラント層(SL)16からなる積層体には、熱処理を施すことが好ましい。該熱処理により、アルミニウム箔層(AL)13/腐食防止処理層(CL)14/第2の接着層(AD-2)15/シーラント層(SL)16間での密着性が向上し、電解液耐性および耐フッ酸性が向上する。
 熱処理方法としては、生産性およびハンドリングの点から、高温(例えば100℃以上)に設定した乾燥炉やベーキング炉を通過させる方法、熱ラミネーション法(熱圧着)、ヤンキードラム(熱ドラム)に抱かせる方法が好ましい。
 熱処理温度は、前記積層体の最高到達温度が、室温以上、シーラント層16の融点より20℃高い温度以下の範囲となるように設定することが好ましく、接着性樹脂の融点以上、シーラント層16の融点以下の範囲となるように設定することが好ましい。
 処理時間は、熱処理温度によっても異なり、熱処理温度が低いほど長時間、高いほど短時間が好ましい。
 以上説明した工程(I)~(III)により、外装材10が得られる。
 なお、外装材10の製造方法は、前記工程(I)~(III)を順次実施する方法には限定されない。例えば、工程(II)を行ってから工程(I)を行ってもよい。また、アルミニウム箔層の両面に腐食防止処理層を設けてもよい。腐食防止処理層を片面に形成する場合、第2の接着層(AD-2)側に形成する。また、工程(III)を行った後に工程(II)を行ってもよい。
 以上説明した本発明のリチウムイオン電池用外装材は、基材層が前記延伸フィルムAを有しているため、優れた成型性を有している。
 なお、本発明の外装材は、前述した外装材10には限定されない。例えば、腐食防止処理層は、少なくともアルミニウム箔層のシーラント層側に設けられていればよく、アルミニウム箔層の両面に設けられていてもよい。
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[実施例1~9および比較例1~3][使用材料]
 本実施例で使用した材料は下記のとおりである。
(基材層11)
 基材としては、キャスト法により製膜された下記フィルム基材を使用した。
 基材SB-1:2軸延伸ポリアミドフィルム(ユニチカ製ON、厚み25μm)。
 基材SB-2:2軸延伸ポリアミドフィルム(ユニチカ製ON-U、厚み25μm)。
 基材SB-3:2軸延伸ポリアミドフィルム(ユニチカ製ON-P、厚み25μm)。
 基材SB-4:2軸延伸ポリアミドフィルム(ユニチカ製ON、厚み15μm)。
 基材SB-5:軸延伸ポリアミドフィルム(ユニチカ製ON-U、厚み15μm)。
 基材SB-6:2軸延伸ポリアミドフィルム(ユニチカ製ON-P、厚み15μm)。
 基材SB-7:2軸延伸ポリエステルフィルム(ユニチカ製PET、厚み12μm)。
 基材SB-8:2軸延伸ポリアミドフィルム(三菱樹脂製SNR、厚み25μm)。
 基材SB-9:2軸延伸ポリアミドフィルム(三菱樹脂製SNR、厚み15μm)。
 基材SB-1~SB-3、SB-8のJIS-K 7127に準拠して測定した引張歪特性(MD方向/TD方向のみ)を表1に示す。
 基材SB-1は、MD方向およびTD方向共にバランスが良い材料であるが、45°、135°における伸びの方向性(異方性)が大きい材料である。基材SB-2および基材SB-3は、伸びについては各方向における最大値に対する最小値の比率でみると56~60%、強度についても各方向における最大値に対する最小値の比率でみると70%であり、MD方向とTD方向において機械強度の方向性が大きい材料である。基材SB-4~SB-6、SB-9は、厚みが異なる以外、引張物性は基材SB-1~SB-3、SB-8と同じである。
 基材SB-2、SB-3、SB-5、SB-6、SB-8、SB-9がフィルム基材(A)である。
Figure JPOXMLDOC01-appb-T000001
(第1接着層12)
 接着剤AD-1:ポリエステルポリオール系主剤に対して、トリレンジイソシアネートのアダクト体系硬化剤を配合したポリウレタン系接着剤(東洋インキ製)。
(アルミニウム箔層13)
 アルミニウム箔AL-1:焼鈍脱脂処理した厚み40μmの軟質アルミニウム箔8079材(東洋アルミニウム製)。
(腐食防止処理層14)
 処理剤CL-1:溶媒として蒸留水を使用し、固形分濃度10質量%に調整した「ポリリン酸ナトリウム安定化酸化セリウムゾル」。酸化セリウム100質量部に対して、リン酸塩は10質量部とした。
 処理剤CL-2:溶媒として蒸留水を使用し、固形分濃度5質量%に調整した、「ポリアクリル酸アンモニウム塩(東亞合成製)」90質量%と、「アクリル-イソプロペニルオキサゾリン共重合体(日本触媒製)」10質量%からなる組成物。
 処理剤CL-3:溶媒として蒸留水を使用し、固形分濃度5質量%に調整した、「ポリアリルアミン(日東紡製)」90質量%と「ポリグリセロールポリグリシジルエーテル(ナガセケムテックス製)」10質量%からなる組成物。
 処理剤CL-4:溶媒として1%濃度のリン酸水溶液を使用し、固形分濃度1質量%に調整した水溶フェノール樹脂(住友ベークライト製)に対し、フッ化クロム(CrF)を加えて、最終乾燥皮膜中に存在するCr量として10mg/mとなるように濃度を調整した化成処理剤。
(第2接着層15)
 接着剤AD-2:水添ダイマー脂肪酸とジオールからなるポリエステルポリオールからなる主剤(商品名「SS-051」、三井化学製)と、クルードトリレンジイソシアネート、クルード(あるいはポリメリック)ジフェニルメタンジイソシアネートの混合物、あるいはこれらのアダクト体からなる硬化剤(商品名「SK-01」、三井化学製)を含有する接着剤。
 接着性樹脂AD-3:ランダムポリプロピレン(PP)(Tm=約135℃)に対して無水マレイン酸をグラフト変性させた変性PPに対し、エチレン-αオレフィン共重合体からなるエラストマーを配合した変性ポリオレフィン樹脂(三井化学製)。
(シーラント層16)
 フィルムSL-1:総厚みが30μmのランダムPP/ブロックPP/ランダムPPからなる2種3層からなる多層フィルム(オカモト製)。
[外装材の製造方法]
 工程(I):
 アルミニウム箔AL-1の電解液が充填される側に、腐食防止処理層14をマイクログラビアコートにより設けた。コーティング量は処理剤(コーティング剤)のドライ塗布量として70~100mg/mとなるようにし、乾燥ユニットにおいて処理剤のタイプに応じて150~250℃で焼き付け処理を施した。形成する腐食防止処理層14が単層の場合も多層の場合も、最終的なドライ塗布量を70~100mg/mとし、焼付け温度条件も150~250℃の範囲とした。
 工程(II):
 腐食防止処理層14を設けたアルミニウム箔層13における腐食防止処理層14の反対側に、接着剤AD-1をグラビアリバースコートによりドライ塗布量として4~5g/mとなるように塗布して、表2に示す各種基材を積層してラミネートを行った。その後、エージング処理を施すことで、接着剤AD-1を硬化させ、第1接着層12を介して基材層11を貼り合わせた。
 工程(III):
 ドライラミネート構成の外装材1は、工程(II)で得た積層体における腐食防止処理層14側に、接着剤AD-2を、グラビアリバースコートによりドライ塗布量として4~5g/mとなるように塗布し、フィルムSL-1を積層してラミネートを行い、さらにエージング処理を施すことで接着剤AD-2を硬化させることで、第2接着15を介してシーラント層16を貼り合わせて製造した。
 熱ラミネート構成の外装材1は、押出ラミネート機を使用して、工程(II)で得た積層体の腐食防止処理層14上に、接着性樹脂AD-3を260℃~300℃の範囲で押出ラミネートし、フィルムSL-1と共にサンドイッチラミネートを行うことで、第2接着層15を介してシーラント層16を貼り合せ、その後、熱ラミネーション法により、得られた積層体の温度がシーラント層16の融点近傍になるように熱圧着を施し、腐食防止処理層14と第2接着層15を強固に密着させることで製造した。
[評価方法]
(深絞り成形性評価)
 得られた外装材について、図2に例示した金型101により絞り成形を行い、成形性を評価した。金型101は、雌型110、雄型120およびエアシリンダー130を有し、雄型120のダイ121の寸法は縦d=60mm、横d=40mmとした。
 エアシリンダー130による型閉め圧は0.5~0.8MPaとし、ストローク速度は5mm/秒とした。絞り深さは、4.75mm、5.00mm、5.25mm、5.50mm、5.75mm、6.00mmとし、各絞り深さで連続して100回の成形を行った。評価は、外装材にピンホールやクラックが生じていない良品数が95~100個のものを「A」、90~94個のものを「B」、それ以下のものを「C」として、絞り深さ5.50mm以下の成形結果が「B」以上のものを「○(良好)」、絞り深さ5.50mm以下の成形で結果が「C」となるときがあるものを「不良(×)」とした。
(電解液耐性評価)
 各例で得られた外装材から縦100mm×横15mmの短冊状に切り出した試験片を、エチレンカーボネート/ジメチルカーボネート/ジエチルカーボネート=1/1/1(質量比)に対し、LiPF(六フッ化リン酸リチウム)を1.5Mになるように調整して溶解した電解液にどぶ付け浸漬し、85℃で24時間(評価A)、または4週間(評価B)保管した時の外観を評価した。評価は、外観が問題ない場合を「○(良好)」とし、浮きが発生しているものを「×(不良)」とした。
[実施例1~9および比較例1~3]
 前記製造方法により、表2に示す構成の外装材を製造し、成形性および電解液耐性を評価した。
Figure JPOXMLDOC01-appb-T000002
 なお、表2において、腐食防止処理層14の「CL-1/CL-2」とは、まず処理剤CL-1でアルミニウム箔AL-1を処理した後に、処理剤CL-2で処理したことを意味する。他の例の腐食防止処理層14の記載も同様の意味を示す。また、基材層11における「SB-7/SB-4」とは、基材SB-7と基材SB-4とを、接着剤AD-1と同じ接着剤により積層した基材を意味し、基材SB-4側が第1接着層12側であることを意味する。他の例の基材層11の記載も同様の意味を示す。
 実施例5~7、実施例9、比較例3では、腐食防止処理層14と、接着性樹脂による第2接着層15に接着性を付与させるために、処理剤CL-3による処理を行った。
 各例の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、単層フィルムからなる基材層11を有する本発明の実施例1、2および8の外装材は、基材層11以外は同じ構成の比較例1の外装材と比較して、0.50~0.75mm深い絞り深さで良好な絞り成形が可能であった。また、深絞り成形性に劣るポリエステルフィルムを有する積層フィルムからなる基材層11を有する本発明の実施例3~7、9についても、基材層11以外は同じ構成の比較例2、3の外装材と比較して、0.50~0.75mm深い絞り深さで良好な絞り成形が可能であった。特に優れた長期信頼性が求められるハイブリッド車や電気自動車用途においては、深絞り成形性には劣るが、耐酸性・耐電解液性、耐スクラッチ性に優れるポリエステルフィルムをポリアミドフィルム(フィルム基材(A))の外層に設ける多層フィルム構成が求められる場合がある。前記結果から、この多層フィルム構成においても、優れた深絞り成形性が得られることがわかった。
 また、実施例1~6、8、9のドライラミネート構成および熱ラミネート構成の外装材はいずれも、電解液耐性評価において、クロメート処理を行った実施例7と同等の優れた長期信頼性を有していた。
[実施例10~19および比較例4~9]
[使用材料]
 本実施例で使用した材料は下記のとおりである。
(基材層11)
 基材としては、キャスト法により製膜された下記フィルム基材を使用した。
 基材SB-1:2軸延伸ポリアミドフィルム(ON、ユニチカ製、厚み25μm)。
 基材SB-2:2軸延伸ポリアミドフィルム(NAP、東洋紡績製、厚み25μm)。
 基材SB-3:2軸延伸ポリアミドフィルム(RX、興人製、厚み25μm)。
 基材SB-4:2軸延伸ポリアミドフィルム(N1152、東洋紡績製、厚み25μm)。
 基材SB-5:2軸延伸ポリアミドフィルム(G100、出光石油化学製、厚み25μm)。
 基材SB-6:2軸延伸ポリアミドフィルム(SNR、三菱樹脂製、厚み25μm)。
 基材SB-7:2軸延伸ポリアミドフィルム(ON-U、ユニチカ製、厚み25μm)。
 基材SB-8:2軸延伸ポリアミドフィルム(ON-P、ユニチカ製、厚み25μm)。
 基材SB-9:キャストポリアミドフィルム(ダイアミロンC、三菱樹脂製、厚み25μm)。
 基材SB-10:2軸延伸ポリアミドフィルム(ON、ユニチカ製、厚み15μm)。
 基材SB-11:2軸延伸ポリアミドフィルム(RX、興人製、厚み15μm)。
 基材SB-12:2軸延伸ポリアミドフィルム(ON-P、ユニチカ製、厚み15μm)。
 基材SB-13:2軸延伸ポリエステルフィルム(PET、ユニチカ製、厚み12μm)。
 前記基材SB-1~SB-9のMD方向およびTD方向それぞれについて、JIS-K7127に準拠して測定した引張物性(破断点における引張応力y、破断点までの伸度x)を表4に示す。基材SB-10~SB-12の引張物性は、基材SB-1、SB-3、SB-8の引張物性と同じである。
Figure JPOXMLDOC01-appb-T000004
 なお、表4における方向性は、破断点における引張応力y、および破断点までの伸度yの両方について、MD方向とTD方向のそれぞれの値のうち、大きい方の値に対する小さい方の値の割合を示しており、100に近いほど方向性が小さことを意味している。
 基材SB-3、SB-5~SB-8、SB-11、SB-12がフィルム基材(A)である。
(第1接着層12)
 接着剤AD-1:ポリエステルポリオール系主剤に対して、トリレンジイソシアネートのアダクト体系硬化剤を配合したポリウレタン系接着剤(東洋インキ製)。
(アルミニウム箔層13)
 アルミニウム箔AL-1:焼鈍脱脂処理した厚み40μmの軟質アルミニウム箔8079材(東洋アルミニウム製)。
(腐食防止処理層14)
 処理剤CL-1:溶媒として蒸留水を使用し、固形分濃度10質量%に調整した「ポリリン酸ナトリウム安定化酸化セリウムゾル」。酸化セリウム100質量部に対して、リン酸塩は10質量部とした。
 処理剤CL-2:溶媒として蒸留水を使用し、固形分濃度5質量%に調整した、「ポリアクリル酸アンモニウム塩(東亞合成製)」90質量%と、「アクリル-イソプロペニルオキサゾリン共重合体(日本触媒製)」10質量%からなる組成物。
 処理剤CL-3:溶媒として蒸留水を使用し、固形分濃度5質量%に調整した、「ポリアリルアミン(日東紡製)」90質量%と「ポリグリセロールポリグリシジルエーテル(ナガセケムテックス製)」10質量%からなる組成物。
 処理剤CL-4:溶媒として1%濃度のリン酸水溶液を使用し、固形分濃度1質量%に調整した水溶フェノール樹脂(住友ベークライト製)に対し、フッ化クロム(CrF)を加えて、最終乾燥皮膜中に存在するCr量として10mg/mとなるように濃度を調整した化成処理剤。
(第2接着層15)
 接着剤AD-2:水添ダイマー脂肪酸とジオールからなるポリエステルポリオールからなる主剤(商品名「SS-051」、三井化学製)と、クルードトリレンジイソシアネート、クルード(あるいはポリメリック)ジフェニルメタンジイソシアネートの混合物、あるいはこれらのアダクト体からなる硬化剤(商品名「SK-01」、三井化学製)を含有する接着剤。
 接着性樹脂AD-3:ランダムポリプロピレン(PP)(Tm=約135℃)に対して無水マレイン酸をグラフト変性させた変性PPに対し、エチレン-αオレフィン共重合体からなるエラストマーを配合した変性ポリオレフィン樹脂(三井化学製)。
(シーラント層16)
 フィルムSL-1:総厚みが30μmのランダムPP/ブロックPP/ランダムPPからなる2種3層からなる多層フィルム(オカモト製)。
[外装材の製造方法]
 工程(I):
 アルミニウム箔AL-1の電解液が充填される側に、腐食防止処理層14をマイクログラビアコートにより設けた。コーティング量は処理剤(コーティング剤)のドライ塗布量として70~100mg/mとなるようにし、乾燥ユニットにおいて処理剤のタイプに応じて150~250℃で焼き付け処理を施した。形成する腐食防止処理層14が単層の場合も多層の場合も、最終的なドライ塗布量を70~100mg/mとし、焼付け温度条件も150~250℃の範囲とした。
 工程(II):
 腐食防止処理層14を設けたアルミニウム箔層13における腐食防止処理層14の反対側に、接着剤AD-1をグラビアリバースコートによりドライ塗布量として4~5g/mとなるように塗布して、表5に示す各種基材を積層してラミネートを行った。その後、エージング処理を施すことで、接着剤AD-1を硬化させ、第1接着層12を介して基材層11を貼り合わせた。
 工程(III):
 ドライラミネート構成の外装材1は、工程(II)で得た積層体における腐食防止処理層14側に、接着剤AD-2を、グラビアリバースコートによりドライ塗布量として4~5g/mとなるように塗布し、フィルムSL-1を積層してラミネートを行い、さらにエージング処理を施すことで接着剤AD-2を硬化させることで、第2接着層15を介してシーラント層16を貼り合わせて製造した。
 熱ラミネート構成の外装材1は、押出ラミネート機を使用して、工程(II)で得た積層体の腐食防止処理層14上に、接着性樹脂AD-3を260℃~300℃の範囲で押出ラミネートし、フィルムSL-1と共にサンドイッチラミネートを行うことで、第2接着層15を介してシーラント層16を貼り合せ、その後、熱ラミネーション法により、得られた積層体の温度がシーラント層16の融点近傍になるように熱圧着を施し、腐食防止処理層14と第2接着層15を強固に密着させることで製造した。
[評価方法]
(深絞り成形性評価)
 得られた外装材について、図2に例示した金型101により絞り成形を行い、成形性を評価した。金型101は、雌型110、雄型120およびエアシリンダー130を有し、雄型120のダイ121の寸法は縦d=60mm、横d=40mmとした。
 エアシリンダー130による型閉め圧は0.5~0.8MPaとし、ストローク速度は5mm/秒とした。絞り深さは、4.75mm、5.00mm、5.25mm、5.50mm、5.75mm、6.00mmとし、各絞り深さで連続して100回の成形を行った。評価は、外装材にピンホールやクラックが生じていない良品数が95~100個のものを「A」、90~94個のものを「B」、90個未満のものを「C」として、絞り深さ5.50mm以下の成形結果が「B」以上のものを「○(良好)」、絞り深さ5.50mm以下の成形で結果が「C」となるときがあるものを「不良(×)」とした。
(電解液耐性評価)
 各例で得られた外装材から縦100mm×横15mmの短冊状に切り出した試験片を、エチレンカーボネート/ジメチルカーボネート/ジエチルカーボネート=1/1/1(質量比)に対し、LiPF(六フッ化リン酸リチウム)を1.5Mになるように調整して溶解した電解液にどぶ付け浸漬し、85℃で24時間(評価A)、または4週間(評価B)保管した時の外観を評価した。評価は、外観が問題ない場合を「○(良好)」とし、浮きが発生しているものを「×(不良)」とした。
[実施例10~19および比較例4~9]
 前記製造方法により、表5に示す構成の外装材を製造し、深絞り成形性および電解液耐性を評価した。
Figure JPOXMLDOC01-appb-T000005
 なお、表5において、腐食防止処理層14の「CL-1/CL-2」とは、まず処理剤CL-1でアルミニウム箔AL-1を処理した後に、処理剤CL-2で処理したことを意味する。他の例の腐食防止処理層14の記載も同様の意味を示す。また、基材層11における「SB-13/SB-11」とは、基材SB-13と基材SB-11とを、接着剤AD-1と同じ接着剤により積層した基材を意味し、基材SB-11側が第1接着層12側であることを意味する。他の例の基材層11の記載も同様の意味を示す。
 実施例17~19、比較例9では、腐食防止処理層14と、接着性樹脂による第2接着層15に接着性を付与させるために、処理剤CL-3による処理を行った。
 各例の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、単層のフィルム基材(A)からなる基材層11を有する実施例10~14の外装材は、基材層11以外は同じ構成を有する比較例4~7に比べて、0.50~0.75mm深い絞り深さで成形が可能であった。また、実施例10~14は、破断点における引張応力yと破断点までの伸度xが前記式(1)、(2)を満たしていれば、機械物性の方向性が大きさにかかわらず、優れた深絞り成形性が得られていることを示している。一方で、前記式(1)を満たしていても、破断点における引張応力yが100未満、すなわち前記式(2)を満たしていない場合は、充分な深絞り成形性が得られない(比較例7)。
 また、フィルム基材(A)と、深絞り成形性に劣るポリエステルフィルムとを積層した積層フィルムからなる基材層11を有する実施例15~19の外装材は、基材層11以外は同じ構成の比較例8、9の外装材と比較して、0.50~0.75mm深い絞り深さで成形が可能であった。特に優れた長期信頼性が求められるハイブリッド車や電気自動車用途においては、深絞り成形性には劣るが、耐酸性・耐電解液性、耐スクラッチ性に優れるポリエステルフィルムをフィルム基材(A)の外層に設ける多層フィルム構成が求められる場合がある。前記結果から、この多層フィルム構成においても、優れた深絞り成形性が得られることがわかった。
 また、実施例15~18のドライラミネート構成および熱ラミネート構成の外装材はいずれも、電解液耐性評価において、クロメート処理を行った実施例19と同等の優れた長期信頼性を有していた。
[実施例20~43、比較例10~17] 
以下、例5~16及び例21~32は実施例20~43、例1~4及び例17~20は比較例10~17である。
[使用原料]
 本実施例で使用した材料は下記のとおりである。
<基材層(SB)>
 フィルムSB-1:二軸延伸ポリアミドフィルム(A1)(厚み25μm)。
 フィルムSB-2:二軸延伸ポリアミドフィルム(A2)(厚み25μm)。
 フィルムSB-3:二軸延伸ポリアミドフィルム(A3)(厚み25μm)。
 フィルムSB-4:二軸延伸ポリアミドフィルム(A4)(厚み25μm)。
 フィルムSB-5:二軸延伸ポリアミドフィルム(A1)(厚み15μm)とPETフィルム(厚み12μm)を、後述の接着剤AD-1(3~7g/cm)を用いてドライラミネート法により積層したものを用いた。
 フィルムSB-6:二軸延伸ポリアミドフィルム(A2)(厚み15μm)とPETフィルム(厚み12μm)を、後述の接着剤AD-1(3~7g/cm)を用いてドライラミネート法により積層したものを用いた。
 フィルムSB-7:二軸延伸ポリアミドフィルム(A3)(厚み15μm)とPETフィルム(厚み12μm)を、後述の接着剤AD-1(3~7g/cm)を用いてドライラミネート法により積層したものを用いた。
 フィルムSB-8:二軸延伸ポリアミドフィルム(A4)(厚み15μm)とPETフィルム(厚み12μm)を、後述の接着剤AD-1(3~7g/cm)を用いてドライラミネート法により積層したものを用いた。
 前記二軸延伸ポリアミドフィルム(A1)~(A4)の表面自由エネルギーγ、及びその分散力成分γd及び比率γd/d(単位:%)を表7に示す。算出方法は以下のとおりである。なお、計算には数値計算ソフトである「Mathematica」の「FindMinimum」のコマンドを用いた。
(算出方法)
 表面自由エネルギー及びその各成分(分散力、極性力、水素結合力)が既知の水、ヨウ化メチレン、α-ブロモナフタレンの3種の液体を用い、20℃、50%RHの条件下で、フィルム表面にて接触角を測定し、拡張Fowkes式とYoungの式より導入される下式(1)、及び下式(2)から、各フィルムにおける表面自由エネルギーγ、及びその分散力成分γdを算出した。
 (γd・γd)1/2+(γp・γp)1/2+(γh・γh)1/2=γ(1+cosθ)/2 ・・・(1)
 γ=γd+γp+γh ・・・(2)
 ただし、前記式中、γ、γd、γp、γh(単位:mN/m)は、測定液の表面自由エネルギー及びその分散力、極性力、水素結合力の各成分である。γ、γd、γp、γh(単位:mN/m)は、フィルムの測定面上における表面自由エネルギー及びその分散力、極性力、水素結合力の各成分である。またθは測定面上における測定液の接触角である。接触角θは同一の測定面の5箇所について測定を行い、その平均値とした。
Figure JPOXMLDOC01-appb-T000007
 ただし、表7における接触角(BN)は、フィルム表面にα-ブロモナフタレンを滴下したときの接触角を意味する。
<第1の接着層(AD-1)>
 接着剤AD-1:ポリエステルポリオール系主剤に対して、トリレンジイソシアネートのアダクト体系硬化剤を配合したポリウレタン系接着剤(東洋インキ社製)。
<アルミニウム箔層(AL)>
 アルミニウム箔AL-1:焼鈍脱脂処理を施した厚み40μmの軟質アルミニウム箔8079材(東洋アルミニウム製)
<腐食防止処理層(CL)>
 処理剤CL-1:溶媒として蒸留水を使用し、固形分濃度10質量%に調整した「ポリリン酸ナトリウム安定化酸化セリウムゾル」。酸化セリウム100質量部に対して、リン酸塩は10質量部とした。
 処理剤CL-2:溶媒として蒸留水を使用し、固形分濃度5質量%に調整した、「ポリアクリル酸アンモニウム塩(東亞合成製)」90質量%と、「アクリル-イソプロペニルオキサゾリン共重合体(日本触媒製)」10質量%からなる組成物。
 処理剤CL-3:溶媒として蒸留水を使用し、固形分濃度5質量%に調整した、「ポリアリルアミン(日東紡製)」90質量%と「ポリグリセロールポリグリシジルエーテル(ナガセケムテックス製)」10質量%からなる組成物。
 処理剤CL-4:溶媒として1%濃度のリン酸水溶液を使用し、固形分濃度1質量%に調整した水溶フェノール樹脂(住友ベークライト製)に対し、フッ化クロム(CrF)を加えて、最終乾燥皮膜中に存在するCr量として10mg/mとなるように濃度を調整した化成処理剤。
<第2の接着層(AD-2)>
 接着剤(AD-21):水添ダイマー脂肪酸とジオールからなるポリエステルポリオールからなる主剤(三井化学社製「SS-051])、クルードトリレンジイソシアネート、クルード(あるいはポリメリック)ジフェニルメタンジイソシアネートの混合物、あるいはこれらのアダクト体からなる硬化剤(三井化学社製「SK-01」)を含有する接着剤。
 接着性樹脂(AD-22):ベース樹脂であるランダムポリプロピレン(PP)(Tm(AR)=約135℃)に対して無水マレイン酸をグラフト変性させた変性PPに対し、エチレン-αオレフィン共重合体からなるエラストマーを配合した変性ポリオレフィン樹脂(三井化学製)を用いた。
<シーラント層(SL)>
 フィルムSL-1:総厚みが30μmのランダムPP/ブロックPP/ランダムPPからなる2種3層の多層フィルム(オカモト製)。
<スリップ剤>
 スリップ剤F-1:エルカ酸アミド。
[外装材の製造方法]
 工程(I):
 アルミニウム箔AL-1の電解液が充填される側に、腐食防止処理層(CL)をグラビアリバースコートにより設けた。コーティング量は処理剤(コーティング剤)のドライ塗布量として0.010~100mg/mとなるようにし、乾燥ユニットにおいて処理剤のタイプに応じて150~200℃で焼き付け処理を施した。形成する腐食防止処理層(CL)が単層の場合も多層の場合も、最終的なドライ塗布量を0.010~100mg/mとし、焼付け温度条件も150~200℃の範囲とした。
 工程(II):
 腐食防止処理層(CL)を設けたアルミニウム箔層(AL)における腐食防止処理層(CL)の反対側に、接着剤AD-1をグラビアリバースコートによりドライ塗布量として3~7g/mとなるように塗布して、表8に示す構成で各種基材を積層してラミネートを行った。その後、エージング処理を施すことで、接着剤AD-1を硬化させ、第1の接着層(AD-1)を介して基材層(SB)を貼り合わせた。
 工程(III):
 ドライラミネート構成の外装材は、工程(II)で得た積層体における腐食防止処理層(CL)側に、接着剤AD-21を、グラビアリバースコートによりドライ塗布量として3~7g/mとなるように塗布し、フィルムSL-1を積層してラミネートを行い、さらにエージング処理を施すことで接着剤AD-21を硬化させることで、第2の接着層(AD-2)を介してシーラント層(SL)を貼り合わせて製造した。
 また、熱ラミネート構成の外装材は、押出ラミネート機を使用して、工程(II)で得た積層体の腐食防止処理層(CL)上に、接着性樹脂AD-22を押出ラミネートし、フィルムSL-1と共にサンドイッチラミネートを行うことで、第2の接着層(AD-2)を介してシーラント層(SL)を貼り合せ、その後、210℃、5m/分の条件での熱ラミネーション法により、得られた積層体の温度がシーラント層(SL)の融点近傍になるように熱圧着を施し、腐食防止処理層(CL)と第2の接着層(AD-2)を強固に密着させることで製造した。
 また、いずれの構成についても、基材層(SB)及びシーラント層(SL)の表面に、イソプロピルアルコールによって溶かしたエルカ酸アミド(濃度1質量%)を塗布した。
[成型性の評価]
 各例で得られた外装材から切り出したサンプル(150mm×200mm)について、以下に示す金属金型で深絞り成形を実施し、以下の基準で成型性を評価した。
 金型サイズ:252mm×125mm。
 成型サイズ:70mm×80mm。
 パンチ・ダイス垂直R:1.00mm。
 金型クリアランス:0.34mm。
 成型速度:300mm/分。
 フィルム押さえ圧力:0.8MPa。
(評価基準)
 ○:クラック、ピンホールを発生させることなく絞り深さ6mm以上の深絞り成型ができた。
 ×:絞り深さ6mm未満でクラック、ピンホールが発生した。
 成型性の評価結果を表8及び表9に示す。なお、表8及び表9において、「CL-1/CL-2」とは、アルミニウム箔AL-1を処理剤CL-1で処理した後に、処理剤CL-2で処理したことを意味する。他の例の腐食防止処理層(CL)の記載も同様の意味を示す。また、基材層におけるフィルム(SB-5)~(SB-8)は、いずれもPETフィルムを最表面として積層した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 基材層が比率γd/γが80%以下の二軸延伸ポリアミドフィルムを有する例5~16及び例21~32(実施例20~43)の外装材は、基材層が比率γd/γが80%を超える二軸延伸ポリアミドフィルムを有する例1~4及び例17~20(比較例10~17)の外装材に比べて、優れた成型性を有していた。
 本発明のリチウムイオン電池用外装材は、優れた深絞り成形性を有し、電気自動車等において大電流を取り出すためにエネルギー密度を特に高めたい場合でも、クラックやピンホールの発生を伴うことなく良質な深絞り成形品とすることができる。また、本発明のリチウム電池用外装材は、クロメート処理等の化成処理を施さない場合でも、優れた電解液耐性が達成される点でも有利である。
 1、10 リチウムイオン電池用外装材
 11 基材層(SB)
 12 第1接着層(AD-1)
 13 アルミニウム箔層(AL)
 14 腐食防止処理層(CL)
 15 第2接着層(AD-2)
 16 シーラント層(SL)

Claims (11)

  1.  基材層(SB)の一方の面に、接着剤を含有する第1接着層(AD-1)、少なくとも片面に腐食防止処理層(CL)を設けたアルミニウム箔層(AL)、接着剤または接着性樹脂を含有する第2接着層(AD-2)、およびシーラント層(SL)が順次積層され、
     前記基材層(SB)が、下記フィルム基材(A)を有することを特徴とするリチウムイオン電池用外装材。
     フィルム基材(A):MD方向あるいはTD方向の少なくとも一方において、JIS-K7127に準拠して測定される降伏点までの伸度(α1)と破断点までの伸度(α2)の差(α2-α1)が100%以上であるフィルム基材。
  2.  前記フィルム基材(A)のJIS-K7127に準拠して測定される破断点応力が100MPa以上である、請求項1に記載のリチウムイオン電池用外装材。
  3.  前記フィルム基材(A)が、ポリアミド樹脂に、無水マレイン酸を共重合させたエチレン系共重合体樹脂を配合した樹脂組成物(a1)、またはポリアミド樹脂に、脂肪族ポリエステルを配合した樹脂組成物(a2)からなる二軸延伸フィルム基材である、請求項1または2に記載のリチウムイオン電池用外装材。
  4.  前記無水マレイン酸を共重合させたエチレン系共重合体が、エチレン-α,β不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体である、請求項3に記載のリチウムイオン電池用外装材。
  5.  前記脂肪族ポリエステルがポリカプロラクトンである、請求項3に記載のリチウムイオン電池用外装材。
  6.  前記ポリアミド樹脂が、ナイロン6またはナイロン66である、請求項3~5のいずれかに記載のリチウムイオン電池用外装材。
  7.  基材層(SB)の一方の面に、接着剤を含有する第1接着層(AD-1)、少なくとも片面に腐食防止処理層(CL)を設けたアルミニウム箔層(AL)、接着剤または接着性樹脂を含有する第2接着層(AD-2)、およびシーラント層(SL)が順次積層され、
     前記基材層(SB)が、下記フィルム基材(A)を有することを特徴とするリチウムイオン電池用外装材。
     フィルム基材(A):JIS-K7127に準拠して測定される、破断点までの伸度x(単位:%)と、破断点における引張応力y(単位:MPa)とが、下式(1)および下式(2)で表される関係を満たす延伸ポリアミドフィルム基材。
     y≧-2x+460 ・・・(1)
     y≧200 ・・・(2)
  8.  基材層(SB)の少なくとも一方の面側に、接着剤により形成される第1の接着層(AD-1)、少なくとも片面に腐食防止処理層(CL)が設けられたアルミニウム箔層(AL)、接着性樹脂又は接着剤により形成される第2の接着層(AD-2)、並びにシーラント層(SL)が順次積層され、
     前記基材層(SB)が、表面自由エネルギーγに対する、表面自由エネルギーの分散成分γdの比率γd/γが80%以下の延伸ポリアミドフィルムを有するリチウムイオン電池用外装材。
  9.  前記延伸ポリアミドフィルムの表面自由エネルギーの分散成分γdが40mN/m以下である、請求項8に記載のリチウムイオン電池用外装材。
  10.  前記延伸ポリアミドフィルムの表面にα-ブロモナフタレンを滴下したときの接触角が20°以上である、請求項8又は9に記載のリチウムイオン電池用外装材。
  11.  前記延伸ポリアミドフィルムが二軸延伸ポリアミドフィルムである請求項8~10のいずれか一項に記載のリチウムイオン電池用外装材。
PCT/JP2011/070393 2010-09-08 2011-09-07 リチウムイオン電池用外装材 WO2012033133A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11823607.4A EP2615658B1 (en) 2010-09-08 2011-09-07 Lithium ion battery outer cover material
US13/818,135 US8920959B2 (en) 2010-09-08 2011-09-07 Lithium ion battery outer cover material
KR1020137005877A KR101832531B1 (ko) 2010-09-08 2011-09-07 리튬 이온 전지용 외장재
JP2012533008A JP5928336B2 (ja) 2010-09-08 2011-09-07 リチウムイオン電池用外装材
CN201180042862.5A CN103098257B (zh) 2010-09-08 2011-09-07 锂离子电池外包装材料
HK13109103.0A HK1181923A1 (en) 2010-09-08 2013-08-05 Lithium ion battery outer cover material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-201079 2010-09-08
JP2010201080 2010-09-08
JP2010201079 2010-09-08
JP2010-201080 2010-09-08
JP2011-158849 2011-07-20
JP2011158849 2011-07-20

Publications (1)

Publication Number Publication Date
WO2012033133A1 true WO2012033133A1 (ja) 2012-03-15

Family

ID=45810730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070393 WO2012033133A1 (ja) 2010-09-08 2011-09-07 リチウムイオン電池用外装材

Country Status (8)

Country Link
US (1) US8920959B2 (ja)
EP (1) EP2615658B1 (ja)
JP (2) JP5928336B2 (ja)
KR (1) KR101832531B1 (ja)
CN (1) CN103098257B (ja)
HK (1) HK1181923A1 (ja)
TW (1) TWI501446B (ja)
WO (1) WO2012033133A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141293A1 (ja) * 2012-03-21 2013-09-26 凸版印刷株式会社 リチウムイオン電池用外装材
JP2013218990A (ja) * 2012-04-12 2013-10-24 Toppan Printing Co Ltd リチウムイオン電池用外装材
JP2013222545A (ja) * 2012-04-13 2013-10-28 Toppan Printing Co Ltd リチウムイオン電池用外装材
WO2013168731A1 (ja) * 2012-05-10 2013-11-14 凸版印刷株式会社 リチウムイオン電池用外装材およびリチウムイオン電池用外装材を用いたリチウムイオン電池の製造方法
CN104037364A (zh) * 2013-03-05 2014-09-10 昭和电工包装株式会社 成形用包装材料及成形容器
CN104051678A (zh) * 2013-03-11 2014-09-17 藤森工业株式会社 电池外包装用层叠体
WO2014163062A1 (ja) * 2013-04-02 2014-10-09 コニカミノルタ株式会社 ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス
JP2015049952A (ja) * 2013-08-30 2015-03-16 Tdk株式会社 非水電解液を用いた電気化学素子
JP2015065159A (ja) * 2013-08-30 2015-04-09 凸版印刷株式会社 リチウムイオン電池用外装材
JP2015071745A (ja) * 2013-09-03 2015-04-16 大日精化工業株式会社 ポリウレタン系樹脂組成物及びリチウムイオン電池用外装体
WO2015125806A1 (ja) * 2014-02-18 2015-08-27 大日本印刷株式会社 電池用包装材料
WO2015133445A1 (ja) * 2014-03-03 2015-09-11 大日本印刷株式会社 電池用包装材料
CN105009322A (zh) * 2013-02-18 2015-10-28 大日本印刷株式会社 电池用包装材料
WO2016010044A1 (ja) * 2014-07-16 2016-01-21 凸版印刷株式会社 蓄電装置用外装材、及びそれを用いた蓄電装置
US20160059520A1 (en) * 2013-05-09 2016-03-03 Toppan Printing Co., Ltd. Packaging material for lithium ion cell
JP2016225321A (ja) * 2016-10-05 2016-12-28 凸版印刷株式会社 リチウムイオン電池用外装材
KR20170125047A (ko) * 2015-03-03 2017-11-13 도판 인사츠 가부시키가이샤 축전 장치용 외장재 및 그것을 사용한 축전 장치
US9865847B2 (en) 2012-05-10 2018-01-09 Toppan Printing Co., Ltd. Outer package material for lithium-ion battery and method for producing lithium-ion battery using the outer package material
JP2018073648A (ja) * 2016-10-31 2018-05-10 凸版印刷株式会社 蓄電デバイス用外装材
JP2018129311A (ja) * 2018-04-27 2018-08-16 大日本印刷株式会社 電池用包装材料
WO2021200489A1 (ja) * 2020-03-30 2021-10-07 東洋紡株式会社 二軸延伸ポリアミドフィルム
CN115610063A (zh) * 2022-12-20 2023-01-17 温州鑫泰新材料股份有限公司 一种低卷曲性、耐高温阻燃绝缘包装膜及其制备方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105722899A (zh) * 2013-09-03 2016-06-29 兴人薄膜与化学株式会社 冷成型用双轴拉伸尼龙膜
JP6458338B2 (ja) * 2013-11-01 2019-01-30 凸版印刷株式会社 二次電池用外装材、二次電池、及び二次電池用外装材の製造方法
CN103633264A (zh) * 2013-11-25 2014-03-12 昆山永翔光电科技有限公司 一种锂电池软包装用铝塑膜及制作方法
CN110216952B (zh) * 2013-12-02 2022-01-18 大日本印刷株式会社 电池用包装材料
CN106233490B (zh) * 2013-12-11 2019-05-03 大日本印刷株式会社 电池用包装材料
TWI646717B (zh) * 2013-12-27 2019-01-01 日商凸版印刷股份有限公司 鋰離子電池用外裝材料
CN103700789B (zh) * 2013-12-31 2016-01-13 明冠新材料股份有限公司 聚合物锂离子电池软包装膜及其制备方法
KR101989331B1 (ko) * 2014-07-17 2019-06-14 다이니폰 인사츠 가부시키가이샤 전지용 포장 재료
JP6694246B2 (ja) 2014-08-18 2020-05-13 昭和電工パッケージング株式会社 薄型蓄電デバイス及びその製造方法
JP6819029B2 (ja) * 2015-03-03 2021-01-27 凸版印刷株式会社 蓄電装置用外装材、及びそれを用いた蓄電装置
JP6708979B2 (ja) * 2015-03-30 2020-06-10 凸版印刷株式会社 蓄電デバイス用外装材
CN105062386A (zh) * 2015-07-15 2015-11-18 重庆伟业电源材料有限公司 一种用于蓄电池玻璃纤维隔板的外施胶
JP6768364B2 (ja) * 2015-09-17 2020-10-14 藤森工業株式会社 電池外装用積層体、電池外装体及び電池
JP6323476B2 (ja) * 2016-02-26 2018-05-16 東洋インキScホールディングス株式会社 電池用包装材、電池用容器および電池
JP2018058230A (ja) * 2016-10-03 2018-04-12 昭和電工パッケージング株式会社 包装材の製造方法
KR101752307B1 (ko) * 2016-11-14 2017-06-30 율촌화학 주식회사 성형성이 우수한 셀 파우치
JPWO2018164219A1 (ja) * 2017-03-08 2020-04-23 大日本印刷株式会社 電池用外包材、電池用外包材の製造方法、及び電池
JP6932523B2 (ja) * 2017-03-09 2021-09-08 昭和電工パッケージング株式会社 蓄電デバイス用外装材及び蓄電デバイス
CN107394309B (zh) * 2017-07-26 2019-11-05 南通沃特光电科技有限公司 一种电动汽车电池组的散热板及一种电动汽车的电池组
CN108314986A (zh) * 2018-01-30 2018-07-24 温州富乐沐新材料有限公司 粘合剂用树脂,粘合剂组成物,使用该粘合剂组成物的层状贴合复合体及锂电池用外包装
US11848215B2 (en) * 2018-03-30 2023-12-19 Mitsui Chemicals Tohcello, Inc. Method for manufacturing electronic device
US20210308988A1 (en) * 2018-09-12 2021-10-07 Dai Nippon Printing Co., Ltd. Power storage device packaging material, method for producing power storage device packaging material, and power storage device
US10992005B2 (en) * 2018-12-06 2021-04-27 Robert Bosch Battery Systems Llc Deep pouch cell and method of manufacturing same
CN110039793B (zh) * 2019-04-23 2021-08-27 上海紫江新材料科技股份有限公司 一种锂电池软包装膜的湿法制作工艺
CN112521878A (zh) * 2019-09-19 2021-03-19 日东电工株式会社 粘合带
CN113782880A (zh) * 2020-06-05 2021-12-10 上海紫江新材料科技股份有限公司 一种耐腐蚀的锂电池铝塑膜及其制备方法
CN112793253A (zh) * 2021-01-20 2021-05-14 苏州福斯特光伏材料有限公司 一种锂电池软包装用铝塑膜及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208708A (ja) * 1997-01-28 1998-08-07 Yuasa Corp 扁平形電池
JP2001176458A (ja) * 1999-12-21 2001-06-29 Showa Alum Corp 電池ケース用包材
JP2002056824A (ja) 2000-08-10 2002-02-22 Dainippon Printing Co Ltd 電池用積層フィルムおよびそれを用いた電池用容器
JP3567230B2 (ja) 1998-10-15 2004-09-22 昭和電工パッケージング株式会社 電池ケース用包材
WO2004108408A1 (ja) * 2003-06-04 2004-12-16 Toray Industries, Inc. 積層フィルムおよび二軸配向ポリエステルフィルム
JP2004362953A (ja) * 2003-06-05 2004-12-24 Toray Ind Inc リチウム電池包装用ポリエステルフィルム
JP2005288996A (ja) * 2004-04-05 2005-10-20 Toray Ind Inc 積層フィルム
JP2006236938A (ja) 2005-02-28 2006-09-07 Dainippon Printing Co Ltd 電池用包装材
JP2006331897A (ja) 2005-05-27 2006-12-07 Showa Denko Packaging Co Ltd 電池ケース用包材及び電池用ケース
JP2008053133A (ja) 2006-08-28 2008-03-06 Dainippon Printing Co Ltd 電池用包装材
JP2008130436A (ja) 2006-11-22 2008-06-05 Showa Denko Packaging Co Ltd 電池ケース用包材及び電池用ケース
JP2009059709A (ja) 2008-10-24 2009-03-19 Showa Denko Packaging Co Ltd 電池ケース用包材及び電池用ケース
JP4422171B2 (ja) 2007-05-21 2010-02-24 昭和電工パッケージング株式会社 電池ケース用包材及び電池用ケース
JP4431822B2 (ja) 2003-07-04 2010-03-17 昭和電工パッケージング株式会社 成形性に優れた包装用材料及びそれを用いて成形された包装容器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138309C (zh) * 1997-03-19 2004-02-11 旭化成株式会社 无水薄型电池
JP2000212764A (ja) * 1999-01-27 2000-08-02 Kobe Steel Ltd シャ―シ用プレコ―トアルミニウム又はアルミニウム合金材
JP3845273B2 (ja) * 2000-10-13 2006-11-15 昭和電工パッケージング株式会社 電子部品ケース用包材
JP2004291635A (ja) * 2003-03-13 2004-10-21 Toray Ind Inc 耐蝕性金属被覆用ポリプロピレンフイルム、金属ラミネートフイルムおよびそれを用いた電池材料
JP2004319414A (ja) * 2003-04-21 2004-11-11 Toppan Printing Co Ltd リチウムイオン電池用外装材
JP5211622B2 (ja) * 2007-01-31 2013-06-12 凸版印刷株式会社 リチウム電池用包材およびその製造方法
JP2011175841A (ja) 2010-02-24 2011-09-08 Unitika Ltd リチウムイオン二次電池外装用ポリアミド積層フィルム
JP2012033394A (ja) 2010-07-30 2012-02-16 Fujimori Kogyo Co Ltd 電池外装用積層体

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208708A (ja) * 1997-01-28 1998-08-07 Yuasa Corp 扁平形電池
JP3567230B2 (ja) 1998-10-15 2004-09-22 昭和電工パッケージング株式会社 電池ケース用包材
JP2001176458A (ja) * 1999-12-21 2001-06-29 Showa Alum Corp 電池ケース用包材
JP2002056824A (ja) 2000-08-10 2002-02-22 Dainippon Printing Co Ltd 電池用積層フィルムおよびそれを用いた電池用容器
WO2004108408A1 (ja) * 2003-06-04 2004-12-16 Toray Industries, Inc. 積層フィルムおよび二軸配向ポリエステルフィルム
JP2004362953A (ja) * 2003-06-05 2004-12-24 Toray Ind Inc リチウム電池包装用ポリエステルフィルム
JP4431822B2 (ja) 2003-07-04 2010-03-17 昭和電工パッケージング株式会社 成形性に優れた包装用材料及びそれを用いて成形された包装容器
JP2005288996A (ja) * 2004-04-05 2005-10-20 Toray Ind Inc 積層フィルム
JP2006236938A (ja) 2005-02-28 2006-09-07 Dainippon Printing Co Ltd 電池用包装材
JP2006331897A (ja) 2005-05-27 2006-12-07 Showa Denko Packaging Co Ltd 電池ケース用包材及び電池用ケース
JP2008053133A (ja) 2006-08-28 2008-03-06 Dainippon Printing Co Ltd 電池用包装材
JP2008130436A (ja) 2006-11-22 2008-06-05 Showa Denko Packaging Co Ltd 電池ケース用包材及び電池用ケース
JP4422171B2 (ja) 2007-05-21 2010-02-24 昭和電工パッケージング株式会社 電池ケース用包材及び電池用ケース
JP2009059709A (ja) 2008-10-24 2009-03-19 Showa Denko Packaging Co Ltd 電池ケース用包材及び電池用ケース

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615658A4

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205407A (zh) * 2012-03-21 2014-12-10 凸版印刷株式会社 锂离子电池用封装材料
JP2013196947A (ja) * 2012-03-21 2013-09-30 Toppan Printing Co Ltd リチウムイオン電池用外装材
TWI549815B (zh) * 2012-03-21 2016-09-21 凸版印刷股份有限公司 鋰離子電池用外裝材料
WO2013141293A1 (ja) * 2012-03-21 2013-09-26 凸版印刷株式会社 リチウムイオン電池用外装材
EP2830120A4 (en) * 2012-03-21 2015-11-18 Toppan Printing Co Ltd OUTER MATERIAL FOR A LITHIUM ION BATTERY
US10135038B2 (en) 2012-03-21 2018-11-20 Toppan Printing Co., Ltd. Packaging material for lithium-ion battery
KR102027314B1 (ko) * 2012-03-21 2019-10-01 도판 인사츠 가부시키가이샤 리튬 이온 전지용 외장재
KR20140146056A (ko) * 2012-03-21 2014-12-24 도판 인사츠 가부시키가이샤 리튬 이온 전지용 외장재
JP2013218990A (ja) * 2012-04-12 2013-10-24 Toppan Printing Co Ltd リチウムイオン電池用外装材
JP2013222545A (ja) * 2012-04-13 2013-10-28 Toppan Printing Co Ltd リチウムイオン電池用外装材
KR20150017699A (ko) * 2012-05-10 2015-02-17 도판 인사츠 가부시키가이샤 리튬 이온 전지용 외장재 및 리튬 이온 전지용 외장재를 사용한 리튬 이온 전지의 제조 방법
KR102020480B1 (ko) * 2012-05-10 2019-09-11 도판 인사츠 가부시키가이샤 리튬 이온 전지용 외장재 및 리튬 이온 전지용 외장재를 사용한 리튬 이온 전지의 제조 방법
US9865847B2 (en) 2012-05-10 2018-01-09 Toppan Printing Co., Ltd. Outer package material for lithium-ion battery and method for producing lithium-ion battery using the outer package material
CN104272491A (zh) * 2012-05-10 2015-01-07 凸版印刷株式会社 锂离子电池用封装材料以及使用锂离子电池用封装材料的锂离子电池的制造方法
US9627660B2 (en) 2012-05-10 2017-04-18 Toppan Printing Co., Ltd. Outer package material for lithium-ion battery and method for producing lithium-ion battery using the outer package material
WO2013168731A1 (ja) * 2012-05-10 2013-11-14 凸版印刷株式会社 リチウムイオン電池用外装材およびリチウムイオン電池用外装材を用いたリチウムイオン電池の製造方法
JP2013235763A (ja) * 2012-05-10 2013-11-21 Toppan Printing Co Ltd リチウムイオン電池用外装材およびリチウムイオン電池用外装材を用いたリチウムイオン電池の製造方法
EP2849245A4 (en) * 2012-05-10 2015-12-30 Toppan Printing Co Ltd OUTER HOUSING MATERIAL FOR A LITHIUM ION CELL AND METHOD FOR PRODUCING A LITHIUM ION CELL USING THE OUTER HOUSING MATERIAL FOR A LITHIUM ION CELL
US10777785B2 (en) 2013-02-18 2020-09-15 Dai Nippon Printing Co., Ltd. Power-cell packaging material
US10236479B2 (en) 2013-02-18 2019-03-19 Dai Nippon Printing Co., Ltd. Power-cell packaging material
CN105009322A (zh) * 2013-02-18 2015-10-28 大日本印刷株式会社 电池用包装材料
EP2958161A4 (en) * 2013-02-18 2016-10-26 Dainippon Printing Co Ltd CAPACITIVE MATERIAL FOR PERFORMANCE CELL
KR20140109296A (ko) * 2013-03-05 2014-09-15 쇼와 덴코 패키징 가부시키가이샤 성형용 포장재 및 성형 케이스
CN104037364A (zh) * 2013-03-05 2014-09-10 昭和电工包装株式会社 成形用包装材料及成形容器
CN104037364B (zh) * 2013-03-05 2018-01-26 昭和电工包装株式会社 成形用包装材料及成形容器
KR102148040B1 (ko) * 2013-03-05 2020-08-25 쇼와 덴코 패키징 가부시키가이샤 성형용 포장재 및 성형 케이스
JP2014195989A (ja) * 2013-03-05 2014-10-16 昭和電工パッケージング株式会社 成形用包装材及び成形ケース
KR101526226B1 (ko) * 2013-03-11 2015-06-05 후지모리 고교 가부시키가이샤 전지 외장용 적층체
CN104051678A (zh) * 2013-03-11 2014-09-17 藤森工业株式会社 电池外包装用层叠体
WO2014163062A1 (ja) * 2013-04-02 2014-10-09 コニカミノルタ株式会社 ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス
US20160059520A1 (en) * 2013-05-09 2016-03-03 Toppan Printing Co., Ltd. Packaging material for lithium ion cell
JP2015049952A (ja) * 2013-08-30 2015-03-16 Tdk株式会社 非水電解液を用いた電気化学素子
JP2015065159A (ja) * 2013-08-30 2015-04-09 凸版印刷株式会社 リチウムイオン電池用外装材
JP2015071745A (ja) * 2013-09-03 2015-04-16 大日精化工業株式会社 ポリウレタン系樹脂組成物及びリチウムイオン電池用外装体
WO2015125806A1 (ja) * 2014-02-18 2015-08-27 大日本印刷株式会社 電池用包装材料
JPWO2015125806A1 (ja) * 2014-02-18 2017-03-30 大日本印刷株式会社 電池用包装材料
KR101841867B1 (ko) * 2014-02-18 2018-03-23 다이니폰 인사츠 가부시키가이샤 전지용 포장 재료
US10020471B2 (en) 2014-02-18 2018-07-10 Dai Nippon Printing Co., Ltd. Battery packaging material
JP2018125306A (ja) * 2014-02-18 2018-08-09 大日本印刷株式会社 電池用包装材料
JP2015165476A (ja) * 2014-03-03 2015-09-17 大日本印刷株式会社 電池用包装材料
WO2015133445A1 (ja) * 2014-03-03 2015-09-11 大日本印刷株式会社 電池用包装材料
WO2016010044A1 (ja) * 2014-07-16 2016-01-21 凸版印刷株式会社 蓄電装置用外装材、及びそれを用いた蓄電装置
US20170141362A1 (en) * 2014-07-16 2017-05-18 Toppan Printing Co., Ltd. Power storage device packaging material and power storage device using the same
JPWO2016010044A1 (ja) * 2014-07-16 2017-04-27 凸版印刷株式会社 蓄電装置用外装材、及びそれを用いた蓄電装置
US10777783B2 (en) 2014-07-16 2020-09-15 Toppan Printing Co., Ltd. Power storage device packaging material and power storage device using the same
KR20170125047A (ko) * 2015-03-03 2017-11-13 도판 인사츠 가부시키가이샤 축전 장치용 외장재 및 그것을 사용한 축전 장치
KR102662941B1 (ko) * 2015-03-03 2024-05-03 도판 홀딩스 가부시키가이샤 축전 장치용 외장재 및 그것을 사용한 축전 장치
JP2016225321A (ja) * 2016-10-05 2016-12-28 凸版印刷株式会社 リチウムイオン電池用外装材
JP2018073648A (ja) * 2016-10-31 2018-05-10 凸版印刷株式会社 蓄電デバイス用外装材
JP2018129311A (ja) * 2018-04-27 2018-08-16 大日本印刷株式会社 電池用包装材料
WO2021200489A1 (ja) * 2020-03-30 2021-10-07 東洋紡株式会社 二軸延伸ポリアミドフィルム
CN115610063A (zh) * 2022-12-20 2023-01-17 温州鑫泰新材料股份有限公司 一种低卷曲性、耐高温阻燃绝缘包装膜及其制备方法

Also Published As

Publication number Publication date
EP2615658A1 (en) 2013-07-17
EP2615658A4 (en) 2016-08-03
KR101832531B1 (ko) 2018-02-26
US20130149597A1 (en) 2013-06-13
JPWO2012033133A1 (ja) 2014-01-20
HK1181923A1 (en) 2013-11-15
US8920959B2 (en) 2014-12-30
EP2615658B1 (en) 2018-03-21
KR20130105624A (ko) 2013-09-25
TWI501446B (zh) 2015-09-21
JP5477503B2 (ja) 2014-04-23
CN103098257A (zh) 2013-05-08
CN103098257B (zh) 2015-07-22
TW201232887A (en) 2012-08-01
JP5928336B2 (ja) 2016-06-01
JP2014041833A (ja) 2014-03-06

Similar Documents

Publication Publication Date Title
JP5477503B2 (ja) リチウムイオン電池用外装材
JP5477504B2 (ja) リチウムイオン電池用外装材,リチウムイオン電池,及びリチウムイオン電池の製造方法
JP6459306B2 (ja) リチウムイオン電池用外装材
JP5742995B2 (ja) リチウムイオン電池用外装材
WO2016199754A1 (ja) 蓄電装置用外装材
CN106133943B (zh) 锂电池用封装材料
KR102189026B1 (ko) 리튬 이온 전지용 외장재
CN105849932B (zh) 锂电池用封装材料
JP5772412B2 (ja) リチウムイオン電池外装材、リチウムイオン電池
JP2011187386A (ja) リチウムイオン電池用外装材
JP5998597B2 (ja) リチウムイオン電池用外装材
JP2015144121A (ja) リチウム電池用外装材
WO2015099144A1 (ja) リチウム電池用外装材
JP6183032B2 (ja) リチウムイオン電池用外装材
JP6194577B2 (ja) リチウムイオン電池用外装材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042862.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13818135

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012533008

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011823607

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137005877

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE