WO2013094898A1 - 열가소성 수지 조성물 및 그 성형품 - Google Patents

열가소성 수지 조성물 및 그 성형품 Download PDF

Info

Publication number
WO2013094898A1
WO2013094898A1 PCT/KR2012/010470 KR2012010470W WO2013094898A1 WO 2013094898 A1 WO2013094898 A1 WO 2013094898A1 KR 2012010470 W KR2012010470 W KR 2012010470W WO 2013094898 A1 WO2013094898 A1 WO 2013094898A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
thermoplastic resin
resin composition
group
acrylate
Prior art date
Application number
PCT/KR2012/010470
Other languages
English (en)
French (fr)
Inventor
정진화
권기혜
장주현
구자관
박광수
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48668738&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013094898(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from KR1020110137735A external-priority patent/KR101447273B1/ko
Priority claimed from KR1020110141788A external-priority patent/KR20130073772A/ko
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to CN201280062877.2A priority Critical patent/CN103998522B/zh
Priority to EP12860942.7A priority patent/EP2796506B1/en
Priority to US14/365,091 priority patent/US9631087B2/en
Priority to JP2014547090A priority patent/JP6145110B2/ja
Publication of WO2013094898A1 publication Critical patent/WO2013094898A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article thereof. More specifically, the present invention relates to a thermoplastic resin composition comprising a biphenyl group-containing (meth) acrylic copolymer and a polycarbonate resin, and a molded article thereof.
  • Thermoplastic resins have a lower specific gravity than glass or metal and have excellent physical properties such as formability and impact resistance. Recently, due to the trend of low cost, large size, and light weight of electric and electronic products, plastic products using thermoplastic resins are rapidly replacing the areas where glass or metal was used, and are expanding the use area from electric and electronic products to automobile parts. As a result, the function of the exterior material and the performance of the appearance have become important, and the demand for scratch resistance from external impacts and scratches and flame retardancy for safety against fire are also increasing.
  • Polycarbonate resin is very excellent in mechanical strength and flame retardancy, excellent transparency and weather resistance, very good impact resistance, thermal stability, etc., but has a disadvantage of very poor scratch resistance.
  • Acrylic resins especially polymethyl methacrylate (PMMA) resins are excellent in transparency, weather resistance, mechanical strength, surface gloss, adhesion, etc. In particular, scratch resistance is very excellent, but impact and flame resistance are very weak. have.
  • PMMA polymethyl methacrylate
  • a copolymer having high refractive index monomers which have been developed in the related art, has a limitation in increasing refractive index or heat resistance, and the polycarbonate and acrylic alloy resins are difficult to express flame retardancy by adding a small amount of flame retardant, and heat resistant when a flame retardant is added.
  • the mechanical properties, including the figure is lowered.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in heat resistance, impact resistance and scratch resistance.
  • Another object of the present invention is to provide a thermoplastic resin composition having a balance of flame retardancy, transparency and coloring and mechanical properties.
  • Still another object of the present invention is to provide a thermoplastic resin composition in which transparency is maintained during blending by applying an acrylic copolymer having high compatibility with polycarbonate.
  • Still another object of the present invention is to provide a thermoplastic resin composition in which a flow mark does not occur when a rubber-modified vinyl-based graft copolymer is applied.
  • Still another object of the present invention is to provide a plastic molded article manufactured using the thermoplastic resin composition.
  • thermoplastic resin composition is (A) polycarbonate resin; And (B) a biphenyl group-containing (meth) acrylic copolymer.
  • the refractive index of the (B) biphenyl group-containing (meth) acrylic copolymer may be about 1.495 to about 1.640.
  • thermoplastic resin composition may comprise about 50 to about 99 weight percent of the (A) polycarbonate resin, and about 1 to about 50 weight percent of the (B) biphenyl group-containing (meth) acrylic copolymer. Can be.
  • the thermoplastic resin composition may comprise about 1 to about 49 weight percent of the (A) polycarbonate resin, and about 51 to about 99 weight percent of the (B) biphenyl group-containing (meth) acrylic copolymer Can be.
  • the (B) biphenyl group-containing (meth) acrylic copolymer comprises (b1) about 1 to about 50 wt% of a biphenyl group-containing (meth) acrylate having a refractive index of about 1.580 to about 1.700, (b2) monofunctional About 0 to about 99 weight percent unsaturated monomer, and (b3) units derived from monomers comprising about 0 to about 50 weight percent alicyclic or aromatic (meth) acrylates having a refractive index of about 1.490 to about 1.579. have.
  • the (b1) biphenyl group-containing (meth) acrylate may be represented by the following Chemical Formula 1:
  • R 1 is hydrogen or methyl group
  • m is an integer of 0 to 10
  • X is selected from the group consisting of a substituted or unsubstituted biphenyl group and a substituted or unsubstituted terphenyl group).
  • the (b2) monofunctional unsaturated monomers include alkyl (meth) acrylates having 1 to 8 carbon atoms; Unsaturated carboxylic acids including (meth) acrylic acid; Acid anhydrides including maleic anhydride; (Meth) acrylate containing a hydroxyl group; (Meth) acrylamide; Unsaturated nitrile; Allyl glycidyl ether; Glycidyl methacrylate; It may include one or more of the aromatic vinyl monomers.
  • the (b3) alicyclic or aromatic (meth) acrylate having a refractive index of about 1.490 to about 1.579 may include a compound represented by Formula 2, a compound represented by Formula 3, or a mixture thereof have:
  • R 1 is hydrogen or a methyl group
  • m is an integer of 0 to 10
  • Y is a substituted or unsubstituted cycloalkyl group having 6 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • R 1 is hydrogen or methyl group
  • m is an integer of 0 to 10
  • Z is oxygen (O) or sulfur (S)
  • Ar is a substituted or unsubstituted cycloalkyl group having 6 to 20 carbon atoms, Or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • the (B) biphenyl group-containing (meth) acrylic copolymer may have a weight average molecular weight of about 3,000 to about 300,000 g / mol.
  • the (B) biphenyl group-containing (meth) acrylic copolymer may have a non-crosslinked structure.
  • the (B) biphenyl group-containing (meth) acrylic copolymer may have a glass transition temperature of about 90 to about 150, and may be extruded or injected at a temperature above the glass transition temperature.
  • thermoplastic resin composition may further include (C) rubber-modified vinyl-based graft copolymer resin.
  • the (C) rubber-modified vinyl-based graft copolymer resin has a structure in which a unsaturated monomer is grafted to a rubber core to form a shell, and the unsaturated monomer is alkyl (meth) acrylate having 1 to 12 carbon atoms, Acid anhydride, and alkyl or phenyl nucleosubstituted maleimide having 1 to 12 carbon atoms.
  • thermoplastic resin composition may be flame retardant, surfactant, nucleating agent, coupling agent, filler, plasticizer, impact modifier, lubricant, antibacterial agent, mold release agent, thermal stabilizer, antioxidant, light stabilizer, compatibilizer, inorganic additive, antistatic agent, It may further comprise one or more of pigments and dyes.
  • Another aspect of the present invention relates to a molded article formed from the thermoplastic resin composition.
  • the molded article is formed from the thermoplastic resin composition according to the first embodiment, has a width of about 180 to about 350 ⁇ m by a Balltype Scratch Profile Test, and a pencil hardness of 2B. To 3H.
  • the molded article is formed from the thermoplastic resin composition according to the second embodiment, has a combat light of at least about 85%, and has a width by a Ball-type Scratch Profile Test. 210 ⁇ m or less, and the heat resistance according to ASTM D1525 (load 5Kg, based on 50 ° C./hr) may be about 110 ° C. or more.
  • the molded article is formed from the thermoplastic resin composition according to the third embodiment, has a combat light of at least about 40%, and has a width by a Ball-type Scratch Profile Test. 280 ⁇ m or less, heat resistance according to ASTM D1525 (load 5Kg, based on 50 ° C./hr) is about 105 ° C. or more, and 1/8 ”Izod notch impact strength according to ASTM D256 may be about 8 kg ⁇ cm / cm or more have.
  • the present invention is excellent in heat resistance, flame retardancy, scratch resistance, mechanical properties, transparency, and can be suitably applied to the parts of electrical and electronic products, and maintains excellent properties such as transparency and scratch resistance of acrylic resin, and improved
  • a thermoplastic resin composition having impact properties can be provided.
  • the thermoplastic resin composition can be used to produce a plastic molded article exhibiting properties superior to existing products, and has the effect of the invention that can be preferably used in various electric and electronic parts or automobile parts.
  • (meth) acryl means that both “acryl” and “methacryl” are possible.
  • (meth) acrylate means that both “acrylate” and “methacrylate” are possible.
  • substituted means that the hydrogen atom in the compound is a halogen atom (F, Cl, Br, I), hydroxy group, nitro group, cyano group, amino group, azido group, amidino group, hydrazino group, hydrazono group, carbonyl group, carbon Baryl group, thiol group, ester group, carboxyl group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, C1 to C20 (C1-20) alkyl group, C2 to C20 alkenyl group, C2 to C20 alkynyl group Substituted with a substituent of a C1 to C20 alkoxy group, a C6 to C30 aryl group, a C6 to C30 aryloxy group, a C3 to C30 cycloalkyl group, a C3 to C30 cycloalkenyl group, a C3 to C30 cycloalkynyl
  • thermoplastic resin composition according to the present invention includes (A) a polycarbonate resin and (B) a biphenyl group-containing (meth) acrylic copolymer.
  • the refractive index of the biphenyl group-containing (meth) acrylic copolymer (B) may be about 1.495 to about 1.640.
  • thermoplastic resin composition may comprise about 50 to about 99 weight percent of the (A) polycarbonate resin, and about 1 to about 50 weight percent of the (B) biphenyl group-containing (meth) acrylic copolymer. Can be.
  • the content of the polycarbonate resin (A) is about 50 to about 99% by weight, preferably about 55 to about 95% by weight, more preferably about 60, of the resin containing (A) + (B). To about 90 weight percent. It has excellent mechanical properties and scratch resistance balance in the above range.
  • the content of the biphenyl group-containing (meth) acrylate copolymer (B) is about 1 to about 50% by weight, preferably about 5 to about 45% by weight of the resin containing (A) + (B). , More preferably about 10 to about 40 weight percent, such as about 10 to about 30 weight percent. In the above range, scratch resistance can be sufficiently improved, and impact and mechanical property deterioration can be prevented.
  • the thermoplastic resin composition may comprise about 1 to about 49 weight percent of the (A) polycarbonate resin, and about 51 to about 99 weight percent of the (B) biphenyl group-containing (meth) acrylic copolymer Can be.
  • the content of the polycarbonate resin (A) is about 1 to about 49 wt%, preferably about 10 to about 40 wt%, more preferably about 15 of the resin containing (A) + (B). To about 35 weight percent. In the above range, excellent mechanical properties of polycarbonate are expressed, and have a scratch resistance of pencil hardness H or more.
  • the content of the biphenyl group-containing (meth) acrylate copolymer (B) is about 51 to about 99% by weight, preferably about 60 to about 90% by weight, of the resin containing (A) + (B). , More preferably about 65 to about 85 weight percent. In the above range, scratch resistance can be sufficiently improved, and impact and mechanical property deterioration can be prevented.
  • thermoplastic resin composition according to the present invention may further include (C) rubber-modified vinyl-based graft copolymer resin and / or (D) phosphorus-based flame retardant as necessary.
  • the thermoplastic resin composition according to the second embodiment is about (C) rubber-modified vinyl-based graft copolymer resin based on 100 parts by weight of the base resin containing the (A) + (B) Greater than 0 to about 30 parts by weight or less, for example, greater than about 0 to about 30 parts by weight or less, preferably about 3 to about 20 parts by weight.
  • thermoplastic resin composition according to the first embodiment is (C) rubber-modified vinyl-based graft copolymer resin based on 100 parts by weight of the base resin containing the (A) + (B) To about 30 parts by weight and (D) about 0 to about 30 parts by weight of the phosphorus-based flame retardant.
  • the rubber-modified vinyl graft copolymer (C) is about 0 to about 30 parts by weight, preferably about 3 to about 20 parts by weight, based on 100 parts by weight of the base resin including the (A) + (B). It may be further included in parts by weight. In the above range, not only the impact reinforcing effect can be obtained, but also the mechanical strength such as tensile strength, flexural strength, flexural modulus, etc. can be improved.
  • the phosphorus-based flame retardant (D) may be further included in about 0 to about 30 parts by weight, preferably about 3 to about 20 parts by weight based on 100 parts by weight of the base resin including the (A) + (B). . Within this range, flame retardancy can be further ensured without deteriorating other physical properties.
  • thermoplastic resin composition according to the first embodiment is (C) rubber-modified vinyl-based graft copolymer resin based on 100 parts by weight of the base resin containing the (A) + (B) To about 30 parts by weight, preferably about 3 to about 20 parts by weight.
  • the thermoplastic resin composition according to the first embodiment is about 0 to about 30 parts by weight, preferably (D) phosphorus-based flame retardant based on 100 parts by weight of the base resin including the (A) + (B) Preferably about 3 to about 20 parts by weight.
  • the polycarbonate resin used in the present invention can be produced by reacting a dihydric phenol compound and a phosgene in the presence of a molecular weight regulator and a catalyst according to a conventional production method.
  • the polycarbonate resin may be prepared using an ester interchange reaction of a dihydric phenol compound and a carbonate precursor such as diphenyl carbonate.
  • a bisphenol compound may be used as the dihydric phenol compound, and preferably 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) may be used.
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • the bisphenol A may be partially or wholly replaced by another type of dihydric phenol compound.
  • dihydric phenolic compounds examples include hydroquinone, 4,4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane and 1,1-bis (4-hydroxyphenyl) cyclo Hexane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) Halogenated bisphenols such as sulfoxide, bis (4-hydroxyphenyl) ketone or bis (4-hydroxyphenyl) ether, and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane Can be mentioned.
  • the type of dihydric phenolic compound that can be used for the production of the polycarbonate resin is not limited thereto, and the polycarbonate resin may be manufactured using any dihydric phenolic compound.
  • the polycarbonate resin may be a homopolymer using one type of dihydric phenolic compound, a copolymer using two or more types of dihydric phenolic compounds, or a mixture thereof.
  • the polycarbonate resin may have a form such as a linear polycarbonate resin, a branched polycarbonate resin, or a polyester carbonate copolymer resin.
  • the polycarbonate resin contained in the polycarbonate resin composition of the present invention is not limited to a specific form, and any of these linear polycarbonate resins, branched polycarbonate resins, or polyester carbonate copolymer resins can be used.
  • linear polycarbonate resin bisphenol-A polycarbonate resin
  • branched polycarbonate resin polyfunctional aromatic compounds, such as trimellitic anhydride or trimellitic acid, May be prepared by reacting with a dihydric phenol compound and a carbonate precursor.
  • polyester carbonate copolymer resin for example, one produced by reacting a bifunctional carboxylic acid with a dihydric phenol and a carbonate precursor can be used.
  • conventional linear polycarbonate resins, branched polycarbonate resins or polyestercarbonate copolymer resins can be used without limitation.
  • the polycarbonate resin may be used alone or in combination of two or more kinds having different molecular weights.
  • the biphenyl group-containing (meth) acrylate copolymer (B) used in the present invention is a copolymer of (b1) a biphenyl group-containing (meth) acrylate having a refractive index of about 1.580 to about 1.700 and (b2) a monofunctional unsaturated monomer. Can be.
  • the biphenyl group-containing (meth) acrylic copolymer (B) comprises (b1) about 1 to about 50 wt% of a biphenyl group-containing (meth) acrylate having a refractive index of about 1.580 to about 1.700, (b2) monofunctional About 0 to about 99 weight percent unsaturated monomer, and (b3) units derived from monomers comprising about 0 to about 50 weight percent alicyclic or aromatic (meth) acrylates having a refractive index of about 1.490 to about 1.579. have.
  • each monomer is demonstrated.
  • the biphenyl group-containing (aromatic) (meth) acrylate (b1) used in the present invention has a refractive index of about 1.580 to about 1.700, and is characterized by containing a biphenyl structure.
  • the biphenyl group-containing (meth) acrylate (b1) may be a compound represented by the following formula (1).
  • R 1 is hydrogen or a methyl group
  • m is an integer of 0 to 10
  • X is selected from the group consisting of a substituted or unsubstituted biphenyl group and a substituted or unsubstituted terphenyl group.
  • X may be an allobiphenyl group, metabiphenyl group, parabiphenyl group, 2,6-terphenyl group, alloterphenyl group, metaterphenyl group, or paraphenyl group.
  • biphenyl group-containing (meth) acrylate (b1) examples include olsobiphenyl methacrylate, metabiphenyl methacrylate, parabiphenyl methacrylate, 2,6-terphenyl methacrylate, and alloterphenyl meta Acrylate, metaterphenyl methacrylate, paraterphenyl methacrylate, 4- (4-methylphenyl) phenyl methacrylate, 4- (2-methylphenyl) phenyl methacrylate, 2- (4-methylphenyl) phenyl meta Acrylate, 2- (2-methylphenyl) phenyl methacrylate, 4- (4-ethylphenyl) phenyl methacrylate, 4- (2-ethylphenyl) phenyl methacrylate, 2- (4-ethylphenyl) phenyl Methacrylate, 2- (2-ethylphenyl) phenyl methacrylate, and the like, but are not limited there
  • the aromatic (meth) acrylate (b1) unit may be contained in about 1 to about 50% by weight of the (meth) acrylate copolymer (B). Within this range, high refractive index, transparency, and heat resistance physical property balance can be obtained. Preferably from about 5 to about 40 weight percent, such as from about 10 to about 35 weight percent. Better balance of heat resistance and high refractive index in the above range can be obtained.
  • the monofunctional unsaturated monomer (b2) used for this invention is a monomer containing one unsaturated group, For example, C1-C8 alkyl (meth) acrylate; Unsaturated carboxylic acids including (meth) acrylic acid; Acid anhydrides including maleic anhydride; (Meth) acrylate containing a hydroxyl group; (Meth) acrylamide; Unsaturated nitrile; Allylglycidyl ether; Glycidyl methacrylate; Aromatic vinyl monomers, mixtures thereof, and the like. These can be applied individually or in mixture of 2 or more types.
  • C1-C8 alkyl (meth) acrylate Unsaturated carboxylic acids including (meth) acrylic acid; Acid anhydrides including maleic anhydride; (Meth) acrylate containing a hydroxyl group; (Meth) acrylamide; Unsaturated nitrile; Allylglycidyl ether; Glycidyl methacrylate;
  • Non-limiting examples of the monofunctional unsaturated monomer (b2) methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate , 2-ethylhexyl acrylate, acrylic acid, methacrylic acid, maleic anhydride, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, monoglycerol acrylate, acrylamide, methacrylamide, acrylonitrile, meta Crylonitrile, allyl glycidyl ether, glycidyl methacrylate, styrene, alpha-methylstyrene, etc.
  • an alkyl (meth) acrylate having 1 to 8 carbon atoms Preferably an alkyl (meth) acrylate having 1 to 4 carbon atoms can be used. In this case, better scratch resistance and transparency can be achieved.
  • methacrylate and acrylate may be mixed and applied.
  • the ratio of methacrylate and acrylate may be about 15: 1 to about 45: 1. It may have better thermal stability and fluidity in the above range.
  • the monofunctional unsaturated monomer (b2) unit is about 0 to about 99 weight percent of the (meth) acrylate copolymer (B). Preferably from about 50 to about 95% by weight, more preferably from about 55 to about 89% by weight. It is possible to obtain a balance between scratch resistance, flowability, transparency and flame retardancy in the above range.
  • the alicyclic or aromatic (meth) acrylate (b3) used in the present invention has a refractive index of about 1.490 to about 1.579 in its refractive index, a compound represented by the following formula (2), a compound represented by the following formula (3), or Mixtures thereof.
  • R 1 is hydrogen or a methyl group
  • m is an integer of 0 to 10
  • Y is a substituted or unsubstituted cycloalkyl group having 6 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms to be.
  • Examples of the Y may be a cyclohexyl group, a phenyl group, a methylphenyl group, methylethylphenyl group, methoxyphenyl group, propylphenyl group, cyclohexylphenyl group, chlorophenyl group, bromophenyl group, benzylphenyl group, and the like.
  • R 1 is hydrogen or a methyl group
  • m is an integer of 0 to 10
  • Z is oxygen (O) or sulfur (S)
  • Ar is a substituted or unsubstituted cycloalkyl group having 6 to 20 carbon atoms, Or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • Ar may be a cyclohexyl group, a phenyl group, a methylphenyl group, a methylethylphenyl group, a methoxyphenyl group, a cyclohexylphenyl group, a chlorophenyl group, a bromophenyl group, a benzylphenyl group, and the like.
  • Non-limiting examples of the alicyclic or aromatic (meth) acrylate (b3) include cyclohexyl methacrylate, phenoxy methacrylate, 2-ethylphenoxy methacrylate, benzyl methacrylate, phenyl methacrylate, 2-ethylthiophenyl methacrylate, 2-phenylethyl methacrylate, 3-phenylporophyl methacrylate, 4-phenylbutyl methacrylate, 2-2-methylphenylethyl methacrylate, 2-3-methylphenylethyl Methacrylate, 2-4-methylphenylethyl methacrylate, 2- (4-propylphenyl) ethyl methacrylate, 2- (4- (1-methylethyl) phenyl) ethyl methacrylate, 2- (4- Methoxyphenyl) ethyl methacrylate, 2- (4-cyclohexylphenyl) ethyl me
  • the cycloaliphatic or aromatic (meth) acrylate (b3) unit is about 0 to about 50% by weight, preferably about 0 to 40% by weight, more preferably about 1 in the (meth) acrylate copolymer (B). To about 35% by weight. It has better balance of refractive index and heat resistance of physical properties in the above range.
  • the biphenyl group-containing (meth) acrylic copolymer (B) of the present invention can be prepared by conventional polymerization methods known in the copolymer production, for example, bulk polymerization, emulsion polymerization or suspension polymerization. It may preferably be prepared by suspension polymerization.
  • the biphenyl group-containing (meth) acrylic copolymer (B) is about 1 to about 50% by weight of the biphenyl group-containing (meth) acrylate having a (b1) refractive index of about 1.580 to about 1.700, (b2) Prepared by polymerizing a monomer mixture comprising about 0 to about 99 weight percent of monofunctional unsaturated monomers and about 0 to about 50 weight percent of an alicyclic or aromatic (meth) acrylate having a refractive index of about 1.490 to about 1.579 (b3). can do.
  • a polymerization initiator and a chain transfer agent may be added to the monomer mixture to prepare a reaction mixture, and the reaction mixture may be added to an aqueous solution in which a suspension stabilizer is dissolved to prepare the suspension mixture.
  • the polymerization temperature and the polymerization time can be appropriately adjusted. For example, it may be reacted for about 2 to about 8 hours at a polymerization temperature of about 65 to about 125 ° C, preferably about 70 to about 120 ° C.
  • the polymerization initiator may be a conventional radical polymerization initiator known in the polymerization art, for example, octanoyl peroxide, decanyl peroxide, lauroyl peroxide, benzoyl peroxide, monochlorobenzoyl peroxide, dichloro Benzoyl peroxide, p-methylbenzoyl peroxide, tert-butyl perbenzoate, azobisisobutyronitrile and azobis- (2,4-dimethyl) -valeronitrile and the like may be used, but is not limited thereto. .
  • the polymerization initiator may be applied alone or by mixing two or more kinds. In an embodiment, the polymerization initiator may be included in an amount of about 0.01 to about 10 parts by weight, preferably about 0.03 to about 5 parts by weight, based on 100 parts by weight of the monomer mixture.
  • the chain transfer agent may be used to adjust the weight average molecular weight of the (meth) acrylate copolymer (B) and to improve thermal stability.
  • the weight average molecular weight can be controlled by the content of the polymerization initiator contained in the monomer mixture. However, when the polymerization reaction is stopped by the chain transfer agent, the end of the chain becomes the second carbon structure. This is stronger in bond strength than the ends of the chain with double bonds produced when no chain transfer agent is used. Therefore, the addition of the chain transfer agent can improve the thermal stability, and eventually improve the optical properties of the (meth) acrylate copolymer (B).
  • chain transfer agent conventional chain transfer agents known in the polymerization art may be used.
  • chain transfer agent conventional chain transfer agents known in the polymerization art may be used.
  • the chain transfer agent may be included in an amount of about 0.01 to about 10 parts by weight, preferably about 0.02 to about 5 parts by weight, based on 100 parts by weight of the monomer mixture. It may have thermal stability and an appropriate molecular weight in the above range.
  • the biphenyl group-containing (meth) acrylic copolymer (B) may be polymerized by further including one or more additives such as a suspension stabilizer and a suspension stabilizer in the monomer mixture.
  • the additive may be included in about 0.001 to about 20 parts by weight based on 100 parts by weight of the monomer mixture, but is not limited thereto.
  • suspension stabilizer examples include an organic suspension stabilizer including polyalkyl acrylate-acrylic acid, polyolefin-maleic acid, polyvinyl alcohol, cellulose and the like; Inorganic suspension stabilizers including tricalcium phosphate; Mixtures thereof and the like can be used, but are not limited thereto.
  • suspension stabilizing aid disodium hydrogen phosphate, sodium dihydrogen phosphate, or the like may be used, and sodium sulfate or the like may be added to control solubility characteristics of the water-soluble polymer or monomer.
  • the antioxidants include octadecyl 3- (3,5-di-tert-butyl-4-hydrophenyl) propionate, triethylene glycol-bis-3 (3-tert-butylbutyl-4-hydroxy-5- Methylphenyl) propionite, 2,6-di-tert-butyl-4-methyl phenol, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), tri (2,4-di Tert-butylphenyl) phosphite, normal-octadecyl-3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-tri (3,5-di Tert-butyl-4-hydroxybenzyl) isocyanate, 3-3,5-di-tert-butyl-4-hydroxyphenyl), disterylthiol dipropionate, lauthiol propionate methane and di -Phenyl-is
  • the biphenyl group-containing (meth) acrylate copolymer (B) in the form of particles may be obtained through cooling, washing, dehydration, and drying.
  • the biphenyl group-containing (meth) acrylate copolymer (B) has a non-crosslinked structure, and preferably has a linear structure.
  • the biphenyl group-containing (meth) acrylate copolymer (B) having such a non-crosslinked structure can be extruded and injected, and has excellent compatibility with the polycarbonate resin (A).
  • the biphenyl group-containing (meth) acrylate copolymer (B) has a glass transition temperature of about 90 to about 150 ° C, preferably about 101 to about 130 ° C.
  • the biphenyl group-containing (meth) acrylate copolymer (B) may be extruded or injected at a temperature above the glass transition temperature.
  • the biphenyl group-containing (meth) acrylate copolymer (B) has a noncatalytic softening temperature (VST) of about 100 to about 140 ° C., measured at 5 Kg load and 50 ° C./hr conditions by ASTM D1525, preferably May be about 110 to about 130 ° C.
  • VST noncatalytic softening temperature
  • the biphenyl group-containing (meth) acrylate copolymer (B) has a weight average molecular weight of about 3,000 to about 300,000 g / mol, preferably about 10,000 to about 290,000 g / mol, more preferably about 40,000 to About 280,000 g / mol, for example 50,000 to 250,000 g / mol. Within this range, compatibility and mechanical properties can be maintained at the same time.
  • the biphenyl group-containing (meth) acrylate copolymer (B) has a refractive index of about 1.495 to about 1.640, preferably about 1.50 to about 1.60 at a thickness of 2.5 mm, and a transmittance of 85% or more, which is measured according to ASTM D1003. Preferably 90% or more.
  • the rubber-modified vinyl graft copolymer (C) used in the present invention has a core-shell graft copolymer structure in which a unsaturated monomer is grafted to the core structure of rubber to form a shell. It acts as an impact modifier.
  • the rubber it is preferable to use a polymer prepared by polymerizing one or more rubber monomers of a diene rubber, an acrylate rubber, and a silicone rubber having 4 to 6 carbon atoms, and in terms of structural stability, a silicone rubber is used alone. It is more preferable to use a silicone rubber and an acrylate rubber in combination.
  • acrylate type rubber methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hexyl (Meth) acrylate monomers, such as (meth) acrylate, can be used, At this time, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1, 3- butylene glycol di (meth) acrylate And curing agents such as 1,4-butylene glycol di (meth) acrylate, allyl (meth) acrylate, and triallyl cyanurate.
  • the silicone rubber is prepared from cyclosiloxane, and specific examples thereof include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, and tetramethyltetraphenyl. It may be prepared from one or more of cyclotetrosiloxane, and octaphenylcyclotetrasiloxane. At this time, curing agents such as trimethoxymethylsilane, triethoxyphenylsilane, tetramethoxysilane and tetraethoxysilane can be further used.
  • the rubber is about 50 to about 95 parts by weight, preferably about 60 to about 90 parts by weight, and more preferably about 70 to about 85 parts by weight, based on 100 parts by weight of the rubber-modified vinyl graft copolymer (C). It can be included as a wealth. It is excellent in compatibility with the resin in the above range, as a result can exhibit an excellent impact reinforcing effect.
  • the average particle diameter of the rubber may be about 0.1 to about 1 ⁇ m, preferably about 0.4 to about 0.9 ⁇ m. It is more preferable to maintain impact resistance and colorability in the above range.
  • Examples of the unsaturated monomer grafted to the rubber include at least one unsaturated compound of alkyl (meth) acrylate, (meth) acrylate, acid anhydride, and alkyl or phenyl nucleosubstituted maleimide having 1 to 12 carbon atoms. Can be used.
  • alkyl (meth) acrylate may include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and the like, of which methyl methacrylate may be preferably used.
  • Carboxylic anhydrides such as maleic anhydride and itaconic anhydride, can be used as said acid anhydride.
  • the grafted unsaturated monomer is about 5 to about 50 parts by weight, preferably about 10 to about 40 parts by weight, more preferably about 15 to 100 parts by weight of the rubber-modified vinyl-based graft copolymer (C). To about 30 parts by weight. It is excellent in compatibility with the resin in the above range, it can exhibit an excellent impact reinforcing effect.
  • Phosphorus-based flame retardant used in the present invention is added to further secure the flame retardancy, for example, phosphate, phosphonate, phosphonate, phosphinate, phosphine oxide (Phosphine Oxide)
  • Conventional phosphorus-containing flame retardants such as, phosphazene and metal salts thereof can be used without limitation.
  • the phosphorus-based flame retardant may be used that is represented by the formula (4).
  • R 4 , R 5 , R 7 and R 8 are each independently an aryl group having 6 to 20 carbon atoms, or a C 1 -C 10 alkyl substituted C 6 -C 20 aryl group, and R 6 Is one derived from dialcohol of resorcinol, hydroquinol, bisphenol-A, or bisphenol-S, and n is an integer from 0 to 10.
  • n is specifically illustrated when 0, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, trigylyl phosphate, tri (2,4,6-trimethylphenyl) phosphate, Tri (2,4-dibutylbutylphenyl) phosphate, tri (2,6-dibutylbutylphenyl) phosphate, and the like, and ii) n is 1, specifically exemplified by resorcinol bis (diphenylphosphate).
  • the phosphorus-based flame retardant may be one represented by the following formula (5).
  • R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are each independently an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an alkyl having 1 to 6 carbon atoms.
  • Substituent optionally selected from a substituted aryl group having 6 to 20 carbon atoms, an aralkyl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an amino group or a hydroxyl group
  • R11 is C6-C30 A dioxyaryl or alkyl substituted C6-C30 dioxyaryl group derivative
  • n is a number average degree of polymerization, the average value of n is 0.3-3
  • k and j are integers of 0-10.
  • the alkoxy group or the aryloxy group of Formula 5 may be substituted with an alkyl group, an aryl group, an amino group, a hydroxyl group, or the like.
  • thermoplastic resin composition if necessary, flame retardants, surfactants, nucleating agents, coupling agents, fillers, plasticizers, impact modifiers, lubricants, antibacterial agents, mold release agents, heat stabilizers, antioxidants, light stabilizers, compatibilizers, inorganic additives, It may further include additives such as antistatic agents, pigments and dyes.
  • the additives may be applied alone or by mixing two or more kinds. These additives may be added during the polymerization process of the biphenyl group-containing (meth) acrylic copolymer (B), and may be included in the biphenyl group-containing (meth) acrylic copolymer (B) in the thermoplastic resin composition, and may be conventional pellets of the thermoplastic resin composition.
  • the additive may be included in an amount of about 0.001 to about 20 parts by weight based on 100 parts by weight of the resin (A) + (B), but is not limited thereto.
  • Another aspect of the present invention relates to a molded article formed from the thermoplastic resin composition.
  • a molding method for manufacturing the molded article extrusion, injection, casting, etc. may be applied, but is not limited thereto.
  • Such molding methods are well known to those skilled in the art.
  • the components of the present invention and other additives may be simultaneously mixed and then melt-extruded in an extruder to produce pellets, and the pellets may be used to produce injection and compression molded articles.
  • the molded article formed from the thermoplastic resin composition according to the first embodiment has a width of about 180 to about 350 ⁇ m, preferably about 190 to about 260 ⁇ m, according to a Balltype Scratch Profile Test. Pencil hardness may range from 2B to 3H, preferably from H to 2H.
  • the molded article may include various plastic molded articles. Since the thermoplastic resin composition according to the first embodiment of the present invention is excellent in scratch resistance, impact strength, transparency, and moldability, it can be used for molding various products. In particular, it can be applied to a wide range of exterior materials, components or automobile parts, lenses, windows of various electrical and electronic products.
  • the molded article may be a housing of an electronic or electronic product such as a television, an audio, a washing machine, a cassette player, an MP3, a telephone, a game machine, a video player, a computer, a copier, an instrument panel, an instrument panel, a door panel, a quarter panel It can be applied to interior and exterior materials of automobiles, such as wheel covers.
  • the molded article formed from the thermoplastic resin composition according to the second embodiment has a battle overlight of about 85% or more, for example, about 87 to about 99%, and a width by a ball-type scratch profile test ( width) is about 210 ⁇ m or less, for example, about 175 to about 210 ⁇ m, and the heat resistance according to ASTM D1525 (load 5Kg, based on 50 ° C./hr) is about 110 ° C. or more, for example, about 110 to about 130 ° C.
  • the molded article formed from the thermoplastic resin composition according to the third embodiment has about 40% or more of combat light, for example, about 45 to about 70%, and is subjected to the Ball-type Scratch Profile Test.
  • Width of about 280 ⁇ m or less, for example, about 200 to about 270 ⁇ m
  • the heat resistance according to ASTM D1525 is about 105 ° C. or more, for example, about 105 to about 125 ° C.
  • the 1/8 ′′ Izod notch impact strength according to ASTM D256 may be at least about 8 kg ⁇ cm / cm, and about 9 to about 25 kg ⁇ cm / cm.
  • thermoplastic resin compositions according to the second and third embodiments of the present invention can be used for the molding of various products, and in particular for electrical and electronic products such as housings of TVs and office automation equipment.
  • PANLITE L-1250WP of TEIJIN, Japan which is a bisphenol-A type linear polycarbonate resin, having a weight average molecular weight of 25,000 g / mol, was used.
  • a copolymer was prepared by a conventional suspension polymerization method using 82.5% by weight of methyl methacrylate monomer and 2.5% by weight of methyl acrylate in 15% by weight of an olsobiphenyl methacrylate monomer having a refractive index of 1.640.
  • the weight average molecular weight was 25,000 g / mol and the refractive index was 1.5117.
  • a copolymer was prepared by a conventional suspension polymerization method using 67.5% by weight of methyl methacrylate monomer and 2.5% by weight of acrylate in 30% by weight of an allobiphenyl methacrylate monomer having a refractive index of 1.640.
  • the average molecular weight was 85,000 g / mol and the refractive index was 1.5343.
  • a copolymer was prepared by a conventional suspension polymerization method using 85 wt% of methyl methacrylate monomer to 15 wt% of parabiphenyl methacrylate monomer having a refractive index of 1.640.
  • the weight average molecular weight of the prepared copolymer was 55,000 g / mol and a refractive index of 1.5119.
  • a copolymer was prepared by a conventional suspension polymerization method using 70 wt% of methyl methacrylate monomer and 15 wt% of phenyl methacrylate in 15 wt% of parabiphenyl methacrylate monomer having a refractive index of 1.640.
  • the weight average molecular weight of was 55,000 g / mol and the refractive index was 1.5241.
  • a copolymer was prepared by a conventional suspension polymerization method using 82.5% by weight of methyl methacrylate monomer and 2.5% by weight of methyl acrylate in 15% by weight of an olsobiphenyl methacrylate monomer having a refractive index of 1.640.
  • the weight average molecular weight was 55,000 g / mol and the refractive index was 1.5117.
  • a copolymer was prepared by a conventional suspension polymerization method using 85 wt% of methyl methacrylate monomer to 15 wt% of parabiphenyl methacrylate monomer having a refractive index of 1.640, and the weight average molecular weight of the prepared copolymer was 100,000 g / mol and a refractive index of 1.5119.
  • a copolymer was prepared by a conventional suspension polymerization method using 70 wt% of methyl methacrylate monomer and 15 wt% of phenyl methacrylate in 15 wt% of parabiphenyl methacrylate monomer having a refractive index of 1.640.
  • the weight average molecular weight of was 100,000 g / mol, and the refractive index was 1.5241.
  • Resorcinolbis (diphenyl phosphate) was used.
  • L84 of LG MMA a polymethyl methacrylate resin having a weight average molecular weight of 92,000 g / mol, was used.
  • a copolymer was prepared by a conventional suspension polymerization method using 70 wt% of methyl methacrylate monomer to 30 wt% of phenyl methacrylate monomer having a refractive index of 1.570, and the weight average molecular weight of the prepared copolymer was 25,000 g / mol. .
  • a copolymer was prepared by a conventional suspension polymerization method using 30 wt% of phenyl methacrylate monomer having a refractive index of 1.570 and 70 wt% of methylmethacrylate monomer, and the weight average molecular weight of the prepared copolymer was 85,000 g / mol. .
  • a copolymer was prepared by a conventional suspension polymerization method using 50 wt% of methyl methacrylate monomer to 50 wt% of phenyl methacrylate monomer having a refractive index of 1.570, and the weight average molecular weight of the prepared copolymer was 85,000 g / mol. .
  • VST Heat resistance
  • Scratch resistance measured by BSP (Ball-type Scratch Profile) test. Scratch lengths of 10 to 20 mm were applied to a L90 mm ⁇ W50 mm ⁇ t2.5 mm specimen surface using a 0.7 mm diameter spherical metal tip with a load of 1,000 g and a scratch speed of 75 mm / min. Scratch width ( ⁇ m), which is a measure of scratch resistance, was measured by surface scanning of the applied scratch using Ambios' contact surface profile analyzer (XP-1) with a metal stylus tip of 2 ⁇ m in diameter. At this time, the scratch resistance increases as the measured scratch width decreases.
  • BSP All-type Scratch Profile
  • Pencil hardness After leaving the specimen at 23 ° C., 50% relative humidity for 48 hours, pencil hardness was measured according to JIS K 5401 standard. The scratch resistance is evaluated as 3B, 2B, B, HB, F, H, 2H, 3H, etc. according to the pencil hardness result. The higher the H value, the better the scratch resistance, and the higher the B value, the scratch resistance. This means that it is degraded.
  • Example 2 The same procedure as in Example 1 was carried out except that the rubber-modified vinyl graft copolymer resin (C) was further included. The results are shown in Table 2 below.
  • Example 7 is excellent in all the impact strength, heat resistance and scratch resistance compared to Comparative Example 6, it can be seen that the transparency and scratch resistance superior to Comparative Example 7.
  • Example 4 The same procedure as in Example 1 was carried out except that the rubber-modified vinyl graft copolymer resin (C) and a phosphorous flame retardant (D) were further included. The results are shown in Table 4 below.
  • Comparative Example 12 in which polymethyl methacrylate alone was applied without blending polycarbonate, significantly reduced the impact strength and the heat resistance.
  • Comparative Example 13 in which the ratio of a biphenyl group containing (meth) acrylic-type copolymer and polycarbonate resin was out of the range of this invention, it turns out that scratch resistance fell remarkably.
  • Comparative Example 14 to which a conventional PMMA resin is applied, it is possible to confirm the occurrence of flow marks and reduction of combat light.
  • Comparative Example 15 using a high refractive index acrylic copolymer having a weight average molecular weight of 25,000 to 95,000, transparency and appearance were slightly improved compared to Comparative Example 14 using PMMA, but impact strength and heat resistance were decreased, and transparency and scratch resistance were It wasn't enough.
  • Comparative Example 16 without blending polycarbonate can be seen that the impact strength and heat resistance is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 (A) 폴리카보네이트 수지; 및 (B) 바이페닐기 함유 (메타)아크릴계 공중합체;를 포함하는 것을 특징으로 한다. 여기서, 상기 바이페닐기 함유 (메타)아크릴계 공중합체(B)의 굴절률은 약 1.495 내지 약 1.640일 수 있다. 상기 열가소성 수지 조성물은, 충격강도, 내스크래치성, 투명성, 내열성 및 외관 등의 물성 발란스가 우수하다.

Description

열가소성 수지 조성물 및 그 성형품
본 발명은 열가소성 수지 조성물 및 그 성형품에 관한 것이다. 보다 구체적으로 본 발명은 바이페닐기 함유 (메타)아크릴계 공중합체와 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물 및 그 성형품에 관한 것이다.
열가소성 수지는 유리나 금속에 비해 비중이 낮으며 성형성, 내충격성 등의 물성이 우수하다. 최근 전기 전자 제품의 저원가, 대형화, 경량화 추세에 따라, 열가소성 수지를 이용한 플라스틱 제품이 기존의 유리나 금속이 사용되던 영역을 빠르게 대체하고 있으며, 전기 전자 제품에서 자동차 부품에까지 사용 영역을 넓히고 있다. 이에 따라, 외장재로서의 기능 및 외관의 성능이 중요해졌으며, 외부의 충격이나 흠집으로부터의 내스크래치성이나, 화재에 대한 안전성을 위한 난연성에 대한 요구도 높아지고 있다.
폴리카보네이트 수지는 기계적 강도 난연성이 매우 탁월하며, 투명성 및 내후성이 탁월할 뿐 아니라, 내충격성, 열안정성 등이 매우 우수하나, 내스크래치성이 매우 취약하다는 단점이 있다.
아크릴 수지, 특히 폴리메틸메타아크릴레이트(PMMA) 수지는 투명성, 내후성, 기계적 강도, 표면 광택, 접착력 등이 우수하며, 특히, 내스크래치성이 매우 탁월하나, 내충격성 및 난연성이 매우 취약하다는 단점이 있다.
상기 문제점을 극복하고, 내충격성 및 내스크래치 성능을 포함하는 기계적인 물성을 동시에 달성하기 위하여, PMMA 수지 제조 시, 고굴절률 단량체를 공중합하는 방법, 폴리카보네이트와 아크릴계 수지, 바람직하게는 PMMA를 혼용하여 PC/PMMA 수지를 제조하는 방법 등이 개발되었다. 또한, 상용성이 높은 PC/PMMA 수지를 제조하기 위하여, 굴절율이 높은 아크릴계 공중합체를 적용하는 내스크래치성이 높은 폴리카보네이트와 아크릴 얼로이 수지가 개발되기도 하였다. 그러나, 종래 개발되었던 고굴절률 단량체가 도입된 공중합체는 굴절률이나 내열성 상승에 한계가 있으며, 상기 폴리카보네이트와 아크릴 얼로이 수지는 적은 함량의 난연제를 첨가하여 난연성을 발현하기가 어렵고, 난연제 첨가 시 내열도를 포함한 기계적인 물성이 저하된다는 단점이 있다.
본 발명의 목적은 내열도, 충격성 및 내스크래치성이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 난연성, 투명성 및 착색성과 기계적 물성이 우수한 발란스를 갖는 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 폴리카보네이트와의 상용성이 높은 아크릴 공중합체를 적용하여 블렌딩 시 투명성이 유지되는 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 고무 변성 비닐계 그라프트 공중합체 적용 시 플로우 마크(Flow Mark)가 발생하지 않는 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 상기 열가소성 수지 조성물을 이용하여 제조된 플라스틱 성형품을 제공하기 위한 것이다.
본 발명의 한 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 (A) 폴리카보네이트 수지; 및 (B) 바이페닐기 함유 (메타)아크릴계 공중합체;를 포함하는 것을 특징으로 한다.
구체예에서, 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체의 굴절률은 약 1.495 내지 약 1.640일 수 있다.
제1 구체예에서, 상기 열가소성 수지 조성물은 상기 (A) 폴리카보네이트 수지 약 50 내지 약 99 중량%, 및 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체 약 1 내지 약 50 중량%를 포함할 수 있다.
제2 구체예에서, 상기 열가소성 수지 조성물은 상기 (A) 폴리카보네이트 수지 약 1 내지 약 49 중량%, 및 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체 약 51 내지 약 99 중량%를 포함할 수 있다.
구체예에서, 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체는 (b1) 굴절률이 약 1.580 내지 약 1.700인 바이페닐기 함유 (메타)아크릴레이트 약 1 내지 약 50 중량%, (b2) 단관능성 불포화 단량체 약 0 내지 약 99 중량%, 및 (b3) 굴절률이 약 1.490 내지 약 1.579인 지환족 또는 방향족 (메타)아크릴레이트 약 0 내지 약 50 중량%를 포함하는 단량체로부터 유도된 단위를 함유할 수 있다.
구체예에서, 상기 (b1) 바이페닐기 함유 (메타)아크릴레이트는 하기 화학식 1로 표시될 수 있다:
[화학식 1]
Figure PCTKR2012010470-appb-I000001
(상기 화학식 1에서, R1은 수소 또는 메틸기이고, m은 0 내지 10의 정수이며, X는 치환 또는 비치환된 바이페닐기 및 치환 또는 비치환된 터페닐기로 이루어진 군으로부터 선택됨).
구체예에서, 상기 (b2) 단관능성 불포화 단량체는 탄소수 1 내지 8의 알킬 (메타)아크릴레이트; (메타)아크릴산을 포함하는 불포화 카르복실산; 무수말레산을 포함하는 산 무수물; 하이드록시기를 함유하는 (메타)아크릴레이트; (메타)아크릴아미드; 불포화 니트릴; 알릴 글리시딜 에테르; 글리시딜 메타아크릴레이트; 방향족 비닐계 단량체 중 1종 이상 포함할 수 있다.
구체예에서, 상기 (b3) 굴절률이 약 1.490 내지 약 1.579인 지환족 또는 방향족 (메타)아크릴레이트는 하기 화학식 2로 표시되는 화합물, 하기 화학식 3으로 표시되는 화합물, 또는 이들의 혼합물을 포함할 수 있다:
[화학식 2]
Figure PCTKR2012010470-appb-I000002
(상기 화학식 2에서 R1은 수소 또는 메틸기이고, m은 0 내지 10의 정수이며, Y는 치환 또는 비치환된 탄소수 6 내지 20의 사이클로알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기임);
[화학식 3]
Figure PCTKR2012010470-appb-I000003
(상기 화학식 3에서 R1은 수소 또는 메틸기이고, m은 0 내지 10의 정수이며, Z는 산소(O) 또는 황(S)이고, Ar은 치환 또는 비치환된 탄소수 6 내지 20의 사이클로알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기임).
구체예에서, 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체는 중량평균분자량이 약 3,000 내지 약 300,000 g/mol일 수 있다.
구체예에서, 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체는 비가교 구조일 수 있다.
구체예에서, 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체는 유리전이온도가 약 90 내지 약 150이고, 상기 유리전이온도 이상의 온도에서 압출 또는 사출이 가능한 것일 수 있다.
제3 구체예에서, 상기 열가소성 수지 조성물은 (C) 고무 변성 비닐계 그라프트 공중합체 수지를 더욱 포함할 수 있다.
구체예에서, 상기 (C) 고무 변성 비닐계 그라프트 공중합체 수지는 고무 코어에 불포화 단량체가 그라프트되어 쉘이 형성된 구조를 가지며, 상기 불포화 단량체는 탄소수 1 내지 12의 알킬(메타)아크릴레이트, 산 무수물, 및 탄소수 1 내지 12의 알킬 또는 페닐 핵치환 말레이미드로 중 1종 이상을 포함할 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 난연제, 계면활성제, 핵제, 커플링제, 충전제, 가소제, 충격보강제, 활제, 항균제, 이형제, 열안정제, 산화방지제, 광안정제, 상용화제, 무기물 첨가제, 정전기방지제, 안료 및 염료 중 1종 이상을 더욱 포함할 수 있다.
본 발명의 다른 관점은 상기 열가소성 수지 조성물로부터 형성된 성형품에 관한 것이다.
구체예에서, 상기 성형품은 제1 구체예에 따른 열가소성 수지 조성물로부터 형성되며, 볼타입 스크래치 프로파일 테스트(Balltype Scratch Profile Test)에 의한 너비(width)가 약 180 내지 약 350 ㎛이고, 연필경도가 2B 내지 3H의 범위일 수 있다.
구체예에서, 상기 성형품은 제2 구체예에 따른 열가소성 수지 조성물로부터 형성되며, 전투과광이 약 85% 이상이고, 볼타입 스크래치 프로파일 테스트(Ball-type Scratch Profile Test)에 의한 너비(width)가 약 210 ㎛ 이하이며, ASTM D1525에 의한 내열도(하중 5Kg, 50℃/hr 기준)가 약 110 ℃ 이상일 수 있다.
구체예에서, 상기 성형품은 제3 구체예에 따른 열가소성 수지 조성물로부터 형성되며, 전투과광이 약 40% 이상이고, 볼타입 스크래치 프로파일 테스트(Ball-type Scratch Profile Test)에 의한 너비(width)가 약 280 ㎛ 이하이고, ASTM D1525에 의한 내열도(하중 5Kg, 50℃/hr 기준)가 약 105 ℃ 이상이며, ASTM D256에 의한 1/8" 아이조드 노치 충격강도가 약 8 kg·cm/cm 이상일 수 있다.
본 발명은 내열성, 난연성, 내스크래치성, 기계적 물성, 투명성이 모두 우수하여 전기 전자 제품의 부품에 적합하게 적용할 수 있으며, 아크릴 수지의 투명성과 내스크래치성 등의 우수한 물성을 유지하고, 개선된 충격성을 갖는 열가소성 수지 조성물을 제공할 수 있다. 또한, 상기 열가소성 수지 조성물을 사용하여 기존의 제품보다 우수한 특성을 나타내는 플라스틱 성형품을 제조할 수 있고, 이를 각종 전기·전자 부품 또는 자동차 부품에 바람직하게 사용할 수 있는 발명의 효과를 가진다.
이하, 본 발명의 구체예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 특별한 언급이 없는 한, "(메타)아크릴"는 "아크릴" 및 "메타크릴" 둘 다 가능함을 의미한다. 예를 들면, "(메타)아크릴레이트"는 "아크릴레이트"와 "메타크릴레이트" 둘 다 가능함을 의미한다.
또한, "치환"은 화합물 중의 수소 원자가 할로겐 원자(F, Cl, Br, I), 히드록시기, 니트로기, 시아노기, 아미노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 카르보닐기, 카르바밀기, 티올기, 에스테르기, 카르복실기 또는 그것의 염, 술폰산기 또는 그것의 염, 인산기 또는 그것의 염, C1 내지 C20(탄소수 1 내지 20) 알킬기, C2 내지 C20 알케닐기, C2 내지 C20 알키닐기, C1 내지 C20 알콕시기, C6 내지 C30 아릴기, C6 내지 C30 아릴옥시기, C3 내지 C30 사이클로알킬기, C3 내지 C30 사이클로알케닐기, C3 내지 C30 사이클로알키닐기, 또는 이들의 조합의 치환기로 치환된 것을 의미한다.
본 발명에 따른 열가소성 수지 조성물은 (A) 폴리카보네이트 수지, 및 (B) 바이페닐기 함유 (메타)아크릴계 공중합체를 포함한다. 여기서, 상기 바이페닐기 함유 (메타)아크릴계 공중합체(B)의 굴절률은 약 1.495 내지 약 1.640일 수 있다.
제1 구체예에서, 상기 열가소성 수지 조성물은 상기 (A) 폴리카보네이트 수지 약 50 내지 약 99 중량%, 및 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체 약 1 내지 약 50 중량%를 포함할 수 있다.
여기서, 상기 폴리카보네이트 수지(A)의 함량은 (A)+(B)를 포함하는 수지 중, 약 50 내지 약 99 중량%, 바람직하게는 약 55 내지 약 95 중량%, 더욱 바람직하게는 약 60 내지 약 90 중량%이다. 상기 범위에서 우수한 기계적 특성 및 내스크래치성의 발란스를 갖는다.
또한, 상기 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)의 함량은 (A)+(B)를 포함하는 수지 중, 약 1 내지 약 50 중량%, 바람직하게는 약 5 내지 약 45 중량%, 더욱 바람직하게는 약 10 내지 약 40 중량%, 예를 들면 약 10 내지 약 30 중량%이다. 상기 범위에서 내스크래치성이 충분히 개선되고, 충격 및 기계적 물성 저하를 방지할 수 있다.
제2 구체예에서, 상기 열가소성 수지 조성물은 상기 (A) 폴리카보네이트 수지 약 1 내지 약 49 중량%, 및 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체 약 51 내지 약 99 중량%를 포함할 수 있다.
여기서, 상기 폴리카보네이트 수지(A)의 함량은 (A)+(B)를 포함하는 수지 중, 약 1 내지 약 49 중량%, 바람직하게는 약 10 내지 약 40 중량%, 더욱 바람직하게는 약 15 내지 약 35 중량%이다. 상기 범위에서 폴리카보네이트의 우수한 기계적 특성이 발현되며, 연필경도 H 이상의 내스크래치성 갖는다.
또한, 상기 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)의 함량은 (A)+(B)를 포함하는 수지 중, 약 51 내지 약 99 중량%, 바람직하게는 약 60 내지 약 90 중량%, 더욱 바람직하게는 약 65 내지 약 85 중량%이다. 상기 범위에서 내스크래치성이 충분히 개선되고, 충격 및 기계적 물성 저하를 방지할 수 있다.
또한, 본 발명에 따른 열가소성 수지 조성물은 필요에 따라, (C) 고무 변성 비닐계 그라프트 공중합체 수지 및/또는 (D) 인계 난연제를 더욱 포함할 수 있다.
제3 구체예에서, 상기 제2 구체예에 따른 열가소성 수지 조성물은 상기 (A)+(B)를 포함하는 기초수지 100 중량부에 대하여, (C) 고무 변성 비닐계 그라프트 공중합체 수지를 약 0 초과 약 30 중량부 이하, 예를 들면, 약 0 초과 약 30 중량부 이하, 바람직하게는 약 3 내지 약 20 중량부 더욱 포함할 수 있다.
상기 범위에서, 충격 보강 효과를 얻을 수 있을 뿐만 아니라, 인장강도, 굴곡강도, 굴곡탄성률 등의 기계적 강도를 개선시킬 수 있다.
제4 구체예에서, 상기 제1 구체예에 따른 열가소성 수지 조성물은 상기 (A)+(B)를 포함하는 기초수지 100 중량부에 대하여, (C) 고무 변성 비닐계 그라프트 공중합체 수지 약 0 내지 약 30 중량부 및 (D) 인계 난연제 약 0 내지 약 30 중량부를 더욱 포함할 수 있다.
여기서, 상기 고무 변성 비닐계 그라프트 공중합체(C)는 상기 (A)+(B)를 포함하는 기초수지 100 중량부에 대하여, 약 0 내지 약 30 중량부, 바람직하게는 약 3 내지 약 20 중량부로 더욱 포함될 수 있다. 상기 범위에서, 충격 보강 효과를 얻을 수 있을 뿐만 아니라, 인장강도, 굴곡강도, 굴곡탄성률 등의 기계적 강도를 개선시킬 수 있다.
또한, 상기 인계 난연제(D)는 상기 (A)+(B)를 포함하는 기초수지 100 중량부에 대하여, 약 0 내지 약 30 중량부, 바람직하게는 약 3 내지 약 20 중량부로 더욱 포함될 수 있다. 상기 범위에서, 다른 물성의 저하 없이, 난연성을 더욱 확보할 수 있다.
제5 구체예에서, 상기 제1 구체예에 따른 열가소성 수지 조성물은 상기 (A)+(B)를 포함하는 기초수지 100 중량부에 대하여, (C) 고무 변성 비닐계 그라프트 공중합체 수지 약 0 내지 약 30 중량부, 바람직하게는 약 3 내지 약 20 중량부를 더욱 포함할 수 있다.
상기 범위에서, 충격 보강 효과를 얻을 수 있을 뿐만 아니라, 인장강도, 굴곡강도, 굴곡탄성률 등의 기계적 강도를 개선시킬 수 있다.
제6 구체예에서, 상기 제1 구체예에 따른 열가소성 수지 조성물은 상기 (A)+(B)를 포함하는 기초수지 100 중량부에 대하여, (D) 인계 난연제 약 0 내지 약 30 중량부, 바람직하게는 약 3 내지 약 20 중량부를 더욱 포함할 수 있다.
상기 범위에서, 다른 물성의 저하 없이, 난연성을 더욱 확보할 수 있다.
이하, 본 발명의 각 성분에 대해 하기에 상세히 설명한다.
(A) 폴리카보네이트 수지
본 발명에 사용되는 폴리카보네이트 수지는 통상적인 제조 방법에 따라, 분자량 조절제와 촉매의 존재 하에, 디히드릭 페놀계 화합물과 포스겐을 반응시켜 제조할 수 있다. 또한, 다른 구체예로서, 상기 폴리카보네이트 수지는 디히드릭 페놀계 화합물과 디페닐카보네이트와 같은 카보네이트 전구체의 에스테르 상호 교환 반응을 이용하여 제조할 수도 있다.
이러한 폴리카보네이트 수지의 제조 방법에서, 상기 디히드릭 페놀계 화합물로는 비스페놀계 화합물을 사용할 수 있고, 바람직하게는 2,2-비스(4-히드록시페닐)프로판(비스페놀 A)을 사용할 수 있다. 이때, 상기 비스페놀 A가 부분적 또는 전체적으로 다른 종류의 디히드릭 페놀계 화합물로 대체되어도 무방하다. 사용 가능한 다른 종류의 디히드릭 페놀계 화합물의 예로서는, 히드로퀴논, 4,4'-디히드록시디페닐, 비스(4-히드록시페닐)메탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 비스(4-히드록시페닐)설파이드, 비스(4-히드록시페닐)술폰, 비스(4-히드록시페닐)술폭사이드, 비스(4-히드록시페닐)케톤 또는 비스(4-히드록시페닐)에테르나, 2,2-비스(3,5-디브로모-4-히드록시페닐)프로판 등의 할로겐화 비스페놀 등을 들 수 있다.
다만, 상기 폴리카보네이트 수지의 제조를 위해 사용 가능한 디히드릭 페놀계 화합물의 종류가 이에 한정되는 것은 아니며, 임의의 디히드릭 페놀계 화합물을 사용해 상기 폴리카보네이트 수지를 제조할 수 있다.
또한, 상기 폴리카보네이트 수지는 한 종류의 디히드릭 페놀계 화합물을 사용한 단일 중합체이거나, 두 종류 이상의 디히드릭 페놀계 화합물을 사용한 공중합체 또는 이들의 혼합물일 수도 있다.
그리고, 통상적으로 폴리카보네이트 수지는 선형 폴리카보네이트 수지, 분지형 폴리카보네이트 수지 또는 폴리에스테르카보네이트 공중합체 수지 등의 형태를 가질 수 있다. 본 발명의 폴리카보네이트계 수지 조성물에 포함되는 폴리카보네이트 수지로는 특정 형태에 제한되지 않고 이들 선형 폴리카보네이트 수지, 분지형 폴리카보네이트 수지 또는 폴리에스테르카보네이트 공중합체 수지 등을 모두 사용할 수 있다.
상기 선형 폴리카보네이트 수지로는, 예를 들어, 비스페놀 A계 폴리카보네이트 수지를 사용할 수 있고, 상기 분지형 폴리카보네이트 수지로는, 예를 들어, 트리멜리틱 무수물 또는 트리멜리틱산 등의 다관능성 방향족 화합물을 디히드릭 페놀계 화합물 및 카보네이트 전구체와 반응시켜 제조된 것을 사용할 수 있다. 또한, 상기 폴리에스테르카보네이트 공중합체 수지로는, 예를 들어, 이관능성 카르복실산을 디히드릭 페놀 및 카보네이트 전구체와 반응시켜 제조된 것을 사용할 수 있다. 이외에도, 통상적인 선형 폴리카보네이트 수지, 분지형 폴리카보네이트 수지 또는 폴리에스테르카보네이트 공중합체 수지를 제한 없이 사용할 수 있다.
본 발명에서 폴리카보네이트 수지는 단독으로 사용하거나, 분자량이 다른 2종 이상을 혼용하여 사용할 수 있다.
(B) 바이페닐기 함유 (메타)아크릴계 공중합체
본 발명에 사용되는 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)는 (b1) 굴절률이 약 1.580 내지 약 1.700인 바이페닐기 함유 (메타)아크릴레이트와 (b2) 단관능성 불포화 단량체의 공중합체일 수 있다.
구체예에서, 상기 바이페닐기 함유 (메타)아크릴계 공중합체(B)는 (b1) 굴절률이 약 1.580 내지 약 1.700인 바이페닐기 함유 (메타)아크릴레이트 약 1 내지 약 50 중량%, (b2) 단관능성 불포화 단량체 약 0 내지 약 99 중량%, 및 (b3) 굴절률이 약 1.490 내지 약 1.579인 지환족 또는 방향족 (메타)아크릴레이트 약 0 내지 약 50 중량%를 포함하는 단량체로부터 유도된 단위를 함유할 수 있다. 이하, 각 단량체에 대해 설명한다.
(b1) 굴절률이 약 1.580 내지 약 1.700인 바이페닐기 함유 (메타)아크릴레이트
본 발명에 사용되는 바이페닐기 함유(방향족) (메타)아크릴레이트(b1)는 자체 굴절률이 약 1.580 내지 약 1.700으로서, 바이페닐 구조를 함유하는 것을 특징으로 한다.
구체예에서, 상기 바이페닐기 함유 (메타)아크릴레이트(b1)는 하기 화학식 1로 표시되는 화합물 일 수 있다.
[화학식 1]
Figure PCTKR2012010470-appb-I000004
상기 화학식 1에서, R1은 수소 또는 메틸기이고, m은 0 내지 10의 정수이며, X는 치환 또는 비치환된 바이페닐기 및 치환 또는 비치환된 터페닐기로 이루어진 군으로부터 선택된다. 예를 들면, X는 올소바이페닐기, 메타바이페닐기, 파라바이페닐기, 2,6-터페닐기, 올소터페닐기, 메타터페닐기, 또는 파라터페닐기일 수 있다.
상기 바이페닐기 함유 (메타)아크릴레이트(b1)의 예로는 올소바이페닐 메타크릴레이트, 메타바이페닐 메타크릴레이트, 파라바이페닐 메타크릴레이트, 2,6-터페닐 메타크릴레이트, 올소터페닐 메타크릴레이트, 메타터페닐 메타크릴레이트, 파라터페닐 메타크릴레이트, 4-(4-메틸페닐)페닐 메타크릴레이트, 4-(2-메틸페닐)페닐 메타크릴레이트, 2-(4-메틸페닐)페닐 메타크릴레이트, 2-(2-메틸페닐)페닐 메타크릴레이트, 4-(4-에틸페닐)페닐 메타크릴레이트, 4-(2-에틸페닐)페닐 메타크릴레이트, 2-(4-에틸페닐)페닐 메타크릴레이트, 2-(2-에틸페닐)페닐 메타크릴레이트 등이 있으며, 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
상기 방향족 (메타)아크릴레이트(b1) 단위는 상기 (메타)아크릴레이트 공중합체(B) 중 약 1 내지 약 50 중량%로 함유될 수 있다. 상기 범위에서 고굴절률, 투명성, 내열성의 물성 발란스를 얻을 수 있다. 바람직하게는 약 5 내지 약 40 중량%, 예를 들면 약 10 내지 약 35 중량%로 함유될 수 있다. 상기 범위에서 보다 우수한 내열성 및 고굴절률의 물성 발란스를 얻을 수 있다.
(b2) 단관능성 불포화 단량체
본 발명에 사용되는 단관능성 불포화 단량체(b2)는 불포화기를 1개 함유하는 단량체로서, 예를 들면, 탄소수 1 내지 8의 알킬 (메타)아크릴레이트; (메타)아크릴산을 포함하는 불포화 카르복실산; 무수말레산을 포함하는 산 무수물; 하이드록시기를 함유하는 (메타)아크릴레이트; (메타)아크릴아미드; 불포화 니트릴; 알릴글리시딜 에테르; 글리시딜 메타아크릴레이트; 방향족 비닐계 단량체, 이들의 혼합물 등을 포함할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다.
상기 단관능성 불포화 단량체(b2)의 비한정적인 예로는, 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 2-에틸헥실 아크릴레이트, 아크릴산, 메타아크릴산, 무수말레산, 2-하이드록시에틸 아크릴레이트, 2-하이드록시프로필 아크릴레이트, 모노글리세롤 아크릴레이트, 아크릴아미드, 메타크릴아미드, 아크릴로니트릴, 메타크릴로니트릴, 알릴 글리시딜 에테르, 글리시딜 메타아크릴레이트, 스티렌, 알파-메틸스티렌 등을 예시할 수 있다. 바람직하게는 탄소수 1 내지 8의 알킬 (메타)아크릴레이트, 더욱 바람직하게는 탄소수 1 내지 4의 알킬 (메타)아크릴레이트를 사용할 수 있다. 이 경우 보다 우수한 내스크래치성과 투명성을 달성할 수 있다.
구체예에서, 메타아크릴레이트와 아크릴레이트를 혼합하여 적용할 수 있다. 이 경우 메타아크릴레이트와 아크릴레이트의 비율은 약 15:1 내지 약 45:1일 수 있다. 상기 범위에서 보다 우수한 열안정성및 유동성을 가질 수 있다.
상기 단관능성 불포화 단량체(b2) 단위는 (메타)아크릴레이트 공중합체(B) 중 약 0 내지 약 99 중량%. 바람직하게는 약 50 내지 약 95 중량%, 더욱 바람직하게는 약 55 내지 약 89 중량%로 함유될 수 있다. 상기 범위에서 내스크래치성, 유동성, 투명성 및 난연성의 물성 발란스를 얻을 수 있다.
(b3) 굴절률이 약 1.490 내지 약 1.579인 지환족 또는 방향족 (메타)아크릴레이트
본 발명에 사용되는 지환족 또는 방향족 (메타)아크릴레이트(b3)는 자체 굴절률이 굴절률이 약 1.490 내지 약 1.579의 범위를 가지며, 하기 화학식 2로 표시되는 화합물, 하기 화학식 3으로 표시되는 화합물, 또는 이들의 혼합물일 수 있다.
[화학식 2]
Figure PCTKR2012010470-appb-I000005
상기 화학식 2에서, R1은 수소 또는 메틸기이고, m은 0 내지 10의 정수이며, Y는 치환 또는 비치환된 탄소수 6 내지 20의 사이클로알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다.
상기 Y의 예로는, 사이클로헥실기, 페닐기, 메틸페닐기, 메틸에틸페닐기, 메톡시페닐기, 프로필페닐기, 사이클로헥실페닐기, 클로로페닐기, 브로모페닐기, 벤질페닐기 등일 수 있다.
[화학식 3]
Figure PCTKR2012010470-appb-I000006
상기 화학식 3에서, R1은 수소 또는 메틸기이고, m은 0 내지 10의 정수이며, Z는 산소(O) 또는 황(S)이고, Ar은 치환 또는 비치환된 탄소수 6 내지 20의 사이클로알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다.
상기 Ar의 예로는, 사이클로헥실기, 페닐기, 메틸페닐기, 메틸에틸페닐기, 메톡시페닐기, 사이클로헥실페닐기, 클로로페닐기, 브로모페닐기, 벤질페닐기 등일 수 있다.
상기 지환족 또는 방향족 (메타)아크릴레이트(b3)의 비한정적인 예로는 사이클로헥실 메타크릴레이트, 페녹시 메타크릴레이트, 2-에틸페녹시 메타크릴레이트, 벤질 메타크릴레이트, 페닐 메타크릴레이트, 2-에틸티오페닐 메타크릴레이트, 2-페닐에틸 메타크릴레이트, 3-페닐포로필 메타크릴레이트, 4-페닐부틸 메타크릴레이트, 2-2-메틸페닐에틸 메타크릴레이트, 2-3-메틸페닐에틸 메타크릴레이트, 2-4-메틸페닐에틸 메타크릴레이트, 2-(4-프로필페닐)에틸메타크릴레이트, 2-(4-(1-메틸에틸)페닐)에틸메타크릴레이트, 2-(4-메톡시페닐)에틸메타크릴레이트, 2-(4-사이클로헥실페닐)에틸 메타크릴레이트, 2-(2-클로로페닐)에틸 메타크릴레이트, 2-(3-클로로페닐)에틸 메타크릴레이트, 2-(4-클로로페닐)에틸 메타크릴레이트, 2-(4-브로모페닐)에틸 메타크릴레이트, 2-(3-페닐페닐)에틸 메타크릴레이트, 및 2-(4-벤질페닐)에틸 메타크릴레이트와 같은 메타크릴산 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
상기 지환족 또는 방향족 (메타)아크릴레이트(b3) 단위는 (메타)아크릴레이트 공중합체(B) 중 약 0 내지 약 50 중량%, 바람직하게는 약 0 내지 40 중량%, 더욱 바람직하게는 약 1 내지 약 35 중량%로 포함될 수 있다. 상기 범위에서 보다 우수한 굴절률 및 내열성의 물성 발란스를 갖는다.
본 발명의 바이페닐기 함유 (메타)아크릴계 공중합체(B)는 공중합체 제조 분야에서 알려진 통상의 중합 방법 예를 들면, 괴상 중합, 유화 중합 또는 현탁 중합으로 제조될 수 있다. 바람직하게는 현탁 중합으로 제조될 수 있다.
구체예에서, 상기 바이페닐기 함유 (메타)아크릴계 공중합체(B)는 상기 (b1) 굴절률이 약 1.580 내지 약 1.700인 바이페닐기 함유 (메타)아크릴레이트 약 1 내지 약 50 중량%, 상기 (b2) 단관능성 불포화 단량체 약 0 내지 약 99 중량%, 및 상기 (b3) 굴절률이 약 1.490 내지 약 1.579인 지환족 또는 방향족 (메타)아크릴레이트 약 0 내지 약 50 중량%를 포함하는 단량체 혼합물을 중합하여 제조할 수 있다. 예를 들면, 상기 단량체 혼합물에 중합개시제 및 연쇄이동제를 투입하여 반응 혼합액을 제조하고, 그 반응 혼합액을 현탁안정제가 용해된 수용액에 투입하여 현탁 중합하여 제조할 수 있다.
상기 중합 온도와 중합 시간은 적절하게 조절할 수 있다. 예를 들면, 약 65 내지 약 125℃, 바람직하게는 약 70 내지 약 120℃의 중합 온도에서 약 2 내지 약 8 시간 동안 반응시킬 수 있다.
상기 중합개시제로는 중합 분야에서 알려진 통상의 라디칼 중합 개시제를 사용할 수 있으며, 예를 들면, 옥탄오일 퍼옥사이드, 데칸오일 퍼옥사이드, 라우로일 퍼옥사이드, 벤조일 퍼옥사이드, 모노클로로벤조일 퍼옥사이드, 디클로로벤조일 퍼옥사이드, p-메틸벤조일 퍼옥사이드, tert-부틸 퍼벤조에이트, 아조비스이소부티로니트릴 및 아조비스-(2,4-디메틸)-발레로니트릴 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 상기 중합개시제는 단독 또는 2종 이상 혼합하여 적용될 수 있다. 구체예에서 상기 중합개시제는 상기 단량체 혼합물 100 중량부에 대하여, 약 0.01 내지 약 10 중량부, 바람직하게는 약 0.03 내지 약 5 중량부로 포함될 수 있다.
상기 연쇄이동제는 (메타)아크릴레이트 공중합체(B)의 중량평균분자량을 조절하고 열 안정성을 향상시키기 위해 사용될 수 있다. 중량평균분자량은 단량체 혼합물에 포함되는 중합개시제의 함량에 의해서 조절될 수 있다. 그러나, 연쇄이동제에 의해 중합 반응이 정지되면 사슬의 말단은 제2 탄소 구조가 된다. 이것은 연쇄이동제를 사용하지 않았을 때에 생성되는 이중 결합을 갖는 사슬의 말단보다 결합 강도가 더 강하다. 따라서, 연쇄이동제 첨가는 열 안정성을 향상시킬 수 있고, 결국 (메타)아크릴레이트 공중합체(B)의 광 특성을 향상시킬 수 있다.
상기 연쇄이동제로는 중합 분야에서 알려진 통상의 연쇄이동제를 사용할 수 있으며, 예를 들면, n-부틸 머캡탄, n-옥틸 머캡탄, n-도데실 머캡탄, t-도데실 머캡탄, 이소프로필 머캡탄 및 n-아밀 머캡탄 등을 포함하는CH3(CH2)nSH(n은 1 내지 20의 정수임) 형태의 알킬 머캡탄; 카본 테트라 클로라이드 등을 포함하는 할로겐 화합물; 및 알파 메틸스티렌 다이머 또는 알파 에틸스티렌 다이머 등을 포함하는 방향족 화합물 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 상기 연쇄이동제는 상기 단량체 혼합물 100 중량부에 대하여, 약 0.01 내지 약 10 중량부, 바람직하게는 약 0.02 내지 약 5 중량부로 포함될 수 있다. 상기 범위에서 열안정성 및 적절한 분자량을 가질 수 있다.
또한, 상기 바이페닐기 함유 (메타)아크릴계 공중합체(B)는 상기 단량체 혼합물에 현탁 안정제, 현탁 안정 보조제 등의 첨가제를 1종 이상 더 포함하여 중합될 수도 있다. 상기 첨가제는 상기 단량체 혼합물 100 중량부에 대하여, 약 0.001 내지 약 20 중량부로 포함될 수 있지만, 이에 제한되는 것은 아니다.
상기 현탁 안정제로는 폴리알킬아크릴레이트-아크릴산, 폴리올레핀-말레인산, 폴리비닐알코올, 셀룰로오스 등을 포함하는 유기 현탁 안정제; 트리칼슘포스페이트 등을 포함하는 무기 현탁 안정제; 이들의 혼합물 등이 사용될 수 있지만, 이에 제한되는 것은 아니다.
상기 현탁 안정 보조제로는 디소듐 하이드로겐 포스페이트, 소듐 디하이드로겐 포스페이트 등이 사용될 수 있으며, 수용성 고분자나 단량체의 용해도 특성을 제어하기 위해 소듐 설페이트 등이 첨가될 수도 있다.
상기 산화방지제로는 옥타데실 3-(3,5-디-터셔리부틸-4-하이드로페닐)프로피오네이트, 트리에틸렌 글리콜-비스-3(3-터셔리부틸-4-하이드록시-5-메틸페닐)프로피오네티트, 2,6-디-터셔리부틸-4-메틸 페놀, 2,2'-메틸렌비스(4-메틸-6-터셔리-부틸페놀), 트리(2,4-디-터셔리-부틸페닐)포스파이트, 노말-옥타데실-3(3,5-디-터셔리부틸-4-하이드록시페닐)프로피오네이트, 1,3,5-트리(3,5-디-터셔리-부틸-4-하이드록시벤질)이소시아네이트, 3-3,5-디-터셔리-부틸-4-하이드록시페닐), 디스테릴씨올디프로피오네이트, 라울티올 프로피오네이트 메탄 및 디-페닐-이소옥틸 포스이네이트 등이 사용될 수 있으나, 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다.
상기 중합이 완료된 후 냉각, 세척, 탈수, 건조 공정을 거쳐 입자 형태의 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)를 얻을 수 있다.
구체예에서, 상기 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)는 비가교구조를 가지며, 바람직하게는 선형 구조를 갖는다. 이러한 비가교 구조를 갖는 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)는 압출 및 사출이 가능하며, 폴리카보네이트 수지(A)와의 상용성이 우수하다.
구체예에서, 상기 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)는 유리전이온도가 약 90 내지 약 150℃, 바람직하게는 약 101 내지 약 130℃이다. 상기 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)는 상기 유리전이온도 이상의 온도에서 압출 또는 사출이 가능하다.
구체예에서, 상기 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)는 ASTM D1525에 의해 5Kg 하중 및 50℃/hr 조건에서 측정된 비캣연화온도(VST)가 약 100 내지 약 140℃, 바람직하게는 약 110 내지 약 130℃일 수 있다.
구체예에서 상기 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)는 중량평균분자량이 약 3,000 내지 약 300,000 g/mol, 바람직하게는 약 10,000 내지 약 290,000 g/mol, 더욱 바람직하게는 약 40,000 내지 약 280,000 g/mol, 예를 들면, 50,000 내지 250,000 g/mol일 수 있다. 상기 범위 내에서, 상용성과 기계적 물성을 동시에 유지할 수 있다.
상기 바이페닐기 함유 (메타)아크릴레이트 공중합체(B)는 2.5mm 두께에서 굴절률이 약 1.495 내지 약 1.640, 바람직하게는 약 1.50 내지 약 1.60이고, ASTM D1003에 따라 측정한 투과율이 85% 이상, 바람직하게는 90% 이상일 수 있다.
(C) 고무 변성 비닐계 그라프트 공중합체
본 발명에 사용되는 고무 변성 비닐계 그라프트 공중합체(C)는 고무의 코어 구조에 불포화 단량체가 그라프트되어 쉘이 형성된 구조인 코어-쉘 그라프트 공중합체 구조를 가지는 것으로서, 열가소성 수지 조성물 내에서 충격 보강제 역할을 한다.
상기 고무로는 탄소수 4 내지 6의 디엔계 고무, 아크릴레이트계 고무, 및 실리콘계 고무 중 1종 이상의 고무 단량체를 중합하여 제조된 것을 사용하는 것이 바람직하며, 구조적 안정성 측면에서, 실리콘계 고무를 단독으로 사용하거나, 실리콘계 고무 및 아크릴레이트계 고무를 혼용하여 사용하는 것이 더욱 바람직하다.
상기 아크릴레이트계 고무로는 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, n-프로필(메타)아크릴레이트, n-부틸(메타)아크릴레이트, 2-에틸헥실(메타)아크릴레이트, 헥실(메타)아크릴레이트 등의 (메타)아크릴레이트 단량체를 사용할 수 있으며, 이때 에틸렌글리콜디(메타)아크릴레이트, 프로필렌글리콜디(메타)아크릴레이트, 1,3-부틸렌글리콜디(메타)아크릴레이트, 1,4-부틸렌글리콜디(메타)아크릴레이트, 알릴(메타)아크릴레이트, 트리알릴시아누레이트 등의 경화제를 더 사용할 수 있다.
상기 실리콘계 고무는 시클로실록산으로부터 제조되는 것으로서, 구체적인 예로는 헥사메틸시클로트리실록산, 옥타메틸시클로테트라실록산, 데카메틸시클로펜타실록산, 도데카메틸시클로헥사실록산, 트리메틸트리페닐시클로트리실록산, 테트라메틸테트라페닐시클로테트로실록산, 및 옥타페닐시클로테트라실록산 중 1 종 이상으로부터 제조될 수 있다. 이때 트리메톡시메틸실란, 트리에톡시페닐실란, 테트라메톡시실란, 테트라에톡시실란 등의 경화제를 더 사용할 수 있다.
상기 고무는 상기 고무 변성 비닐계 그라프트 공중합체(C) 100 중량부에 대하여, 약 50 내지 약 95 중량부, 바람직하게는 약 60 내지 약 90 중량부, 더욱 바람직하게는 약 70 내지 약 85 중량부로 포함될 수 있다. 상기 범위에서 수지와의 상용성이 우수하고, 그 결과 우수한 충격 보강 효과를 나타낼 수 있다.
상기 고무의 평균 입경은 약 0.1 내지 약 1 ㎛, 바람직하게는 약 0.4 내지 약 0.9 ㎛일 수 있다. 상기 범위에서 내충격성과 착색성 밸런스 유지에 보다 바람직하다.
상기 고무에 그라프트되는 불포화 단량체로는 탄소수 1 내지 12의 알킬(메타)아크릴레이트, (메타)아크릴레이트, 산 무수물, 및 탄소수 1 내지 12의 알킬 또는 페닐 핵치환 말레이미드 중 1종 이상의 불포화 화합물을 사용할 수 있다.
상기 알킬(메타)아크릴레이트의 구체적인 예로는 메틸메타아크릴레이트, 에틸메타아크릴레이트, 프로필메타아크릴레이트 등을 예시할 수 있으며, 이들 중 메틸메타아크릴레이트가 바람직하게 사용될 수 있다.
상기 산 무수물로는 무수말레인산, 무수이타콘산 등의 카르복실산 무수물을 사용할 수 있다.
상기 그라프트되는 불포화 단량체는 상기 고무 변성 비닐계 그라프트 공중합체(C) 100 중량부에 대하여, 약 5 내지 약 50 중량부, 바람직하게는 약 10 내지 약 40 중량부, 더욱 바람직하게는 약 15 내지 약 30 중량부로 포함될 수 있다. 상기 범위에서 수지와의 상용성이 우수하고, 우수한 충격 보강 효과를 나타낼 수 있다.
(D) 인계 난연제
본 발명에 사용되는 인계 난연제는 난연성을 더욱 확보하기 위해 첨가되는 것으로서, 예를 들면, 적인, 포스페이트(Phosphate), 포스포네이트(Phosphonate), 포스피네이트(Phosphinate), 포스핀옥사이드(Phosphine Oxide), 포스파젠(Phosphazene) 및 이들의 금속염 등의 통상적인 인 함유 난연제가 제한 없이 사용될 수 있다.
일 구체예에서, 상기 인계 난연제로는 하기 화학식 4로 표시되는 것이 사용될 수 있다.
[화학식 4]
Figure PCTKR2012010470-appb-I000007
상기 화학식 4에서, R4, R5, R7 및 R8는, 각각 독립적으로, C6-C20(탄소수 6 내지 20)인 아릴기, 또는 C1-C10 알킬 치환 C6-C20 아릴기이고, R6은 레조시놀, 히드로퀴놀, 비스페놀-A, 또는 비스페놀-S의 디알콜로부터 유도된 것 중의 하나이며, n은 0 내지 10의 정수이다.
상기 화학식 4에서, i) n이 0인 경우를 구체적으로 예시하면, 트리페닐포스페이트, 트리크레실포스페이트, 크레실디페닐포스페이트, 트리자이릴포스페이트, 트리(2,4,6-트리메틸페닐)포스페이트, 트리(2,4-디터셔리부틸페닐)포스페이트, 트리(2,6-디터셔리부틸페닐)포스페이트 등이 있고, ii) n이 1인 경우를 구체적으로 예시하면, 레소시놀비스(디페닐포스페이트), 히드로퀴놀비스(디페닐포스페이트), 비스페놀A-비스(디페닐포스페이트), 레소시놀비스(2,6-디터셔리부틸페닐포스페이트), 히드로퀴놀비스(2,6-디메틸페닐포스페이트) 등이 있다. iii) n이 2 이상인 경우는 올리고머 형태의 혼합물의 형태로 존재한다.
다른 구체예에서, 상기 인계 난연제로는 하기 화학식 5로 표시되는 것을 사용할 수 있다.
[화학식 5]
Figure PCTKR2012010470-appb-I000008
상기 화학식 5에서, R1, R2, R3, R4, R5, R6, R7, R8, R9, 및 R10은 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 6의 알킬 치환 탄소수 6 내지 20의 아릴기, 탄소수 6 내지 20의 아르알킬기, 탄소수 1 내지 6의 알콕시기, 탄소수 6 내지 20의 아릴옥시기, 아미노기 또는 히드록시기로부터 임의적으로 선택된 치환기를 나타내고, R11은 C6-C30 디옥시아릴 또는 알킬 치환된 C6-C30 디옥시아릴기 유도체이며, n은 수평균중합도로서 n의 평균값은 0.3 내지 3이며, k와 j는 0 내지 10의 정수이다. 여기서, 상기 화학식 5의 알콕시기 또는 아릴옥시기는 알킬기, 아릴기, 아미노기, 또는 히드록실기 등으로 치환될 수 있다.
본 발명에 따른 열가소성 수지 조성물은 필요에 따라, 난연제, 계면활성제, 핵제, 커플링제, 충전제, 가소제, 충격보강제, 활제, 항균제, 이형제, 열안정제, 산화방지제, 광안정제, 상용화제, 무기물 첨가제, 정전기방지제, 안료 및 염료 등의 첨가제를 더욱 포함할 수 있다. 상기 첨가제는 단독 또는 2종 이상 혼합하여 적용할 수 있다. 이들 첨가제는 상기 바이페닐기 함유 (메타)아크릴계 공중합체(B) 중합 공정 시 첨가되어, 열가소성 수지 조성물 중 바이페닐기 함유 (메타)아크릴계 공중합체(B)에 포함될 수도 있고, 열가소성 수지 조성물의 통상적인 펠렛화 공정(압출 공정)에 첨가되어 상기 열가소성 수지 조성물 전체에 포함될 수도 있으나, 그 방법이 특별히 제한되지 않는다. 상기 첨가제는 상기 (A)+(B)로 이루어진 수지 100 중량부에 대하여, 약 0.001 내지 약 20 중량부로 포함될 수 있지만, 이에 제한되는 것은 아니다.
본 발명의 다른 관점은 상기 열가소성 수지 조성물로부터 형성된 성형품에 관한 것이다. 상기 성형품을 제조하기 위한 성형 방법으로는 압출, 사출, 캐스팅 등이 적용될 수 있으나, 이에 제한되는 것은 아니다. 상기 성형 방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에게 널리 알려져 있다. 예를 들면, 본 발명의 구성 성분과 기타 첨가제들을 동시에 혼합한 후에, 압출기 내에서 용융 압출하여 펠렛 형태로 제조하고, 상기 펠렛을 이용하여 사출 및 압축 성형품을 제조할 수 있다.
상기 제1 구체예에 따른 열가소성 수지 조성물로부터 형성된 성형품은 볼타입 스크래치 프로파일 테스트(Balltype Scratch Profile Test)에 의한 너비(width)가 약 180 내지 약 350 ㎛, 바람직하게는 약 190 내지 약 260 ㎛이고, 연필경도가 2B 내지 3H, 바람직하게는 H 내지 2H의 범위일 수 있다.
상기 성형품은 각종 플라스틱 성형품 등을 포함할 수 있다. 본 발명의 제1 구체예에 따른 열가소성 수지 조성물은 내스크래치성, 충격강도, 투명성 및 성형성이 우수하므로 여러 가지 제품의 성형에 사용될 수 있다. 특히, 각종 전기·전자 제품의 외장재, 부품 또는 자동차 부품, 렌즈, 유리창 등에 광범위하게 적용 가능하다. 예를 들어, 상기 성형품은 텔레비전, 오디오, 세탁기, 카세트 플레이어, MP3, 전화기, 게임기, 비디오 플레이어, 컴퓨터, 복사기 등의 전기·전자제품의 하우징 및 자동차 계기판, 인스트루먼터 패널, 도어 패널, 쿼터 패널, 휠 덮개 등의 자동차 내·외장재에 적용될 수 있다.
상기 제2 구체예에 따른 열가소성 수지 조성물로부터 형성된 성형품은 전투과광이 약 85% 이상, 예를 들면 약 87 내지 약 99%이고, 볼타입 스크래치 프로파일 테스트(Ball-type Scratch Profile Test)에 의한 너비(width)가 약 210 ㎛ 이하, 예를 들면, 약 175 내지 약 210 ㎛이며, ASTM D1525에 의한 내열도(하중 5Kg, 50℃/hr 기준)가 약 110℃ 이상, 예를 들면, 약 110 내지 약 130℃일 수 있다.
또한, 상기 제3 구체예에 따른 열가소성 수지 조성물로부터 형성된 성형품은 전투과광이 약 40% 이상, 예를 들면, 약 45 내지 약 70%이고, 볼타입 스크래치 프로파일 테스트(Ball-type Scratch Profile Test)에 의한 너비(width)가 약 280 ㎛ 이하, 예를 들면, 약 200 내지 약 270 ㎛이고, ASTM D1525에 의한 내열도(하중 5Kg, 50℃/hr 기준)가 약 105℃ 이상, 예를 들면, 약 105 내지 약 125℃이며, ASTM D256에 의한 1/8" 아이조드 노치 충격강도가 약 8 kg·cm/cm 이상, 약 9 내지 약 25 kg·cm/cm일 수 있다.
본 발명의 제2 및 제3 구체예에 따른 열가소성 수지 조성물은 여러 가지 제품의 성형에 사용될 수 있으며, 특히 TV 및 사무자동화 기기의 하우징과 같은 전기, 전자 제품에 이용된다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예
하기 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다:
(A) 폴리카보네이트계 수지
중량평균분자량이 25,000 g/mol이고, 비스페놀-A형 선형 폴리카보네이트 수지인 일본 TEIJIN사의 PANLITE L-1250WP를 사용하였다.
(B) 바이페닐기 함유 (메타)아크릴계 공중합체
(B1) 바이페닐기 함유 (메타)아크릴계 공중합체-1
굴절률이 1.640인 올소바이페닐 메타아크릴레이트 단량체 15 중량%에 메틸 메타아크릴레이트 단량체 82.5 중량% 및 메틸 아크릴레이트 2.5 중량%를 이용하여 통상의 현탁 중합법으로 공중합체를 제조하였으며, 제조된 공중합체의 중량평균분자량은 25,000 g/mol이었으며, 굴절률은 1.5117이었다.
(B2) 바이페닐기 함유 (메타)아크릴계 공중합체-2
굴절률이 1.640인 올소바이페닐 메타아크릴레이트 단량체 30 중량%에 메틸 메타아크릴레이트 단량체 67.5 중량% 및 아크릴레이트 2.5 중량%를 이용하여 통상의 현탁 중합법으로 공중합체를 제조하였으며, 제조된 공중합체의 중량평균분자량은 85,000 g/mol이었으며, 굴절률은 1.5343이었다.
(B3) 바이페닐기 함유 (메타)아크릴계 공중합체-3
굴절률이 1.640인 파라바이페닐 메타아크릴레이트 단량체 15 중량%에 메틸 메타아크릴레이트 단량체 85 중량%를 이용하여 통상의 현탁 중합법으로 공중합체를 제조하였으며, 제조된 공중합체의 중량평균분자량은 55,000 g/mol이었으며, 굴절률은 1.5119이었다.
(B4) 바이페닐기 함유 (메타)아크릴계 공중합체-4
굴절률이 1.640인 파라바이페닐 메타아크릴레이트 단량체 15 중량%에 메틸 메타아크릴레이트 단량체 70 중량% 및 페닐 메타아크릴레이트 15 중량%를 이용하여 통상의 현탁 중합법으로 공중합체를 제조하였으며, 제조된 공중합체의 중량평균분자량은 55,000 g/mol이었으며, 굴절률은 1.5241이었다.
(B5) 바이페닐기 함유 (메타)아크릴계 공중합체-5
굴절률이 1.640인 올소바이페닐 메타아크릴레이트 단량체 15 중량%에 메틸 메타아크릴레이트 단량체 82.5 중량% 및 메틸 아크릴레이트 2.5 중량%를 이용하여 통상의 현탁 중합법으로 공중합체를 제조하였으며, 제조된 공중합체의 중량평균분자량은 55,000 g/mol이었으며, 굴절률은 1.5117이었다.
(B6) 바이페닐기 함유 (메타)아크릴계 공중합체-6
굴절률이 1.640인 파라바이페닐 메타아크릴레이트 단량체 15 중량%에 메틸 메타아크릴레이트 단량체 85 중량%를 이용하여 통상의 현탁 중합법으로 공중합체를 제조하였으며, 제조된 공중합체의 중량평균분자량은 100,000 g/mol이었으며, 굴절률은 1.5119이었다.
(B7) 바이페닐기 함유 (메타)아크릴계 공중합체-7
굴절률이 1.640인 파라바이페닐 메타아크릴레이트 단량체 15 중량%에 메틸 메타아크릴레이트 단량체 70 중량% 및 페닐 메타아크릴레이트 15 중량%를 이용하여 통상의 현탁 중합법으로 공중합체를 제조하였으며, 제조된 공중합체의 중량평균분자량은 100,000 g/mol이었으며, 굴절률은 1.5241이었다.
(C) 고무 변성 비닐계 그라프트 공중합체
평균 입경이 0.1~0.3 ㎛인 부타디엔 고무 복합체 70 중량%에 스티렌 단량체 20 중량%와 메틸메타아크릴레이트 단량체 10 중량%가 그라프트 중합된 일본 미쯔비시 레이온(MITSUBISHI RAYON)사의 메타블렌(METABLEN) C-223A를 사용하였다.
(D) 인계 난연제
레소시놀비스(디페닐포스페이트)를 사용하였다.
(E) 아크릴계 수지
(E1) 아크릴계 수지-1
중량평균분자량이 92,000 g/mol인 폴리메틸메타아크릴레이트 수지인 LG MMA사의 L84를 사용하였다.
(E2) 아크릴계 수지-2
굴절률이 1.570인 페닐 메타아크릴레이트 단량체 30 중량%에 메틸메타아크릴레이트 단량체 70 중량%를 이용하여 통상의 현탁 중합법으로 공중합체를 제조하였으며, 제조된 공중합체의 중량평균분자량은 25,000 g/mol이었다.
(E3) 아크릴계 수지-3
굴절률이 1.570인 페닐 메타아크릴레이트 단량체 30 중량%에 메틸메타아크릴레이트 단량체 70 중량%를 이용하여 통상의 현탁 중합법으로 공중합체를 제조하였으며, 제조된 공중합체의 중량평균분자량은 85,000 g/mol이었다.
(E4) 아크릴계 수지-4
굴절률이 1.570인 페닐 메타아크릴레이트 단량체 50 중량%에 메틸메타아크릴레이트 단량체 50 중량%를 이용하여 통상의 현탁 중합법으로 공중합체를 제조하였으며, 제조된 공중합체의 중량평균분자량은 85,000 g/mol이었다.
실시예 1~4 및 비교예 1~3
상기 각 구성성분을 하기 표 1에 기재된 바와 같은 함량으로 첨가한 후, hindered phenol계 열안정제 0.1 중량부를 첨가하여, 용융, 혼련 압출하여 펠렛을 제조하였다. 이때, 압출은 L/D=29, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 6시간 건조 후, 6 Oz 사출기에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1에 나타내었다.
물성 측정 방법
(1) Flow mark: L90mm×W50mm×t2.5mm 크기의 시편을 준비하고, 육안으로 flow mark 유무를 관찰하였다. Flow mark가 없으면 폴리카보네이트와 바이페닐기 함유 (메타)아크릴계 공중합체간 상용성이 개선된 것으로 평가할 수 있다.
(2) 투명도 및 색상: 상기 시편을 사용하여 육안으로 투명, 반투명 또는 불투명 여부를 판단하였다.
(3) 전투과광: Nippon Denshoku사의 Haze meter NDH 2000 장비를 이용하여 전투과광(TT) 및 Haze 값을 측정하였으며, 전투과광은 확산투과광(DF)과 평행투과광(PT)의 합계 광량으로 계산된다. 이때, 전투과광(TT)이 높을수록, Haze가 낮을수록 투명성이 우수한 것으로 평가된다.
(4) 충격 강도(Izod, 단위: kgf·cm/cm): ASTM D256에 규정된 평가방법에 의하여 1/8" 아이조드 시편에 노치(Notch)를 만들어 평가하였다.
(5) 내열도(VST, 단위: ℃): ASTM D1525에 규정된 평가방법에 의하여 하중 5Kg 짜리 추, 50℃/hr 조건에서 측정하였다.
(6) 난연도: 두께 1.5 mm의 시편을 제조하여 UL94 버티칼 테스트 방법으로 난연도를 측정하였다.
(7) 내스크래치성: BSP(Ball-type Scratch Profile) test에 의해 측정하였다. L90mm×W50mm×t2.5mm 시편 표면에 0.7mm 지름의 구형의 금속 팁을 사용하여 하중 1,000g, 스크래치 속도 75mm/min로 10 내지 20mm의 길이의 스크래치를 가하였다. 가해진 스크래치의 프로파일을 Ambios사(社)의 접촉식 표면 프로파일 분석기(XP-1)을 사용하여 지름 2 ㎛의 금속 스타일러스 팁으로 표면 스캔하여 내스크래치성의 척도가 되는 Scratch width(㎛)를 평가하였다. 이때, 측정된 Scratch width가 감소할수록 내스크래치성은 증가된다.
(8) 연필경도: 시편을 23℃, 상대습도 50%에서 48시간 방치한 후 JIS K 5401 규격에 따라 연필 경도를 측정하였다. 내스크래치성은 연필 경도 결과에 따라 3B, 2B, B, HB, F, H, 2H, 3H 등으로 평가되며, 높은 H값을 보일수록 내스크래치 성능이 우수한 것이고, 높은 B값을 보일수록 내스크래치 물성이 저하되는 것을 의미한다.
표 1
구분 실시예 비교예
1 2 3 4 1 2 3
(A) PC 70 70 70 70 70 70 70
(B) 바이페닐기 함유 아크릴계 공중합체 (B1) 30 - - - - - -
(B2) - 30 - - - - -
(B3) - - 30 - - - -
(B4) - - - 30 - - -
(E) 아크릴계 수지 (E1) - - - - 30 - -
(E2) - - - - - 30 -
(E3) - - - - - - -
(E4) - - - - - - 30
Flow Mark
투명도 및 색상 투명 투명 투명 투명 불투명 투명 반투명
전투과광 (TT) 91.0 90.2 88.2 89.6 5.3 89.9 40.8
Izod 충격강도 (1/8") 2.5 3.8 3.5 3.3 3.7 2.4 3.5
내열도 (VST) 123.8 127.6 125.7 125.2 127.4 122.1 127.4
BSPWidth (㎛) 258 254 257 252 284 257 267
연필경도 H H H H F H F
상기 표 1의 결과로부터, 실시예 1~4는 비교예 1~3에 비해 외관, 투명도, 충격강도, 내열도 및 내스크래치성이 모두 우수한 것을 알 수 있다.
실시예 5~6 및 비교예 4~5
고무 변성 비닐계 그라프트 공중합체 수지(C) 를 더 포함한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 결과는 하기 표 2에 나타내었다.
표 2
구분 실시예 비교예
5 6 4 5
(A) PC 70 70 70 100
(B) 바이페닐기 함유 아크릴계 공중합체 (B1) 30 - - -
(B2) - 30 - -
(B3) - - - -
(B4) - - - -
(C) 고무 변성 비닐계 그라프트 공중합체 수지 10 10 10 10
(E) 아크릴계 수지 (E1) - - - -
(E2) - - 30 -
(E3) - - - -
(E4) - - - -
Flow Mark
전투과광 (TT) 51.2 58.6 31.2 26.2
Izod 충격강도 (1/8") 40.6 47.0 34.2 76.3
내열도 (VST) 128.3 129.6 124.2 146.3
BSP Width (㎛) 280 278 291 342
연필경도 F F F B
상기 표 2의 결과로부터, 실시예 5~6은 비교예 4에 비해 투명도, 충격강도, 내열도 및 내스크래치성이 모두 우수하며, 비교예 2에 비해 투명도 및 내스크래치성이 우수한 것을 알 수 있다.
실시예 7 및 비교예 6~7
(D) 인계 난연제를 더 포함한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 결과는 하기 표 3에 나타내었다.
표 3
구분 실시예 7 비교예
6 7
(A) PC 70 70 100
(B) 바이페닐기 함유 아크릴계 공중합체 (B1) - - -
(B2) - - -
(B3) 30 - -
(B4) - - -
(D) 난연제 15 15 15
(E) 아크릴계 수지 (E1) - - -
(E2) - 30 -
(E3) - - -
(E4) - - -
Flow Mark
투명도 및 색상 투명 투명 투명
전투과광 (TT) 91.2 91.0 90.3
Izod 충격강도 (1/8") 2.7 2.2 4.2
내열도 (VST) 97.0 91.6 112.4
난연도 V2 V2 V2
BSP Width (㎛) 255 258 303
연필경도 H H HB
상기 표 3의 결과로부터, 실시예 7은 비교예 6에 비해 충격강도, 내열도 및 내스크래치성이 모두 우수하며, 비교예 7에 비해 투명도 및 내스크래치성이 우수한 것을 알 수 있다.
실시예 8~9 및 비교예 8~9
고무 변성 비닐계 그라프트 공중합체 수지(C)와 인계 난연제(D)를 더 포함한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 결과는 하기 표 4에 나타내었다.
표 4
구분 실시예 비교예
8 9 8 9
(A) PC 70 70 70 70
(B) 바이페닐기 함유 아크릴계 공중합체 (B1) - - - -
(B2) - - - -
(B3) 30 - - -
(B4) - 30 - -
(C) 고무 변성 비닐계 그라프트 공중합체 수지 10 10 10 10
(D) 난연제 15 15 15 15
(E) 아크릴계 수지 (E1) - - - 30
(E2) - - - -
(E3) - - 30 -
(E4) - - - -
Flow Mark
전투과광 (TT) 35.3 39.2 34.2 27.2
Izod 충격강도 (1/8") 23.4 20.1 11.2 25.3
내열도 (VST) 95.3 94.8 92.1 93.7
난연도 V2 V2 V2 V2
BSP Width (㎛) 280 283 273 285
연필경도 F F F F
상기 표 4의 결과로부터, 실시예 8~9는 비교예 8에 비해 전투과광, 충격강도, 내열도가 우수하며, 비교예 9에 비해 외관, 전투과광 및 내스크래치성이 우수한 것을 알 수 있다.
실시예 10~15 및 비교예 10~16
상기 각 구성성분을 하기 표 5 및 6에 기재된 바와 같은 함량으로 첨가한 후 hindered phenol계 열안정제 0.1 중량부를 첨가하여, 용융, 혼련 압출하여 펠렛을 제조하였다. 이때, 압출은 L/D=29, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 6시간 건조 후, 6 Oz 사출기에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 상기의 방법으로 헤이즈, 충격 강도, 내열도 및 내스크래치성 및 연필경도를 측정하였다. 그 결과를 하기 표 5 및 6에 나타내었다.
표 5
구분 실시예 비교예
10 11 12 13 10 11 12 13
(A) PC 30 30 30 30 30 30 - 70
(B) 바이페닐기 함유 (메타)아크릴계 공중합체 (B5) 70 - - - - - - -
(B2) - 70 - - - - - -
(B6) - - 70 - - - - 30
(B7) - - - 70 - - - -
(E) 아크릴계 수지 (E1) - - - - 70 - 100 -
(E2) - - - - - - - -
(E4) - - - - - 70 - -
Flow Mark
투명도 투명 투명 투명 투명 불투명 반투명 투명 투명
전투과광 (TT) 90.5 89.3 90.2 88.7 5.8 72.1 91.3 88.2
Izod 충격강도 (1/8") 2.5 2.6 2.9 3.0 3.2 1.5 1.2 3.5
BSP Width (㎛) 203 209 198 206 225 218 176 257
내열도 (VST) 112.5 112.7 114.2 111.1 110.3 109.0 105.2 125.7
연필경도 2H 2H 2H 2H 2H 2H 3H H
상기 표 5의 결과로부터, 통상의 폴리메틸메타아크릴레이트와 폴리카보네이트를 혼합 시(비교예 10), 두 수지간의 상용성 저하로 인하여 flow mark 발생 및 불투명한 유백색 외관을 보임을 알 수 있으며, 이는 전투과광의 감소로 확인할 수 있다. 굴절률이 1.495 내지 1.590 사이의 값을 가지며 중량평균분자량이 25,000 내지 95,000인 고굴절률 아크릴 공중합체를 사용한 비교예 11의 경우, PMMA를 적용한 비교예 10에 비해 투명성과 외관이 다소 개선되었지만 충격강도와 내열성이 저하되었으며, 투명성, 내스크래치성이 충분하지 않았다. 폴리카보네이트를 블렌드하지 않고 폴리메틸메타크릴레이트 단독 적용한 비교예 12는 충격강도 및 내열성이 현저히 저하된 것을 확인할 수 있다. 또한, 바이페닐기 함유 (메타)아크릴계 공중합체와 폴리카보네이트 수지의 비율이 본 발명의 범위를 벗어난 비교예 13의 경우 내스크래치성이 현저히 떨어진 것을 알 수 있다.
표 6
구분 실시예 비교예
14 15 14 15 16
(A) PC 30 30 30 30 -
(B) 바이페닐기 함유 (메타)아크릴계 공중합체 (B5) - - - - -
(B2) - - - - -
(B6) 70 - - - -
(B7) - 70 - - -
(C) 고무 변성 비닐계 그라프트 공중합체 15 15 15 15 15
(E) 아크릴계 수지 (E1) - - 70 - 100
(E2) - - - 70 -
(E4) - - - - -
Flow Mark
투명도 및 색상 불투명 불투명 불투명 불투명 불투명
전투과광 (TT) 49.9 50.2 9.6 48.4 46.6
Izod 충격강도 (1/8") 12.0 10.9 17.6 5.9 5.5
BSP Width (㎛) 253 263 257 250 242
내열도 (VST) 109.8 111.8 105.7 106.0 104.7
연필경도 H H H H H
상기 표 6의 결과로부터, 통상의 PMMA 수지를 적용한 비교예 14의 경우, flow mark 발생 및 전투과광의 감소를 확인할 수 있다. 중량평균분자량이 25,000 내지 95,000인 고굴절률 아크릴 공중합체를 사용한 비교예 15의 경우, PMMA를 적용한 비교예 14에 비해 투명성과 외관이 다소 개선되었지만 충격강도와 내열성이 저하되었으며, 투명성, 내스크래치성이 충분하지 않았다. 폴리카보네이트를 블렌드하지 않은 비교예 16은 충격강도 및 내열성이 저하된 것을 확인할 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (18)

  1. (A) 폴리카보네이트 수지; 및
    (B) 바이페닐기 함유 (메타)아크릴계 공중합체;를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서, 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체의 굴절률은 약 1.495 내지 약 1.640인 열가소성 수지 조성물.
  3. 제1항에 있어서, 상기 열가소성 수지 조성물은 상기 (A) 폴리카보네이트 수지 약 50 내지 약 99 중량%, 및 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체 약 1 내지 약 50 중량%를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제1항에 있어서, 상기 열가소성 수지 조성물은 상기 (A) 폴리카보네이트 수지 약 1 내지 약 49 중량%, 및 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체 약 51 내지 약 99 중량%를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항에 있어서, 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체는 (b1) 굴절률이 약 1.580 내지 약 1.700인 바이페닐기 함유 (메타)아크릴레이트 약 1 내지 약 50 중량%, (b2) 단관능성 불포화 단량체 약 0 내지 약 99 중량%, 및 (b3) 굴절률이 약 1.490 내지 약 1.579인 지환족 또는 방향족 (메타)아크릴레이트 약 0 내지 약 50 중량%를 포함하는 단량체로부터 유도된 단위를 함유하는 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제5항에 있어서, 상기 (b1) 바이페닐기 함유 (메타)아크릴레이트는 하기 화학식 1로 표시되는 것을 특징으로 하는 열가소성 수지 조성물:
    [화학식 1]
    Figure PCTKR2012010470-appb-I000009
    (상기 화학식 1에서, R1은 수소 또는 메틸기이고, m은 0 내지 10의 정수이며, X는 치환 또는 비치환된 바이페닐기 및 치환 또는 비치환된 터페닐기로 이루어진 군으로부터 선택됨).
  7. 제5항에 있어서, 상기 (b2) 단관능성 불포화 단량체는 탄소수 1 내지 8의 알킬 (메타)아크릴레이트; (메타)아크릴산을 포함하는 불포화 카르복실산; 무수말레산을 포함하는 산 무수물; 하이드록시기를 함유하는 (메타)아크릴레이트; (메타)아크릴아미드; 불포화 니트릴; 알릴 글리시딜 에테르; 글리시딜 메타아크릴레이트; 및 방향족 비닐계 단량체 중 1종 이상 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제5항에 있어서, 상기 (b3) 굴절률이 약 1.490 내지 약 1.579인 지환족 또는 방향족 (메타)아크릴레이트는 하기 화학식 2로 표시되는 화합물, 하기 화학식 3으로 표시되는 화합물, 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 열가소성 수지 조성물:
    [화학식 2]
    Figure PCTKR2012010470-appb-I000010
    (상기 화학식 2에서 R1은 수소 또는 메틸기이고, m은 0 내지 10의 정수이며, Y는 치환 또는 비치환된 탄소수 6 내지 20의 사이클로알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기임);
    [화학식 3]
    Figure PCTKR2012010470-appb-I000011
    (상기 화학식 3에서 R1은 수소 또는 메틸기이고, m은 0 내지 10의 정수이며, Z는 산소(O) 또는 황(S)이고, Ar은 치환 또는 비치환된 탄소수 6 내지 20의 사이클로알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기임).
  9. 제1항에 있어서, 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체는 중량평균분자량이 약 3,000 내지 약 300,000 g/mol인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항에 있어서, 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체는 비가교구조인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제1항에 있어서, 상기 (B) 바이페닐기 함유 (메타)아크릴계 공중합체는 유리전이온도가 약 90 내지 약 150℃이고, 상기 유리전이온도 이상의 온도에서 압출 또는 사출이 가능한 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제1항에 있어서, 상기 열가소성 수지 조성물은 (C) 고무 변성 비닐계 그라프트 공중합체 수지를 더욱 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  13. 제12항에 있어서, 상기 (C) 고무 변성 비닐계 그라프트 공중합체 수지는 고무 코어에 불포화 단량체가 그라프트되어 쉘이 형성된 구조를 가지며, 상기 불포화 단량체는 탄소수 1 내지 12의 알킬(메타)아크릴레이트, 산 무수물, 및 탄소수 1 내지 12의 알킬 또는 페닐 핵치환 말레이미드 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  14. 제1항에 있어서, 상기 열가소성 수지 조성물은 난연제, 계면활성제, 핵제, 커플링제, 충전제, 가소제, 충격보강제, 활제, 항균제, 이형제, 열안정제, 산화방지제, 광안정제, 상용화제, 무기물 첨가제, 정전기방지제, 안료 및 염료 중 1종 이상을 더욱 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성된 성형품.
  16. 제3항에 따른 열가소성 수지 조성물로부터 형성되며, 볼타입 스크래치 프로파일 테스트(Balltype Scratch Profile Test)에 의한 너비(width)가 약 180 내지 약 350 ㎛이고, 연필경도가 2B 내지 3H의 범위인 것을 특징으로 하는 성형품.
  17. 제4항에 따른 열가소성 수지 조성물로부터 형성되며, 전투과광이 약 85% 이상이고, 볼타입 스크래치 프로파일 테스트(Ball-type Scratch Profile Test)에 의한 너비(width)가 약 210 ㎛ 이하이며, ASTM D1525에 의한 내열도(하중 5Kg, 50℃/hr 기준)가 약 110 ℃ 이상인 것을 특징으로 하는 성형품.
  18. 제12항에 따른 열가소성 수지 조성물로부터 형성되며, 전투과광이 약 40% 이상이고, 볼타입 스크래치 프로파일 테스트(Ball-type Scratch Profile Test)에 의한 너비(width)가 약 280 ㎛ 이하이고, ASTM D1525에 의한 내열도(하중 5Kg, 50℃/hr 기준)가 약 105℃ 이상이며, ASTM D256에 의한 1/8" 아이조드 노치 충격강도가 약 8 kg·cm/cm 이상인 것을 특징으로 하는 성형품.
PCT/KR2012/010470 2011-12-19 2012-12-05 열가소성 수지 조성물 및 그 성형품 WO2013094898A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280062877.2A CN103998522B (zh) 2011-12-19 2012-12-05 热塑性树脂组合物及其模制品
EP12860942.7A EP2796506B1 (en) 2011-12-19 2012-12-05 Thermoplastic resin composition and molded products thereof
US14/365,091 US9631087B2 (en) 2011-12-19 2012-12-05 Thermoplastic resin composition and molded products thereof
JP2014547090A JP6145110B2 (ja) 2011-12-19 2012-12-05 熱可塑性樹脂組成物およびその成形品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0137735 2011-12-19
KR1020110137735A KR101447273B1 (ko) 2011-12-19 2011-12-19 내스크래치성 폴리카보네이트계 수지 조성물 및 그 성형품
KR10-2011-0141788 2011-12-23
KR1020110141788A KR20130073772A (ko) 2011-12-23 2011-12-23 아크릴계 수지 조성물 및 그 성형품

Publications (1)

Publication Number Publication Date
WO2013094898A1 true WO2013094898A1 (ko) 2013-06-27

Family

ID=48668738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010470 WO2013094898A1 (ko) 2011-12-19 2012-12-05 열가소성 수지 조성물 및 그 성형품

Country Status (5)

Country Link
US (1) US9631087B2 (ko)
EP (1) EP2796506B1 (ko)
JP (1) JP6145110B2 (ko)
CN (1) CN103998522B (ko)
WO (1) WO2013094898A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160168376A1 (en) * 2013-08-01 2016-06-16 Samsung Sdi Co., Ltd. Thermoplastic Resin Composition and Molded Article Using Same
KR20160075526A (ko) 2013-10-07 2016-06-29 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 (메트)아크릴계 공중합체, 수지조성물 및 그 성형체
CN105829105A (zh) * 2013-12-18 2016-08-03 三菱瓦斯化学株式会社 合成树脂叠层体
JP5975194B1 (ja) * 2015-02-05 2016-08-23 三菱瓦斯化学株式会社 ポリカーボネート樹脂組成物及びその成形体
KR20170100051A (ko) 2015-03-30 2017-09-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 수지 조성물 및 이것을 이용한 성형체
WO2019078163A1 (ja) 2017-10-17 2019-04-25 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形品
WO2019078162A1 (ja) 2017-10-17 2019-04-25 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形品
KR20190055803A (ko) 2016-09-26 2019-05-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 (메트)아크릴계 공중합체, 수지 조성물, 그의 성형체 및 성형체의 제조방법
WO2022071102A1 (ja) 2020-09-30 2022-04-07 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、成形品、および、ハードコート層付成形品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2909267B1 (en) * 2012-10-16 2023-07-19 Trinseo Europe GmbH Impact resistant transparent thermoplastic compositions
KR101654721B1 (ko) * 2013-05-06 2016-09-13 롯데첨단소재(주) 투명 폴리카보네이트 조성물 및 이를 포함한 성형품
WO2018025537A1 (ja) * 2016-08-03 2018-02-08 三菱瓦斯化学株式会社 (メタ)アクリル系組成物、それを含む塗料および硬化体
CN109575539B (zh) * 2018-10-31 2021-01-05 诺思贝瑞新材料科技(苏州)有限公司 一种用于3d打印的高韧亚光改性聚乳酸材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313089A (ja) * 1993-04-30 1994-11-08 Kuraray Co Ltd 重合体組成物
KR100504967B1 (ko) * 2004-03-15 2005-07-29 제일모직주식회사 내충격성과 유동성이 우수한 열가소성 수지 조성물
KR100665806B1 (ko) * 2005-06-30 2007-01-09 제일모직주식회사 광반사성이 우수한 폴리카보네이트 수지 조성물
WO2009113573A1 (ja) * 2008-03-11 2009-09-17 三菱レイヨン株式会社 芳香族ポリカーボネート樹脂用流動性向上剤及びその製造方法、芳香族ポリカーボネート樹脂組成物、並びに成形体

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3912974A1 (de) 1989-04-20 1990-10-25 Basf Ag Thermoplastische formmassen auf basis von vinylchlorid
JPH03124764A (ja) * 1989-10-09 1991-05-28 Mitsubishi Gas Chem Co Inc 熱可塑性樹脂組成物
JPH0848725A (ja) 1994-08-04 1996-02-20 Nippon Steel Chem Co Ltd 耐熱性に優れた光学材料用高屈折率樹脂
US6391418B1 (en) 1998-12-24 2002-05-21 Mitsubishi Engineering-Plastics Corp. Substrate for information recording media
US7354980B1 (en) 2004-03-12 2008-04-08 Key Medical Technologies, Inc. High refractive index polymers for ophthalmic applications
JP4787505B2 (ja) 2005-01-18 2011-10-05 三菱レイヨン株式会社 芳香族ポリカーボネート系樹脂組成物およびその成形品
JP2006313089A (ja) 2005-05-06 2006-11-16 Nec Electronics Corp 半導体装置のタイミング測定法
KR100868298B1 (ko) 2006-12-26 2008-11-11 제일모직주식회사 내변색성 및 투과율이 우수한 메타크릴계 수지 조성물 및그 제조 방법
KR20090039612A (ko) * 2007-10-18 2009-04-22 제일모직주식회사 메타크릴계 공중합체, 그 제조방법 및 이를 이용한 메타크릴계 수지 조성물
KR100885819B1 (ko) 2007-12-18 2009-02-26 제일모직주식회사 굴절률이 우수한 분지형 아크릴계 공중합체 및 그 제조방법
KR101004040B1 (ko) 2007-12-18 2010-12-31 제일모직주식회사 상용성이 향상된 난연 내스크래치 열가소성 수지 조성물
KR100886348B1 (ko) * 2008-04-14 2009-03-03 제일모직주식회사 상용성이 개선된 난연 내스크래치 열가소성 수지 조성물
KR101225949B1 (ko) 2008-11-06 2013-01-24 제일모직주식회사 열가소성 수지 조성물
KR101188349B1 (ko) * 2008-12-17 2012-10-05 제일모직주식회사 투명성 및 내스크래치성이 향상된 폴리카보네이트계 수지 조성물
KR101170383B1 (ko) 2008-12-26 2012-08-01 제일모직주식회사 내스크래치성 및 유동성이 우수한 폴리카보네이트계 수지 조성물
US8541506B2 (en) 2009-12-30 2013-09-24 Cheil Industries Inc. Polycarbonate resin composition with excellent scratch resistance and impact strength
JP5620858B2 (ja) 2010-03-18 2014-11-05 新日鉄住金化学株式会社 エポキシアクリレート、アクリル系組成物、硬化物及びその製造法
KR101469261B1 (ko) 2011-12-20 2014-12-08 제일모직주식회사 열가소성 (메타)아크릴레이트 공중합체, 이를 포함하는 수지 조성물 및 그 성형품

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313089A (ja) * 1993-04-30 1994-11-08 Kuraray Co Ltd 重合体組成物
KR100504967B1 (ko) * 2004-03-15 2005-07-29 제일모직주식회사 내충격성과 유동성이 우수한 열가소성 수지 조성물
KR100665806B1 (ko) * 2005-06-30 2007-01-09 제일모직주식회사 광반사성이 우수한 폴리카보네이트 수지 조성물
WO2009113573A1 (ja) * 2008-03-11 2009-09-17 三菱レイヨン株式会社 芳香族ポリカーボネート樹脂用流動性向上剤及びその製造方法、芳香族ポリカーボネート樹脂組成物、並びに成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2796506A1 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605147B2 (en) * 2013-08-01 2017-03-28 Samsung Sdi Co., Ltd. Thermoplastic resin composition and molded article using same
US20160168376A1 (en) * 2013-08-01 2016-06-16 Samsung Sdi Co., Ltd. Thermoplastic Resin Composition and Molded Article Using Same
KR20160075526A (ko) 2013-10-07 2016-06-29 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 (메트)아크릴계 공중합체, 수지조성물 및 그 성형체
US10731033B2 (en) 2013-10-07 2020-08-04 Mitsubishi Gas Chemical Company, Inc. (Meth)acrylic copolymer, resin composition, and molded product of said resin composition
US10081729B2 (en) 2013-10-07 2018-09-25 Mitsubishi Gas Chemical Company, Inc. (Meth)acrylic copolymer, resin composition, and molded product of said resin composition
US9802395B2 (en) * 2013-12-18 2017-10-31 Mitsubisshi Gas Chemical Company, Inc. Synthetic resin laminate
US20160311204A1 (en) * 2013-12-18 2016-10-27 Mitsubishi Gas Chemical Company, Inc. Synthetic resin laminate
CN105829105A (zh) * 2013-12-18 2016-08-03 三菱瓦斯化学株式会社 合成树脂叠层体
KR20160138314A (ko) 2015-02-05 2016-12-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리카보네이트 수지 조성물 및 그 성형체
JP5975194B1 (ja) * 2015-02-05 2016-08-23 三菱瓦斯化学株式会社 ポリカーボネート樹脂組成物及びその成形体
US10138372B2 (en) 2015-02-05 2018-11-27 Mitsubishi Gas Chemical Company, Inc. Polycarbonate resin composition and article molded therefrom
KR20170100051A (ko) 2015-03-30 2017-09-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 수지 조성물 및 이것을 이용한 성형체
US10150865B2 (en) 2015-03-30 2018-12-11 Mitsubishi Gas Chemical Company, Inc. Resin composition and molded object obtained therefrom
KR20190055803A (ko) 2016-09-26 2019-05-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 (메트)아크릴계 공중합체, 수지 조성물, 그의 성형체 및 성형체의 제조방법
US11078355B2 (en) 2016-09-26 2021-08-03 Mitsubishi Gas Chemical Company, Inc. (Meth)acrylic copolymer, resin composition, molded body of same, and method for producing molded body
WO2019078163A1 (ja) 2017-10-17 2019-04-25 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形品
WO2019078162A1 (ja) 2017-10-17 2019-04-25 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形品
WO2022071102A1 (ja) 2020-09-30 2022-04-07 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、成形品、および、ハードコート層付成形品

Also Published As

Publication number Publication date
CN103998522B (zh) 2016-01-20
EP2796506A4 (en) 2015-08-26
EP2796506B1 (en) 2020-05-13
US9631087B2 (en) 2017-04-25
JP6145110B2 (ja) 2017-06-07
JP2015504936A (ja) 2015-02-16
CN103998522A (zh) 2014-08-20
EP2796506A1 (en) 2014-10-29
US20140371375A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
WO2013094898A1 (ko) 열가소성 수지 조성물 및 그 성형품
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2012015128A1 (ko) 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
WO2012060515A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2012015109A1 (ko) 내스크래치성과 내충격성이 우수한 난연 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
WO2012081761A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2014007442A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
WO2014119827A9 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 성형품
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016076503A1 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 이를 이용한 제품
WO2013062170A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2013094889A1 (ko) 난연 아크릴계 공중합체, 이를 포함하는 수지 조성물 및 그 성형품
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2013100303A1 (ko) 고광택 폴리카보네이트계 수지 조성물 및 그 성형품
WO2013022205A2 (ko) 알킬 (메트)아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
WO2016060333A1 (ko) 투명성 및 기계적 강도가 우수한 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2014181921A1 (ko) 투명 폴리카보네이트 조성물 및 이를 포함한 성형품
WO2020130400A1 (ko) 열가소성 수지 조성물
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2015016464A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018117438A1 (ko) 수지 조성물 및 이로부터 제조된 성형품
WO2014088153A1 (ko) (메타)아크릴계 공중합체 및 이를 포함하는 열가소성 수지
WO2019194620A1 (ko) 열가소성 수지 조성물
KR101134015B1 (ko) 투명성, 난연성 및 내스크래치성이 우수한 폴리카보네이트 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14365091

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014547090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE