WO2016204566A1 - 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지 - Google Patents

변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지 Download PDF

Info

Publication number
WO2016204566A1
WO2016204566A1 PCT/KR2016/006472 KR2016006472W WO2016204566A1 WO 2016204566 A1 WO2016204566 A1 WO 2016204566A1 KR 2016006472 W KR2016006472 W KR 2016006472W WO 2016204566 A1 WO2016204566 A1 WO 2016204566A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
butadiene
styrene
modified acrylonitrile
weight
Prior art date
Application number
PCT/KR2016/006472
Other languages
English (en)
French (fr)
Inventor
서재범
한창훈
이대우
박정태
최은정
강병일
성다은
김규선
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680002884.1A priority Critical patent/CN107075045B/zh
Priority to EP16811979.0A priority patent/EP3176193B1/en
Priority to US15/508,472 priority patent/US10174193B2/en
Publication of WO2016204566A1 publication Critical patent/WO2016204566A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention provides a method for preparing a modified acrylonitrile-butadiene-styrene resin having low gloss, impact resistance and heat resistance as well as low content of volatile organic compounds, and a modified acrylonitrile-butadiene-styrene resin prepared therefrom. It is about.
  • thermoplastic resins having excellent physical properties including heat resistance and impact resistance is required due to the necessity of weight reduction of automobiles and the increasing use of complex large parts of electric devices and electronic devices.
  • information technology equipment components such as automotive interiors and computers, and other electronic equipment cases tend to be glossy or low gloss to eliminate expensive coating and painting steps as well as aesthetic reasons.
  • environmentally friendly materials Accordingly, the necessity of developing materials to meet the above demands is expanding.
  • propylene-based resins have been widely used as automotive interior materials. Propylene-based resins are known to exhibit less gloss than some thermoplastics. However, propylene-based resins lack properties such as stiffness and scratch resistance, and in order to compensate for the above-mentioned properties, a method of improving the properties by adding fillers and other additives has been proposed, but it is still a material for automobile interior materials. It is insufficient to be used and there is a limit to use.
  • high impact polystyrene resins prepared by mixing a resin having low glossiness by adding a matting agent, such as polybutadiene and polystyrene, have been developed.Low gloss, heat resistance, There is a problem that the characteristics such as impact resistance is not balanced.
  • ABS resin acrylonitrile-butadiene-styrene (hereinafter referred to as ABS) resin, methylmethacrylate-butadiene-styrene (MBS) resin, and acrylate prepared through emulsion polymerization
  • ABS resins acrylonitrile-butadiene-styrene (hereinafter referred to as ABS) resin, methylmethacrylate-butadiene-styrene (MBS) resin, and acrylate prepared through emulsion polymerization
  • ASA resins and acrylic impact modifiers (AIM) resins are excellent in physical properties such as impact resistance and rigid fluidity, and are widely used in various plastic modifiers.
  • the ABS resin is excellent in dimensional stability, processability and chemical resistance is widely used as a material such as a monitor housing, game console housing, home appliances, office equipment, automotive lamp housing. Recently, many studies have been conducted to use ABS materials having excellent impact resistance, chemical resistance, and workability as automotive interior materials by providing heat resistance and low gloss.
  • a method of improving the ABS resin and manufacturing and using 1 ⁇ m or more large-diameter rubber particles has been proposed.
  • the resin produced by such a method has a low gloss effect, and has a problem in that impact strength and heat resistance are poor.
  • a method of injecting a matte filler having a particle size of 5 ⁇ m or more into the ABS resin has been proposed, but the prepared resin shows excellent moldability but insufficient low glossiness, and particularly, the impact strength is severely reduced. There is a problem that occurs.
  • a low gloss filler is added in order to exhibit low glossiness, which also has to be added in order to exhibit low glossiness, thereby lowering impact strength and increasing production cost.
  • ABS resin prepared through emulsion polymerization has a high content of volatile organic compounds (VOC), there is a problem that it is difficult to apply to environmentally friendly materials.
  • VOC volatile organic compounds
  • US Pat. No. 4,808,661 discloses an ABS resin composition prepared by a continuous bulk polymerization method in which a maleimide compound is divided and added at several times in a polymerization process.
  • US Pat. No. 5,091,470 discloses a maleimide system. It is disclosed that ABS compounds having excellent heat resistance, impact resistance, and matte properties can be prepared by injecting a compound by dividing the compound during the polymerization process, but part of the compound after the phase inversion.
  • US Pat. No. 5,412,036 discloses that an ABS resin having increased impact resistance can be produced by a continuous bulk polymerization method in which a maleimide compound is divided at several times at different conversion rates.
  • the above methods are cumbersome in that the maleimide-based compound is divided into several times, and when the maleimide-based compound is added separately, the stability of the maleimide-based compound in the reactant is lowered, resulting in phase separation from other components. This may occur, there is a problem that the rubber particles in the final produced ABS resin is produced in a non-uniform size.
  • the present invention has been made to solve the above problems of the prior art, a method for producing a modified acrylonitrile-butadiene-styrene resin having low glossiness, impact resistance and heat resistance as well as low content of volatile organic compounds. It aims to provide.
  • Another object of the present invention is to provide a modified acrylonitrile-butadiene-styrene resin produced by the above production method.
  • a rubbery polymer and an N-substituted maleimide compound are added to a mixed solution containing a reaction solvent, an aromatic vinyl monomer and an ethylenically unsaturated nitrile monomer to dissolve the polymerization solution.
  • the method of manufacturing the modified ABS resin according to an embodiment of the present invention is excellent in low glossiness, heat resistance and impact resistance by controlling the polymerization time, the devolatilization conditions and the ratio between the rubbery polymers included in the polymerization solution in the first polymerization step.
  • Modified ABS resins having a low volatile organic compound content can be prepared.
  • FIG. 1 exemplarily illustrates a processing system capable of performing a method of preparing a modified ABS resin according to an exemplary embodiment of the present invention.
  • matrix continuous phase
  • dispersed phase refers to a phase constituting particles in a continuous phase in a system in which two phases are mixed.
  • the present invention provides a modified acrylonitrile-butadiene-styrene (hereinafter referred to as ABS) resin having excellent low gloss, heat resistance, impact resistance and processability, and low content of volatile organic compounds therein. Provide a method.
  • ABS modified acrylonitrile-butadiene-styrene
  • a rubbery polymer and an N-substituted maleimide compound are added to a mixed solution containing a reaction solvent, an aromatic vinyl monomer, and an ethylenically unsaturated nitrile monomer. Dissolving to prepare a polymerization solution (step 1); Preparing a polymerization product by polymerizing the polymerization solution (step 2); And devolatilizing the polymerization product (step 3).
  • the rubbery polymer is characterized in that it comprises butadiene rubber and styrene-butadiene rubber.
  • Step 1 is a step of preparing a polymerization solution for the polymerization reaction, a rubbery polymer and an N-substituted maleimide compound is added to a mixed solution containing a reaction solvent, an aromatic vinyl monomer and an ethylenically unsaturated nitrile monomer. Can be carried out by dissolution.
  • the polymerization solution is 10% to 30% by weight of the reaction solvent; 35.5 wt% to 70.5 wt% of an aromatic vinyl monomer; 12 wt% to 15 wt% of an ethylenically unsaturated nitrile monomer; 5% to 15% by weight rubbery polymer; And 2.5 wt% to 6 wt% of the N-substituted maleimide compound.
  • the step 1 is not particularly limited, but the reaction solvent, aromatic vinyl monomer and ethylenically unsaturated nitrile monomer are added to the rubber dissolution tank having a temperature condition of 50 °C or less, specifically 40 °C to 50 °C mixed A solution may be prepared, and the rubbery polymer and the N-substituted maleimide compound may be added and dissolved in the mixed solution.
  • each component eg, a reaction solvent, an aromatic vinyl monomer, an ethylenically unsaturated nitrile monomer, a rubbery polymer, and an N-substituted maleimide compound included in the polymerization solution may be appropriately provided to have a content range as described above. It can be adjusted.
  • the reaction solvent may be at least one selected from the group consisting of ethylbenzene, toluene, xylene, methyl ethyl ketone, and methyl isobutyl ketone. Specifically, it may be ethylbenzene.
  • the reaction solvent may be used to be included in 10 to 30% by weight in the polymerization solution as described above. If the reaction solvent is contained in less than 10% by weight in the polymerization solution, the viscosity of the polymerization solution may be difficult to control, and when the reaction solvent is included in excess of 30% by weight in the polymerization solution, it is generated during the polymerization reaction. It can be difficult to effectively control the shape of the rubber particles being.
  • the aromatic vinyl monomer may be one or more selected from the group consisting of styrene, ⁇ -methylstyrene, p-bromostyrene, p-methylstyrene, p-chlorostyrene and o-bromostyrene, and specifically, styrene Can be. As described above, the aromatic vinyl monomer may be used to include 35.5 wt% to 70.5 wt% of the polymerization solution.
  • the ethylenically unsaturated nitrile monomer may be one or more selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, phenyl acrylonitrile and ⁇ -chloroacrylonitrile, specifically acrylonitrile Nitrile.
  • the ethylenically unsaturated nitrile monomer may be used to include 12 wt% to 15 wt% in the polymerization solution as described above.
  • the rubbery polymer may include styrene-butadiene rubber and butadiene rubber, and the rubbery polymer may have a viscosity of 50 cps or less. Specifically, it may have a viscosity of 10 cp to 50 cp.
  • the rubbery polymer may include 30 to 50 parts by weight of butadiene rubber, and 50 to 70 parts by weight of styrene-butadiene rubber, relative to 100 parts by weight of the rubbery polymer.
  • butadiene rubber and styrene-butadiene rubber included in the rubber polymer may have a weight ratio of 3: 7 to 5: 5, specifically, may have a weight ratio of 3: 7 to 4: 6.
  • the viscosity of the rubbery polymer may exhibit a range as described above.
  • the viscosity of the rubbery polymer may be adjusted according to the content of styrene-butadiene rubber and butadiene rubber. If the butadiene rubber in the rubbery polymer is less than 30 parts by weight or more than 50 parts by weight, the viscosity of the rubbery polymer may be out of the above range, thereby adjusting the average particle diameter of the rubber particles in the modified ABS resin. This may be difficult, and as a result, low gloss characteristics and impact resistance may be lowered. In this case, the viscosity is measured by dissolving the rubber polymer in styrene at a concentration of 5% and using a Brookfield DV viscometer at a rotational speed of 10 rpm using a # 3 spindle. Butadiene rubber and butadiene rubber were obtained by mixing in a weight ratio as described above.
  • the rubbery polymer may be used to be included in 5 to 15% by weight in the polymerization solution as described above.
  • the polymerization solution may include styrene-butadiene rubber and butadiene rubber as the rubbery polymer, and the styrene-butadiene rubber and butadiene rubber in the polymerization solution may have the above weight ratio.
  • the rubbery polymer the total amount of the styrene-butadiene rubber and the butadiene rubber
  • the styrene-butadiene rubber may be included at 3.3 wt% and the butadiene rubber at 1.7 wt%.
  • the styrene-butadiene rubber (SBR) used in the present invention represents a copolymer prepared by polymerizing a styrene monomer and a diene monomer, and the butadiene rubber (BR) is a diene monomer. It shows the homopolymer of and can manufacture and use what is manufactured and used through a normal polymerization method as desired, or is commercially available.
  • the styrene-butadiene rubber (SBR) and butadiene rubber (BR) may be a linear rubber produced through solution polymerization.
  • the styrene-butadiene rubber may be Asaprene 670A (40 wt% styrene, Asahi-Kasei), and the butadiene rubber may be Asaprene 730AX (Asahi-Kasei).
  • the N-substituted maleimide compound is N-methyl maleimide, N-ethyl maleimide, N-propyl maleimide, Nt-butyl maleimide, N-isopropyl maleimide, N-cyclohexyl maleimide, N-phenyl It may be one or more selected from the group consisting of maleimide, N-naphthylmaleimide and No-chlorophenyl maleimide, specifically N-phenyl maleimide.
  • the N-substituted maleimide compound may be used to include 2.5 wt% to 6 wt% in the polymerization solution as described above.
  • the effect of improving the heat resistance of the modified ABS resin may be insignificant, and when it is included in excess of 6% by weight, the heat resistance of the modified ABS resin prepared Although the improvement effect may be large, other physical properties such as impact resistance, processability, low glossiness may be lowered.
  • the polymerization solution may include 0.01 to 0.04 parts by weight of a polymerization initiator based on 100 parts by weight of the polymerization solution, and the polymerization initiator is added together when the rubbery polymer and the N-substituted maleimide compound are added. It may be.
  • the polymerization initiator is t-butylperoxy-2-ethylhexanoate, azobisisobutyronitrile, benzoyl peroxide, cumyl peroxide and t-butyl peroxide, 1,1-di (t-butylperoxy) It may be one or more selected from the group consisting of cyclohexane.
  • Step 2 is a step for producing a polymerization product by polymerization reaction using a polymerization solution.
  • the polymerization reaction may be performed by continuous bulk polymerization including at least one polymerization step.
  • the "at least one" may represent at least one or more than one. That is, the polymerization reaction according to an embodiment of the present invention may be carried out by a continuous bulk polymerization including at least one polymerization step, the polymerization step may be appropriately adjusted the number as desired. .
  • the polymerization reaction may be performed by continuous bulk polymerization including 1 to 10 polymerization steps.
  • the polymerization reaction may be performed by continuous bulk polymerization including a first polymerization step, a second polymerization step, a third polymerization step, and a fourth polymerization step.
  • the polymerization reaction may be performed by sequentially passing through the first polymerization step, the second polymerization step, the third polymerization step and the fourth polymerization step, wherein the polymerization is performed from the first polymerization step to the fourth polymerization step.
  • the polymerization temperature may increase. That is, the polymerization temperature in the second polymerization stage may be relatively higher than the polymerization temperature in the first polymerization stage, and the polymerization temperature in the third polymerization stage may be relatively higher than the polymerization temperature in the second polymerization stage, The polymerization temperature in the fourth polymerization stage may be relatively higher than in the third polymerization stage.
  • the first polymerization step, the second polymerization step, the third polymerization step and the fourth polymerization step may each be continuous bulk polymerization under the following polymerization conditions:
  • First polymerization step polymerization for 1.5 to 2.5 hours in the temperature range of 100 °C to 120 °C;
  • Second polymerization step polymerization in a temperature range of 125 ° C to 140 ° C;
  • Third polymerization step polymerization in a temperature range of 140 °C to 150 °C;
  • Fourth polymerization step polymerization in a temperature range of 150 °C to 160 °C.
  • the polymerization reaction according to an embodiment of the present invention may be polymerized for the above-mentioned time in the first polymerization step, thereby reducing the content of the volatile organic compound in the modified ABS resin finally prepared.
  • the weight average molecular weight of the continuous phase after the first polymerization step can be adjusted to 250,000 g / mol to 300,000 g / mol, resulting Since the weight average molecular weight of the continuous phase in the modified ABS resin produced can be adjusted to a desired range, impact resistance can be improved.
  • the continuous phase may be a terpolymer derived from an aromatic vinyl monomer, an ethylenically unsaturated nitrile monomer and an N-substituted maleimide compound.
  • the time in the first polymerization stage may be adjusted according to the flow rate of the polymerization solution introduced into the first reactor, and may represent the residence time of the polymerization solution in the first polymerization reactor in which the first polymerization stage is performed.
  • each of the second polymerization step, the third polymerization step and the fourth polymerization step except for the first polymerization step may be performed for an appropriate polymerization time as desired under the above temperature conditions.
  • the reaction solvent may be as described above or included.
  • the molecular weight modifier is a group consisting of n-dodecyl mercaptan, n-amyl mercaptan, t-butyl mercaptan, t-dodecyl mercaptan, n-hexyl mercaptan, n-octyl mercaptan and n-nonyl mercaptan It may be one or more selected from.
  • Step 3 is a step of devolatilizing the polymerization product to remove the unreacted monomer and the reaction solvent from the polymerization product prepared in Step 2 and to obtain the desired modified ABS resin.
  • the devolatilization may be performed under a temperature range of 230 ° C. to 250 ° C. and a pressure condition of 30 torr or less. Specifically, it may be performed under 10 torr to 30 torr pressure conditions.
  • the production method according to an embodiment of the present invention can reduce the content of the volatile organic compound in the finally prepared modified ABS resin by performing the devolatilization under the above conditions.
  • FIG. 1 exemplarily illustrates a process system capable of performing a manufacturing method according to an embodiment of the present invention.
  • Process system 100 is a rubber dissolution tank 10 to produce a polymerization solution, a polymerization tank 20 to perform a polymerization reaction and a devolatilization to perform a devolatilization process It may include a tank 30, wherein the polymerization tank 20 is the first polymerization reactor 21, the second polymerization reactor 22, the third polymerization reactor 23 and the fourth polymerization reactor 24 is continuous It may be a continuous block polymerization reactor arranged in.
  • step 1 may be performed in the rubber dissolution tank (10).
  • a reaction solution, an aromatic vinyl monomer and an ethylenically unsaturated nitrile monomer were added to the rubber dissolving tank 10 to prepare a mixed solution, whereby styrene-butadiene rubber, butadiene rubber, N-substituted maleimide compound and a polymerization initiator were added thereto.
  • the polymerization solution can be prepared by charging and dissolving completely.
  • the rubber dissolution tank 10 may be to include a stirrer inside.
  • Step 2 may be performed in the polymerization tank 20 in which the first polymerization reactor 21, the second polymerization reactor 22, the third polymerization reactor 23, and the fourth polymerization reactor 24 are continuously arranged.
  • the polymerization solution may be transferred from the rubber dissolution tank 10 to the first polymerization reactor 21, and may be polymerized in a temperature range of 100 ° C. to 120 ° C. for 1.5 hours to 2.5 hours to perform a first polymerization step.
  • the polymerization solution may be transferred to the first polymerization reactor 21 at a flow rate of 10 kg / hr to 14 kg / hr, and the transfer time may be transferred to the flow rate so that the residence time in the first polymerization reactor is 1.5 hours to 2.5 hours. Can be adjusted.
  • the residence time in the first polymerization reactor may represent a polymerization time in the first polymerization reactor.
  • the first polymerization reactant passed through the first polymerization step may be transferred to the second polymerization reactor 22 and polymerized in a temperature range of 125 ° C. to 140 ° C. to perform a second polymerization step.
  • a supplementary solution including a reaction solvent and a molecular weight regulator separately from the first polymerization reactant may be added to the second polymerization reactor 22 to polymerize together with the first polymerization reactant.
  • the supplement solution may be added to the second polymerization reactor 22 at a flow rate of 1 kg / hr to 2.5 kg / hr.
  • the second polymerization reactant passed through the second polymerization step may be transferred to the third polymerization reactor 23, and may be polymerized at a temperature range of 140 ° C. to 150 ° C. to perform a third polymerization step.
  • the polymerization product may be prepared by transferring the third polymerization reactant to the fourth polymerization reactor 24 and polymerizing in a temperature range of 150 ° C to 160 ° C.
  • Step 3 may be performed in the devolatilization tank 30.
  • the polymerization product may be transferred from the fourth polymerization reactor 24 to the devolatilization tank 30 and devolatilized under a temperature range of 230 ° C. to 250 ° C. and a pressure condition of 30 torr or less to obtain a modified ABS resin.
  • the present invention provides a modified ABS resin produced by the above production method.
  • the modified ABS resin according to an embodiment of the present invention includes a dispersed phase and a continuous phase
  • the dispersed phase is a rubber particle derived from a rubbery polymer including butadiene rubber and styrene-butadiene rubber
  • the continuous phase is an aromatic vinyl monomer
  • an terpolymer derived from an ethylenically unsaturated nitrile monomer and an N-substituted maleimide compound may be grafted or adsorbed on the outer surface of the dispersed phase.
  • the modified ABS resin according to an embodiment of the present invention is a rubber particle (dispersed phase), an aromatic vinyl monomer, an ethylenically unsaturated nitrile monomer, and N- derived from a rubbery polymer including butadiene rubber and styrene-butadiene rubber. It may include a terpolymer derived from a substituted maleimide compound (continuous phase) and the terpolymer (part of a continuous phase) grafted or adsorbed on the outer surface of the rubber particles.
  • the dispersed phase and the continuous phase in the modified ABS resin may have a weight ratio of 8:92 to 25:75, and at least a part of the continuous phase grafted or adsorbed on the outer surface of the dispersed phase may be a total of 100 continuous phases in the resin. 30 parts by weight to 60 parts by weight based on parts by weight.
  • graft used in the present invention indicates that it is in contact or bonded, for example, grafted to the outer surface of the dispersed phase may indicate that it is in contact with or bonded to the outer surface of the dispersed phase.
  • the term “at least a portion” refers to at least a portion of the whole, for example, at least a portion of the continuous phase may be at least 1, which is the minimum when the whole of the continuous phase is viewed as 10 and the minimum is viewed as 1.
  • the weight average molecular weight (Mw) of the continuous phase in the modified ABS resin may be 150,000 g / mol to 180,000 g / mol, and the average particle diameter of the dispersed phase in the modified ABS resin may be 1.0 ⁇ m to 2.0 ⁇ m.
  • the modified ABS resin according to an embodiment of the present invention may be excellent in low gloss and impact resistance by having the above physical properties.
  • the weight average molecular weight is measured by dissolving the resin in a tetrahydrofuran (THF) solution at a concentration of 0.25% and using gel permeation chromatography (GPC, Waters Breeze) as a relative value with respect to a standard polystyrene sample.
  • THF tetrahydrofuran
  • GPC gel permeation chromatography
  • the modified ABS resin may include a unit derived from 5% by weight to 8% by weight of the N-substituted maleimide-based compound, it may be improved heat resistance.
  • the unit derived from the N-substituted maleimide-based compound may be included in the continuous phase in the modified ABS resin, and may constitute a continuous phase.
  • the N-substituted maleimide compound-derived unit is derived from the N-substituted maleimide compound contained in the above-described polymerization solution, and the N-substituted maleimide-based compound may contain other monomers (eg, , Aromatic vinyl monomers and ethylenically unsaturated nitrile monomers), almost 100% polymerization conversion, only about 70% of the other monomers.
  • other monomers eg, Aromatic vinyl monomers and ethylenically unsaturated nitrile monomers
  • the ratio of the N-substituted maleimide compound-derived unit in the modified ABS resin is relatively increased than the ratio of the N-substituted maleimide compound in the polymerization solution.
  • the content of the N-substituted maleimide compound-derived unit in the modified ABS resin is measured by using an elemental analysis device (EA).
  • EA elemental analysis device
  • the modified ABS resin may be a TVOC (Total Volatile organic compounds) content of less than 40 ⁇ gC / g.
  • the modified ABS resin may have a TVOC content of 30 ⁇ gC / g or less.
  • the TVOC content in the modified ABS resin was measured based on PV 3341. Specifically, 1 g of the modified ABS resin was placed in a 10 ml vial and left at 120 ° C. for 5 hours to collect volatile organic compounds. Compounds were measured using Head space GC.
  • the modified ABS resin has a Vicat softening point of 100 °C to 120 °C measured according to ASTM D1525, the impact strength measured according to ASTM D256 is 10 kgf ⁇ cm / cm 2 ⁇ 20 kgf ⁇ cm / cm 2 , Tensile strength measured in accordance with ASTM D638 may be 430 kgf / cm 2 to 500 kgf / cm 2 .
  • the impact strength is manufactured by injection molding a modified ABS resin at 230 ° C. to a 1/4 ”thickness specimen, measured according to ASTM D256 (notched at 23 ° C.), and the tensile strength is Prepare the specimen according to ASTM D638 and pull the crosshead speed to 500 mm / min using UTM (Universal Testing Machine) model (Model: 4466, Instron) and measure the point where the resin is cut. It is.
  • the modified ABS resin according to an embodiment of the present invention may have the above properties (eg, average weight of the continuous phase, average particle diameter of the dispersed phase, TVOC content) by being manufactured by the above-described manufacturing method, impact resistance It may be excellent in heat resistance and low gloss.
  • the weight unit used in the Examples and Comparative Examples is 100 parts by weight of the total amount of the polymerization solution consisting of ethyl benzene, styrene, acrylonitrile, rubber (styrene-butadiene rubber, butadiene rubber or a mixture thereof) and N-phenyl maleimide It is shown based on wealth.
  • Asaprene 670A (Asahi-Kasei) was used for the styrene-butadiene rubber used
  • Asaprene 730AX (Asahi-Kasei) was used for the butadiene rubber.
  • the polymerization reaction was carried out through an increasing temperature profile in a multistage polymerization reactor system consisting of a first polymerization reactor, a second polymerization reactor, a third polymerization reactor and a fourth polymerization reactor as shown in FIG. Specifically, the polymerization solution was continuously introduced into a first polymerization reactor having a capacity of 26 L, wherein the polymerization solution was introduced into the first polymerization reactor at a flow rate of 12 kg / hr to stay in the first reactor for 2 hours. It was.
  • the first polymerization reactant polymerized in the first polymerization reactor was transferred to the second polymerization reactor, and 10 parts by weight of ethylbenzene and 0.03 parts by weight of t-dodecyl mercaptan were added to the second polymerization reactor at a flow rate of 1.5 kg / hr.
  • the polymerization was carried out at 135 ° C.
  • the polymerization product was transferred by sequentially transferring the third polymerization reactor set at 145 ° C. and the fourth polymerization reactor set at 150 ° C. to prepare a polymerization product.
  • the obtained polymerization product was transferred to a devolatilization tank and the unreacted monomer and reaction solvent were recovered and removed at a temperature of 235 ° C. and 25 torr pressure to obtain a modified ABS resin in pellet form.
  • a modified ABS resin in pellet form was obtained through the same method as Example 1 except that the polymerization solution was introduced into the first reactor at a flow rate of 10 kg / hr to adjust the residence time in the first polymerization reactor to 2.3 hours. It was.
  • a modified ABS resin in pellet form was obtained through the same method as Example 1 except that the polymerization solution was introduced into the first reactor at a flow rate of 14 kg / hr to adjust the residence time in the first polymerization reactor to 1.7 hours. It was.
  • a modified ABS resin in pellet form was obtained in the same manner as in Example 1, except that 4.1 wt% of styrene-butadiene rubber and 4.1 wt% of butadiene rubber were used.
  • a modified ABS resin in pellet form was obtained in the same manner as in Example 1, except that 5.74 wt% of styrene-butadiene rubber and 2.46 wt% of butadiene rubber were used.
  • a modified ABS resin in pellet form was obtained in the same manner as in Example 1, except that 53.99 wt% of styrene, 13.54 wt% of acrylonitrile, and 4.31 wt% of N-phenyl maleimide were used.
  • a modified ABS resin in pellet form was obtained in the same manner as in Example 1, except that 52.80 wt% of styrene, 13.20 wt% of acrylonitrile, and 5.80 wt% of N-phenyl maleimide were used.
  • a modified ABS resin in pellet form was obtained in the same manner as in Example 1, except that 2.5 kg / hr of a mixed solution of ethyl benzene and t-dodecyl mercaptan was added to the second polymerization reactor.
  • a modified ABS resin in pellet form was obtained in the same manner as in Example 1, except that styrene-butadiene rubber was not used and butadiene rubber was used at 8.2 wt%.
  • a modified ABS resin in pellet form was obtained in the same manner as in Example 1, except that 3.28 wt% of styrene-butadiene rubber and 4.92 wt% of butadiene rubber were used.
  • a modified ABS resin in pellet form was obtained in the same manner as in Example 1, except that 6.56 wt% of styrene-butadiene rubber and 1.64 wt% of butadiene rubber were used.
  • a modified ABS resin in pellet form was obtained in the same manner as in Example 1, except that 55.52 wt% of styrene, 13.88 wt% of acrylonitrile, and 2.4 wt% of N-phenyl maleimide were used.
  • a modified ABS resin in pellet form was obtained through the same method as Example 1 except that the polymerization solution was introduced into the first polymerization reactor at a flow rate of 16 kg / hr to adjust the residence time in the first polymerization reactor to 1.4 hours. It was.
  • a modified ABS resin in pellet form was obtained through the same method as Example 1 except that the polymerization solution was introduced into the first polymerization reactor at a flow rate of 8 kg / hr to adjust the residence time in the first polymerization reactor to 2.9 hours. It was.
  • a modified ABS resin was obtained through the same method as Example 1 except that acrylonitrile and N-phenyl maleimide were not added to a rubber dissolving tank, mixed separately, and then introduced into a first polymerization reactor to participate in polymerization. It was.
  • each resin was analyzed using a gemstone analyzer (EA).
  • each resin was analyzed by gel chromatography.
  • the weight average molecular weight of each continuous phase was determined by dissolving each resin or first polymerization reactant in a tetrahydrofuran (THF) solution at a concentration of 0.25% and using gel permeation chromatography (GPC, Waters Breeze) relative to a standard polystyrene sample. Measured by.
  • the average particle diameters of the rubber particles (dispersed phase) in each of the resins prepared in Examples 1 to 8 and Comparative Examples 1 to 12 were measured and compared.
  • the average particle diameter was measured using a Coulter counter (LS230, BECKMAN COULTER) after dissolving 0.5 g of each resin in 100 ml of methyl ethyl ketone.
  • the total volatile organic compound (TVOC) content was measured based on PV 3341. Specifically, 1 g of each modified ABS resin was added to a 10 ml vial and left at 120 ° C. for 5 hours to collect volatile organic compounds. Compounds were measured using Head space GC.
  • the Vicat softening point was measured based on ASTM D1525.
  • the impact strength of each resin was injection molded at 230 ° C. to produce a 1/4 ”thick specimen, and measured according to ASTM D256 (1/4”, notched at 23 ° C.).
  • the flow index was obtained by measuring the weight (g) of the resin melted for 10 minutes at a temperature of 220 ° C. and a 10 kg load according to ASTM D1238.
  • the modified ABS resin of Examples 1 to 8 prepared by the manufacturing method according to an embodiment of the present invention is modified ABS resin of Comparative Example 1 and Comparative Examples 2 to 12 It was confirmed that the impact resistance, heat resistance, processability and tensile strength were excellent overall while having a lower volatile organic compound content than the ABS resin.
  • the ABS resin of Comparative Example 1 prepared without using the N-substituted maleimide compound according to the embodiment of the present invention had a lower Vicat softening point and increased flow index as compared with the modified ABS resin of Example 1.
  • Total volatile organic compounds (TVOCs) increased more than twofold.
  • the modified ABS resin (4.2% by weight) of Comparative Example 5 in which the content of N-phenyl maleimide compound in the prepared resin is lower than the minimum content range shown in the present invention is compared with that of Example 1 modified ABS resin. Residual monomer reacted increased and total volatile organic compounds (TVOC) doubled.
  • the modified ABS resin (11.3 wt%) of Comparative Example 6 in which the content of the N-phenyl maleimide compound in the prepared resin is higher than the maximum content range shown in the present invention is final compared to the modified ABS resin of Example 7.
  • the average particle diameter of the rubber particles in the modified ABS resin was excessively increased, and as a result, the impact strength and tensile strength characteristics were significantly decreased.
  • the modified ABS resin of Comparative Example 7 prepared by adding the polymerization solution to the first polymerization reactor at a flow rate of 16 kg / hr and adjusting the residence time in the first polymerization reactor to 1.4 hours was Example 3 (retention time 1.7 hours).
  • the residual monomers increased about 1.3 times and the total volatile organic compound (TVOC) increased about 1.7 times.
  • the modified ABS resin of Comparative Example 8 prepared by adding the polymerization solution to the first polymerization reactor at a flow rate of 8 kg / hr and adjusting the residence time in the first polymerization reactor to 2.9 hours was prepared in Example 2 (retention time 2.3 hours
  • the weight average molecular weight of each continuous phase measured in comparison with the modified ABS resin of) was not within the desired numerical range, and as a result, the impact strength was reduced to 60% of the modified ABS resin of Example 2.
  • modified ABS resin of Comparative Example 9 (devolatilization temperature greater than 250 °C) prepared by adjusting the devolatilization conditions out of the conditions presented in one embodiment of the present invention
  • Comparative Example 10 (devolatilization temperature 230 °C) Less than) modified ABS resin and modified ABS resin of Comparative Example 11 (more than 30 torr devolatilization gas pressure) compared with the modified ABS resin of Example 1
  • the residual monomer increases up to about 1.6 times and the total volatile organic compound (TVOC) increased up to 258%
  • TVOC total volatile organic compound
  • Comparative Example 10 and Comparative Example 11 or the impact strength was reduced to 62% level
  • the production method according to an embodiment of the present invention can produce a modified ABS resin having a low total volatile organic compound content while controlling the weight average molecular weight, the average particle diameter of the rubber particles.
  • the modified ABS resin may have excellent impact resistance, workability and heat resistance in a balanced manner as well as environmentally friendly properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 저광택성, 내충격성 및 내열성이 우수할 뿐 아니라 총 휘발성 유기 화합물의 함량이 적은 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지에 관한 것이다. 이에 따른, 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법은 저광택성, 내열성, 내충격성이 우수하면서 낮은 총 휘발성 유기 화합물 함량을 갖는 변성 아크릴로니트릴-부타디엔-스티렌계 수지를 제조할 수 있다.

Description

변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
[관련출원과의 상호인용]
본 출원은 2015.06.19자 한국 특허 출원 제10-2015-0087642호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 저광택성, 내충격성 및 내열성이 우수할 뿐 아니라 휘발성 유기 화합물의 함량이 적은 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지에 관한 것이다.
최근 자동차의 경량화 필요성 및 전기기기, 전자기기의 복잡한 대형 부품 사용의 증가 등에 따라 내열성, 내충격성을 비롯한 제반 물성이 우수한 열가소성 수지의 개발이 요구되고 있다. 특히, 자동차 내장재 및 컴퓨터, 기타의 전자 장비 케이스와 같은 정보기술장비 부품의 용도로는 미적인 이유뿐만 아니라 고가의 피복 및 페인팅 단계를 없애기 위해 광택이 없거나 저광택의 특성을 지향하는 경향이 있다. 또한, 최근 친환경적 소재에 대한 관심이 있다. 이에, 상기의 요구를 충족하기 위한 소재 개발의 필요성이 확대되고 있다.
종래에는, 자동차 내장재용 재료로서 프로필렌계 수지가 널리 사용되었다. 프로필렌계 수지는 몇몇 열가소성 수지보다 광택을 덜 나타낸다고 알려져있다. 그러나, 프로필렌계 수지는 강성 및 내스크래치성과 같은 특성이 부족하며, 이에 부족한 상기 특성을 보완하기 위하여 충진제 및 기타의 첨가제를 가하여 상기 특성을 개선시키는 방법이 제안된바 있지만, 여전히 자동차 내장재의 재료로 사용되기에는 불충분하여 사용에 제한이 있다.
또한, 소광제를 첨가함으로써 저광택 특성을 갖는 수지, 예컨대 폴리부타디엔과 폴리스티렌을 혼합하여 제조되는 고충격 폴리스티렌 수지가 개발된바 있으나, 상기 프로필렌계 수지와 마찬가지로 자동차 내장재용 재료로서 요구되는 저광택, 내열성, 내충격성 등의 특성들이 균형을 이루지 못하는 문제가 있다.
한편, 유화중합을 통해 제조된 아크릴로니트릴-부타디엔-스티렌계(Acrylonitrile-butadiene-styrene, 이하 ABS) 수지, 메틸메타크릴레이트-부타디엔-스티렌계(Methylmethacrylate-butadiene-styrene, MBS) 수지, 아크릴레이트-스티렌-아크릴로니트릴계(Acrylate-styrene-acrylonitrile, ASA) 수지, 아크릴계 충격 보강제(AIM) 수지 등은 내충격성, 강성 유동성 등의 물성이 우수하여 각종 플라스틱의 개질제 등으로 폭넓게 사용되고 있다.
특히, ABS 수지는 치수안정성, 가공성 및 내화학성이 우수하여 모니터 하우징, 게임기 하우징, 가전제품, 사무기기, 자동차용 램프 하우징 등의 재료로 많이 사용되고 있다. 최근에는 내충격성, 내화학성 및 가공성 등이 우수한 ABS 수지에 내열성 및 저광택성을 부여하여 자동차 내장재로 사용하려는 연구가 많이 진행되고 있다.
예를 들어, ABS 수지를 개량하여 1 ㎛ 이상의 대구경 고무입자로 제조하여 사용하는 방법이 제안된바 있으나, 이러한 방법으로 제조된 수지는 저광택 효과가 미미하고, 충격강도 및 내열성이 불량한 문제가 있다. 또 다른 방법으로는 ABS 수지에 5 ㎛ 이상의 입자크기를 갖는 무광필러를 투입하는 방법이 제안된 바 있으나, 제조된 수지는 우수한 성형성을 나타내지만 저광택성이 불충분하고, 특히 충격강도의 저하가 심하게 일어나는 문제가 있다. 또한, 저광택 특성을 나타내기 위해 저광택 충전제를 첨가하는데, 이 역시 저광택 특성을 나타내려면 많은 양을 첨가해야 하므로 이로 인해 충격강도가 저하되며, 생산 비용이 증가되는 등의 문제점이 있다.
또한, 유화중합을 통해 제조된 ABS 수지는 휘발성 유기 화합물(VOC)의 함량이 높아 친환경적 소재로의 적용이 어려운 문제가 있다.
한편, 최근에는 말레이미드계 화합물을 추가의 단량체로 사용하여 괴상중합, 괴상-용액 중합 또는 괴상-현탁 중합을 통해 제조된 ABS 수지를 내열성 및 저광택성을 필요로 하는 재료로 사용하는 방안이 제안되고 있다.
예컨대, 미국 특허 제4,808,661호에는 말레이미드계 화합물을 중합 공정 중 몇 번의 시점에 분할하여 투입하는 연속식 괴상중합법을 통해 제조된 ABS 수지 조성물을 개시하고 있으며, 미국 특허 제5,091,470호에는 말레이미드계 화합물을 중합 공정 중 분할하여 투입하되 일부는 상전환 이후에 투입함으로써 내열성, 내충격성 및 무광특성이 우수한 ABS 수지를 제조할 수 있음이 개시되어 있다. 또한, 미국 특허 제5,412,036호에는 말레이미드계 화합물을 전환율이 다른 몇번의 시점에 나누어 투입하는 연속식 괴상중합법을 통해 내충격성이 증가한 ABS 수지를 제조할 수 있음을 개시하고 있다. 그러나, 상기의 방법들은 말레이미드계 화합물을 여러 차례로 나누어 투입해야 하는 번거로움이 있고, 상기 말레이미드계 화합물을 나누어 투입할 경우 반응물 내 말레이미드계 화합물의 안정성이 저하되어 다른 성분들과의 상분리가 일어날 수 있으며, 이에 최종 제조된 ABS 수지 내 고무 입자가 불균일한 크기로 생성되는 문제가 있다.
따라서, 저광택성을 가지면서 내충격성 및 내열성과 같은 기계·화학적 특성이 우수할 뿐 아니라 휘발성 유기 화합물의 함량이 낮은 특성을 갖는 수지의 개발이 필요한 실정이다.
본 발명은 상기의 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 저광택성, 내충격성 및 내열성이 우수할 뿐 아니라 휘발성 유기 화합물의 함량이 적은 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 상기의 제조방법에 의해 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지를 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 반응 용매, 방향족 비닐계 단량체 및 에틸렌성 불포화 니트릴계 단량체를 포함하는 혼합용액에 고무성 중합체 및 N-치환 말레이미드계 화합물을 투입하고 용해시켜 중합 용액을 제조하는 단계(단계 1); 상기 중합 용액을 중합 반응시켜 중합 생성물을 제조하는 단계(단계 2); 및 상기 중합 생성물을 탈휘발시키는 단계(단계 3)를 포함하고, 상기 고무성 중합체는 부타디엔 고무 및 스티렌-부타디엔 고무를 포함하는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법을 제공한다.
또한, 상기의 제조방법에 의하여 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지를 제공한다.
본 발명의 일 실시예에 따른 변성 ABS 수지의 제조방법은 제1 중합단계의 중합시간, 탈휘발 조건 및 중합 용액 내 포함되는 고무성 중합체 간의 비율을 조절함으로써 저광택성, 내열성 및 내충격성이 우수하면서도 낮은 휘발성 유기 화합물 함량을 갖는 변성 ABS 수지를 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 변성 ABS 수지의 제조방법을 수행할 수 있는 공정시스템을 예시적으로 나타낸 것이다.
[부호의 설명]
100: 공정시스템
10: 고무 용해조
20: 중합조
21: 제1 중합 반응기
22: 제2 중합 반응기
23: 제3 중합 반응기
24: 제4 중합 반응기
30: 탈휘발조
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
이하, 본 발명에서 사용하는 용어 "연속상(matrix, continuous phase)"은 2개의 상이 혼재하여 있는 계에서 분산되어 있는 상을 둘러싸면서 연속하고 있는 상을 나타내는 것이다. 본 발명에서 사용하는 용어 "분산상(dispersed phase)"은 2개의 상이 혼재하여 있는 계에서 연속하고 있는 상 내에 입자를 구성하고 있는 상을 나타내는 것이다.
본 발명은 저광택성, 내열성, 내충격성 및 가공성이 우수할 뿐 아니라 내부에 휘발성 유기 화합물의 함량이 낮은 변성 아크릴로니트릴-부타디엔-스티렌계(Acrylonitrile-butadiene-styrene, 이하 ABS로 기재) 수지의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 변성 ABS 수지의 제조방법은 반응 용매, 방향족 비닐계 단량체 및 에틸렌성 불포화 니트릴계 단량체를 포함하는 혼합용액에 고무성 중합체 및 N-치환 말레이미드계 화합물을 투입하고 용해시켜 중합 용액을 제조하는 단계(단계 1); 상기 중합 용액을 중합 반응시켜 중합 생성물을 제조하는 단계(단계 2); 및 상기 중합 생성물을 탈휘발시키는 단계(단계 3)를 포함하는 것을 특징으로 한다.
또한, 상기 고무성 중합체는 부타디엔 고무 및 스티렌-부타디엔 고무를 포함하는 것을 특징으로 한다.
상기 단계 1은 중합 반응을 위한 중합 용액을 제조하는 단계로, 반응 용매, 방향족 비닐계 단량체 및 에틸렌성 불포화 니트릴계 단량체를 포함하는 혼합용액에 고무성 중합체 및 N-치환 말레이미드계 화합물을 투입하고 용해시켜 수행할 수 있다. 상기 중합 용액은 반응 용매 10 중량% 내지 30 중량%; 방향족 비닐계 단량체 35.5 중량% 내지 70.5 중량%; 에틸렌성 불포화 니트릴계 단량체 12 중량% 내지 15 중량%; 고무성 중합체 5 중량% 내지 15 중량%; 및 N-치환 말레이미드계 화합물 2.5 중량% 내지 6 중량%를 포함하는 것일 수 있다.
구체적으로, 상기 단계 1은 특별히 제한되는 것은 아니나 50℃ 이하, 구체적으로는 40℃ 내지 50℃의 온도 조건을 갖는 고무 용해조에 반응 용매, 방향족 비닐계 단량체 및 에틸렌성 불포화 니트릴계 단량체를 투입하여 혼합용액을 제조하고, 상기 혼합용액에 고무성 중합체 및 N-치환 말레이미드계 화합물을 투입하고 용해시킴으로써 수행할 수 있다. 이때, 상기 중합 용액에 포함되는 각 성분(예컨대, 반응 용매, 방향족 비닐계 단량체, 에틸렌성 불포화 니트릴계 단량체, 고무성 중합체 및 N-치환 말레이미드계 화합물)은 전술한 바와 같은 함량범위를 갖도록 적절히 조절하여 투입할 수 있다.
상기 반응 용매는 에틸벤젠, 톨루엔, 자일렌, 메틸에틸케톤 및 메틸이소부틸케톤으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. 구체적으로는, 에틸벤젠일 수 있다. 상기 반응 용매는 전술한 바와 같이 중합 용액 내 10 중량% 내지 30 중량%로 포함되도록 사용될 수 있다. 만약, 상기 반응 용매가 중합 용액 내 10 중량% 미만으로 포함되는 경우에는 중합 용액의 점도가 높아 제어가 곤란할 수 있으며, 반응 용매가 중합 용액 내 30 중량%를 초과하여 포함되는 경우에는 중합 반응 중 생성되는 고무 입자의 형태를 효과적으로 제어하기 어려울 수 있다.
상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, p-브로모스티렌, p-메틸스티렌, p-클로로스티렌 및 o-브로모스티렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 구체적으로는 스티렌일 수 있다. 상기 방향족 비닐계 단량체는 전술한 바와 같이 상기 중합 용액 내 35.5 중량% 내지 70.5 중량%로 포함되도록 사용될 수 있다.
상기 에틸렌성 불포화 니트릴계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 구체적으로는 아크릴로니트릴일 수 있다. 상기 에틸렌성 불포화 니트릴계 단량체는 전술한 바와 상기 중합 용액 내 12 중량% 내지 15 중량%로 포함되도록 사용될 수 있다.
상기 고무성 중합체는 스티렌-부타디엔 고무 및 부타디엔 고무를 포함하는 것일 수 있으며, 상기 고무성 중합체는 50 cp 이하의 점도를 갖는 것일 수 있다. 구체적으로는 10 cp 내지 50 cp의 점도를 갖는 것일 수 있다.
또한, 상기 고무성 중합체는 고무성 중합체 100 중량부 대비 부타디엔 고무를 30 중량부 내지 50 중량부, 스티렌-부타디엔 고무를 50 중량부 내지 70 중량부로 포함하는 것일 수 있다. 이때, 상기 고무성 중합체에 포함되는 부타디엔 고무 및 스티렌-부타디엔 고무 3:7 내지 5:5의 중량비를 가질 수 있으며, 구체적으로는 3:7 내지 4:6의 중량비를 가질 수 있다. 이에 고무성 중합체의 점도가 전술한 바와 같은 범위를 나타낼 수 있다.
즉, 상기 고무성 중합체의 점도는 스티렌-부타디엔 고무 및 부타디엔 고무의 함량에 따라 조절되는 것일 수 있다. 만약, 상기 고무성 중합체 내 부타디엔 고무가 30 중량부 미만이거나 50 중량부를 초과하는 경우에는 고무성 중합체의 점도가 상기의 범위를 벗어날 수 있으며 이에 최종 제조된 변성 ABS 수지 내 고무 입자의 평균입경의 조절이 어려울 수 있고, 결과적으로 저광택성 특성 및 내충격성이 저하될 수 있다. 이때, 상기 점도는 고무성 중합체를 스티렌에 5% 농도로 용해시킨 후 브룩필드 DV형 점도계를 이용하여 #3 spindle을 사용하여 회전수 10 rpm으로 측정한 것이며, 측정 시 상기 고무성 중합체는 스티렌-부타디엔 고무 및 부타디엔 고무를 전술한 바와 같은 중량비로 혼합하여 얻은 것이었다.
또한, 상기 고무성 중합체는 전술한 바와 같이 중합 용액 내 5 중량% 내지 15 중량%로 포함되도록 사용될 수 있다. 구체적으로, 상기 중합 용액은 고무성 중합체로서 스티렌-부타디엔 고무 및 부타디엔 고무를 포함하는 것일 수 있으며, 중합 용액 내 스티렌-부타디엔 고무 및 부타디엔 고무는 상기의 중량비를 가질 수 있다. 예컨대, 중합 용액 내 상기 고무성 중합체(스티렌-부타디엔 고무 및 부타디엔 고무의 합계량)가 5 중량%로 포함되는 경우, 스티렌-부타디엔 고무는 3.3 중량%, 부타디엔 고무는 1.7 중량%로 포함되는 것일 수 있다.
본 발명에서 사용되는 상기 스티렌-부타디엔 고무(syrene-butadiene rubber, SBR)는 스티렌계 단량체 및 디엔계 단량체를 중합하여 제조된 공중합체를 나타내는 것이고, 상기 부타디엔 고무(butadiene rubber, BR)는 디엔계 단량체의 단독 중합체를 나타내는 것으로, 목적하는 바에 따라 통상의 중합 방법을 통하여 제조하여 사용하거나, 시판되고 있는 것을 구입하여 사용할 수 있다.
구체적으로는, 상기 스티렌-부타디엔 고무(SBR) 및 부타디엔 고무(BR)는 용액중합을 통해 제조된 선형 고무일 수 있다. 또한, 시판되는 제품의 예로는 스티렌-부타디엔 고무는 Asaprene 670A(스티렌 40 중량%, Asahi-Kasei)일 수 있으며, 부타디엔 고무는 Asaprene 730AX(Asahi-Kasei)일 수 있다.
상기 N-치환 말레이미드계 화합물은 N-메틸 말레이미드, N-에틸 말레이미드, N-프로필 말레이미드, N-t-부틸 말레이미드, N-이소프로필 말레이미드, N-시클로헥실 말레이미드, N-페닐 말레이미드, N-나프틸말레이미드 및 N-o-클로로페닐 말레이미드로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 구체적으로는 N-페닐 말레이미드일 수 있다. 상기 N-치환 말레이미드계 화합물은 전술한 바와 같이 상기 중합 용액에 2.5 중량% 내지 6 중량%로 포함되도록 사용될 수 있다. 만약, 상기 N-페닐 말레이미드계 화합물이 2.5 중량% 미만으로 포함되는 경우 제조된 변성 ABS 수지의 내열성 향상 효과가 미미할 수 있으며, 6 중량%를 초과하여 포함되는 경우에는 제조된 변성 ABS 수지의 내열성의 향상 효과는 클 수는 있으나, 내충격성, 가공성, 저광택성 등 다른 물성이 저하될 수 있다.
또한, 상기 중합 용액은 중합 용액 100 중량부를 기준으로 0.01 중량부 내지 0.04 중량부의 중합 개시제를 포함하는 것일 수 있으며, 상기 중합 개시제는 고무성 중합체 및 N-치환 말레이미드계 화합물을 투입할 때 함께 투입하는 것일 수 있다.
상기 중합 개시제는 t-부틸퍼옥시-2-에틸헥사노에이트, 아조비스이소부티로니트릴, 벤조일퍼옥사이드, 큐밀퍼옥사이드 및 t-부틸퍼옥사이드, 1,1-디(t-부틸퍼옥시)시클로헥산으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 단계 2는 중합 용액을 이용하여 중합 반응시킴으로써 중합 생성물을 제조하기 위한 단계이다. 상기 중합 반응은 적어도 하나의 중합단계를 포함하는 연속식 괴상중합에 의하여 수행되는 것일 수 있다. 이때, 상기 "적어도 하나"는 최소 하나, 또는 하나 이상을 나타내는 것일 수 있다. 즉, 본 발명의 일 실시예에 따른 상기 중합 반응은 최소 하나의 중합단계를 포함하는 연속식 괴상중합에 의하여 수행되는 것일 수 있으며, 상기 중합단계는 목적하는 바에 따라 적절히 그 수를 조절 할 수 있다. 예컨대, 상기 중합 반응은 1개 내지 10개의 중합단계를 포함하는 연속식 괴상중합에 의해서 수행되는 것일 수 있다.
구체적으로는, 상기 중합 반응은 제1 중합단계, 제2 중합단계, 제3 중합단계 및 제4 중합단계를 포함하는 연속식 괴상중합에 의하여 수행되는 것일 수 있다.
구체적으로, 상기 중합 반응은 제1 중합단계, 제2 중합단계, 제3 중합단계 및 제4 중합단계를 순차적으로 거치면서 수행되는 것일 수 있으며, 상기 제1 중합단계에서 제4 중합단계로 중합이 진행될수록 중합온도가 증가하는 것일 수 있다. 즉, 제1 중합단계에서의 중합온도보다 제2 중합단계에서의 중합온도가 상대적으로 높을 수 있고, 제2 중합단계에서의 중합온도보다 제3 중합단계에서의 중합온도가 상대적으로 높을 수 있으며, 제3 중합단계에서보다 제4 중합단계에서의 중합온도가 상대적으로 높을 수 있다.
상기 제1 중합단계, 제2 중합단계, 제3 중합단계 및 제4 중합단계는 각각 하기의 중합 조건에서 연속식 괴상중합하는 것일 수 있다:
제1 중합단계: 100℃ 내지 120℃의 온도범위에서 1.5 시간 내지 2.5 시간동안 중합;
제2 중합단계: 125℃ 내지 140℃의 온도범위에서 중합;
제3 중합단계: 140℃ 내지 150℃의 온도범위에서 중합; 및
제4 중합단계: 150℃ 내지 160℃의 온도범위에서 중합.
본 발명의 일 실시예에 따른 상기 중합 반응은 상기 제1 중합단계에서 전술한 시간동안 중합됨으로써 최종 제조된 변성 ABS 수지 내 휘발성 유기 화합물의 함량이 감소될 수 있다. 또한, 제1 중합단계에서의 중합 조건(온도 및 시간)을 상기와 같이 조절하여 수행함으로써 제1 중합단계 후 연속상의 중량평균분자량이 250,000 g/mol 내지 300,000 g/mol로 조절될 수 있으며, 결과적으로 제조된 변성 ABS 수지 내 연속상의 중량평균분자량을 목적하는 범위로 조절할 수 있어 내충격성이 향상될 수 있다. 여기에서, 상기 연속상은 방향족 비닐계 단량체, 에틸렌성 불포화 니트릴계 단량체 및 N-치환 말레이미드계 화합물 유래의 삼원중합체일 수 있다.
상기 제1 중합단계에서의 시간은 제1 반응기에 투입되는 중합 용액의 유량에 따라 조절될 수 있으며, 제1 중합단계가 수행되는 제1 중합 반응기에서의 중합 용액의 체류시간을 나타내는 것일 수 있다. 여기에서, 상기 제1 중합단계를 제외한 제2 중합단계, 제3 중합단계 및 제4 중합단계 각각은 상기의 온도조건에서 목적하는 바에 따라 적절한 중합 시간동안 수행되는 것일 수 있다.
또한, 상기 제2 중합단계에서 중합 용액의 점도를 조절하고 최종 제조된 변성 ABS 수지의 중합평균분자량을 조절하기 위하여, 중합 용액 100 중량부를 기준으로 반응 용매 10 중량부 내지 25 중량부 및 분자량 조절제 0.02 중량부 내지 0.04 중량부를 포함하는 보충용액을 첨가하여 중합에 참여시킬 수 있다.
상기 반응 용매는 전술한 바와 같거나 포함되는 것일 수 있다.
상기 분자량 조절제는 n-도데실 머캅탄, n-아밀 머캅탄, t-부틸 머캅탄, t-도데실 머캅탄, n-헥실 머캅탄, n-옥틸 머캅탄 및 n-노닐 머캅탄으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 단계 3은 단계 2를 통해 제조된 중합 생성물로부터 미반응 단량체 및 반응 용매를 제거하고 목적하는 변성 ABS 수지를 수득하기 위하여 상기 중합 생성물을 탈휘발시키는 단계이다.
상기 탈휘발은 230℃ 내지 250℃의 온도범위 및 30 torr 이하의 압력 조건하에서 수행되는 것일 수 있다. 구체적으로는, 10 torr 내지 30 torr 압력 조건하에서 수행되는 것일 수 있다. 본 발명의 일 실시예에 따른 제조방법은 상기 탈휘발을 상기의 조건하에서 수행함으로써 최종 제조된 변성 ABS 수지 내 휘발성 유기 화합물의 함량을 감소시킬 수 있다.
이하, 본 발명의 일 실시예에 따른 상기 제조방법을 도 1을 참고하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 제조방법을 수행할 수 있는 공정시스템을 예시적으로 나타낸 것이다.
본 발명의 일 실시예에 따른 공정시스템(100)은 중합 용액을 제조할 수 있는 고무 용해조(10), 중합 반응을 수행할 수 있는 중합조(20) 및 탈휘발 공정을 수행할 수 있는 탈휘발조(30)를 포함할 수 있으며, 상기 중합조(20)는 제1 중합 반응기(21), 제2 중합 반응기(22), 제3 중합 반응기(23) 및 제4 중합 반응기(24)가 연속적으로 배열된 연속 괴상중합 반응기일 수 있다.
구체적으로, 상기 단계 1은 고무 용해조(10)에서 수행될 수 있다. 반응 용매, 방향족 비닐계 단량체 및 에틸렌성 불포화 니트릴계 단량체를 고무 용해조(10)에 투입하여 혼합용액을 제조하고, 여기에 스티렌-부타디엔 고무, 부타디엔 고무 및 N-치환 말레이미드계 화합물과 중합 개시제를 투입하고 완전 용해시킴으로써 중합 용액을 제조할 수 있다. 이때, 상기 고무 용해조(10)는 내부에 교반기를 포함하는 것일 수 있다.
상기 단계 2는 제1 중합 반응기(21), 제2 중합 반응기(22), 제3 중합 반응기(23) 및 제4 중합 반응기(24)가 연속적으로 배열된 중합조(20)에서 수행될 수 있다. 상기 중합 용액을 고무 용해조(10)에서 제1 중합 반응기(21)로 이송하고, 100℃ 내지 120℃의 온도범위에서 1.5 시간 내지 2.5 시간동안 중합하여 제1 중합 단계를 수행할 수 있다. 이때, 상기 중합 용액은 제1 중합 반응기(21) 내로 10 kg/hr 내지 14 kg/hr의 유량으로 이송될 수 있으며, 상기 유량으로 이송됨으로써 제1 중합 반응기 내 체류시간이 1.5 시간 내지 2.5 시간으로 조절될 수 있다. 이때, 상기 제1 중합 반응기 내 체류시간은 제1 중합 반응기에서의 중합 시간을 나타내는 것일 수 있다. 제1 중합단계를 거친 제1 중합 반응물을 제2 중합 반응기(22)로 이송시키고 125℃ 내지 140℃의 온도범위에서 중합하여 제2 중합 단계를 수행할 수 있다. 이때, 상기 제1 중합 반응물과 별도로 반응 용매 및 분자량 조절제를 포함하는 보충용액을 제2 중합 반응기(22)에 투입시켜 상기 제1 중합 반응물과 함께 중합시킬 수 있다. 이때, 상기 보충용액은 제2 중합 반응기(22)에 1 kg/hr 내지 2.5 kg/hr의 유량으로 투입할 수 있다. 이후, 제2 중합 단계를 거친 제2 중합 반응물을 제3 중합 반응기(23)에 이송시키고 140℃ 내지 150℃의 온도범위에서 중합하여 제3 중합 단계를 수행할 수 있으며, 제3 중합단계를 거친 제3 중합 반응물을 제4 중합 반응기(24)에 이송시키고 150℃ 내지 160℃의 온도범위에서 중합시켜 중합 생성물을 제조할 수 있다.
상기 단계 3은 탈휘발조(30)에서 수행될 수 있다. 상기 중합 생성물을 제4 중합 반응기(24)에서 탈휘발조(30)로 이송시키고 230℃ 내지 250℃의 온도범위 및 30 torr 이하의 압력 조건하에서 탈휘발시켜 변성 ABS 수지를 수득할 수 있다.
또한, 본 발명은 상기의 제조방법에 의하여 제조된 변성 ABS 수지를 제공한다.
본 발명의 일 실시예에 따른 상기 변성 ABS 수지는 분산상과 연속상을 포함하고, 상기 분산상은 부타디엔 고무 및 스티렌-부타디엔 고무를 포함하는 고무성 중합체 유래의 고무 입자이며, 상기 연속상은 방향족 비닐계 단량체, 에틸렌성 불포화 니트릴계 단량체 및 N-치환 말레이미드계 화합물 유래의 삼원중합체인 것을 특징으로 한다. 또한, 상기 연속상의 적어도 일부는 분산상의 외표면에 그라프트되거나 흡착되어 있는 것일 수 있다. 즉, 본 발명의 일 실시예에 다른 상기 변성 ABS 수지는 부타디엔 고무 및 스티렌-부타디엔 고무를 포함하는 고무성 중합체 유래의 고무 입자(분산상), 방향족 비닐계 단량체, 에틸렌성 불포화 니트릴계 단량체 및 N-치환 말레이미드계 화합물 유래의 삼원중합체(연속상) 및 상기 고무 입자의 외표면에 그라프트되거나 흡착된 상기의 삼원중합체(연속상의 일부)를 포함하는 것일 수 있다.
여기에서, 상기 변성 ABS 수지 내 분산상 및 연속상은 8:92 내지 25:75의 중량비를 가질 수 있으며, 상기 분산상의 외표면에 그라프트되거나 흡착되어 있는 연속상의 적어도 일부는 상기 수지 내 연속상 전체 100 중량부를 기준으로 30 중량부 내지 60 중량부일 수 있다.
본 발명에서 사용되는 용어 "그라프트"는 접촉하고 있거나 결합되었음을 나타내는 것으로, 예컨대 분산상의 외표면에 그라프트 된 것은 분산상의 외표면과 접촉하고 있거나 결합하고 있음을 나타내는 것일 수 있다.
본 발명에서 사용되는 용어 "적어도 일부"는 전체 중 최소 일부분을 나타내는 것으로, 예컨대 연속상의 적어도 일부는 연속상 전체를 10으로 보고 최소를 1로 보았을 때 최소인 1 이상을 나타내는 것일 수 있다.
상기 변성 ABS 수지 내 연속상의 중량평균분자량(Mw)은 150,000 g/mol 내지 180,000 g/mol일 수 있으며, 상기 변성 ABS 수지 내 분산상의 평균입경은 1.0 ㎛ 내지 2.0 ㎛일 수 있다. 본 발명의 일 실시예에 따른 상기 변성 ABS 수지는 상기의 물성을 가짐으로써 저광택성 및 내충격성이 우수할 수 있다.
본 발명에서 상기 중량평균분자량은 상기 수지를 테트라하이드로푸란(THF) 용액에 0.25% 농도로 용해시키고 겔 투과 크로마토그래피(GPC, Waters Breeze)를 사용하여 표준 폴리스티렌 시료에 대한 상대값으로 측정한 것이다.
또한, 상기 변성 ABS 수지는 5 중량% 내지 8 중량%의 N-치환 말레이미드계 화합물 유래 단위를 포함하는 것일 수 있으며, 이에 내열성이 향상될 수 있다. 이때, N-치환 말레이미드계 화합물 유래 단위는 변성 ABS 수지 내 연속상 내 포함되는 것으로, 연속상을 구성하는 것일 수 있다.
한편, 상기 N-치환 말레이미드계 화합물 유래 단위는 전술한 중합 용액 내 포함된 N-치환 말레이미드계 화합물로부터 유래된 것으로, 상기 N-치환 말레이미드계 화합물은 중합 용액 내 포함된 다른 단량체(예컨대, 방향족 비닐계 단량체 및 에틸렌성 불포화 니트릴계 단량체)와의 반응성 차이에 의해 거의 100% 중합 전환되고, 다른 단량체는 약 70%만 중합 전환된다.
이에, 상기 변성 ABS 수지 내 N-치환 말레이미드계 화합물 유래 단위의 비율이 중합 용액 내 N-치환 말레이미드계 화합물의 비율보다 상대적으로 증가하게 된다.
본 발명에서 상기 변성 ABS 수지 내 N-치환 말레이미드계 화합물 유래 단위의 함량은 원소분석 장치 장비(EA)를 사용하여 측정한 것이다.
또한, 상기 변성 ABS 수지는 TVOC(Total Volatile organic compounds) 함량이 40 ㎍C/g 이하인 것일 수 있다. 구체적으로는, 상기 변성 ABS 수지는 TVOC 함량이 30 ㎍C/g 이하인 것일 수 있다.
본 발명에서 상기 변성 ABS 수지 내 TVOC 함량은 PV 3341에 의거하여 측정하였으며, 구체적으로는 10 ml 바이알(vial)에 상기 변성 ABS 수지 1 g을 넣고 120℃에서 5시간동안 방치한 후 포집된 휘발성 유기 화합물을 Head space GC를 이용하여 측정한 것이다.
아울러, 상기 변성 ABS 수지는 ASTM D1525에 의거하여 측정된 Vicat 연화점이 100℃ 내지 120℃이고, ASTM D256에 의거하여 측정된 충격강도가 10 kgf·cm/cm2 내지 20 kgf·cm/cm2이며, ASTM D638에 의거하여 측정된 인장강도가 430 kgf/cm2 내지 500 kgf/cm2인 것일 수 있다.
구체적으로, 본 발명에서 상기 충격강도는 변성 ABS 수지를 230℃에서 사출 성형하여 1/4"두께의 시편으로 제조하고, ASTM D256(notched at 23℃)에 의거하여 측정한 것이고, 상기 인장강도는 ASTM D638에 의거하여 시편을 제조하고 UTM(Universal Testing Machine) 장치(모델명: 4466, Instron)을 이용하여 크로스헤드 스피드(cross head speed)를 500 mm/min으로 당긴 후, 수지가 절단되는 지점을 측정한 것이다.
본 발명의 일 실시예에 따른 상기 변성 ABS 수지는 전술한 제조방법에 의하여 제조됨으로써 상기와 같은 물성(예컨대, 연속상의 중량평균분자량, 분산상의 평균입경, TVOC 함량)을 가질 수 있으며, 이에 내충격성, 내열성 및 저광택성이 우수할 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세히 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
이하, 실시예 및 비교예에서 사용된 중량부 단위는 에틸 벤젠, 스티렌, 아크릴로니트릴, 고무(스티렌-부타디엔 고무, 부타디엔 고무 또는 이들 혼합) 및 N-페닐 말레이미드로 이루어진 중합 용액 총 합계량 100 중량부를 기준으로 나타낸 것이다. 또한, 사용된 스티렌-부타디엔 고무는 Asaprene 670A(Asahi-Kasei)를 사용하였고, 부타디엔 고무는 Asaprene 730AX(Asahi-Kasei)를 사용하였다.
실시예 1
50℃의 고무 용해조에 에틸 벤젠 20 중량%, 스티렌 54.57 중량%, 아크릴로니트릴 13.64 중량% 투입하여 혼합용액을 제조하고, 혼합용액에 스티렌-부타디엔 고무 4.92 중량%, 부타디엔 고무 3.28 중량% 및 N-페닐 말레이미드 3.59 중량%를 투입하여 완전용해시킨 후 t-부틸퍼옥시-2-에틸헥사노에이트 0.02 중량부를 첨가하여 중합 용액을 제조하였다. 제조된 중합 용액을 연속식 괴상중합으로 중합 반응시켰다. 이때, 중합 반응은 도 1에 나타낸 바와 같은 제1 중합 반응기, 제2 중합 반응기, 제3 중합 반응기 및 제4 중합 반응기로 구성된 다단계 중합 반응기 시스템에서 증가하는 온도 프로파일을 통하여 수행하였다. 구체적으로, 상기 중합 용액을 26 L 용량의 제1 중합 반응기에 연속적으로 투입하였으며, 이때 상기 중합 용액은 제1 중합 반응기에 12 kg/hr의 유량으로 투입하여 상기 제1 반응기에 2 시간동안 체류하도록 하였다. 제1 중합 반응기에서 중합된 제1 중합 반응물을 제2 중합 반응기로 이송시키고, 에틸벤젠 10 중량부 및 t-도데실 머캅탄 0.03 중량부 보충용액을 1.5 kg/hr의 유량으로 제2 중합 반응기에 투입하여 135℃에서 중합 반응을 수행하였다. 이후 145℃로 설정된 제3 중합 반응기 및 150℃로 설정된 제4 중합 반응기에 순차적으로 이송시켜 중합 반응을 수행하여 중합 생성물을 제조하였다. 얻어진 중합 생성물을 탈휘발조에 이송시키고 235℃의 온도 및 25 torr 압력하에서 미반응 단량체와 반응 용매를 회수 및 제거하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
실시예 2
중합 용액을 제1 반응기에 10 kg/hr의 유량으로 투입하여 제1 중합 반응기 내 체류시간을 2.3 시간으로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
실시예 3
중합 용액을 제1 반응기에 14 kg/hr의 유량으로 투입하여 제1 중합 반응기 내 체류시간을 1.7 시간으로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
실시예 4
스티렌-부타디엔 고무를 4.1 중량%, 부타디엔 고무를 4.1 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
실시예 5
스티렌-부타디엔 고무를 5.74 중량%, 부타디엔 고무를 2.46 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
실시예 6
스티렌을 53.99 중량%, 아크릴로니트릴을 13.54 중량%, N-페닐 말레이미드를 4.31 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
실시예 7
스티렌을 52.80 중량%, 아크릴로니트릴을 13.20 중량%, N-페닐 말레이미드를 5.80 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
실시예 8
제2 중합 반응기에 투입되는 에틸 벤젠 및 t-도데실 머캅탄 혼합용액을 2.5 kg/hr로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 1
스티렌을 57.44 중량%, 아크릴로니트릴을 14.36 중량%로 사용하고, N-페닐 말레이미드를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 ABS 수지를 수득하였다.
비교예 2
스티렌-부타디엔 고무를 사용하지 않고, 부타디엔 고무를 8.2 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 3
스티렌-부타디엔 고무를 3.28 중량%, 부타디엔 고무를 4.92 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 4
스티렌-부타디엔 고무를 6.56 중량%, 부타디엔 고무를 1.64 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 5
스티렌을 55.52 중량%, 아크릴로니트릴을 13.88 중량%, N-페닐 말레이미드를 2.4 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 6
스티렌을 51.68 중량%, 아크릴로니트릴을 12.92 중량%, N-페닐 말레이미드를 7.2 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 7
제1 중합 반응기에 중합 용액을 16 kg/hr 유량으로 투입하여 제1 중합 반응기 내 체류시간을 1.4시간으로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 8
제1 중합 반응기에 중합 용액을 8 kg/hr 유량으로 투입하여 제1 중합 반응기 내 체류시간을 2.9시간으로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 9
탈휘발조에서의 온도를 255℃로 변경한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 10
탈휘발조에서의 온도를 220℃로 변경한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 11
탈휘발조에서의 압력을 35 torr로 변경한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 변성 ABS 수지를 수득하였다.
비교예 12
아크릴로니트릴과 N-페닐 말레이미드를 고무 용해조에 투입하지 않고, 별도로 혼합한 후 제1 중합 반응기에 투입하여 중합에 참여시킨 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 변성 ABS 수지를 수득하였다.
실험예
상기 실시예 1 내지 8 및 비교예 1 내지 12에서 제조한 각 수지의 특성을 비교분석 하기 위하여, 각 수지에 대하여 하기의 분석을 실시하였다. 결과를 하기 표 1에 나타내었다.
1) N-페닐 말레이미드 함량
상기 실시예 1 내지 8 및 비교예 1 내지 12에서 제조한 각 수지 내에 N-페닐 말레이미드 함량을 비교분석하기 위하여, 각 수지를 원석분석 장치 장비(EA)를 사용하여 분석하였다.
2) 잔류 단량체 함량
상기 실시예 1 내지 8 및 비교예 1 내지 12에서 제조한 각 수지 내 잔류 단량체의 함량을 비교분석하기 위하여, 각 수지를 겔 크로마토그래피로 분석하였다.
3) 중량평균분자량 측정
상기 실시예 1 내지 8 및 비교예 1 내지 12에서 제조한 각 수지 내 연속상의 중량평균분자량 및 각 수지의 제조 중에 형성된 제1 중합 반응물 내 연속상의 중량평균분자량을 각각 측정하여 비교분석하였다.
상기 각 연속상의 중량평균분자량은 각 수지 또는 제1 중합 반응물을 테트라하이드로푸란(THF) 용액에 0.25% 농도로 용해시키고 겔 투과 크로마토그래피(GPC, Waters Breeze)를 사용하여 표준 폴리스티렌 시료에 대한 상대값으로 측정하였다.
4) 고무 입자의 평균입경 측정
상기 실시예 1 내지 8 및 비교예 1 내지 12에서 제조한 각 수지 내 고무 입자(분산상)의 평균입경을 측정하여 비교분석하였다.
상기 평균입경은 각 수지 0.5 g을 메틸에틸케톤 100 ml에 용해시킨 후 콜터 카운터(LS230, BECKMAN COULTER)를 이용하여 측정하였다.
5) 총 휘발성 유기 화합물(TVOC) 측정
상기 실시예 1 내지 8 및 비교예 1 내지 12에서 제조한 각 수지 내 총 휘발성 유기 화합물(TVOC)의 함량을 비교분석하였다.
상기 총 휘발성 유기 화합물(TVOC) 함량은 PV 3341에 의거하여 측정하였으며, 구체적으로는 10 ml 바이알(vial)에 상기 각 변성 ABS 수지 1 g을 넣고 120℃에서 5시간동안 방치한 후 포집된 휘발성 유기 화합물을 Head space GC를 이용하여 측정하였다.
6) Vicat 연화점
상기 실시예 1 내지 8 및 비교예 1 내지 12에서 제조한 각 수지의 내열성을 비교분석하기 위하여, 각 수지를 ASTM D1525에 의거하여 Vicat 연화점을 측정하였다.
7) 충격강도 측정
상기 실시예 1 내지 8 및 비교예 1 내지 12에서 제조한 각 수지의 내충격성을 비교분석 하기 위하여, 각 수지의 충격강도를 측정하였다.
상기 충격강도는 각 수지를 230℃에서 사출 성형하여 1/4"두께의 시편으로 제조하고, ASTM D256(1/4", notched at 23℃)에 의거하여 측정하였다.
8) 유동지수 측정
상기 실시예 1 내지 8 및 비교예 1 내지 12에서 제조한 각 수지의 가공성을 비교분석하기 위하여, 각 수지의 유동지수를 측정하였다.
상기 유동지수는 상기 각 수지를 ASTM D1238에 준하여 220℃의 온도 및 10 kg 하중 하에서 10 분 동안 용융되어 나온 수지의 무게(g)을 측정하여 얻었다.
9) 인장강도 측정
상기 실시예 1 내지 8 및 비교예 1 내지 12에서 제조한 각 수지의 인장강도를 측정하였다.
상기 인장강도는 ASTM D638에 준하여 UTM(Universal Testing Machine) 장치(모델명: 4466, Instron)을 이용하여 크로스헤드 스피드(cross head speed)를 500 mm/min으로 당긴 후, 상기 각 수지가 절단되는 지점을 측정하였다.
Figure PCTKR2016006472-appb-T000001
상기 표 1에 나타난 바와 같이, 본 발명의 일 실시예에 따른 제조방법에 의하여 제조된 실시예 1 내지 실시예 8의 변성 ABS 수지가 비교예 1의 ABS 수지 및 비교예 2 내지 비교예 12의 변성 ABS 수지와 비교하여 휘발성 유기 화합물 함량이 낮으면서 내충격성, 내열성, 가공성 및 인장강도가 전반적으로 우수한 것을 확인하였다.
구체적으로, 본 발명의 일 실시예에 따른 N-치환 말레이미드계 화합물을 사용하지 않고 제조된 비교예 1의 ABS 수지는 실시예 1의 변성 ABS 수지와 비교하여 Vicat 연화점이 낮고 유동지수가 증가하였으며 총 휘발성 유기 화합물(TVOC)이 2배 이상 증가하였다.
또한, 제조방법은 동일하나 고무성 중합체로 부타디엔 고무를 단독으로 사용하여 제조된 비교예 2의 변성 ABS 수지 및 스티렌-부타디엔 고무 및 부타디엔 고무를 혼합하여 사용하였으나 혼합 비율을 본 발명에서 제시하는 비율을 벗어나게 사용하여 제조된 비교예 3(스티렌-부타디엔 고무:부타디엔 고무=4:6 중량비) 및 비교예 4(스티렌-부타디엔 고무:부타디엔 고무=8:2)의 변성 ABS 수지의 경우에는 실시예 1, 실시예 4 및 실시예 5의 변성 ABS 수지와 비교하여 미반응한 잔류 단량체가 증가하였으며, 최종 제조된 변성 ABS 수지 내 고무 입자의 평균입경이 과도하게 커지거나 작아져 결과적으로 충격강도 특성이 현저히 저하되었다.
또한, 제조된 수지 내에 N-페닐 말레이미드계 화합물의 함량이 본 발명에서 제시하는 최소 함량 범위보다 낮은 비교예 5의 변성 ABS 수지(4.2 중량%)는 실시예 1의 변성 ABS 수지와 비교하여 미반응한 잔류 단량체가 증가하고 총 휘발성 유기 화합물(TVOC)이 2배로 증가하였다. 또한, 제조된 수지 내에 N-페닐 말레이미드계 화합물의 함량이 본 발명에서 제시하는 최대 함량 범위보다 높은 비교예 6의 변성 ABS 수지(11.3 중량%)는 실시예 7의 변성 ABS 수지와 비교하여 최종 제조된 변성 ABS 수지 내 고무 입자의 평균입경이 과도하게 증가하였으며, 결과적으로 충격강도 및 인장강도 특성이 현저히 저하되었다.
또한, 중합 용액을 제1 중합 반응기에 16 kg/hr 유량으로 투입하여 제1 중합 반응기 내 체류시간을 1.4시간으로 조절하여 제조한 비교예 7의 변성 ABS 수지는 실시예 3(체류시간 1.7 시간)의 변성 ABS 수지와 비교하여 잔류 단량체가 약 1.3배 증가하였으며, 총 휘발성 유기 화합물(TVOC)가 약 1.7배 증가하였다. 이와 반대로, 중합 용액을 제1 중합 반응기에 8 kg/hr 유량으로 투입하여 제1 중합 반응기 내 체류시간을 2.9시간으로 조절하여 제조한 비교예 8의 변성 ABS 수지는 실시예 2(체류시간 2.3 시간)의 변성 ABS 수지와 비교하여 측정된 각 연속상의 중량평균분자량이 목적하는 수치 범위 내에 미치지 못하였으며 결과적으로 충격강도가 상기 실시예 2의 변성 ABS 수지 대비 60% 수준으로 감소하였다.
또한, 탈휘발조 조건을 본 발명의 일 실시예에서 제시하는 조건을 벗어나게 조절하여 제조된 비교예 9(탈휘발조 온도 250℃ 초과)의 변성 ABS 수지, 비교예 10(탈휘발조 온도 230℃ 미만)의 변성 ABS 수지 및 비교예 11(탈휘발조 진공 압력 30 torr 초과)의 변성 ABS 수지의 경우 실시예 1의 변성 ABS 수지와 비교한 결과 잔류 단량체가 최대 약 1.6배 증가하고 총 휘발성 유기 화합물(TVOC)이 최대 258% 증가(비교예 10 및 비교예 11)하거나 충격강도가 62% 수준으로 감소(비교예 9)하였다.
아울러, N-페닐 말레이미드계 화합물을 중합 용액에 용해시켜 다른 성분들과 동시에 중합 반응기에 투입하지 않고 제1 중합 반응기에 별도로 투입하는 단계를 거쳐 제조된 비교예 12의 변성 ABS 수지의 경우에는 실시예 1의 변성 ABS 수지와 비교하여 측정된 각 연속상의 중량평균분자량이 목적하는 수치 범위 내를 크게 벗어나고 수지 내 고무 입자의 평균입경이 과도하게 증가하였으며, 결과적으로 충격강도 및 인장강도가 현저히 저하되었다.
상기의 결과로 나타난 바와 같이, 본 발명의 일 실시예에 따른 제조방법은 중량평균분자량, 고무입자의 평균입경을 조절하면서 동시에 총 휘발성 유기 화합물 함량이 낮은 변성 ABS 수지를 제조할 수 있다. 이에, 상기 변성 ABS 수지는 내충격성, 가공성 및 내열성이 균형있게 우수할 뿐 아니라 환경 친화적인 특성을 가질 수 있다.

Claims (21)

1) 반응 용매, 방향족 비닐계 단량체 및 에틸렌성 불포화 니트릴계 단량체를 포함하는 혼합용액에 고무성 중합체 및 N-치환 말레이미드계 화합물을 투입하고 용해시켜 중합 용액을 제조하는 단계;
2) 상기 중합 용액을 중합 반응시켜 중합 생성물을 제조하는 단계; 및
3) 상기 중합 생성물을 탈휘발시키는 단계를 포함하고,
상기 고무성 중합체는 부타디엔 고무 및 스티렌-부타디엔 고무를 포함하는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 1에 있어서,
상기 단계 1)의 고무성 중합체는 부타디엔 고무 및 스티렌-부타디엔 고무를 3:7 내지 5:5의 중량비로 포함하는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 1에 있어서,
상기 고무성 중합체는 50 cp 이하의 점도를 갖는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 1에 있어서,
상기 중합 용액은 반응 용매 10 중량% 내지 30 중량%;
방향족 비닐계 단량체 35.5 중량% 내지 70.5 중량%;
에틸렌성 불포화 니트릴계 단량체 12 중량% 내지 15 중량%;
고무성 중합체 5 중량% 내지 15 중량%; 및
N-치환 말레이미드계 화합물 2.5 중량% 내지 6 중량%를 포함하는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 1에 있어서,
상기 단계 2)의 중합 반응은 적어도 하나의 중합단계를 포함하는 연속식 괴상중합에 의하여 수행되는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 1에 있어서,
상기 단계 2)의 중합 반응은 제1 중합단계, 제2 중합단계, 제3 중합단계 및 제4 중합단계를 포함하는 연속식 괴상중합에 의하여 수행되고,
상기 제1 중합단계에서 제4 중합단계로 갈수록 중합온도가 증가하는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 6에 있어서,
상기 제1 중합단계는 100℃ 내지 120℃의 온도범위에서 1.5 시간 내지 2.5 시간동안 연속식 괴상중합하는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 6에 있어서,
상기 제2 중합단계는 125℃ 내지 140℃의 온도범위에서 연속식 괴상중합하는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 6에 있어서,
상기 제3 중합단계는 140℃ 내지 150℃의 온도범위에서 연속식 괴상중합하는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 6에 있어서,
상기 제4 중합단계는 150℃ 내지 160℃의 온도범위에서 연속식 괴상중합하는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 6에 있어서,
상기 제2 중합단계에서 중합 용액 100 중량부를 기준으로 반응 용매 10 중량부 내지 25 중량부 및 분자량 조절제 0.02 중량부 내지 0.04 중량부를 포함하는 보충용액을 첨가하여 중합 반응에 참여시키는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 1에 있어서,
상기 단계 3)의 탈휘발은 230℃ 내지 250℃의 온도범위 및 30 torr 이하의 압력 조건하에서 수행되는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
청구항 6에 있어서,
상기 제1 중합단계 후 연속상의 중량평균분자량(Mw)이 250,000 g/mol 내지 300,000 g/mol이고,
상기 연속상은 방향족 비닐계 단량체, 에틸렌성 불포화 니트릴계 단량체 및 N-치환 말레이미드계 화합물의 공중합체인 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법.
부타디엔 고무 및 스티렌-부타디엔 고무를 포함하는 고무성 중합체 유래의 고무 입자인 분산상; 및
방향족 비닐계 단량체, 에틸렌성 불포화 니트릴계 단량체 및 N-치환 말레이미드계 화합물 유래의 삼원중합체인 연속상;을 포함하는 청구항 1의 제조방법으로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지.
청구항 14에 있어서,
상기 분산상 및 연속상은 8:92 내지 25:75의 중량비를 갖는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지.
청구항 14에 있어서,
상기 분산상의 평균입경이 1.0 ㎛ 내지 2.0 ㎛인 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지.
청구항 14에 있어서,
상기 연속상의 적어도 일부는 분산상의 외표면에 그라프트되거나 흡착되어 있는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지.
청구항 14에 있어서,
상기 연속상의 중량평균분자량(Mw)은 150,000 g/mol 내지 180,000 g/mol인 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지.
청구항 14에 있어서,
상기 연속상은 5 중량% 내지 10 중량%의 N-치환 말레이미드계 화합물 유래 단위를 포함하는 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지.
청구항 14에 있어서,
상기 수지는 TVOC(Total Volatile organic compounds) 함량이 40 ㎍C/g 이하인 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지.
청구항 14에 있어서,
상기 수지는 ASTM D1525에 의거하여 측정된 Vicat 연화점이 100℃ 내지 120℃이고,
ASTM D256에 의거하여 측정된 충격강도가 10 kgf·cm/cm2 내지 20 kgf·cm/cm2이며,
ASTM D638에 의거하여 측정된 인장강도가 430 kgf/cm2 내지 500 kgf/cm2인 것인 변성 아크릴로니트릴-부타디엔-스티렌계 수지.
PCT/KR2016/006472 2015-06-19 2016-06-17 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지 WO2016204566A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680002884.1A CN107075045B (zh) 2015-06-19 2016-06-17 改性丙烯腈-丁二烯-苯乙烯树脂的制备方法及所制备的改性丙烯腈-丁二烯-苯乙烯树脂
EP16811979.0A EP3176193B1 (en) 2015-06-19 2016-06-17 Method for preparing modified acrylonitrile-butadiene-styrene-based resin, and modified acrylonitrile-butadiene-styrene-based resin prepared thereby
US15/508,472 US10174193B2 (en) 2015-06-19 2016-06-17 Method for preparing modified acrylonitrile-butadiene-styrene resin, and modified acrylonitrile-butadiene-styrene resin prepared thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0087642 2015-06-19
KR20150087642 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016204566A1 true WO2016204566A1 (ko) 2016-12-22

Family

ID=57546058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006472 WO2016204566A1 (ko) 2015-06-19 2016-06-17 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지

Country Status (5)

Country Link
US (1) US10174193B2 (ko)
EP (1) EP3176193B1 (ko)
KR (2) KR20160150052A (ko)
CN (1) CN107075045B (ko)
WO (1) WO2016204566A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102169501B1 (ko) * 2017-09-29 2020-10-23 주식회사 엘지화학 탄소섬유 제조용 (메트)아크릴로니트릴계 중합체의 제조방법
KR102154046B1 (ko) 2017-10-26 2020-09-09 주식회사 엘지화학 연속식 중합에 의한 공액디엔계 중합체의 제조방법
KR102302036B1 (ko) * 2017-11-24 2021-09-15 주식회사 엘지화학 무광 열가소성 수지의 제조방법 및 이로부터 제조된 무광 열가소성 수지
KR102362102B1 (ko) 2018-11-15 2022-02-11 주식회사 엘지화학 그라프트 공중합체의 제조방법
KR102528612B1 (ko) * 2018-12-21 2023-05-04 주식회사 엘지화학 내열 abs 수지의 제조방법
EP3943522A4 (en) * 2019-10-30 2022-07-06 Lg Chem, Ltd. PROCESS FOR PREPARING A DIENE BASED GRAFT COPOLYMER RESIN AND DIENE BASED GRAFT COPOLYMER RESIN
CN111218086A (zh) * 2020-03-02 2020-06-02 台州市安安焊接设备有限公司 电焊机塑件用高耐热阻燃abs材料及其注塑工艺
KR20220074536A (ko) * 2020-11-27 2022-06-03 주식회사 엘지화학 그라프트 중합체의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091470A (en) * 1989-04-26 1992-02-25 The Dow Chemical Company Molding resin
US5446103A (en) * 1993-09-27 1995-08-29 The Dow Chemical Company Maleimide-modified high heat ABS resins
KR20050102633A (ko) * 2003-02-05 2005-10-26 다우 글로벌 테크놀로지스 인크. 괴상 중합 공정에 의해 제조된 고 광택 고무 개질모노비닐리덴 방향족 중합체
KR20080058379A (ko) * 2005-10-12 2008-06-25 다우 글로벌 테크놀로지스 인크. 개선된 저광택성의 괴상 중합된 고무-개질 모노비닐리덴방향족 공중합체 조성물
KR20110041516A (ko) * 2008-07-16 2011-04-21 스타이런 유럽 게엠베하 개량된 저광택 abs 조성물

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1086673A (en) 1964-04-21 1967-10-11 Ici Ltd Acrylonitrile polymers
JPS5984912A (ja) * 1982-11-04 1984-05-16 Mitsui Toatsu Chem Inc ゴム変性耐衝撃性樹脂の連続的製造方法
US4485215A (en) * 1983-05-11 1984-11-27 Atlantic Richfield Company Molding composition
CA1272321A (en) * 1985-08-27 1990-07-31 Mune Iwamoto Rubber dispersed copolymer resin
JP2606895B2 (ja) * 1988-08-26 1997-05-07 三井東圧化学株式会社 ブロック共重合ゴム変性スチレン系共重合体
IT1264623B1 (it) * 1993-06-16 1996-10-04 Enichem Spa (co) polimero vinil aromatico rinforzato con gomma
MY111227A (en) * 1993-06-29 1999-09-30 Mitsui Chemicals Inc Process for continuously preparing rubber modified styrene resins
EP0739942B1 (en) * 1994-11-15 2003-05-07 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Resin composition excellent in impact resistance
JP2853987B2 (ja) * 1996-01-29 1999-02-03 奇美実業股▲分▼有限公司 スチレン系樹脂の製造方法
US6380304B1 (en) * 1999-09-30 2002-04-30 The Dow Chemical Company Mass polymerized rubber-modified monovinylidene aromatic copolymer compositions
WO2005108447A1 (en) * 2004-04-21 2005-11-17 Dow Global Technologies Inc. Improved mass polymerized rubber-modified monovinylidene aromatic copolymer composition
KR100963087B1 (ko) 2006-10-19 2010-06-14 주식회사 엘지화학 말레이미드 변성 abs계 수지 및 그 제조방법
CN102443110B (zh) 2011-09-16 2014-04-23 上海华谊聚合物有限公司 一种abs树脂的本体聚合生产工艺以及静态混合器的用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091470A (en) * 1989-04-26 1992-02-25 The Dow Chemical Company Molding resin
US5446103A (en) * 1993-09-27 1995-08-29 The Dow Chemical Company Maleimide-modified high heat ABS resins
KR20050102633A (ko) * 2003-02-05 2005-10-26 다우 글로벌 테크놀로지스 인크. 괴상 중합 공정에 의해 제조된 고 광택 고무 개질모노비닐리덴 방향족 중합체
KR20080058379A (ko) * 2005-10-12 2008-06-25 다우 글로벌 테크놀로지스 인크. 개선된 저광택성의 괴상 중합된 고무-개질 모노비닐리덴방향족 공중합체 조성물
KR20110041516A (ko) * 2008-07-16 2011-04-21 스타이런 유럽 게엠베하 개량된 저광택 abs 조성물

Also Published As

Publication number Publication date
EP3176193A1 (en) 2017-06-07
CN107075045B (zh) 2019-06-28
KR20190031225A (ko) 2019-03-25
CN107075045A (zh) 2017-08-18
KR20160150052A (ko) 2016-12-28
US20170275452A1 (en) 2017-09-28
EP3176193B1 (en) 2020-08-05
EP3176193A4 (en) 2017-08-02
KR102086537B1 (ko) 2020-03-10
US10174193B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020101332A1 (ko) 열가소성 수지 조성물
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2022010053A1 (ko) 열가소성 수지 및 이의 제조방법
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2013077695A1 (ko) 수지 혼합물
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2013022205A2 (ko) 알킬 (메트)아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
WO2022097867A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020101326A1 (ko) 열가소성 수지 조성물
WO2018088677A1 (ko) 열가소성 수지 및 열가소성 수지 조성물
WO2020091371A1 (ko) 열가소성 수지 조성물
WO2022085899A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021015485A1 (ko) 아크릴계 공중합체 응집제 및 이를 이용한 그라프트 공중합체의 제조방법
WO2022085893A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2013077694A1 (ko) 수지 혼합물
WO2020091336A1 (ko) 열가소성 수지 조성물
WO2019112239A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811979

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016811979

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016811979

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15508472

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE