WO2012015128A1 - 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물 - Google Patents

난연성 및 내열성이 우수한 투명 열가소성 수지 조성물 Download PDF

Info

Publication number
WO2012015128A1
WO2012015128A1 PCT/KR2010/009538 KR2010009538W WO2012015128A1 WO 2012015128 A1 WO2012015128 A1 WO 2012015128A1 KR 2010009538 W KR2010009538 W KR 2010009538W WO 2012015128 A1 WO2012015128 A1 WO 2012015128A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic
transparent thermoplastic
thermoplastic resin
resin composition
phosphorus
Prior art date
Application number
PCT/KR2010/009538
Other languages
English (en)
French (fr)
Inventor
권기혜
정진화
이진성
김만석
박광수
구자관
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to EP10855400.7A priority Critical patent/EP2599832A4/en
Publication of WO2012015128A1 publication Critical patent/WO2012015128A1/ko
Priority to US13/740,335 priority patent/US9587058B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/02Homopolymers or copolymers of monomers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a transparent thermoplastic resin composition excellent in flame retardancy and heat resistance.
  • Thermoplastic resins have a lower specific gravity than glass or metal and have excellent physical properties such as excellent moldability and impact resistance. Recently, due to the trend of low cost, large size, and light weight of electric and electronic products, plastic products using thermoplastic resins are rapidly replacing the existing glass and metal areas, thereby expanding the use area from electric and electronic products to automobile parts.
  • a hard coat method of improving the scratch resistance of a resin surface by doping an organic-inorganic hybrid material on the surface of the final molded resin in order to improve the scratch resistance of the plastic, and then curing the surface with heat or ultraviolet rays is widely used.
  • a coating process since an additional process called a coating process is required, the process takes a lot of time, costs are increased, and there is a problem that may cause environmental problems. Therefore, there is a demand for an unpainted resin that can exhibit scratch resistance without hard coating.
  • a transparent flame retardant material a system in which a flame retardant is applied to a polycarbonate resin has been used.
  • Polycarbonate resin is an engineering plastic with excellent mechanical strength and flame retardancy, excellent transparency and weather resistance, as well as excellent impact resistance, thermal stability, self-extinguishing and dimensional stability, and is widely used in electric / electronic products and automobile parts.
  • glass can be replaced in areas where transparency and impact resistance are required, such as lenses, but it has a disadvantage in that scratch resistance is very weak.
  • the scratch resistance of the flame retardant polycarbonate resin shows a significantly lower physical properties compared to the scratch resins H to 3H at the level of B to F with a pencil hardness.
  • the conventional transparent transparent scratch material is an acrylic resin represented by polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • scratch resistance is highly evaluated in addition to excellent transparency, weather resistance and mechanical strength, but impact resistance and flame retardancy are poor.
  • adding a flame-retardant flame retardant to PMMA is difficult to obtain excellent flame retardancy, and there is a problem that other physical properties such as heat resistance and impact resistance may be reduced.
  • flame retardant single transparent acrylic resin alone there have been no reports of flame retardant single transparent acrylic resin alone.
  • thermoplastic resin composition having excellent mechanical properties and fluidity with the above characteristics.
  • Flame-retardant comprising a phosphorus-based acrylic copolymer resin (A) comprising a monomer as a unit containing at least one acrylic monomer (a1) represented by the formula (1) and at least one phosphorus-based acrylic monomer (a2) represented by the formula (2) And a transparent thermoplastic resin composition excellent in heat resistance.
  • R 1 is —H or —CH 3 ,
  • R 2 is — (CH 2 ) n —CH 3 , where n is an integer between 0 and 18.
  • R 1 is —H or —CH 3 ,
  • R 3 is T is an integer between 0 and 10,
  • R 4 and R 5 are —O— (CH 2 ) m —CH 3 , wherein m is an integer between 0 and 5, and at least one of R 4 and R 5 is —O—CH 3 .
  • thermoplastic thermoplastic composition it is possible to present a molded article formed from the transparent thermoplastic thermoplastic composition.
  • the transparent thermoplastic resin composition of the present invention contains about 0.1 to about 99 parts by weight of the acrylic resin (B) or 100 parts by weight of the phosphorus acrylic copolymer resin (A), or the phosphorus acrylic copolymer. About 0.1 to about 40 parts by weight of the acrylic impact modifier (C) may be included based on 100 parts by weight of the resin (A).
  • the transparent thermoplastic resin composition of the present invention is about 0.1 to about 99 parts by weight and about 0.1 to about 40 parts by weight of the acrylic resin (B) and the acrylic impact modifier (C) based on 100 parts by weight of the phosphorus acrylic copolymer resin (A). It may include parts by weight.
  • the phosphorus acrylic copolymer resin (A) may have a glass transition temperature (Tg) of about 80 ° C or more.
  • the phosphorus-based acrylic copolymer resin (A) may have a weight average molecular weight of about 50,000 g / mol to about 500,000 g / mol.
  • the phosphorus content of the phosphorus acrylic copolymer resin (A) may be from about 1.5% by weight to about 10% by weight.
  • the refractive index of the phosphorous acrylic copolymer resin (A) can be from about 1.480 to about 1.495 days.
  • the phosphorus acrylic copolymer resin (A) may be prepared by bulk polymerization, emulsion polymerization or suspension polymerization.
  • 3.2 mm thick specimens were made from the transparent thermoplastic resin and the flame retardance measured according to UL94 can be V2, V1, V0.
  • a specimen having a thickness of 2.5 mm was manufactured from the transparent thermoplastic resin, and the total light transmittance measured according to ASTM D1003 may be about 80% or more.
  • a specimen having a thickness of 2.5 mm was manufactured from the transparent thermoplastic resin and the pencil hardness measured according to JIS K5401 may be F to 3H, or about 180 ⁇ m to about 300 ⁇ m based on the BSP width.
  • the transparent thermoplastic resin may have a Vicat Softening Temperature of about 70 ° C. or higher measured in accordance with a 3.2 mm thick sample standard ISO R306.
  • a resin composition comprising a phosphorus-based acrylic copolymer comprising a phosphorus (meth) acrylic monomer having excellent heat resistance as a unit exhibits excellent flame retardancy, heat resistance, mechanical properties, and flow characteristics along with conventional transparency and scratch resistance. .
  • the transparent thermoplastic resin composition of the present invention comprises a phosphorus-based acrylic copolymer resin (A) comprising at least one acrylic monomer (a1) represented by the following formula (1) and at least one phosphorus-based acrylic monomer (a2) represented by the formula (2) as a unit It may be included as a base resin.
  • A phosphorus-based acrylic copolymer resin
  • R 1 is —H or —CH 3 ,
  • R 2 is — (CH 2 ) n —CH 3 , where n is an integer between 0 and 18.
  • R 1 is —H or —CH 3 ,
  • R 3 is T is an integer between 0 and 10,
  • R 4 and R 5 are —O— (CH 2 ) m —CH 3 , wherein m is an integer between 0 and 5, and at least one of R 4 and R 5 is —O—CH 3 .
  • the phosphorus acrylic copolymer resin (A) of the present invention is characterized in that it is a copolymer of at least one acrylic monomer represented by the following formula (1) and at least one phosphorous acrylic monomer mixture represented by the following formula (2) or a mixture of these copolymers.
  • Acrylic monomer (a1) of the present invention may be represented by the structure of formula (1).
  • R 1 is —H or —CH 3 ,
  • R 2 is — (CH 2 ) n —CH 3 , where n is an integer between 0 and 18.
  • the acrylic monomer (a1) represented by Formula 1 may be methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, or the like. Examples may be exemplified, but are not limited thereto, and the monomers may be used alone or in combination of two or more thereof.
  • Phosphorus-based acrylic monomer (a2) of the present invention may be represented by the following formula (2).
  • R 1 is —H or —CH 3 ,
  • R 3 is T is an integer between 0 and 10,
  • R 4 and R 5 are —O— (CH 2 ) m —CH 3 , wherein m is an integer between 0 and 5, and at least one of R 4 and R 5 is —O—CH 3 .
  • R 4 and R 5 are —O— (CH 2 ) m —CH 3 , wherein m is an integer between 0 and 5 , wherein at least one of R 4 and R 5 is —O—CH 3 Phosphorus acryl-based copolymer prepared by using the compound of Formula 2 satisfying as a unit has excellent heat resistance.
  • R 4 and R 5 are a phosphorus-based acrylic monomer that does not satisfy the structure of -O-CH 3 (e.g., both R 4 and R 5 are -O-CH 2 CH 3 in the diethyl (yloxymethyl methacryloyloxy) phosphonate) take over heat of the acrylic copolymer obtained from also comparable to that bad.
  • phosphorus-based acrylic monomer (a2) represented by the formula (2) include dimethyl (methacryloyloxymethyl) phosphonate, dimethyl (acryloyloxymethyl) phosphonate, and methyl ethyl (methacryloyloxymethyl) Phosphonate, methylethyl (acryloyloxymethyl) phosphonate, dimethyl (methacryloyloxyethyl) phosphonate, etc. may be exemplified, but is not limited thereto, and these may be used alone or in combination of two or more thereof. Can be.
  • the phosphorus acrylic copolymer resin (A) of the present invention is in addition to the acrylic monomer (a1) represented by the formula (1) and the phosphorus acrylic monomer (a2) represented by the formula (2), the phosphorus acrylic monomer represented by the following formula (3) a3) may be further included.
  • R 1 is —H or —CH 3 ,
  • R 3 is T is an integer between 0 and 10,
  • R 4 and R 5 are each independently —O— (CH 2 ) m —CH 3 (where m is an integer between 1 and 5).
  • phosphorus-based acrylic monomer (a3) represented by the formula (3) include diethyl (methacryloyloxymethyl) phosphonate, diethyl (acryloyloxymethyl) phosphonate, and diethyl (methacryloyl).
  • Oxyethyl) phosphonate, dipropyl (methacryloyloxy methyl) phosphonate, dipropyl (methacryloyloxyethyl) phosphonate, etc. may be exemplified, but is not limited thereto. It can mix and use species.
  • the phosphorus acrylic copolymer (A) is about 30 to about 90 wt% of the acrylic monomer (a1) and the phosphorus acrylic monomer of (a2), or about 10 to about 70 weight of the phosphorus acrylic monomer in which (a2) and (a3) are combined. It can be prepared by copolymerizing%. It is easy to polymerize in the content range and it can ensure appropriate flame retardancy and mechanical properties.
  • the ratio of (a2) and (a3) may be about 1: 0.05 to about 1: 5 by weight, and may be changed as necessary. It is possible to ensure appropriate heat resistance in this weight ratio range.
  • Phosphorus-based acrylic copolymer (A) prepared as described above is characterized in that the glass transition temperature is about 80 °C or more. Appropriate heat resistance can be maintained when the glass transition temperature is about 80 ° C or higher, which facilitates processing such as pressing and injection.
  • the phosphorus-based acrylic copolymer (A) of the present invention is characterized by having a weight average molecular weight of about 50,000 g / mol to about 500,000 g / mol, preferably about 50,000 g / mol to about 300,000 g / mol. In the weight average molecular weight range, the mechanical properties, flame retardancy and workability are excellent.
  • the phosphorus acrylic copolymer (A) of the present invention is characterized in that the phosphorus content is about 1.5% by weight to about 10% by weight.
  • the phosphorus content is in the above range, it is possible to express flame retardancy, and to easily polymerize to secure appropriate mechanical properties.
  • the phosphorus acrylic copolymer (A) of the present invention is characterized by having a refractive index of about 1.480 to about 1.495.
  • refractive index is included in the above range, there is a feature of excellent transparency when mixed with the acrylic resin (B) and the acrylic impact modifier (C).
  • the phosphorus acrylic copolymer (A) of the present invention can be polymerized by conventional bulk, emulsifying and suspension polymerization methods, and these methods are well known to those skilled in the art.
  • the transparent thermoplastic resin composition of the present invention may optionally contain an acrylic resin (B).
  • the above-described phosphorus acrylic copolymer resin (A) may be used alone, and the acrylic resin (B) may be used as the phosphorus acrylic copolymer resin (A). It can also be mixed and used.
  • the content for example, about 0.1 to about 99 parts by weight of the acrylic resin (B) may be used, and preferably about 10 to about 70 parts by weight, based on 100 parts by weight of the phosphorus-based acrylic copolymer resin (A). . It is possible to ensure appropriate mechanical properties and transparency in the content range.
  • the said acrylic resin (B) is a polymer, copolymer, or a mixture of 1 or more types of (meth) acrylic-type monomers.
  • the acrylic resin (B) has a linear structure and has a molecular weight of about 5,000 g / mol to about 300,000 g / mol and a refractive index of about 1.480 to about 1.495. When the acrylic resin (B) has a molecular weight and a refractive index range, it can secure appropriate mechanical properties.
  • Examples of the (meth) acrylic monomers include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl Methacrylate, phenoxy methacrylate, phenoxyethyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, and the like.
  • the (meth) acrylic monomers may be used alone or in mixture of two or more thereof.
  • the acrylic resin (B) can be prepared by conventional bulk, emulsifying and suspension polymerization methods, and these methods are well known to those skilled in the art to which the present invention pertains.
  • the transparent thermoplastic resin composition of the present invention may further include an acrylic impact modifier (C). That is, the acrylic impact modifier (C) may be added to the phosphorus acrylic copolymer resin (A) together with or alone with the above-described acrylic resin (B).
  • an acrylic impact modifier C
  • the acrylic impact modifier (C) may be added to the phosphorus acrylic copolymer resin (A) together with or alone with the above-described acrylic resin (B).
  • the acrylic impact modifier is from the group consisting of acrylic rubber monomers of butyl (meth) acrylate, hexyl (meth) acrylate, ethylhexyl (meth) acrylate, stearyl (meth) acrylate and lauryl (meth) acrylate.
  • the refractive index may be about 1.480 to 1.495.
  • the content of the rubber component made of a rubbery polymer in the overall composition of the impact modifier is preferably about 20 to 80% by weight, more preferably about 30 to 70% by weight. When in the content range of such a rubber component, it is possible to ensure appropriate mechanical properties and processability.
  • acrylic impact modifier (C) IR-441 (MRC), M-210 (KANEKA), etc., which is commercially available as a powder product having a butyl acrylate as a main raw material, may be used. .
  • Acrylic impact modifier (C) in the present invention may be selected according to the type thereof and may have a refractive index of about 1.480 to about 1.495, the content of which is about 100 parts by weight of the phosphorus-based acrylic copolymer resin (A) It is preferable to use 0.1 to about 40 parts by weight, more preferably about 1 to about 20 parts by weight. Within such a refractive index and content range, transparency, processability and appropriate mechanical properties can be simultaneously expressed.
  • the transparent thermoplastic resin composition of the present invention may further include one or more additives such as flame retardants, anti-drip agents, impact modifiers, antioxidants, plasticizers, heat stabilizers, light stabilizers, pigments, dyes, inorganic additives, antibacterial agents, and antistatic agents. And the content thereof is well known to those skilled in the art.
  • additives such as flame retardants, anti-drip agents, impact modifiers, antioxidants, plasticizers, heat stabilizers, light stabilizers, pigments, dyes, inorganic additives, antibacterial agents, and antistatic agents. And the content thereof is well known to those skilled in the art.
  • the phosphorus-based acrylic copolymer (A) of the present invention is blended with an acrylic resin (B) and / or an acrylic impact modifier (C), the transparency and scratch resistance of the acrylic resin are maintained on the main chain due to the excellent compatibility and the same refractive index. Excellent flame retardance is exhibited by the phosphorus acrylic copolymer resin into which the phosphorus acrylic monomer was introduced. In addition, it can be confirmed that the final transparent thermoplastic resin not only shows excellent heat resistance but also excellent mechanical properties and fluidity by using a phosphorus acrylic copolymer having excellent heat resistance.
  • the transparent thermoplastic resin composition of the present invention uses the transparent thermoplastic resin composition of the present invention to prepare a 2.5mm thick specimen, the total light transmittance measured according to ASTM D1003 is about 80% or more, and the pencil hardness measured according to JIS K5401 is F to 3H, excellent transparency And scratch resistance.
  • a 3.2mm thick specimen was prepared, and the flame retardancy measured according to UL94 was V2 or more (V2, V1 or V0), and the heat resistance (Vicat Softening Temperature) measured according to ISO R306 was about 70 ° C or more.
  • the present invention provides a thermoplastic resin composition capable of achieving excellent flame retardancy while simultaneously having transparency, scratch resistance, and heat resistance.
  • the transparent thermoplastic resin composition of the present invention can be produced by a known method for producing a resin composition.
  • the components of the present invention and other additives may be mixed at the same time, and then melt-extruded in an extruder to produce pellets, and the pellets may be used to produce injection and compression molded articles.
  • the transparent thermoplastic resin composition of the present invention is excellent in scratch resistance, impact strength, transparency and moldability, it can be used for molding various products. In particular, it can be applied to a wide range of exterior materials, components or automobile parts, lenses, windows of various electrical and electronic products.
  • housings of electronic and electronic products such as televisions, audio machines, washing machines, cassette players, MP3s, telephones, game machines, video players, computers, and photocopiers, automobile instrument panels, and instruments It can be applied to interior and exterior materials of automobiles such as panels, door panels, quarter panels, and wheel covers.
  • the molding method may be applied to extrusion, injection or casting, but is not limited thereto.
  • the molding method is well known to those skilled in the art to which the present invention belongs.
  • 70 wt% of methyl methacrylate monomer and 30 wt% of dimethyl (methacryloyloxymethyl) phosphonate were prepared by the conventional suspension polymerization method.
  • the glass transition temperature was 101 ° C., and the weight average molecular weight was 80,000 g / mol. Copolymers were used.
  • a glass transition temperature of 104 DEG C and a weight average molecular weight of 200,000 g / mol prepared by a conventional suspension polymerization method using 40 wt% of dimethyl (methacryloyloxymethyl) phosphonate in 60 wt% of methyl methacrylate monomer. Copolymers were used.
  • methyl methacrylate monomer 60% by weight was used in a conventional suspension polymerization method using 20% by weight of dimethyl (methacryloyloxymethyl) phosphonate and 20% by weight of diethyl (methacryloyloxymethyl) phosphonate.
  • the copolymer having a glass transition temperature of 85.5 ° C. and a weight average molecular weight of 80,000 g / mol was used.
  • methyl methacrylate monomer 60% by weight was used in a conventional suspension polymerization method using 20% by weight of dimethyl (methacryloyloxymethyl) phosphonate and 20% by weight of diethyl (methacryloyloxymethyl) phosphonate.
  • the copolymer having a glass transition temperature of 93 ° C. and a weight average molecular weight of 200,000 g / mol was used.
  • Glass transition temperature 79 ° C. prepared by conventional suspension polymerization method, using 30% by weight of diethyl (methacryloyloxymethyl) phosphonate in 70% by weight of methyl methacrylate monomer, and weight average molecular weight of 80,000 g / mol Phosphorus copolymer was used.
  • the acrylic impact modifier used Kaneka's M-210, a multilayer structure in which acrylate monomers were grafted with acrylic monomers and styrene monomers.
  • Haze and TT of the specimens were measured on a 2.5 mm thick specimen by Nippon Denshoku's Haze meter NDH 2000 instrument by the evaluation method specified in ASTM D1003. Haze values (%) were calculated as diffuse transmitted light (DF) / total transmitted light (TT). The higher the total transmitted light (TT), the better the transparency. TT was expressed in%.
  • MI Meltflow Index
  • the impact strength was evaluated for specimens that were notched to 1/4 "Izod specimens by the evaluation method specified in ASTM D256, and the results are shown in Table 1 below.
  • the impact strength was kgf ⁇ cm / cm. Indicated.
  • Flexural modulus was measured according to the method specified in ASTM D790 and the results are shown in Table 1 below. Flexural modulus is expressed in kgf / cm 2 .
  • the scratch resistance was measured by a pencil hardness test and a BSP (Ball-type Scratch Profile) test by the evaluation method specified in JIS K5401 using a 2.5 mm thick specimen.
  • the BSP test applies a scratch of 10-20 mm length to the surface of the resin at a constant load and speed, and then measures the scratch profile through the surface profile analyzer to determine scratch width and scratch depth, which is a measure of scratch resistance. It is a method for evaluating scratch resistance from depth, scratch range and scratch area.
  • the surface profile analyzer which measures the scratch profile, is both contact and non-contact, and provides a profile of the scratch through a surface scan with a metal stylus tip with a diameter of 1 to 2 ⁇ m for contact, and three-dimensional for non-contact.
  • Optical analyzers such as microscopes and AFM.
  • the tip of the metal stylus was 2 ⁇ m in diameter. From the measured scratch profile, the scratch width ( ⁇ m), which is a measure of scratch resistance, was determined, and the scratch resistance increases as the scratch width decreases.
  • the applied load was 1000 g
  • the scratch speed was 75 mm / min
  • the metal tip generating the scratch was a spherical tip with a diameter of 0.7 mm.
  • Pencil hardness was measured under 500g load conditions by the evaluation method specified in JIS K5401, the results are shown in Table 1 below, evaluated in the same steps as below and the scratch resistance increases toward the right.
  • Examples 1 to 9 and Comparative Examples 1 to 7 in Table 1 show the transparency and scratch resistance of existing acrylic resins (see Comparative Example 7) when phosphorus-based acrylic copolymer resins are used alone or in combination with acrylic resins. It can be seen that the flame retardancy can be achieved while maintaining.
  • the phosphorus-based acrylic copolymer is prepared by applying the phosphorus-based acrylic monomer having excellent heat resistance alone or in combination of two or more as in Examples 1 to 9 of the present invention, the transparency of the existing acrylic resin is maintained while maintaining the flame resistance and the heat resistance or scratch resistance.
  • the mechanical and mechanical properties are also not significantly reduced. In this case, if the content of the phosphorus-based acrylic monomer is reduced (see Example 3) or the molecular weight of the copolymer is increased (see Examples 4 and 5), the fluidity decreases slightly, but the heat resistance becomes higher.
  • Example 1 to 9 in which phosphorus-based acrylic copolymer is applied, the fluidity is greatly increased compared to the acrylic resin alone, but the impact property is slightly decreased due to the brittle characteristics of the copolymer, but the content of the impact modifier is increased as in Example 2 or Example 4 or When the molecular weight of the copolymer is increased as shown in 5, the width of the flow improvement is slightly lowered, but it can still express excellent impact resistance and express high impact resistance.
  • the refractive index is 1.48 to 1.495, which is similar to the existing acrylic resin and the refractive index can be mixed together (see Example 8), and the acrylic impact modifier is also used together. It can be seen that transparency is maintained even when applied (see Examples 1 to 8).
  • thermoplastic resin composition according to the present invention has transparency and scratch resistance. Flame retardancy, heat resistance, mechanical properties and flow properties are excellent. Therefore, it can be usefully applied to various exterior materials and components, especially electrical and electronic products that require these properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

내열성이 우수한 인계 아크릴 공중합체를 포함하는 수지 조성물이 제공된다. 본 발명의 수지 조성물은 기존의 우수한 투명성, 내스크래치성과 함께 우수한 난연성 내열성, 기계적 물성 및 유동 특성을 보인다.

Description

난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
본 발명은 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물에 관한 것이다.
열가소성 수지는 유리나 금속에 비해 비중이 낮으며 우수한 성형성 및 내충격성을 가지는 등 물성이 우수하다. 최근 전기·전자 제품의 저원가, 대형화, 경량화 추세에 따라 열가소성 수지를 이용한 플라스틱 제품이 기존의 유리나 금속의 영역을 빠르게 대체하여 전기·전자 제품에서 자동차 부품에까지 사용 영역을 넓히고 있다.
특히 최근 전기·전자 제품의 고박막화와 디자인 컨셉 변화에 따라 투명 수지에 대한 수요가 증가하고 있으며, 이에 따라 기존 투명 수지에 내스크래치성이나 난연성과 같은 기능성을 부여한 기능성 투명 소재에 대한 요구가 증가하고 있다. 또한, 내스크래치성이 우수한 수지의 개발은 외장재 산업에서 중요하게 요구되는 측면이다.
일반적으로 플라스틱의 내스크래치성을 향상시키기 위하여 최종 성형된 수지 표면 위에 유-무기 하이브리드 물질을 도핑한 후, 열 또는 자외선을 사용하여 표면상에 경화시킴으로써 수지 표면의 내스크래치성을 향상시키는 하드코트법이 광범위하게 사용되고 있다. 하지만 이러한 하드코팅의 경우, 코팅 공정이라는 추가 공정이 필요하므로, 공정상 많은 시간이 소요되고, 경비가 상승될 뿐만 아니라, 환경적인 문제를 야기할 수 있는 문제가 있다. 따라서,하드코팅없이 내스크래치성을 발현할 수 있는 무도장 수지에 대한 요구가 있다.
한편,투명 난연 소재로 폴리카보네이트 수지에 난연제를 적용한 시스템이 사용되어 왔다.
폴리카보네이트 수지는 기계적 강도와 난연성이 매우 탁월하며 투명성 및 내후성이 탁월할 뿐 아니라, 내충격성, 열안정성, 자기 소화성, 치수안정성 등이 우수한 엔지니어링 플라스틱으로 전기·전자 제품, 자동차 부품에 광범위하게 사용되고 있다.또한, 렌즈와 같이 투명성과 내충격성이 동시에 요구되는 부분에서 유리를 대체할 수 있지만, 내스크래치성이 매우 취약하다는 단점이 있다. 난연 폴리카보네이트 수지의 내스크래치성은 연필경도로 B~F 정도 수준으로 내스크래치 수지 H~3H에 비해 크게 떨어지는 물성을 보인다.
한편, 기존의 투명 내스크래치 소재로는 폴리메틸메타크릴레이트(PMMA)로 대표되는 아크릴계 수지가 있다. 특히 PMMA의 경우 우수한 투명성, 내후성 및 기계적 강도 외에도 내스크래치성이 매우 탁월하게 평가되나 내충격성과 난연성은 떨어진다. 이를 보강하기 위해 PMMA에 인계 난연제를 첨가하는 것은 우수한 난연성을 획득하기 어려우며 기타 내열성 및 충격성 등의 물성도 저하될 수 있는 문제가 있다. 더불어,현재까지 투명 아크릴계 수지 단독으로 난연화된 보고는 없는 실정이다.
앞에서 살펴본 바와 같이 전기·전자 제품의 외장재로서 수지의 사용이 확대됨에 따라 기존의 기계적 강도 및 내열성 등의 우수한 물성을 유지하면서도 투명성, 내스크래치성 및 난연성을 모두 보이는 투명 난연 내스크래치 수지에 대한 요구가 있지만 현재까지 제품으로 개발되어 있지는 않은 상황이다.
본 발명의 목적은 기존의 우수한 투명성 및 내스크래치성을 유지하면서 난연성과 내열성이 우수한 투명 열가소성 수지 조성물을 제공하는 것이다. 
또한,상기 특성과 함께 우수한 기계적 물성 및 유동성을 가지는 투명 열가소성 수지 조성물을 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명의 일 측면에 따르면,
하기 화학식 1로 표시되는 하나 이상의 아크릴 단량체 (a1) 및 하기 화학식 2로 표시되는 하나 이상의 인계 아크릴 단량체 (a2)를 단위체로 포함하는, 인계 아크릴계 공중합체 수지(A)를 기초 수지로 포함하는, 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물을 제시할 수 있다.
[화학식 1]
Figure PCTKR2010009538-appb-I000001
상기 식에서 R1은 -H 또는 -CH3이고,
R2는 -(CH2)n-CH3(단, n은 0~18 사이의 정수임)이다.
[화학식 2]
Figure PCTKR2010009538-appb-I000002
상기 식에서 R1은 -H 또는 -CH3이고,
R3
Figure PCTKR2010009538-appb-I000003
이며, t는 0~10 사이의 정수이고,
R4 및 R5는 -O-(CH2)m-CH3(단, m은 0~5 사이의 정수임)이되, R4 및 R5 중 적어도 어느 하나는 -O-CH3이다.
또한, 본 발명의 다른 일 측면에 따르면, 상기한 투명 열가소성 수지 조성물로부터 형성된 성형품을 제시할 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 투명 열가소성 수지 조성물은 인계 아크릴 공중합체 수지 (A) 100 중량부에 대하여 아크릴계 수지 (B) 를 약 0.1 내지 약 99 중량부 포함하거나, 인계 아크릴 공중합체 수지 (A) 100 중량부에 대하여 아크릴계 충격보강제 (C)를 약 0.1 내지 약 40 중량부 포함할 수 있다. 또는, 본 발명의 투명 열가소성 수지 조성물은 인계 아크릴 공중합체 수지 (A) 100 중량부에 대하여 아크릴계 수지 (B) 및 아크릴계 충격보강제 (C)를 각각 약 0.1 내지 약 99 중량부 및 약 0.1 내지 약 40 중량부 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 인계 아크릴계 공중합체 수지 (A)는 유리전이온도(Tg)가 약 80℃ 이상일 수 있다. 
본 발명의 일 실시예에 따르면, 상기 인계 아크릴 공중합체 수지 (A)는 중량평균분자량이 약 50,000g/mol 내지 약 500,000g/mol일 수 있다. 
본 발명의 일 실시예에 따르면, 상기 인계 아크릴 공중합체 수지 (A)의 인 함량은 약 1.5중량% 내지 약 10중량%일 수 있다. 
본 발명의 일 실시예에 따르면, 상기 인계 아크릴 공중합체 수지 (A)의 굴절률이 약 1.480 내지 약 1.495일 수 있다.
본 발명의 일 실시예에 따르면, 상기 인계 아크릴 공중합체 수지 (A)는 괴상중합, 유화중합 또는 현탁중합으로 제조될 수 있다.
본 발명의 일 실시예에 따르면,상기 투명 열가소성 수지로 두께 3.2 mm의 시편을 제조하여 UL94에 따라 측정한 난연도가 V2, V1, V0일 수 있다.
본 발명의 일 실시예에 따르면, 상기 투명 열가소성 수지로 두께 2.5mm의 시편을 제조하여 ASTM D1003에 따라 측정한 전광선 투과율이 약 80% 이상일 수 있다.
본 발명의 일 실시예에 따르면, 상기 투명 열가소성 수지로 두께 2.5mm의 시편을 제조하여 JIS K5401에 따라 측정한 연필경도가 F 내지 3H이거나,BSP 너비 기준 약 180㎛ 내지 약 300㎛일 수 있다.
본 발명의 일 실시예에 따르면, 상기 투명 열가소성 수지는 두께 3.2mm 시편 기준 ISO R306에 따라 측정한 내열도(Vicat Softening Temperature)가 약 70℃ 이상일 수 있다. 
본 발명에 따라 내열성이 우수한 인계 (메타)아크릴계 모노머를 단위체로 포함하여 이루어지는 인계 아크릴 공중합체를 포함하는 수지 조성물은 기존의 우수한 투명성, 내스크래치성과 함께 우수한 난연성, 내열성,기계적 물성 및 유동특성을 보인다.
이하, 본 발명을 상세히 설명한다.
본 발명의 투명 열가소성 수지 조성물은 하기 화학식 1로 표시되는 하나 이상의 아크릴 단량체 (a1) 및 하기 화학식 2로 표시되는 하나 이상의 인계 아크릴 단량체 (a2)를 단위체로 포함하는 인계 아크릴계 공중합체 수지(A)를 기초 수지로 포함할 수 있다.
[화학식 1]
Figure PCTKR2010009538-appb-I000004
상기 식에서 R1은 -H 또는 -CH3이고,
R2는 -(CH2)n-CH3(단, n은 0~18 사이의 정수임)이다.
[화학식 2]
Figure PCTKR2010009538-appb-I000005
상기 식에서 R1은 -H 또는 -CH3이고,
R3
Figure PCTKR2010009538-appb-I000006
이며, t는 0~10 사이의 정수이고,
R4 및 R5는 -O-(CH2)m-CH3(단, m은 0~5 사이의 정수임)이되, R4 및 R5 중 적어도 어느 하나는 -O-CH3이다.
아래에서 각 구성성분에 대해 좀더 살펴본다.
(A) 인계 아크릴계 공중합체 수지
본 발명의 인계 아크릴 공중합체 수지 (A)는 하기 화학식 1로 표기되는 하나 이상의 아크릴계 단량체 및 하기 화학식 2로 표기되는 하나 이상의 인계 아크릴 단량체 혼합물의 공중합체 또는 이들 공중합체의 혼합물인 것을 특징으로 한다.
본 발명의 아크릴계 단량체 (a1)은 하기 화학식 1의 구조로 표시될 수 있다.
[화학식 1]
Figure PCTKR2010009538-appb-I000007
상기 식에서 R1은 -H 또는 -CH3이고,
R2는 -(CH2)n-CH3(단, n은 0~18 사이의 정수임)이다.
상기 화학식 1로 표시되는 아크릴계 단량체 (a1)은 구체적으로 메틸 (메타)아크릴레이트, 에틸 (메타)아크릴레이트, 프로필 (메타)아크릴레이트, 부틸 (메타)아크릴레이트, 헥실 (메타)아크릴레이트 등을 예시할 수 있으나, 이에 제한되는 것은 아니며, 상기 단량체를 단독 혹은 2종 이상을 혼합하여 사용할 수 있다.
본 발명의 인계 아크릴 단량체 (a2)는 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2010009538-appb-I000008
상기 식에서 R1은 -H 또는 -CH3이고,
R3
Figure PCTKR2010009538-appb-I000009
이며, t는 0~10 사이의 정수이고,
R4 및 R5는 -O-(CH2)m-CH3(단, m은 0~5 사이의 정수임)이되, R4 및 R5 중 적어도 어느 하나는 -O-CH3이다.
여기서, R4 및 R5가 -O-(CH2)m-CH3(단, m은 0~5 사이의 정수임)이되, R4 및 R5 중 적어도 어느 하나가 -O-CH3인 구조를 만족하는 화학식 2의 화합물을 단위체로 하여 제조되는 인계 아크릴계 공중합체는 내열도가 우수하다. 이는 화학식 2에서 그외 구조식 부분은 동일하고 R4 및 R5 중 적어도 어느 하나가 -O-CH3인 구조를 만족하지 않는 인계 아크릴 단량체(예를 들어, R4 및 R5가 모두 -O-CH2CH3인 디에틸(메타크릴로일옥시메틸)포스포네이트)로부터 얻어지는 인계 아크릴 공중합체의 내열도가 좋지 않은 것과 비견된다.
상기 화학식 2로 표기되는 인계 아크릴 단량체 (a2)의 구체적인 예로서는 디메틸(메타크릴로일옥시메틸)포스포네이트, 디메틸(아크릴로일옥시메틸)포스포네이트, 메틸에틸(메타크릴로일옥시메틸)포스포네이트, 메틸에틸(아크릴로일옥시메틸)포스포네이트, 디메틸(메타크릴로일옥시에틸)포스포네이트 등을 예시할 수 있으나, 이에 제한되는 것은 아니며 이들을 단독 혹은 2종 이상 혼합하여 사용할 수 있다.
또한, 본 발명의 인계 아크릴 공중합체 수지 (A)는 상기 화학식 1로 표기되는 아크릴계 단량체 (a1), 화학식 2로 표기되는 인계 아크릴 단량체 (a2)에 더하여, 하기 화학식 3으로 표기되는 인계 아크릴 단량체 (a3)을 더 포함할 수 있다.
[화학식 3]
Figure PCTKR2010009538-appb-I000010
상기 식에서 R1은 -H 또는 -CH3이고,
R3
Figure PCTKR2010009538-appb-I000011
이며, t는 0~10 사이의 정수이고,
R4 및 R5는 각각 독립적으로 -O-(CH2)m-CH3(단, m은 1~5 사이의 정수)이다.
상기 화학식 3으로 표기되는 인계 아크릴 단량체 (a3)의 구체적인 예로서는 디에틸(메타크릴로일옥시메틸)포스포네이트, 디에틸(아크릴로일옥시메틸)포스포네티트, 디에틸(메타크릴로일옥시에틸)포스포네이트, 디프로필(메타크릴로일옥시 메틸)포스포네이트, 디프로필(메타크릴로일옥시에틸)포스포네이트 등을 예시할 수 있으나, 이에 제한되는 것은 아니며 이들을 단독 혹은 2종 이상 혼합하여 사용할 수 있다.
상기 인계 아크릴 공중합체 (A)는 아크릴계 단량체 (a1) 약 30 내지 약 90 중량%와, (a2)의 인계 아크릴 단량체, 혹은 (a2) 및 (a3)를 합한 인계 아크릴 단량체 약 10 내지 약 70 중량%를 공중합하여 제조할 수 있다. 상기 함량 범위에서 중합이 용이하며 적절한 난연성 및 기계적 물성을 확보할 수 있다.
인계 아크릴 단량체 (a3)가 포함되는 경우 (a2) 및 (a3)의 비율은 중량비로 약 1:0.05 내지 약 1:5일 수 있으며, 필요에 따라 달리 변경하는 것도 가능하다. 이러한 중량비 범위에서 적절한 내열성 확보가 가능하다.
상기와 같이 제조된 인계 아크릴 공중합체 (A)는 유리전이온도가 약 80℃ 이상인 것을 특징으로 한다. 유리전이온도가 약 80℃ 이상일 때 적절한 내열도를 유지할 수 있어 압/사출 등의 가공이 용이하다.
또한, 본 발명의 인계 아크릴 공중합체 (A)는 중량평균분자량이 약 50,000g/mol 내지 약 500,000g/mol 바람직하게는 약 50,000g/mol 내지 약 300,000g/mol임을 특징으로 한다. 상기 중량평균분자량 범위에서 기계적 물성, 난연성 및 가공성이 우수한 특징이 있다.
또한, 본 발명의 인계 아크릴 공중합체 (A)는 인 함량이 약 1.5 중량% 내지 약 10 중량%인 것을 특징으로 한다. 인 함량이 상기 범위일 때, 난연성을 발현할 수 있으며, 중합이 용이하여 적절한 기계적 물성을 확보할 수 있다.
본 발명의 인계 아크릴 공중합체 (A)는 굴절률이 약 1.480 내지 약 1.495인 것을 특징으로 한다. 굴절률이 상기 범위에 포함될 때 아크릴 수지 (B) 및 아크릴계 충격보강제 (C)와의 혼용시 투명성이 우수한 특징이 있다.
본 발명의 인계 아크릴 공중합체 (A)는 통상적인 괴상, 유화 및 현탁중합법에 의해 중합될 수 있으며, 이들 방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에게 널리 알려져 있다.
(B) 아크릴계 수지
본 발명의 투명 열가소성 수지 조성물은 아크릴계 수지 (B)를 선택적으로 포함할 수 있다.
즉, 본 발명의 투명 열가소성 수지 조성물의 기초 수지로는 앞서 기술한 인계 아크릴 공중합체 수지 (A)를 단독으로 사용할 수도 있고, 상기 인계 아크릴 공중합체 수지 (A)에, 당해 아크릴계 수지 (B)를 혼합하여 사용할 수도 있다. 그 함량으로는 예를 들어, 인계 아크릴 공중합체 수지 (A) 100 중량부에 대하여 아크릴계 수지 (B) 약 0.1 내지 약 99 중량부가 사용될 수 있으며, 바람직하게는 약 10 내지 약 70 중량부가 사용될 수 있다. 상기 함량 범위에서 적절한 기계적 물성 및 투명성을 확보할 수 있다.
상기 아크릴계 수지 (B)는 1종 이상의 (메타)아크릴계 단량체의 중합체, 공중합체 또는 이들의 혼합물이다.
상기 아크릴계 수지 (B)는 선형 구조로 분자량이 약 5,000g/mol 내지 약 300,000g/mol의 값을 가지며 굴절률이 약 1.480 내지 약 1.495인 것으로 특징으로 한다. 상기 아크릴계 수지 (B)는 분자량 및 굴절률 범위를 가질 때 적절한 기계적 물성을 확보할 수 있다.
상기 (메타)아크릴계 단량체의 예로는 메틸 메타크릴레이트, 에틸 메타크릴레이트, n-프로필 메타크릴레이트, n-부틸 메타크릴레이트, 헥실 메타크릴레이트, 사이클로헥실 메타크릴레이트, 페닐 메타크릴레이트, 벤질 메타크릴레이트, 페녹시 메타크릴레이트, 페녹시에틸 메타크릴레이트, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 2-에틸헥실 아크릴레이트, 2-에틸헥실메타 아크릴레이트 등이 있으며, 이에 제한되는 것은 아니다. 상기 (메타)아크릴계 단량체는 단독 또는 2종 이상의 혼합물로 사용될 수 있다.
상기 아크릴계 수지 (B)는 통상적인 괴상, 유화 및 현탁 중합법에 의해 제조될 수 있으며, 이들 방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에게 널리 알려져 있다.
(C) 아크릴계 충격보강제
본 발명의 투명 열가소성 수지 조성물은 아크릴계 충격보강제 (C)를 더 포함할 수 있다. 즉, 아크릴계 충격보강제 (C)는 상술한 아크릴계 수지 (B)와 함께 또는 단독으로, 인계 아크릴 공중합체 수지 (A)에 첨가될 수 있다.
상기 아크릴계 충격보강제는 부틸(메타)아크릴레이트, 헥실(메타)아크릴레이트, 에틸헥실(메타)아크릴레이트, 스테아릴(메타)아크릴레이트 및 라우릴(메타)아크릴레이트의 아크릴계 고무 단량체로 이루어진 군으로부터 선택되는 1종 이상의 고무 단량체를 중합한 후에 그라프트 공중합이 가능한 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 프로필(메타)아크릴레이트, 부틸(메타)아크릴레이트, 스티렌, 알파-메틸 스티렌, 알킬 치환 스티렌, 아크릴로니트릴, 메타크릴로니트릴, 무수말레인산 및 알킬 또는 페닐 핵치환 말레이미드로 이루어지는 군으로부터 선택되는 1종 이상의 단량체를 고무질 중합체에 그라프트시켜 제조되는 다층 구조의 그라프트 공중합체로, 굴절률이 약 1.480~1.495일 수 있다.
상기 충격보강제 전체 조성 중 고무질 중합체로 이루어진 고무성분의 함량은 약 20 ~ 80 중량%가 바람직하며, 더욱 바람직하게는 약 30 ~ 70 중량%이다. 이러한 고무성분의 함량 범위일 때, 적절한 기계적 물성 및 가공성을 확보할 수 있다.
본 발명의 일 실시예에서 아크릴계 충격보강제 (C)로는 부틸 아크릴레이트를 주원료로 하는 다층 구조의 파우더 제품으로 시판되고 있는 IR-441(MRC社), M-210(KANEKA社) 등을 사용할 수 있다.
본 발명에서의 아크릴계 충격보강제 (C)는 용도에 따라 그 종류를 선택할 수 있고 약 1.480 내지 약 1.495의 굴절률을 가질 수 있으며, 그 함량은 상기 인계 아크릴 공중합체 수지 (A) 100 중량부에 대하여 약 0.1 내지 약 40 중량부를 사용하는 것이 바람직하며, 더욱 바람직하게는 약 1 내지 약 20 중량부이다. 이러한 굴절률 및 함량 범위에서 투명성, 가공성 및 적절한 기계적 물성을 동시에 발현할 수 있다.
또한, 본 발명의 투명 열가소성 수지 조성물은 용도에 따라 난연제, 적하방지제, 충격보강제, 산화방지제, 가소제, 열안정제, 광안정제, 안료, 염료, 무기물 첨가제, 항균제 및 정전기 방지제 등의 첨가제를 하나 이상 더 포함할 수 있으며, 그 함량은 당업자에게 널리 알려져 있다.
본 발명의 인계 아크릴 공중합체 (A)를 아크릴계 수지 (B) 및/또는 아크릴계 충격보강제 (C)와 블렌딩하면, 우수한 상용성 및 동일한 굴절률로 인하여 아크릴 수지의 투명성 및 내스크래치성은 유지하면서, 주쇄에 인계 아크릴 모노머가 도입된 인계 아크릴 공중합체 수지에 의해 우수한 난연성을 보이게 된다. 또한 내열성이 우수한 인계 아크릴 공중합체의 사용으로 최종 투명 열가소성 수지가 우수한 내열성을 보일 뿐만 아니라 기계적 물성 및 유동성 또한 우수함을 확인할 수 있다.
즉, 본 발명의 투명 열가소성 수지 조성물을 이용하여 두께 2.5mm의 시편을 제조하여 ASTM D1003에 따라 측정한 전광선 투과율이 약 80% 이상이며 JIS K5401에 따라 측정한 연필경도가 F 내지 3H로서, 우수한 투명성과 내스크래치성을 보였다. 또한 두께 3.2mm의 시편을 제조하여 UL94에 따라 측정한 난연도가 V2 이상(V2, V1 또는 V0)이며, ISO R306에 따라 측정된 내열도(Vicat Softening Temperature)가 약 70℃ 이상임을 확인하였다.
따라서, 본 발명에 의하여 투명성, 내스크래치성, 내열성을 동시에 가지면서 우수한 난연성을 달성할 수 있는 열가소성 수지 조성물이 제공됨을 알 수 있다.
한편, 아크릴계 충격보강제 (C)를 상기 수지 조성물에 더 첨가하는 경우 우수한 충격성도 함께 확보할 수 있다.
본 발명의 투명 열가소성 수지 조성물은 수지 조성물을 제조하는 공지의 방법으로 제조될 수 있다. 예를 들면, 본 발명의 구성성분과 기타 첨가제들을 동시에 혼합한 후에, 압출기 내에서 용융 압출하여 펠렛 형태로 제조하고 상기 펠렛을 이용하여 사출 및 압축 성형품을 제조할 수 있다.
본 발명의 투명 열가소성 수지 조성물은 내스크래치성, 충격강도, 투명성 및 성형성이 우수하므로 여러 가지 제품의 성형에 사용될 수 있다. 특히, 각종 전기·전자 제품의 외장재, 부품 또는 자동차 부품, 렌즈, 유리창 등에 광범위하게 적용 가능하다.
예를 들어, 본 발명의 투명 열가소성 수지 조성물을 성형하여 텔레비전, 오디오, 세탁기, 카세트 플레이어, MP3, 전화기, 게임기, 비디오 플레이어, 컴퓨터, 복사기 등의 전기·전자제품의 하우징 및 자동차 계기판, 인스트루먼터 패널, 도어 패널, 쿼터 패널, 휠 덮개 등의 자동차 내·외장재에 적용될 수 있다.
상기 성형방법은 압출, 사출 혹은 캐스팅 등이 적용될 수 있으며, 이에 제한되는 것이 아니다. 또한 상기 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에게 널리 알려져 있다.
이하에서는 구체적인 실시예를 들어 본 발명에 관하여 더욱 상세하게 설명할 것이나, 이들 실시예는 단지 설명을 위한 것으로 본 발명의 보호 범위를 제한하고자 하는 것은 아니다.
하기의 실시예 및 비교 실시예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 인계 아크릴 공중합체 수지
(A1) 인계 아크릴 공중합체-1
메틸메타크릴레이트 단량체 60 중량%에 디메틸(메타크릴로일옥시메틸)포스포네이트 40 중량%를 이용하여 통상의 현탁중합법에 의해 제조된 유리전이온도 96℃, 중량평균분자량 80,000g/mol인 공중합체를 사용하였다.
(A2) 인계 아크릴 공중합체-2
메틸메타크릴레이트 단량체 70 중량%에 디메틸(메타크릴로일옥시메틸)포스포네이트 30 중량%를 이용하여 통상의 현탁중합법에 의해 제조된 유리전이온도 101℃, 중량평균분자량 80,000g/mol인 공중합체를 사용하였다.
(A3) 인계 아크릴 공중합체-3
메틸메타크릴레이트 단량체 60 중량%에 디메틸(메타크릴로일옥시메틸)포스포네이트 40 중량%를 이용하여 통상의 현탁중합법에 의해 제조된 유리전이온도 101℃, 중량평균분자량 150,000g/mol인 공중합체를 사용하였다.
(A4) 인계 아크릴 공중합체-4
메틸메타크릴레이트 단량체 60 중량%에 디메틸(메타크릴로일옥시메틸)포스포네이트 40 중량%를 이용하여 통상의 현탁중합법에 의해 제조된 유리전이온도 104℃, 중량평균분자량 200,000g/mol인 공중합체를 사용하였다.
(A5) 인계 아크릴 공중합체-5
메틸메타크릴레이트 단량체 60 중량%에 디메틸(메타크릴로일옥시메틸)포스포네이트 20 중량% 및 디에틸(메타크릴로일옥시메틸)포스포네이트 20 중량%를 이용하여 통상의 현탁중합법에 의해 제조된 유리전이온도 85.5℃, 중량평균분자량 80,000g/mol인 공중합체를 사용하였다.
(A6) 인계 아크릴 공중합체-6
메틸메타크릴레이트 단량체 60 중량%에 디메틸(메타크릴로일옥시메틸)포스포네이트 20 중량% 및 디에틸(메타크릴로일옥시메틸)포스포네이트 20 중량%를 이용하여 통상의 현탁중합법에 의해 제조된 유리전이온도 93℃, 중량평균분자량 200,000g/mol인 공중합체를 사용하였다.
(A7) 내열도가 낮은 인계 아크릴 공중합체-7
메틸메타크릴레이트 단량체 60 중량%에 디에틸(메타크릴로일옥시메틸)포스포네이트 40 중량%를 이용하여 통상의 현탁중합법에 의해 제조된 유리전이온도 73℃, 중량평균분자량 80,000g/mol인 공중합체를 사용하였다.
(A8) 내열도가 낮은 인계 아크릴 공중합체-8
메틸메타크릴레이트 단량체 70 중량%에 디에틸(메타크릴로일옥시메틸)포스포네이트 30 중량%를 이용하여 통상의 현탁중합법에 의해 제조된 유리전이온도 79℃, 중량평균분자량 80,000g/mol인 공중합체를 사용하였다.
(A9) 내열도가 낮은 인계 아크릴 공중합체-9
메틸메타크릴레이트 단량체 60 중량%에 디에틸(메타크릴로일옥시메틸)포스포네이트 40 중량%를 이용하여 통상의 현탁 중합법에 의해 제조된 유리전이온도 78℃, 중량평균분자량 200,000g/mol인 공중합체를 사용하였다.
(B) 아크릴계 수지
메틸메타크릴레이트 단량체 97.5 중량%에 메틸아크릴레이트 2.5 중량%를 사용하여 통상의 현탁 중합법에 의해 제조된, 굴절률 1.49, 유리전이온도 110℃, 중량평균분자량 80,000g/mol인 선형 공중합체를 사용하였다.
(C) 아크릴계 충격보강제
아크릴계 충격보강제는 부틸아크릴레이트 고무에 아크릴 단량체와 스티렌 단량체가 그래프트된 다층구조인 Kaneka社의 M-210을 사용하였다.
실시예 1∼9 및 비교예 1~7
상기 각 구성성분을 하기 표 1에 기재된 바와 같은 함량으로 조성하고, 용융, 혼련 압출하여 펠렛을 제조하였다. 이때, 압출은 L/D=29, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 6시간 건조 후 6 Oz 사출기에서 사출하여 시편을 제조하였다.
시편의 Haze와 전투과광(TT)은 두께 2.5mm 시편에 대해 Nippon Denshoku사의 Haze meter NDH 2000 장비를 이용하여 ASTM D1003에 규정된 평가방법에 의해 측정하였다. Haze 값(%)은 확산 투과광(DF)/전 투과광(TT)으로 계산하였다. 전 투과광(TT)이 높을수록 투명성이 우수한 것으로 평가된다. 전투과광(TT)은 %로 나타내었다.
시편의 Meltflow Index(MI)는 ASTM D1238에 규정된 방법으로 220℃, 10kg 조건에서 측정되었으며, 그 결과는 표 1에 나타내었다. 시편의 Meltflow Index(MI)는 g/10min으로 나타내었다.
충격 강도는 ASTM D256에 규정된 평가방법에 의하여 1/4" 아이조드 시편에 노치(Notch)를 만들지 않은 시편에 대해 평가하였으며 그 결과는 하기 표 1에 나타내었다. 충격 강도는 kgf·cm/cm으로 나타내었다.
굴곡 탄성율(FM)은 ASTM D790에 규정된 방법에 따라 측정하였으며 그 결과는 하기의 표 1에 나타내었다. 굴곡 탄성률은 kgf/cm2으로 나타내었다.
내열도는 두께 3.2mm 시편을 이용하여 ISO R306에 규정된 평가방법으로 5kg 조건에서 Vicat Softening Temperature (VST)(℃)로 측정하였으며, 그 결과는 표 1에 나타내었다.
난연성은 두께 3.2mm 난연 시편을 이용하여 UL94 규격에 의하여 HB, V2, V1, V0으로 평가하였으며 그 결과는 하기 표 1에 나타내었다.
내스크래치성은 두께 2.5mm 시편을 이용하여 JIS K5401에 규정된 평가방법에 의한 연필경도 테스트와 BSP (Ball-type Scratch Profile) 테스트에 의해 측정하였다.
BSP 테스트는 수지 표면에 일정 하중과 속도로 10∼20mm의 길이의 스크래치를 가한 뒤 가해진 스크래치의 프로파일을 표면 프로파일 분석기를 통해 측정하여 내스크래치성의 척도가 되는 스크래치 너비(Scratch width), 스크래치 깊이(Scratch depth), 스크래치 범위(Scratch range), 스크래치 면적(Scratch area)으로부터 내스크래치성을 평가하는 방법이다. 스크래치 프로파일을 측정하는 표면 프로파일 분석기는 접촉식과 비 접촉식이 모두 가능하고, 접촉식의 경우 지름 1∼2 ㎛의 금속 스타일러스 팁을 이용한 표면 스캔을 통해 스크래치의 프로파일을 제공하며, 비 접촉식의 경우 삼차원 현미경과 AFM과 같은 광학 분석기를 포함한다. 본 발명에서는 Ambios사(社)의 접촉식 표면 프로파일 분석기(XP-1)가 사용되었고, 금속 스타일러스의 팁은 지름 2㎛인 것을 사용하였다. 측정된 스크래치 프로파일로부터 내스크래치성의 척도가 되는 스크래치 너비(㎛)를 결정하였으며, 스크래치 너비가 감소할수록 내스크래치성은 증가된다. 스크래치 측정 시 가해진 하중은 1000g, 스크래치 속도는 75mm/min이고, 스크래치를 발생시키는 금속 팁은 0.7mm 지름의 구형의 팁이 이용되었다.
연필 경도는 JIS K5401에 규정된 평가 방법에 의해 500g 하중 조건에서 측정되었으며, 그 결과는 하기 표 1에 나타내었고, 하기에서와 같은 단계로 평가되며 오른쪽으로 갈수록 내 스크래치성은 증가된다.
[ ... < 4B < 3B < 2B < B < HB < F < H < 2H < 3H < ... ]
표 1
Figure PCTKR2010009538-appb-T000001
상기 표 1에서 실시예 1 ~ 9, 비교실시예 1 ~ 7을 보면 인계 아크릴 공중합체 수지를 단독으로 또는 아크릴 수지와 혼용하여 적용한 경우 기존 아크릴 수지 (비교실시예 7 참조)의 투명성과 내스크래치성을 유지하면서도 난연성을 달성할 수 있음을 확인할 수 있다.
비교실시예 1 ~ 5에서와 같이 내열성이 낮은 인계 모노머를 단독으로 적용한 경우에는 투명성과 난연성은 달성되며 우수한 유동성을 보이나 기존 아크릴 수지 대비 내스크래치성 및 기계적 물성이 저하되며 내열성 또한 크게 저하되는 경향을 보인다. 이때 인계 아크릴 단량체 함량을 감소시키거나 (비교실시예 3 참조) 공중합체 분자량을 증가시키게 되면 (비교실시예 4 참조) 내열성은 소폭 증가하나 여전히 낮은 내열성으로 인하여 전기·전자 제품의 외장재로 적용하기는 어려움이 있다.
본 발명의 실시예 1 ~ 9과 같이 내열성이 우수한 인계 아크릴 모노머를 단독 또는 2종 이상 함께 적용하여 인계 아크릴 공중합체를 제조한 경우 기존 아크릴 수지의 투명성과 유지하면서 난연성을 달성하게 되고 내열성이나 내스크래치성, 기계적 물성도 크게 저하되지 않게 된다. 또한 이때 인계 아크릴 단량체 함량을 감소시키거나 (실시예 3 참조) 공중합체의 분자량을 증가시키게 되면 (실시예 4 및 5 참조) 유동성은 소폭 감소하나 내열성은 더욱 높아지게 된다.
인계 아크릴 공중합체를 적용한 실시예 1 ~ 9의 경우 아크릴 수지 단독 대비 유동성은 크게 증가하나 공중합체의 brittle한 특성으로 인하여 충격성이 소폭 저하되게 되나 실시예 2와 같이 충격보강제 함량 증가나 실시예 4 또는 5와 같이 공중합체의 분자량이 증가하게 되면 유동 개선폭은 소폭 낮아지나 여전히 우수한 유동성을 보이면서도 높은 내충격성을 발현할 수 있다.
실시예 6 및 7과 같이 내열성이 낮은 인계 아크릴 모노머를 내열성이 높은 인계 아크릴 모노머와 함께 혼용하여 적용한 경우에는 내열성과 내스크래치성 저하폭은 감소시켜 상대적으로 우수한 내열성과 내스크래치성을 보이면서도 우수한 유동성을 보이는 특성을 보이게 된다.
본 발명의 인계 아크릴 공중합체를 단독으로 적용한 경우 (실시예 9 참조)에도 굴절률이 1.48 내지 1.495로 기존 아크릴 수지와 굴절률이 유사하여 함께 혼용할 수 있고 (실시예 8 참조), 아크릴계 충격보강제도 함께 적용된 경우 (실시예 1~8 참조)에도 투명성은 유지되는 것을 확인할 수 있다.
본 발명은 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.
본 발명에 따른 열가소성 수지 조성물은 투명성, 내스크래치성. 난연성, 내열성, 기계적 물성 및 유동특성이 우수한 장점이 있다. 따라서 이러한 물성이 요구되는 다양한 외장재 및 부품, 특히 전기·전자제품에 유용하게 적용될 수 있다.

Claims (22)

  1. 하기 화학식 1로 표시되는 하나 이상의 아크릴 단량체 (a1) 및 하기 화학식 2로 표시되는 하나 이상의 인계 아크릴 단량체 (a2)를 단위체로 포함하는 인계 아크릴계 공중합체 수지(A)를 기초 수지로 포함하는 투명 열가소성 수지 조성물.
    [화학식 1]
    Figure PCTKR2010009538-appb-I000012
    상기 식에서 R1은 -H 또는 -CH3이고,
    R2는 -(CH2)n-CH3(단, n은 0~18 사이의 정수임)임
    [화학식 2]
    Figure PCTKR2010009538-appb-I000013
    상기 식에서 R1은 -H 또는 -CH3이고,
    R3
    Figure PCTKR2010009538-appb-I000014
    이며, t는 0~10 사이의 정수이고,
    R4 및 R5는 -O-(CH2)m-CH3(단, m은 0~5 사이의 정수임)이되, R4 및 R5 중 적어도 어느 하나는 -O-CH3
  2. 제1항에 있어서, 상기 인계 아크릴계 공중합체 수지 (A)는 하기 화학식 3으로 표시되는 하나 이상의 인계 아크릴 단량체 (a3)을 단위체로 더 포함하는 투명 열가소성 수지 조성물.
    [화학식 3]
    Figure PCTKR2010009538-appb-I000015
    상기 식에서 R1은 -H 또는 -CH3이고,
    R3
    Figure PCTKR2010009538-appb-I000016
    이며, t는 0~10 사이의 정수이고,
    R4 및 R5는 각각 독립적으로 -O-(CH2)m-CH3(단, m은 1~5 사이의 정수임)임
  3. 제1항 또는 제2항에 있어서, 아크릴계 수지 (B)를 더 포함하는 투명 열가소성 수지 조성물.
  4. 제1항 또는 제2항에 있어서, 아크릴계 충격보강제 (C)를 더 포함하는 투명 열가소성 수지 조성물.
  5. 제1항 또는 제2항에 있어서, 아크릴계 수지 (B) 및 아크릴계 충격보강제 (C)를 더 포함하는 투명 열가소성 수지 조성물.
  6. 제3항에 있어서, 상기 아크릴계 수지 (B)는 인계 아크릴 공중합체 수지 (A) 100 중량부에 대하여 약 0.1 내지 약 99 중량부 포함되는, 투명 열가소성 수지 조성물.
  7. 제4항에 있어서, 상기 아크릴계 충격보강제 (C)는 인계 아크릴계 공중합체 수지 (A) 100 중량부에 대하여 약 0.1 내지 약 40 중량부 포함되는, 투명 열가소성 수지 조성물.
  8. 제5항에 있어서, 상기 아크릴계 수지 (B) 및 아크릴계 충격보강제 (C)는 인계 아크릴 공중합체 수지 (A) 100 중량부에 대하여 각각 약 0.1 내지 약 99 중량부 및 약 0.1 내지 약 40 중량부 포함되는, 투명 열가소성 수지 조성물.
  9. 제1항에 있어서, 상기 인계 아크릴 공중합체 수지 (A)는 유리전이온도(Tg)가 약 80℃ 이상인 투명 열가소성 수지 조성물.
  10. 제1항에 있어서, 상기 인계 아크릴 공중합체 수지 (A)는 중량평균분자량이 약 50,000g/mol 내지 약 500,000g/mol인 투명 열가소성 수지 조성물.
  11. 제1항에 있어서, 상기 인계 아크릴 공중합체 수지 (A)는 인 함량이 약 1.5중량% 내지 약 10중량%인 투명 열가소성 수지 조성물.
  12. 제1항에 있어서, 상기 인계 아크릴 공중합체 수지 (A)는 굴절률이 약 1.48 내지 약 1.495인 투명 열가소성 수지 조성물.
  13. 제1항에 있어서, 상기 인계 아크릴 단량체 (a2)는 디메틸(메타크릴로일옥시메틸)포스포네이트, 디메틸(아크릴로일옥시메틸)포스포네이트, 메틸에틸(메타크릴로일옥시메틸)포스포네이트, 메틸에틸(아크릴로일옥시메틸)포스포네이트 및 디메틸(메타크릴로일옥시에틸)포스포네이트로 이루어진 군으로부터 선택되어진 하나 이상인, 투명 열가소성 수지 조성물.
  14. 제2항에 있어서, 상기 인계 아크릴 단량체 (a3)는 디에틸(메타크릴로일옥시메틸)포스포네이트, 디에틸(아크릴로일옥시메틸)포스포네티트, 디에틸(메타크릴로일옥시에틸)포스포네이트, 디프로필(메타크릴로일옥시메틸)포스포네이트, 디프로필(메타크릴로일옥시에틸)포스포네이트로 이루어진 군으로부터 선택되어진 하나 이상인, 투명 열가소성 수지 조성물.
  15. 제3항에 있어서, 상기 아크릴계 수지 (B)는 메틸 메타크릴레이트, 에틸 메타크릴레이트, n-프로필 메타크릴레이트, n-부틸 메타크릴레이트, 헥실 메타크릴레이트, 사이클로헥실 메타크릴레이트, 페닐 메타크릴레이트, 벤질 메타크릴레이트, 페녹시 메타크릴레이트, 페녹시에틸 메타크릴레이트, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 2-에틸헥실 아크릴레이트, 및 2-에틸헥실메타 아크릴레이트로 이루어진 군에서 선택되어진 1종 이상의 (메타)아크릴계 단량체의 중합체, 공중합체 또는 이들의 혼합물이며, 중량평균분자량이 약 5,000g/mol~300,000g/mol, 굴절률이 약 1.480~1.495인, 투명 열가소성 수지 조성물.
  16. 제4항에 있어서, 상기 아크릴계 충격보강제 (C)는 부틸(메타)아크릴레이트, 헥실(메타)아크릴레이트, 에틸헥실(메타)아크릴레이트, 스테아릴(메타)아크릴레이트 및 라우릴(메타)아크릴레이트의 아크릴계 고무 단량체로 이루어진 군으로부터 선택되는 1종 이상의 고무 단량체를 중합한 후에 그라프트 공중합이 가능한 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 프로필(메타)아크릴레이트, 부틸(메타)아크릴레이트, 스티렌, 알파-메틸 스티렌, 알킬 치환 스티렌, 아크릴로니트릴, 메타크릴로니트릴, 무수말레인산 및 알킬 또는 페닐 핵치환 말레이미드로 이루어지는 군으로부터 선택되는 1종 이상의 단량체를 고무질 중합체에 그라프트시켜 제조되는 다층 구조의 그라프트 공중합체로, 굴절률이 약 1.480~1.495인, 투명 열가소성 수지 조성물.
  17. 제1항에 있어서, 두께 2.5mm 시편에 대해 ASTM D1003에 규정된 측정방법으로 측정한 전투과광이 약 80% 이상인 투명 열가소성 수지 조성물.
  18. 제1항에 있어서, 두께 2.5mm 시편에 대해 내스크래치성이 JIS K5401에 규정된 연필경도 기준 F 내지 3H 및 BSP 너비 기준 약 180 내지 약 300 ㎛인 투명 열가소성 수지 조성물.
  19. 제1항에 있어서, 두께 3.2mm 시편 기준 ISO R306에 규정된 평가방법에 의해 내열성(Vicat Softening Temperature)이 약 70℃ 이상인 투명 열가소성 수지 조성물.
  20. 제1항에 있어서, 두께 3.2mm 시편 기준 UL94에 의해 측정한 난연도가 V2, V1 및 V0 중 어느 하나를 만족하는 투명 열가소성 수지 조성물.
  21. 제1항에 있어서, 난연제, 항균제, 이형제, 열안정제, 산화방지제, 광안정제, 상용화제, 염료, 무기물 첨가제, 계면활성제, 핵제, 커플링제, 충전제, 가소제, 충격보강제, 혼화제, 착색제, 안정제, 활제, 정전기방지제, 안료, 방염제 및 이들의 혼합물로 이루어진 군으로부터 선택되어진 1종 이상의 첨가제를 더 포함하는, 투명 열가소성 수지 조성물.
  22. 제1항에 의한 투명 열가소성 수지 조성물로부터 성형된 성형품.
PCT/KR2010/009538 2010-07-28 2010-12-29 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물 WO2012015128A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10855400.7A EP2599832A4 (en) 2010-07-28 2010-12-29 TRANSPARENT THERMOPLASTIC RESIN COMPOSITION WITH SUPERIOR FLAME AND HEAT RESISTANCE
US13/740,335 US9587058B2 (en) 2010-07-28 2013-01-14 Transparent thermoplastic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100072920A KR101293787B1 (ko) 2010-07-28 2010-07-28 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
KR10-2010-0072920 2010-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/740,335 Continuation-In-Part US9587058B2 (en) 2010-07-28 2013-01-14 Transparent thermoplastic resin composition

Publications (1)

Publication Number Publication Date
WO2012015128A1 true WO2012015128A1 (ko) 2012-02-02

Family

ID=45530304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009538 WO2012015128A1 (ko) 2010-07-28 2010-12-29 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물

Country Status (4)

Country Link
US (1) US9587058B2 (ko)
EP (1) EP2599832A4 (ko)
KR (1) KR101293787B1 (ko)
WO (1) WO2012015128A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005491B2 (en) 2011-06-29 2015-04-14 Cheil Industries Inc. Photosensitive resin composition for color filter and color filter using the same
US9127157B2 (en) 2010-11-05 2015-09-08 Cheil Industries Inc. Flame-retardant and scratch-resistant polycarbonate resin composition
US9340670B2 (en) 2010-12-14 2016-05-17 Cheil Industries Inc. Flame-retardant polycarbonate resin composition with scratch resistance
US9422386B2 (en) 2014-10-14 2016-08-23 International Business Machines Corporation Flame retardant acrylic/PLA copolymer
US9587058B2 (en) 2010-07-28 2017-03-07 Samsung Sdi Co., Ltd. Transparent thermoplastic resin composition
US9864272B2 (en) 2012-12-07 2018-01-09 Samsung Sdi Co., Ltd. Photosensitive resin composition for color filter, and color filter using the same
US10035877B1 (en) 2017-03-08 2018-07-31 International Business Machines Corporation Matrix-bondable lactide monomors for polylactide synthesis
US10072121B1 (en) 2017-03-08 2018-09-11 International Business Machines Corporation Bottlebrush polymers derived from poly(methylidenelactide)
US10202489B2 (en) 2017-03-08 2019-02-12 International Business Machines Corporation Lactide copolymers and ring-opened lactide copolymers
US10249860B2 (en) 2014-11-05 2019-04-02 Lg Chem, Ltd. Cartridge frame having double sidewall structure and battery module having the same
US10570252B2 (en) 2017-03-08 2020-02-25 International Business Machines Corporation Flame retardant lactide monomors for polylactide synthesis

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104485A1 (ko) 2012-12-28 2014-07-03 제일모직 주식회사 열가소성 수지 조성물 및 이를 포함한 성형품
JP6576931B2 (ja) * 2014-08-12 2019-09-18 株式会社クラレ 共重合体および成形体
CN104861108B (zh) * 2015-06-15 2016-08-31 东莞市项华电子科技有限公司 阻燃性核壳型丙烯酸酯类树脂涂料与胶黏剂的制备方法
JP6656430B2 (ja) 2016-04-01 2020-03-04 エルジー・ケム・リミテッド バッテリモジュール
US10957904B2 (en) 2019-06-04 2021-03-23 Robert Bosch Gmbh Solid state battery cathode material
CN111171234B (zh) * 2020-02-13 2021-10-01 中国科学技术大学 一种聚合型阻燃增效相容剂及其制备方法和应用
KR20230080014A (ko) * 2021-11-29 2023-06-07 현대자동차주식회사 흑색도 및 내스크래치성이 향상된 열가소성 수지 조성물 및 이를 포함하는 성형품

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030347A (en) * 1960-04-25 1962-04-17 Rohm & Haas Dialkylphosphonoalkyl acrylate and methacrylate copolymers
KR20110077881A (ko) * 2009-12-30 2011-07-07 제일모직주식회사 투명성 및 난연성이 우수한 인계 아크릴계 공중합체 수지 및 그 조성물

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL285020A (ko) 1961-11-02
US3932321A (en) * 1973-06-18 1976-01-13 Japan Synthetic Rubber Company Limited Flame-retardant polymer composition
US3985831A (en) 1975-06-30 1976-10-12 Borg-Warner Corporation Flame retardant graft polymer compositions prepared from phosphinyl-substituted acrylonitriles
KR800001251B1 (ko) 1975-09-06 1980-10-25 노구치 에이지 난연성 아크릴계 섬유의 개선된 제조 방법
JPS5789613A (en) 1980-11-26 1982-06-04 Kanegafuchi Chem Ind Co Ltd Flame-retardant acrylic synthetic fiber
EP0319971A3 (en) 1987-12-10 1991-04-03 Ppg Industries, Inc. Water-based coating compositions containing aluminium pigments and antigassing agents
JPH0270712A (ja) * 1988-09-06 1990-03-09 Mitsubishi Rayon Co Ltd アクリル系架橋重合体
DE69132630T2 (de) 1990-06-20 2002-02-07 Dai Nippon Printing Co., Ltd. Farbfilter und dessen herstellungsverfahren
JP2968349B2 (ja) 1991-02-01 1999-10-25 日本ペイント株式会社 多色表示装置の製造方法
US5612360A (en) 1992-06-03 1997-03-18 Eli Lilly And Company Angiotensin II antagonists
US5310808A (en) 1992-07-30 1994-05-10 Arco Chemical Technology, L.P. Flame-retardant thermoplastic copolymers based on vinyl phosphonate derivatives grafted onto rubber
KR950011163B1 (ko) 1992-11-26 1995-09-28 제일합섬주식회사 액정디스플레이용 칼라레지스트(colorresist)의 제조방법
US5876895A (en) 1992-12-24 1999-03-02 Sumitomo Chemical Company, Limited Photosensitive resin composition for color filter
WO1994014892A1 (en) 1992-12-24 1994-07-07 Sumitomo Chemical Company, Limited Photosensitive resin composition for color filter
JP3455915B2 (ja) 1993-09-24 2003-10-14 Jsr株式会社 カラーフィルタ用感放射線性組成物およびカラーフィルタ
EP0663410A1 (en) 1994-01-18 1995-07-19 General Electric Company Graft copolymers useful as flame retardant additives
DE69612630T2 (de) 1995-01-25 2001-10-11 Nippon Paint Co., Ltd. Fotoempfindliche Harzzusammensetzung und Verfahren zur Herstellung von Feinstrukturen damit
TW406214B (en) 1995-03-16 2000-09-21 Hitachi Chemical Co Ltd Production of color filter
JPH08262707A (ja) 1995-03-24 1996-10-11 Sekisui Finechem Co Ltd 光硬化性着色樹脂組成物
DE19613067C2 (de) 1996-04-01 1998-12-03 Clariant Gmbh Phosphormodifizierte Epoxidharzmischungen aus Epoxidharzen, phosphorhaltigen Verbindungen und einem Härter, ein Verfahren zu deren Herstellung und ihre Verwendung
JP3824285B2 (ja) 1997-03-14 2006-09-20 富士写真フイルム株式会社 感放射線性着色組成物
JPH1192964A (ja) 1997-09-16 1999-04-06 Toyo Ink Mfg Co Ltd シャドーマスク用活性エネルギー線硬化性エッチングレジスト
JP3775919B2 (ja) 1998-03-13 2006-05-17 大塚化学ホールディングス株式会社 難燃性樹脂、その組成物及びその製造法
US6096852A (en) 1998-05-12 2000-08-01 General Electric Company UV-stabilized and other modified polycarbonates and method of making same
JP2000075501A (ja) 1998-08-28 2000-03-14 Hitachi Chem Co Ltd 現像液、これを用いた着色画像の製造法及びカラーフィルターの製造法
JP4382225B2 (ja) 1999-02-19 2009-12-09 コダックグラフィックコミュニケーションズ株式会社 感光性組成物及び感光性印刷版
DE60020762T2 (de) 1999-02-25 2006-05-04 Dai Nippon Printing Co., Ltd. Lichtempfindliche Harzzusammensetzung, Farbfilter und dafür geeignetes Copolymerharz
US6673873B1 (en) * 1999-08-25 2004-01-06 Cyro Industries Electrostatic-dissipative multipolymer compositions
JP2002244287A (ja) 2001-02-13 2002-08-30 Mitsubishi Chemicals Corp 感光性平版印刷版及び画像形成方法
EP1792941B1 (en) 2004-09-17 2011-05-18 Toray Industries, Inc. Resin composition and molded article comprising the same
JP4866010B2 (ja) 2005-03-15 2012-02-01 帝人化成株式会社 難燃性芳香族ポリカーボネート樹脂組成物
DE102006006167A1 (de) 2005-04-06 2006-10-12 Lanxess Deutschland Gmbh Formmassen auf Basis eines thermoplastischen Polycarbonats
KR100854238B1 (ko) 2005-04-22 2008-08-25 주식회사 엘지화학 알칼리 가용성 수지 및 이를 포함하는 감광성 수지 조성물
GB2427867A (en) 2005-07-01 2007-01-10 Mohsen Zakikhani Flame retardant polymer emulsion
KR101306153B1 (ko) 2006-08-25 2013-09-10 주식회사 동진쎄미켐 감광성 수지 조성물
KR100817563B1 (ko) 2006-11-13 2008-03-27 제일모직주식회사 내스크래치 난연성 열가소성 수지 조성물
KR100832518B1 (ko) 2006-12-22 2008-05-26 제일모직주식회사 인계 난연성 공중합체 및 이를 이용한 난연성 열가소성수지 조성물
GB2454369B (en) 2007-03-30 2012-04-11 Cheil Ind Inc Flameproof copolymer and flame retardant thermoplastic resin composition using thereof
KR20080089122A (ko) 2007-03-30 2008-10-06 제일모직주식회사 난연성 공중합체 및 이를 이용한 난연성 열가소성 수지조성물
JP2008298938A (ja) 2007-05-30 2008-12-11 Konica Minolta Medical & Graphic Inc ポジ型感光性平版印刷版材料
KR100904068B1 (ko) 2007-09-04 2009-06-23 제일모직주식회사 컬러필터용 감광성 수지 조성물 및 이를 이용한 컬러필터
JP2009091458A (ja) 2007-10-09 2009-04-30 Hitachi Chem Co Ltd 樹脂組成物、これを用いた感光性フィルム、レジストパターンの形成方法及びプリント配線板
KR101062923B1 (ko) 2007-10-15 2011-09-06 주식회사 엘지화학 비닐인산 중합체 및 이의 제조방법
KR100885819B1 (ko) 2007-12-18 2009-02-26 제일모직주식회사 굴절률이 우수한 분지형 아크릴계 공중합체 및 그 제조방법
KR101004040B1 (ko) 2007-12-18 2010-12-31 제일모직주식회사 상용성이 향상된 난연 내스크래치 열가소성 수지 조성물
KR20090066242A (ko) 2007-12-18 2009-06-23 제일모직주식회사 박리액 내성이 우수한 감광성 수지 조성물 및 이를 이용한 컬러필터
KR100944388B1 (ko) 2008-03-21 2010-02-26 제일모직주식회사 상용성이 향상된 난연 열가소성 수지 조성물
JP4737236B2 (ja) 2008-06-10 2011-07-27 ソニー株式会社 難燃性ポリカーボネート樹脂組成物
CN101727003B (zh) 2008-10-24 2012-07-18 第一毛织株式会社 用于彩色滤光片的光敏树脂组合物以及使用其制备的彩色滤光片
KR100979927B1 (ko) 2008-11-03 2010-09-03 제일모직주식회사 신규한 (메타)아크릴레이트계 공중합체 및 이를 이용한 내스크래치성 열가소성 수지 조성물
KR101188349B1 (ko) 2008-12-17 2012-10-05 제일모직주식회사 투명성 및 내스크래치성이 향상된 폴리카보네이트계 수지 조성물
KR101170383B1 (ko) 2008-12-26 2012-08-01 제일모직주식회사 내스크래치성 및 유동성이 우수한 폴리카보네이트계 수지 조성물
KR20100098882A (ko) 2009-03-02 2010-09-10 제일모직주식회사 컬러필터용 감광성 수지 조성물 및 이를 이용한 컬러필터
CN101497630B (zh) 2009-03-09 2011-10-26 安徽恒远化工有限公司 含磷丙烯酸酯单体及超支化聚合物阻燃剂及其制备方法
JP5561881B2 (ja) 2009-05-13 2014-07-30 ザ ルブリゾル コーポレイション リンゴ酸誘導体を含む潤滑組成物
KR20110078238A (ko) 2009-12-30 2011-07-07 제일모직주식회사 내스크래치성이 우수한 난연성 열가소성 수지 조성물
CN101805567B (zh) 2010-03-12 2012-10-31 北京化工大学 一种结合磷型阻燃丙烯酸酯压敏胶的制备方法
KR101293787B1 (ko) 2010-07-28 2013-08-06 제일모직주식회사 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
KR20120048384A (ko) 2010-11-05 2012-05-15 제일모직주식회사 난연 아크릴계 공중합체 및 그의 제조 방법
KR101351614B1 (ko) 2010-11-05 2014-02-17 제일모직주식회사 난연 내스크래치성 폴리카보네이트 수지 조성물
KR101400193B1 (ko) 2010-12-10 2014-05-28 제일모직 주식회사 컬러필터용 감광성 수지 조성물 및 이를 이용한 컬러필터
KR101374360B1 (ko) 2010-12-14 2014-03-18 제일모직주식회사 난연 내스크래치성 폴리카보네이트 수지 조성물
KR101411004B1 (ko) * 2010-12-23 2014-06-23 제일모직주식회사 아크릴계 공중합체 수지 조성물
KR20130002789A (ko) 2011-06-29 2013-01-08 제일모직주식회사 컬러필터용 감광성 수지 조성물 및 이를 이용한 컬러필터

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030347A (en) * 1960-04-25 1962-04-17 Rohm & Haas Dialkylphosphonoalkyl acrylate and methacrylate copolymers
KR20110077881A (ko) * 2009-12-30 2011-07-07 제일모직주식회사 투명성 및 난연성이 우수한 인계 아크릴계 공중합체 수지 및 그 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PRICE D. ET AL: "Flame Retarding Poly(methyl methacrylate) with Phosphorous-co ntaining Compounds: Comparison of an Additive with a Reactive Approach", POLYM. DEGRAD. STAB., vol. 74, 2001, pages 441 - 447, XP027291513 *
PRICE D. ET AL: "Ignition Temperatures and Pyrolysis of a Flame-retardant Methyl Methacrylate Copolymer Containing Diethyl (methacryloyloxymethyl) phosphonate Units", POLYM. INT., vol. 49, 5 October 2000 (2000-10-05), pages 1164 - 1168, XP055068918 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9587058B2 (en) 2010-07-28 2017-03-07 Samsung Sdi Co., Ltd. Transparent thermoplastic resin composition
US9127157B2 (en) 2010-11-05 2015-09-08 Cheil Industries Inc. Flame-retardant and scratch-resistant polycarbonate resin composition
US9340670B2 (en) 2010-12-14 2016-05-17 Cheil Industries Inc. Flame-retardant polycarbonate resin composition with scratch resistance
US9005491B2 (en) 2011-06-29 2015-04-14 Cheil Industries Inc. Photosensitive resin composition for color filter and color filter using the same
US9864272B2 (en) 2012-12-07 2018-01-09 Samsung Sdi Co., Ltd. Photosensitive resin composition for color filter, and color filter using the same
US9422386B2 (en) 2014-10-14 2016-08-23 International Business Machines Corporation Flame retardant acrylic/PLA copolymer
US10249860B2 (en) 2014-11-05 2019-04-02 Lg Chem, Ltd. Cartridge frame having double sidewall structure and battery module having the same
US10072121B1 (en) 2017-03-08 2018-09-11 International Business Machines Corporation Bottlebrush polymers derived from poly(methylidenelactide)
US10202489B2 (en) 2017-03-08 2019-02-12 International Business Machines Corporation Lactide copolymers and ring-opened lactide copolymers
US10035877B1 (en) 2017-03-08 2018-07-31 International Business Machines Corporation Matrix-bondable lactide monomors for polylactide synthesis
US10570252B2 (en) 2017-03-08 2020-02-25 International Business Machines Corporation Flame retardant lactide monomors for polylactide synthesis
US10590236B2 (en) 2017-03-08 2020-03-17 International Business Machines Corporation Lactide copolymers and ring-opened lactide copolymers
US10954338B2 (en) 2017-03-08 2021-03-23 International Business Machines Corporation Flame retardant lactide monomors for polylactide synthesis
US11267936B2 (en) 2017-03-08 2022-03-08 International Business Machines Corporation Lactide copolymers and ring-opened lactide copolymers

Also Published As

Publication number Publication date
KR20120031532A (ko) 2012-04-04
US9587058B2 (en) 2017-03-07
US20130131258A1 (en) 2013-05-23
EP2599832A1 (en) 2013-06-05
KR101293787B1 (ko) 2013-08-06
EP2599832A4 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
WO2012015128A1 (ko) 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2013094898A1 (ko) 열가소성 수지 조성물 및 그 성형품
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2012060515A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2012081761A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2016080675A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2016076503A1 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 이를 이용한 제품
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
WO2012015109A1 (ko) 내스크래치성과 내충격성이 우수한 난연 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
WO2012060514A1 (ko) (메타)아크릴계 난연 공중합체 및 그의 제조 방법
WO2014119827A9 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 성형품
WO2013094889A1 (ko) 난연 아크릴계 공중합체, 이를 포함하는 수지 조성물 및 그 성형품
WO2019103519A2 (ko) 수지 조성물
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2011081317A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2013094801A1 (ko) 열가소성 (메타)아크릴레이트 공중합체, 이를 포함하는 수지 조성물 및 그 성형품
WO2013100303A1 (ko) 고광택 폴리카보네이트계 수지 조성물 및 그 성형품
WO2012091295A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2016060333A1 (ko) 투명성 및 기계적 강도가 우수한 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2014181921A1 (ko) 투명 폴리카보네이트 조성물 및 이를 포함한 성형품
WO2020130400A1 (ko) 열가소성 수지 조성물
WO2015016464A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2020091371A1 (ko) 열가소성 수지 조성물
WO2018080250A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010855400

Country of ref document: EP