WO2022085998A1 - 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 - Google Patents

열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 Download PDF

Info

Publication number
WO2022085998A1
WO2022085998A1 PCT/KR2021/013764 KR2021013764W WO2022085998A1 WO 2022085998 A1 WO2022085998 A1 WO 2022085998A1 KR 2021013764 W KR2021013764 W KR 2021013764W WO 2022085998 A1 WO2022085998 A1 WO 2022085998A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
thermoplastic resin
compound
resin composition
copolymer
Prior art date
Application number
PCT/KR2021/013764
Other languages
English (en)
French (fr)
Inventor
김영민
김서화
최은정
강병일
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210130783A external-priority patent/KR20220051802A/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to CN202180006048.1A priority Critical patent/CN114667314B/zh
Priority to EP21878765.3A priority patent/EP4043524A4/en
Priority to JP2022530983A priority patent/JP7477607B2/ja
Priority to US17/776,397 priority patent/US20220403148A1/en
Publication of WO2022085998A1 publication Critical patent/WO2022085998A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic

Definitions

  • the present invention relates to a thermoplastic resin composition, a method for manufacturing the same, and a molded article including the same, and more particularly, to an ABS-based thermoplastic resin composition that contains an excessive amount of regenerated resin while maintaining existing mechanical properties and chemical resistance,
  • the present invention relates to a thermoplastic resin composition having significantly improved physical property retention by preventing deterioration of physical properties.
  • the vinyl cyan compound-conjugated diene compound-aromatic vinyl compound graft copolymer represented by acrylonitrile-butadiene-styrene resin (hereinafter referred to as 'ABS-based resin') has excellent processability, mechanical properties, and appearance characteristics, resulting in electrical/electronic It is widely used in product parts, automobiles, small toys, furniture, and construction materials.
  • recycled resin since recycled resin is already processed resin, it contains additives such as colorants, lubricants, and mold release agents, and its properties have already changed through a high-temperature processing process. There is a problem in that the chemical properties and thermal stability are poor, and the appearance quality due to foreign substances is deteriorated.
  • Patent Document 1 Korean Patent Laid-Open No. 2016-0144185
  • the present invention improves the problem of deterioration of physical properties due to repeated molding while maintaining the mechanical properties, chemical resistance and appearance quality inherent to the conventional ABS resin even though it contains an excessive amount of regenerated resin
  • An object of the present invention is to provide a thermoplastic resin composition.
  • the present invention provides 100 parts by weight of a base resin comprising (A) 20 to 90% by weight of a non-renewable thermoplastic resin and (B) 10 to 80% by weight of a recycled thermoplastic resin; (C) 1 to 10 parts by weight of an ethylene compound-vinyl acetate compound copolymer; And (D) 0.01 to 10 parts by weight of an inorganic pigment; including, wherein the (D) inorganic pigment has a refractive index of 1.65 or more and an average particle diameter of 10 to 500 nm.
  • the present invention also provides 100 parts by weight of a base resin comprising (A) 20 to 90% by weight of a non-renewable thermoplastic resin and (B) 10 to 80% by weight of a recycled thermoplastic resin; (C) 1 to 10 parts by weight of an ethylene compound-vinyl acetate compound copolymer; and (D) 0.01 to 10 parts by weight of an inorganic pigment having a refractive index of 1.65 or more, wherein the (A) non-renewable thermoplastic copolymer is (A-1) non-renewable vinyl cyan compound-conjugated diene compound-aromatic vinyl compound graft 20 to 70% by weight of the copolymer and (A-2) 30 to 80% by weight of the non-regenerated aromatic vinyl compound-vinyl cyan compound copolymer, wherein the (B) recycled thermoplastic resin is recycled vinyl cyanide compound-conjugated diene compound- It provides a thermoplastic resin composition comprising at least one selected from the group consisting of an aromatic vinyl compound cop
  • the present invention also provides 100 parts by weight of a base resin comprising (A) 20 to 90% by weight of a non-renewable thermoplastic resin and (B) 10 to 80% by weight of a recycled thermoplastic resin; (C) 1 to 10 parts by weight of an ethylene compound-vinyl acetate compound copolymer; and (D) 0.01 to 10 parts by weight of an inorganic pigment, but provides a thermoplastic resin composition, characterized in that the melt index retention rate calculated by the following Equation 1 is 80% or more.
  • MI n is a melt index value measured under conditions of 220° C. and 10 kg according to ASTM D1238 after extruding the thermoplastic resin composition n times at 200 to 250° C. and 250 to 400 rpm.
  • MI n + 5 means a melt index value measured after repeatedly performing extrusion processing n + 5 times under the same conditions as above, where n is an integer from 1 to 10.
  • the present invention also provides 100 parts by weight of a base resin comprising (A) 20 to 90% by weight of a non-renewable thermoplastic resin and (B) 10 to 80% by weight of a recycled thermoplastic resin; (C) 1 to 10 parts by weight of an ethylene compound-vinyl acetate compound copolymer; And (D) 0.01 to 10 parts by weight of an inorganic pigment; but provides a thermoplastic resin composition, characterized in that the impact strength retention calculated by the following Equation 2 is 80% or more.
  • ImSt n is Izod measured under conditions of 1/8" of specimen thickness according to ASTM D256 after extruding the thermoplastic resin composition n times at 200 to 250° C. and 250 to 400 rpm. It is an impact strength value, and ImSt n+5 means the Izod impact strength value measured after repeating n+5 times of extrusion under the same conditions as above, where n is an integer from 1 to 10.
  • the present invention provides (A) 20 to 90 wt% of a non-renewable thermoplastic resin and (B) 100 parts by weight of a base resin comprising 10 to 80 wt% of a recycled thermoplastic resin, (C) ethylene compound-vinyl acetate compound copolymer 1 to 10 parts by weight and (D) including 0.01 to 10 parts by weight of an inorganic pigment, and kneading and extruding at 200 to 280°C; provides a method for producing a thermoplastic resin composition comprising.
  • the (D) inorganic pigment preferably has a refractive index of 1.65 or more, and an average particle diameter of 10 to 500 nm.
  • thermoplastic resin composition which has excellent mechanical properties, chemical resistance and appearance quality even though it contains an excessive amount of regenerated resin, and can exhibit excellent physical properties even after multiple processing by preventing deterioration of physical properties due to repeated molding processing process, There is an effect of providing a method for manufacturing the same and a molded article manufactured therefrom.
  • thermoplastic resin composition of the present invention will be described in detail.
  • the present inventors confirmed that when a specific compound is added in a predetermined amount together when mixing the regenerated resin in the ABS-based resin composition, mechanical properties and chemical resistance are improved, and the problem of deterioration of mechanical properties and appearance quality due to repeated processing is greatly improved. And, based on this, further research was completed to complete the present invention.
  • thermoplastic resin composition of the present invention comprises (A) 20 to 90% by weight of a non-renewable thermoplastic resin and (B) 100 parts by weight of a base resin comprising 10 to 80% by weight of a recycled thermoplastic resin; (C) 1 to 10 parts by weight of an ethylene compound-vinyl acetate compound copolymer; and (D) 0.01 to 10 parts by weight of an inorganic pigment; but, wherein (D) the inorganic pigment has a refractive index of 1.65 or more and an average particle diameter of 10 to 500 nm, in which case the regenerated resin is included in excess It has excellent mechanical strength such as impact strength and tensile strength, molding processability and chemical resistance, and excellent retention of physical properties for repeated molding processing.
  • the present invention also provides a thermoplastic resin composition
  • a thermoplastic resin composition comprising: (A) 20 to 90% by weight of a non-renewable thermoplastic resin and (B) 100 parts by weight of a base resin comprising 10 to 80% by weight of a recycled thermoplastic resin; (C) 1 to 10 parts by weight of an ethylene compound-vinyl acetate compound copolymer; and (D) 0.01 to 10 parts by weight of an inorganic pigment having a refractive index of 1.65 or more, wherein the (A) non-renewable thermoplastic copolymer is (A-1) non-renewable vinyl cyan compound-conjugated diene compound-aromatic vinyl compound graft 20 to 70% by weight of the copolymer and (A-2) 30 to 80% by weight of the non-regenerated aromatic vinyl compound-vinyl cyan compound copolymer, wherein the (B) recycled thermoplastic resin is recycled vinyl cyanide compound-conjugated diene compound- It is characterized in that it contains
  • the thermoplastic resin composition of the present invention also comprises: (A) 20 to 90% by weight of a non-renewable thermoplastic resin and (B) 100 parts by weight of a base resin comprising 10 to 80% by weight of a recycled thermoplastic resin; (C) 1 to 10 parts by weight of an ethylene compound-vinyl acetate compound copolymer; and (D) 0.01 to 10 parts by weight of an inorganic pigment; but it is characterized in that the melt index retention rate calculated by the following Equation 1 is 80% or more, and in this case, the impact strength and tensile strength, etc., while including an excessive amount of the regenerated resin There is an advantage in that the mechanical strength, molding processability, and chemical resistance are excellent, and the property retention rate for repeated molding processing is excellent.
  • MI n is 220 ° C. under 10 kg conditions according to ASTM D1238 after performing extrusion processing n times for the thermoplastic resin composition at an extrusion temperature of 200 to 250 ° C and a screw rotation speed of 250 to 400 rpm. It is a measured melt index value, and MI n+5 means a melt index value measured after repeating n+5 times of extrusion under the same conditions as above, where n is an integer of 1 to 10.
  • the thermoplastic resin composition of the present invention also comprises: (A) 20 to 90% by weight of a non-renewable thermoplastic resin and (B) 100 parts by weight of a base resin comprising 10 to 80% by weight of a recycled thermoplastic resin; (C) 1 to 10 parts by weight of an ethylene compound-vinyl acetate compound copolymer; and (D) 0.01 to 10 parts by weight of an inorganic pigment; but it is characterized in that the impact strength retention calculated by the following Equation 2 is 80% or more, and in this case, the impact strength and tensile strength, etc., while including an excessive amount of the regenerated resin There is an advantage in that the mechanical strength, molding processability, and chemical resistance are excellent, and the property retention rate for repeated molding processing is excellent.
  • ImSt n is 1/8" of the specimen thickness according to ASTM D256 after extruding the thermoplastic resin composition n times under the conditions of an extrusion temperature of 200 to 250° C. and a screw rotation speed of 250 to 400 rpm.
  • Izod impact strength value measured under the conditions, ImSt n+5 means the Izod impact strength value measured after repeating n+5 times of extrusion under the same conditions as above, where n is an integer from 1 to 10 .
  • n value of Equation 1 and the n value of Equation 2 may be independently the same as or different from each other.
  • composition ratio of the (co)polymer may mean the content of the units constituting the (co)polymer, or the content of the units input during polymerization of the (co)polymer.
  • the non-renewable thermoplastic resin as opposed to the recycled thermoplastic resin defined above, may be directly prepared by polymerizing monomers constituting the thermoplastic resin, or may be an available product corresponding thereto.
  • thermoplastic resin composition of the present disclosure will be described in detail as follows.
  • thermoplastic (A) non-recycled thermoplastic
  • the (A) non-renewable thermoplastic resin is included in an amount of 20 to 90% by weight based on the total weight of the base resin, and in this case, mechanical properties, molding processability, chemical resistance and appearance quality are excellent.
  • the content of the (A) non-renewable thermoplastic resin included in the total weight of the base resin is preferably 20 to 80% by weight, more preferably 25 to 75% by weight, even more preferably 25 to 70% by weight. and within this range, mechanical properties, molding processability, appearance quality, and physical property balance may be more excellent.
  • the (A) non-renewable thermoplastic resin is, for example, (A-1) non-renewable vinyl cyan compound-conjugated diene compound-aromatic vinyl compound graft copolymer (hereinafter referred to as '(A-1) graft copolymer') 20 to 70% by weight and (A-2) 30 to 80% by weight of the non-renewable aromatic vinyl compound-vinyl cyan compound copolymer (hereinafter referred to as '(A-2) copolymer'), in this range
  • '(A-1) graft copolymer' 20 to 70% by weight
  • the (A) non-renewable thermoplastic resin may preferably include 20 to 60% by weight of the (A-1) graft copolymer and 40 to 80% by weight of the (A-2) copolymer based on the total weight thereof, More preferably, (A-1) 20 to 50% by weight of the graft copolymer and (A-2) may include 50 to 80% by weight of the copolymer.
  • the (A-1) graft copolymer comprises, for example, a conjugated diene compound.
  • Conjugated diene rubber 50 to 80% by weight, 5 to 20% by weight of a vinyl cyanide compound, and 10 to 40% by weight of an aromatic vinyl compound, and within this range, mechanical properties, molding processability, appearance quality and physical property balance are There are excellent advantages.
  • the (A-1) graft copolymer may include 50 to 70% by weight of a conjugated diene rubber, 5 to 15% by weight of a vinyl cyanide compound, and 20 to 40% by weight of an aromatic vinyl compound as a preferred example, and more preferably Preferably, it may contain 55 to 65% by weight of a conjugated diene rubber, 10 to 15% by weight of a vinyl cyanide compound, and 20 to 30% by weight of an aromatic vinyl compound, and within this range, the impact resistance and physical property balance are more excellent. there is.
  • the average particle diameter may be, for example, 2,000 to 5,000 ⁇ , preferably 2,000 to 4,000 ⁇ , more preferably 2,500 to 3,500 ⁇ , and within this range, the impact strength is more excellent without deterioration of other physical properties.
  • the average particle diameter of the conjugated diene rubber can be measured using a dynamic light scattering method unless otherwise specified, and in detail, a particle size distribution analyzer (product name: Nicomp 380, manufacturer: PSS) is used. Thus, it is measured as an intensity value in a Gaussian mode.
  • the sample is prepared by diluting 0.1 g of Latex (TSC 35 to 50 wt%) 1,000 to 5,000 times with deionized or distilled water, that is, diluting it appropriately so as not to significantly deviate from the Intensity Setpoint 300 kHz, and putting it in a glass tube.
  • the measurement method is auto-dilution and measured with a flow cell
  • the measurement mode is dynamic light scattering method/Intensity 300KHz/Intensity-weight Gaussian Analysis
  • the setting value is temperature 23°C, measurement wavelength 632.8 nm, It can be measured with a channel width of 10 ⁇ sec.
  • the (A-1) graft copolymer may have, for example, a graft rate of 20 to 70%, preferably 20 to 55%, more preferably 20 to 45%, and compatibility and molding processability within this range There is an excellent effect of ensuring proper balance with other mechanical properties.
  • the graft rate is determined by adding 30 g of acetone to 0.5 g of the graft (co)polymer dry powder, stirring at 210 rpm at room temperature for 12 hours (SKC-6075, Lab companion), and centrifuging it (Supra R30, Hanil Science) ), centrifuged at 0°C at 18,000 rpm for 3 hours to collect insoluble fractions that were not dissolved in acetone, and then dried at 85°C for 12 hours by forced circulation (OF-12GW, Lab companion) and weighed. Therefore, it can be obtained by calculating by Equation 1 below.
  • Graft rate (%) [weight of grafted monomer (g) / rubber weight (g)] * 100
  • the weight (g) of the grafted monomer is the weight obtained by dissolving the graft copolymer in acetone and centrifuging it to the weight of the insoluble matter (gel) obtained by subtracting the rubber weight (g), and the rubber weight ( g) is the weight of the theoretically added rubber component in the graft copolymer powder.
  • the drying may be continued until there is no further change in weight.
  • the vinyl cyanide compound-aromatic vinyl compound copolymer included in the (A-1) graft copolymer may have, for example, a weight average molecular weight of 50,000 to 200,000 g/mol, or 65,000 to 180,000 g/mol, within this range It may have excellent processability and excellent impact resistance due to proper fluidity in the present invention, but is not limited thereto.
  • the vinyl cyan compound-aromatic vinyl compound copolymer included in the (A-1) graft copolymer is a vinyl cyan compound-aromatic vinyl compound grafted onto the conjugated diene rubber of the (A-1) graft copolymer. means a copolymer.
  • the weight average molecular weight may be measured using GPC (Gel Permeation Chromatography, waters breeze), and specifically, GPC (Gel Permeation Chromatography, waters breeze) using THF (tetrahydrofuran) as the eluent. ) can be measured as a relative value with respect to a standard PS (standard polystyrene) sample.
  • GPC Gel Permeation Chromatography, waters breeze
  • THF tetrahydrofuran
  • solvent THF
  • column temperature 40°C
  • flow rate 0.3ml/min
  • sample concentration 20mg/ml
  • injection amount 5 ⁇ l
  • column model 1xPLgel 10 ⁇ m MiniMix-B (250x4.6mm) + 1xPLgel 10 ⁇ m MiniMix-B (250x4.6mm) + 1xPLgel 10 ⁇ m MiniMix-B Guard (50x4.6mm)
  • equipment name Agilent 1200 series system
  • Refractive index detector Agilent G1362 RID
  • RI temperature 35°C
  • data processing Agilent ChemStation S/W
  • test method Mn, Mw and PDI
  • the (A-1) graft copolymer may be prepared by a known polymerization method including, for example, emulsion polymerization, suspension polymerization, bulk polymerization, and the like, and preferably may be prepared by emulsion polymerization.
  • the (A-1) graft copolymer is, for example, 50 to 80 parts by weight of the conjugated diene rubber latex (solid content) based on 100 parts by weight of the conjugated diene rubber, the aromatic vinyl compound and the vinyl cyan compound included in the graft copolymer. standard), 0.1 to 5 parts by weight of an emulsifier, 0.1 to 3 parts by weight of a molecular weight regulator, and 0.05 to 1 parts by weight of an initiator
  • a monomer mixture comprising 5 to 20 parts by weight of a vinyl cyanide compound and 10 to 40 parts by weight of an aromatic vinyl compound It may be prepared including the step of continuously or batch input and polymerization.
  • the graft copolymer (A-1) contains 50 to 80 parts by weight of conjugated diene rubber latex (based on solid content) and 60 parts by weight of ion exchanged water based on 100 parts by weight of a total of 100 parts by weight of the conjugated diene rubber, the aromatic vinyl compound and the vinyl cyanide compound.
  • a mixed solution containing 2 parts by weight and 0.05 to 1.5 parts by weight of a molecular weight regulator is added at 65 to 75° C. for 2 to 4 hours, then 0.01 to 0.5 parts by weight of an initiator is added, and the temperature is raised to 75 to 80° C. over 30 to 90 minutes. It can be prepared by terminating the graft polymerization at a polymerization conversion rate of 93 to 99% by weight, and in this case, there is an effect excellent in impact resistance, mechanical strength and molding processability.
  • the polymerization conversion rate may be defined as the weight% of the monomers converted to the copolymer until the measurement time, based on 100% by weight of the total of the monomers input until the end of the polymerization, and the method for measuring the polymerization conversion rate is determined according to this definition.
  • the polymerization conversion measurement method to be measured is not particularly limited, and 1.5 g of the copolymer latex prepared as a specific example is dried in a hot air dryer at 150° C. for 15 minutes, then the weight is measured and the total solid content (Total Solid Content) ; TSC) and can be calculated by substituting it in Equation 5 below. Equation 5 below is based on the total weight of the added monomer being 100 parts by weight.
  • Polymerization conversion (%) [total solid content (TSC) ⁇ (total weight of the added monomers, ion-exchanged water, and auxiliary materials) / 100] - (weight of added additives other than monomers and ion-exchanged water)
  • the auxiliary material refers to an initiator, an emulsifier, and a molecular weight regulator, and includes an electrolyte when an electrolyte is used.
  • the conjugated diene compound is, for example, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene, isoprene, chloroprene and pyrerylene. It may be at least one selected from the group consisting of.
  • the vinyl cyan compound may be, for example, at least one selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, and derivatives thereof.
  • the aromatic vinyl compound is, for example, styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, m-methyl styrene, ethyl styrene, isobutyl styrene, t-butyl styrene, ⁇ -brobo styrene, ⁇ -bro It may be at least one member selected from the group consisting of parent styrene, m-bromo styrene, ⁇ -chloro styrene, ⁇ -chloro styrene, m-chloro styrene, vinyltoluene, vinylxylene, fluorostyrene, and vinylnaphthalene.
  • the conjugated diene rubber may be at least one selected from the group consisting of butadiene polymer, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, and ethylene-propylene copolymer, but is not limited thereto. do.
  • the derivative is a compound in which a hydrogen atom or an atomic group of the original compound is substituted with another atom or group, for example, refers to a compound substituted with a halogen or an alkyl group.
  • the emulsifier may be, for example, at least one selected from the group consisting of allyl aryl sulfonate, alkali methyl alkyl sulfonate, sulfonated alkyl ester, fatty acid soap, and rosin acid alkali salt, and in this case, excellent stability of polymerization reaction there is
  • the molecular weight modifier may be, for example, at least one selected from the group consisting of t-dodecyl mercaptan, n-dodecyl mercaptan, n-octyl methcaptan and carbon tetrachloride, preferably t-dodecyl mercaptan.
  • the initiator for example, a water-soluble persulfate polymerization initiator, a fat-soluble polymerization initiator, or an oxidation-reduction catalyst system may be used, and the water-soluble persulfate polymerization initiator is, for example, a group consisting of potassium persulfate, sodium persulfate and ammonium persulfate It may be at least one selected from It may be at least one selected from the group consisting of peroxides.
  • the latex obtained by the emulsion polymerization is, for example, sulfuric acid, MgSO 4 , CaCl 2 or Al 2 (SO 4 ) 3 After agglomeration with a coagulant such as aging, dehydration and drying, it can be obtained in a powder state.
  • a coagulant such as aging, dehydration and drying
  • the (A-1) graft copolymer may, for example, further include an oxidation-reduction catalyst, and the oxidation-reduction catalyst may include, for example, diumformaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, sulfuric acid. It may be at least one member selected from the group consisting of ferrous iron, dextrose, sodium pyrrolate and sodium sulfite, but is not limited thereto, and is not limited as long as it is a type commonly used in the manufacture of an ABS-based graft copolymer. You can choose to use it accordingly.
  • additives such as electrolytes not specifically mentioned in this description, may be appropriately selected according to need, and are not particularly limited in the range generally applied to the polymerization of the vinyl cyanide compound-conjugated diene compound-aromatic vinyl compound graft copolymer. does not
  • reaction conditions such as reaction time, reaction temperature, pressure, time of input of reactants, etc. in the method for preparing the graft copolymer other than the above-described description, are not particularly limited as long as they are within the range commonly used in the art to which the present invention belongs, and necessary It can be appropriately selected and implemented according to the
  • graft copolymer (A-1) commercially available products may be used as long as it follows the definition of the present invention.
  • the copolymer (A-2) may include, for example, 20 to 40% by weight of a vinyl cyanide compound and 60 to 80% by weight of an aromatic vinyl compound, and in this case, mechanical properties, molding processability and chemical resistance are better There is this.
  • the copolymer (A-2) is preferably 20 to 35 wt% of a vinyl cyan compound and 65 to 80 wt% of an aromatic vinyl compound, more preferably 23 to 33 wt% of a vinyl cyanide compound and 67 to 77 wt% of an aromatic vinyl compound % may be included, and within this range, the chemical resistance and physical property balance have a more excellent effect.
  • the copolymer (A-2) may have, for example, a weight average molecular weight of 70,000 to 200,000 g/mol, preferably 80,000 to 180,000 g/mol, more preferably 90,000 to 160,000 g/mol, within this range. It has excellent chemical resistance and excellent processability and physical property balance.
  • the aromatic vinyl compound included in the (A-2) copolymer is, for example, styrene, ethyl styrene, ⁇ -brobo styrene, ⁇ -bromo styrene, m-bromo styrene, ⁇ -chloro styrene, ⁇ -chloro styrene, It may be at least one selected from the group consisting of m-chlorostyrene, vinyltoluene, vinylxylene, fluorostyrene, and vinylnaphthalene, and preferably styrene.
  • the vinyl cyan compound may be, for example, at least one selected from the group consisting of acrylonitrile, methacrylonitrile, ethyl acrylonitrile and isopropyl acrylonitrile, preferably acrylonitrile.
  • the (A-2) copolymer is, for example, 0 to 30% by weight, preferably 1 to 20% by weight of at least one selected from the group consisting of unsaturated carboxylic acids, unsaturated carboxylic acid anhydrides and maleic monomers; More preferably, it may be further comprised in an amount of 5 to 10% by weight, and in the case of a copolymer polymerized by adding such a comonomer, heat resistance and processability are more excellent.
  • the unsaturated carboxylic acid may be, for example, at least one selected from the group consisting of maleic acid, acrylic acid and methacrylic acid, and the unsaturated carboxylic acid anhydride may be, for example, an anhydride of the unsaturated carboxylic acid, and the maleimide-based monomer is For example, it may be maleimide substituted with N by an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 10 carbon atoms, and specific examples thereof may be N-phenyl maleimide, maleimide, or a mixture thereof.
  • the (A-2) aromatic vinyl compound-vinyl cyan compound copolymer can be prepared by carrying out methods such as emulsion polymerization, suspension polymerization, bulk polymerization, and continuous bulk polymerization, in particular, emulsion polymerization and suspension polymerization. It is preferable to use those, and commercially available products may be used as long as the definition of the present invention is followed.
  • the (B) regenerated thermoplastic resin is included in an amount of 10 to 80 wt% based on the total weight of the base resin, and in this case, mechanical properties, molding processability, chemical resistance and appearance quality are excellent.
  • the content of the (B) recycled thermoplastic resin included in the total weight of the base resin may be 20 to 80% by weight, more preferably 25 to 75% by weight, even more preferably 30 to 75% by weight as a preferred example, , within this range, mechanical properties, molding processability, appearance quality, and physical property balance may be more excellent.
  • the (B) recycled thermoplastic resin is, for example, a recycled vinyl cyan compound-conjugated diene compound-aromatic vinyl compound copolymer (hereinafter referred to as 'regenerated ABS-based resin'), recycled polycarbonate resin (hereinafter, 'regenerated PC-based resin') ) and a recycled aromatic vinyl compound-vinyl cyan compound copolymer (hereinafter, referred to as 'regenerated SAN-based resin') may include at least one selected from the group consisting of, in this case, mechanical properties, molding processability, and chemical resistance and excellent appearance quality, but is not limited thereto.
  • a recycled vinyl cyan compound-conjugated diene compound-aromatic vinyl compound copolymer hereinafter referred to as 'regenerated ABS-based resin'
  • recycled polycarbonate resin hereinafter, 'regenerated PC-based resin'
  • 'regenerated SAN-based resin' may include at least one selected from the group consisting of, in this case, mechanical properties, molding process
  • the unit constituting the recycled ABS-based resin and the recycled SAN-based resin may be selected within the same range as mentioned in (A) the non-renewable thermoplastic copolymer as a preferred example.
  • the type of the regenerated PC-based resin is not particularly limited, but may be, for example, a resin polymerized including a bisphenol-based monomer and a carbonate precursor.
  • the bispinol-based monomer is, for example, bis(4-hydroxyphenyl)methane, bis(4-hydroxyphenyl)ether, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)sulfoxide, bis (4-hydroxyphenyl)sulfide, bis(4-hydroxyphenyl)ketone, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)propane (bisphenol A; BPA), 2,2-bis(4-hydroxyphenyl)butane, 1,1-bis(4-hydroxyphenyl)cyclohexane (bisphenol Z; BPZ), 2,2-bis(4-hydroxy-3 ,5-dibromophenyl)propane, 2,2-bis(4-hydroxy-3,5-dichlorophenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2 ,2-bis(4-hydroxy-3chloropheny
  • the carbonate precursor is, for example, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, diphenyl carbonate, ditoryl carbonate, bis (chlorophenyl) carbonate, m- cresyl carbonate, dinaphthyl carbonate, bis ( diphenyl) carbonate, carbonyl chloride (phosgene), triphosgene, diphosgene, carbonyl bromide, and bishaloformate may be at least one selected from the group consisting of.
  • linear polycarbonate resin may be a bisphenol-A-based polycarbonate resin, but is not limited thereto.
  • the (B) recycled thermoplastic resin further comprises at least one selected from the group consisting of, for example, a recycled polyethylene resin, a recycled polypropylene resin, a recycled polyester resin, a recycled polystyrene-based resin, a recycled polyamide resin, and a recycled polyvinyl chloride resin.
  • a recycled polyethylene resin a recycled polyethylene resin
  • a recycled polypropylene resin a recycled polyester resin
  • a recycled polystyrene-based resin a recycled polyamide resin
  • a recycled polyvinyl chloride resin a recycled polyvinyl chloride resin.
  • the (B) regenerated thermoplastic resin may have, for example, a weight average molecular weight of 10,000 to 1,000,000 g/mol, 15,000 to 900,000 g/mol, or 20,000 to 900,000 g/mol, and mechanical properties such as impact strength within this range Although this is excellent, the appearance quality may be excellent, but the present invention is not limited thereto.
  • the (B) regenerated thermoplastic resin may have, for example, a glass transition temperature of 60 to 180° C., preferably 63 to 170° C., and more preferably 65 to 160° C., within this range, mechanical properties and molding There is an effect superior to the workability.
  • the glass transition temperature (Tg) may be measured at a temperature increase rate of 10° C./min using TA Instruments Q100 Differential Scanning Calorimetry (DSC) according to ASTM D 3418.
  • the (B) recycled thermoplastic resin may be, for example, a commercially available product as long as it follows the definition of the present invention.
  • the (C) ethylene compound-vinyl acetate compound copolymer (hereinafter referred to as '(C) copolymer') may be included in an amount of 1 to 10 parts by weight, preferably 1 to 8 parts by weight, based on 100 parts by weight of the base resin. It may be included in parts, more preferably 1 to 6 parts by weight, and in this case, chemical resistance and appearance quality are more excellent, and there is an advantage of excellent retention of physical properties for repeated molding processing.
  • the copolymer (C) may be included in an amount of 1 to 5 parts by weight, more preferably 1 to 4 parts by weight, and 2 to 4 parts by weight as another preferred example based on 100 parts by weight of the base resin,
  • the chemical resistance and appearance quality are better, the property retention rate for repeated molding processing is excellent, and peeling does not occur in the cross section of the molded product.
  • the (C) copolymer may include 50% by weight or more of a crystalline unit as a preferred example, more preferably 60 to 95% by weight, even more preferably 65 to 90% by weight, Within the range, it has excellent chemical resistance and appearance quality, and in particular, has the advantage of being more excellent in the retention of physical properties for repeated molding processing.
  • the crystalline unit refers to a unit derived from a monomer capable of forming crystals, and specifically refers to a unit derived from an ethylene compound.
  • the (C) copolymer may include, for example, 50 to 95% by weight of an ethylene compound and 5 to 50% by weight of a vinyl acetate compound, preferably 70 to 95% by weight of an ethylene compound and 5 to 30% by weight of a vinyl acetate compound % by weight, more preferably 75 to 95% by weight of an ethylene compound and 5 to 25% by weight of a vinyl acetate compound, even more preferably 80 to 90% by weight of an ethylene compound and 10 to 20% by weight of a vinyl acetate compound Within this range, there is an advantage in that chemical resistance, appearance quality, and retention of physical properties for repeated molding processing are superior.
  • the copolymer (C) contains 60 to 85% by weight of an ethylene compound and 15 to 40% by weight of a vinyl acetate compound, more preferably 60 to 80% by weight of an ethylene compound and 20 to 40% by weight of a vinyl acetate compound, Even more preferably, 65 to 80% by weight of an ethylene compound and 20 to 35% by weight of a vinyl acetate compound may be included, and within this range, the impact strength and appearance quality are better and the retention rate of physical properties for repeated molding processing There is a greater advantage than this.
  • the method for preparing the ethylene compound-vinyl acetate compound copolymer is not particularly limited as long as it is a method commonly used in the art to which the present invention pertains.
  • the (C) copolymer is, for example, based on 100 parts by weight of the sum of the ethylene compound and the vinyl acetate compound, 50 to 95 parts by weight of the ethylene compound, 5 to 50 parts by weight of the vinyl acetate compound, and 0.001 to 0.1 parts by weight of the initiator. It can be prepared including the step of free radical polymerization.
  • the (C) copolymer polymerization reaction may be carried out under a pressure of 500 bar or more and a temperature of 130 to 300 ° C., for example, preferably 700 to 5,000 bar and 150 to 300 ° C., more preferably 800 to 4,000 bar and It may proceed under the conditions of 150 to 250 °C, there is an advantage that a high polymerization conversion can be obtained within this range and the efficiency of the polymerization reaction is more excellent.
  • additives not specifically mentioned in the present description such as initiators or chain transfer agents, may be appropriately selected as needed, and are not particularly limited in the range generally applied to the preparation of the ethylene compound-vinyl acetate compound copolymer.
  • copolymer (C) commercially available products may be used as long as it follows the definition of the present invention.
  • the copolymer (C) may have, for example, a weight average molecular weight of 10,000 to 800,000 g/mol or 30,000 to 700,000 g/mol, and may have better molding processability and chemical resistance within this range, but is limited thereto not.
  • the copolymer (C) may have, for example, a molecular weight distribution (PDI) of 1.5 to 3.0, preferably 2.0 to 2.5, and may have better molding processability and appearance quality within this range.
  • PDI molecular weight distribution
  • the present invention is not limited thereto.
  • the molecular weight distribution is defined as M w /M n , where M w and M n mean a weight average molecular weight and a number average molecular weight, respectively.
  • the weight average molecular weight and number average molecular weight of the copolymer (C) can be measured according to a method commonly practiced in the art to which the present invention belongs, and as a specific example, using a TCB (trichlorobenzene) solvent as an eluent, It can be measured as a relative value with respect to a standard PS (standard polystyrene) sample through GPC (Gel Permeation Chromatography, waters breeze).
  • TCB trichlorobenzene
  • solvent TCB + 0.015 wt% BHT (Butylated hydroxytoluene), column temperature: 160°C, flow rate: 1.0 ml/min, sample concentration: 1.0 mg/ml, injection amount: 200 ⁇ l, column model: 3 x PLgel 10 ⁇ m MIXED-B (300x7.5mm), equipment name: Agilent PL-PGC 220, Refractive index detector: Agilent G1362 RID, RI temperature: 160°C, data processing: Agilent ChemStation S/W, test method (Mn, Mw) and PDI): It can be measured under the conditions of OECD TG 118.
  • BHT Butylated hydroxytoluene
  • flow rate 1.0 ml/min
  • sample concentration 1.0 mg/ml
  • injection amount 200 ⁇ l
  • column model 3 x PLgel 10 ⁇ m MIXED-B (300x7.5mm)
  • equipment name Agilent PL-PGC 220
  • the (C) copolymer may have, for example, a melt index of 2 to 50 g/10min, preferably 15 to 30 g/10min, measured under the conditions of 190°C and 2.16 kg according to ASTM D1238, Within this range, there is an advantage in that the appearance quality is better without deterioration of other physical properties.
  • the (D) inorganic pigment may be included, for example, in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the base resin, preferably 0.05 to 10 parts by weight, more preferably 0.1 to 10 parts by weight, even more preferably 0.5 to 7 parts by weight, more preferably 1 to 5 parts by weight, even more preferably 1 to 4 parts by weight, there is an advantage in that mechanical properties and appearance quality are more excellent without deterioration of other physical properties within this range .
  • the refractive index of the inorganic pigment (D) may be preferably 1.65 to 3.0, more preferably 1.7 to 2.8, and still more preferably 1.75 to 2.75.
  • the refractive index of the inorganic pigment may be measured at 25° C. with REICHERT MARK 2 PLUS according to ASTM D 542-50.
  • the average particle diameter of the (D) inorganic pigment is preferably 50 to 400 nm, more preferably 50 to 300 nm.
  • the average particle diameter of the inorganic pigment may be a value measured by BET unless otherwise specified, and in detail, nitrogen gas adsorption method is used, and BET analysis equipment (Surface Area and Porosity Analyzer ASAP 2020, Micromeritics) is used. can be measured by
  • the (D) inorganic pigment may be, for example, at least one selected from the group consisting of titanium dioxide, zinc oxide, zinc sulfide, aluminum hydroxide, iron oxide, magnesium oxide, calcium carbonate, barium sulfate, clay, carbon black and white carbon, Preferably, it may be at least one selected from the group consisting of titanium dioxide, zinc oxide and carbon black, and more preferably, at least one selected from the group consisting of titanium dioxide and carbon black, and in this case, the appearance quality is improved without deterioration of other physical properties. There are better advantages.
  • thermoplastic resin composition of the present invention comprises (A) 20 to 90% by weight of a non-recycled thermoplastic resin and (B) 100 parts by weight of a base resin comprising 10 to 80% by weight of a recycled thermoplastic resin, (C) an ethylene compound-vinyl acetate compound copolymer 1 to 10 parts by weight of the coalescing and (D) 0.01 to 10 parts by weight of the inorganic pigment.
  • a base resin comprising 10 to 80% by weight of a recycled thermoplastic resin
  • C an ethylene compound-vinyl acetate compound copolymer 1 to 10 parts by weight of the coalescing
  • D 0.01 to 10 parts by weight of the inorganic pigment
  • the (D) inorganic pigment preferably has a refractive index of 1.65 or more and an average particle diameter of 10 to 500 nm.
  • the thermoplastic resin composition may have, for example, a melt index retention rate of 80% or more, preferably 85% or more, more preferably 90% or more, calculated by Equation 1 below, and in this way, a high-temperature molding process such as extrusion processing It is possible to provide a regenerated resin composition having excellent physical property retention as described above, which is more advantageous for uniform quality, and excellent in mechanical properties, chemical resistance, and appearance quality even when repeatedly performed.
  • MI n is a melt index value measured under conditions of 220° C. and 10 kg according to ASTM D1238 after extruding the thermoplastic resin composition n times at 200 to 250° C. and 250 to 400 rpm. (g/10min), and MI n+5 means a melt index value (g/10min) measured after repeatedly performing extrusion processing n+5 times under the same conditions as above, where n is an integer from 1 to 10 am.
  • the thermoplastic resin composition may have an impact strength retention rate of 80% or more, preferably 85% or more, more preferably 90% or more, calculated by the following Equation 2, for example, in a high-temperature molding process such as extrusion processing It is possible to provide a regenerated resin composition having excellent physical property retention as described above, which is more advantageous for uniform quality, and excellent in mechanical properties, chemical resistance, and appearance quality even when repeatedly performed.
  • ImSt n is Izod measured under conditions of 1/8" of specimen thickness according to ASTM D256 after extruding the thermoplastic resin composition n times at 200 to 250° C. and 250 to 400 rpm.
  • ImSt n + 5 means Izod impact strength value (kgf cm / cm) measured after repeating the extrusion process n + 5 times under the same conditions as above, where n is an integer from 1 to 10.
  • n may independently be 0 to 10, 0 to 7, 0 to 5, or 0 to 3, and preferably 1 to 8, 1 to 6, 1 to 5, or 1 to can be 4
  • thermoplastic resin composition of the present base material not only greatly improves mechanical properties, chemical resistance and appearance quality even when the regenerated resin is excessively applied by adjusting the composition ratio to a specific range as described above, but also performs high-temperature molding processing such as extrusion 5 times or more repeatedly. Even so, deterioration of physical properties is prevented, so that the amount of the recycled resin used and the number of reuse of the recycled resin can be greatly improved.
  • thermoplastic resin composition is, for example, within the specified composition ratio range, a specimen having a size of 200 mm * 10.0 mm * 3.2 mm is fixed to a curvature jig having a stress of 1%, 1 cc of Nanox detergent is applied, and then the diameter on the surface of the specimen
  • the chemical resistance (Environmental Stress-Cracking Resistance, ESCR) measured as the time at which cracks of 3 mm or more occur is 20 hours or more, which has excellent chemical resistance.
  • chemical resistance may be measured at a temperature of 23° C. using a liquid-type Nanox detergent.
  • Nanox detergent is a detergent widely known as a highly concentrated detergent compared to commonly used household laundry detergent.
  • the concentration of surfactant is generally about 20 to 30% by weight, whereas Nanox detergent is 50 to 60% by weight. It is known that the concentration of surfactant is very high and the cleaning power is strong.
  • chemical deterioration of the plastic material mainly used in home appliances, such as cracks occurring in the part where the plastic (thermoplastic resin) material inside the washing machine is in direct contact with the Nanox detergent may cause a problem, and in severe cases, it may cause a malfunction.
  • thermoplastic resin composition of the present substrate has the advantage of excellent chemical resistance to Nanox detergent as described above, and through this, when applied to materials for home appliances such as washing machines, it is excellent in long-term durability maintenance rate to improve the lifespan of the product.
  • an advantage In particular, when used as an interior material for a washing machine, a dish washing machine, etc., there is an advantage that a variety of detergents can be used.
  • the thermoplastic resin composition may have a melt index of 15.0 g/10 min or more, preferably 15.0 to 40 g/10 min, more preferably 17.0 to 40 g/ 10 min, and more preferably 20 to 38 g/10 min, there is an effect of more excellent molding processability and appearance quality without deterioration of other physical properties within this range.
  • the thermoplastic resin composition may have an Izod impact strength of 17 kgf ⁇ cm/cm or more, preferably 17 to 50 kgf ⁇ cm/cm, measured using a specimen having a thickness of 1/8′′ according to ASTM D256, for example, More preferably, it may be 20 to 45 kgf ⁇ cm/cm, and within this range, there is an excellent effect of mechanical strength without deterioration of other physical properties.
  • the thermoplastic resin composition was measured under the condition of a tensile rate of 50 mm/min using a specimen having a thickness of 1/8” according to ASTM D638, for example.
  • the tensile strength may be 380 kg/cm 2 or more, preferably 380 to 500 kg/cm 2 , and more preferably 400 to 480 kg/cm 2 , and within this range, mechanical strength without deterioration of other physical properties It has an excellent effect.
  • thermoplastic resin composition
  • thermoplastic resin composition of the present invention comprises (A) 20 to 90% by weight of a non-renewable thermoplastic resin and (B) 100 parts by weight of a base resin comprising 10 to 80% by weight of a recycled thermoplastic resin; (C) 1 to 10 parts by weight of an ethylene compound-vinyl acetate compound copolymer; and (D) 0.01 to 10 parts by weight of an inorganic pigment; including, kneading and extruding at 200 to 280°C.
  • a base resin comprising 10 to 80% by weight of a recycled thermoplastic resin
  • C 1 to 10 parts by weight of an ethylene compound-vinyl acetate compound copolymer
  • D 0.01 to 10 parts by weight of an inorganic pigment; including, kneading and extruding at 200 to 280°C.
  • the (D) inorganic pigment preferably has a refractive index of 1.65 or more and an average particle diameter of 10 to 500 nm.
  • the temperature and the screw rotation speed of the extruder are 200 to 280 ° C and 250 to 600 rpm, respectively, preferably 210 to 250 ° C. and 300 to 550 rpm.
  • mechanical properties It has excellent chemical resistance, heat resistance and appearance quality.
  • the kneading and extruding step may be performed using, for example, at least one selected from the group consisting of a single screw extruder, a twin screw extruder, and a Banbury mixer, and uniformly mixing the composition and then extruding the thermoplastic resin in the form of pellets.
  • a composition can be obtained, and in this case, deterioration of mechanical properties and deterioration of heat resistance are prevented and the appearance quality is excellent.
  • the thermoplastic resin composition is optionally a lubricant, a heat stabilizer, a light stabilizer, an antioxidant, an ultraviolet stabilizer, a dye, a colorant, a mold release agent, an antistatic agent, an antibacterial agent, a processing aid, a compatibilizer, a metal inert, if necessary, during the kneading and extrusion process It may further include one or more additives selected from the group consisting of a fire agent, a flame retardant, a flame retardant, an anti-drip agent, a foaming agent, a plasticizer, a reinforcing agent, a filler, a matting agent, an anti-friction agent, and an anti-wear agent.
  • the additive is 0.01 to 20 parts by weight, preferably 0.05 to 10 parts by weight, based on 100 parts by weight of the total of (A) non-renewable thermoplastic resin, (B) recycled thermoplastic resin, (C) copolymer, and (D) inorganic pigment; It may be further included in an amount of 0.05 to 5 parts by weight or 0.05 to 3 parts by weight, and within this range, there is an effect that the necessary physical properties are well implemented without reducing the original physical properties of the thermoplastic resin composition.
  • the lubricant may be, for example, at least one selected from ethylene bis steramide, polyethylene oxide wax, magnesium stearate, calcium steramide, stearic acid, and silicone oil, but is not limited thereto.
  • the silicone oil may be, for example, at least one selected from the group consisting of dimethyl silicone oil, methyl hydrogen silicone oil, ester-modified silicone oil, hydroxy silicone oil, carbinol-modified silicone oil, vinyl silicone oil, and silicone acrylate.
  • the antioxidant may include, for example, a phenol-based antioxidant, a phosphorus-based antioxidant, and the like, but is not limited thereto.
  • the antistatic agent may include, for example, one or more anionic surfactants, non-ionic surfactants, and the like, but is not limited thereto.
  • the release agent may be used, for example, at least one selected from glycerin sterate, polyethylene tetra sterate, and the like, but is not limited thereto.
  • the molded article of the present invention is characterized in that it contains the thermoplastic resin composition of the present invention, and in this case, even though it is manufactured including the regenerated resin, it has excellent mechanical properties, molding processability, chemical resistance and appearance quality, and physical properties for repeated molding processing It has an excellent retention rate.
  • the molded article may be manufactured by, for example, injection processing the thermoplastic resin composition or pellets thereof.
  • the injection processing may be performed under injection conditions of, for example, an injection temperature of 220 to 280°C and a holding pressure of 10 to 200 bar.
  • the mold temperature may be, for example, 50 to 120 °C, preferably 55 to 100 °C.
  • the molded article has excellent mechanical strength, appearance quality, and chemical resistance, and thus can be used, for example, in housings and parts of electronic products such as home appliances or OA devices.
  • the molded article is, for example, the number of foreign substances having a diameter of 100 ⁇ m or more observed on the surface through an optical microscope is less than 15 / 100 cm 2 , preferably 10 / 100 cm 2 or less, more preferably 8 / 100 cm 2 or less, and more preferably 7 pieces/100 cm 2 or less, there is an advantage of excellent physical property balance while excellent in appearance quality within this range.
  • the foreign material of the molded article is 3 mm thick and 10 cm in width and length (observation area 100 cm 2 ) of a specimen with a magnification of 100 times when observing it with an optical microscope (OM). It can be obtained by observing the number.
  • the foreign material of the molded article may be expressed as an average value of values observed three or more times as a preferred example, and five times as a specific example.
  • the molded article includes the thermoplastic resin composition of the present invention, and thus the amount of foreign matter is greatly reduced compared to a molded article manufactured with a conventional regenerated resin composition, as well as foreign matter masking that minimizes the migration of foreign matter to the surface of the molded article. Because the effect is excellent, even if there is a foreign substance, it is not noticeable, so the appearance quality is better.
  • (A-1) Vinyl cyan compound-conjugated diene compound-aromatic vinyl compound graft copolymer:
  • the average particle diameter of the conjugated diene rubber including the conjugated diene compound is 3,200 ⁇ , and the content of the conjugated diene rubber is 60% by weight ABS graft copolymer (DP270 of LG Chem)
  • A-2 Aromatic vinyl compound-vinyl cyan compound copolymer: SAN resin containing 23 wt% of acrylonitrile-derived units and 77 wt% of styrene-derived units (weight average molecular weight of 110,000 g/mol; 83SF of LG Chem)
  • (B-1) Regenerated vinyl cyanide compound-conjugated diene compound-aromatic vinyl compound copolymer: Melt index (220° C., 10 kg) of 22 g/10 min, measured with a colorimeter (Ci7860, X-Rite) Recycled ABS resin with color L value* of 31 (C&Tech Korea's A204)
  • (B-2) Regenerated vinyl cyanide compound-conjugated diene compound-aromatic vinyl compound copolymer: Melt index (220° C., 10 kg) of 16 g/10 min, measured with a colorimeter (Ci7860, X-Rite) Recycled ABS resin with color L value* of 85 (C&Tech Korea's A205LC)
  • (B-3) Regenerated aromatic vinyl compound-vinyl cyan compound copolymer: Regenerated SAN resin having a melt index (220°C, 10 kg) of 37 g/10 min (S601 by C&Tech Korea)
  • (B-4) Regenerated polycarbonate resin: Bisphenol A-type recycled polycarbonate resin having a melt index (300°C, 1.2 kg) of 20 g/10 min (PC PW 20HT from Easychem)
  • Ethylene compound-vinyl acetate compound copolymer melt index (190°C, 2.16 kg) of 25 g/10 min, comprising 72 wt% of ethylene compound-derived units and 28 wt% of vinyl acetate compound-derived units EVA resin (EVEA28025 by LG Chem)
  • Ethylene compound-methyl acrylate compound copolymer melt index (190° C., 2.16 kg) of 2 g/10 min, comprising 76 wt% of ethylene compound-derived units and 24 wt% of methyl acrylate compound-derived units EMA resin (Elvaloy AC 1224 from Dupont)
  • (D-1) Inorganic pigment: titanium dioxide having a refractive index of 2.73 and an average particle diameter of 250 nm (R350 manufactured by Dupont)
  • D-2 Inorganic pigment: carbon black having a refractive index of 1.75 and an average particle diameter of 58 nm (HIBLACK 170 by Orion Engineered Carbons)
  • Inorganic pigment diatomaceous earth having a refractive index of 1.46 and an average particle diameter of 45 ⁇ m (Si02n H2O from Dong-Sin, 325 mesh)
  • injection molding was performed in an injection machine under the conditions of an injection temperature of 240° C., a mold temperature of 60° C., and an injection speed of 30 mm/sec. to 26° C.) for 48 hours or more, and the initial physical properties were measured with the prepared specimen.
  • Izod impact strength (kgfcm/cm): According to ASTM D256, it was measured at 23°C using a 1/8′′-thick specimen.
  • Peeling Use a cutter knife in the width direction at the center of the upper surface of the 200 mm*10.0 mm*3.2 mm specimen to break it, then visually check whether peeling has occurred, and X, depending on the degree of peeling. ⁇ and O were evaluated. At this time, when peeling occurs, it was observed whether the peeling occurred easily torn by pulling the peeled skin by hand. (X: no peeling, ⁇ : peeling is observed in a part of the cross section, but peeling is not easily torn, O: multiple peeling is observed in the cross section and peeling is easily torn)
  • Equation A was calculated using Equation A below as measured values for each physical property.
  • the physical property may be a flow index, impact strength, or tensile strength.
  • the property retention rate may be calculated using Equations 1 and 2 above.
  • Example Reference example One 2 3 4 5 6 7 One A-1 g-ABS 18 15 12 19 17 19 18 27 A-2 SAN 49 30 13 26 28 26 49 73 Non-renewable resin sum 67 45 25 45 45 45 67 100 B-1 Regeneration ABS (black) 33 55 75 - - - 33 - B-2 Regeneration ABS (gray) - - - 40 25 40 - - B-3 Replay SAN - - - 15 - 15 - - B-4 Play PC - - - - 30 - - - Recycled Resin Sum 33 55 75 55 55 55 55 33 - C-1 EVA
  • Example 3 although the total content of the regenerated resin was as high as 75 parts by weight, mechanical properties, chemical resistance, and the number of foreign substances were remarkably improved, as well as the retention of physical properties for molding processing.
  • Example 6 although the content of the inorganic pigment was as high as 7 parts by weight, it was confirmed that the deterioration of the physical properties due to the excessive inclusion of the inorganic pigment was greatly improved.
  • the peeling properties were also excellent, and in particular, in Examples 1 to 6, it was confirmed that the peeling properties were more excellent because no peeling occurred at all.
  • FIG. 2 shows the results of recording the surface foreign material occurrence points in Examples and Comparative Examples of the present invention
  • FIG. 3 shows the results of observing the surface foreign material in Examples and Comparative Examples of the present invention with an optical microscope.
  • 2 and 3 in the case of the example prepared according to the present invention, compared to the comparative example, not only the number of foreign substances generated was significantly reduced, but also the foreign substances were observed to be blurred even when the foreign substances were generated due to the excellent effect of covering the foreign substances. It can be seen that the quality is greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것으로, 보다 상세하게는 (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부; (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및 (D) 무기안료 0.01 내지 10 중량부;를 포함하되, 상기 (D) 무기안료는 굴절률이 1.65 이상이고, 평균입경이 10 내지 500 nm인 것을 특징으로 하는 열가소성 수지 조성물 제공한다. 본 발명의 열가소성 수지 조성물은 재생 수지를 포함하면서도 기존의 기계적 물성 및 성형 가공성은 유지하면서, 내화학성 및 외관 품질이 개선되고, 반복되는 성형 가공에 대한 물성 유지율이 크게 개선되는 효과가 있다. [대표도] 도 1

Description

열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
〔출원(들)과의 상호 인용〕
본 출원은 2020.10.19일자 한국특허출원 제 10-2020-0135221호 및 그를 토대로 2021.10.01일자로 재출원한 한국특허출원 제 10-2021-0130783호를 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것으로, 보다 상세하게는 ABS계 열가소성 수지 조성물에 재생 수지를 과량 포함함에도 기존의 기계적 물성 및 내화학성은 유지하면서, 반복 가공으로 인한 물성의 저하가 방지되어 물성 유지율이 크게 개선된 열가소성 수지 조성물에 관한 것이다.
아크릴로니트릴-부타디엔-스티렌 수지로 대표되는 비닐시안 화합물-공액디엔 화합물-방향족 비닐 화합물 그라프트 공중합체(이하 ‘ABS계 수지’라 함)는 가공성, 기계적 물성 및 외관 특성이 우수하여 전기·전자 제품의 부품, 자동차, 소형 완구, 가구, 건축자재 등 광범위하게 이용되고 있다.
한편, 환경에 대한 관심이 고조되면서 이산화탄소 배출량 억제를 위한 규제가 강화되고 있으며, 특히 최근에는 플라스틱의 사용량 증가로 인한 환경 오염이 심각한 문제로 대두되면서, 미국을 중심으로 재생 수지의 사용을 의무화하는 등 제조 단계에서의 규제가 강화되고 있다. 이에 따라, 제조 업체는 수지 성형품 등의 제조 시 재생 수지를 일정 함량 이상 첨가하여야 하며, 재생 수지의 함량에 따라 친환경 등급이 매겨진다.
그러나, 재생 수지는 이미 가공된 수지이므로 착색제, 활제, 이형제 등의 첨가제를 포함하고, 고온의 가공 공정을 거치면서 이미 그 성질이 변화되어 기존 신재(VIRGIN) 수지에 비하여 충격강도, 인장강도, 내화학성 및 열 안정성이 떨어지고, 이물(異物)에 의한 외관 품질이 저하되는 문제가 있다.
이러한 문제를 해결하기 위해 재생 수지를 포함하는 조성물에 신재 수지의 함량을 일정 수준 이상 포함하는 방식이 시도되었다. 그러나, 이를 통해 기계적 물성의 저하는 어느 정도 완화될 수 있으나, 내화학성은 여전히 만족스럽지 못하며, 사출이나 압출 가공 시 표면의 이물로 인한 외관 품질이 저하되는 문제는 여전히 해결되지 않고 있다. 더욱이, 가공 회수가 늘어날수록 이러한 문제는 더욱 심각해진다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개특허 제2016-0144185호
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 재생 수지를 과량 포함함에도 종래 ABS계 수지 고유의 기계적 물성, 내화학성 및 외관 품질은 유지하면서, 반복되는 성형 가공에 대한 물성의 저하 문제가 개선된 열가소성 수지 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 열가소성 수지 조성물의 제조방법 및 이를 포함하여 제조된 성형품을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부; (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및 (D) 무기안료 0.01 내지 10 중량부;를 포함하되, 상기 (D) 무기안료는 굴절률이 1.65 이상이고, 평균입경이 10 내지 500 nm인 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
본 발명은 또한, (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부; (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및 (D) 굴절률이 1.65 이상인 무기안료 0.01 내지 10 중량부;를 포함하되, 상기 (A) 비재생 열가소성 공중합체는 (A-1) 비재생 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 그라프트 공중합체 20 내지 70 중량% 및 (A-2) 비재생 방향족비닐 화합물-비닐시안 화합물 공중합체 30 내지 80 중량%를 포함하고, 상기 (B) 재생 열가소성 수지는 재생 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 공중합체, 재생 폴리카보네이트 수지 및 재생 방향족비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
본 발명은 또한, (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부; (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및 (D) 무기안료 0.01 내지 10 중량부;를 포함하되, 하기 수학식 1로 계산되는 용융지수 유지율이 80% 이상인 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
[수학식 1]
용융지수 유지율(%)= [MIn+5/MIn] X 100
(상기 수학식 1에서, MIn은 상기 열가소성 수지 조성물을 200 내지 250℃ 및 250 내지 400 rpm 조건으로 압출 가공을 n회 수행한 후 ASTM D1238에 의거하여 220℃, 10kg 조건 하에 측정한 용융지수 값이고, MIn+5은 상기와 동일한 조건으로 압출 가공을 n+5회 반복 수행한 후 측정한 용융지수 값을 의미하며, 여기서 n은 1 내지 10의 정수이다.)
본 발명은 또한, (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부; (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및 (D) 무기안료 0.01 내지 10 중량부;를 포함하되, 하기 수학식 2로 계산되는 충격강도 유지율이 80% 이상인 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
[수학식 2]
충격강도 유지율(%)= [ImStn+5/ImStn] X 100
(상기 수학식 2에서, ImStn은 상기 열가소성 수지 조성물을 200 내지 250℃ 및 250 내지 400 rpm 조건으로 압출 가공을 n회 수행한 후 ASTM D256에 의거하여 시편 두께 1/8" 조건 하에 측정한 아이조드 충격강도 값이고, ImStn+5은 상기와 동일한 조건으로 압출 가공을 n+5회 반복 수행한 후 측정한 아이조드 충격강도 값을 의미하며, 여기서 n은 1 내지 10의 정수이다.)
또한, 본 발명은(A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부, (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부 및 (D) 무기안료 0.01 내지 10 중량부를 포함하여, 200 내지 280℃에서 혼련 및 압출하는 단계;를 포함하는 열가소성 수지 조성물의 제조방법을 제공한다.
상기 (D) 무기안료는 바람직하게는 굴절률이 1.65 이상이고, 평균입경이 10 내지 500 nm일 수 있다.
또한, 본 발명은 상기 열가소성 수지 조성물을 포함하는 것을 특징으로 하는 성형품을 제공한다.
본 발명에 따르면 재생 수지를 과량 포함함에도, 기계적 물성, 내화학성 및 외관 품질이 우수하고, 특히 성형 가공 공정 반복에 의한 물성 저하가 방지되어 여러 번 가공하여도 우수한 물성을 나타낼 수 있는 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품을 제공하는 효과가 있다.
도 1은 본 발명의 실시예 및 비교예의 내화학성 시험 결과를 나타낸다.
도 2는 본 발명의 실시예 및 비교예의 표면 이물 발생 지점을 기록한 결과를 나타낸다.
도 3은 본 발명의 실시예 및 비교예의 표면 이물을 광학 현미경으로 관찰한 결과를 나타낸다.
이하 본 기재의 열가소성 수지 조성물을 상세하게 설명한다.
본 발명자들은 ABS계 수지 조성물에 재생 수지를 혼합할 때 특정 화합물을 소정 함량으로 함께 첨가하는 경우 기계적 물성 및 내화학성이 개선되고 반복 가공에 의한 기계적 물성 및 외관 품질의 저하 문제가 크게 개선되는 것을 확인하고, 이를 토대로 더욱 연구에 매진하여 본 발명을 완성하게 되었다.
본 발명의 열가소성 수지 조성물은 (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부; (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및 (D) 무기안료 0.01 내지 10 중량부;를 포함하되, 상기 (D) 무기안료는 굴절률이 1.65 이상이고, 평균입경이 10 내지 500 nm인 것을 특징으로 하며, 이 경우 재생 수지를 과량 포함하면서도 충격강도 및 인장강도 등의 기계적 강도, 성형 가공성 및 내화학성이 우수하면서 반복되는 성형 가공에 대한 물성 유지율이 뛰어난 이점이 있다.
본 발명은 열가소성 수지 조성물은 또한, (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부; (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및 (D) 굴절률이 1.65 이상인 무기안료 0.01 내지 10 중량부;를 포함하되, 상기 (A) 비재생 열가소성 공중합체는 (A-1) 비재생 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 그라프트 공중합체 20 내지 70 중량% 및 (A-2) 비재생 방향족비닐 화합물-비닐시안 화합물 공중합체 30 내지 80 중량%를 포함하고, 상기 (B) 재생 열가소성 수지는 재생 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 공중합체, 재생 폴리카보네이트 수지 및 재생 방향족비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하며, 이 경우 재생 수지를 과량 포함하면서도 충격강도 및 인장강도 등의 기계적 강도, 성형 가공성 및 내화학성이 우수하면서 반복되는 성형 가공에 대한 물성 유지율이 뛰어난 이점이 있다.
본 발명의 열가소성 수지 조성물은 또한, (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부; (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및 (D) 무기안료 0.01 내지 10 중량부;를 포함하되, 하기 수학식 1로 계산되는 용융지수 유지율이 80% 이상인 것을 특징으로 하며, 이 경우 재생 수지를 과량 포함하면서도 충격강도 및 인장강도 등의 기계적 강도, 성형 가공성 및 내화학성이 우수하면서 반복되는 성형 가공에 대한 물성 유지율이 뛰어난 이점이 있다.
[수학식 1]
용융지수 유지율(%)= [MIn+5/MIn] X 100
(상기 수학식 1에서, MIn은 상기 열가소성 수지 조성물을 압출 온도 200 내지 250℃ 및 스크류 회전 속도 250 내지 400 rpm 조건 하에 압출 가공을 n회 수행한 후 ASTM D1238에 의거하여 220℃, 10kg 조건 하에 측정한 용융지수 값이고, MIn+5은 상기와 동일한 조건으로 압출 가공을 n+5회 반복 수행한 후 측정한 용융지수 값을 의미하며, 여기서 n은 1 내지 10의 정수이다.)
본 발명의 열가소성 수지 조성물은 또한, (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부; (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및 (D) 무기안료 0.01 내지 10 중량부;를 포함하되, 하기 수학식 2로 계산되는 충격강도 유지율이 80% 이상인 것을 특징으로 하며, 이 경우 재생 수지를 과량 포함하면서도 충격강도 및 인장강도 등의 기계적 강도, 성형 가공성 및 내화학성이 우수하면서 반복되는 성형 가공에 대한 물성 유지율이 뛰어난 이점이 있다.
[수학식 2]
충격강도 유지율(%)= [ImStn+5/ImStn] X 100
(상기 수학식 2에서, ImStn은 상기 열가소성 수지 조성물을 압출 온도 200 내지 250℃ 및 스크류 회전 속도 250 내지 400 rpm 조건 하에 압출 가공을 n회 수행한 후 ASTM D256에 의거하여 시편 두께 1/8" 조건 하에 측정한 아이조드 충격강도 값이고, ImStn+5은 상기와 동일한 조건으로 압출 가공을 n+5회 반복 수행한 후 측정한 아이조드 충격강도 값을 의미하며, 여기서 n은 1 내지 10의 정수이다.)
상기 수학식 1의 n 값과 상기 수학식 2의 n 값은 독립적으로, 같거나 다를 수 있다.
본 기재에서, (공)중합체의 조성비는 상기 (공)중합체를 구성하는 단위체의 함량을 의미하거나, 또는 상기 (공)중합체의 중합 시 투입되는 단위체의 함량을 의미할 수 있다.
본 기재에서, 재생 열가소성 수지는 본 발명의 정의를 따르는 이상 본 발명이 속한 기술분야에서 통상적으로 재생 열가소성 수지로 인정되는 경우 특별히 제한되지 않으며, 일례로 수거된 폐플라스틱으로부터 재생된 열가소성 수지이고, 구체적인 예로는 수거된 폐플라스틱으로부터 선별, 세척 및 분쇄를 거쳐 사용 가능한 원료 상태로 준비된 것을 의미한다. 또한, 필요에 따라 압출 공정을 거쳐 펠렛 형태로 가공된 것을 사용할 수 있으며, 이 경우 추가 정제 등 별도의 가공이 필요없는 이점이 있다. 이러한 재생 열가소성 수지는 한번 이상의 가공을 거친 것이기 때문에 착색제, 활제, 및/또는 이형제 등의 첨가제를 포함할 수 있다.
본 기재에서, 비재생 열가소성 수지는 상기에서 정의한 재생 열가소성 수지와 대비되는 것으로서, 열가소성 수지를 구성하는 단량체들을 중합시켜 직접 제조하여 준비하거나 또는 이에 상응하는 입수 가능한 제품일 수 있다.
이하, 본 기재의 열가소성 수지 조성물을 구성하는 각 성분을 상세히 살펴보면 다음과 같다.
(A) 비재생 열가소성 수지
상기 (A) 비재생 열가소성 수지는 상기 베이스 수지 총 중량에 대하여 20 내지 90 중량%로 포함되고, 이 경우 기계적 물성, 성형 가공성, 내화학성 및 외관 품질이 우수한 이점이 있다. 상기 베이스 수지 총 중량에 포함되는 상기 (A) 비재생 열가소성 수지의 함량은 바람직한 일례로 20 내지 80 중량%, 보다 바람직하게는 25 내지 75 중량%, 보다 더욱 바람직하게는 25 내지 70 중량%일 수 있고, 이 범위 내에서 기계적 물성, 성형 가공성, 외관 품질 및 물성 밸런스가 보다 우수할 수 있다.
상기 (A) 비재생 열가소성 수지는 일례로 (A-1) 비재생 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 그라프트 공중합체(이하, '(A-1) 그라프트 공중합체'라 함) 20 내지 70 중량% 및 (A-2) 비재생 방향족비닐 화합물-비닐시안 화합물 공중합체(이하, '(A-2) 공중합체'라 함) 30 내지 80 중량%를 포함할 수 있고, 이 범위 내에서 기계적 물성, 성형 가공성, 내화학성 및 외관 품질이 보다 우수한 이점이 있다.
상기 (A) 비재생 열가소성 수지는 바람직하게는 이의 총 중량에 대하여 (A-1) 그라프트 공중합체 20 내지 60 중량% 및 (A-2) 공중합체 40 내지 80 중량%를 포함할 수 있고, 보다 바람직하게는 (A-1) 그라프트 공중합체 20 내지 50 중량% 및 (A-2) 공중합체 50 내지 80 중량%를 포함할 수 있다.
상기 (A-1) 그라프트 공중합체는 일례로 공액디엔 화합물을 포함하여 이루어지는 공액디엔 고무 50 내지 80 중량%, 비닐시안 화합물 5 내지 20 중량% 및 방향족비닐 화합물 10 내지 40 중량%를 포함하여 이루어진 것일 수 있고, 이 범위 내에서 기계적 물성, 성형 가공성, 외관 품질 및 물성 밸런스가 우수한 이점이 있다.
상기 (A-1) 그라프트 공중합체는 바람직한 일례로 공액디엔 고무 50 내지 70 중량%, 비닐시안 화합물 5 내지 15 중량% 및 방향족비닐 화합물 20 내지 40 중량%를 포함하여 이루어진 것일 수 있고, 보다 바람직하게는 공액디엔 고무 55 내지 65 중량%, 비닐시안 화합물 10 내지 15 중량% 및 방향족비닐 화합물 20 내지 30 중량%를 포함하여 이루어진 것일 수 있으며, 이 범위 내에서 내충격성 및 물성 밸런스가 보다 우수한 효과가 있다.
상기 (A-1) 그라프트 공중합체에 포함되는 공액디엔 고무의 평균입경은 일례로 2,000 내지 5,000Å, 바람직하게는 2,000 내지 4,000Å, 보다 바람직하게는 2,500 내지 3,500Å일 수 있으며, 이 범위 내에서 다른 물성의 저하 없이 충격강도가 보다 우수한 효과가 있다.
본 기재에서 공액디엔 고무의 평균입경은 특별한 언급이 없는 한, 동적 광산란법(dynamic light scattering)을 이용하여 측정할 수 있고, 상세하게는 입도 분포 분석기(제품명: Nicomp 380, 제조사: PSS)를 사용하여 가우시안(Gaussian) 모드로 인텐서티(intensity) 값으로 측정한다. 이때 구체적인 측정예로, 샘플은 Latex(TSC 35 내지 50 wt%) 0.1 g을 탈이온수 또는 증류수로 1,000 내지 5,000배 희석하여, 즉 Intensity Setpoint 300 kHz을 크게 벗어나지 않도록 적절히 희석하여 glass tube에 넣어 준비하고, 측정방법은 Auto-dilution하여 flow cell로 측정하며, 측정모드는 동적 광산란법(dynamic light scattering)법/Intensity 300KHz/Intensity-weight Gaussian Analysis로 하고, setting 값은 온도 23℃, 측정 파장 632.8 nm, channel width 10 μsec으로 하여 측정할 수 있다.
상기 (A-1) 그라프트 공중합체는 일례로 그라프트율이 20 내지 70%, 바람직하게는 20 내지 55%, 보다 바람직하게는 20 내지 45%일 수 있고, 이 범위 내에서 상용성 및 성형 가공성을 적절히 확보하면서 다른 기계적 물성과의 밸런스가 우수한 효과가 있다.
본 기재에서 그라프트율은 그라프트 (공)중합체 건조 분말 0.5 g에 아세톤 30 g을 가한 후 상온에서 12시간 동안 210 rpm으로 교반(SKC-6075, Lab companion 社)하고 이를 원심분리기(Supra R30, 한일과학 社)로 0℃에서 18,000 rpm으로 3시간 동안 원심분리하여 아세톤에 녹지 않은 불용분만을 채취한 후에 85℃에서 12시간 동안 강제 순환 방식으로 건조(OF-12GW, Lab companion 社) 시킨 후의 무게를 측정하여, 하기 수학식 1로 계산하여 구할 수 있다.
[수학식 1]
그라프트율(%)=[그라프트된 단량체의 중량(g)/고무질 중량(g)]*100
상기 수학식 1에서, 그라프트된 단량체의 중량(g)은 그라프트 공중합체를 아세톤에 용해시키고 원심 분리하여 얻은 불용분(gel)의 중량에서 고무질 중량(g)을 뺀 중량이고, 고무질 중량(g)은 그라프트 공중합체 분말 중 이론상 투입된 고무 성분의 중량이다.
상기 건조는, 더 이상 무게의 변화가 없을 때 까지 진행될 수 있다.
상기 (A-1) 그라프트 공중합체에 포함되는 비닐시안 화합물-방향족비닐 화합물 공중합체는 일례로 중량평균분자량이 50,000 내지 200,000 g/mol, 또는 65,000 내지 180,000 g/mol일 수 있으며, 이 범위 내에서 유동성이 적절하여 가공성이 우수하고 내충격성이 우수할 수 있으나, 이에 한정되는 것은 아니다. 여기서, 상기 (A-1) 그라프트 공중합체에 포함되는 비닐시안 화합물-방향족비닐 화합물 공중합체는 상기 (A-1) 그라프트 공중합체의 공액디엔 고무에 그라프트된 비닐시안 화합물-방향족비닐 화합물 공중합체를 의미한다.
본 기재에서 중량평균분자량은 별도로 정의하지 않는 이상 GPC(Gel Permeation Chromatography, waters breeze)를 이용하여 측정할 수 있고, 구체적인 예로 용출액으로 THF(테트라하이드로퓨란)을 사용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다. 이때 구체적인 측정예로, 용매: THF, 컬럼온도: 40℃, 유속: 0.3ml/min, 시료 농도: 20mg/ml, 주입량: 5㎕, 컬럼 모델: 1xPLgel 10㎛ MiniMix-B(250x4.6mm) + 1xPLgel 10㎛ MiniMix-B(250x4.6mm) + 1xPLgel 10㎛ MiniMix-B Guard(50x4.6mm), 장비명: Agilent 1200 series system, Refractive index detector: Agilent G1362 RID, RI 온도: 35℃, 데이터 처리: Agilent ChemStation S/W, 시험방법(Mn, Mw 및 PDI): OECD TG 118 조건으로 측정할 수 있다.
상기 (A-1) 그라프트 공중합체는 일례로 유화중합, 현탁중합, 괴상중합 등을 포함하는 공지된 중합 방법에 의해 제조 가능하고, 바람직하게는 유화중합으로 제조된 것일 수 있다.
상기 (A-1) 그라프트 공중합체는 일례로, 상기 그라프트 공중합체에 포함되는 공액디엔 고무, 방향족비닐 화합물 및 비닐시안 화합물 총 100 중량부를 기준으로 공액디엔 고무 라텍스 50 내지 80 중량부(고형분 기준), 유화제 0.1 내지 5 중량부, 분자량 조절제 0.1 내지 3 중량부 및 개시제 0.05 내지 1 중량부로 이루어지는 혼합용액에, 비닐시안 화합물 5 내지 20 중량부 및 방향족비닐 화합물 10 내지 40 중량부를 포함하는 단량체 혼합물을 연속 또는 일괄 투입하여 중합하는 단계를 포함하여 제조된 것일 수 있다.
다른 일례로, 상기 (A-1) 그라프트 공중합체는 공액디엔 고무, 방향족 비닐 화합물 및 비닐시안 화합물 총 100 중량부를 기준으로 공액디엔 고무 라텍스 50 내지 80 중량부(고형분 기준) 및 이온 교환수 60 내지 150 중량부에, 별도의 혼합장치에서 혼합된 비닐시안 화합물 5 내지 20 중량부, 방향족비닐 화합물 10 내지 40 중량부, 이온 교환수 10 내지 50 중량부, 개시제 0.09 내지 1.5 중량부, 유화제 0.1 내지 2 중량부 및 분자량 조절제 0.05 내지 1.5 중량부를 포함하는 혼합용액을 65 내지 75 ℃에서 2 내지 4 시간 동안 투입한 후 개시제 0.01 내지 0.5 중량부를 투입하고 30분 내지 90분에 걸쳐 75 내지 80℃로 승온시킨 다음 중합전환율 93 내지 99 중량%에서 그라프트 중합을 종료하여 제조될 수 있고, 이 경우에 내충격성, 기계적 강도 및 성형 가공성이 우수한 효과가 있다.
본 기재에서 중합전환율은 중합 종료시까지 투입되는 단량체의 합 총 100 중량%를 기준으로 측정 시점까지 공중합체로 전환된 단량체의 중량%로 정의될 수 있고, 상기 중합전환율의 측정방법은 이러한 정의에 따라 측정하는 중합전환율 측정방법인 경우 특별히 제한되지 않으며, 구체적인 예로 제조된 공중합체 라텍스 1.5g을 150℃ 열풍 건조기 내에서 15분간 건조 후, 무게를 측정하여 하기 수학식 4로 총 고형분 함량(Total Solid Content; TSC)을 구하고, 이를 하기 수학식 5에 대입하여 산출할 수 있다. 하기 수학식 5는 투입된 단량체의 총 중량이 100 중량부인 것을 기준으로 한다.
[수학식 4]
Figure PCTKR2021013764-appb-I000001
[수학식 5]
중합 전환율(%)= [총 고형분 함량(TSC) × (투입된 단량체, 이온교환수 및 부원료를 합한 총 중량) / 100] - (단량체 및 이온교환수 외 투입된 부원료 중량)
상기 수학식 5에서 부원료는 개시제, 유화제 및 분자량 조절제를 지칭하며, 전해질을 사용한 경우 전해질을 포함한다.
상기 공액디엔 화합물은 일례로 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔, 이소프렌, 클로로프렌 및 피레리렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴 및 이들의 유도체로 이루어지는 군으로부터 선택된 1종 이상일 수 있다.
상기 방향족 비닐 화합물은 일례로 스티렌, α-메틸 스티렌, ο-메틸 스티렌, ρ-메틸 스티렌, m-메틸 스티렌, 에틸 스티렌, 이소부틸 스티렌, t-부틸 스티렌, ο-브로보 스티렌, ρ-브로모 스티렌, m-브로모 스티렌, ο-클로로 스티렌, ρ-클로로 스티렌, m-클로로 스티렌, 비닐톨루엔, 비닐크실렌, 플루오로스티렌 및 비닐나프탈렌으로 이루어지는 군으로부터 선택되는 1 종 이상일 수 있다.
상기 공액디엔 고무는 바람직한 실시예로는 부타디엔 중합체, 부타디엔-스티렌 공중합체, 부타디엔-아크릴로니트릴 공중합체 및 에틸렌-프로필렌 공중합체로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아님을 명시한다.
본 기재에서, 유도체는 원 화합물의 수소원자 또는 원자단이 다른 원자 또는 원자단으로 치환된 화합물이고, 일례로 할로겐 또는 알킬기로 치환된 화합물을 의미한다.
상기 유화제는 일례로 알릴 아릴 설포네이트, 알카리 메틸 알킬 설포네이트, 설포네이트화된 알킬에스테르, 지방산 비누 및 로진산 알카리염으로 이루어진 군에서 선택된 1종 이상일 수 있고, 이 경우 중합 반응의 안정성이 우수한 효과가 있다.
상기 분자량 조절제는 일례로 t-도데실 메르캅탄, n-도데실 메르캅탄, n-옥틸메트캅탄 및 사염화탄소로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 t-도데실 메르캅탄일 수 있다.
상기 개시제는 일례로 수용성 과황산 중합개시제, 지용성 중합개시제 또는 산화-환원계 촉매계 등을 사용할 수 있으며, 상기 수용성 과황산 중합개시제로는 일례로 과황산 칼륨, 과황산 나트륨 및 과황산 암모늄으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 상기 지용성 중합개시제로는 일례로 큐멘하이드로 퍼옥사이드, 디이소프로필 벤젠 하이드로퍼옥사이드, 아조비스 이소 부틸로니트릴, t-부틸 하이드로퍼옥사이드, 파라메탄 하이드로 퍼옥사이드 및 벤조일퍼옥사이드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 유화중합에 의해 수득된 라텍스는 일례로 황산, MgSO4, CaCl2 또는 Al2(SO4)3 등의 응집제로 응집한 후 숙성, 탈수 및 건조하여 분말 상태로 얻을 수 있다.
상기 (A-1) 그라프트 공중합체는 일례로 산화-환원계 촉매를 더 포함하여 제조될 수 있으며, 상기 산화-환원계 촉매는 일례로 디움포름알데히드 술폭실레이트, 소디움에틸렌디아민 테트라아세테이트, 황산제1철, 덱스트로즈, 피롤리산나트륨 및 아황산나트륨으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니며 통상적으로 ABS계 그라프트 공중합체 제조 시 사용되는 종류라면 한정되지 않고 필요에 따라 선택하여 사용할 수 있다.
본 기재에서 구체적으로 언급하지 않은 전해질 등과 같은 기타 다른 첨가물은 필요에 따라 적절히 선택할 수 있고, 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 그라프트 공중합체 중합에 일반적으로 적용되는 범위인 경우 특별히 제한되지 않는다.
상술한 기재 이외에 그라프트 공중합체의 제조방법에 있어 반응시간, 반응온도, 압력, 반응물의 투입 시점 등과 같은 기타 반응 조건들은 본 발명이 속한 기술분야에서 통용되고 있는 범위 내인 경우 특별히 제한되지 않으며, 필요에 따라 적절히 선택하여 실시할 수 있다.
다른 일례로, 상기 (A-1) 그라프트 공중합체는 본 발명의 정의를 따르는 한 시중에서 입수 가능한 제품을 이용할 수도 있다.
상기 (A-2) 공중합체는 일례로 비닐시안 화합물 20 내지 40 중량% 및 방향족비닐 화합물 60 내지 80 중량%를 포함하여 이루어진 것일 수 있고, 이 경우 기계적 물성, 성형 가공성 및 내화학성이 보다 우수한 이점이 있다.
상기 (A-2) 공중합체는 바람직한 일례로 비닐시안 화합물 20 내지 35 중량% 및 방향족비닐 화합물 65 내지 80 중량%, 보다 바람직하게는 비닐시안 화합물 23 내지 33 중량% 및 방향족비닐 화합물 67 내지 77 중량%를 포함하여 이루어진 것일 수 있으며, 이 범위 내에서 내화학성 및 물성 밸런스가 보다 우수한 효과가 있다.
상기 (A-2) 공중합체는 일례로 중량평균분자량이 70,000 내지 200,000 g/mol, 바람직하게는 80,000 내지 180,000 g/mol, 보다 바람직하게는 90,000 내지 160,000 g/mol일 수 있고, 이 범위 내에서 내화학성이 우수하면서 가공성 및 물성 밸런스가 우수한 효과가 있다.
상기 (A-2) 공중합체에 포함되는 방향족비닐 화합물은 일례로 스티렌, 에틸 스티렌, ο-브로보 스티렌, ρ-브로모 스티렌, m-브로모 스티렌, ο-클로로 스티렌, ρ-클로로 스티렌, m-클로로 스티렌, 비닐톨루엔, 비닐크실렌, 플루오로스티렌 및 비닐나프탈렌으로 이루어지는 군으로부터 선택되는 1 종 이상일 수 있고, 바람직하게는 스티렌일 수 있다.
상기 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴, 에틸아크릴로니트릴 및 이소프로필아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 아크릴로니트릴일 수 있다.
상기 (A-2) 공중합체는 일례로 불포화 카르복실산, 불포화 카르복실산 무수물 및 말레이드계 단량체로 이루어진 군으로부터 선택된 1종 이상을 0 내지 30 중량%, 바람직하게는 1 내지 20 중량%, 보다 바람직하게는 5 내지 10 중량%로 더 포함하여 이루어진 것일 수 있고, 이와 같은 공단량체가 추가되어 중합된 공중합체의 경우에 내열성 및 가공성이 보다 우수한 효과가 있다.
상기 불포화 카르복실산은 일례로 말레인산, 아크릴산 및 메타크릴산으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 상기 불포화 카르복실산 무수물은 일례로 상기 불포화 카르복실산의 무수물일 수 있으며, 말레이미드계 단량체는 일례로 탄소수 1 내지 5의 알킬기 또는 탄소수 6 내지 10의 아릴기로 N 치환된 말레이미드일 수 있고, 구체적인 예로는 N-페닐 말레이미드, 말레이미드 또는 이들의 혼합일 수 있다.
상기 (A-2) 방향족비닐 화합물-비닐시안 화합물 공중합체는 유화중합, 현탁중합, 괴상중합, 연속 괴상중합 등의 방법을 실시하여 제조할 수 있으며, 특히 유화중합 및 현탁중합을 실시하여 제조된 것을 사용하는 것이 바람직하고, 본 발명의 정의를 따르는 한 시중에서 입수 가능한 제품을 이용할 수도 있다.
(B) 재생 열가소성 수지
상기 (B) 재생 열가소성 수지는 상기 베이스 수지 총 중량에 대하여 10 내지 80 중량%로 포함되고, 이 경우 기계적 물성, 성형 가공성, 내화학성 및 외관 품질이 우수한 이점이 있다. 상기 베이스 수지 총 중량에 포함되는 상기 (B) 재생 열가소성 수지의 함량은 바람직한 일례로 20 내지 80 중량%, 보다 바람직하게는 25 내지 75 중량%, 보다 더욱 바람직하게는 30 내지 75 중량%일 수 있고, 이 범위 내에서 기계적 물성, 성형 가공성, 외관 품질 및 물성 밸런스가 보다 우수할 수 있다.
상기 (B) 재생 열가소성 수지는 일례로 재생 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 공중합체(이하, '재생 ABS계 수지'라 함), 재생 폴리카보네이트 수지(이하, '재생 PC계 수지'라 함) 및 재생 방향족비닐 화합물-비닐시안 화합물 공중합체(이하, '재생 SAN계 수지'라 함)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 이 경우 기계적 물성, 성형 가공성, 내화학성 및 외관 품질이 우수한 이점이 있으나, 이에 한정되는 것은 아니다.
상기 재생 ABS계 수지 및 재생 SAN계 수지를 이루는 단위체는 바람직한 일례로 상기 (A) 비재생 열가소성 공중합체에서 언급된 것과 동일한 범위 내에서 선택될 수 있다.
상기 재생 PC계 수지의 종류는 특별히 제한하지는 않으나, 일례로 비스페놀계 모노머와 카보네이트 전구체를 포함하여 중합된 수지일 수 있다.
상기 비스피놀계 모노머는 일례로 비스(4-히드록시페닐)메탄, 비스(4-히드록시페닐)에테르, 비스(4-히드록시페닐)설폰, 비스(4-히드록시페닐)설폭사이드, 비스(4-히드록시페닐)설파이드, 비스(4-히드록시페닐)케톤, 1,1-비스(4-히드록시페닐)에탄, 2,2-비스(4-히드록시페닐)프로판 (비스페놀 A; BPA), 2,2-비스(4-히드록시페닐)부탄, 1,1-비스(4-히드록시페닐)시클로헥산 (비스페놀 Z; BPZ), 2,2-비스(4-히드록시-3,5-디브로모페닐)프로판, 2,2-비스(4-히드록시-3,5-디클로로페닐)프로판, 2,2-비스(4-히드록시-3-브로모페닐)프로판, 2,2-비스(4-히드록시-3클로로페닐)프로판, 2,2-비스(4-히드록시-3-메틸페닐)프로판, 2,2-비스(4-히드록시-3,5-디메틸페닐)프로판, 1,1-비스(4-히드록시페닐)-1-페닐에탄, 비스(4-히드록시페닐)디페닐메탄 및 α,ω-비스[3-(ο-히드록시페닐)프로필]폴리디메틸실록산으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 카보네이트 전구체는 일례로 디메틸 카보네이트, 디에틸 카보네이트, 디부틸 카보네이트, 디시클로헥실 카보네이트, 디페닐 카보네이트, 디토릴 카보네이트, 비스(클로로페닐) 카보네이트, m-크레실 카보네이트, 디나프틸 카보네이트, 비스(디페닐) 카보네이트, 카보닐 클로라이드(포스겐), 트리포스겐, 디포스겐, 카보닐 브로마이드 및 비스할로포르메이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 재생 PC계 수지는 일례로 선형 폴리카보네이트 수지, 분지형(branched) 폴리카보네이트 수지 및 폴리에스테르카보네이트 공중합체 수지로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 선형 폴리카보네이트 수지일 수 있으며, 이 경우 유동성이 향상되어 외관 특성이 보다 우수한 효과가 있다.
상기 선형 폴리카보네이트 수지의 구체적인 예로는 비스페놀-A계 폴리카보네이트 수지일 수 있으나, 이에 제한되는 것은 아니다.
상기 (B) 재생 열가소성 수지는 일례로 재생 폴리에틸렌 수지, 재생 폴리프로필렌 수지, 재생 폴리에스터 수지, 재생 폴리스티렌계 수지, 재생 폴리아미드 수지 및 재생 폴리비닐클로라이드 수지로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있고, 이 경우 보다 다양한 재생 수지를 사용하여 물성이 우수한 조성물을 제공하는 이점이 있다.
상기 (B) 재생 열가소성 수지는 일례로 중량평균분자량이 10,000 내지 1,000,000 g/mol, 15,000 내지 900,000 g/mol, 또는 20,000 내지 900,000 g/mol인 것을 사용할 수 있고, 이 범위 내에서 충격강도 등 기계적 물성이 우수하면서 외관 품질이 우수할 수 있으나, 이에 한정되는 것은 아니다.
상기 (B) 재생 열가소성 수지는 일례로 유리전이온도가 60 내지 180℃일 수 있고, 바람직하게는 63 내지 170℃, 보다 바람직하게는 65 내지 160℃일 수 있으며, 이 범위 내에서 기계적 물성 및 성형 가공성이 보다 우수한 효과가 있다.
본 기재에서 유리전이온도(Tg)는 ASTM D 3418에 의거하여 TA Instruments Q100 DSC(Differential Scanning Calorimetry)를 이용하여 10℃/min의 승온 속도로 측정할 수 있다.
상기 (B) 재생 열가소성 수지는 일례로 본 발명의 정의를 따르는 한 시중에서 입수 가능한 제품을 사용할 수도 있다.
(C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체
상기 (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체(이하, '(C) 공중합체'라 함)는 상기 베이스 수지 100 중량부에 대하여 1 내지 10 중량부로 포함될 수 있고, 바람직하게는 1 내지 8 중량부, 보다 바람직하게는 1 내지 6 중량부로 포함될 수 있으며, 이 경우 내화학성 및 외관품질이 보다 우수하며, 반복되는 성형 가공에 대한 물성 유지율이 뛰어난 이점이 있다. 특히 바람직한 일례로, 상기 (C) 공중합체는 상기 베이스 수지 100 중량부에 대하여 1 내지 5 중량부, 보다 바람직하게는 1 내지 4 중량부, 다른 바람직한 일례로 2 내지 4 중량부로 포함될 수 있으며, 이 경우 내화학성 및 외관품질이 보다 우수하고, 반복되는 성형 가공에 대한 물성 유지율이 뛰어나며, 성형품의 단면에서 박리가 발생하지 않는 이점이 있다.
상기 (C) 공중합체는 바람직한 일례로 결정성 단위를 50 중량% 이상 포함할 수 있고, 보다 바람직하게는 60 내지 95 중량%, 보다 더욱 바람직하게는 65 내지 90 중량%로 포함할 수 있으며, 이 범위 내에서 내화학성, 외관품질이 우수하고 특히 반복되는 성형 가공에 대한 물성 유지율이 보다 뛰어난 이점이 있다. 여기서, 상기 결정성 단위는 결정을 이룰 수 있는 단량체 유래 단위를 의미하는 것으로, 구체적으로는 에틸렌 화합물 유래 단위를 지칭한다.
상기 (C) 공중합체는 일례로 에틸렌 화합물 50 내지 95 중량% 및 비닐 아세테이트 화합물 5 내지 50 중량%를 포함하여 이루어진 것일 수 있고, 바람직하게는 에틸렌 화합물 70 내지 95 중량% 및 비닐 아세테이트 화합물 5 내지 30 중량%, 보다 바람직하게는 에틸렌 화합물 75 내지 95 중량% 및 비닐 아세테이트 화합물 5 내지 25 중량%, 보다 더욱 바람직하게는 에틸렌 화합물 80 내지 90 중량% 및 비닐 아세테이트 화합물 10 내지 20 중량%를 포함하여 이루어진 것일 수 있으며, 이 범위 내에서 내화학성, 외관품질 및 반복되는 성형 가공에 대한 물성 유지율이 보다 뛰어난 이점이 있다. 다른 바람직한 일례로, 상기 (C) 공중합체는 에틸렌 화합물 60 내지 85 중량% 및 비닐 아세테이트 화합물 15 내지 40 중량%, 보다 바람직하게는 에틸렌 화합물 60 내지 80 중량% 및 비닐 아세테이트 화합물 20 내지 40 중량%, 보다 더욱 바람직하게는 에틸렌 화합물 65 내지 80 중량% 및 비닐 아세테이트 화합물 20 내지 35 중량%를 포함하여 이루어진 것일 수 있으며, 이 범위 내에서 충격강도 및 외관품질이 보다 우수하면서 반복되는 성형 가공에 대한 물성 유지율이 보다 뛰어난 이점이 있다.
상기 에틸렌 화합물-비닐 아세테이트 화합물 공중합체의 제조방법은 본 발명이 속한 기술분야에서 통상적으로 사용되는 제조방법인 경우 특별히 제한되지 않는다.
상기 (C) 공중합체는 일례로 에틸렌 화합물 및 비닐아세테이트 화합물의 합 100 중량부를 기준으로, 반응기에 에틸렌 화합물 50 내지 95 중량부, 비닐 아세테이트 화합물 5 내지 50 중량부, 개시제 0.001 내지 0.1 중량부를 투입하여 자유 라디컬 중합시키는 단계를 포함하여 제조될 수 있다.
상기 (C) 공중합체 중합 반응은 일례로 500 bar 이상의 압력 및 130 내지 300℃의 온도 조건 하에서 진행될 수 있고, 바람직하게는 700 내지 5,000 bar 및 150 내지 300℃, 보다 바람직하게는 800 내지 4,000 bar 및 150 내지 250℃의 조건 하에서 진행될 수 있으며, 이 범위 내에서 높은 중합 전환율을 얻을 수 있고 중합 반응의 효율이 보다 우수한 이점이 있다.
본 기재에서 구체적으로 언급하지 않은 개시제나 연쇄 이동제 등과 같은 기타 다른 첨가물은 필요에 따라 적절히 선택할 수 있고, 에틸렌 화합물-비닐 아세테이트 화합물 공중합체의 제조에 일반적으로 적용되는 범위인 경우 특별히 제한되지 않는다.
일례로, 상기 (C) 공중합체는 본 발명의 정의를 따르는 한 시중에서 입수 가능한 제품을 이용할 수도 있다.
상기 (C) 공중합체는 일례로 중량평균분자량이 10,000 내지 800,000 g/mol 또는 30,000 내지 700,000 g/mol일 수 있으며, 이 범위 내에서 성형 가공성 및 내화학성이 보다 우수할 수 있으나, 이에 한정되는 것은 아니다.
상기 (C) 공중합체는 일례로 분자량 분포도(PDI)가 1.5 내지 3.0인 것을 사용할 수 있고, 바람직하게는 2.0 내지 2.5인 것을 사용할 수 있으며, 이 범위 내에서 성형 가공성 및 외관 품질이 보다 우수할 수 있으나, 이에 한정되는 것은 아니다.
본 기재에서, 분자량 분포도(PDI)는 Mw/Mn으로 정의되고, 여기에서 Mw 및 Mn은 각각 중량평균분자량 및 수평균분자량을 의미한다.
상기 (C) 공중합체의 중량평균분자량 및 수평균분자량은 본 발명이 속한 기술분야에서 통상적으로 실시되는 방법에 따라 측정될 수 있고, 구체적인 일례로 용출액으로 TCB(트리클로로벤젠) 용매를 사용하여, GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다. 이때 구체적인 측정예로, 용매: TCB + 0.015 중량% BHT(Butylated hydroxytoluene), 컬럼온도: 160℃, 유속: 1.0 ml/min, 시료 농도: 1.0 mg/ml, 주입량: 200 ㎕, 컬럼 모델: 3 x PLgel 10㎛ MIXED-B(300x7.5mm), 장비명: Agilent PL-PGC 220, Refractive index detector: Agilent G1362 RID, RI 온도: 160℃, 데이터 처리: Agilent ChemStation S/W, 시험방법(Mn, Mw 및 PDI): OECD TG 118 조건으로 측정할 수 있다.
상기 (C) 공중합체는 일례로 ASTM D1238에 의거하여 190℃, 2.16 kg의 조건 하에서 측정한 용융지수가 2 내지 50 g/10min 일 수 있고, 바람직하게는 15 내지 30 g/10min일 수 있으며, 이 범위 내에서 다른 물성의 저하 없이 외관 품질이 보다 우수한 이점이 있다.
(D) 무기안료
상기 (D) 무기안료는 상기 베이스 수지 100 중량부에 대하여 일례로 0.01 내지 10 중량부로 포함될 수 있고, 바람직하게는 0.05 내지 10 중량부, 보다 바람직하게는 0.1 내지 10 중량부, 더욱 바람직하게는 0.5 내지 7 중량부, 보다 더 바람직하게는 1 내지 5 중량부, 보다 더욱 바람직하게는 1 내지 4 중량부로 포함될 수 있으며, 이 범위 내에서 다른 물성의 저하 없이 기계적 물성 및 외관 품질이 보다 우수한 이점이 있다.
상기 (D) 무기안료는 굴절률이 1.65 이상인 것을 사용하는 것이 외관 품질 개선 측면에서 보다 유리하다. 상기 (D) 무기안료의 굴절률은 바람직하게는 1.65 내지 3.0, 보다 바람직하게는 1.7 내지 2.8, 보다 더욱 바람직하게는 1.75 내지 2.75인 것을 사용할 수 있다.
본 기재에서 무기안료의 굴절률은 ASTM D 542-50에 의거하여 REICHERT MARK 2 PLUS로, 25℃에서 측정할 수 있다.
상기 (D) 무기안료는 평균입경이 10 내지 500 nm인 것을 사용하는 것이 기계적 물성 및 외관 품질 개선 측면에서 보다 유리하다. 상기 (D) 무기안료의 평균입경은 바람직하게는 50 내지 400 nm, 보다 바람직하게는 50 내지 300 nm인 것을 사용할 수 있다.
본 기재에서, 무기안료의 평균입경은 달리 특정하지 않는 한 BET로 측정된 값일 수 있고, 상세하게는 질소 가스 흡착법을 사용하여, BET 분석 장비(Surface Area and Porosity Analyzer ASAP 2020, Micromeritics 社)를 이용하여 측정할 수 있다.
상기 (D) 무기안료는 일례로 이산화티타늄, 산화아연, 황화아연, 수산화 알루미늄, 산화철, 산화마그네슘, 탄산칼슘, 황산바륨, 클레이, 카본블랙 및 화이트카본으로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 이산화티타늄, 산화아연 및 카본블랙으로 이루어진 군에서 선택된 1종 이상, 보다 바람직하게는 이산화티타늄 및 카본블랙으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 이 경우 다른 물성의 저하 없이 외관 품질이 보다 우수한 이점이 있다.
열가소성 수지 조성물
본 발명의 열가소성 수지 조성물은 (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부, (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부 및 (D) 무기안료 0.01 내지 10 중량부를 포함하며, 이 경우 종래 ABS계 수지의 기계적 물성, 성형 가공성 및 내화학성은 유지하면서, 성형 가공 반복에 의한 물성 저하가 방지되어 물성 유지율이 우수한 효과가 있다.
상기 (D) 무기안료는 굴절률이 1.65 이상이고, 평균입경이 10 내지 500 nm인 것을 사용하는 것이 바람직하다.
상기 열가소성 수지 조성물은 일례로 하기 수학식 1로 계산되는 용융지수 유지율이 80% 이상일 수 있고, 바람직하게는 85% 이상, 보다 바람직하게는 90% 이상일 수 있으며, 이와 같이 압출 가공 등 고온의 성형 공정을 반복적으로 수행하여도 상기와 같이 물성 유지율이 우수하여 품질 균일화에 보다 유리하고, 기계적 물성, 내화학성 및 외관 품질이 우수한 재생 수지 조성물을 제공할 수 있다.
[수학식 1]
용융지수 유지율(%)= [MIn+5/MIn] X 100
(상기 수학식 1에서, MIn은 상기 열가소성 수지 조성물을 200 내지 250℃ 및 250 내지 400 rpm 조건으로 압출 가공을 n회 수행한 후 ASTM D1238에 의거하여 220℃, 10kg 조건 하에 측정한 용융지수 값(g/10min)이고, MIn+5은 상기와 동일한 조건으로 압출 가공을 n+5회 반복 수행한 후 측정한 용융지수 값(g/10min)을 의미하며, 여기서 n은 1 내지 10의 정수이다.)
상기 열가소성 수지 조성물은 일례로 하기 수학식 2로 계산되는 충격강도 유지율이 80% 이상일 수 있고, 바람직하게는 85% 이상, 보다 바람직하게는 90% 이상일 수 있으며, 이와 같이 압출 가공 등 고온의 성형 공정을 반복적으로 수행하여도 상기와 같이 물성 유지율이 우수하여 품질 균일화에 보다 유리하고, 기계적 물성, 내화학성 및 외관 품질이 우수한 재생 수지 조성물을 제공할 수 있다.
[수학식 2]
충격강도 유지율(%)= [ImStn+5/ImStn] X 100
(상기 수학식 2에서, ImStn은 상기 열가소성 수지 조성물을 200 내지 250℃ 및 250 내지 400 rpm 조건으로 압출 가공을 n회 수행한 후 ASTM D256에 의거하여 시편 두께 1/8" 조건 하에 측정한 아이조드 충격강도 값(kgf·cm/cm)이고, ImStn+5은 상기와 동일한 조건으로 압출 가공을 n+5회 반복 수행한 후 측정한 아이조드 충격강도 값(kgf·cm/cm)을 의미하며, 여기서 n은 n은 1 내지 10의 정수이다.)
상기 수학식 1 및 2에서, n은 독립적으로 0 내지 10, 0 내지 7, 0 내지 5 또는 0 내지 3일 수 있고, 바람직한 일례로는 1 내지 8, 1 내지 6, 1 내지 5, 또는 1 내지 4일 수 있다.
본 기재의 열가소성 수지 조성물은 상기와 같이 조성비를 특정 범위로 조절함으로써 재생 수지를 과량 적용함에도 기계적 물성, 내화학성 및 외관품질이 크게 개선될 뿐만 아니라, 압출과 같은 고온 성형 가공을 5회 이상 반복 수행하여도 물성의 저하가 방지되어 재생 수지의 사용량 및 재생 수지의 재사용 회수를 크게 향상시킬 수 있다.
상기 열가소성 수지 조성물은 상기 특정된 조성비 범위 내에서 일례로 200 mm*10.0 mm*3.2 mm 크기의 시편을 1%의 응력을 가지는 곡률 지그에 고정하고 Nanox 세제 1cc를 도포한 후, 시편의 표면에 직경 3 mm 이상의 크랙이 발생되는 시간으로 측정되는 내화학성(Environmental Stress-Cracking Resistance, ESCR)이 20 시간 이상으로 내화학성이 우수한 효과가 있다. 내화학성이 상기 범위를 만족할 때 일례로 도장이나 증착과 같은 후가공 공정에서 유기 용매 및 세제의 사용으로 인한 크랙 발생을 방지할 수 있고, 다른 일례로는 차량 에어벤트 부품으로 사용 시 차량용 방향제 등의 사용으로 인한 크랙 발생을 방지할 수 있어, 다양한 분야에 적용할 수 있고 사용 중에도 제품의 변질을 방지하는 효과가 있다.
본 기재에서 내화학성은 구체적인 일례로 액상 타입의 Nanox 세제를 이용하여 23℃ 온도 하에 측정할 수 있다.
Nanox 세제는 일반적으로 사용되는 가정용 세탁 세제에 비하여 고농축 세제로 널리 알려진 세제로서, 가정용 세탁 세제의 경우 계면활성제의 농도가 일반적으로 약 20 내지 30 중량%인 것에 반해 Nanox 세제는 50 내지 60 중량%로 계면활성제의 농도가 매우 높아 세척력이 강한 것으로 알려져 있다. 그러나, Nanox 세제를 일례로 일반 세탁기에 사용하는 경우, 세탁기 내부의 플라스틱(열가소성 수지) 소재가 Nanox 세제와 직접적으로 닿는 부분에서 크랙이 발생하는 등 가전제품에 주로 사용되는 플라스틱 소재에 대한 화학적 열화 작용을 일으킬 수 있으며, 심한 경우 고장을 야기하는 문제가 있다. 본 기재의 열가소성 수지 조성물은 일례로 상기와 같이 Nanox 세제에 대한 내화학성이 뛰어난 이점이 있으며, 이를 통해 세탁기 등의 가전제품 소재에 적용하여 사용하는 경우 장기간 내구성 유지율이 우수하여 제품의 수명을 향상시키는 이점이 있다. 특히, 세탁기, 식기 세척기 등의 내장재로 사용하는 경우, 보다 다양한 세제를 사용할 수 있는 이점이 있다.
상기 열가소성 수지 조성물은 일례로 ASTM D1238에 의거하여 220℃, 10kg 조건 하에 측정한 용융지수가 15.0 g/10min 이상일 수 있고, 바람직하게는 15.0 내지 40 g/10min, 보다 바람직하게는 17.0 내지 40 g/10min, 보다 더욱 바람직하게는 20 내지 38 g/10min일 수 있으며, 이 범위 내에서 다른 물성의 저하 없이 성형 가공성 및 외관 품질이 보다 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 ASTM D256에 의거하여 두께 1/8"의 시편을 이용하여 측정한 아이조드 충격강도가 17 kgfㆍcm/cm 이상일 수 있고, 바람직하게는 17 내지 50 kgfㆍcm/cm, 보다 바람직하게는 20 내지 45 kgfㆍcm/cm일 수 있으며, 이 범위 내에서 다른 물성의 저하 없이 기계적 강도가 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 ASTM D638에 의거하여 두께 1/8"의 시편을 이용하여 인장속도 50 mm/min 조건 하에 측정한 인장강도가 380 kg/cm2 이상일 수 있고, 바람직하게는 380 내지 500 kg/cm2, 보다 바람직하게는 400 내지 480 kg/cm2일 수 있으며, 이 범위 내에서 다른 물성의 저하 없이 기계적 강도가 우수한 효과가 있다.
열가소성 수지 조성물의 제조방법
본 발명의 열가소성 수지 조성물은 (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부; (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및 (D) 무기안료 0.01 내지 10 중량부;를 포함하여, 200 내지 280℃에서 혼련 및 압출하는 단계를 포함하여 제조될 수 있다. 이 경우, 재생 수지를 과량 포함함에도 기존 ABS계 수지 고유의 물성은 유지하면서 외관 특성 및 반복되는 성형 가공에 대한 물성 유지율이 모두 뛰어난 효과가 있다.
상기 (D) 무기안료는 굴절률이 1.65 이상이고, 평균입경이 10 내지 500 nm인 것을 사용하는 것이 바람직하다.
상기 혼련 및 압출하는 단계는 일례로 온도 및 압출기의 스크류 회전속도가 각각 200 내지 280℃ 및 250 내지 600 rpm, 바람직하게는 210 내지 250℃ 및 300 내지 550 rpm 하에서 진행될 수 있고, 이 경우 기계적 물성, 내화학성, 내열성 및 외관품질이 우수한 효과가 있다.
상기 혼련 및 압출하는 단계는 일례로 일축 압출기, 이축 압출기 및 벤버리 믹서로 이루어진 군으로부터 선택된 1종 이상을 사용하여 수행될 수 있고, 조성물을 균일하게 혼합한 뒤 압출하여 일례로 펠렛 형태의 열가소성 수지 조성물을 수득할 수 있으며, 이 경우 기계적 물성 저하, 내열성 저하 발생을 방지하고 외관 품질이 우수한 효과가 있다.
상기 열가소성 수지 조성물은 상기 혼련 및 압출 시키는 과정에서 필요에 따라 선택적으로 활제, 열안정제, 광안정제, 산화방지제, 자외선 안정제, 염료, 착색제, 이형제, 대전방지제, 항균제, 가공조제, 상용화제, 금속 불활성화제, 난연제, 억연제, 적하방지제, 발포제, 가소제, 보강제, 충전제, 무광택제, 내마찰제 및 내마모제로 이루어진 군으로부터 선택된 1종 이상의 첨가제를 더 포함할 수 있다.
상기 첨가제는 상기 (A) 비재생 열가소성 수지, (B) 재생 열가소성 수지, (C) 공중합체 및 (D) 무기안료의 총 합 100 중량부를 기준으로 0.01 내지 20 중량부, 바람직하게는 0.05 내지 10 중량부, 0.05 내지 5 중량부 또는 0.05 내지 3 중량부로 더 포함할 수 있고, 이 범위 내에서 상기 열가소성 수지 조성물 본연의 물성을 저하시키지 않으면서도 필요한 물성이 잘 구현되는 효과가 있다.
상기 활제는 일례로 에틸렌 비스 스테라마이드, 산화폴리에틸렌 왁스, 마그네슘스테아레이트, 칼슘스테라마이드, 스테아릭에시드 및 실리콘 오일 중에서 선택된 1종 이상일 수 있으나 이에 한정되지 않는다.
상기 실리콘 오일은 일례로 디메틸 실리콘 오일, 메틸 하이드로겐 실리콘 오일, 에스테르 변성 실리콘 오일, 하이드록시 실리콘 오일, 카비놀 변성 실리콘 오일, 비닐 실리콘 오일 및 실리콘 아크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 산화방지제는 일례로 페놀계 산화방지제, 인계 산화방지제 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 대전방지제는 일례로 음이온계 계면활성제, 비이이온계 계면활성제 등을 1종 이상 사용할 수 있으며, 이에 한정되는 것은 아님을 명시한다.
상기 이형제는 일례로 글리세린스터레이트, 폴리에틸렌 테트라 스터레이트 등으로부터 선택된 1종 이상 사용할 수 있으며, 이에 한정되는 것은 아님을 명시한다.
성형품
본 발명의 성형품은 본 기재의 열가소성 수지 조성물을 포함하는 것을 특징으로 하며, 이 경우 재생 수지를 포함하여 제조되었음에도 기계적 물성, 성형 가공성, 내화학성 및 외관 품질이 우수하면서, 반복되는 성형 가공에 대한 물성 유지율이 뛰어난 효과가 있다.
상기 성형품은 일례로 상기 열가소성 수지 조성물 또는 이의 펠렛을 사출 가공하여 제조할 수 있다.
상기 사출 가공은 일례로 사출 온도 220 내지 280℃ 및 보압 10 내지 200 bar의 사출 조건 하에서 실시될 수 있다. 이때 금형 온도는 일례로 50 내지 120℃, 바람직하게는 55 내지 100℃일 수 있다.
상기 성형품은 기계적 강도, 외관 품질 및 내화학성이 우수하여 일례로 가전이나 OA 기기 등 전자제품의 하우징 및 부품 등에 사용될 수 있다.
상기 성형품은 일례로, 광학 현미경을 통해 표면에서 관측되는 직경 100 ㎛ 이상의 이물의 개수가 15 개/100 cm2 미만, 바람직하게는 10 개/100 cm2 이하, 보다 바람직하게는 8 개/100 cm2 이하, 보다 더욱 바람직하게는 7 개/100 cm2 이하일 수 있고, 이 범위 내에서 외관 품질이 우수하면서도 물성 밸런스가 뛰어난 이점이 있다.
본 기재에서 성형품의 이물은 두께 3 mm이고 가로 및 세로가 각각 10 cm(관측 면적 100cm2)인 시편을 100배의 배율로 광학 현미경(OM)으로 관측 시 육안으로 확인되는 직경 100㎛ 이상인 이색 이물 개수를 관측하여 구할 수 있다. 상기 성형품의 이물은 바람직한 일례로 3회 이상, 구체적인 일례로 5회 관측한 값의 평균값으로 나타낼 수 있다.
상기 성형품은 본 기재의 열가소성 수지 조성물을 포함함으로써 종래의 재생 수지 조성물로 제조된 성형품에 비하여 이물의 발생량이 크게 감소될 뿐만 아니라, 이물이 성형품의 표면으로 이행(migration)되는 현상을 최소화하는 이물 가림 효과가 우수하여 이물이 존재하더라도 눈에 잘 띄지 않아 외관 품질이 보다 우수한 효과가 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
하기 실시예, 비교예 및 참조예에서 사용된 물질은 다음과 같다.
(A-1) 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 그라프트 공중합체: 공액디엔 화합물을 포함하여 이루어진 공액디엔 고무의 평균입경이 3,200Å이고, 상기 공액디엔 고무의 함량이 60 중량%인 ABS 그라프트 공중합체(LG 화학 사의 DP270)
(A-2) 방향족비닐 화합물-비닐시안 화합물 공중합체: 아크릴로니트릴 유래 단위 23 중량% 및 스티렌 유래단위 77 중량%인 SAN 수지(중량평균분자량 110,000 g/mol; LG 화학 사의 83SF)
(B-1) 재생 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 공중합체: 용융지수(220℃, 10 kg)가 22 g/10min이고, 색차계(기기명 Ci7860, X-Rite 사)로 측정한 컬러 L 값*이 31인 재생 ABS 수지(씨엔텍코리아 사의 A204)
(B-2) 재생 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 공중합체: 용융지수(220℃, 10 kg)가 16 g/10min이고, 색차계(기기명 Ci7860, X-Rite 사)로 측정한 컬러 L 값*이 85인 재생 ABS 수지(씨엔텍코리아 사의 A205LC)
(B-3) 재생 방향족비닐 화합물-비닐시안 화합물 공중합체: 용융지수(220℃, 10 kg)가 37 g/10min인 재생 SAN 수지(씨엔텍코리아 사의 S601)
(B-4) 재생 폴리카보네이트 수지: 용융지수(300℃, 1.2 kg)가 20 g/10min인 비스페놀 A형 재생 폴리카보네이트 수지(이지켐 사의 PC PW 20HT)
(C-1) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체: 용융지수(190℃, 2.16 kg)가 25 g/10min이고, 에틸렌 화합물 유래 단위 72 중량% 및 비닐 아세테이트 화합물 유래 단위 28 중량%를 포함하여 이루어진 EVA 수지(LG 화학 사의 EVEA28025)
(C-2) 에틸렌 화합물-메틸 아크릴레이트 화합물 공중합체: 용융지수(190℃, 2.16 kg)가 2 g/10min이고, 에틸렌 화합물 유래 단위 76 중량% 및 메틸 아크릴레이트 화합물 유래 단위 24 중량%를 포함하여 이루어진 EMA 수지(Dupont 사의 Elvaloy AC 1224)
(D-1) 무기안료: 굴절률 2.73이고 평균입경 250 nm인 이산화티타늄(Dupont 사의 R350)
(D-2) 무기안료: 굴절률 1.75이고 평균입경 58 nm인 카본블랙(Orion Engineered Carbons 사의 HIBLACK 170)
(D-3) 무기안료: 굴절률 1.46이고 평균입경 45㎛인 규조토(Dong-Sin사의 SiO2n H2O, 325 mesh)
*컬러 L 값: CIE1976 L*a*b* 표색계에 의거한 색상 좌표의 L값을 의미하는 것으로, L은 0 내지 100의 값을 가지며, 0에 가까울수록 검은색을 나타내고, 100에 가까울수록 흰색을 나타낸다.
실시예 1 내지 7, 비교예 1 내지 11 및 참조예
(A-1) 비재생 그라프트 공중합체; (A-2) 비재생 공중합체; (B-1) 내지 (B-4)의 재생 열가소성 수지; (C-1) 또는 (C-2) 공중합체; 및, (D-1) 또는 (D-2) 무기안료;를 하기 표 1 및 표 2에 나타난 함량으로 슈퍼 믹서(super mixer)를 이용해 혼합하여 이축 압출기(twin-screw extruder, 스크류 직경 26mm, L/D=40)로 압출온도 230℃ 및 스크류 회전속도 320 rpm의 압출 조건으로 압출하여 펠렛 형태로 제조하였다.
제조된 펠렛 형태의 열가소성 수지 조성물을 80℃에서 4시간 이상 건조한 후, 사출기에서 사출온도 240℃, 금형온도 60℃ 및 사출속도 30mm/sec의 조건 하에 사출 성형하여 시편을 제조하였고, 이를 상온(20 내지 26℃)에서 48시간 이상 방치하여 제조된 시편으로 초기 물성을 측정하였다.
또한, 상기 제조된 펠렛을 상기와 동일한 압출 조건 하에 압출 공정을 추가로 5회 반복 수행하여 총 6회의 압출 공정을 거친 펠렛을 제조한 후, 이를 상기와 동일한 사출 조건 하에 사출 성형하고, 이를 상온(20 내지 26℃)에서 48시간 이상 방치하여 제조된 시편으로 물성 유지율을 측정하였다.
[시험예]
상기 실시예, 비교예 및 참조예에서 제조된 시편의 물성을 하기와 같은 방법으로 측정하고 그 결과를 하기 표 2에 나타내었다.
* 유동지수(melt flow index, g/10min): ASTM D1238에 의거하여 220℃, 10kg 하중 하에서 10분간 측정하였다.
* 아이조드 충격강도(kgfcm/cm): ASTM D256에 의거하여 두께 1/8″의 시편을 이용하여 23℃ 온도 하에 측정하였다.
* 인장강도(kg/cm2): ASTM D638에 의거하여 두께 1/8″의 시편을 이용하여 시험속도 50 mm/min 및 23℃ 온도 하에 측정하였다.
* 표면 이물(개/100cm2): 제조된 펠렛으로 두께 3 mm, 가로 및 세로 각각 10 cm인 시편을 준비하여, 시편의 표면을 광학현미경(기기명: VHX-5000, KEYENCE CORPORATION 사)으로 배율 X100 하에 5회 관측하여 직경 100㎛ 이상의 이색 이물 개수를 평균값으로 측정하였다.
* 내화학성(h): 제조된 펠렛으로 200 mm*10.0 mm*3.2 mm 크기의 시편을 준비하여, 1%의 응력을 갖는 곡률 지그(jig)에 고정하고 Nanox 세제(LION 사) 1 cc를 도포한 후 시편의 표면에 3 mm 크기의 크랙이 발생되는 시간(hour)을 측정하였다.
* 박리: 200 mm*10.0 mm*3.2 mm 크기의 시편의 윗면 중앙에 폭 방향으로 커터칼을 이용하여 표면에 칼집을 내어 부러뜨린 후 박리 발생 여부를 육안으로 확인하고, 박리 발생 정도에 따라 X, △, O로 평가하였다. 이때, 박리가 발생하는 경우 박리되어 일어난 박피를 손으로 잡아당겨 쉽게 뜯어지는지 여부를 관찰하였다. (X: 박리 발생 없음, △: 단면 일부에 박리 관찰되나 박피가 쉽게 뜯어지지 않음, O: 단면에 다수의 박리가 관찰되며 박피가 쉽게 뜯어짐)
* 물성 유지율: 각각의 물성에 대해, 압출 공정 1회 거친 후의 물성(초기 물성) 측정 값에 대한 압출 공정을 5회 추가하여 총 6회 압출 공정을 거친 후의 물성(압출 5회 추가 후의 물성) 측정 값을 퍼센티지(%)로 나타내었다.
보다 구체적으로, 각 물성 측정 값으로 하기 수학식 A를 이용하여 계산하였다.
[수학식 A]
물성 유지율(%)= [(압출 5회 추가 후의 물성)/(초기 물성)] X 100
상기 수학식 A에서, 상기 물성은 유동지수, 충격강도 또는 인장강도일 수 있다.
다른 일례로, 물성 유지율은 상기 수학식 1 및 2를 이용하여 계산할 수도 있다.
구분
(중량부)
실시예 참조예
1 2 3 4 5 6 7 1
A-1 g-ABS 18 15 12 19 17 19 18 27
A-2 SAN 49 30 13 26 28 26 49 73
비재생 수지 합 67 45 25 45 45 45 67 100
B-1 재생 ABS
(블랙)
33 55 75 - - - 33 -
B-2 재생 ABS
(회색)
- - - 40 25 40 - -
B-3 재생 SAN - - - 15 - 15 - -
B-4 재생 PC - - - - 30 - - -
재생 수지 합 33 55 75 55 55 55 33 -
C-1 EVA 1 2 4 2 2 2 8 -
C-2 EMA - - - - - - - -
D-1 TiO2 0.5 1.0 1.0 2.0 4.0 7.0 0.5 -
D-2 카본블랙 0.5 1.0 2.0 - - - 0.5 -
D-3 규조토 - - - - - - - -
초기 물성
(n=1)
MI 25.8 26.5 25.7 35.9 17.2 35.5 27.0 41.1
충격강도 24.8 26.0 25.0 25.8 43.6 19.7 27.4 31.1
인장강도 428.0 404.0 384.0 402.0 476.0 413.0 410.0 412.0
이물 4.0 5.0 8.0 3.0 3.0 2.0 2.0 0
내화학성 32.0 41.0 38.5 38.0 25.0 38.0 51.0 20.5
박리 여부 X X X X X X X
압출 5회 추가 후 물성 MI 24.1 24.8 23.6 36.6 17.1 36.3 26.0 40.2
충격강도 24.1 25.6 22.7 25.3 43.0 18.6 26.9 29.4
인장강도 423.0 393.0 368.0 399.0 470.0 407.0 401.0 423.0
물성 유지율
(%)
MI 93.4 93.6 91.8 101.9 99.4 102.3 96.3 97.8
물성 유지율(%) 충격강도 97.2 98.5 90.8 98.1 98.6 94.4 98.2 94.5
물성 유지율(%) 인장강도 98.8 97.3 95.8 99.3 98.7 98.5 97.8 102.7
구분
(중량부)
비교예
1 2 3 4 5 6 7 8 9 10 11
A-1 g-ABS 18 15 12 19 19 19 17 19 18 19 18
A-2 SAN 49 30 13 26 26 26 28 26 49 26 49
비재생 수지 합 67 45 25 45 45 45 45 45 67 45 67
B-1 재생 ABS
(블랙)
33 55 75 - - - - - 33 - 33
B-2 재생 ABS
(회색)
- - - 40 40 40 25 40 - 40 -
B-3 재생 SAN - - - 15 15 15 15 - 15 -
B-4 재생 PC - - - - - 30 - - - -
재생 수지 합 33 55 75 55 55 55 55 55 33 55 33
C-1 EVA - - - - - 0.5 - - 12 2 1
C-2 EMA - - - - - - - 2 - - -
D-1 TiO2 - - - - 2 - - 7 0.5 12 -
D-2 카본블랙 - - - - - - - - 0.5 - -
D-3 규조토 - - - - - - - - - - 4
초기 물성
(n=1)
MI 26.0 27.3 26.0 39.0 38.0 38.0 15.7 31.5 28.0 21.0 25.0
충격강도 23.1 23.0 21.0 23.7 22.5 23.0 43.1 15.8 26.3 16.0 22.0
인장강도 431.0 410.0 396.0 412.0 405.0 405.0 480.0 418.0 405.0 411.0 423.0
이물 19.0 24.0 31.0 18.0 13.0 15.0 15.0 7.0 15.0 6.0 17.0
내화학성(h) 16.0 12.5 8.5 16.5 17.5 22.0 10.5 43.0 56.0 14.0 15.8
박리 여부 X X X X X X X X O X X
압출 5회 추가 후 물성 MI 23.1 22.8 23.4 35.1 35.5 36.0 13.7 29.0 25.0 18.0 22.4
충격강도 18.8 18.3 17.7 19.1 19.0 21.0 37.5 14.4 22.2 13.8 16.4
인장강도 410.0 397.0 350.0 387.0 390.0 396.0 460.0 408.0 392.0 395.0 412.0
물성 유지율
(%)
MI 88.8 83.5 90.0 90.0 93.4 94.7 87.3 92.1 89.3 85.7 89.6
충격강도 81.4 79.6 84.3 80.6 84.4 91.3 87.0 91.1 84.4 86.3 74.5
인장강도 95.1 96.8 88.4 93.9 96.3 97.8 95.8 97.6 96.8 96.1 97.4
상기 표 1 및 표 2에 나타낸 바와 같이, 본 발명에 따라 제조된 실시예 1 내지 7의 경우 본 발명의 범위를 벗어난 비교예 1 내지 11 대비 유동성, 충격강도, 인장강도, 내화학성 및 박리 특성이 뛰어나고, 표면에 관찰되는 이물의 수도 절반 이상 감소된 결과를 나타내었으며, 특히 압출 공정을 추가로 5회 반복 수행한 이후에도 초기 물성 대비 물성 유지율이 크게 개선된 것을 확인할 수 있었다. 더욱이, 재생 수지를 적용하지 않은 참조예 1과 비교하여도, 비교예 1 내지 11 대비 재생 수지 적용으로 인한 물성의 저하가 크게 개선된 것을 확인할 수 있었다.
또한, 실시예 3의 경우 재생 수지의 총 함량이 75 중량부로 높음에도 불구하고 기계적 물성, 내화학성 및 이물 개수가 현저하게 개선되었을 뿐만 아니라 성형 가공에 대한 물성 유지율도 크게 개선된 결과를 나타내었으며, 실시예 6의 경우에는 무기안료의 함량이 7 중량부로 높음에도 무기안료를 과량 포함함으로 인한 물성 저하가 크게 개선된 것을 확인할 수 있었다. 더욱이, 실시예의 1 내지 7의 경우 박리 특성도 우수한 것으로 나타났으며, 특히 실시예 1 내지 6에서는 박리가 전혀 발생하지 않아 박리 특성이 보다 우수한 것을 확인할 수 있었다.
하기 도 1은 본 발명의 실시예 및 비교예의 내화학성 시험 결과를 나타내는 것으로, 시편의 표면에 Nanox 세제 도포 후 38 시간이 경과된 시점에서 촬영한 사진이다. 하기 도 1을 참조하면 본 발명의 실시예의 경우 세제 도포 후 38 시간이 경과할 때까지 크랙이 관찰되지 않은 반면, 비교예의 경우 크랙이 육안으로 뚜렷이 관찰되는 결과를 나타내어, 본 발명에 따라 제조된 실시예의 경우 내화학성이 크게 개선된 것을 확인할 수 있다.
하기 도 2는 본 발명의 실시예 및 비교예의 표면 이물 발생 지점을 기록한 결과를 나타내고, 하기 도 3은 본 발명의 실시예 및 비교예의 표면 이물을 광학 현미경으로 관찰한 결과를 나타낸다. 하기 도 2 및 도 3을 참조하면, 본 발명에 따라 제조된 실시예의 경우 비교예에 비하여 이물 발생 개수가 현저히 감소되었을 뿐만 아니라, 이물 가림 효과가 우수하여 이물이 발생하더라도 이물이 흐릿하게 관찰되어 외관 품질이 크게 개선된 것을 확인할 수 있다.

Claims (14)

  1. (A) 비재생 열가소성 수지 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부;
    (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부; 및
    (D) 무기안료 0.01 내지 10 중량부;를 포함하되,
    상기 (D) 무기안료는 굴절률이 1.65 이상이고, 평균입경이 10 내지 500 nm인 것을 특징으로 하는
    열가소성 수지 조성물.
  2. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 하기 수학식 1로 계산되는 용융지수 유지율이 80% 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
    [수학식 1]
    용융지수 유지율(%)= [MIn+5/MIn] X 100
    (상기 수학식 1에서, MIn은 상기 열가소성 수지 조성물을 200 내지 250℃ 및 250 내지 400 rpm 조건으로 압출 가공을 n회 수행한 후 ASTM D1238에 의거하여 220℃, 10kg 조건 하에 측정한 용융지수 값(g/10min)이고, MIn+5은 상기와 동일한 조건으로 압출 가공을 n+5회 반복 수행한 후 측정한 용융지수 값(g/10min)을 의미하며, 여기서 n은 1 내지 10의 정수이다.)
  3. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 하기 수학식 2로 계산되는 충격강도 유지율이 80% 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
    [수학식 2]
    충격강도 유지율(%)= [ImStn+5/ImStn] X 100
    (상기 수학식 2에서, ImStn은 상기 열가소성 수지 조성물을 200 내지 250℃ 및 250 내지 400 rpm 조건으로 압출 가공을 n회 수행한 후 ASTM D256에 의거하여 시편 두께 1/8" 조건 하에 측정한 아이조드 충격강도 값(kgf·cm/cm)이고, ImStn+5은 상기와 동일한 조건으로 압출 가공을 n+5회 반복 수행한 후 측정한 아이조드 충격강도 값(kgf·cm/cm)을 의미하며, 여기서 n은 1 내지 10의 정수이다.)
  4. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 200 mm*10 mm*3.2 mm 크기의 시편을 1%의 응력을 갖는 곡률 지그(jig)에 고정하고 Nanox 세제(LION 사) 1cc를 도포한 후, 시편의 표면에 크랙이 발생되는 시간으로 측정되는 내화학성(ESCR)이 20 시간(hour) 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  5. 제 1항에 있어서,
    상기 (A) 비재생 열가소성 공중합체는 (A-1) 비재생 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 그라프트 공중합체 20 내지 70 중량% 및 (A-2) 비재생 방향족비닐 화합물-비닐시안 화합물 공중합체 30 내지 80 중량%를 포함하는 것을 특징으로 하는
    열가소성 수지 조성물.
  6. 제 5항에 있어서,
    상기 (A-1) 그라프트 공중합체는 공액디엔 고무 50 내지 80 중량%, 비닐시안 화합물 5 내지 20 중량% 및 방향족비닐 화합물 10 내지 40 중량%를 포함하여 이루어진 것을 특징으로 하는
    열가소성 수지 조성물.
  7. 제 5항에 있어서,
    상기 (A-2) 공중합체는 비닐시안 화합물 20 내지 40 중량% 및 방향족비닐 화합물 60 내지 80 중량%를 포함하여 이루어진 것을 특징으로 하는
    열가소성 수지 조성물.
  8. 제 1항에 있어서,
    상기 (B) 재생 열가소성 수지는 재생 비닐시안 화합물-공액디엔 화합물-방향족비닐 화합물 공중합체, 재생 폴리카보네이트 수지 및 재생 방향족비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는
    열가소성 수지 조성물.
  9. 제 1항에 있어서,
    상기 (B) 재생 열가소성 수지는 유리전이온도가 60 내지 180℃인 것을 특징으로 하는
    열가소성 수지 조성물.
  10. 제 1항에 있어서,
    상기 (C) 공중합체는 에틸렌 화합물 50 내지 95 중량% 및 비닐 아세테이트 화합물 5 내지 50 중량%를 포함하여 이루어진 것을 특징으로 하는
    열가소성 수지 조성물.
  11. 제 1항에 있어서,
    상기 (D) 무기안료는 이산화티타늄, 산화아연, 황화아연, 수산화 알루미늄, 산화철, 산화마그네슘, 탄산칼슘, 황산바륨, 클레이, 카본블랙 및 화이트카본으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  12. (A) 비재생 열가소성 공중합체 20 내지 90 중량% 및 (B) 재생 열가소성 수지 10 내지 80 중량%를 포함하는 베이스 수지 100 중량부, (C) 에틸렌 화합물-비닐 아세테이트 화합물 공중합체 1 내지 10 중량부, 및 (D) 무기안료 0.01 내지 10 중량부를 포함하여, 200 내지 280℃에서 혼련 및 압출하는 단계;를 포함하되, 상기 (D) 무기안료는 굴절률이 1.65 이상이고, 평균입경이 10 내지 500 nm인 것을 특징으로 하는
    열가소성 수지 조성물의 제조방법.
  13. 제 1항 내지 제 11항 중 어느 한 항의 열가소성 수지 조성물을 포함하는 것을 특징으로 하는
    성형품.
  14. 제 13항에 있어서,
    상기 성형품은 광학 현미경을 통해 표면에서 관측되는 직경 100 ㎛ 이상의 이물의 개수가 15 개/100 cm2 미만인 것을 특징으로 하는
    성형품.
PCT/KR2021/013764 2020-10-19 2021-10-07 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 WO2022085998A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180006048.1A CN114667314B (zh) 2020-10-19 2021-10-07 热塑性树脂组合物、制备热塑性树脂组合物的方法和包含热塑性树脂组合物的模制品
EP21878765.3A EP4043524A4 (en) 2020-10-19 2021-10-07 THERMOPLASTIC RESIN COMPOSITION, METHOD FOR PREPARING IT AND MOLDED PRODUCT COMPRISING THEM
JP2022530983A JP7477607B2 (ja) 2020-10-19 2021-10-07 熱可塑性樹脂組成物、その製造方法及びそれを含む成形品
US17/776,397 US20220403148A1 (en) 2020-10-19 2021-10-07 Thermoplastic resin composition, method of preparing the same, and molded article including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0135221 2020-10-19
KR20200135221 2020-10-19
KR1020210130783A KR20220051802A (ko) 2020-10-19 2021-10-01 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR10-2021-0130783 2021-10-01

Publications (1)

Publication Number Publication Date
WO2022085998A1 true WO2022085998A1 (ko) 2022-04-28

Family

ID=81290712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013764 WO2022085998A1 (ko) 2020-10-19 2021-10-07 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Country Status (6)

Country Link
US (1) US20220403148A1 (ko)
EP (1) EP4043524A4 (ko)
JP (1) JP7477607B2 (ko)
CN (1) CN114667314B (ko)
TW (1) TW202219165A (ko)
WO (1) WO2022085998A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102541617B1 (ko) * 2023-03-17 2023-06-13 주식회사 케이리사이클링 생활계 폐플라스틱을 활용한 재생 플라스틱 조성물 및 이를 이용한 재생 플라스틱 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401705A (zh) * 2002-09-24 2003-03-12 吉林大学 用废塑料制作热收缩型管道包覆材料的方法
JP4285984B2 (ja) * 2002-12-19 2009-06-24 フクビ化学工業株式会社 ポリエステル系床材
US7902262B2 (en) * 2004-06-15 2011-03-08 Close The Loop Technologies Pty Ltd. Method of recycling mixed streams of ewaste (WEEE)
JP2015160900A (ja) * 2014-02-27 2015-09-07 三菱電機株式会社 再生熱可塑性樹脂組成物
US9416269B2 (en) * 2013-01-11 2016-08-16 Sabic Global Technologies B.V. Polycarbonate blend compositions containing recycle for improvement in surface aesthetics
KR20160144185A (ko) 2015-06-08 2016-12-16 현대자동차주식회사 재생 수지를 이용한 abs 수지 조성물 및 이의 제조방법
US20170190913A1 (en) * 2015-12-31 2017-07-06 Triumvirate Environmental, Inc. Plastic Articles Made from Recycled Medical and Other Plastic Waste

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300798A1 (de) * 1993-01-14 1994-07-21 Bayer Ag Polycarbonat/ABS-Formmassen enthaltend Ethylenvinylacetat-Copolymere
JP3616565B2 (ja) * 1999-11-24 2005-02-02 鈴鹿富士ゼロックス株式会社 等価成形品成形用熱可塑性樹脂および等価再生方法
JP3708830B2 (ja) * 2001-02-15 2005-10-19 豊田合成株式会社 ゴム複合材料及びその製造方法並びに押出成形品
JP3888961B2 (ja) * 2002-11-19 2007-03-07 ダイセルポリマー株式会社 Pet再生樹脂組成物及びその成形品
WO2005037927A1 (ja) * 2003-10-17 2005-04-28 Ube Industries, Ltd. 固形異物を含む廃プラスチック材料粉砕物から得た再生樹脂組成物
CN101245156A (zh) * 2008-02-28 2008-08-20 戴福寿 竹塑复合材料
CN102030942B (zh) * 2010-12-17 2012-05-23 深圳市天坤元环保科技有限公司 一种耐寒冷、抗高温复合材料及制备方法
KR20120078584A (ko) * 2010-12-30 2012-07-10 제일모직주식회사 열가소성 수지 조성물 및 이를 포함하는 성형품
JP2015209497A (ja) * 2014-04-25 2015-11-24 サンアロマー株式会社 射出成形用ポリプロピレン樹脂組成物及び成形品
CN104231535A (zh) * 2014-10-17 2014-12-24 苏州市涵信塑业有限公司 Abs塑料回料改性塑料粒子
JP6002862B1 (ja) * 2016-01-26 2016-10-05 ユーエムジー・エービーエス株式会社 強化熱可塑性樹脂組成物およびその成形品
CN107501850A (zh) * 2017-09-11 2017-12-22 广西鑫深科技有限公司 利用废弃abs树脂制备汽车后扰流板专用材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401705A (zh) * 2002-09-24 2003-03-12 吉林大学 用废塑料制作热收缩型管道包覆材料的方法
JP4285984B2 (ja) * 2002-12-19 2009-06-24 フクビ化学工業株式会社 ポリエステル系床材
US7902262B2 (en) * 2004-06-15 2011-03-08 Close The Loop Technologies Pty Ltd. Method of recycling mixed streams of ewaste (WEEE)
US9416269B2 (en) * 2013-01-11 2016-08-16 Sabic Global Technologies B.V. Polycarbonate blend compositions containing recycle for improvement in surface aesthetics
JP2015160900A (ja) * 2014-02-27 2015-09-07 三菱電機株式会社 再生熱可塑性樹脂組成物
KR20160144185A (ko) 2015-06-08 2016-12-16 현대자동차주식회사 재생 수지를 이용한 abs 수지 조성물 및 이의 제조방법
US20170190913A1 (en) * 2015-12-31 2017-07-06 Triumvirate Environmental, Inc. Plastic Articles Made from Recycled Medical and Other Plastic Waste

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4043524A4

Also Published As

Publication number Publication date
CN114667314B (zh) 2024-05-24
EP4043524A1 (en) 2022-08-17
EP4043524A4 (en) 2023-01-04
US20220403148A1 (en) 2022-12-22
JP7477607B2 (ja) 2024-05-01
TW202219165A (zh) 2022-05-16
CN114667314A (zh) 2022-06-24
JP2023505045A (ja) 2023-02-08

Similar Documents

Publication Publication Date Title
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2022010053A1 (ko) 열가소성 수지 및 이의 제조방법
WO2020101332A1 (ko) 열가소성 수지 조성물
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2022019581A1 (ko) 열가소성 수지 및 이의 제조방법
WO2019093703A1 (ko) 열가소성 수지 조성물
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2013112018A1 (ko) 착색성, 내충격성 및 내스크래치성이 우수한 폴리카보네이트 수지 조성물
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2022097867A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2020149504A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023055099A1 (ko) 열가소성 수지 및 이로부터 제조된 성형품
WO2022158720A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022035071A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2023068499A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2018088677A1 (ko) 열가소성 수지 및 열가소성 수지 조성물
WO2021066345A1 (ko) 아크릴계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020091336A1 (ko) 열가소성 수지 조성물
WO2022085893A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020101326A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021878765

Country of ref document: EP

Effective date: 20220422

ENP Entry into the national phase

Ref document number: 2022530983

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE