WO2021020741A1 - 열가소성 수지 조성물 및 이로부터 형성된 성형품 - Google Patents

열가소성 수지 조성물 및 이로부터 형성된 성형품 Download PDF

Info

Publication number
WO2021020741A1
WO2021020741A1 PCT/KR2020/008464 KR2020008464W WO2021020741A1 WO 2021020741 A1 WO2021020741 A1 WO 2021020741A1 KR 2020008464 W KR2020008464 W KR 2020008464W WO 2021020741 A1 WO2021020741 A1 WO 2021020741A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
weight
vinyl
based copolymer
Prior art date
Application number
PCT/KR2020/008464
Other languages
English (en)
French (fr)
Inventor
이진성
정현택
권영철
오현지
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to JP2021573511A priority Critical patent/JP2022542503A/ja
Priority to US17/617,399 priority patent/US20220259421A1/en
Publication of WO2021020741A1 publication Critical patent/WO2021020741A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/068Copolymers with monomers not covered by C08L33/06 containing glycidyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article formed therefrom. More specifically, the present invention relates to a thermoplastic resin composition excellent in impact resistance, flame retardancy, heat resistance, fluidity, and appearance properties, and a molded article formed therefrom.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • thermoplastic resin composition excellent in impact resistance, flame retardancy, heat resistance, fluidity, and appearance properties without such problems.
  • the background technology of the present invention is disclosed in Korean Patent Application Publication No. 2007-0004726.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in impact resistance, flame retardancy, heat resistance, fluidity, and appearance characteristics.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition comprises about 100 parts by weight of a rubber-modified aromatic vinyl-based copolymer resin; About 5 to about 20 parts by weight of a vinyl-based copolymer containing an epoxy group; About 0.5 to about 5 parts by weight of maleic anhydride-aromatic vinyl-based copolymer; About 8 to about 40 parts by weight of glass fibers; And about 10 to about 40 parts by weight of a phosphorus-based flame retardant, wherein the weight ratio of the vinyl-based copolymer including the epoxy group and the maleic anhydride-aromatic vinyl-based copolymer is about 1: 0.05 to about 1: 0.5. To do.
  • the rubber-modified aromatic vinyl-based copolymer resin comprises about 10 to about 50% by weight of a rubber-modified vinyl-based graft copolymer; And about 50 to about 90% by weight of an aromatic vinyl-based copolymer resin.
  • the aromatic vinyl-based copolymer resin may be a polymer of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer.
  • the vinyl-based copolymer containing an epoxy group may be a polymerization of (meth)acrylate containing an epoxy group, an aromatic vinyl-based monomer, and a monomer copolymerizable with the aromatic vinyl-based monomer.
  • the vinyl-based copolymer containing an epoxy group may include about 0.01 to about 10 mol% of (meth)acrylate containing an epoxy group.
  • the maleic anhydride-aromatic vinyl-based copolymer may be a polymer of about 5 to about 40% by weight of maleic anhydride and about 60 to about 95% by weight of an aromatic vinylic monomer.
  • the total amount of the vinyl-based copolymer containing the epoxy group and the maleic anhydride-aromatic vinyl-based copolymer and the weight ratio of the glass fiber may be about 1: 0.5 to about 1: 4. .
  • the total amount of the vinyl-based copolymer including the epoxy group and the maleic anhydride-aromatic vinyl-based copolymer and the weight ratio of the phosphorus-based flame retardant may be about 1:1 to about 1:2.5. .
  • the thermoplastic resin composition may have a notched Izod impact strength of a 1/8" thick specimen measured according to ASTM D256 of about 4 to about 10 kgf ⁇ cm/cm.
  • thermoplastic resin composition may have a flame retardancy of V-2 or more of a 0.75 mm thick specimen measured according to UL-94 standards, and a flame retardance of a 2.5 mm thick specimen of V-2 or more. I can.
  • the thermoplastic resin composition may have a Vicat softening temperature of about 80 to about 100° C. measured under a 5 kg load and 50° C./hr condition according to ISO 306.
  • the thermoplastic resin composition has a melt-flow index (MI) of about 5 to about 15 g/measured at 200° C. and 5 kg load condition according to ASTM D1238. It could be 10 minutes.
  • MI melt-flow index
  • thermoplastic resin composition may have a glossiness of about 90 to about 95% measured at a 60° angle according to ASTM D523.
  • thermoplastic resin composition may satisfy all of the following formulas 1 to 3:
  • Iz is the notched Izod impact strength of a 1/8" thick specimen measured according to ASTM D256;
  • Tv is the Vicat softening temperature measured under 5 kg load and 50°C/hr conditions according to ISO 306;
  • MI is a melt flow index measured at 200°C and 5 kg load condition according to ASTM D1238.
  • Another aspect of the invention relates to a molded article.
  • the molded article is characterized in that it is formed from the thermoplastic resin composition according to any one of the above 1 to 14.
  • the present invention has the effect of the invention to provide a thermoplastic resin composition excellent in impact resistance, flame retardancy, heat resistance, fluidity, appearance characteristics, and the like, and a molded article formed therefrom.
  • thermoplastic resin composition includes (A) a rubber-modified aromatic vinyl-based copolymer resin; (B) a vinyl-based copolymer containing an epoxy group; (C) maleic anhydride-aromatic vinyl-based copolymer; (D) glass fibers; And (E) a phosphorus-based flame retardant.
  • the rubber-modified aromatic vinyl-based copolymer resin of the present invention may include (A1) a rubber-modified vinyl-based graft copolymer and (A2) an aromatic vinyl-based copolymer resin.
  • the rubber-modified vinyl-based graft copolymer according to an embodiment of the present invention may be obtained by graft polymerization of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer in a rubbery polymer.
  • the rubber-modified vinyl-based graft copolymer can be obtained by graft polymerization of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer in a rubbery polymer.
  • the monomer mixture has processability and Graft polymerization can be performed by further including a monomer imparting heat resistance.
  • the polymerization can be performed by a known polymerization method such as emulsion polymerization and suspension polymerization.
  • the rubber-modified vinyl-based graft copolymer may form a core (rubber polymer)-shell (copolymer of a monomer mixture) structure, but is not limited thereto.
  • the rubber polymer includes a diene-based rubber such as polybutadiene, poly(styrene-butadiene), and poly(acrylonitrile-butadiene), and a saturated rubber hydrogenated to the diene-based rubber, isoprene rubber, and 2 to carbon atoms.
  • a diene-based rubber such as polybutadiene, poly(styrene-butadiene), and poly(acrylonitrile-butadiene
  • a saturated rubber hydrogenated to the diene-based rubber isoprene rubber, and 2 to carbon atoms.
  • 10 alkyl (meth)acrylate rubber, a copolymer of alkyl (meth)acrylate and styrene having 2 to 10 carbon atoms, ethylene-propylene-diene monomer terpolymer (EPDM), and the like can be exemplified. These may be applied alone or in combination of two or more.
  • the rubbery polymer may have an average particle size of about 0.05 to about 6 ⁇ m, for example about 0.15 to about 4 ⁇ m, specifically about 0.25 to about 3.5 ⁇ m.
  • the thermoplastic resin composition may have excellent impact resistance and appearance properties.
  • the average particle size (z-average) of the rubbery polymer (rubber particle) can be measured using a light scattering method in a latex state.
  • the rubbery polymer latex is filtered through a mesh to remove coagulation generated during the rubbery polymer polymerization, poured a solution of 0.5 g of latex and 30 ml of distilled water into a 1,000 ml flask, and filled with distilled water to prepare a sample. , 10 ml of a sample is transferred to a quartz cell, and the average particle size of the rubbery polymer can be measured with a light scattering particle size meter (malvern, nano-zs).
  • the content of the rubbery polymer may be about 20 to about 70% by weight, for example, about 25 to about 60% by weight of the total 100% by weight of the rubber-modified vinyl-based graft copolymer, and the monomer mixture (aromatic The content of the vinyl-based monomer and the vinyl cyanide-based monomer) may be about 30 to about 80% by weight, for example, about 40 to about 75% by weight of the total 100% by weight of the rubber-modified vinyl-based graft copolymer.
  • the thermoplastic resin composition may have excellent impact resistance and appearance properties.
  • the aromatic vinyl-based monomer may be graft-copolymerized with the rubbery polymer, and styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, Monochlorostyrene, dichlorostyrene, dibromostyrene, vinyl naphthalene, etc. can be illustrated. These can be used alone or in combination of two or more.
  • the content of the aromatic vinyl-based monomer may be about 10 to about 90% by weight, for example, about 40 to about 90% by weight of 100% by weight of the monomer mixture. In the above range, the processability and impact resistance of the thermoplastic resin composition may be excellent.
  • the vinyl cyanide monomer is copolymerizable with the aromatic vinyl, and includes acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, etc. Can be illustrated. These can be used alone or in combination of two or more. For example, acrylonitrile, methacrylonitrile, etc. can be used.
  • the content of the vinyl cyanide-based monomer may be about 10 to about 90% by weight, for example, about 10 to about 60% by weight of 100% by weight of the monomer mixture.
  • the thermoplastic resin composition may have excellent chemical resistance and mechanical properties.
  • the monomer for imparting processability and heat resistance may include (meth)acrylic acid, maleic anhydride, N-substituted maleimide, and the like, but is not limited thereto.
  • the content may be about 15% by weight or less, for example, about 0.1 to about 10% by weight of 100% by weight of the monomer mixture. In the above range, it is possible to impart processability and heat resistance to the thermoplastic resin composition without deteriorating other physical properties.
  • the rubber-modified vinyl-based graft copolymer is a copolymer (g-ABS) in which an aromatic vinyl-based styrene monomer and an acrylonitrile monomer, a vinyl cyanide-based compound are grafted onto a butadiene-based rubbery polymer, butyl acrylic
  • g-ASA acrylate-styrene-acrylonitrile graft copolymer
  • the rubber-modified vinyl-based graft copolymer (A1) is about 10 to about 50% by weight, for example, about 15 to about 45% by weight of 100% by weight of the total rubber-modified aromatic vinyl-based copolymer resin (A). It can be included in %. Within the above range, the thermoplastic resin composition may have excellent impact resistance and molding processability.
  • the aromatic vinyl-based copolymer resin according to an embodiment of the present invention may be an aromatic vinyl-based copolymer resin used in a conventional rubber-modified aromatic vinyl-based copolymer resin.
  • the aromatic vinyl-based copolymer resin may be a polymer of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer.
  • the aromatic vinyl-based copolymer resin may be obtained by mixing an aromatic vinyl-based monomer, a vinyl cyanide-based monomer, etc., and then polymerizing it, and the polymerization is known polymerization such as emulsion polymerization, suspension polymerization, bulk polymerization, etc. It can be done by a method.
  • the aromatic vinyl-based monomer is styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene , Vinyl naphthalene, etc. can be used. These may be applied alone or in combination of two or more.
  • the content of the aromatic vinyl-based monomer may be about 20 to about 90% by weight, for example, about 30 to about 80% by weight of the total 100% by weight of the aromatic vinyl-based copolymer resin.
  • the thermoplastic resin composition may have excellent impact resistance, fluidity, and appearance characteristics.
  • examples of the vinyl cyanide monomer may include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like. These can be used alone or in combination of two or more. For example, acrylonitrile, methacrylonitrile, etc. can be used.
  • the content of the vinyl cyanide monomer may be from about 10 to about 80% by weight, for example, from about 20 to about 70% by weight, based on 100% by weight of the total aromatic vinyl copolymer resin.
  • the thermoplastic resin composition may have excellent impact resistance, fluidity, heat resistance, and appearance.
  • the aromatic vinyl-based copolymer resin may be polymerized by further including a monomer for imparting processability and heat resistance to the monomer mixture.
  • a monomer for imparting the processability and heat resistance (meth)acrylic acid, N-substituted maleimide, and the like may be exemplified, but are not limited thereto.
  • the content may be about 15% by weight or less, for example, about 0.1 to about 10% by weight of 100% by weight of the monomer mixture. In the above range, it is possible to impart processability and heat resistance to the thermoplastic resin composition without deteriorating other physical properties.
  • the aromatic vinyl-based copolymer resin has a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 10,000 to about 300,000 g/mol, for example, about 15,000 to about 150,000 g/mol. I can. Within the above range, the thermoplastic resin composition may have excellent mechanical strength and molding processability.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the aromatic vinyl-based copolymer resin (A2) is about 50 to about 90% by weight, for example, about 55 to about 85% by weight of 100% by weight of the total rubber-modified aromatic vinyl-based copolymer resin (A). Can be included. Within the above range, the thermoplastic resin composition may have excellent impact resistance, molding processability, and appearance characteristics.
  • the vinyl-based copolymer containing an epoxy group according to an embodiment of the present invention is applied together with a maleic anhydride-aromatic vinyl-based copolymer to improve miscibility between components of the thermoplastic resin composition, and thus included in the resin composition. It is possible to maximize the effect of improving the properties of each component.
  • the vinyl-based copolymer containing an epoxy group is a resin prepared so that an unsaturated epoxy group exists in the vinyl-based polymer, and can be prepared by polymerizing a monomer mixture consisting of an unsaturated epoxy-based compound containing an epoxy group and a vinyl-based compound have.
  • the polymerization may be performed by a known polymerization method such as emulsion polymerization, suspension polymerization, and bulk polymerization.
  • the unsaturated epoxy-based compound containing an epoxy group may be a (meth)acrylate containing an epoxy group such as glycidyl methacrylate and glycidyl acrylate. These may be applied alone or in combination of two or more.
  • the content of the unsaturated epoxy-based compound containing an epoxy group is about 0.01 to about 10 mol%, for example, about 0.05 to about 5 mol%, specifically about 0.1 to about 100 mol% of the vinyl-based copolymer containing an epoxy group. It may be 2 mol%. Within the above range, compatibility between each component of the thermoplastic resin composition may be excellent, and heat resistance and impact resistance may be excellent.
  • the vinyl-based compound may include an aromatic vinyl-based monomer and a monomer copolymerizable with the aromatic vinyl-based monomer.
  • the content of the vinyl-based compound may be about 90 to about 99.99 mol%, for example, about 95 to about 99.95 mol%, and specifically about 98 to about 99.9 mol%, based on 100 mol% of the total vinyl-based copolymer containing an epoxy group. have. Within the above range, compatibility between each component of the thermoplastic resin composition may be excellent, and fluidity and impact resistance may be excellent.
  • the aromatic vinyl-based monomer is styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene , Vinyl naphthalene, etc. may be used, but the present invention is not limited thereto. These may be applied alone or in combination of two or more.
  • the content of the aromatic vinyl-based monomer may be about 40 to about 95% by weight, for example, about 40 to about 90% by weight of the total 100% by weight of the vinyl-based compound.
  • the monomer copolymerizable with the aromatic vinyl-based monomer is, for example, acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, etc.
  • a vinyl cyanide compound or the like may be used, and may be used alone or in combination of two or more.
  • the content of the monomer copolymerizable with the aromatic vinyl-based monomer may be about 5 to about 60% by weight, for example, about 10 to about 60% by weight, based on 100% by weight of the total vinyl-based compound.
  • the vinyl-based copolymer containing an epoxy group has a weight average molecular weight (Mw) of about 50,000 to about 200,000 g/mol, for example, about 100,000 to about 150,000 g/mol, as measured by gel permeation chromatography (GPC).
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the content of the vinyl-based copolymer containing an epoxy group is about 5 to about 20 parts by weight, for example, about 10 to about 18 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin.
  • the content of the vinyl-based copolymer containing the epoxy group is less than about 5 parts by weight based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin, the appearance characteristics, flame retardancy, impact resistance, etc. of the thermoplastic resin composition may be reduced. There is a concern, and if it exceeds about 20 parts by weight, there is a concern that the fluidity, impact resistance, and the like of the thermoplastic resin composition are deteriorated.
  • the maleic anhydride-aromatic vinyl-based copolymer according to an embodiment of the present invention is applied together with the vinyl-based copolymer containing the epoxy group to improve miscibility between the components of the thermoplastic resin composition, and each contained in the resin composition It is a polymer of maleic anhydride and an aromatic vinyl monomer that can maximize the effect of improving the properties of the component.
  • the maleic anhydride-aromatic vinyl-based copolymer may be obtained by mixing maleic anhydride and an aromatic vinyl-based monomer, and then polymerizing them, and the polymerization is known as emulsion polymerization, suspension polymerization, bulk polymerization, etc. It can be carried out by the polymerization method of.
  • the aromatic vinyl-based monomer is styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene , Vinyl naphthalene, etc. can be used. These may be applied alone or in combination of two or more.
  • the maleic anhydride may be included in an amount of about 5 to about 40% by weight, for example, about 10 to about 35% by weight, based on 100% by weight of the total maleic anhydride-aromatic vinyl-based copolymer, and the aromatic vinyl-based
  • the monomer may be included in about 60 to about 95% by weight, for example about 65 to about 90% by weight, based on 100% by weight of the total maleic anhydride-aromatic vinyl-based copolymer.
  • the thermoplastic resin composition may have excellent heat resistance and impact resistance.
  • the maleic anhydride-aromatic vinyl-based copolymer has a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 50,000 to about 150,000 g/mol, for example, about 60,000 to about 120,000 g/ may be mol.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the thermoplastic resin composition may have excellent impact resistance and fluidity.
  • the maleic anhydride-aromatic vinyl-based copolymer is included in about 0.5 to about 5 parts by weight, for example, about 1 to about 4.5 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin.
  • the content of the maleic anhydride-aromatic vinyl-based copolymer is less than about 0.5 parts by weight based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin, the appearance properties, heat resistance, impact resistance, etc. of the thermoplastic resin composition are lowered. If it exceeds about 5 parts by weight, there is a fear that the fluidity, appearance properties, etc. of the thermoplastic resin composition may decrease.
  • the weight ratio (B:C) of the vinyl-based copolymer (B) containing the epoxy group and the maleic anhydride-aromatic vinyl-based copolymer (C) is about 1: 0.05 to about 1: 0.5, for example, it may be about 1: 0.07 to about 1: 0.4, and specifically about 1: 0.1 to about 1: 0.3.
  • the weight ratio of the vinyl-based copolymer containing the epoxy group and the maleic anhydride-aromatic vinyl-based copolymer is less than about 1: 0.05, there is a concern that the appearance characteristics, impact resistance, etc. of the thermoplastic resin composition may be deteriorated, and about 1: When it exceeds 0.5, there is a concern that the fluidity, flame retardancy, and the like of the thermoplastic resin composition are deteriorated.
  • the glass fiber according to an embodiment of the present invention is capable of improving the stiffness and heat resistance of the thermoplastic resin composition, and a glass fiber used in a conventional thermoplastic resin composition may be used.
  • the glass fibers may be in the form of fibers, and may have cross-sections of various shapes such as round, oval, and rectangular. For example, it may be desirable in terms of mechanical properties to use fibrous glass fibers of circular and/or rectangular cross section.
  • the circular cross-section of the glass fiber may have a cross-sectional diameter of about 5 to about 20 ⁇ m and a length before processing of about 2 to about 20 mm
  • the rectangular cross-section of the glass fiber has an aspect ratio of the cross-section (long diameter of the cross-section/ The short diameter of the cross section) may be about 1.5 to about 10, the short diameter may be about 2 to about 10 ⁇ m, and the length before processing may be about 2 to about 20 mm.
  • the stiffness and heat resistance of the thermoplastic resin composition may be improved.
  • the glass fibers may not be treated with a surface treatment agent.
  • the glass fiber may be included in an amount of about 8 to about 40 parts by weight, for example, about 10 to about 35 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin.
  • the content of the glass fiber is less than about 8 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin, there is a concern that the stiffness, heat resistance, etc. of the thermoplastic resin composition may decrease, and exceed about 40 parts by weight. In this case, there is a concern that the appearance characteristics, impact resistance, and the like of the thermoplastic resin composition may be deteriorated.
  • the total amount of the vinyl-based copolymer (B) and the maleic anhydride-aromatic vinyl-based copolymer (C) containing an epoxy group and the weight ratio (B+C:D) of the glass fiber (D) is about 1 : 0.5 to about 1: 4, for example, it may be about 1: 0.9 to about 1: 3.
  • the thermoplastic resin composition may have excellent impact resistance, fluidity, heat resistance, and appearance characteristics.
  • the phosphorus-based flame retardant according to an embodiment of the present invention may be a phosphorus-based flame retardant used in a conventional flame-retardant thermoplastic resin composition.
  • Phosphorus-based flame retardants can be used.
  • the phosphorus-based flame retardant may include an aromatic phosphate-based compound represented by the following formula (1).
  • R 1 , R 2 , R 4 and R 5 are each independently a hydrogen atom, a C6-C20 aryl group or a C6-C20 aryl substituted with a C1-C10 alkyl group
  • R 3 is a C6-C20 arylene group or a C6-C20 arylene group substituted with a C1-C10 alkyl group, for example, a dialcohol such as resorcinol, hydroquinone, bisphenol-A, bisphenol-S, And n is an integer from 0 to 10, for example 0 to 4.
  • aromatic phosphate ester compound represented by Formula 1 when n is 0, diaryl phosphate such as diphenyl phosphate, triphenyl phosphate, tricresyl phosphate, trizyrenyl phosphate, tri(2,6-dimethyl) Phenyl) phosphate, tri(2,4,6-trimethylphenyl) phosphate, tri(2,4-diteributylphenyl) phosphate, tri(2,6-dimethylphenyl) phosphate, etc.
  • diaryl phosphate such as diphenyl phosphate, triphenyl phosphate, tricresyl phosphate, trizyrenyl phosphate, tri(2,6-dimethyl) Phenyl) phosphate, tri(2,4,6-trimethylphenyl) phosphate, tri(2,4-diteributylphenyl) phosphate, tri(2,6-dimethylphenyl) phosphate, etc.
  • n 1
  • bisphenol-A bis (diphenyl phosphate), resorcinol bis (diphenyl phosphate), resorcinol bis [bis (2,6-dimethylphenyl) phosphate], resorcinol bis [bis (2,4 -Ditertiary butylphenyl) phosphate], hydroquinone bis [bis (2,6-dimethylphenyl) phosphate], hydroquinone bis [bis (2,4-ditertiary butyl phenyl) phosphate] and the like can be exemplified. Not limited. These may be applied alone or in the form of a mixture of two or more.
  • the phosphorus-based flame retardant may be included in an amount of about 10 to about 40 parts by weight, for example, about 15 to about 35 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin.
  • the content of the phosphorus-based flame retardant is less than about 10 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin, there is a concern that the flame retardancy, fluidity, etc. of the thermoplastic resin composition may decrease, and exceed about 40 parts by weight. In this case, there is a concern that the heat resistance, impact resistance, etc. of the thermoplastic resin composition may be deteriorated.
  • the weight ratio (B+C:E) of the total amount of the vinyl-based copolymer (B) and the maleic anhydride-aromatic vinyl-based copolymer (C) including the epoxy group and the phosphorus-based flame retardant (E) is about 1 : 1 to about 1: 2.5, for example, it may be about 1: 1.3 to about 1: 2.
  • the thermoplastic resin composition may have excellent flame retardancy, heat resistance, appearance characteristics, and fluidity.
  • the thermoplastic resin composition according to an embodiment of the present invention may further include additives included in a conventional thermoplastic resin composition.
  • the additive include, but are not limited to, anti-drip agents such as fluorinated olefin resins, antioxidants, lubricants, release agents, nucleating agents, stabilizers, pigments, dyes, mixtures thereof, and the like.
  • the content may be about 0.001 to about 40 parts by weight, for example, about 0.1 to about 10 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin.
  • thermoplastic resin composition according to an embodiment of the present invention is in the form of pellets obtained by mixing the constituents and melt-extruding at about 200 to about 280°C, for example, about 220 to about 260°C using a conventional twin screw extruder. I can.
  • the thermoplastic resin composition has a notched Izod impact strength of a 1/8" thick specimen measured according to ASTM D256 of about 4 to about 10 kgf ⁇ cm/cm, for example about 4.5 to about 9 kgf ⁇ cm May be /cm.
  • the thermoplastic resin composition may have a flame retardancy of V-2 or more, respectively, of a 0.75 mm thick specimen and a 2.5 mm thick specimen measured according to UL-94 standards.
  • the thermoplastic resin composition may have a Vicat softening temperature of about 80 to about 100°C, for example, about 81 to about 90°C, measured under a 5 kg load and 50°C/hr condition according to ISO 306. .
  • the thermoplastic resin composition has a melt-flow index (MI) of about 5 to about 15 g/10 minutes, as measured at 200° C. and 5 kg load condition, according to ASTM D1238, for example It may be about 6 to about 15 g/10 minutes, specifically about 7 to about 10 g/10 minutes.
  • MI melt-flow index
  • the thermoplastic resin composition may have a gloss measured at a 60° angle of about 90 to about 95%, for example, about 91 to about 94% according to ASTM D523.
  • thermoplastic resin composition may satisfy all of the following formulas 1 to 3.
  • Iz is the notched Izod impact strength of a 1/8" thick specimen measured according to ASTM D256;
  • Tv is the Vicat softening temperature measured under 5 kg load and 50°C/hr conditions according to ISO 306;
  • MI is a melt flow index measured at 200°C and 5 kg load condition according to ASTM D1238.
  • the molded article according to the present invention is formed from the thermoplastic resin composition.
  • the thermoplastic resin composition may be manufactured in the form of pellets, and the manufactured pellets may be manufactured into various molded articles (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such a molding method is well known by those of ordinary skill in the field to which the present invention belongs. Since the molded article is excellent in impact resistance, flame retardancy, heat resistance, fluidity, and appearance characteristics, it is useful as an exterior material for construction.
  • G-ABS in which 55% by weight of styrene and acrylonitrile (weight ratio: 75/25) was graft-copolymerized to a butadiene rubber having a Z-average of 310 nm of 45 % by weight was used.
  • a SAN resin (weight average molecular weight: 130,000 g/mol) in which 75% by weight of styrene and 25% by weight of acrylonitrile were polymerized was used.
  • a PMI-SAN resin (weight average molecular weight: 130,000 g/mol) in which 20% by weight of N-phenylmaleimide, 65% by weight of styrene, and 15% by weight of acrylonitrile were polymerized was used.
  • Styrene-maleic anhydride copolymer (SMA resin, weight average molecular weight: 80,000 g/mol, styrene/maleic anhydride (weight ratio): 74/26) was used.
  • Bisphenol-A diphosphate (manufacturer: Yoke Chemical, product name: YOKE BDP) was used.
  • Notched Izod (IZOD) Impact Strength (Unit: kgf ⁇ cm/cm): Based on the evaluation method specified in ASTM D256, the notched Izod impact strength of a 1/8" thick specimen was measured.
  • VST Vicat Softening Temperature
  • MI Melt-flow Index
  • Glossiness (gloss, unit: %): Using Suga's UGV-6P Gloss Meter, measure the glossiness of a 90 mm ⁇ 50 mm ⁇ 2 mm size specimen at a 60° angle according to the evaluation method specified in ASTM D523. Measured.
  • Example One 2 3 4 5 6 7 (A) (parts by weight) 100 100 100 100 100 100 100 100 100 100 100 (B1) (parts by weight) 14 14 14 10 20 10 10 (B2) (parts by weight) - - - - - - - (C) (parts by weight) 1.4 2.8 4.2 2.8 2.8 0.5 5 (D) (parts by weight) 20 20 20 20 20 20 20 (E) (parts by weight) 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
  • thermoplastic resin compositions (Examples 1 to 7) of the present invention are excellent in impact resistance, flame retardancy, heat resistance, fluidity, and appearance characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부; 에폭시기를 포함하는 비닐계 공중합체 약 5 내지 약 20 중량부; 말레산 무수물-방향족 비닐계 공중합체 약 0.5 내지 약 5 중량부; 유리 섬유 약 8 내지 약 40 중량부; 및 인계 난연제 약 10 내지 약 40 중량부;를 포함하며, 상기 에폭시기를 포함하는 비닐계 공중합체 및 상기 말레산 무수물-방향족 비닐계 공중합체의 중량비는 약 1 : 0.05 내지 약 1 : 0.5인 것을 특징으로 한다. 상기 열가소성 수지 조성물은 내충격성, 난연성, 내열성, 유동성, 외관 특성 등이 우수하다.

Description

열가소성 수지 조성물 및 이로부터 형성된 성형품
본 발명은 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 내충격성, 난연성, 내열성, 유동성, 외관 특성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다.
열가소성 수지로서, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지(ABS 수지) 등의 고무변성 방향족 비닐계 공중합체 수지는 기계적 물성, 가공성, 외관 특성 등이 우수하여, 전기/전자 제품의 내/외장재, 자동차 내/외장재, 건축용 외장재 등으로 널리 사용되고 있다.
이러한 고무변성 방향족 비닐계 공중합체 수지의 강성, 난연성 등을 향상시키기 위하여, 유리 섬유 등의 무기 필러 및 난연제가 블렌드될 경우, 고무변성 방향족 비닐계 공중합체 수지와 무기 필러의 상용성이 저하되고, 내충격성 등이 저하될 우려가 있다.
내충격성 등을 향상시키기 위하여, 고무변성 방향족 비닐계 공중합체 수지의 분자량을 증가시키는 방법을 사용할 수 있으나, 이 경우, 유동성 저하 및 이에 따른 성형성 부족으로 성형품 표면에 무기 필러가 돌출되는 등의 외관 특성 저하가 발생할 우려가 있다.
따라서, 이러한 문제 없이, 내충격성, 난연성, 내열성, 유동성, 외관 특성 등이 우수한 열가소성 수지 조성물의 개발이 필요한 실정이다.
본 발명의 배경기술은 대한민국 공개특허 2007-0004726호 등에 개시되어 있다.
본 발명의 목적은 내충격성, 난연성, 내열성, 유동성, 외관 특성 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부; 에폭시기를 포함하는 비닐계 공중합체 약 5 내지 약 20 중량부; 말레산 무수물-방향족 비닐계 공중합체 약 0.5 내지 약 5 중량부; 유리 섬유 약 8 내지 약 40 중량부; 및 인계 난연제 약 10 내지 약 40 중량부;를 포함하며, 상기 에폭시기를 포함하는 비닐계 공중합체 및 상기 말레산 무수물-방향족 비닐계 공중합체의 중량비는 약 1 : 0.05 내지 약 1 : 0.5인 것을 특징으로 한다.
2. 상기 1 구체예에서, 상기 고무변성 방향족 비닐계 공중합체 수지는 고무변성 비닐계 그라프트 공중합체 약 10 내지 약 50 중량%; 및 방향족 비닐계 공중합체 수지 약 50 내지 약 90 중량%;를 포함할 수 있다.
3. 상기 1 또는 2 구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물의 중합체일 수 있다.
4. 상기 1 내지 3 구체예에서, 상기 에폭시기를 포함하는 비닐계 공중합체는 에폭시기를 포함하는 (메타)아크릴레이트, 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체가 중합된 것일 수 있다.
5. 상기 1 내지 4 구체예에서, 상기 에폭시기를 포함하는 비닐계 공중합체는 에폭시기를 포함하는 (메타)아크릴레이트를 약 0.01 내지 약 10 몰%로 포함할 수 있다.
6. 상기 1 내지 5 구체예에서, 상기 말레산 무수물-방향족 비닐계 공중합체는 말레산 무수물 약 5 내지 약 40 중량% 및 방향족 비닐계 단량체 약 60 내지 약 95 중량%의 중합체일 수 있다.
7. 상기 1 내지 6 구체예에서, 상기 에폭시기를 포함하는 비닐계 공중합체 및 말레산 무수물-방향족 비닐계 공중합체의 합량과 상기 유리 섬유의 중량비는 약 1 : 0.5 내지 약 1 : 4 일 수 있다.
8. 상기 1 내지 7 구체예에서, 상기 에폭시기를 포함하는 비닐계 공중합체 및 말레산 무수물-방향족 비닐계 공중합체의 합량과 상기 인계 난연제의 중량비는 약 1 : 1 내지 약 1 : 2.5일 수 있다.
9. 상기 1 내지 8 구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 1/8" 두께 시편의 노치 아이조드 충격강도가 약 4 내지 약 10 kgf·cm/cm일 수 있다.
10. 상기 1 내지 9 구체예에서, 상기 열가소성 수지 조성물은 UL-94 기준에 따라 측정한 0.75 mm 두께 시편의 난연도가 V-2 이상일 수 있고, 2.5 mm 두께 시편의 난연도가 V-2 이상일 수 있다.
11. 상기 1 내지 10 구체예에서, 상기 열가소성 수지 조성물은 ISO 306에 의거하여, 5 kg 하중 및 50℃/hr 조건에서 측정한 Vicat 연화온도가 약 80 내지 약 100℃일 수 있다.
12. 상기 1 내지 11 구체예에서, 상기 열가소성 수지 조성물은 ASTM D1238에 의거하여, 200℃, 5 kg 하중 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 5 내지 약 15 g/10분일 수 있다.
13. 상기 1 내지 12 구체예에서, 상기 열가소성 수지 조성물은 ASTM D523에 의거하여 60° 각도에서 측정한 광택도가 약 90 내지 약 95%일 수 있다.
14. 상기 1 내지 13 구체예에서, 상기 열가소성 수지 조성물은 하기 식 1 내지 3을 모두 만족할 수 있다:
[식 1]
4.5 kgf·cm/cm ≤ Iz ≤ 9 kgf·cm/ cm
상기 식 1에서, Iz는 ASTM D256에 의거하여 측정한 1/8" 두께 시편의 노치 아이조드 충격강도이다;
[식 2]
81℃ ≤ Tv ≤ 90℃
상기 식 2에서, Tv는 ISO 306에 의거하여, 5 kg 하중 및 50℃/hr 조건에서 측정한 Vicat 연화온도이다;
[식 3]
6 g/10분 ≤ MI ≤ 15 g/10분
상기 식 3에서, MI는 ASTM D1238에 의거하여, 200℃, 5 kg 하중 조건에서 측정한 용융흐름지수이다.
15. 본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 1 내지 14 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 한다.
본 발명은 내충격성, 난연성, 내열성, 유동성, 외관 특성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A) 고무변성 방향족 비닐계 공중합체 수지; (B) 에폭시기를 포함하는 비닐계 공중합체; (C) 말레산 무수물-방향족 비닐계 공중합체; (D) 유리 섬유; 및 (E) 인계 난연제;를 포함한다.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.
(A) 고무변성 방향족 비닐계 공중합체 수지
본 발명의 고무변성 방향족 비닐계 공중합체 수지는 (A1) 고무변성 비닐계 그라프트 공중합체 및 (A2) 방향족 비닐계 공중합체 수지를 포함할 수 있다.
(A1) 고무변성 비닐계 그라프트 공중합체
본 발명의 일 구체예에 따른 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것일 수 있다. 예를 들면, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물을 그라프트 중합하여 얻을 수 있으며, 필요에 따라, 상기 단량체 혼합물에 가공성 및 내열성을 부여하는 단량체를 더욱 포함시켜 그라프트 중합할 수 있다. 상기 중합은 유화중합, 현탁중합 등의 공지의 중합방법에 의하여 수행될 수 있다. 또한, 상기 고무변성 비닐계 그라프트 공중합체는 코어(고무질 중합체)-쉘(단량체 혼합물의 공중합체) 구조를 형성할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 고무질 중합체로는 폴리부타디엔, 폴리(스티렌-부타디엔), 폴리(아크릴로니트릴-부타디엔) 등의 디엔계 고무 및 상기 디엔계 고무에 수소 첨가한 포화고무, 이소프렌고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 및 스티렌의 공중합체, 에틸렌-프로필렌-디엔단량체 삼원공중합체(EPDM) 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 예를 들면, 디엔계 고무, (메타)아크릴레이트 고무 등을 사용할 수 있고, 구체적으로, 부타디엔계 고무, 부틸아크릴레이트 고무 등을 사용할 수 있다.
구체예에서, 상기 고무질 중합체(고무 입자)는 평균 입자 크기가 약 0.05 내지 약 6 ㎛, 예를 들면 약 0.15 내지 약 4 ㎛, 구체적으로 약 0.25 내지 약 3.5 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다. 여기서, 상기 고무질 중합체(고무 입자)의 평균 입자 크기(z-평균)는 라텍스(latex) 상태에서 광 산란(light scattering) 방법을 이용하여 측정할 수 있다. 구체적으로, 고무질 중합체 라텍스를 메쉬(mesh)에 걸러서, 고무질 중합체 중합 중 발생하는 응고물 제거하고, 라텍스 0.5 g 및 증류수 30 ml를 혼합한 용액을 1,000 ml 플라스크에 따르고 증류수를 채워 시료를 제조한 다음, 시료 10 ml를 석영 셀(cell)로 옮기고, 이에 대하여, 광 산란 입도 측정기(malvern社, nano-zs)로 고무질 중합체의 평균 입자 크기를 측정할 수 있다.
구체예에서, 상기 고무질 중합체의 함량은 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 20 내지 약 70 중량%, 예를 들면 약 25 내지 약 60 중량%일 수 있고, 상기 단량체 혼합물(방향족 비닐계 단량체 및 시안화 비닐계 단량체 포함)의 함량은 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 30 내지 약 80 중량%, 예를 들면 약 40 내지 약 75 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체는 상기 고무질 중합체에 그라프트 공중합될 수 있는 것으로서, 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 40 내지 약 90 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 가공성, 내충격성 등이 우수할 수 있다.
구체예에서, 상기 시안화 비닐계 단량체는 상기 방향족 비닐계와 공중합 가능한 것으로서, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다. 상기 시안화 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 10 내지 약 60 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내화학성, 기계적 특성 등이 우수할 수 있다.
구체예에서, 상기 가공성 및 내열성을 부여하기 위한 단량체로는 (메타)아크릴산, 말레산 무수물, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되지 않는다. 상기 가공성 및 내열성을 부여하기 위한 단량체 사용 시, 그 함량은 상기 단량체 혼합물 100 중량% 중 약 15 중량% 이하, 예를 들면 약 0.1 내지 약 10 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 가공성 및 내열성을 부여할 수 있다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체로는 부타디엔계 고무질 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 시안화 비닐계 화합물인 아크릴로니트릴 단량체가 그라프트된 공중합체(g-ABS), 부틸 아크릴레이트계 고무질 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 시안화 비닐계 화합물인 아크릴로니트릴 단량체가 그라프트된 공중합체인 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체(g-ASA) 등을 예시할 수 있다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체(A1)는 전체 고무변성 방향족 비닐계 공중합체 수지(A) 100 중량% 중 약 10 내지 약 50 중량%, 예를 들면 약 15 내지 약 45 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 성형 가공성 등이 우수할 수 있다.
(A2) 방향족 비닐계 공중합체 수지
본 발명의 일 구체예에 따른 방향족 비닐계 공중합체 수지는 통상의 고무변성 방향족 비닐계 공중합체 수지에 사용되는 방향족 비닐계 공중합체 수지일 수 있다. 예를 들면, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물의 중합체일 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체, 시안화 비닐계 단량체 등을 혼합한 후, 이를 중합하여 얻을 수 있으며, 상기 중합은 유화중합, 현탁중합, 괴상중합 등의 공지의 중합방법에 의하여 수행될 수 있다.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 상기 방향족 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 20 내지 약 90 중량%, 예를 들면 약 30 내지 약 80 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 시안화 비닐계 단량체로는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다. 상기 시안화 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 10 내지 약 80 중량%, 예를 들면 약 20 내지 약 70 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성, 내열성, 외관 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 상기 단량체 혼합물에 가공성 및 내열성을 부여하기 위한 단량체를 더 포함하여 중합한 것일 수 있다. 상기 가공성 및 내열성을 부여하기 위한 단량체로는 (메타)아크릴산, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되지 않는다. 상기 가공성 및 내열성을 부여하기 위한 단량체 사용 시, 그 함량은 상기 단량체 혼합물 100 중량% 중 약 15 중량% 이하, 예를 들면 약 0.1 내지 약 10 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 가공성 및 내열성을 부여할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 300,000 g/mol, 예를 들면, 약 15,000 내지 약 150,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 기계적 강도, 성형 가공성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지(A2)는 전체 고무변성 방향족 비닐계 공중합체 수지(A) 100 중량% 중 약 50 내지 약 90 중량%, 예를 들면 약 55 내지 약 85 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 성형 가공성, 외관 특성 등이 우수할 수 있다.
(B) 에폭시기를 포함하는 비닐계 공중합체
본 발명의 일 구체예에 따른 에폭시기를 포함하는 비닐계 공중합체는 말레산 무수물-방향족 비닐계 공중합체와 함께 적용되어, 열가소성 수지 조성물 성분간의 혼화성(miscibility)을 향상시켜, 수지 조성물에 포함되는 각 성분의 물성 향상 효과를 극대화시킬 수 있는 것이다.
구체예에서, 상기 에폭시기를 포함하는 비닐계 공중합체는 불포화 에폭시기가 비닐계 중합체 내에 존재하도록 제조된 수지로서, 에폭시기를 포함하는 불포화 에폭시계 화합물과 비닐계 화합물로 이루어진 단량체 혼합물을 중합하여 제조할 수 있다. 상기 중합은 유화중합, 현탁중합, 괴상중합 등의 공지의 중합방법에 의하여 수행될 수 있다.
구체예에서, 상기 에폭시기를 포함하는 불포화 에폭시계 화합물로는 글리시딜 메타크릴레이트, 글리시딜 아크릴레이트 등의 에폭시기를 포함하는 (메타)아크릴레이트를 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 상기 에폭시기를 포함하는 불포화 에폭시계 화합물의 함량은 에폭시기를 포함하는 비닐계 공중합체 전체 100 몰% 중 약 0.01 내지 약 10 몰%, 예를 들면 약 0.05 내지 약 5 몰%, 구체적으로 약 0.1 내지 약 2 몰%일 수 있다. 상기 범위에서 열가소성 수지 조성물 각 성분간의 혼화성이 우수할 수 있고, 내열성, 내충격성 등이 우수할 수 있다.
구체예에서, 상기 비닐계 화합물은 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체를 포함할 수 있다. 상기 비닐계 화합물의 함량은 에폭시기를 포함하는 비닐계 공중합체 전체 100 몰% 중 약 90 내지 약 99.99 몰%, 예를 들면 약 95 내지 약 99.95 몰%, 구체적으로 약 98 내지 약 99.9 몰%일 수 있다. 상기 범위에서 열가소성 수지 조성물 각 성분간의 혼화성이 우수할 수 있고, 유동성, 내충격성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 상기 방향족 비닐계 단량체의 함량은 비닐계 화합물 전체 100 중량% 중 약 40 내지 약 95 중량%, 예를 들면 약 40 내지 약 90 중량%일 수 있다.
구체예에서, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체로는 예를 들면, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등의 시안화 비닐계 화합물 등을 사용할 수 있으며, 단독 혹은 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체와 공중합 가능한 단량체의 함량은 비닐계 화합물 전체 100 중량% 중 약 5 내지 약 60 중량%, 예를 들면 약 10 내지 약 60 중량%일 수 있다.
구체예에서, 상기 에폭시기를 포함하는 비닐계 공중합체는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 50,000 내지 약 200,000 g/mol, 예를 들면 약 100,000 내지 약 150,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 유동성, 내충격성 등이 우수할 수 있다.
구체예에서, 상기 에폭시기를 포함하는 비닐계 공중합체의 함량은 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 5 내지 약 20 중량부, 예를 들면 약 10 내지 약 18 중량부일 수 있다. 상기 에폭시기를 포함하는 비닐계 공중합체의 함량이 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 5 중량부 미만일 경우, 열가소성 수지 조성물의 외관 특성, 난연성, 내충격성 등이 저하될 우려가 있고, 약 20 중량부를 초과할 경우, 열가소성 수지 조성물의 유동성, 내충격성 등이 저하될 우려가 있다.
(C) 말레산 무수물-방향족 비닐계 공중합체
본 발명의 일 구체예 따른 말레산 무수물-방향족 비닐계 공중합체는 상기 에폭시기를 포함하는 비닐계 공중합체과 함께 적용되어, 열가소성 수지 조성물 성분간의 혼화성(miscibility)을 향상시켜, 수지 조성물에 포함되는 각 성분의 물성 향상 효과를 극대화시킬 수 있는 것으로서, 말레산 무수물(maleic anhydride) 및 방향족 비닐계 단량체의 중합체이다.
구체예에서, 상기 말레산 무수물-방향족 비닐계 공중합체는 말레산 무수물 및 방향족 비닐계 단량체 등을 혼합한 후, 이를 중합하여 얻을 수 있으며, 상기 중합은 유화중합, 현탁중합, 괴상중합 등의 공지의 중합방법에 의하여 수행될 수 있다.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다.
구체예에서, 상기 말레산 무수물은 전체 말레산 무수물-방향족 비닐계 공중합체 100 중량% 중 약 5 내지 약 40 중량%, 예를 들면 약 10 내지 약 35 중량%로 포함될 수 있고, 상기 방향족 비닐계 단량체는 전체 말레산 무수물-방향족 비닐계 공중합체 100 중량% 중 약 60 내지 약 95 중량%, 예를 들면 약 65 내지 약 90 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내열성, 내충격성 등이 우수할 수 있다.
구체예에서, 상기 말레산 무수물-방향족 비닐계 공중합체는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 50,000 내지 약 150,000 g/mol, 예를 들면 약 60,000 내지 약 120,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성 등이 우수할 수 있다.
구체예에서, 상기 말레산 무수물-방향족 비닐계 공중합체는 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 0.5 내지 약 5 중량부, 예를 들면 약 1 내지 약 4.5 중량부로 포함될 수 있다. 상기 말레산 무수물-방향족 비닐계 공중합체의 함량이 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 0.5 중량부 미만일 경우, 열가소성 수지 조성물의 외관 특성, 내열성, 내충격성 등이 저하될 우려가 있고, 약 5 중량부를 초과할 경우, 열가소성 수지 조성물의 유동성, 외관 특성 등이 저하될 우려가 있다.
구체예에서, 상기 에폭시기를 포함하는 비닐계 공중합체(B) 및 상기 말레산 무수물-방향족 비닐계 공중합체(C)의 중량비(B:C)는 약 1 : 0.05 내지 약 1 : 0.5, 예를 들면 약 1 : 0.07 내지 약 1 : 0.4일 수 있으며, 구체적으로 약 1 : 0.1 내지 약 1 : 0.3일 수 있다. 상기 에폭시기를 포함하는 비닐계 공중합체 및 상기 말레산 무수물-방향족 비닐계 공중합체의 중량비가 약 1 : 0.05 미만일 경우, 열가소성 수지 조성물의 외관 특성, 내충격성 등이 저하될 우려가 있고, 약 1 : 0.5를 초과할 경우, 열가소성 수지 조성물의 유동성, 난연성 등이 저하될 우려가 있다.
(D) 유리 섬유
본 발명의 일 구체예에 따른 유리 섬유는 열가소성 수지 조성물의 강성, 내열성 등을 향상시킬 수 있는 것으로서, 통상의 열가소성 수지 조성물에 사용되는 유리 섬유를 사용할 수 있다.
구체예에서, 상기 유리 섬유는 섬유 형태일 수 있고, 원형, 타원형, 직사각형 등의 다양한 형상의 단면을 가질 수 있다. 예를 들면, 원형 및/또는 직사각형 단면의 섬유형 유리 섬유를 사용하는 것이 기계적 물성 측면에서 바람직할 수 있다.
구체예에서, 상기 원형 단면의 유리 섬유는 단면 직경이 약 5 내지 약 20 ㎛, 가공 전 길이가 약 2 내지 약 20 mm일 수 있고, 상기 직사각형 단면의 유리 섬유는 단면의 종횡비(단면의 장경/단면의 단경)가 약 1.5 내지 약 10이고, 단경이 약 2 내지 약 10 ㎛일 수 있고, 가공 전 길이가 약 2 내지 약 20 mm일 수 있다. 상기 범위에서 열가소성 수지 조성물의 강성, 내열성 등이 향상될 수 있다.
구체예에서, 상기 유리 섬유는 표면 처리제로 처리되지 않은 것일 수 있다.
구체예에서, 상기 유리 섬유는 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 8 내지 약 40 중량부, 예를 들면 약 10 내지 약 35 중량부로 포함될 수 있다. 상기 유리 섬유의 함량이 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 8 중량부 미만일 경우, 열가소성 수지 조성물의 강성, 내열성 등이 저하될 우려가 있고, 약 40 중량부를 초과할 경우, 열가소성 수지 조성물의 외관 특성, 내충격성 등이 저하될 우려가 있다.
구체예에서, 상기 에폭시기를 포함하는 비닐계 공중합체(B) 및 말레산 무수물-방향족 비닐계 공중합체(C)의 합량과 상기 유리 섬유(D)의 중량비(B+C:D)는 약 1 : 0.5 내지 약 1 : 4, 예를 들면 약 1 : 0.9 내지 약 1 : 3일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성, 내열성, 외관 특성 등이 우수할 수 있다.
(E) 인계 난연제
본 발명의 일 구체예에 따른 인계 난연제는 통상의 난연성 열가소성 수지 조성물에 사용되는 인계 난연제일 수 있다. 예를 들면, 포스페이트(phosphate) 화합물, 포스포네이트(phosphonate) 화합물, 포스피네이트(phosphinate) 화합물, 포스핀옥사이드(phosphine oxide) 화합물, 포스파젠(phosphazene) 화합물, 이들의 금속염, 이들의 조합 등의 인계 난연제가 사용될 수 있다.
구체예에서, 상기 인계 난연제는 하기 화학식 1로 표시되는 방향족 인산에스테르계 화합물을 포함할 수 있다.
[화학식 1]
Figure PCTKR2020008464-appb-I000001
상기 화학식 1에서, R1, R2, R4 및 R5는 각각 독립적으로 수소 원자, C6-C20(탄소수 6 내지 20)의 아릴기, 또는 C1-C10의 알킬기가 치환된 C6-C20의 아릴기이고, R3는 C6-C20의 아릴렌기 또는 C1-C10의 알킬기가 치환된 C6-C20의 아릴렌기, 예를 들면, 레조시놀, 하이드로퀴논, 비스페놀-A, 비스페놀-S 등의 디알콜로부터 유도된 것이며, n은 0 내지 10, 예를 들면 0 내지 4의 정수이다.
상기 화학식 1로 표시되는 방향족 인산에스테르계 화합물로는, n이 0인 경우, 디페닐포스페이트 등의 디아릴포스페이트, 트리페닐포스페이트, 트리크레실포스페이트, 트리자이레닐포스페이트, 트리(2,6-디메틸페닐)포스페이트, 트리(2,4,6-트리메틸페닐)포스페이트, 트리(2,4-디터셔리부틸페닐)포스페이트, 트리(2,6-디메틸페닐)포스페이트 등을 예시할 수 있고, n이 1인 경우, 비스페놀-A 비스(디페닐포스페이트), 레조시놀 비스(디페닐포스페이트), 레조시놀 비스[비스(2,6-디메틸페닐)포스페이트], 레조시놀 비스[비스(2,4-디터셔리부틸페닐)포스페이트], 하이드로퀴논 비스[비스(2,6-디메틸페닐)포스페이트], 하이드로퀴논 비스[비스(2,4-디터셔리부틸페닐)포스페이트] 등을 예시할 수 있으나, 이에 제한되지 않는다. 이들은 단독 또는 2종 이상의 혼합물의 형태로 적용될 수 있다.
구체예에서, 상기 인계 난연제는 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 10 내지 약 40 중량부, 예를 들면 약 15 내지 약 35 중량부로 포함될 수 있다. 상기 인계 난연제의 함량이 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 10 중량부 미만일 경우, 열가소성 수지 조성물의 난연성, 유동성 등이 저하될 우려가 있고, 약 40 중량부를 초과할 경우, 열가소성 수지 조성물의 내열성, 내충격성 등이 저하될 우려가 있다.
구체예에서, 상기 에폭시기를 포함하는 비닐계 공중합체(B) 및 말레산 무수물-방향족 비닐계 공중합체(C)의 합량과 상기 인계 난연제(E)의 중량비(B+C:E)는 약 1 : 1 내지 약 1 : 2.5, 예를 들면 약 1 : 1.3 내지 약 1 : 2일 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성, 내열성, 외관 특성, 유동성 등이 우수할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 통상의 열가소성 수지 조성물에 포함되는 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 불소화 올레핀계 수지 등의 적하 방지제, 산화 방지제, 활제, 이형제, 핵제, 안정제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 0.001 내지 약 40 중량부, 예를 들면 약 0.1 내지 약 10 중량부일 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 상기 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 약 200 내지 약 280℃, 예를 들면 약 220 내지 약 260℃에서 용융 압출한 펠렛 형태일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 1/8" 두께 시편의 노치 아이조드 충격강도가 약 4 내지 약 10 kgf·cm/cm, 예를 들면 약 4.5 내지 약 9 kgf·cm/cm일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 UL-94 기준에 따라 측정한 0.75 mm 두께 시편 및 2.5 mm 두께 시편의 난연도가 각각 V-2 이상일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ISO 306에 의거하여, 5 kg 하중 및 50℃/hr 조건에서 측정한 Vicat 연화온도가 약 80 내지 약 100℃, 예를 들면 약 81 내지 약 90℃일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D1238에 의거하여, 200℃, 5 kg 하중 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 5 내지 약 15 g/10분, 예를 들면 약 6 내지 약 15 g/10분, 구체적으로 약 7 내지 약 10 g/10분 일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D523에 의거하여 60° 각도에서 측정한 광택도(gloss)가 약 90 내지 약 95%, 예를 들면 약 91 내지 약 94%일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 하기 식 1 내지 3을 모두 만족할 수 있다.
[식 1]
4.5 kgf·cm/cm ≤ Iz ≤ 9 kgf·cm/ cm
상기 식 1에서, Iz는 ASTM D256에 의거하여 측정한 1/8" 두께 시편의 노치 아이조드 충격강도이다;
[식 2]
81℃ ≤ Tv ≤ 90℃
상기 식 2에서, Tv는 ISO 306에 의거하여, 5 kg 하중 및 50℃/hr 조건에서 측정한 Vicat 연화온도이다;
[식 3]
6 g/10분 ≤ MI ≤ 15 g/10분
상기 식 3에서, MI는 ASTM D1238에 의거하여, 200℃, 5 kg 하중 조건에서 측정한 용융흐름지수이다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 상기 열가소성 수지 조성물은 펠렛 형태로 제조될 수 있으며, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 내충격성, 난연성, 내열성, 유동성, 외관 특성 등이 우수하므로, 건축용 외장재 등으로 유용하다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
이하, 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 고무변성 방향족 비닐계 공중합체 수지
하기 (A1) 고무변성 방향족 비닐계 그라프트 공중합체 25 중량% 및 (A2) 방향족 비닐계 공중합체 수지 75 중량%를 혼합하여 사용하였다.
(A1) 고무변성 방향족 비닐계 그라프트 공중합체
45 중량%의 Z-평균이 310 nm인 부타디엔 고무에 55 중량%의 스티렌 및 아크릴로니트릴(중량비: 75/25)가 그라프트 공중합된 g-ABS를 사용하였다.
(A2) 방향족 비닐계 공중합체 수지
스티렌 75 중량% 및 아크릴로니트릴 25 중량%가 중합된 SAN 수지(중량평균분자량: 130,000 g/mol)를 사용하였다.
(B1) 에폭시기를 포함하는 비닐계 공중합체
글리시딜메타크릴레이트-스티렌-아크릴로니트릴 공중합체(GMA-SAN, 글리시딜메타크릴레이트 0.5 몰% 및 스티렌 및 아크릴로니트릴(스티렌:아크릴로니트릴(중량비)=85:15) 99.5 몰% 중합, 중량평균분자량: 115,000 g/mol)를 사용하였다.
(B2) 말레이미드-비닐계 공중합체
N-페닐말레이미드 20 중량%, 스티렌 65 중량% 및 아크릴로니트릴 15 중량%가 중합된 PMI-SAN 수지(중량평균분자량: 130,000 g/mol)를 사용하였다.
(C) 말레산 무수물-방향족 비닐계 공중합체
스티렌-말레산 무수물 공중합체(SMA 수지, 중량평균분자량: 80,000 g/mol, 스티렌/말레산 무수물(중량비): 74/26)를 사용하였다.
(D) 유리 섬유
유리 섬유(제조사: NEG社, 제품명: T351)를 사용하였다.
(E) 인계 난연제
비스페놀-A 디포스페이트(bisphenol-A diphosphate, 제조사: Yoke Chemical, 제품명: YOKE BDP)를 사용하였다.
실시예 1 내지 7 및 비교예 1 내지 7
상기 각 구성 성분을 하기 표 1 및 2에 기재된 바와 같은 함량으로 첨가한 후, 230℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=36, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 2시간 이상 건조 후, 6 Oz 사출기(성형 온도 230℃, 금형 온도: 60℃)에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1 및 2에 나타내었다.
물성 측정 방법
(1) 노치 아이조드(IZOD) 충격 강도(단위: kgf·cm/cm): ASTM D256에 규정된 평가방법에 의거하여, 1/8" 두께의 시편의 노치 아이조드 충격강도를 측정하였다.
(2) 난연도: UL-94 기준에 따라, 0.75 mm 두께 시편 및 2.5 mm 두께 시편의 난연도를 측정하였다.
(3) Vicat 연화온도(Vicat Softening Temperature, VST)(단위: ℃): ISO 306에 의거하여, 5 kg 하중 및 50℃/hr 조건에서 6.4 mm 두께 시편에 대하여 측정하였다.
(4) 용융흐름지수(Melt-flow Index: MI, 단위: g/10분): ASTM D1238에 의거하여, 200℃, 5 kg 하중 조건에서 측정하였다.
(5) 광택도(gloss, 단위: %): Suga사의 UGV-6P Gloss Meter를 이용하여 ASTM D523에 규정된 평가방법에 의하여 60° 각도에서 90 mm × 50 mm × 2 mm 크기 시편의 광택도를 측정하였다.
실시예
1 2 3 4 5 6 7
(A) (중량부) 100 100 100 100 100 100 100
(B1) (중량부) 14 14 14 10 20 10 10
(B2) (중량부) - - - - - - -
(C) (중량부) 1.4 2.8 4.2 2.8 2.8 0.5 5
(D) (중량부) 20 20 20 20 20 20 20
(E) (중량부) 20 20 20 20 20 20 20
노치 아이조드 충격강도 (kgf·cm/cm) 5 6 7 5 4 4 9
난연도 0.75 mm V-2 V-2 V-2 V-2 V-2 V-2 V-2
2.5 mm V-2 V-2 V-2 V-2 V-2 V-2 V-2
VST (℃) 82 82 83 82 81 80 85
MI (g/10분) 9 8 7 8 8 9 5
광택도(Gloss, %) 92 92 92 91 92 90 92
비교예
1 2 3 4 5 6 7
(A) (중량부) 100 100 100 100 100 100 100
(B1) (중량부) 1 25 14 14 15 9 -
(B2) (중량부) - - - - - - 14
(C) (중량부) 2.8 2.8 0.1 6 0.5 5 2.8
(D) (중량부) 20 20 20 20 20 20 20
(E) (중량부) 20 20 20 20 20 20 20
노치 아이조드 충격강도 (kgf·cm/cm) 4.2 3 3 9.2 3 9 3.5
난연도 0.75 mm Fail V-2 V-2 V-2 V-2 Fail Fail
2.5 mm V-2 V-2 V-2 V-2 V-2 V-2 V-2
VST (℃) 82 82 74 85.5 81 85 85
MI (g/10분) 8 4.5 9.5 4 8.6 4 4.5
광택도(Gloss, %) 89 92 88 88 89 92 87
상기 결과로부터, 본 발명의 열가소성 수지 조성물(실시예 1 내지 7)은 내충격성, 난연성, 내열성, 유동성, 외관 특성 등이 모두 우수함을 알 수 있다.
반면, 에폭시기를 포함하는 비닐계 공중합체를 소량 적용한 비교예 1의 경우, 열가소성 수지 조성물의 외관 특성, 난연성 등이 저하됨을 알 수 있고, 에폭시기를 포함하는 비닐계 공중합체를 과량 적용한 비교예 2의 경우, 열가소성 수지 조성물의 유동성, 내충격성 등이 저하됨을 알 수 있으며, 말레산 무수물-방향족 비닐계 공중합체를 소량 적용한 비교예 3의 경우, 열가소성 수지 조성물의 외관 특성, 내열성, 내충격성 등이 저하됨을 알 수 있고, 말레산 무수물-방향족 비닐계 공중합체를 과량 적용한 비교예 4의 경우, 열가소성 수지 조성물의 유동성, 외관 특성 등이 저하됨을 알 수 있다. 에폭시기를 포함하는 비닐계 공중합체 및 말레산 무수물-방향족 비닐계 공중합체의 중량비가 본 발명의 범위 미만인 비교예 5의 경우, 열가소성 수지 조성물의 내충격성, 외관 특성 등이 저하됨을 알 수 있고, 에폭시기를 포함하는 비닐계 공중합체 및 말레산 무수물-방향족 비닐계 공중합체의 중량비가 본 발명의 범위를 초과하는 비교예 6의 경우, 열가소성 수지 조성물의 유동성, 난연성 등이 저하됨을 알 수 있으며, 본 발명의 에폭시기를 포함하는 비닐계 공중합체 (B1) 대신에 말레이미드-비닐계 공중합체 (B2)를 적용한 비교예 7의 경우, 열가소성 수지 조성물의 내충격성, 난연성, 유동성, 외관 특성 등이 저하됨을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (15)

  1. 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부;
    에폭시기를 포함하는 비닐계 공중합체 약 5 내지 약 20 중량부;
    말레산 무수물-방향족 비닐계 공중합체 약 0.5 내지 약 5 중량부;
    유리 섬유 약 8 내지 약 40 중량부; 및
    인계 난연제 약 10 내지 약 40 중량부;를 포함하며,
    상기 에폭시기를 포함하는 비닐계 공중합체 및 상기 말레산 무수물-방향족 비닐계 공중합체의 중량비는 약 1 : 0.05 내지 약 1 : 0.5인 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서, 상기 고무변성 방향족 비닐계 공중합체 수지는 고무변성 비닐계 그라프트 공중합체 약 10 내지 약 50 중량%; 및 방향족 비닐계 공중합체 수지 약 50 내지 약 90 중량%;를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제2항에 있어서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물의 중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 에폭시기를 포함하는 비닐계 공중합체는 에폭시기를 포함하는 (메타)아크릴레이트, 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체가 중합된 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 에폭시기를 포함하는 비닐계 공중합체는 에폭시기를 포함하는 (메타)아크릴레이트를 약 0.01 내지 약 10 몰%로 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 말레산 무수물-방향족 비닐계 공중합체는 말레산 무수물 약 5 내지 약 40 중량% 및 방향족 비닐계 단량체 약 60 내지 약 95 중량%의 중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 에폭시기를 포함하는 비닐계 공중합체 및 말레산 무수물-방향족 비닐계 공중합체의 합량과 상기 유리 섬유의 중량비는 약 1 : 0.5 내지 약 1 : 4인 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 에폭시기를 포함하는 비닐계 공중합체 및 말레산 무수물-방향족 비닐계 공중합체의 합량과 상기 인계 난연제의 중량비는 약 1 : 1 내지 약 1 : 2.5인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 1/8" 두께 시편의 노치 아이조드 충격강도가 약 4 내지 약 10 kgf·cm/cm인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 UL-94 기준에 따라 측정한 0.75 mm 두께 시편의 난연도가 V-2 이상이고, 2.5 mm 두께 시편의 난연도가 V-2 이상인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ISO 306에 의거하여, 5 kg 하중 및 50℃/hr 조건에서 측정한 Vicat 연화온도가 약 80 내지 약 100℃인 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D1238에 의거하여, 200℃, 5 kg 하중 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 5 내지 약 15 g/10분인 것을 특징으로 하는 열가소성 수지 조성물.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D523에 의거하여 60° 각도에서 측정한 광택도가 약 90 내지 약 95%인 것을 특징으로 하는 열가소성 수지 조성물.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 하기 식 1 내지 3을 모두 만족하는 것을 특징으로 하는 열가소성 수지 조성물:
    [식 1]
    4.5 kgf·cm/cm ≤ Iz ≤ 9 kgf·cm/ cm
    상기 식 1에서, Iz는 ASTM D256에 의거하여 측정한 1/8" 두께 시편의 노치 아이조드 충격강도이다;
    [식 2]
    81℃ ≤ Tv ≤ 90℃
    상기 식 2에서, Tv는 ISO 306에 의거하여, 5 kg 하중 및 50℃/hr 조건에서 측정한 Vicat 연화온도이다;
    [식 3]
    6 g/10분 ≤ MI ≤ 15 g/10분
    상기 식 3에서, MI는 ASTM D1238에 의거하여, 200℃, 5 kg 하중 조건에서 측정한 용융흐름지수이다.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 하는 성형품.
PCT/KR2020/008464 2019-07-30 2020-06-29 열가소성 수지 조성물 및 이로부터 형성된 성형품 WO2021020741A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021573511A JP2022542503A (ja) 2019-07-30 2020-06-29 熱可塑性樹脂組成物およびそれにより形成された成型品
US17/617,399 US20220259421A1 (en) 2019-07-30 2020-06-29 Thermoplastic Resin Composition and Molded Article Formed Therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0092222 2019-07-30
KR1020190092222A KR102341896B1 (ko) 2019-07-30 2019-07-30 열가소성 수지 조성물 및 이로부터 형성된 성형품

Publications (1)

Publication Number Publication Date
WO2021020741A1 true WO2021020741A1 (ko) 2021-02-04

Family

ID=74229446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008464 WO2021020741A1 (ko) 2019-07-30 2020-06-29 열가소성 수지 조성물 및 이로부터 형성된 성형품

Country Status (4)

Country Link
US (1) US20220259421A1 (ko)
JP (1) JP2022542503A (ko)
KR (1) KR102341896B1 (ko)
WO (1) WO2021020741A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230033321A1 (en) * 2021-08-02 2023-02-02 B/E Aerospace, Inc. Fire resistant thermoplastic-based resin for fiber-reinforced composites
FR3140885A1 (fr) * 2022-10-18 2024-04-19 Skytech Compositions de polymères styréniques de grade extrusion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230046439A (ko) * 2021-09-30 2023-04-06 롯데케미칼 주식회사 열가소성 수지 조성물 및 이로부터 제조된 성형품

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753833A (ja) * 1993-08-18 1995-02-28 Japan Synthetic Rubber Co Ltd 熱可塑性樹脂組成物
KR20030030420A (ko) * 2001-10-11 2003-04-18 제일모직주식회사 열가소성 수지조성물
KR20060079106A (ko) * 2004-12-31 2006-07-05 주식회사 엘지화학 열융착성, 내화학성, 충격강도, 신율, 및 도장 퍼짐성이우수한 초내열 열가소성 수지 조성물
KR101486565B1 (ko) * 2011-12-05 2015-01-26 제일모직 주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
KR20170036842A (ko) * 2015-09-18 2017-04-03 롯데첨단소재(주) 난연성 열가소성 수지 조성물 및 이로부터 형성된 성형품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753833A (ja) * 1993-08-18 1995-02-28 Japan Synthetic Rubber Co Ltd 熱可塑性樹脂組成物
KR20030030420A (ko) * 2001-10-11 2003-04-18 제일모직주식회사 열가소성 수지조성물
KR20060079106A (ko) * 2004-12-31 2006-07-05 주식회사 엘지화학 열융착성, 내화학성, 충격강도, 신율, 및 도장 퍼짐성이우수한 초내열 열가소성 수지 조성물
KR101486565B1 (ko) * 2011-12-05 2015-01-26 제일모직 주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
KR20170036842A (ko) * 2015-09-18 2017-04-03 롯데첨단소재(주) 난연성 열가소성 수지 조성물 및 이로부터 형성된 성형품

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230033321A1 (en) * 2021-08-02 2023-02-02 B/E Aerospace, Inc. Fire resistant thermoplastic-based resin for fiber-reinforced composites
US11879042B2 (en) * 2021-08-02 2024-01-23 B/E Aerospace, Inc. Fire resistant thermoplastic-based resin for fiber-reinforced composites
FR3140885A1 (fr) * 2022-10-18 2024-04-19 Skytech Compositions de polymères styréniques de grade extrusion

Also Published As

Publication number Publication date
JP2022542503A (ja) 2022-10-04
US20220259421A1 (en) 2022-08-18
KR102341896B1 (ko) 2021-12-21
KR20210014323A (ko) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
WO2012053698A1 (ko) 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
WO2014061891A1 (ko) 유리섬유 강화 폴리카보네이트 난연 수지 조성물
WO2012091307A2 (ko) 난연성 열가소성 수지 조성물
WO2019132584A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2021107489A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2018070631A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2011052849A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018124790A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2019132575A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019132371A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021201444A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2013100303A1 (ko) 고광택 폴리카보네이트계 수지 조성물 및 그 성형품
WO2016108539A1 (ko) 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2012091295A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2021085868A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020138785A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2020138802A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2020111618A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2018117438A1 (ko) 수지 조성물 및 이로부터 제조된 성형품
WO2022139176A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019132572A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2018080250A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847627

Country of ref document: EP

Kind code of ref document: A1