WO2020138802A1 - 열가소성 수지 조성물 및 이로부터 형성된 성형품 - Google Patents

열가소성 수지 조성물 및 이로부터 형성된 성형품 Download PDF

Info

Publication number
WO2020138802A1
WO2020138802A1 PCT/KR2019/017783 KR2019017783W WO2020138802A1 WO 2020138802 A1 WO2020138802 A1 WO 2020138802A1 KR 2019017783 W KR2019017783 W KR 2019017783W WO 2020138802 A1 WO2020138802 A1 WO 2020138802A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
weight
formula
parts
Prior art date
Application number
PCT/KR2019/017783
Other languages
English (en)
French (fr)
Inventor
이진성
오현지
정현택
허준혁
권영철
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to EP19901687.4A priority Critical patent/EP3904455A4/en
Priority to US17/284,858 priority patent/US20210388140A1/en
Priority to CN201980075671.5A priority patent/CN113056521A/zh
Publication of WO2020138802A1 publication Critical patent/WO2020138802A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • C08K5/5373Esters of phosphonic acids containing heterocyclic rings not representing cyclic esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article formed therefrom. More specifically, the present invention relates to a thermoplastic resin composition having excellent hydrolysis resistance, flame retardancy, impact resistance, and balance of physical properties, and a molded article formed therefrom.
  • thermoplastic resin composition including polycarbonate resin, rubber-modified aromatic vinyl-based copolymer resin, and flame retardant is excellent in impact resistance, flame retardancy, and workability, so that the housing of electrical/electronic products that generate a lot of heat and other office equipment / Useful as exterior materials.
  • thermoplastic resin composition comprising a polycarbonate resin and a rubber-modified aromatic vinyl-based copolymer resin
  • a problem that it is difficult to apply to products requiring 5VA flame retardant properties.
  • studies have been conducted to further improve the 5VA flame retardant properties by additionally introducing a polyester resin, but when the polyester resin is applied, a problem in that hydrolysis resistance and the like decreases.
  • thermoplastic resin composition having excellent hydrolysis resistance, flame retardancy, impact resistance, and balance in physical properties.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in hydrolysis resistance, flame retardancy, impact resistance, and balance of these properties.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition is a rubber-modified aromatic vinyl-based copolymer resin of about 30 to about 60% by weight, polycarbonate resin of about 30 to about 60% by weight, polyester resin of about 5 to about 25% by weight of a thermoplastic resin comprising about 100% by weight part; About 0.1 to about 5 parts by weight of zinc oxide; About 0.1 to about 3 parts by weight of a phosphite compound comprising at least one of a phosphite compound represented by Formula 1 and a phosphite compound represented by Formula 2 below; And about 5 to about 30 parts by weight of a phosphorus-based flame retardant;
  • R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, and n is an integer of 1 to 5;
  • R 2 is a linear or branched alkyl group having 10 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • the rubber-modified aromatic vinyl-based copolymer resin may include a rubber-modified vinyl-based graft copolymer and an aromatic vinyl-based copolymer resin.
  • the rubber-modified vinyl-based graft copolymer may be a graft polymerization of a monomer mixture containing an aromatic vinyl-based monomer and a vinyl cyanide-based monomer in a rubbery polymer.
  • the polyester resin is polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and polytrimethylene terephthalate (PTT), polycyclohex Silene dimethylene terephthalate (PCT).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PTT polytrimethylene terephthalate
  • PCT polycyclohex Silene dimethylene terephthalate
  • the phosphite compound may include one or more of compounds represented by the following Formula 1a, compounds represented by the following Formula 2a, and compounds represented by the following Formula 2b.
  • the phosphorus-based flame retardant may include one or more of phosphate compounds, phosphonate compounds, phosphinate compounds, phosphine oxide compounds and phosphazene compounds.
  • thermoplastic resin composition may further include at least one of halogen-based flame retardants and antimony-based flame retardants.
  • the weight ratio of the zinc oxide and the phosphite compound may be from about 1:1 to about 4:1.
  • thermoplastic resin composition may have a flame retardancy of 5VA of a 2.5 mm thick injection specimen measured by a UL-94 vertical test method.
  • thermoplastic resin composition is exposed to a 2.5 mm thick injection specimen in a chamber at 70° C. and 95% relative humidity for 300 hours, and after aging at room temperature and 50% relative humidity for 24 hours.
  • the flame retardancy of the specimen measured by the UL-94 vertical test method may be 5VA.
  • the thermoplastic resin composition may have a notched Izod impact strength of about 20 to about 60 kgf ⁇ cm/cm of a 1/8” thick specimen measured according to ASTM D256.
  • thermoplastic resin composition may have an impact strength retention rate of about 85% or more according to Formula 1 below:
  • IZ 0 is the notched Izod impact strength of the 1/8" thick thermoplastic resin composition injection specimen measured according to ASTM D256, and IZ 1 is 300 hours in the chamber at 70°C and 95% relative humidity. It is a notched Izod impact strength measured in accordance with ASTM D256 after aging for 24 hours at 50% conditions at room temperature and relative humidity.
  • Another aspect of the invention relates to a molded article.
  • the molded article is characterized in that it is formed from the thermoplastic resin composition according to any one of 1 to 12 above.
  • the present invention has the effect of the invention to provide a thermoplastic resin composition excellent in hydrolysis resistance, flame retardancy, impact resistance, and physical properties balance, and a molded article formed therefrom.
  • thermoplastic resin composition includes (A) a rubber-modified aromatic vinyl-based copolymer resin; (B) polycarbonate resin; (C) polyester resin; (D) zinc oxide; (E) phosphite compounds; And (F) phosphorus-based flame retardants.
  • the rubber-modified aromatic vinyl-based copolymer resin according to an embodiment of the present invention may include (A1) a rubber-modified vinyl-based graft copolymer and (A2) an aromatic vinyl-based copolymer resin.
  • the rubber-modified vinyl-based graft copolymer according to an embodiment of the present invention may be a graft polymerization of a monomer mixture comprising an aromatic vinyl-based monomer and a vinyl cyanide-based monomer in a rubbery polymer.
  • the rubber-modified vinyl-based graft copolymer can be obtained by graft polymerization of a monomer mixture containing an aromatic vinyl-based monomer and a vinyl cyanide-based monomer in a rubbery polymer, and if necessary, processability and It is possible to further graft polymerize by further including a monomer that imparts heat resistance.
  • the polymerization may be performed by known polymerization methods such as emulsion polymerization and suspension polymerization.
  • the rubber-modified vinyl-based graft copolymer may form a core (rubber polymer)-shell (copolymer of a monomer mixture) structure, but is not limited thereto.
  • the rubbery polymers include diene rubbers such as polybutadiene, poly(styrene-butadiene), poly(acrylonitrile-butadiene), and saturated rubbers hydrogenated to the diene rubbers, isoprene rubber, and carbon number 2 to 2 And an alkyl (meth)acrylate rubber of 10, a copolymer of alkyl (meth)acrylate and styrene having 2 to 10 carbon atoms, an ethylene-propylene-diene monomer terpolymer (EPDM), and the like.
  • diene-based rubber, (meth)acrylate rubber, or the like can be used, and specifically, butadiene-based rubber, butyl acrylate rubber, or the like can be used.
  • the rubbery polymer (rubber particles) may have an average particle size of about 0.05 to about 6 ⁇ m, for example about 0.15 to about 4 ⁇ m, specifically about 0.25 to about 3.5 ⁇ m. In the above range, the impact resistance, appearance characteristics, and the like of the thermoplastic resin composition may be excellent.
  • the average particle size (z-average) of the rubbery polymer (rubber particles) can be measured using a light scattering method in a latex state.
  • the rubbery polymer latex is filtered through a mesh to remove coagulum generated during polymerization of the rubbery polymer, and a solution of 0.5 g of latex and 30 ml of distilled water is poured into a 1,000 ml flask and filled with distilled water to prepare a sample. , 10 ml of the sample is transferred to a quartz cell, on which the average particle size of the rubbery polymer can be measured with a light scattering particle size meter (malvern, nano-zs).
  • the content of the rubbery polymer may be about 20 to about 70% by weight, for example, about 25 to about 60% by weight, of the total of 100% by weight of the rubber-modified vinyl-based graft copolymer, and the monomer mixture (aromatic The content of the vinyl monomer and the vinyl cyanide monomer) may be about 30 to about 80% by weight, for example, about 40 to about 75% by weight, of 100% by weight of the total rubber-modified vinyl-based graft copolymer. In the above range, the impact resistance, appearance characteristics, and the like of the thermoplastic resin composition may be excellent.
  • the aromatic vinyl monomer may be graft copolymerized with the rubbery polymer, styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, And monochlorostyrene, dichlorostyrene, dibromostyrene, and vinyl naphthalene. These may be used alone or in combination of two or more.
  • the content of the aromatic vinyl-based monomer may be about 10 to about 90% by weight of 100% by weight of the monomer mixture, for example, about 40 to about 90% by weight. In the above range, the processability, impact resistance, etc. of the thermoplastic resin composition may be excellent.
  • the vinyl cyanide-based monomer is one that can be copolymerized with the aromatic vinyl-based, acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, etc. Can be illustrated. These may be used alone or in combination of two or more. For example, acrylonitrile, methacrylonitrile, or the like can be used.
  • the content of the vinyl cyanide-based monomer may be about 10 to about 90% by weight of 100% by weight of the monomer mixture, for example, about 10 to about 60% by weight. In the above range, the chemical resistance and mechanical properties of the thermoplastic resin composition may be excellent.
  • (meth)acrylic acid, maleic anhydride, N-substituted maleimide, and the like may be exemplified as the monomer for imparting the processability and heat resistance, but are not limited thereto.
  • the content may be up to about 15% by weight of 100% by weight of the monomer mixture, for example, about 0.1 to about 10% by weight. Without deteriorating other physical properties in the above range, it is possible to impart processability and heat resistance to the thermoplastic resin composition.
  • the rubber-modified vinyl-based graft copolymer is a copolymer in which a styrene monomer as an aromatic vinyl-based compound and an acrylonitrile monomer as a vinyl cyanide-based compound are grafted to a butadiene-based rubber polymer (g-ABS), butadiene-based Aromatic vinyl-based styrene monomer and copolymer copolymerized with methyl methacrylate (g-MBS) as a copolymerizable monomer, and butyl acrylate-based rubber-based aromatic vinyl compound styrene monomer and vinyl cyanide
  • g-ASA acrylate-styrene-acrylonitrile graft copolymer
  • g-ASA acrylate-styrene-acrylonitrile graft copolymer
  • the rubber-modified vinyl-based graft copolymer may be included in about 20 to about 50% by weight, for example, about 25 to about 45% by weight of 100% by weight of the total rubber-modified aromatic vinyl-based copolymer resin.
  • the impact resistance of the thermoplastic resin composition, fluidity (molding processability), appearance characteristics, and balance of these properties may be excellent.
  • the aromatic vinyl-based copolymer resin according to an embodiment of the present invention may be an aromatic vinyl-based copolymer resin used in a conventional rubber-modified aromatic vinyl-based copolymer resin.
  • the aromatic vinyl-based copolymer resin may be a polymer of a monomer mixture containing an aromatic vinyl-based monomer and a monomer copolymerizable with the aromatic vinyl-based monomer.
  • the aromatic vinyl-based copolymer resin can be obtained by mixing an aromatic vinyl-based monomer and an aromatic vinyl-based monomer and a copolymerizable monomer, and then polymerizing it.
  • the polymerization may be emulsion polymerization, suspension polymerization, bulk polymerization, etc. It can be carried out by a known polymerization method.
  • the aromatic vinyl monomers include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, and dibromostyrene , Vinyl naphthalene, and the like. These may be applied alone or in combination of two or more.
  • the content of the aromatic vinyl-based monomer may be about 20 to about 90% by weight, for example, about 30 to about 80% by weight, among 100% by weight of the total aromatic vinyl-based copolymer resin. In the above range, the impact resistance and fluidity of the thermoplastic resin composition may be excellent.
  • the monomer copolymerizable with the aromatic vinyl monomer may include at least one of a vinyl cyanide monomer and an alkyl (meth)acrylic monomer.
  • a vinyl cyanide monomer and an alkyl (meth)acrylic monomer may be a vinyl cyanide monomer or a vinyl cyanide monomer and an alkyl (meth)acrylic monomer, specifically, a vinyl cyanide monomer and an alkyl (meth)acrylic monomer.
  • the vinyl cyanide-based monomer may be exemplified by acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, etc., but is not limited thereto. Does not. These may be used alone or in combination of two or more. For example, acrylonitrile, methacrylonitrile, or the like can be used.
  • the alkyl (meth)acrylic monomer may include (meth)acrylic acid and/or alkyl (meth)acrylate having 1 to 10 carbon atoms. These may be used alone or in combination of two or more. For example, methyl methacrylate, methyl acrylate, and the like can be used.
  • the content of the vinyl cyanide monomer is 100% by weight of the monomer copolymerizable with the aromatic vinyl monomer. It may be 1 to 40% by weight, for example, 2 to 35% by weight, and the content of the alkyl (meth)acrylic monomer is about 60 to about 99% by weight of 100% by weight of the monomer copolymerizable with the aromatic vinyl monomer, For example, about 65 to about 98% by weight. In the above range, the transparency, heat resistance, and workability of the thermoplastic resin composition may be excellent.
  • the content of the aromatic vinyl-based monomer and the copolymerizable monomer may be about 10 to about 80% by weight, for example, about 20 to about 70% by weight, among 100% by weight of the aromatic vinyl-based copolymer resin. In the above range, the impact resistance and fluidity of the thermoplastic resin composition may be excellent.
  • the aromatic vinyl-based copolymer resin has a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 10,000 to about 300,000 g/mol, for example, about 15,000 to about 150,000 g/mol. Can.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • GPC gel permeation chromatography
  • the aromatic vinyl-based copolymer resin may be included in about 50 to about 80% by weight, for example, about 55 to about 75% by weight of 100% by weight of the total rubber-modified aromatic vinyl-based copolymer resin.
  • the impact resistance of the thermoplastic resin composition, fluidity (molding processability), and the like may be excellent.
  • the rubber-modified aromatic vinyl-based copolymer resin (A) is 100% by weight of a thermoplastic resin (rubber-modified aromatic vinyl-based copolymer resin (A), polycarbonate resin (B) and polyester resin (C)) , About 30 to about 60% by weight, for example about 35 to about 55% by weight, specifically about 40 to about 50% by weight.
  • a thermoplastic resin rubber-modified aromatic vinyl-based copolymer resin (A), polycarbonate resin (B) and polyester resin (C)
  • about 30 to about 60% by weight for example about 35 to about 55% by weight, specifically about 40 to about 50% by weight.
  • the content of the rubber-modified aromatic vinyl-based copolymer resin is less than about 30% by weight, the impact resistance and hydrolysis resistance of the thermoplastic resin composition may be deteriorated, and when it exceeds about 60% by weight, flame retardancy, fluidity, etc. There is a fear that this may decrease.
  • a polycarbonate resin used in a conventional thermoplastic resin composition may be used.
  • an aromatic polycarbonate resin produced by reacting diphenols (aromatic diol compounds) with precursors such as phosgene, halogen formate, and carbonic acid diester can be used.
  • the diphenols include 4,4'-biphenol, 2,2-bis(4-hydroxyphenyl)propane, 2,4-bis(4-hydroxyphenyl)-2-methylbutane, 1 ,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis(3-chloro-4-hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl) Propane and the like, but is not limited thereto.
  • 2,2-bis(4-hydroxyphenyl)propane 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane, or 1,1-bis(4-hydroxyphenyl) )Cyclohexane
  • 2,2-bis(4-hydroxyphenyl)propane called bisphenol-A can be used.
  • the polycarbonate resin may be used having a branched chain, for example, about 0.05 to about 2 mol% of trivalent or higher polyfunctional compound, specifically with respect to the total diphenols used for polymerization, specifically , It is also possible to use a branched polycarbonate resin prepared by adding a compound having a trivalent or higher phenol group.
  • the polycarbonate resin may be used in the form of a homo polycarbonate resin, a copolycarbonate resin, or a blend thereof.
  • the polycarbonate resin may be partially or wholly substituted with an aromatic polyester-carbonate resin obtained by polymerization reaction in the presence of an ester precursor, such as a bifunctional carboxylic acid.
  • the polycarbonate resin may have a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 10,000 to about 50,000 g/mol, for example, about 15,000 to about 40,000 g/mol.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the flowability (processability) of the thermoplastic resin composition in the above range may be excellent.
  • the polycarbonate resin (B) is a thermoplastic resin (rubber-modified aromatic vinyl-based copolymer resin (A), polycarbonate resin (B) and polyester resin (C)) of 100% by weight, about 30 to about 60% by weight, for example about 30 to about 50% by weight, specifically about 35 to about 45% by weight.
  • thermoplastic resin rubber-modified aromatic vinyl-based copolymer resin (A), polycarbonate resin (B) and polyester resin (C)
  • the content of the polycarbonate resin is less than about 30% by weight, the flame retardancy and impact resistance of the thermoplastic resin composition may be lowered, and when it exceeds about 60% by weight, there is a fear that fluidity and hydrolysis resistance are lowered. have.
  • the polyester resin is a dicarboxylic acid component, terephthalic acid (TPA), isophthalic acid (IPA), 1,2-naphthalene dicarboxylic acid, 1,4-naphthalene dicar Carboxylic acid, 1,5-naphthalene dicarboxylic acid, 1,6-naphthalene dicarboxylic acid, 1,7-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 2,3-naphthalene dicarboxylic acid Aromatic dicarboxylic acids such as carboxylic acid, 2,6-naphthalene dicarboxylic acid and 2,7-naphthalenedicarboxylic acid, dimethyl terephthalate (DMT), dimethyl isophthalate, dimethyl- 1,2-naphthalate, dimethyl-1,5-naphthalate, dimethyl-1,
  • DMT dimethyl terephthalate
  • the polyester resin is polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and polytrimethylene terephthalate (PTT), polycyclohexylenedimethylene terephthalate ( PCT).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PTT polytrimethylene terephthalate
  • PCT polycyclohexylenedimethylene terephthalate
  • the polyester resin of the present invention has an intrinsic viscosity [ ⁇ ] measured using an o-chlorophenol solvent at 25° C. of about 0.5 to about 1.5 dl/g, for example, about 0.6 to about 1.3 dl/ It can be g. In the above range, flame retardancy, mechanical properties, and the like of the thermoplastic resin composition may be excellent.
  • the polyester resin (C) is a thermoplastic resin (rubber-modified aromatic vinyl-based copolymer resin (A), polycarbonate resin (B) and polyester resin (C)) in 100% by weight, about 5 to about 25% by weight, for example about 7 to about 22% by weight, specifically about 10 to about 20% by weight.
  • the content of the polyester resin is less than about 5% by weight, the flame retardancy, fluidity (processability), etc. of the thermoplastic resin composition may be lowered, and when it exceeds about 25% by weight, impact resistance, hydrolysis resistance, etc. are lowered. It might be.
  • the zinc oxide of the present invention can be applied together with a specific phosphite compound to improve the hydrolysis resistance, impact resistance, flame retardancy, and balance of physical properties of the thermoplastic resin composition, and zinc oxide used in a common thermoplastic resin composition Can be used.
  • the zinc oxide is an average particle size (D50) of a single particle (particles do not aggregate to form secondary particles) measured using a particle size analyzer (Beckman Coulter's Laser Diffraction Particle Size Analyzer LS I3 320 equipment) Can be about 0.2 to about 3 ⁇ m, for example about 0.5 to about 3 ⁇ m.
  • the zinc oxide using a nitrogen gas adsorption method is about 1 to about 10 m 2 /g, for example, about 1 To about 7 m 2 /g, and the purity may be 99% or more. In the above range, the discoloration resistance, antibacterial property, etc. of the thermoplastic resin composition may be excellent.
  • the zinc oxide may have various forms, and may include, for example, spherical, plate, rod, and combinations thereof.
  • the zinc oxide (D) is about 0.1 to about 100 parts by weight of the thermoplastic resin (rubber-modified aromatic vinyl-based copolymer resin (A), polycarbonate resin (B) and polyester resin (C)) To about 5 parts by weight, for example about 0.2 to about 4 parts by weight, specifically about 0.5 to about 2 parts by weight.
  • the content of the zinc oxide is less than about 0.1 parts by weight with respect to about 100 parts by weight of the thermoplastic resin, there is a possibility that the hydrolysis resistance and impact resistance of the thermoplastic resin composition are lowered, and when it exceeds about 5 parts by weight, the thermoplastic There is a fear that the impact resistance, flame retardancy, and hydrolysis resistance of the resin composition are lowered.
  • Phosphite (phosphite) compound of the present invention is applied together with zinc oxide, to improve the hydrolysis resistance, impact resistance, flame retardancy, balance of these properties, etc. of the thermoplastic resin composition, phosphite represented by the following formula (1)
  • Compounds and/or phosphite compounds represented by the following formula (2) can be used.
  • R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, and n is an integer of 1 to 5, for example, an integer of 2 to 4.
  • R 1 may be at least one branched alkyl group, for example, tert-butyl group.
  • R 2 is a linear or branched alkyl group having 10 to 30 carbon atoms, for example, a linear alkyl group having 15 to 25 carbon atoms, or an aryl group having 6 to 30 carbon atoms, for example, a linear group having 1 to 4 carbon atoms, or It is a phenyl group substituted with a branched alkyl group.
  • the phosphite compound may include at least one of a compound represented by Formula 1a, a compound represented by Formula 2a, and a compound represented by Formula 2b.
  • the phosphite compound (E) is about 100 parts by weight of the thermoplastic resin (rubber-modified aromatic vinyl-based copolymer resin (A), polycarbonate resin (B) and polyester resin (C)), about 0.1 to about 3 parts by weight, for example, about 0.1 to about 2 parts by weight, specifically about 0.2 to about 1.5 parts by weight.
  • the content of the phosphorus-based flame retardant is less than about 0.1 parts by weight with respect to about 100 parts by weight of the thermoplastic resin, there is a possibility that the hydrolysis resistance and impact resistance of the thermoplastic resin composition decrease, and when it exceeds about 3 parts by weight, thermoplastic There is a possibility that the hydrolysis resistance and impact resistance of the resin composition are lowered.
  • the weight ratio (D:E) of the zinc oxide (D) and the phosphite compound (E) may be about 1: 1 to about 10: 1, for example, about 1: 1 to about 4: 1 have.
  • the hydrolysis resistance, impact resistance, flame retardancy, and balance of physical properties of the thermoplastic resin composition may be more excellent.
  • Phosphorus-based flame retardant according to an embodiment of the present invention may be a phosphorus-based flame retardant used in a conventional thermoplastic resin composition.
  • phosphorus-based flame retardants such as phosphate compounds, phosphonate compounds, phosphinate compounds, phosphine oxide compounds, phosphazene compounds, and metal salts thereof Can be used. These may be used alone or in combination of two or more.
  • the phosphorus-based flame retardant may include an aromatic phosphate ester compound (phosphate compound) represented by the following Chemical Formula 3.
  • phosphate compound represented by the following Chemical Formula 3.
  • R 1 , R 2 , R 4 and R 5 are each independently a hydrogen atom, a C6-C20 aryl group having 6 to 20 carbon atoms, or a C6-C20 aryl substituted with a C1-C10 alkyl group.
  • Group, and R 3 is a C6-C20 arylene group or a C1-C10 alkyl group substituted C6-C20 arylene group, for example, dialcohols such as resorcinol, hydroquinone, bisphenol-A, bisphenol-S, etc.
  • n is an integer from 0 to 10, for example 0 to 4.
  • bisphenol-A diphosphate bisphenol-A bis(diphenylphosphate), resorcinol bis(diphenylphosphate), resorcinol bis[bis(2,6-dimethylphenyl)phosphate], resorcinol bis [Bis(2,4-diterybutylphenyl)phosphate], hydroquinone bis[bis(2,6-dimethylphenyl)phosphate], hydroquinone bis[bis(2,
  • the phosphorus-based flame retardant (F) is about 5 parts by weight based on about 100 parts by weight of the thermoplastic resin (rubber-modified aromatic vinyl-based copolymer resin (A), polycarbonate resin (B), and polyester resin (C)) To about 30 parts by weight, for example, about 7 to about 20 parts by weight, specifically about 9 to about 18 parts by weight.
  • the content of the phosphorus-based flame retardant is less than about 5 parts by weight with respect to about 100 parts by weight of the thermoplastic resin, there is a fear that the flame retardancy, fluidity, etc. of the thermoplastic resin composition are lowered, and when it exceeds about 30 parts by weight, the thermoplastic resin composition There is a fear that impact resistance and the like are deteriorated.
  • thermoplastic resin composition according to an embodiment of the present invention may further include a flame retardant other than a phosphorus-based flame retardant, such as a halogen-based flame retardant, an antimony-based flame retardant, and combinations thereof, to further improve flame retardancy.
  • a flame retardant other than a phosphorus-based flame retardant such as a halogen-based flame retardant, an antimony-based flame retardant, and combinations thereof, to further improve flame retardancy.
  • the halogen-based flame retardant is decabromodiphenyl oxide, decabromodiphenylethane, decabromodiphenyl ether, tetrabromobisphenol A, tetrabromobisphenol A-epoxy oligomer, brominated epoxy oligomer, octave Lomotrimethylphenylindan, ethylenebistetrabromophthalimide, 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine, etc.
  • the antimony-based flame retardant include antimony trioxide, antimony pentoxide, and the like. These may be used alone or in combination of two or more.
  • the flame retardant excluding the phosphorus-based flame retardant is about 5 parts by weight based on about 100 parts by weight of the thermoplastic resin (rubber-modified aromatic vinyl-based copolymer resin (A), polycarbonate resin (B), and polyester resin (C)) To about 20 parts by weight, for example, about 7 to about 10 parts by weight. In the above range, the flame retardancy and the like of the thermoplastic resin composition may be excellent.
  • the thermoplastic resin composition according to an embodiment of the present invention may further include an additive included in a conventional thermoplastic resin composition.
  • the additives include, but are not limited to, dripping inhibitors such as fluorinated olefin resins, lubricants, nucleating agents, stabilizers, mold release agents, pigments, dyes, and mixtures thereof.
  • the content may be about 0.001 to about 40 parts by weight, for example, about 0.1 to about 10 parts by weight with respect to about 100 parts by weight of the thermoplastic resin.
  • thermoplastic resin composition according to an embodiment of the present invention is a pellet form in which the above components are mixed and melt-extruded at about 200 to about 280°C, for example, from about 220 to about 250°C, using a conventional twin-screw extruder. Can.
  • thermoplastic resin composition may have a flame retardancy of 5VA of a 2.5 mm thick injection specimen measured by UL-94 vertical test method.
  • thermoplastic resin composition is exposed to a 2.5 mm thick injection specimen in a chamber at 70° C. and 95% relative humidity for 300 hours, and after aging at room temperature and 50% relative humidity for 24 hours, UL-94 vertical test Flame retardancy of the specimen measured by the method may be 5VA.
  • the thermoplastic resin composition has a notch Izod impact strength of 1/8" thick specimens measured according to ASTM D256, about 20 to about 60 kgfcm/cm, for example about 30 to about 50 kgf. It may be cm / cm.
  • thermoplastic resin composition may have an impact strength retention of about 85% or more according to the following Equation 1, for example, about 90 to about 99%.
  • IZ 0 is the notched Izod impact strength of the 1/8" thick thermoplastic resin composition injection specimen measured according to ASTM D256, and IZ 1 is 300 hours in the chamber at 70°C and 95% relative humidity. It is a notched Izod impact strength measured in accordance with ASTM D256 after aging for 24 hours at 50% conditions at room temperature and relative humidity.
  • the molded article according to the present invention is formed from the thermoplastic resin composition.
  • the thermoplastic resin composition may be manufactured in a pellet form, and the manufactured pellet may be manufactured into various molded products (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such molding methods are well known by those skilled in the art to which this invention pertains.
  • the molded article is excellent in hydrolysis resistance, flame retardancy, impact resistance, and balance of these properties, and is useful as interior/exterior materials for electric/electronic products, interior/exterior materials for automobiles, exterior materials for construction, and the like.
  • Graft in core-shell form prepared by graft copolymerization of styrene and acrylonitrile (styrene/acrylonitrile: 75 wt%/ 25 wt%) to 58 wt% butadiene rubber having an average particle size of 0.3 ⁇ m Copolymer (g-ABS) was used.
  • a bisphenol-A type polycarbonate resin having a weight average molecular weight (Mw) of 22,000 g/mol was used.
  • PET Polyethylene terephthalate
  • Notched Izod impact strength (unit: kgfcm/cm): Notched Izod impact strength of a 1/8" thick specimen was measured according to ASTM D256.
  • IZ 0 is the notched Izod impact strength of the 1/8" thick thermoplastic resin composition injection specimen measured according to ASTM D256, and IZ 1 is 300 hours in the chamber at 70°C and 95% relative humidity. It is a notched Izod impact strength measured in accordance with ASTM D256 after aging for 24 hours at 50% conditions at room temperature and relative humidity.
  • thermoplastic resin composition of the present invention is excellent in hydrolysis resistance (flame retardancy after high temperature/high humidity treatment, impact strength retention rate), flame retardancy, impact resistance, and balance of physical properties thereof.
  • Comparative Example 1 in which a small amount of the rubber-modified aromatic vinyl-based copolymer resin was applied and the polyester resin was excessively applied, it was found that impact resistance, hydrolysis resistance (impact strength retention), and the like were lowered, and rubber-modified aromatic vinyl.
  • Comparative Example 2 in which an excess amount of the copolymer resin was applied and a small amount of the polyester resin was applied, it was found that flame retardancy, hydrolysis resistance (retardance after high temperature/high humidity treatment), and the like were lowered.
  • Comparative Example 3 without zinc oxide and Comparative Example 4 with small amount applied, it was found that the impact resistance and hydrolysis resistance (retardance and impact strength retention rate after high/high temperature treatment) were deteriorated, and zinc oxide was applied in excess.
  • Comparative Example 5 it can be seen that flame retardancy, hydrolysis resistance (flame retardancy after high temperature/high humidity treatment), etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 고무변성 방향족 비닐계 공중합체 수지 약 30 내지 약 60 중량%, 폴리카보네이트 수지 약 30 내지 약 60 중량%, 폴리에스테르 수지 약 5 내지 약 25 중량%를 포함하는 열가소성 수지 약 100 중량부; 산화아연 약 0.1 내지 약 5 중량부; 화학식 1로 표시되는 포스파이트 화합물 및 화학식 2로 표시되는 포스파이트 화합물 중 1종 이상을 포함하는 포스파이트 화합물 약 0.1 내지 약 3 중량부; 및 인계 난연제 약 5 내지 약 30 중량부;를 포함하는 것을 특징으로 한다. 상기 열가소성 수지 조성물은 내가수분해성, 난연성, 내충격성, 이들의 물성 발란스 등이 우수하다.

Description

열가소성 수지 조성물 및 이로부터 형성된 성형품
본 발명은 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 내가수분해성, 난연성, 내충격성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다.
폴리카보네이트 수지, 고무변성 방향족 비닐계 공중합체 수지 및 난연제 등을 포함하는 열가소성 수지 조성물은 내충격성, 난연성, 가공성 등이 우수하여, 열이 많이 발생하는 전기/전자 제품의 하우징, 기타 사무용 기기의 내/외장재 등으로 유용하다.
그러나, 폴리카보네이트 수지 및 고무변성 방향족 비닐계 공중합체 수지를 포함하는 열가소성 수지 조성물의 경우, 5VA 난연 특성이 요구되는 제품에 적용되기 어렵다는 문제가 있다. 이에 따라, 폴리에스테르 수지를 추가로 도입하여 5VA 난연 특성을 개선하는 연구가 진행되었으나, 폴리에스테르 수지가 적용될 경우, 내가수분해성 등이 저하되는 문제가 발생하였다.
따라서, 내가수분해성, 난연성, 내충격성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물의 개발이 필요한 실정이다.
본 발명의 배경기술은 미국 등록특허 US 5,061,745호 등에 개시되어 있다.
본 발명의 목적은 내가수분해성, 난연성, 내충격성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 고무변성 방향족 비닐계 공중합체 수지 약 30 내지 약 60 중량%, 폴리카보네이트 수지 약 30 내지 약 60 중량%, 폴리에스테르 수지 약 5 내지 약 25 중량%를 포함하는 열가소성 수지 약 100 중량부; 산화아연 약 0.1 내지 약 5 중량부; 하기 화학식 1로 표시되는 포스파이트 화합물 및 하기 화학식 2로 표시되는 포스파이트 화합물 중 1종 이상을 포함하는 포스파이트 화합물 약 0.1 내지 약 3 중량부; 및 인계 난연제 약 5 내지 약 30 중량부;를 포함한다:
[화학식 1]
Figure PCTKR2019017783-appb-I000001
상기 화학식 1에서, R1은 탄소수 1 내지 10의 선형 또는 분지형 알킬기이고, n은 1 내지 5의 정수이다;
[화학식 2]
Figure PCTKR2019017783-appb-I000002
상기 화학식 2에서, R2는 탄소수 10 내지 30의 선형 또는 분지형 알킬기 또는 탄소수 6 내지 30의 아릴기이다.
2. 상기 1 구체예에서, 상기 고무변성 방향족 비닐계 공중합체 수지는 고무변성 비닐계 그라프트 공중합체 및 방향족 비닐계 공중합체 수지를 포함할 수 있다.
3. 상기 1 또는 2 구체예에서, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것일 수 있다.
4. 상기 1 내지 3 구체예에서, 상기 폴리에스테르 수지는 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리에틸렌 나프탈레이트(PEN) 및 폴리트리메틸렌 테레프탈레이트(PTT), 폴리시클로헥실렌디메틸렌 테레프탈레이트(PCT) 중 1종 이상을 포함할 수 있다.
5. 상기 1 내지 4 구체예에서, 상기 포스파이트 화합물은 하기 화학식 1a로 표시되는 화합물, 하기 화학식 2a로 표시되는 화합물 및 하기 화학식 2b로 표시되는 화합물 중 1종 이상을 포함할 수 있다.
[화학식 1a]
Figure PCTKR2019017783-appb-I000003
[화학식 2a]
Figure PCTKR2019017783-appb-I000004
[화학식 2b]
Figure PCTKR2019017783-appb-I000005
6. 상기 1 내지 5 구체예에서, 상기 인계 난연제는 포스페이트 화합물, 포스포네이트 화합물, 포스피네이트 화합물, 포스핀옥사이드 화합물 및 포스파젠 화합물 중 1종 이상을 포함할 수 있다.
7. 상기 1 내지 6 구체예에서, 상기 열가소성 수지 조성물은 할로겐계 난연제 및 안티몬계 난연제 중 1종 이상을 더 포함할 수 있다.
8. 상기 1 내지 7 구체예에서, 상기 산화아연 및 상기 포스파이트 화합물의 중량비는 약 1 : 1 내지 약 4 : 1일 수 있다.
9. 상기 1 내지 8 구체예에서, 상기 열가소성 수지 조성물은 UL-94 vertical test 방법으로 측정한 2.5 mm 두께 사출 시편의 난연도가 5VA일 수 있다.
10. 상기 1 내지 9 구체예에서, 상기 열가소성 수지 조성물은 2.5 mm 두께 사출 시편을 70℃ 및 상대습도 95% 조건의 챔버에서 300시간 동안 노출시키고, 상온 및 상대습도 50% 조건에서 24시간 에이징 후, UL-94 vertical test 방법으로 측정한 상기 시편의 난연도가 5VA일 수 있다.
11. 상기 1 내지 10 구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여, 측정한 1/8" 두께 시편의 노치 아이조드 충격강도가 약 20 내지 약 60 kgf·cm/cm일 수 있다.
12. 상기 1 내지 11 구체예에서, 상기 열가소성 수지 조성물은 하기 식 1에 따른 충격강도 유지율이 약 85% 이상일 수 있다:
[식 1]
충격강도 유지율(%) = (IZ1 / IZ0) × 100
상기 식 1에서, IZ0는 ASTM D256에 의거하여 측정한 1/8" 두께 열가소성 수지 조성물 사출 시편의 노치 아이조드 충격강도이고 IZ1은 상기 시편을 70℃ 및 상대습도 95% 조건의 챔버에서 300시간 동안 노출시키고, 상온 및 상대습도 50% 조건에서 24시간 에이징 후, ASTM D256에 의거하여 측정한 노치 아이조드 충격강도이다.
13. 본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 1 내지 12 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 한다.
본 발명은 내가수분해성, 난연성, 내충격성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A) 고무변성 방향족 비닐계 공중합체 수지; (B) 폴리카보네이트 수지; (C) 폴리에스테르 수지; (D) 산화아연; (E) 포스파이트 화합물; 및 (F) 인계 난연제;를 포함한다.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.
(A) 고무변성 방향족 비닐계 공중합체 수지
본 발명의 일 구체예에 따른 고무변성 방향족 비닐계 공중합체 수지는 (A1) 고무변성 비닐계 그라프트 공중합체 및 (A2) 방향족 비닐계 공중합체 수지를 포함할 수 있다.
(A1) 고무변성 비닐계 그라프트 공중합체
본 발명의 일 구체예에 따른 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것일 수 있다. 예를 들면, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물을 그라프트 중합하여 얻을 수 있으며, 필요에 따라, 상기 단량체 혼합물에 가공성 및 내열성을 부여하는 단량체를 더욱 포함시켜 그라프트 중합할 수 있다. 상기 중합은 유화중합, 현탁중합 등의 공지의 중합방법에 의하여 수행될 수 있다. 또한, 상기 고무변성 비닐계 그라프트 공중합체는 코어(고무질 중합체)-쉘(단량체 혼합물의 공중합체) 구조를 형성할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 고무질 중합체로는 폴리부타디엔, 폴리(스티렌-부타디엔), 폴리(아크릴로니트릴-부타디엔) 등의 디엔계 고무 및 상기 디엔계 고무에 수소 첨가한 포화고무, 이소프렌고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 및 스티렌의 공중합체, 에틸렌-프로필렌-디엔단량체 삼원공중합체(EPDM) 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 예를 들면, 디엔계 고무, (메타)아크릴레이트 고무 등을 사용할 수 있고, 구체적으로, 부타디엔계 고무, 부틸아크릴레이트 고무 등을 사용할 수 있다.
구체예에서, 상기 고무질 중합체(고무 입자)는 평균 입자 크기가 약 0.05 내지 약 6 ㎛, 예를 들면 약 0.15 내지 약 4 ㎛, 구체적으로 약 0.25 내지 약 3.5 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다. 여기서, 상기 고무질 중합체(고무 입자)의 평균 입자 크기(z-평균)는 라텍스(latex) 상태에서 광 산란(light scattering) 방법을 이용하여 측정할 수 있다. 구체적으로, 고무질 중합체 라텍스를 메쉬(mesh)에 걸러서, 고무질 중합체 중합 중 발생하는 응고물 제거하고, 라텍스 0.5 g 및 증류수 30 ml를 혼합한 용액을 1,000 ml 플라스크에 따르고 증류수를 채워 시료를 제조한 다음, 시료 10 ml를 석영 셀(cell)로 옮기고, 이에 대하여, 광 산란 입도 측정기(malvern社, nano-zs)로 고무질 중합체의 평균 입자 크기를 측정할 수 있다.
구체예에서, 상기 고무질 중합체의 함량은 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 20 내지 약 70 중량%, 예를 들면 약 25 내지 약 60 중량%일 수 있고, 상기 단량체 혼합물(방향족 비닐계 단량체 및 시안화 비닐계 단량체 포함)의 함량은 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 30 내지 약 80 중량%, 예를 들면 약 40 내지 약 75 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체는 상기 고무질 중합체에 그라프트 공중합될 수 있는 것으로서, 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 40 내지 약 90 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 가공성, 내충격성 등이 우수할 수 있다.
구체예에서, 상기 시안화 비닐계 단량체는 상기 방향족 비닐계와 공중합 가능한 것으로서, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다. 상기 시안화 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 10 내지 약 60 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내화학성, 기계적 특성 등이 우수할 수 있다.
구체예에서, 상기 가공성 및 내열성을 부여하기 위한 단량체로는 (메타)아크릴산, 무수말레인산, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되지 않는다. 상기 가공성 및 내열성을 부여하기 위한 단량체 사용 시, 그 함량은 상기 단량체 혼합물 100 중량% 중 약 15 중량% 이하, 예를 들면 약 0.1 내지 약 10 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 가공성 및 내열성을 부여할 수 있다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체로는 부타디엔계 고무질 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 시안화 비닐계 화합물인 아크릴로니트릴 단량체가 그라프트된 공중합체(g-ABS), 부타디엔계 고무질 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 이와 공중합 가능한 단량체로 메틸메타크릴레이트가 그라프트된 공중합체(g-MBS), 부틸 아크릴레이트계 고무질 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 시안화 비닐계 화합물인 아크릴로니트릴 단량체가 그라프트된 공중합체인 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체(g-ASA) 등을 예시할 수 있다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체는 전체 고무변성 방향족 비닐계 공중합체 수지 100 중량% 중 약 20 내지 약 50 중량%, 예를 들면 약 25 내지 약 45 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성(성형 가공성), 외관 특성, 이들의 물성 발란스 등이 우수할 수 있다.
(A2) 방향족 비닐계 공중합체 수지
본 발명의 일 구체예에 따른 방향족 비닐계 공중합체 수지는 통상적인 고무변성 방향족 비닐계 공중합체 수지에 사용되는 방향족 비닐계 공중합체 수지일 수 있다. 예를 들면, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체를 포함하는 단량체 혼합물의 중합체일 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 방향족 비닐계 단량체와 공중합 가능한 단량체 등을 혼합한 후, 이를 중합하여 얻을 수 있으며, 상기 중합은 유화중합, 현탁중합, 괴상중합 등의 공지의 중합방법에 의하여 수행될 수 있다.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 상기 방향족 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 20 내지 약 90 중량%, 예를 들면 약 30 내지 약 80 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체는 시안화 비닐계 단량체 및 알킬(메타)아크릴계 단량체 중 1종 이상을 포함할 수 있다. 예를 들면, 시안화 비닐계 단량체 또는 시안화 비닐계 단량체 및 알킬(메타)아크릴계 단량체, 구체적으로 시안화 비닐계 단량체 및 알킬(메타)아크릴계 단량체일 수 있다.
구체예에서, 상기 시안화 비닐계 단량체로는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있으나, 이에 제한되지 않는다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다.
구체예에서, 상기 알킬(메타)아크릴계 단량체로는 (메타)아크릴산 및/또는 탄소수 1 내지 10의 알킬(메타)아크릴레이트 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 메틸메타크릴레이트, 메틸아크릴레이트 등을 사용할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체가 시안화 비닐계 단량체 및 알킬(메타)아크릴계 단량체의 혼합물일 경우, 상기 시안화 비닐계 단량체의 함량은 상기 방향족 비닐계 단량체와 공중합 가능한 단량체 100 중량% 중 1 내지 40 중량%, 예를 들면 2 내지 35 중량%일 수 있고, 상기 알킬(메타)아크릴계 단량체의 함량은 상기 방향족 비닐계 단량체와 공중합 가능한 단량체 100 중량% 중 약 60 내지 약 99 중량%, 예를 들면 약 65 내지 약 98 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 투명성, 내열성, 가공성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 10 내지 약 80 중량%, 예를 들면 약 20 내지 약 70 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 300,000 g/mol, 예를 들면, 약 15,000 내지 약 150,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 기계적 강도, 성형성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 전체 고무변성 방향족 비닐계 공중합체 수지 100 중량% 중, 약 50 내지 약 80 중량%, 예를 들면 약 55 내지 약 75 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성(성형 가공성) 등이 우수할 수 있다.
구체예에서, 상기 고무변성 방향족 비닐계 공중합체 수지(A)는 열가소성 수지(고무변성 방향족 비닐계 공중합체 수지(A), 폴리카보네이트 수지(B) 및 폴리에스테르 수지(C)) 100 중량% 중, 약 30 내지 약 60 중량%, 예를 들면 약 35 내지 약 55 중량%, 구체적으로 약 40 내지 약 50 중량%로 포함될 수 있다. 상기 고무변성 방향족 비닐계 공중합체 수지의 함량이 약 30 중량% 미만일 경우, 열가소성 수지 조성물의 내충격성 및 내가수분해성 등이 저하될 우려가 있고, 약 60 중량%를 초과할 경우, 난연성, 유동성 등이 저하될 우려가 있다.
(B) 폴리카보네이트 수지
본 발명의 일 구체예에 따른 폴리카보네이트 수지로는 통상의 열가소성 수지 조성물에 사용되는 폴리카보네이트 수지를 사용할 수 있다. 예를 들면, 디페놀류(방향족 디올 화합물)를 포스겐, 할로겐 포르메이트, 탄산 디에스테르 등의 전구체와 반응시킴으로써 제조되는 방향족 폴리카보네이트 수지를 사용할 수 있다.
구체예에서, 상기 디페놀류로는 4,4'-비페놀, 2,2-비스(4-히드록시페닐)프로판, 2,4-비스(4-히드록시페닐)-2-메틸부탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판 등을 예시할 수 있으나, 이에 제한되지 않는다. 예를 들면, 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 또는 1,1-비스(4-히드록시페닐)시클로헥산을 사용할 수 있고, 구체적으로, 비스페놀-A 라고 불리는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
구체예에서, 상기 폴리카보네이트 수지는 분지쇄가 있는 것이 사용될 수 있으며, 예를 들면 중합에 사용되는 디페놀류 전체에 대하여, 약 0.05 내지 약 2 몰%의 3가 또는 그 이상의 다관능 화합물, 구체적으로, 3가 또는 그 이상의 페놀기를 가진 화합물을 첨가하여 제조한 분지형 폴리카보네이트 수지를 사용할 수도 있다.
구체예에서, 상기 폴리카보네이트 수지는 호모 폴리카보네이트 수지, 코폴리카보네이트 수지 또는 이들의 블렌드 형태로 사용할 수 있다. 또한, 상기 폴리카보네이트 수지는 에스테르 전구체(precursor), 예컨대 2관능 카르복실산의 존재 하에서 중합 반응시켜 얻어진 방향족 폴리에스테르-카보네이트 수지로 일부 또는 전량 대체하는 것도 가능하다.
구체예에서, 상기 폴리카보네이트 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 50,000 g/mol, 예를 들면 약 15,000 내지 약 40,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 유동성(가공성) 등이 우수할 수 있다.
구체예에서, 상기 폴리카보네이트 수지(B)는 열가소성 수지(고무변성 방향족 비닐계 공중합체 수지(A), 폴리카보네이트 수지(B) 및 폴리에스테르 수지(C)) 100 중량% 중, 약 30 내지 약 60 중량%, 예를 들면 약 30 내지 약 50 중량%, 구체적으로 약 35 내지 약 45 중량%로 포함될 수 있다. 상기 폴리카보네이트 수지의 함량이 약 30 중량% 미만일 경우, 열가소성 수지 조성물의 난연성 및 내충격성 등이 저하될 우려가 있고, 약 60 중량%를 초과할 경우, 유동성 및 내가수분해성 등이 저하될 우려가 있다.
(C) 폴리에스테르 수지
본 발명의 일 구체예에 따른 폴리에스테르 수지로는 통상의 열가소성 수지 조성물에 사용되는 폴리에스테르 수지를 사용할 수 있다. 예를 들면, 상기 폴리에스테르 수지는 디카르복실산 성분으로서, 테레프탈산(terephthalic acid, TPA), 이소프탈산(isophthalic acid, IPA), 1,2-나프탈렌 디카르복실산, 1,4-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르복실산, 1,6-나프탈렌 디카르복실산, 1,7-나프탈렌 디카르복실산, 1,8-나프탈렌 디카르복실산, 2,3-나프탈렌 디카르복실산, 2,6-나프탈렌 디카르복실산, 2,7-나프탈렌디카르복실산 등의 방향족 디카르복실산, 디메틸 테레프탈레이트(dimethyl terephthalate, DMT), 디메틸 이소프탈레이트(dimethyl isophthalate), 디메틸-1,2-나프탈레이트, 디메틸-1,5-나프탈레이트, 디메틸-1,7-나프탈레이트, 디메틸-1,7-나프탈레이트, 디메틸-1,8-나프탈레이트, 디메틸-2,3-나프탈레이트, 디메틸-2,6-나프탈레이트, 디메틸-2,7-나프탈레이트 등의 방향족 디카르복실레이트(aromatic dicarboxylate) 등과 디올 성분으로서, 에틸렌 글리콜, 1,2-프로필렌 글리콜, 1,3-프로필렌 글리콜, 2,2-디메틸-1,3-프로판디올, 1,3-부탄디올, 1,4-부탄디올, 1,5-펜탄디올, 1,5-펜탄디올, 1,6-헥산디올, 환형 알킬렌 디올 등을 중축합하여 얻을 수 있다.
구체예에서, 상기 폴리에스테르 수지는 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리에틸렌 나프탈레이트(PEN) 및 폴리트리메틸렌 테레프탈레이트(PTT), 폴리시클로헥실렌디메틸렌 테레프탈레이트(PCT) 중 1종 이상을 포함할 수 있다.
구체예에서, 본 발명의 폴리에스테르 수지는 25℃에서 o-클로로 페놀 용매를 이용하여 측정한 고유점도[η]가 약 0.5 내지 약 1.5 dl/g, 예를 들면, 약 0.6 내지 약 1.3 dl/g일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 난연성, 기계적 물성 등이 우수할 수 있다.
구체예에서, 상기 폴리에스테르 수지(C)는 열가소성 수지(고무변성 방향족 비닐계 공중합체 수지(A), 폴리카보네이트 수지(B) 및 폴리에스테르 수지(C)) 100 중량% 중, 약 5 내지 약 25 중량%, 예를 들면 약 7 내지 약 22 중량%, 구체적으로 약 10 내지 약 20 중량%로 포함될 수 있다. 상기 폴리에스테르 수지의 함량이 약 5 중량% 미만일 경우, 열가소성 수지 조성물의 난연성, 유동성(가공성) 등이 저하될 우려가 있고, 약 25 중량%를 초과할 경우, 내충격성, 내가수분해성 등이 저하될 우려가 있다.
(D) 산화아연
본 발명의 산화아연은 특정 포스파이트 화합물과 함께 적용되어, 열가소성 수지 조성물의 내가수분해성, 내충격성, 난연성, 이들의 물성 발란스 등을 향상시킬 수 있는 것으로서, 통상의 열가소성 수지 조성물에 사용되는 산화아연을 사용할 수 있다.
구체예에서, 상기 산화아연은 입도분석기(Beckman Coulter社 Laser Diffraction Particle Size Analyzer LS I3 320 장비)를 사용하여 측정한 단일 입자(입자가 뭉쳐서 2차 입자를 형성하지 않음)의 평균 입자 크기(D50)가 약 0.2 내지 약 3 ㎛, 예를 들면 약 0.5 내지 약 3 ㎛일 수 있다. 또한, 상기 산화 아연은 질소가스 흡착법을 사용하여, BET 분석 장비(Micromeritics社 Surface Area and Porosity Analyzer ASAP 2020 장비)로 측정한 비표면적 BET가 약 1 내지 약 10 m2/g, 예를 들면 약 1 내지 약 7 m2/g일 수 있으며, 순도가 99% 이상일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 내변색성, 항균성 등이 우수할 수 있다.
구체예에서, 상기 산화 아연은 다양한 형태를 가질 수 있으며, 예를 들면, 구형, 플레이트형, 막대(rod)형, 이들의 조합 등을 모두 포함할 수 있다.
구체예에서, 상기 산화아연(D)은 상기 열가소성 수지(고무변성 방향족 비닐계 공중합체 수지(A), 폴리카보네이트 수지(B) 및 폴리에스테르 수지(C)) 약 100 중량부에 대하여, 약 0.1 내지 약 5 중량부, 예를 들면 약 0.2 내지 약 4 중량부, 구체적으로 약 0.5 내지 약 2 중량부로 포함될 수 있다. 상기 산화아연의 함량이 상기 열가소성 수지 약 100 중량부에 대하여, 약 0.1 중량부 미만일 경우, 열가소성 수지 조성물의 내가수분해성, 내충격성 등이 저하될 우려가 있고, 약 5 중량부를 초과할 경우, 열가소성 수지 조성물의 내충격성, 난연성, 내가수분해성 등이 저하될 우려가 있다.
(E) 포스파이트 화합물
본 발명의 포스파이트(phosphite) 화합물은 산화아연과 함께 적용되어, 열가소성 수지 조성물의 내가수분해성, 내충격성, 난연성, 이들의 물성 발란스 등을 향상시킬 수 있는 것으로서, 하기 화학식 1로 표시되는 포스파이트 화합물 및/또는 하기 화학식 2로 표시되는 포스파이트 화합물을 사용할 수 있다.
[화학식 1]
Figure PCTKR2019017783-appb-I000006
상기 화학식 1에서, R1은 탄소수 1 내지 10의 선형 또는 분지형 알킬기이고, n은 1 내지 5의 정수, 예를 들면, 2 내지 4의 정수이다. 여기서, R1은 적어도 하나가 분지형 알킬기, 예를 들면, tert-부틸기 등일 수 있다.
[화학식 2]
Figure PCTKR2019017783-appb-I000007
상기 화학식 2에서, R2는 탄소수 10 내지 30의 선형 또는 분지형 알킬기, 예를 들면 탄소수 15 내지 25의 선형 알킬기, 또는 탄소수 6 내지 30의 아릴기, 예를 들면, 탄소수 1 내지 4의 선형 또는 분지형 알킬기로 치환된 페닐기이다.
구체예에서, 상기 포스파이트 화합물은 상기 포스파이트 화합물은 하기 화학식 1a로 표시되는 화합물, 하기 화학식 2a로 표시되는 화합물 및 하기 화학식 2b로 표시되는 화합물 중 1종 이상을 포함할 수 있다.
[화학식 1a]
Figure PCTKR2019017783-appb-I000008
[화학식 2a]
Figure PCTKR2019017783-appb-I000009
[화학식 2b]
Figure PCTKR2019017783-appb-I000010
구체예에서, 상기 포스파이트 화합물(E)은 상기 열가소성 수지(고무변성 방향족 비닐계 공중합체 수지(A), 폴리카보네이트 수지(B) 및 폴리에스테르 수지(C)) 약 100 중량부에 대하여, 약 0.1 내지 약 3 중량부, 예를 들면 약 0.1 내지 약 2 중량부, 구체적으로 약 0.2 내지 약 1.5 중량부로 포함될 수 있다. 상기 인계 난연제의 함량이 상기 열가소성 수지 약 100 중량부에 대하여, 약 0.1 중량부 미만일 경우, 열가소성 수지 조성물의 내가수분해성, 내충격성 등이 저하될 우려가 있고, 약 3 중량부를 초과할 경우, 열가소성 수지 조성물의 내가수분해성, 내충격성 등이 저하될 우려가 있다.
구체예에서, 상기 산화아연(D) 및 상기 포스파이트 화합물(E)의 중량비(D:E)는 약 1 : 1 내지 약 10 : 1, 예를 들면 약 1 : 1 내지 약 4 : 1일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내가수분해성, 내충격성, 난연성, 이들의 물성 발란스 등이 더 우수할 수 있다.
(F) 인계 난연제
본 발명의 일 구체예에 따른 인계 난연제는 통상의 열가소성 수지 조성물에 사용되는 인계 난연제일 수 있다. 예를 들면, 포스페이트(phosphate) 화합물, 포스포네이트(phosphonate) 화합물, 포스피네이트(phosphinate) 화합물, 포스핀옥사이드(phosphine oxide) 화합물, 포스파젠(phosphazene) 화합물, 이들의 금속염 등의 인계 난연제가 사용될 수 있다. 이들은 단독으로 사용하거나 2종 이상 혼합하여 사용할 수 있다.
구체예에서, 상기 인계 난연제는 하기 화학식 3으로 표시되는 방향족 인산에스테르계 화합물(포스페이트 화합물)을 포함할 수 있다.
[화학식 3]
Figure PCTKR2019017783-appb-I000011
상기 화학식 3에서, R1, R2, R4 및 R5는 각각 독립적으로 수소 원자, C6-C20(탄소수 6 내지 20)의 아릴기, 또는 C1-C10의 알킬기가 치환된 C6-C20의 아릴기이고, R3는 C6-C20의 아릴렌기 또는 C1-C10의 알킬기가 치환된 C6-C20의 아릴렌기, 예를 들면, 레조시놀, 하이드로퀴논, 비스페놀-A, 비스페놀-S 등의 디알콜로부터 유도된 것이며, n은 0 내지 10, 예를 들면 0 내지 4의 정수이다.
상기 화학식 3으로 표시되는 방향족 인산에스테르계 화합물로는, n이 0인 경우, 디페닐포스페이트 등의 디아릴포스페이트, 트리페닐포스페이트, 트리크레실포스페이트, 트리자이레닐포스페이트, 트리(2,6-디메틸페닐)포스페이트, 트리(2,4,6-트리메틸페닐)포스페이트, 트리(2,4-디터셔리부틸페닐)포스페이트, 트리(2,6-디메틸페닐)포스페이트 등을 예시할 수 있고, n이 1인 경우, 비스페놀-A 디포스페이트, 비스페놀-A 비스(디페닐포스페이트), 레조시놀 비스(디페닐포스페이트), 레조시놀 비스[비스(2,6-디메틸페닐)포스페이트], 레조시놀 비스[비스(2,4-디터셔리부틸페닐)포스페이트], 하이드로퀴논 비스[비스(2,6-디메틸페닐)포스페이트], 히드로퀴논 비스(디페닐포스페이트), 하이드로퀴논 비스[비스(2,4-디터셔리부틸페닐)포스페이트] 등을 예시할 수 있고, n이 2 이상인 올리고머형 인산 에스테르계 화합물 등일 수 있으나, 이에 제한되지 않는다. 이들은 단독 또는 2종 이상의 혼합물의 형태로 적용될 수 있다.
구체예에서, 상기 인계 난연제(F)는 상기 열가소성 수지(고무변성 방향족 비닐계 공중합체 수지(A), 폴리카보네이트 수지(B) 및 폴리에스테르 수지(C)) 약 100 중량부에 대하여, 약 5 내지 약 30 중량부, 예를 들면 약 7 내지 약 20 중량부, 구체적으로 약 9 내지 약 18 중량부로 포함될 수 있다. 상기 인계 난연제의 함량이 상기 열가소성 수지 약 100 중량부에 대하여, 약 5 중량부 미만일 경우, 열가소성 수지 조성물의 난연성, 유동성 등이 저하될 우려가 있고, 약 30 중량부를 초과할 경우, 열가소성 수지 조성물의 내충격성 등이 저하될 우려가 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 난연성을 더욱 향상시키기 위하여, 할로겐계 난연제, 안티몬계 난연제, 이들의 조합 등의 인계 난연제를 제외한 난연제를 더 포함할 수 있다.
구체예에서, 상기 할로겐계 난연제로는 데카브로모디페닐옥사이드, 데카브로모디페닐에탄, 데카브로모디페닐에테르, 테트라브로모비스페놀 A, 테트라브로모비스페놀 A-에폭시 올리고머, 브로미네이티드 에폭시 올리고머, 옥타브로모트리메틸페닐인단, 에틸렌비스테트라브로모프탈이미드, 2,4,6-트리스(2,4,6-트리브로모페녹시)-1,3,5-트리아진 등을 예시할 수 있고, 상기 안티몬계 난연제로는 삼산화 안티몬, 오산화 안티몬 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다.
구체예에서, 상기 인계 난연제를 제외한 난연제는 상기 열가소성 수지(고무변성 방향족 비닐계 공중합체 수지(A), 폴리카보네이트 수지(B) 및 폴리에스테르 수지(C)) 약 100 중량부에 대하여, 약 5 내지 약 20 중량부, 예를 들면 약 7 내지 약 10 중량부로 더 포함될 수 있다. 상기 범위에서, 열가소성 수지 조성물의 난연성 등이 우수할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 통상의 열가소성 수지 조성물에 포함되는 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 불소화 올레핀계 수지 등의 적하 방지제, 활제, 핵제, 안정제, 이형제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 상기 열가소성 수지 약 100 중량부에 대하여, 약 0.001 내지 약 40 중량부, 예를 들면 약 0.1 내지 약 10 중량부일 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 상기 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 약 200 내지 약 280℃, 예를 들면 약 220 내지 약 250℃에서 용융 압출한 펠렛 형태일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 UL-94 vertical test 방법으로 측정한 2.5 mm 두께 사출 시편의 난연도가 5VA일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 2.5 mm 두께 사출 시편을 70℃ 및 상대습도 95% 조건의 챔버에서 300시간 동안 노출시키고, 상온 및 상대습도 50% 조건에서 24시간 에이징 후, UL-94 vertical test 방법으로 측정한 상기 시편의 난연도가 5VA일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여, 측정한 1/8" 두께 시편의 노치 아이조드 충격강도가 약 20 내지 약 60 kgf·cm/cm, 예를 들면 약 30 내지 약 50 kgf·cm/cm일 수 있다.
상기 열가소성 수지 조성물은 하기 식 1에 따른 충격강도 유지율이 약 85% 이상, 예를 들면 약 90 내지 약 99%일 수 있다.
[식 1]
충격강도 유지율(%) = (IZ1 / IZ0) × 100
상기 식 1에서, IZ0는 ASTM D256에 의거하여 측정한 1/8" 두께 열가소성 수지 조성물 사출 시편의 노치 아이조드 충격강도이고 IZ1은 상기 시편을 70℃ 및 상대습도 95% 조건의 챔버에서 300시간 동안 노출시키고, 상온 및 상대습도 50% 조건에서 24시간 에이징 후, ASTM D256에 의거하여 측정한 노치 아이조드 충격강도이다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 상기 열가소성 수지 조성물은 펠렛 형태로 제조될 수 있으며, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 내가수분해성, 난연성, 내충격성, 이들의 물성 발란스 등이 우수한 것으로서, 전기/전자 제품의 내/외장재, 자동차 내/외장재, 건축용 외장재 등으로 유용하다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
이하, 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 고무변성 방향족 비닐계 공중합체 수지
하기 (A1) 고무변성 방향족 비닐계 그라프트 공중합체 23 중량% 및 (B2) 방향족 비닐계 공중합체 수지 77 중량%를 혼합하여 사용하였다.
(A1) 고무변성 비닐계 그라프트 공중합체
평균 입자 크기가 0.3 ㎛인 부타디엔 고무 58 중량%에 스티렌 및 아크릴로니트릴(스티렌/아크릴로니트릴: 75 중량%/ 25 중량%) 42 중량%를 그라프트 공중합하여 제조된 코어-쉘 형태의 그라프트 공중합체(g-ABS)를 사용하였다.
(A2) 방향족 비닐계 공중합체 수지
스티렌 72 중량% 및 아크릴로니트릴 28 중량%를 중합하여 제조된 수지(중량평균분자량: 135,000 g/mol)를 사용하였다.
(B) 폴리카보네이트 수지
중량평균분자량(Mw)이 22,000 g/mol인 비스페놀-A형 폴리카보네이트 수지를 사용하였다.
(C) 폴리에스테르 수지
25℃에서 o-클로로 페놀 용매를 이용하여 측정한 고유점도[η]가 1.0 dl/g인 폴리에틸렌 테레프탈레이트(PET)를 사용하였다.
(D) 금속산화물
(D1) 금속형태의 아연을 녹인 후, 900℃로 가열하여 증기화시킨 후, 산소 가스를 주입하고 상온(25℃)으로 냉각하여, 1차 중간물을 얻었다. 다음으로, 해당 1차 중간물을 700℃에서 90분 동안 열처리를 진행한 후, 상온(25℃)으로 냉각하여 제조한 산화아연을 사용하였다.
(D2) 산화마그네슘(제조사: KYOWA, 제품명: KYOWAMAG 150)을 사용하였다.
(E) 포스파이트 화합물
(E1) 하기 화학식 1a로 표시되는 포스파이트 화합물을 사용하였다.
[화학식 1a]
Figure PCTKR2019017783-appb-I000012
(E2) 하기 화학식 2a로 표시되는 포스파이트 화합물을 사용하였다.
[화학식 2a]
Figure PCTKR2019017783-appb-I000013
(E3) 하기 화학식 2b로 표시되는 포스파이트 화합물을 사용하였다.
[화학식 2b]
Figure PCTKR2019017783-appb-I000014
(E4) 디페닐-이소옥틸-포스파이트(diphenyl-isooctyl-phosphite, 제조사: 코오롱유화, 제품명: KP-1406)을 사용하였다.
(F) 인계 난연제
올리고머형 비스페놀-A 디포스페이트(bisphenol-A diphosphate, 제조사: Yoke Chemical, 제품명: YOKE BDP)를 사용하였다.
(G) 할로겐계 난연제
브롬계 난연제(2,4,6-트리스(2,4,6-트리브로모페녹시)-1,3,5-트리아진, 제조사: ICL Industrial, 제품명: FR-245)를 사용하였다.
실시예 1 내지 10 및 비교예 1 내지 10
상기 각 구성 성분을 하기 표 1 및 2에 기재된 바와 같은 함량으로 첨가한 후, 230℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=36, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 2시간 이상 건조 후, 6 Oz 사출기(성형 온도 230℃, 금형 온도: 60℃)에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1 및 2에 나타내었다.
물성 측정 방법
(1) 난연도: UL-94 vertical test 방법에 의거하여, 2.5 mm 두께 사출 시편의 난연도를 측정하였다.
(2) 고온/고습 처리 후 난연도: 2.5 mm 두께 사출 시편을 70℃ 및 상대습도 95% 조건의 챔버(chamber)에서 300시간 동안 노출시키고, 상온 및 상대습도 50% 조건에서 24시간 에이징 후, UL-94 vertical test 방법으로 측정하였다.
(3) 노치 아이조드 충격강도(단위: kgf·cm/cm): ASTM D256에 의거하여, 1/8" 두께 시편의 노치 아이조드 충격 강도를 측정하였다.
(4) 충격강도 유지율(단위: %): 하기 식 1에 따라, 사출 시편의 충격강도 유지율을 산출하여, 내가수분해성을 평가하였다.
[식 1]
충격강도 유지율(%) = (IZ1 / IZ0) × 100
상기 식 1에서, IZ0는 ASTM D256에 의거하여 측정한 1/8" 두께 열가소성 수지 조성물 사출 시편의 노치 아이조드 충격강도이고 IZ1은 상기 시편을 70℃ 및 상대습도 95% 조건의 챔버에서 300시간 동안 노출시키고, 상온 및 상대습도 50% 조건에서 24시간 에이징 후, ASTM D256에 의거하여 측정한 노치 아이조드 충격강도이다.
실시예
1 2 3 4 5 6 7 8 9 10
(A) (중량%) 50 45 40 50 45 40 45 45 45 42
(B) (중량%) 40 40 40 40 40 40 40 40 40 40
(C) (중량%) 10 15 20 10 15 20 15 15 15 18
(D1) (중량부) 0.5 0.5 0.5 2 2 2 1.3 1.3 1.3 1.3
(D2) (중량부) - - - - - - - - - -
(E1) (중량부) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 - - 0.5
(E2) (중량부) - - - - - - - 0.5 - -
(E3) (중량부) - - - - - - - - 0.5 -
(E4) (중량부) - - - - - - - - - -
(F) (중량부) 10 10 10 10 10 10 10 10 10 15
(G) (중량부) 7 7 7 7 7 7 7 7 7 -
난연도 5VA 5VA 5VA 5VA 5VA 5VA 5VA 5VA 5VA 5VA
고온/고습 처리 후 난연도 5VA 5VA 5VA 5VA 5VA 5VA 5VA 5VA 5VA 5VA
노치 아이조드 충격강도(IZ0) 41 40 38 35 35 33 37 37 37 30
노치 아이조드 충격강도(IZ1) 37.3 36.4 34.2 34 33.2 35.5 35.2 36.0 35.8 27.5
충격강도 유지율 (%) 91 91 90 97 95 93 95 97 97 92
비교예
1 2 3 4 5 6 7 8 9 10
(A) (중량%) 25 65 45 45 45 45 45 45 45 45
(B) (중량%) 40 34 40 40 40 40 40 40 40 40
(C) (중량%) 35 1 15 15 15 15 15 15 15 15
(D1) (중량부) 1.3 1.3 - 0.05 6 - 1.3 1.3 1.3 1.3
(D2) (중량부) - - - - - 1.3 - - - -
(E1) (중량부) 0.5 0.5 0.5 0.5 0.5 0.5 - 0.05 4 -
(E2) (중량부) - - - - - - - - - -
(E3) (중량부) - - - - - - - - - -
(E4) (중량부) - - - - - - - - - 0.5
(F) (중량부) 10 10 10 10 10 10 10 10 10 10
(G) (중량부) 7 7 7 7 7 7 7 7 7 7
난연도 5VA Fail 5VA 5VA Fail 5VA 5VA 5VA 5VA 5VA
고온/고습 처리 후 난연도 5VA Fail Fail Fail Fail Fail Fail Fail 5VA Fail
노치 아이조드 충격강도(IZ0) 7 45 12 17 22 13 32 31 25 29
노치 아이조드 충격강도(IZ1) 2 42 2.5 3 19 2.5 10 11 19 8
충격강도 유지율 (%) 29 93 20 18 86 19 31 35 76 28
상기 결과로부터, 본 발명의 열가소성 수지 조성물은 내가수분해성(고온/고습 처리 후 난연도, 충격강도 유지율), 난연성, 내충격성, 이들의 물성 발란스 등이 우수함을 알 수 있다.
반면, 고무변성 방향족 비닐계 공중합체 수지를 소량 적용하고, 폴리에스테르 수지를 과량 적용한 비교예 1의 경우, 내충격성, 내가수분해성(충격강도 유지율) 등이 저하됨을 알 수 있고, 고무변성 방향족 비닐계 공중합체 수지를 과량 적용하고, 폴리에스테르 수지를 소량 적용한 비교예 2의 경우, 난연성, 내가수분해성(고온/고습 처리 후 난연도) 등이 저하됨을 알 수 있다. 산화아연을 적용하지 않은 비교예 3 및 소량 적용한 비교예 4의 경우, 내충격성, 내가수분해성(고온/고습 처리 후 난연도 및 충격강도 유지율) 등이 저하됨을 알 수 있고, 산화아연을 과량 적용한 비교예 5의 경우, 난연성, 내가수분해성(고온/고습 처리 후 난연도) 등이 저하됨을 알 수 있으며, 산화아연 대신에 산화마그네슘 (D2)를 적용한 비교예 6의 경우, 내충격성, 내가수분해성(고온/고습 처리 후 난연도 및 충격강도 유지율) 등이 저하됨을 알 수 있고, 본 발명의 포스파이트 화합물을 적용하지 않은 비교예 7 및 포스파이트 화합물을 소량 적용한 비교예 8의 경우, 내가수분해성(고온/고습 처리 후 난연도 및 충격강도 유지율) 등이 저하됨을 알 수 있다. 본 발명의 포스파이트 화합물을 과량 적용한 비교예 9의 경우, 내가수분해성(충격강도 유지율) 등이 저하됨을 알 수 있으며, 본 발명의 포스파이트 화합물 대신에 디페닐-이소옥틸-포스파이트(E4)를 적용한 비교예 10의 경우, 내가수분해성(고온/고습 처리 후 난연도 및 충격강도 유지율) 등이 저하됨을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (13)

  1. 고무변성 방향족 비닐계 공중합체 수지 약 30 내지 약 60 중량%, 폴리카보네이트 수지 약 30 내지 약 60 중량%, 폴리에스테르 수지 약 5 내지 약 25 중량%를 포함하는 열가소성 수지 약 100 중량부;
    산화아연 약 0.1 내지 약 5 중량부;
    하기 화학식 1로 표시되는 포스파이트 화합물 및 하기 화학식 2로 표시되는 포스파이트 화합물 중 1종 이상을 포함하는 포스파이트 화합물 약 0.1 내지 약 3 중량부; 및
    인계 난연제 약 5 내지 약 30 중량부;를 포함하는 것을 특징으로 하는 열가소성 수지 조성물:
    [화학식 1]
    Figure PCTKR2019017783-appb-I000015
    상기 화학식 1에서, R1은 탄소수 1 내지 10의 선형 또는 분지형 알킬기이고, n은 1 내지 5의 정수이다;
    [화학식 2]
    Figure PCTKR2019017783-appb-I000016
    상기 화학식 2에서, R2는 탄소수 10 내지 30의 선형 또는 분지형 알킬기 또는 탄소수 6 내지 30의 아릴기이다.
  2. 제1항에 있어서, 상기 고무변성 방향족 비닐계 공중합체 수지는 고무변성 비닐계 그라프트 공중합체 및 방향족 비닐계 공중합체 수지를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제2항에 있어서, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 폴리에스테르 수지는 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리에틸렌 나프탈레이트(PEN) 및 폴리트리메틸렌 테레프탈레이트(PTT), 폴리시클로헥실렌디메틸렌 테레프탈레이트(PCT) 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 포스파이트 화합물은 하기 화학식 1a로 표시되는 화합물, 하기 화학식 2a로 표시되는 화합물 및 하기 화학식 2b로 표시되는 화합물 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
    [화학식 1a]
    Figure PCTKR2019017783-appb-I000017
    [화학식 2a]
    Figure PCTKR2019017783-appb-I000018
    [화학식 2b]
    Figure PCTKR2019017783-appb-I000019
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 인계 난연제는 포스페이트 화합물, 포스포네이트 화합물, 포스피네이트 화합물, 포스핀옥사이드 화합물 및 포스파젠 화합물 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 할로겐계 난연제 및 안티몬계 난연제 중 1종 이상을 더 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 산화아연 및 상기 포스파이트 화합물의 중량비는 약 1 : 1 내지 약 4 : 1인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 UL-94 vertical test 방법으로 측정한 2.5 mm 두께 사출 시편의 난연도가 5VA인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 2.5 mm 두께 사출 시편을 70℃ 및 상대습도 95% 조건의 챔버에서 300시간 동안 노출시키고, 상온 및 상대습도 50% 조건에서 24시간 에이징 후, UL-94 vertical test 방법으로 측정한 상기 시편의 난연도가 5VA인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여, 측정한 1/8" 두께 시편의 노치 아이조드 충격강도가 약 20 내지 약 60 kgf·cm/cm인 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 하기 식 1에 따른 충격강도 유지율이 약 85% 이상인 것을 특징으로 하는 열가소성 수지 조성물:
    [식 1]
    충격강도 유지율(%) = (IZ1 / IZ0) × 100
    상기 식 1에서, IZ0는 ASTM D256에 의거하여 측정한 1/8" 두께 열가소성 수지 조성물 사출 시편의 노치 아이조드 충격강도이고 IZ1은 상기 시편을 70℃ 및 상대습도 95% 조건의 챔버에서 300시간 동안 노출시키고, 상온 및 상대습도 50% 조건에서 24시간 에이징 후, ASTM D256에 의거하여 측정한 노치 아이조드 충격강도이다.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 하는 성형품.
PCT/KR2019/017783 2018-12-28 2019-12-16 열가소성 수지 조성물 및 이로부터 형성된 성형품 WO2020138802A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19901687.4A EP3904455A4 (en) 2018-12-28 2019-12-16 THERMOPLASTIC RESIN COMPOSITION AND MOLDED ARTICLE PRODUCED THEREOF
US17/284,858 US20210388140A1 (en) 2018-12-28 2019-12-16 Thermoplastic Resin Composition and Molded Article Therefrom
CN201980075671.5A CN113056521A (zh) 2018-12-28 2019-12-16 热塑性树脂组合物和来自其的模制品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0172708 2018-12-28
KR1020180172708A KR102183731B1 (ko) 2018-12-28 2018-12-28 열가소성 수지 조성물 및 이로부터 형성된 성형품

Publications (1)

Publication Number Publication Date
WO2020138802A1 true WO2020138802A1 (ko) 2020-07-02

Family

ID=71126590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017783 WO2020138802A1 (ko) 2018-12-28 2019-12-16 열가소성 수지 조성물 및 이로부터 형성된 성형품

Country Status (5)

Country Link
US (1) US20210388140A1 (ko)
EP (1) EP3904455A4 (ko)
KR (1) KR102183731B1 (ko)
CN (1) CN113056521A (ko)
WO (1) WO2020138802A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102559676B1 (ko) * 2020-08-31 2023-07-25 롯데케미칼 주식회사 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR102639840B1 (ko) * 2021-08-30 2024-02-22 롯데케미칼 주식회사 열가소성 수지 조성물 및 이로부터 제조된 성형품

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR245E (fr) 1901-05-18 1902-11-24 Dupont Système perfectionné de chauffe-bain
US5061745A (en) 1988-06-04 1991-10-29 Bayer Aktiengesellschaft Flame-retardant, high-impact polycarbonate molding compounds
JPH0841305A (ja) * 1994-04-07 1996-02-13 General Electric Co <Ge> 高割合の充填剤を含有し、斑点状表面外観をもつ押出熱可塑性樹脂組成物
US20040249030A1 (en) * 2003-06-05 2004-12-09 Enlow William Palmer Polymer compositions containing stabilizer compounds comprising tricyclodecylmethyl groups
KR20070047073A (ko) * 2005-11-01 2007-05-04 주식회사 엘지화학 열안정성, 내광변색성 및 내후성이 우수한 열가소성 수지조성물
KR20080032487A (ko) * 2006-10-10 2008-04-15 주식회사 엘지화학 열가소성 난연수지 조성물
US20150322252A1 (en) * 2012-12-20 2015-11-12 Polyad Services Llc Flame retardant polymer compositions
KR20160079786A (ko) * 2013-11-01 2016-07-06 사빅 글로벌 테크놀러지스 비.브이. 보강된 난연제 폴리카보네이트 조성물 및 이를 포함하는 성형 물품

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379658B1 (ko) * 2000-12-27 2003-04-11 제일모직주식회사 광안정성이 우수한 열가소성 난연성 수지 조성물
KR101664845B1 (ko) * 2013-06-28 2016-10-11 롯데첨단소재(주) 저수축 열가소성 수지 조성물 및 이를 포함하는 성형품

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR245E (fr) 1901-05-18 1902-11-24 Dupont Système perfectionné de chauffe-bain
US5061745A (en) 1988-06-04 1991-10-29 Bayer Aktiengesellschaft Flame-retardant, high-impact polycarbonate molding compounds
JPH0841305A (ja) * 1994-04-07 1996-02-13 General Electric Co <Ge> 高割合の充填剤を含有し、斑点状表面外観をもつ押出熱可塑性樹脂組成物
US20040249030A1 (en) * 2003-06-05 2004-12-09 Enlow William Palmer Polymer compositions containing stabilizer compounds comprising tricyclodecylmethyl groups
KR20070047073A (ko) * 2005-11-01 2007-05-04 주식회사 엘지화학 열안정성, 내광변색성 및 내후성이 우수한 열가소성 수지조성물
KR20080032487A (ko) * 2006-10-10 2008-04-15 주식회사 엘지화학 열가소성 난연수지 조성물
US20150322252A1 (en) * 2012-12-20 2015-11-12 Polyad Services Llc Flame retardant polymer compositions
KR20160079786A (ko) * 2013-11-01 2016-07-06 사빅 글로벌 테크놀러지스 비.브이. 보강된 난연제 폴리카보네이트 조성물 및 이를 포함하는 성형 물품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904455A4

Also Published As

Publication number Publication date
CN113056521A (zh) 2021-06-29
EP3904455A4 (en) 2022-08-31
EP3904455A1 (en) 2021-11-03
KR20200082276A (ko) 2020-07-08
US20210388140A1 (en) 2021-12-16
KR102183731B1 (ko) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2011081287A2 (ko) 중합형 인계 화합물을 포함하는 열가소성 수지 조성물, 상기 조성물로부터 성형된 플라스틱 성형품 및 중합형 인계 화합물의 제조방법
WO2014092412A1 (ko) 내광성 및 난연성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2011013882A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2012015109A1 (ko) 내스크래치성과 내충격성이 우수한 난연 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
WO2012060515A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2020138802A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019132584A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019066193A1 (ko) 내전리방사선성 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2019132575A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
TW201842056A (zh) 熱塑性聚酯樹脂組成物及成形品
WO2018124790A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2010067926A1 (ko) 새로운 인계 화합물, 그 제조방법 및 이를 이용한 난연성 열가소성 수지 조성물
WO2013100303A1 (ko) 고광택 폴리카보네이트계 수지 조성물 및 그 성형품
WO2020138785A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2020111618A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2013042827A1 (ko) 폴리카보네이트 및 그 제조방법
WO2018117438A1 (ko) 수지 조성물 및 이로부터 제조된 성형품
WO2015064859A1 (ko) 내화학성 및 보스 강성이 우수한 열가소성 수지 조성물
WO2019132572A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021085867A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2013100295A1 (ko) 난연성 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020004830A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019139386A1 (ko) 열가소성 수지 조성물
WO2019212222A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019901687

Country of ref document: EP

Effective date: 20210728