WO2013077694A1 - 수지 혼합물 - Google Patents

수지 혼합물 Download PDF

Info

Publication number
WO2013077694A1
WO2013077694A1 PCT/KR2012/010057 KR2012010057W WO2013077694A1 WO 2013077694 A1 WO2013077694 A1 WO 2013077694A1 KR 2012010057 W KR2012010057 W KR 2012010057W WO 2013077694 A1 WO2013077694 A1 WO 2013077694A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mixture
layer
formula
molded article
Prior art date
Application number
PCT/KR2012/010057
Other languages
English (en)
French (fr)
Inventor
최은주
류진영
김우성
유흥식
이한나
최현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201280067787.2A priority Critical patent/CN104066800B/zh
Priority to EP12852359.4A priority patent/EP2784132B1/en
Publication of WO2013077694A1 publication Critical patent/WO2013077694A1/ko
Priority to US14/286,417 priority patent/US9650510B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a resin mixture, pellets, a method for producing a resin molded article using the same, and a resin molded article.
  • Plastic resin is easy to process and has excellent properties such as tensile strength, elastic modulus, heat resistance, and impact resistance, so that it is used in various applications such as automobile parts, helmets, electric machine parts, spinning machine parts, toys, or pipes.
  • An object of this invention is to provide a resin mixture, a pellet, the manufacturing method of the resin molded article using the same, and a resin molded article.
  • the present invention includes a second resin having a hydrophobic moiety represented by the following Chemical Formula 1 in the first resin and the main chain and having a surface energy difference of 0.1 to 20 mN / m at 25 ° C. It is to provide a resin mixture which can be formed.
  • R a to R d are each independently an alkyl group having 1 to 16 carbon atoms, and n is a number of 1 to 100.
  • the present invention is a core containing a first resin; And to provide a pellet comprising a cell having a hydrophobic site represented by the formula (1) in the main chain, the second resin having a surface energy difference of 0.1 to 20 mN / m at 25 °C.
  • the present invention is the first resin layer; A second resin layer formed on the first resin layer; And an interfacial layer formed between the first resin layer and the second resin layer, wherein the second resin layer comprises a hydrophobic moiety represented by Formula 1 in the main chain.
  • An eggplant is for providing the resin molded article containing a 2nd resin.
  • the present invention comprises the steps of melting the resin mixture to form a molten mixture; And processing the molten mixture to form a layered structure.
  • the present invention comprises the steps of melting the pellets to form a molten mixture; And processing the molten mixture to form a layered structure.
  • a "blend" may be a mixture of two or more different resins.
  • the type of the mixture is not particularly limited, but may include a case in which two or more resins are mixed in one matrix, or a case in which two or more kinds of pellets are mixed.
  • the pellet 10 when two or more resins are mixed in the one matrix, the pellet 10 may include a composition of two or more resins 11.
  • two or more kinds of pellets 20 and 21 including one resin may be mixed in one pellet. have.
  • Each of the resins may have different physical properties, for example, the physical properties may be surface energy, melt viscosity, or solubility parameter.
  • Melt processing means a process of melting a resin mixture at a temperature above the melting temperature (Tm) to form a melt blend, and using the melt mixture to form a desired molded article, for example, injection Molding, extrusion molding, blow molding, transfer molding, film blowing, fiber spinning, calendering thermoforming or foam molding.
  • Resin molded article means a pellet or product formed from a resin mixture, and the resin molded article is not particularly limited, but may be, for example, an automobile part, an electronic device part, a mechanical part, a functional film, a toy, or a pipe. have.
  • “Layered separation” may mean that a layer formed by substantially one resin is positioned or arranged on a layer formed by substantially another resin.
  • the layer formed by one resin may mean that one type of resin does not form a sea-island structure and is continuously present throughout one layer.
  • the sea-level structure means that the phase separated resin is partially distributed in the whole resin mixture.
  • substantially formed may mean that only one resin is present in one layer, or that one resin is rich.
  • the resin molded article formed from the resin mixture by melt processing can have improved mechanical properties and surface properties, and production cost and time can be reduced.
  • the resin mixture of the present invention may be separated by melt processing, and a resin molded article having a specific function, for example, a high hardness function, may be produced on a surface without a separate process such as coating and plating.
  • Layer separation of the resin mixture may occur due to the difference in physical properties between the first resin and the second resin and / or the molecular weight distribution of the second resin.
  • the physical properties may be, for example, surface energy, melt viscosity, and solubility parameters.
  • a resin mixture comprising a first resin and a second resin having a surface energy difference of 0.1 to 20 mN / m at 25 ° C., to form a layered structure, Can provide.
  • the surface energy difference between the first resin and the second resin may be 0.1 to 20 mN / m, 0.5 to 20 mN / m, 1 to 20 mN / m or 5 to 20 mN / m at 25 ° C.
  • the surface energy difference is less than 0.1 mN / m, the first resin and the second resin are easily mixed, and the second resin is hard to move to the surface, so that the layer separation phenomenon is less likely to occur.
  • the surface energy difference is greater than 20 mN / m, the first resin and the second resin may not be bonded and may be separated or peeled off.
  • the upper limit and / or lower limit of the surface energy difference may be any value within the range of 0.1 to 20 mN / m, and may be dependent on the physical properties of the first resin.
  • the second resin has a difference in surface energy between the first resin and the second resin. It may be selected to be 0.1 to 20 mN / m at °C.
  • the difference in surface energy may be selected in consideration of the hydrophobicity of the second resin in the molten mixture of the first resin and the second resin.
  • the resin mixture of the first resin and the second resin having a surface energy difference of 0.1 to 20 mN / m at 25 ° C. may be layer separated by melt processing.
  • the first resin and the second resin may be separated by a hydrophobic difference.
  • the second resin having a lower surface energy than the first resin has high hydrophobicity, the second resin can be moved in contact with air to form a second resin layer located on the air side.
  • the first resin may be placed on the side opposite to the air while contacting the second resin. Thus, layer separation occurs between the first resin and the second resin of the resin mixture.
  • the second resin may include a hydrophobic moiety in the main chain.
  • the hydrophobic portion is included in the main chain of the second resin, the surface energy difference with the first resin is further increased, so that the layer separation efficiency can also be increased.
  • hydrophobic moiety may be represented by, for example, Formula 1 below.
  • R a to R d are each independently an alkyl group having 1 to 16 carbon atoms, and n is a number of 1 to 100.
  • the alkyl group may be a linear or branched alkyl group having 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms, but is not limited thereto.
  • N may be adjusted according to the sum of the carbon numbers of R a to R d .
  • n when the sum of the carbon numbers of R a to R d is large, n is adjusted to be small, and when the sum of the carbon numbers of R a to R d is small, n may be adjusted to be large.
  • R a to R d are all methyl groups, n may have a value of 1 to 100, 5 to 80, 10 to 60, 15 to 40, or 15 to 30.
  • the value of n may be adjusted to have a corresponding value depending on the carbon number of the substituent when R a to R d are other substituents than the methyl group.
  • n may be, for example, an integer or a fraction.
  • n when n is represented by an integer, it may mean an n value of Chemical Formula 1 included in one kind of molecule included in the second resin.
  • n when n is represented as a fraction, it may mean an average value of n values of Formula 1 of two or more kinds of molecules included in the second resin.
  • the hydrophobic moiety represented by Chemical Formula 1 may be included in an amount to impart hydrophobicity to the second resin, so that layer separation may occur when the second resin is melt processed, for example, with the first resin.
  • the hydrophobic moiety represented by Chemical Formula 1 may be included in the main chain of the second resin to impart large hydrophobicity to the second resin even though the hydrophobic moiety is included in a small amount.
  • the content of the hydrophobic moiety represented by Formula 1 is, for example, 0.01 to 15 parts by weight, 0.01 to 10 parts by weight, 0.01 to 5 parts by weight, 0.1 to 15 parts by weight, 0.1 to 10 parts by weight of 100 parts by weight of the second resin.
  • the second resin can easily be separated from the first resin during the melt processing process, and can form a high hardness surface layer on the surface of the first resin.
  • the hydrophobic moiety represented by Formula 1 may be introduced into the backbone of the second resin using, for example, a monomer represented by Formula 2 below.
  • R a to R d are each independently an alkyl group having 1 to 16 carbon atoms, and n is a number of 1 to 100.
  • X 1 and X 2 is hydrogen, an alkyl group having 1 to 16 carbon atoms or a mercapto group (-SH), at least one of X 1 and X 2 is a mercapto group.
  • the alkyl group and n are as illustrated in the formula (1).
  • the weight average molecular weight of the monomer represented by Formula 2 is 200 to 10000, 300 to 9000, 400 to 8000, 500 to 7000, 600 to 6000, 700 to 5000, 800 to 4000, 900 to 3000, or 1000 to 2500 May be enough. Accordingly, n of Formula 1 or 2 may be appropriately adjusted in consideration of the weight average molecular weight of the monomer represented by Formula 2.
  • a dithiol terminated polydimethylsiloxane As a monomer represented by General formula (2), a dithiol terminated polydimethylsiloxane, a monothiol terminal polydimethylsiloxane, etc. are mentioned, for example.
  • the resin mixture may be separated into two or more layers.
  • the resin mixture comprising the first resin and the second resin may be divided into three layers, for example, as shown in FIG. 3 when two opposite surfaces of the melt processed resin mixture are exposed to air.
  • the layer may be separated into a second resin layer / first resin layer / second resin layer.
  • the resin mixture may be separated into two layers, for example, a second resin layer / first resin layer.
  • the melt processed resin mixture is prepared in five layers, for example, as shown in FIG. 4.
  • the layer can be separated into three resin layers / second resin layer / first resin layer / second resin layer / third resin layer.
  • the resin mixture may be separated in all directions to form a core-shell structure as shown in FIG. 5.
  • a resin is provided; And a second resin having a melt viscosity difference of 0.1 to 3000 pa * s at a shear rate of 100 to 1000 s ⁇ 1 and a processing temperature of the resin mixture. have.
  • the difference in melt viscosity of the first resin and the second resin is 0.1 to 3000 pa * s, 1 to 2000 pa * s, 1 to 1000 pa * at a shear rate of 100 to 1000 s ⁇ 1 and a processing temperature of the resin mixture. s, 1 to 600 pa * s, 50 to 600 pa * s, 100 to 600 pa * s, 200 to 600 pa * s or 250 to 550 pa * s.
  • the difference in melt viscosity is less than 0.1 pa * s, the first resin and the second resin are easily mixed, so that a layer separation phenomenon is less likely to occur, and the difference in melt viscosity is greater than 3000 pa * s.
  • the first resin and the second resin may not be bonded to each other and may be peeled off.
  • the upper limit and / or lower limit of the difference in melt viscosity may be any value within the range of 0.1 to 3000 pa * s, and may be dependent on the physical properties of the first resin.
  • the second resin has a difference in melt viscosity between the first resin and the second resin 100 It can be selected to be 0.1 to 3000 pa * s at a shear rate of from 1000 s -1 and the processing temperature of the resin mixture.
  • the difference in the melt viscosity may be selected in consideration of the fluidity of the second resin in the melt mixture of the first resin and the second resin.
  • the resin mixture of the first resin and the second resin having a melt viscosity difference of 0.1 to 3000 pa * s at a shear rate of 100 to 1000 s ⁇ 1 and a processing temperature of the resin mixture is layered due to the difference in melt viscosity after melt processing. Can be separated.
  • the first resin and the second resin may be separated by the fluidity difference.
  • the second resin having a lower melt viscosity than the first resin has high fluidity
  • the second resin can be moved in contact with air to form a second resin layer located on the air side.
  • the first resin may be placed on the side opposite to the air while contacting the second resin.
  • layer separation occurs between the first resin and the second resin of the resin mixture.
  • the second resin may include bulky organic functional groups having a predetermined volume or more. As certain bulky organic functional groups are introduced, the second resin may have an increased hydrodynamic volume, resulting in lower melt viscosity. Accordingly, the above-described layer separation phenomenon may occur more easily in the resin in which the bulky organic functional group is introduced.
  • the bulky organic functional group include an alkyl group having 2 to 20 carbon atoms, 2 to 12 carbon atoms, 2 to 6 carbon atoms, 3 to 20 carbon atoms, 3 to 12 carbon atoms, or 3 to 6 carbon atoms; Alicyclic rings having 5 to 40 carbon atoms, 5 to 25 carbon atoms, or 5 to 16 carbon atoms; And aromatic rings having 6 to 40 carbon atoms, 6 to 25 carbon atoms, or 6 to 16 carbon atoms, but are not particularly limited as long as they are hydrodynamic bulky functional groups. May be included.
  • the bulky organic functional group may be, for example, an aliphatic functional group such as tertiary butyl, isobutyl or isopropyl; Alicyclic ring functional groups such as isobornyl or cyclohexyl; And aromatic ring functional groups such as naphthyl, phenyl, anthracenyl or benzyl.
  • the melt viscosity can be measured by capillary flow, which means shear viscosity (pa * s) depending on the specific processing temperature and shear rate (/ s).
  • the 'shear rate' refers to a shear rate applied when the resin mixture is processed, and the shear rate may be adjusted between 100 and 1000 s ⁇ 1 depending on the processing method. Control of the shear rate according to the processing method will be apparent to those skilled in the art.
  • the 'processing temperature' means a temperature for processing the resin mixture.
  • the processing temperature can be adjusted according to the resin applied to melt processing such as extrusion or injection.
  • the processing temperature may be 210 to 240 ° C.
  • a resin is provided; And a second resin having a difference in solubility parameters from 0.001 to 10.0 (J / cm 3 ) 1/2 at 25 ° C., may be provided.
  • the difference between the solubility parameters of the first resin and the second resin is 0.001 to 10.0 (J / cm 3 ) 1/2 , 0.01 to 5.0 (J / cm 3 ) 1/2 , 0.01 to 3.0 ( J / cm 3 ) 1/2 , 0.01 to 2.0 (J / cm 3 ) 1/2 , 0.1 to 1.0 (J / cm 3 ) 1/2 , 0.1 to 10.0 (J / cm 3 ) 1/2 , 3.0 to 10.0 (J / cm 3 ) 1/2 , 5.0 to 10.0 (J / cm 3 ) 1/2 or 3.0 to 8.0 (J / cm 3 ) 1/2 .
  • solubility parameters are inherent properties of the resins which show the solubility according to the polarity of each resin molecule, and solubility parameters for each resin are generally known.
  • the difference in solubility parameter is less than 0.001 (J / cm 3 ) 1/2 , the first resin and the second resin are easily mixed, so that the layer separation phenomenon is difficult to occur easily, and the difference in solubility parameter is 10.0 (J / cm 3 ) If greater than 1/2 , the first resin and the second resin may not be bonded and may be peeled off.
  • the upper limit and / or lower limit of the difference in solubility parameters may be any value within the range of 0.001 to 10.0 (J / cm 3 ) 1/2 , and may be dependent on the physical properties of the first resin.
  • the second resin has a difference in solubility parameter between the first resin and the second resin at 25 ° C. Can be selected to be from 0.001 to 10.0 (J / cm 3 ) 1/2 .
  • the difference in solubility parameter may be selected in consideration of the miscibility of the second resin in the melt mixture of the first resin and the second resin.
  • the resin mixture of the first resin and the second resin having a solubility parameter difference of 0.001 to 10.0 (J / cm 3 ) 1/2 may be layer separated after melt processing due to the difference in solubility parameters.
  • the first resin and the second resin may be separated by the degree of miscibility.
  • the second resin having a difference in solubility parameter of 0.001 to 10 (J / cm 3 ) 1/2 at 25 ° C. relative to the first resin may not be mixed with the first resin.
  • the second resin additionally has a lower surface tension or lower melt viscosity than the first resin, the second resin can move in contact with the air to form a second resin layer located on the air side.
  • the first resin may be placed on the side opposite to the air while contacting the second resin. Thus, layer separation occurs between the first resin and the second resin of the resin mixture.
  • the molecular weight distribution (PDI) of the second resin may be 1 to 2.5, 1.3 to 2.5, 1.5 to 2.5, or 1.7 to 2.5.
  • the upper limit and the lower limit of the molecular weight distribution of the second resin may be any value of 1 to 2.5.
  • the molecular weight distribution of the second resin is larger than 2.5, the first resin and the second resin are easily mixed by the low molecular weight, or the fluidity of the second resin is decreased by the high molecular weight, so that the layer separation phenomenon easily occurs. It is difficult.
  • the weight average molecular weight (Mw) of the second resin of the resin mixture is 30,000 to 200,000, 50,000 to 200,000, 80,000 to 200,000, 50,000 to 150,000, 8 10,000-150,000, 50,000-120,000, or 80,000-120,000.
  • the upper limit and the lower limit of the weight average molecular weight of the second resin may be any value of 30,000 to 200,000.
  • the weight average molecular weight is less than 30,000, the first resin and the second resin are easily mixed, and when the weight average molecular weight is greater than 200,000, the fluidity of the second resin is lowered, and layer separation is less likely to occur.
  • the second resin has a higher glass transition temperature (Tg) than the first resin, the difference between the glass transition temperature of the first resin and the second resin is 10 °C or more, 20 Or at least 23 ° C.
  • Tg glass transition temperature
  • the maximum value of the glass transition temperature difference between the first resin and the second resin is not particularly limited, but may be 150 ° C. or less.
  • the glass transition temperature of the said 2nd resin is 10 degreeC or more higher than the said 1st resin, the 2nd resin with a high glass transition temperature will be located outside of a resin molded article, and surface hardness can be improved significantly.
  • the second resin may have a high glass transition temperature, thereby further increasing the surface hardness of the final molded article. have.
  • the hydrogen bond donor is not particularly limited as long as it is a functional group or a moiety including hydrogen bonded to N or O, and examples thereof include, for example, OH group, NH 2 group, NHR group, COOH group, and CONH. And residues such as NHCO bonds, NH bonds, CONHCO bonds, and NH-NH bonds in two groups, NHOH groups, or molecules.
  • hydrogen bonding recipient is is a functional group or moiety, such as including the N or O is not particularly limited, for example, OH group, an OR group, an NH 2 group, an NHR group, an NR 2 group, NHCO bond, NRCO bond, O bond, NH bond, NR bond, COO bond, CONHCO bond, CONRCO bond, NH-NH bond in COOH group, COOR group, CONH 2 group, CONR 2 group, NHOH group, NROR group or molecule And residues such as NR-NH bond and NR-NR bond.
  • R may be aliphatic hydrocarbons, aromatic hydrocarbons and derivatives thereof, for example, aliphatic hydrocarbons having 1 to 16 carbon atoms or 1 to 9 carbon atoms, aromatic hydrocarbons having 5 to 30 carbon atoms or 5 to 16 carbon atoms, and It may be a derivative of.
  • Hydrogen bond donors provide hydrogen that is bound to atoms with high electronegativity, while on the other hand, atomic portions with high electronegativity can also act as hydrogen bond acceptors.
  • there are also functional groups that act only as hydrogen bond donors such as-(NH 4 ) + groups.
  • the glass transition temperature synergistic effect of the second resin may occur when the second resin contains a hydrogen bond donor and a acceptor together.
  • the hydrogen bond donor and acceptor may be present in one type of resin.
  • One type of resin comprising a hydrogen bond donor and acceptor polymerizes the resin from a monomer comprising both a hydrogen bond donor and a acceptor, or a resin comprising a monomer comprising a hydrogen bond donor and a monomer comprising a hydrogen bond acceptor. Can be obtained.
  • each monomer can use 1 type (s) or 2 or more types.
  • the hydrogen bond donor and acceptor may each be present in a different type of resin. That is, the resin polymerized from the monomer including the hydrogen bond donor and the resin polymerized from the monomer including the hydrogen bond acceptor can be mixed and included in the second resin. In the above, each monomer can use 1 type (s) or 2 or more types.
  • the second resin may further include a resin that does not include other hydrogen bond providers and / or acceptors, if one or more resins are present in the hydrogen bond providers and acceptors.
  • Monomers capable of imparting a hydrogen bond donor and / or acceptor to the second resin may include one or more functional groups or residues of the hydrogen bond donor and / or acceptor, for example two or more or three or more. can do.
  • Monomers including hydrogen bond donors and / or acceptors are not particularly limited, but include, for example, vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; Nitrogen-containing monomers such as (meth) acrylamide, N-substituted (meth) acrylamide, and N, N-substituted (meth) acrylamide; Vinyl acetate; Hydroxy group-containing monomers such as hydroxyalkyl (meth) acrylate; (Meth) acrylic acid, 2- (meth) acryloyloxy acetic acid, 3- (meth) acryloyloxy propyl acid, 4- (meth) acryloyloxy butyl acid, acrylic acid duplex, itaconic acid, maleic acid or Carboxyl group-containing monomers such as maleic anhydride and the like; Heterocyclic compounds such as vinyl pyrrolidone, acryloyl morpholine or 2-ureido-4-pyrimidinone group-containing monomers and
  • the first resin is a resin mainly determining the physical properties of the desired molded article, it may be selected according to the type of the target molded article and the process conditions used.
  • a general synthetic resin may be used without any limitation, and for example, an acrylonitrile butadiene styrene (ABS) resin, a polystyrene resin, an acrylonitrile styrene acrylate (ASA) resin, or a styrene-butadiene-styrene block may be used.
  • Styrene resins such as copolymer-based resins; Polyolefin resins such as high density polyethylene resins, low density polyethylene resins, or polypropylene resins; Thermoplastic elastomers such as ester-based thermoplastic elastomers or olefin-based thermoplastic elastomers; Polyoxyalkylene resins such as polyoxymethylene resin or polyoxyethylene resin; Polyester resins such as polyethylene terephthalate resins or polybutylene terephthalate resins; Polyvinyl chloride resins; Polycarbonate resins; Polyphenylene sulfide resin; Vinyl alcohol-based resins; Polyamide-based resins; Acrylate resins; Engineering plastics; These copolymers or mixtures thereof are mentioned.
  • the engineering plastics are plastics that exhibit good mechanical and thermal properties.
  • polyetherketone, polysulfone, polyimide and the like can be used as the engineering plastics.
  • a copolymer of a styrene resin and an acrylate resin may be used as the first resin.
  • the second resin refers to a resin that exhibits the difference in physical properties as described above in relation to the first resin and can impart excellent mechanical properties and high surface hardness to the surface of the desired molded article.
  • the second resin may be a polymer including a monomer represented by Chemical Formula 2 as a polymerized unit.
  • the monomer represented by Formula 2 may be included in the second resin in a copolymerized form with other monomers.
  • the specific kind of resin which can be contained in 2nd resin is not restrict
  • the monomer represented by Formula 2 may be polymerized with the (meth) acrylic monomer and included in the second resin.
  • a (meth) acryl monomer For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl Alkyl (meth) acrylates such as (meth) acrylate, lauryl (meth) acrylate or stearyl (meth) acrylate; Or glycidyl (meth) acrylate, etc. are mentioned, It is not limited to this.
  • the monomer represented by Chemical Formula 2 may be polymerized with a monomer for providing an epoxy resin to be included in the second resin.
  • the epoxy resins include bisphenol type such as bisphenol A type, bisphenol F type, bisphenol S type, and these water additives; Novolak types such as phenol novolak type and cresol novolak type; Nitrogen-containing cyclic types such as triglycidyl isocyanurate type and hydantoin type; Alicyclic type; Aliphatic type; Aromatic types such as naphthalene type and biphenyl type; Glycidyl types such as glycidyl ether type, glycidyl amine type and glycidyl ester type; Dicyclo types such as dicyclopentadiene type; Ester type; Or ether ester type, and the like, but is not limited thereto.
  • the monomer represented by Formula 2 may be polymerized with an oxetane monomer having one or more oxetane rings to be included in the second resin.
  • oxetane monomers include 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, di [1-ethyl (3-oxetanyl)] methyl ether, and phenol Novolak oxetane, terephthalate bisoxetane or biphenylene bisoxetane, and the like, but is not limited thereto.
  • the monomer represented by Formula 2 may be polymerized with a monomer containing an isocyanate group to be included in the second resin.
  • the monomer containing an isocyanate group include diphenylmethane diisocyanate (MDI), toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), and the like, but is not limited thereto.
  • the monomer represented by Formula 2 may be polymerized with the fluorine monomer to be included in the second resin.
  • fluorine monomers include tetrafluoroethylene, chlorotrifluoroethylene, vinylidene fluoride, vinyl fluoride, and the like, but are not limited thereto.
  • the content of the monomer represented by the formula (2) is imparted to the hydrophobicity to the second resin, it can be appropriately controlled in a range that can be separated from the first resin.
  • the content of the monomer represented by Formula 2 is 0.01 to 15 parts by weight, 0.01 to 10 parts by weight, 0.01 to 5 parts by weight, 0.1 to 15 parts by weight, based on 100 parts by weight of the total monomers for polymerizing the second resin, It can be adjusted in the range of 0.1 to 10 parts by weight, 0.1 to 5 parts by weight or 0.5 to 4 parts by weight.
  • (meth) acrylate-based resin, epoxy-based resin, oxetane-based resin, isocyanate-based resin, fluorine-based resin or a copolymer thereof as the second resin means that the above-mentioned resin as the major resin of the second resin. Means to use. Accordingly, as one example of the second resin, a polymer polymerized from a monomer mixture including a monomer capable of providing the main resin and a monomer represented by Formula 2 may be used.
  • the second resin may further include the bulky organic functional group in addition to the monomer capable of providing the main resin and the monomer represented by Formula 2; And / or polymers polymerized with monomer mixtures comprising monomers capable of introducing hydrogen bond donors and acceptors.
  • tertiary butyl (meth) acrylate for example, tertiary butyl (meth) acrylate, isobutyl (meth) acrylate, isopropyl (meth) acrylate, isobornyl (meth) acryl
  • the rate, cyclohexyl (meth) acrylate, naphthyl (meth) acrylate, phenyl (meth) acrylate, anthracenyl (meth) acrylate, benzyl (meth) acrylate, etc. are mentioned.
  • the monomers exemplified above may be used as the monomer capable of introducing the hydrogen bond donor and acceptor.
  • the resin mixture may include 0.1 to 50 parts by weight of the second resin with respect to 100 parts by weight of the first resin, or may include 1 to 20 parts by weight, 1 to 15 parts by weight, or 5 to 15 parts by weight.
  • the second resin contains less than 0.1 parts by weight with respect to 100 parts by weight of the first resin, no phase separation occurs, and if the second resin contains more than 50 parts by weight, the manufacturing cost is high due to the high cost of the second resin. There is a drawback to rising.
  • the resin mixture may be prepared into pellets by extrusion. As shown in FIG. 6, in the pellet manufactured using the resin mixture, the first resin may be positioned at the center, and the second resin may be separated from the first resin to form a layer located in the shell of the pellet.
  • the present invention comprises a core comprising a first resin; And a hydrophobic moiety represented by the following Chemical Formula 1 in a main chain, and a pellet including a cell including a second resin having a surface energy difference of 0.1 to 20 mN / m at 25 ° C. .
  • R a to R d and n are as defined above.
  • the first resin and the second resin may have different physical properties.
  • the first resin and the second resin may have a surface energy difference of 0.1 to 20 mN / m at 25 ° C., a shear rate of 100 to 1000 s ⁇ 1 and 0.1 to 3000 pa * s at a processing temperature of the pellets. Melt viscosity difference, solubility parameter of 0.001 to 10.0 (J / cm 3 ) 1/2 at 25 ° C. may be different.
  • the molecular weight distribution of the second resin may be 1 to 2.5, the weight average molecular weight may be 30,000 to 200,000.
  • the second resin has a higher glass transition temperature than the first resin, and the difference between the glass transition temperatures of the first resin and the second resin may be 10 ° C to 150 ° C.
  • a method for producing a resin molded article having a layered structure may include melting a mixture of the first resin and the second resin to form a melt blend, and processing the melt mixture to form a layered structure.
  • a layer separation phenomenon may occur in the process of melt processing the resin mixture, and due to this layer separation phenomenon, pellets or It can have the effect of selectively coating the surface of the molded article.
  • the second resin of the present invention may have a lower surface energy by introducing a hydrophobic site represented by the formula (1) in the main chain, so that the layer separation efficiency is increased, and thus the second resin, for example, a high hardness resin
  • the molded article can be provided that is more easily located on the surface and the mechanical properties and surface properties are improved.
  • melt processing can be carried out under shear stress, for example, but not limited to extrusion and / or injection processing.
  • the resin mixture may be prepared into pellets by melt processing such as extrusion.
  • the resin mixture comprising the first resin and the second resin is moved in contact with air to form the surface layer of the pellets during melt processing because the second resin is more hydrophobic than the first resin.
  • the first resin may be positioned at the center of the pellet to form a core.
  • the resin mixture may be manufactured into pellets by extrusion, and then manufactured pellets may be manufactured into molded articles by melt processing such as injection. Meanwhile, the resin mixture may be manufactured into a molded article by melt processing such as direct injection or the like.
  • the resin mixture may be applied to vary the temperature depending on the type of the first resin and the second resin used.
  • the method for producing a resin molded article may further include curing a resultant obtained by melt processing the resin mixture, that is, a melt processed product of the resin mixture.
  • the curing can be, for example, thermosetting or UV curing. It will also be apparent to one skilled in the art that further chemical or physical treatments may be performed.
  • the method for producing a resin molded article may further comprise the step of preparing a second resin before the step of melt processing the resin mixture.
  • the second resin can be selected according to the first resin as described above, and the selected second resin can impart a specific function, for example, high hardness, to the surface layer of the resin molded article.
  • the second resin is not particularly limited as long as it is a method of producing a resin through polymerization of monomers. For example, a method such as bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization may be used.
  • the preparing of the second resin may include dispersing a monomer capable of introducing a hydrophobic moiety of Formula 1, for example, a monomer represented by Formula 2 and a monomer capable of providing a main resin in a reaction solvent; Adding and mixing at least one additive selected from the group consisting of a chain transfer agent, an initiator, and a dispersion stabilizer to the reaction solvent; And it may include a polymerization step of reacting the mixture at a temperature of 40 °C or more.
  • the reaction medium can be used without any limitation as long as it is known to be commonly used to prepare synthetic resins, polymers or copolymers.
  • Examples of such a reaction medium may be methyl ethyl ketone, ethanol, methyl isobutyl ketone or distilled water, and may be used by mixing two or more kinds.
  • Chain transfer agents that can be added to the reaction solvent include alkyl mercaptans such as n-butyl mercaptan, n-dodecyl mercaptan, tertiary dodecyl mercaptan or isopropyl mercaptan; Or aryl mercaptans such as phenyl mercaptan, naphthyl mercaptan or benzyl mercaptan; Halogen compounds such as carbon tetrachloride; Aromatic compounds, such as alpha-methylstyrene dimer and alpha-ethylstyrene dimer, can be used, but is not limited to the above examples.
  • alkyl mercaptans such as n-butyl mercaptan, n-dodecyl mercaptan, tertiary dodecyl mercaptan or isopropyl mercaptan
  • aryl mercaptans such
  • the initiator may be a polymerization initiator known to be commonly used in suspension polymerization, for example, peroxides such as octanoyl peroxide, decanyl peroxide, lauroyl peroxide, or azobisisobutyronitrile, azobis- ( Azo compounds such as 2,4-dimethyl) -valeronitrile and the like can be used without particular limitation.
  • peroxides such as octanoyl peroxide, decanyl peroxide, lauroyl peroxide, or azobisisobutyronitrile, azobis- ( Azo compounds such as 2,4-dimethyl) -valeronitrile and the like can be used without particular limitation.
  • dispersion stabilizer examples include, but are not limited to, an organic dispersant such as polyvinyl alcohol, polyolepin-maleic acid, cellulose, or an inorganic dispersant such as tricalcium phosphate.
  • the present invention is a first resin layer; A second resin layer formed on the first resin layer; And an interfacial layer formed between the first resin layer and the second resin layer, wherein the second resin layer has a hydrophobic moiety represented by the following Chemical Formula 1 in the main chain; There may be provided a resin molded article comprising a second resin comprising.
  • R a to R d and n are as defined above.
  • the structure of the resin molded article that is, the structure in which the first resin layer and the second resin layer are separated by an interface layer and the second resin layer is exposed to the outside is a novel novel type, which is not known in the art, for improving surface characteristics.
  • the coating process or the painting process can be omitted, the production process time and production cost can be reduced, and the productivity of the final product can be increased. Extrusion or injection of a common resin cannot form the structure as described above, and it is difficult to realize the effect according to the structure.
  • the resin molded article may further increase the surface hardness of the resin molded article by increasing the layer separation efficiency by using the second resin including the hydrophobic moiety represented by Chemical Formula 1 in the main chain.
  • the first resin layer mainly includes the first resin, determines physical properties of the molded article, and may be located inside the resin molded article.
  • the 'second resin layer' may mainly include the second resin, and may be positioned outside the resin molded article to impart a predetermined function to the surface of the molded article.
  • the resin molded article may include an interfacial layer formed between the first resin layer and the second resin layer and containing a mixture of the first resin and the second resin.
  • the interfacial layer may be formed between the separated first resin layer and the second resin layer to serve as an interface, and may include a mixture of the first resin and the second resin.
  • the blend may be in a state in which the first resin and the second resin are physically or chemically bonded, and the first resin layer and the second resin layer may be bonded through the blend.
  • the resin molded article may include a structure in which the first resin layer and the second resin layer are divided by such an interface layer, and the second resin layer is exposed to the outside.
  • the molded article may include the first resin layer; Interfacial layer; And a structure in which the second resin layer is sequentially stacked, and may have a structure in which an interface and a second resin are stacked on upper and lower ends of the first resin.
  • the resin molded article may include a structure in which the interface and the second resin layer sequentially surround the first resin layer having various three-dimensional shapes, for example, spherical, circular, polyhedral, sheet, and the like.
  • the layer separation phenomenon appearing in the resin molded article seems to be due to the production of a resin molded article by applying a specific first resin and a second resin having different physical properties.
  • different physical properties include surface energy, melt viscosity and solubility parameters. Details of such differences in physical properties are as described above.
  • the fracture surface can be etched (etched) using THF vapor and confirmed by SEM, the thickness measurement of each layer
  • the silver specimen is cut with a diamond knife using a microtoming device to produce a smooth cross section, and then the smooth cross section is etched using a solution that can selectively dissolve the second resin better than the first resin.
  • the etched cross-section is different in the degree of melting depending on the content of the first resin and the second resin, and when the cross-section is viewed from the surface at 45 degrees using the SEM, the first resin layer, the second resin layer, The interfacial layer and the surface can be observed and the thickness of each layer can be measured.
  • 1,2-dichloroethane solution (10% by volume, in EtOH) was used as a solution for selectively dissolving the second resin, but this is illustrative and a solution having a higher solubility of the second resin than the first resin. If it is, it will not restrict
  • the interface layer is 0.01 to 95%, 0.1 to 70%, 0.1 to 50%, 5 to 50%, 10 to 50%, 15 to 50% or 20 to 50% of the total thickness of the second resin layer and the interface layer It may have a thickness. If the interfacial layer is 0.01-95% of the total thickness of the second resin layer and the interfacial layer, the interfacial bonding force between the first resin layer and the second resin layer is excellent, so that peeling of both layers does not occur, and the second resin layer Due to this, the surface properties can be greatly improved. On the contrary, if the interface layer is too thin as compared to the second resin layer, the bonding force between the first resin layer and the second resin layer is low, so that peeling of both layers may occur. The effect of the improvement of properties may be insignificant.
  • the second resin layer may have a thickness of 0.01 to 60%, 0.01 to 40%, 0.01 to 20%, 0.01 to 10%, 0.01 to 5% 0.01 to 3% or 0.1 to 3% relative to the total resin molded article.
  • As the second resin layer has a range of thicknesses it is possible to impart improved surface hardness or scratch resistance to the surface of the molded article. If the thickness of the second resin layer is too thin, the surface properties of the molded article are sufficiently improved. It may be difficult to, and if the thickness of the second resin layer is too thick, the mechanical properties of the functional resin itself may be reflected in the resin molded article to change the mechanical properties of the first resin.
  • the first resin layer On the other hand, according to another embodiment of the present invention, the first resin layer; And a second resin layer formed on the first resin layer, wherein a first resin layer component is detected by an infrared spectrometer (IR) on the surface of the second resin layer, and the second resin layer is a main chain.
  • IR infrared spectrometer
  • the structure of the molded article that is, the structure in which the first resin layer component is detected by the infrared spectroscopy on the surface of the second resin layer is novel, which is not known in the prior art. Strata components are difficult to detect.
  • the surface of the second resin layer means a surface exposed to the outside (for example, air) rather than the first resin layer.
  • the difference in physical properties between the first resin and the second resin may mean a difference in physical properties between the first resin and the second resin or a difference in physical properties between the first resin layer and the second resin layer.
  • an automobile part, a helmet, an electric machine part, a spinning machine part, a toy, a pipe, and the like including the resin molded product.
  • the mechanical properties and surface hardness of the molded article can be improved, but additional surface coating steps can be omitted to reduce the process time, increase productivity, and reduce production costs.
  • a method for producing a molded article and a resin molded article produced therefrom can be provided.
  • FIG. 1 shows an exemplary schematic diagram of a resin mixture as one example of the present invention.
  • FIG. 2 shows an exemplary schematic diagram of a resin mixture as another example of the present invention.
  • FIG 3 shows an exemplary schematic view of a layered structure formed of a resin mixture comprising a first resin and a second resin as an example of the invention.
  • FIG. 4 shows an exemplary schematic diagram of a layer separation structure formed of a resin mixture comprising a first resin, a second resin and a third resin as another example of the present invention.
  • FIG. 5 shows an exemplary schematic of a layer separation structure, as another example of the present invention.
  • FIG. 6 shows an exemplary schematic of a pellet having a core and a cell.
  • Figure 7 shows a layered cross-sectional SEM image of the molded article prepared in Example 3.
  • Figure 8 shows a cross-sectional shape SEM photograph of the molded article prepared in Comparative Example 1.
  • the glass transition temperature was measured using a differential scanning calorimeter (DSC823e, manufactured by Mettler-toledo). More specifically, after mounting an aluminum pan containing 1 mg of the first resin or the second resin sample in the measuring device, the glass transition temperature was measured at -50 ° C to 300 ° C (10 ° C / min, 2cycle).
  • the first resin or the second resin is dissolved in 10% by weight of methyl ethyl ketone and methyl isobutyl ketone (2: 1) mixed solution, and then triacetyl cellulose (TAC The film was bar coated. The coated TAC film was then dried for 5 minutes in an oven at 90 ° C.
  • Melt viscosity was measured using a capillary rheometer (Capillary Rheometer 1501, Gottfert).
  • the shear viscosity (shear viscosity, pa * s) according to the shear rate (shear rate) of 100 to 1000 s -1 at a processing temperature of 240 °C was measured.
  • the molecular weight distribution was measured using GPC (Gel permeation chromatography), and the conditions are as follows.
  • the analysis program used ChemStation of Agilent technologies, and obtained weight average molecular weight (Mw), number average molecular weight (Mn) by GPC, and then obtained molecular weight distribution (PDI) from weight average molecular weight / number average molecular weight (Mw / Mn). Calculated.
  • the specimens of Examples and Comparative Examples were subjected to a low temperature impact test, and then the fracture surface was etched using THF vapor and the cross-sectional shape separated by SEM was observed.
  • the specimens of the following Examples and Comparative Examples were cut with a diamond knife at -120 °C using a microtoming equipment (Leica EM FC6) Make a smooth cross section.
  • the cross section of the specimen including the microtomed smooth cross section was immersed in 1,2-dichloroethane solution (10 vol%, in EtOH) for 10 seconds and then washed with distilled water.
  • the etched cross-section is different in the degree of melting depending on the content of the first resin and the second resin, which can be observed using SEM. That is, when the cross section is viewed from 45 degrees from the surface, the first resin layer, the second resin layer, and the interface layer can be observed by the difference in the shade, and the respective thicknesses can be measured.
  • the surface pencil hardness of the specimens of Examples and Comparative Examples was measured under a constant load of 500 g using a pencil hardness tester (Chungbuk Tech). The rate of change of the surface was observed by applying a scratch at an angle of 45 degrees while changing the standard pencil (Mitsubishi Co., Ltd.) from 6B to 9H (ASTM 3363-74). The measurement result is an average value of five replicate experiments.
  • the strength of the specimens prepared in Examples and Comparative Examples was measured according to ASTM D256. Specifically, the energy (Kg * cm / cm) required to break the specimen which cut the V-shaped groove (Notch) after lifting the pendulum tip was measured using an impact tester (Impact 104, Tinius Olsen). Five measurements were taken on the 1/8 "and 1/4" specimens and averaged.
  • thermoplastic resin composed of 60% by weight of methyl methacrylate, 7% by weight of acrylonitrile, 10% by weight of butadiene and 23% by weight of styrene was used.
  • second resin 1500 g of distilled water and 4 g of a polyvinyl alcohol 2% aqueous solution as a dispersant were added to a reactor of 3 liters and dissolved.
  • the surface energy difference between the first resin and the second resin (A) is 12 mN / m, the melt viscosity difference is 325 pa * s, the glass transition temperature of the first resin is 70 °C, the second resin (A) The glass transition temperature of was 102 degreeC, the weight average molecular weight of 2nd resin (A) measured by GPC was 100K, and molecular weight distribution (PDI) was 2.1.
  • Example 2 Using the same first resin as in Example 1, instead of 792 g of methyl methacrylate, 8 g of dithiol terminated polydimethylsiloxane (Mw: 1670), 784 g of methyl methacrylate and dithiol terminated polydimethylsiloxane A second resin (B) was prepared in the same manner as in Example 1 except that 16 g (Mw: 1670) was used.
  • the surface energy difference between the first resin and the second resin (B) is 14 mN / m, the melt viscosity difference is 340 pa * s, and the glass transition temperature of the second resin (B) is 101 ° C,
  • the weight average molecular weight of the measured second resin (B) was 100 K, and the molecular weight distribution was 2.2.
  • a specimen 2 having a thickness of 3200 ⁇ m was prepared in the same manner as in Example 1.
  • the second resin layer thickness of the specimen was 36 ⁇ m
  • the interface layer had a thickness of 27 ⁇ m
  • the pencil hardness was H
  • the strength was 9 kg * cm / cm for IZOD 1/8 ”, IZOD 1/4” In the case of 9 kg * cm / cm, delamination was observed.
  • Example 2 Using the same first resin as in Example 1, instead of 792 g of methyl methacrylate, 8 g of dithiol terminated polydimethylsiloxane (Mw: 1670), 776 g of methyl methacrylate and dithiol terminated polydimethylsiloxane A second resin (C) was prepared in the same manner as in Example 1 except that 24 g (Mw: 1670) was used.
  • the surface energy difference between the first resin and the second resin (C) is 15 mN / m, the melt viscosity difference is 350 pa * s, and the glass transition temperature of the second resin (C) is 99 ° C,
  • the weight average molecular weight of the measured second resin (C) was 100 K, and the molecular weight distribution was 2.2.
  • a specimen 3 having a thickness of 3200 ⁇ m was prepared in the same manner as in Example 1.
  • the second resin layer thickness of the specimen was 43 ⁇ m
  • the interface layer was 19 ⁇ m
  • the pencil hardness was 2H
  • the strength was 9 kg * cm / cm for IZOD 1/8 ”, IZOD 1/4” In the case of 9 kg * cm / cm, delamination was observed.
  • Example 2 Using the same first resin as in Example 1, instead of 792 g of methyl methacrylate, 8 g of dithiol terminated polydimethylsiloxane (Mw: 1670), 776 g of methyl methacrylate and monothiol terminated polydimethylsiloxane A second resin (D) was prepared in the same manner as in Example 1 except that 24 g (Mw: 1900) was used.
  • the surface energy difference between the first resin and the second resin (D) is 12 mN / m, the melt viscosity difference is 330 pa * s, and the glass transition temperature of the second resin (D) is 103 ° C,
  • the weight average molecular weight of the measured second resin (D) was 100 K, and the molecular weight distribution was 2.3.
  • a specimen 4 having a thickness of 3200 ⁇ m was prepared in the same manner as in Example 1, except that the second resin (D) was used.
  • the second resin layer thickness of the specimen was 45 ⁇ m
  • the interface layer had a thickness of 33 ⁇ m
  • the pencil hardness was 2H
  • the strength was 9 kg * cm / cm for IZOD 1/8 ”
  • IZOD 1/4 In the case of 9 kg * cm / cm, delamination was observed.
  • Example 2 Using the same first resin as in Example 1, instead of 792 g of methyl methacrylate, 8 g of dithiol-terminated polydimethylsiloxane (Mw: 1670), 576 g of methyl methacrylate, 200 g of cyclohexyl methacrylate And the second resin (E) was prepared in the same manner as in Example 1, except that 24 g of disthiol terminated polydimethylsiloxane (Mw: 1670) was used.
  • Mw dithiol-terminated polydimethylsiloxane
  • the surface energy difference between the first resin and the second resin (E) is 17 mN / m
  • the melt viscosity difference is 470 pa * s
  • the glass transition temperature of the second resin (E) is 96 ° C
  • the weight average molecular weight of the measured second resin (E) was 100 K
  • the molecular weight distribution was 2.1.
  • a specimen 5 having a thickness of 3200 ⁇ m was prepared in the same manner as in Example 1, except that the second resin (E) was used.
  • the second resin layer thickness of the specimen was 49 ⁇ m
  • the interface layer thickness was 35 ⁇ m
  • the pencil hardness was 2.5H
  • the strength was 9 kg * cm / cm for IZOD 1/8 ”
  • IZOD 1/4 9 kg * cm / cm was delamination was observed.
  • Example 2 Using the same first resin as in Example 1, instead of 792 g of methyl methacrylate, 8 g of dithiol terminated polydimethylsiloxane (Mw: 1670), 576 g of methyl methacrylate, 200 g of phenylmethacrylate, and A second resin (F) was prepared in the same manner as in Example 1 except that 24 g of disthiol terminated polydimethylsiloxane (Mw: 1670) was used.
  • Mw dithiol terminated polydimethylsiloxane
  • the difference in surface energy between the first resin and the second resin (F) is 20 mN / m, the difference in melt viscosity is 455 pa * s, and the glass transition temperature of the second resin (F) is 102 ° C.
  • the weight average molecular weight of the measured second resin (F) was 100 K, and the molecular weight distribution was 2.1.
  • a specimen 6 having a thickness of 3200 ⁇ m was prepared in the same manner as in Example 1, except that the second resin (F) was used.
  • the second resin layer thickness of the specimen is 50 ⁇ m
  • the thickness of the interfacial layer is 32 ⁇ m
  • the pencil hardness is 2.5H
  • the strength is 9 kg * cm / cm for IZOD 1/8 ”
  • IZOD 1/4 9 kg * cm / cm and delamination was observed.
  • Example 2 Using the same first resin as in Example 1, instead of 792 g of methyl methacrylate, 8 g of dithiol terminated polydimethylsiloxane (Mw: 1670), 536 g of methyl methacrylate, 120 g of acrylamide, hydroxyethyl A second resin (G) was prepared in the same manner as in Example 1, except that 120 g of methacrylate and 24 g of dithiol-terminated polydimethylsiloxane (Mw: 1670) were used.
  • Mw dithiol terminated polydimethylsiloxane
  • the surface energy difference between the first resin and the second resin (G) is 6 mN / m, the melt viscosity difference is 395 pa * s, and the glass transition temperature of the second resin (G) is 122 ° C,
  • the weight average molecular weight of the measured second resin (G) was 100 K, and the molecular weight distribution was 1.9.
  • a specimen 7 having a thickness of 3200 ⁇ m was prepared in the same manner as in Example 1, except that the second resin (G) was used.
  • the second resin layer thickness of the specimen was 65 ⁇ m
  • the interface layer thickness was 28 ⁇ m
  • the pencil hardness was 1.5H
  • the strength was 7 kg * cm / cm for IZOD 1/8 ”
  • IZOD 1/4 7 kg * cm / cm was a delamination phenomenon was observed.
  • Example 2 Using the same first resin as in Example 1, instead of 792 g of methyl methacrylate, 8 g of dithiol terminated polydimethylsiloxane (Mw: 1670), 536 g of methyl methacrylate, hydroxyethyl methacrylate 240 A second resin (H) was prepared in the same manner as in Example 1, except that g and 24 g of disthiool terminated polydimethylsiloxane (Mw: 1670) were used.
  • the difference in surface energy between the first resin and the second resin (H) is 7 mN / m, the difference in melt viscosity is 450 pa * s, and the glass transition temperature of the second resin (H) is 108 ° C.
  • the weight average molecular weight of the measured second resin (H) was 100 K, and the molecular weight distribution was 1.9.
  • a specimen 8 having a thickness of 3200 ⁇ m was prepared in the same manner as in Example 1, except that the second resin (H) was used.
  • the second resin layer thickness of the specimen was 54 ⁇ m
  • the interface layer had a thickness of 30 ⁇ m
  • the pencil hardness was 2H
  • the strength was 9 kg * cm / cm for IZOD 1/8 ”, IZOD 1/4” In the case of 9 kg * cm / cm, delamination was observed.
  • Example 2 Using the same first resin as in Example 1, instead of 792 g of methyl methacrylate, 8 g of dithiol terminated polydimethylsiloxane (Mw: 1670), 536 g of methyl methacrylate, 120 g of vinylpyrrolidone, hydroxy A second resin (I) was prepared in the same manner as in Example 1, except that 120 g of ethyl methacrylate and 24 g of dithiol-terminated polydimethylsiloxane (Mw: 1670) were used.
  • the surface energy difference between the first resin and the second resin (I) is 6 mN / m, the melt viscosity difference is 410 pa * s, and the glass transition temperature of the second resin (I) is 110 ° C,
  • the weight average molecular weight of the measured second resin (I) was 100 K, and the molecular weight distribution was 2.2.
  • a specimen 9 having a thickness of 3200 ⁇ m was prepared in the same manner as in Example 1, except that the second resin (I) was used.
  • the second resin layer thickness of the specimen was 62 ⁇ m
  • the interfacial layer was 32 ⁇ m
  • the pencil hardness was 2H
  • the strength was 8 kg * cm / cm for IZOD 1/8 ”, IZOD 1/4” In the case of 8 kg * cm / cm, delamination was observed.
  • Example 1 100 parts by weight of the same first resin pellet as in Example 1 was dried in an oven, and injected at a temperature of 240 ° C. in an EC100 ⁇ 30 injection machine (ENGEL) to prepare a specimen 10 having a thickness of 3200 ⁇ m.
  • ENGEL EC100 ⁇ 30 injection machine
  • the glass transition temperature (Tg) is 70 °C
  • the strength is 10 kg * cm / cm for IZOD 1/8 "
  • pencil hardness was F.
  • Example 2 Using the same first resin as in Example 1, instead of 792 g of methyl methacrylate, 8 g of dithiol terminated polydimethylsiloxane (Mw: 1670), 640 g of methyl methacrylate and dithiol terminated polydimethylsiloxane ( Mw: 1670) A second resin (J) was prepared in the same manner as in Example 1 except that 160 g was used.
  • the surface energy difference of the said 1st resin and the 2nd resin (J) was 22 mN / m, the melt viscosity difference was 620 pa * s, and the glass transition temperature of the 2nd resin (J) was 45 degreeC.
  • the weight average molecular weight of 2nd resin (J) measured by GPC was 100K, and molecular weight distribution was 4.2.
  • a specimen 11 having a thickness of 3200 ⁇ m was prepared in the same manner as in Example 1. The specimens were peeled off and no delamination could be observed, and pencil hardness could not be measured. In addition, the thickness of the second resin layer and the interface layer could not be measured. The strength was 3 kg * cm / cm for IZOD 1/8 "and 2 kg * cm / cm for IZOD 1/4".
  • Example 2 The same first resin as in Example 1 was used, and polymethyl methacrylate (LGMMA IF870) was used as the second resin. There was no difference in surface energy between the first resin and the second resin, the difference in melt viscosity was 270 pa * s, and the glass transition temperature of the second resin was 104 ° C.
  • the weight average molecular weight of the 2nd resin measured by GPC was 73K, and molecular weight distribution was 1.9.
  • a specimen 13 of 3200 ⁇ m thickness was prepared in the same manner as in Example 1. The specimens could not be observed in the delamination phenomenon. In addition, the thickness of the second resin layer and the interface layer could not be measured.
  • the pencil hardness was H. The strength was 5.2 kg * cm / cm for IZOD 1/8 "and 4.9 kg * cm / cm for IZOD 1/4".
  • Example 1 100 parts by weight of the same first resin pellet as in Example 1 was dried in an oven, and the specimen was prepared by injection at a temperature of 240 ° C. using an EC100 ⁇ 30 injection machine (ENGEL).
  • ENGEL EC100 ⁇ 30 injection machine
  • Self-contained antifouling hard coating solution containing polyfunctional acrylate on the specimen (17.5 wt% dipentaerythritol hexyl acrylate (DPHA), 10 wt% pentaerythritol triacrylate (PETA), perfluorohexylethyl methacrylate 1.5) 5% by weight of SK cytech urethane acrylate EB 1290, 45% by weight methyl ethyl ketone, 20% by weight isopropyl alcohol, 1% by weight of Ciba UV initiator IRGACURE184) and coated with Mayer bar # 9 To dry at about 90 ° C. for 4 minutes to form a film, and then irradiated with UV at 3,000 mJ / cm 2 to cure the coating solution composition to form a hard coating film.
  • DPHA dipentaerythritol hexyl acrylate
  • PETA pentaerythritol triacrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 제 1 수지; 및 주쇄에 소수성 부위를 포함하고, 25℃에서 상기 제 1 수지와 표면 에너지 차이가 0.1 내지 20 mN/m 인 제 2 수지를 포함하며, 층분리 구조를 형성할 수 있는, 수지 혼합물, 펠렛, 이의 제조 방법 및 특정의 층분리 구조를 갖는 수지 성형품에 관한 것으로서, 상기 수지 혼합물에 의하면 성형품의 기계적 특성 및 표면 경도를 향상시킬 수 있을 뿐만 아니라, 추가적인 표면 코팅 단계를 생략하여 공정 시간 단축, 생산성 증가, 생산 비용 절감의 효과 발휘할 수 있다.

Description

수지 혼합물
본 발명은 수지 혼합물, 펠렛, 이를 이용한 수지 성형품의 제조 방법 및 수지 성형품에 관한 것이다.
플라스틱 수지는 가공이 용이하고 인장강도, 탄성률, 내열성, 및 내충격성 등 우수한 성질을 가지고 있어서 자동차부품, 헬멧, 전기기기 부품, 방적기계 부품, 완구류, 또는 파이프 등의 다양한 용도로 사용되고 있다.
특히, 가전제품, 자동자 부품 및 완구류 등에 사용되는 수지의 경우에는 직접 인체에 접촉되기 때문에 친환경적이면서, 우수한 표면 경도를 가져야 한다. 그러나, 일반적으로 수지는 일정 시간 이상 외부에 노출되면, 공기중의 산소, 오존, 빛 등에 의해 분해되면서 변색이 일어나기 쉽다. 이에 따라, 수지의 취약한 내후성 및 약한 강도를 개선하기 위하여, 추가적인 도장 또는 도금 공정을 수지에 적용하는 것이 일반적이다. 하지만, 이러한 도장 또는 도금 공정은 플라스틱 수지의 제조 공정의 효율성 및 경제성을 저하시키는 원인이 될 뿐만 아니라, 도장 또는 도금 공정을 적용하면 공정 자체 또는 제품의 폐기 과정에서 다량의 유해 물질을 발생시키는 문제점을 가지고 있다.
이에 따라, 상기 도장 또는 도금 공정을 생략하면서도 수지의 내스크래치성, 내열성 및 내후성 등과 같은 특성을 향상시키기 위한 다양한 방법이 제안되었다. 예를 들면, 수지 내에 무기입자를 첨가하여 내마모성 및 강성 등의 물성을 향상시키는 방법이 제안되었다. 그러나, 이러한 방법에 의하면 플라스틱 수지의 가공성이 낮아지고 무기입자 첨가로 인해 충격강도 및 광택도가 저하될 수 있는 단점이 나타났다.
본 발명은 수지 혼합물, 펠렛, 이를 이용한 수지 성형품의 제조 방법 및 수지 성형품을 제공하는 것을 목적으로 한다.
본 발명은 제 1 수지 및 주쇄에 하기 화학식 1로 표시되는 소수성 부위를 가지고, 25℃에서 상기 제 1 수지와 표면 에너지 차이가 0.1 내지 20 mN/m 인 제 2 수지를 포함하며, 층분리 구조를 형성할 수 있는, 수지 혼합물을 제공하기 위한 것이다.
[화학식 1]
Figure PCTKR2012010057-appb-I000001
상기 화학식 1에서, Ra 내지 Rd는 각각 독립적으로 탄소수 1 내지 16의 알킬기이고, n은 1 내지 100의 수이다.
또한, 본 발명은 제 1 수지를 포함하는 코어; 및 주쇄에 상기 화학식 1로 표시되는 소수성 부위를 가지고, 25℃에서 상기 제 1 수지와 표면 에너지 차이가 0.1 내지 20 mN/m 인 제 2 수지를 포함하는 셀을 포함하는 펠렛을 제공하기 위한 것이다.
또한, 본 발명은 제 1 수지층; 상기 제 1 수지층 상에 형성되어 있는 제 2 수지층; 및 제 1 수지 및 제 2 수지를 포함하고, 상기 제 1 수지층과 제 2 수지층 사이에 형성되어 있는 계면층을 포함하며, 상기 제 2 수지층은 주쇄에 상기 화학식 1로 표시되는 소수성 부위를 가지는 제 2 수지를 포함하는 수지 성형품을 제공하기 위한 것이다.
또한, 본 발명은 상기 수지 혼합물을 용융시켜 용융 혼합물을 형성하는 단계; 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함하는 수지 성형품의 제조 방법을 제공하기 위한 것이다.
또한, 본 발명은 상기 펠렛을 용융시켜 용융 혼합물을 형성하는 단계; 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함하는 수지 성형품의 제조 방법을 제공하기 위한 것이다.
이하 발명의 구체적인 구현예에 따른 수지 혼합물, 펠렛, 이를 이용한 수지 성형품의 제조 방법 및 수지 성형품에 관하여 상세하게 설명하기로 한다.
본 발명에서, "혼합물(blend)"은 2가지 이상의 서로 다른 수지의 혼합물일 수 있다. 혼합물의 유형은, 특별히 제한되지 않으나, 하나의 매트릭스 내에 2 이상의 수지가 혼합된 경우, 또는 2 이상의 종류의 펠렛들이 혼합된 경우를 포함할 수 있다. 특히, 도 1에서 나타나는 바와 같이, 상기 하나의 매트릭스 내에 2 이상의 수지가 혼합된 경우는, 2 이상의 수지(11)의 조성물을 포함하는 펠렛(10)일 수 있다. 한편, 2 이상의 종류의 펠렛들이 혼합된 경우는, 도 2에서 나타나는 바와 같이, 하나의 펠렛 안에 하나의 수지를 포함하는 2 가지 이상의 종류의 펠렛들(20, 21)이 혼합된 경우를 포함할 수 있다. 상기 수지들은 각각 서로 다른 물성을 가질 수 있으며, 예를 들면, 상기 물성은 표면 에너지, 용융 점도 또는 용해도 파라미터일 수 있다.
"용융 가공'은 용융 혼합물(melt blend)을 형성하기 위해 용융온도(Tm) 이상의 온도로 수지 혼합물을 용융시키고, 상기 용융 혼합물을 사용하여 원하는 성형품을 형성하는 공정을 의미하며, 예를 들면, 사출 성형, 압출 성형, 중공 성형, 이송 성형, 필름 블로잉, 섬유 방사, 카렌더링 열 성형 또는 발포 성형 등이 있다.
"수지 성형품"은 수지 혼합물로부터 형성된 펠렛 또는 생성물(product)을 의미하고, 상기 수지 성형품은 특별히 제한되지 않으나, 예를 들면, 자동차 부품, 전자기기 부품, 기계 부품, 기능성 필름, 장난감 또는 파이프일 수 있다.
"층 분리"는 실질적으로 하나의 수지에 의해 형성된 층이 실질적으로 다른 수지에 의해 형성된 층 상에 위치하거나 배열되는 것을 의미할 수 있다. 실질적으로 하나의 수지에 의해 형성된 층은 한 종류의 수지가 해-도(sea-island) 구조를 형성하지 않고, 하나의 층 전체에 연속적으로 존재하는 것을 의미할 수 있다. 상기 해-도 구조는 상 분리된 수지가 전체 수지 혼합물 내에 부분적으로 분포되어 있는 것을 의미한다. 또한, "실질적으로 형성된"은 하나의 층에 하나의 수지만 존재하거나, 하나의 수지가 풍부한(rich) 것을 의미할 수 있다.
본 발명에 따라, 용융 가공에 의해 상기 수지 혼합물로부터 형성되는 수지 성형품은 향상된 기계적 특성 및 표면 특성을 가질 수 있고, 생산 비용 및 시간이 감소될 수 있다. 예를 들면, 본 발명의 수지 혼합물은 용융 가공에 의해 층분리 될 수 있으며, 코팅 및 도금과 같은 별도의 공정 없이도 표면에 특정 기능, 예를 들면 고경도 기능을 가지는 수지 성형품을 제조할 수 있다.
상기 수지 혼합물의 층 분리는 제 1 수지 및 제 2 수지 사이의 물성 차이 및/또는 제 2 수지의 분자량 분포 등에 의해 일어날 수 있다. 여기서, 상기 물성은, 예를 들면, 표면 에너지, 용융 점도 및 용해도 파라미터일 수 있다. 비록 본 발명에서는 2 가지 수지의 혼합물에 대해서 설명하였으나, 물성이 상이한 3 가지 이상의 수지를 혼합하여 용융 가공에 의해 층분리시킬 수 있음은 당업자에게 자명할 것이다.
발명의 일 구현예에 의하면, 제 1 수지 및 25℃에서 상기 제 1 수지와 표면 에너지 차이가 0.1 내지 20 mN/m 인 제 2 수지를 포함하며, 층분리 구조를 형성할 수 있는, 수지 혼합물을 제공할 수 있다.
상기 제 1 수지와 제 2 수지의 표면 에너지 차이는 25℃에서 0.1 내지 20 mN/m, 0.5 내지 20 mN/m, 1 내지 20 mN/m 또는 5 내지 20 mN/m일 수 있다. 상기 표면 에너지 차이가 0.1 mN/m 보다 작으면, 상기 제 1 수지와 제 2 수지가 쉽게 혼화되어, 상기 제 2 수지가 표면으로 이동하기 어렵기 때문에, 층 분리 현상이 용이하게 발생하기 어렵다. 또한, 상기 표면 에너지 차이가 20 mN/m보다 크면, 상기 제 1 수지와 제 2 수지가 결합되지 못하고 분리 또는 박리될 수 있다.
상기 표면 에너지 차이의 상한 및/또는 하한은 0.1 내지 20 mN/m의 범위 내에서 임의의 값일 수 있으며, 제 1 수지의 물성에 의존될 수 있다. 특히, 제 1 수지가 베이스 수지로서 사용되고, 제 2 수지가 제 1 수지의 표면 특성을 향상시키기 위한 기능성 수지로서 사용되는 경우, 상기 제 2 수지는 제 1 수지와 제 2 수지의 표면 에너지 차이가 25℃에서 0.1 내지 20 mN/m이 되도록 선택될 수 있다. 하나의 예시로서 상기 표면 에너지의 차이는, 제 1 수지 및 제 2 수지의 용융 혼합물 내에서 제 2 수지의 소수성을 고려하여 선택될 수 있다.
25℃에서 0.1 내지 20 mN/m의 표면 에너지 차이를 갖는 제 1 수지 및 제 2 수지의 수지 혼합물은 용융 가공에 의해 층 분리될 수 있다. 하나의 예시로서, 제 1 수지 및 제 2 수지의 수지 혼합물이 용융 가공되고, 공기 중에 노출되는 경우, 상기 제 1 수지 및 제 2 수지는 소수성 차이에 의해 분리될 수 있다. 특히, 제 1 수지 보다 낮은 표면 에너지를 갖는 제 2 수지는 높은 소수성을 가지므로, 공기와 접촉하도록 이동하여, 공기 쪽에 위치하는 제 2 수지층을 형성할 수 있다. 또한, 상기 제 1 수지는 제 2 수지와 접하면서, 공기와 반대편 쪽에 놓일 수 있다. 따라서, 상기 수지 혼합물의 제 1 수지 및 제 2 수지 사이에 층 분리가 일어나게 된다.
본 발명의 일 예시로서, 제 2 수지는 주쇄에 소수성 부위를 포함할 수 있다. 제 2 수지의 주쇄에 소수성 부위가 포함됨에 따라, 제 1 수지와의 표면 에너지 차이가 더욱 증가하여, 층 분리 효율 또한 증가될 수 있다.
상기 소수성 부위는 예를 들면, 하기의 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2012010057-appb-I000002
상기 화학식 1에서, Ra 내지 Rd는 각각 독립적으로 탄소수 1 내지 16의 알킬기이고, n은 1 내지 100의 수이다.
상기 알킬기는 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 6 또는 탄소수 1 내지 4의 직쇄 또는 분지쇄상 알킬기일 수 있으나, 이에 제한되지 않는다.
상기 n은 Ra 내지 Rd의 탄소수의 합에 따라 조절될 수 있다. 예를 들어 Ra 내지 Rd의 탄소수의 합이 큰 경우 n은 작게 조절되고, Ra 내지 Rd의 탄소수의 합이 작은 경우 n은 크게 조절될 수 있다. 예를 들어, Ra 내지 Rd가 모두 메틸기인 경우, n은 1 내지 100, 5 내지 80, 10 내지 60, 15 내지 40 또는 15 내지 30의 값을 가질 수 있다. 그러나, n의 값은, Ra 내지 Rd가 메틸기 외의 다른 치환기인 경우 치환기의 탄소수에 따라 상응하는 값을 가지도록 조절될 수 있다.
또한, 상기 n은, 예를 들면, 정수 또는 분수일 수 있다. 하나의 예시에서 n이 정수로 표시되는 경우에는 제 2 수지에 포함되는 1 종류의 분자가 가지는 화학식 1의 n 값을 의미하는 것일 수 있다. 다른 예시에서 n이 분수로 표시되는 경우에는 제 2 수지에 포함되는 2 종류 이상의 분자가 가지는 화학식 1의 n 값의 평균값을 의미하는 것일 수 있다.
화학식 1로 표시되는 소수성 부위는 제 2 수지에 소수성을 부여하되, 제 2 수지가, 예를 들면, 제 1 수지와 용융 가공되는 경우 층분리가 일어날 수 있도록 하는 함량으로 포함될 수 있다. 화학식 1로 표시되는 소수성 부위는 제 2 수지의 주쇄에 포함되어 적은 함량을 포함하더라도 제 2 수지에 큰 소수성을 부여할 수 있다. 이러한 화학식 1로 표시되는 소수성 부위의 함량은, 예를 들면, 제 2 수지 100 중량부 기준 0.01 내지 15 중량부, 0.01 내지 10 중량부, 0.01 내지 5 중량부, 0.1 내지 15 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부 또는 0.5 내지 4 중량부로 포함되도록 조절될 수 있다. 이러한 범위에서 제 2 수지는 용융 가공 공정 중에 제 1 수지와 층분리가 용이하게 일어날 수 있고, 제 1 수지 표면에 고경도의 표면층을 형성할 수 있다.
화학식 1로 표시되는 소수성 부위는 예를 들면, 하기 화학식 2로 표시되는 단량체를 사용하여 제 2 수지의 주쇄(backbone)에 도입될 수 있다.
[화학식 2]
Figure PCTKR2012010057-appb-I000003
상기 화학식 2에서, Ra 내지 Rd는 각각 독립적으로 탄소수 1 내지 16의 알킬기이고, n은 1 내지 100의 수이다. 또한, X1 및 X2는 수소, 탄소수 1 내지 16의 알킬기 또는 머캅토기(-SH)이되, X1 및 X2 중 적어도 어느 하나는 머캅토기이다. 여기서 알킬기 및 n은 화학식 1에서 예시한 바와 같다.
하나의 예시에서 화학식 2로 표시되는 단량체의 중량평균분자량은 200 내지 10000, 300 내지 9000, 400 내지 8000, 500 내지 7000, 600 내지 6000, 700 내지 5000, 800 내지 4000, 900 내지 3000 또는 1000 내지 2500 정도일 수 있다. 이에 따라 화학식 1 또는 2의 n은 화학식 2로 표시되는 단량체의 중량평균분자량을 고려하여 적절하게 조절될 수 있다.
화학식 2로 표시되는 단량체로는, 예를 들면, 디싸이올 말단(terminated) 폴리디메틸실록산 또는 모노싸이올 말단 폴리디메틸실록산 등을 들 수 있다.
상기 수지 혼합물은 2 개 이상의 층으로 분리될 수 있다. 하나의 예시로서, 제 1 수지 및 제 2 수지를 포함하는 상기 수지 혼합물은, 용융 가공된 수지 혼합물의 서로 마주보는 두 면이 공기에 노출되는 경우, 3개 층, 예를 들면, 도 3과 같이, 제 2 수지층/제 1 수지층/제 2 수지층으로 층분리될 수 있다. 한편, 용융 가공된 수지 혼합물의 오직 한 면만이 공기에 노출되는 경우, 상기 수지 혼합물은 2개의 층, 예를 들면, 제 2 수지층/제 1 수지층으로 층 분리될 수 있다. 또한, 표면 에너지 차이를 갖는 제 1 수지, 제 2 수지 및 제 3 수지를 포함하는 수지 혼합물이 용융 가공될 때, 상기 용융 가공된 수지 혼합물은 5개의 층, 예를 들면, 도 4와 같이, 제 3 수지층/제 2 수지층/제 1 수지층/제 2 수지층/제 3 수지층으로 층 분리 될 수 있다. 또한, 상기 용융 가공된 수지 혼합물의 모든 면이 공기 중에 노출되는 경우, 상기 수지 혼합물은 모든 방향으로 층분리되어, 도 5와 같이 코어-셀(core-shell)구조를 형성할 수 있다.
본 발명의 또 다른 구현예에 의하면, 제 1 수지; 및 상기 제 1 수지와 용융 점도(Melt viscosity) 차이가 100 내지 1000 s-1의 전단속도 및 상기 수지 혼합물의 가공온도에서 0.1 내지 3000 pa*s 인 제 2 수지를 포함하는 수지 혼합물을 제공할 수 있다.
상기 제 1 수지와 제 2 수지의 용융 점도의 차이는 100 내지 1000 s-1의 전단속도 및 상기 수지 혼합물의 가공 온도에서 0.1 내지 3000 pa*s, 1 내지 2000 pa*s, 1 내지 1000 pa*s, 1 내지 600 pa*s, 50 내지 600 pa*s, 100 내지 600 pa*s, 200 내지 600 pa*s 또는 250 내지 550 pa*s 일 수 있다. 상기 용융 점도의 차이가 0.1 pa*s 보다 작은 경우에는 상기 제 1 수지와 제 2 수지가 쉽게 혼화되어 버려 층 분리 현상이 용이하게 발생하기 어려우며, 상기 용융 점도의 차이가 3000 pa*s 보다 큰 경우에는 상기 제 1 수지와 제 2 수지가 결합되지 못하고 박리될 수 있다.
상기 용융 점도 차이의 상한 및/또는 하한은 0.1 내지 3000 pa*s의 범위 내에서 임의의 값일 수 있으며, 제 1 수지의 물성에 의존될 수 있다. 특히, 제 1 수지가 베이스 수지로서 사용되고, 제 2 수지가 제 1 수지의 표면 특성을 향상시키기 위한 기능성 수지로서 사용되는 경우, 상기 제 2 수지는 제 1 수지와 제 2 수지의 용융 점도 차이가 100 내지 1000 s-1의 전단속도 및 상기 수지 혼합물의 가공 온도에서 0.1 내지 3000 pa*s 이 되도록 선택될 수 있다. 하나의 예시로서 상기 용융 점도의 차이는 제 1 수지 및 제 2 수지의 용융 혼합물 내에서 제 2 수지의 유동성을 고려하여 선택될 수 있다.
100 내지 1000 s-1의 전단속도 및 수지 혼합물의 가공온도에서 0.1 내지 3000 pa*s의 용융 점도 차이를 갖는 제 1 수지 및 제 2 수지의 수지 혼합물은 용융 가공된 후에 용융 점도의 차이로 인하여 층 분리될 수 있다. 하나의 예시로서, 제 1 수지 및 제 2 수지의 수지 혼합물이 용융 가공되고, 공기 중에 노출되는 경우, 상기 제 1 수지 및 제 2 수지는 유동성 차이에 의해 분리될 수 있다. 특히, 제 1 수지 보다 낮은 용융 점도를 갖는 제 2 수지는 높은 유동성을 가지므로, 공기와 접촉하도록 이동하여, 공기 쪽에 위치하는 제 2 수지층을 형성할 수 있다. 또한, 상기 제 1 수지는 제 2 수지와 접하면서, 공기와 반대편 쪽에 놓일 수 있다. 따라서, 상기 수지 혼합물의 제 1 수지 및 제 2 수지 사이에 층 분리가 일어나게 된다.
본 발명의 일 예시로서, 상기 제 2 수지는 일정 부피 이상을 갖는 벌키한 유기 작용기를 포함할 수 있다. 특정의 벌키한 유기 작용기가 도입됨에 따라서 상기 제 2 수지는 유체역학적 부피(hydrodynamic volume)가 증가하여, 보다 낮은 용융 점도를 가질 수 있다. 이에 따라, 상기 벌키(bulky)한 유기 작용기가 도입된 수지는 용융 가공 단계에서 상술한 층 분리 현상이 보다 용이하게 일어날 수 있다. 상기 벌키한 유기 작용기의 구체적인 예로는, 탄소수 2 내지 20, 탄소수 2 내지 12, 탄소수 2 내지 6, 탄소수 3 내지 20, 탄소수 3 내지 12 또는 탄소수 3 내지 6의 알킬기; 탄소수 5 내지 40, 탄소수 5 내지 25 또는 탄소수 5 내지 16의 지환족(Alicyclic) 고리; 및 탄소수 6 내지 40, 탄소수 6 내지 25 또는 탄소수 6 내지 16의 방향족(aromatic) 고리를 들 수 있으나, 유체역학적 부피가 큰 작용기라면 특별히 제한되지 않으며, 이러한 유기 작용기는 상기 제 2 수지에 하나 이상이 포함될 수 있다.
구체적으로 상기 벌키한 유기 작용기는, 예를 들면, 터셔리부틸, 아이소부틸 또는 아이소프로필 등의 지방족 작용기; 아이소보닐(Isobornyl) 또는 싸이클로헥실 등의 지환족 고리 작용기; 및 나프틸(naphthyl), 페닐(phenyl), 안트라세닐(anthracenyl) 또는 벤질(benyl) 등의 방향족 고리 작용기일 수 있다.
상기 용융 점도는 모세관 유동(Capillary Flow)으로 측정될 수 있는데, 이는 특정 가공 온도 및 전단속도(shear rate)(/s)에 따른 전단 점도(shear viscosity)(pa*s)를 의미한다.
상기 '전단 속도'란 상기 수지 혼합물이 가공될 때 적용되는 전단 속도를 의미하고, 전단속도는 가공 방법에 따라 100 내지 1000 s-1 사이에서 조절할 수 있다. 가공 방법에 따른 전단 속도의 조절은 당업자에게 자명할 것이다.
상기 '가공 온도'란 상기 수지 혼합물을 가공하는 온도를 의미한다. 예컨대, 상기 수지 혼합물을 압출 또는 사출 등의 용융 가공에 이용하는 경우 상기 용융 가공 공정에 적용되는 온도를 의미한다. 상기 가공온도는 압출 또는 사출 등의 용융 가공에 적용되는 수지에 따라서 조절할 수 있다. 예를 들어, ABS수지의 제 1 수지 및 메틸메타크릴레이트계 단량체로부터 얻어진 제 2 수지를 포함하는 수지 혼합물의 경우, 가공 온도가 210 내지 240℃일 수 있다.
본 발명의 또 다른 구현예에 의하면, 제 1 수지; 및 25℃에서 상기 제 1 수지와 용해도 파라미터(Solubility Parameter) 차이가 0.001 내지 10.0 (J/cm3)1/2인 제 2 수지를 포함하는 층분리 구조 형성용 수지 혼합물을 제공할 수 있다.
상기 제 1 수지와 제 2 수지의 용해도 파라미터(Solubility Parameter) 차이는 25℃에서 0.001 내지 10.0 (J/cm3)1/2, 0.01 내지 5.0 (J/cm3)1/2, 0.01 내지 3.0 (J/cm3)1/2, 0.01 내지 2.0 (J/cm3)1/2, 0.1 내지 1.0 (J/cm3)1/2, 0.1 내지 10.0 (J/cm3)1/2, 3.0 내지 10.0 (J/cm3)1/2, 5.0 내지 10.0 (J/cm3)1/2 또는 3.0 내지 8.0 (J/cm3)1/2일 수 있다. 이러한 용해도 파라미터는 각 수지 분자의 극성에 따른 용해 가능성을 나타낸 수지의 고유의 특성으로서, 각각의 수지에 대한 용해도 파라미터는 일반적으로 알려져 있다. 상기 용해도 파라미터 차이가 0.001 (J/cm3)1/2 보다 작은 경우에는 상기 제 1 수지와 제 2 수지가 쉽게 혼화되어 버려 층 분리 현상이 용이하게 발생하기 어려우며, 상기 용해도 파라미터 차이가 10.0 (J/cm3)1/2 보다 큰 경우에는 상기 제 1 수지와 제 2 수지가 결합되지 못하고 박리될 수 있다.
상기 용해도 파라미터 차이의 상한 및/또는 하한은 0.001 내지 10.0 (J/cm3)1/2 의 범위 내에서 임의의 값일 수 있으며, 제 1 수지의 물성에 의존될 수 있다. 특히 제 1 수지가 베이스 수지로서 사용되고, 제 2 수지가 제 1 수지의 표면 특성을 향상시키기 위한 기능성 수지로서 사용되는 경우, 상기 제 2 수지는 제 1 수지와 제 2 수지의 용해도 파라미터 차이가 25℃에서 0.001 내지 10.0 (J/cm3)1/2이 되도록 선택될 수 있다. 하나의 예시로서 상기 용해도 파라미터의 차이는 제 1 수지 및 제 2 수지의 용융 혼합물 내에서 제 2 수지의 혼화성(miscibility)을 고려하여 선택될 수 있다.
25℃에서, 0.001 내지 10.0 (J/cm3)1/2의 용해도 파라미터 차이를 갖는 제 1 수지 및 제 2 수지의 수지 혼합물은 용융 가공된 후에 용해도 파라미터의 차이로 인하여 층 분리될 수 있다. 하나의 예시로서, 제 1 수지 및 제 2 수지의 수지 혼합물이 용융 가공되고, 공기 중에 노출되는 경우, 상기 제 1 수지 및 제 2 수지는 혼화성의 정도에 의해 분리될 수 있다. 특히, 제 1 수지 대비 25℃에서의 0.001 내지 10 (J/cm3)1/2의 용해도 파라미터의 차이를 갖는 제 2 수지는 제 1 수지와 혼화되지 않을 수 있다. 그러므로, 제 2 수지가 추가적으로 제 1 수지 보다 더 낮은 표면 장력 또는 낮은 용융 점도는 가지면, 제 2 수지는 공기와 접촉하도록 이동하여, 공기 쪽에 위치하는 제 2 수지층을 형성할 수 있다. 또한, 상기 제 1 수지는 제 2 수지와 접하면서, 공기와 반대편 쪽에 놓일 수 있다. 따라서, 상기 수지 혼합물의 제 1 수지 및 제 2 수지 사이에 층 분리가 일어나게 된다.
본 발명의 또 다른 구현예에 따르면, 상기 제 2 수지의 분자량 분포(PDI)는 1 내지 2.5, 1.3 내지 2.5, 1.5 내지 2.5, 또는 1.7 내지 2.5 일 수 있다. 상기 제 2 수지의 분자량 분포의 상한 및 하한은 1 내지 2.5의 임의의 값일 수 있다.
상기 제 2 수지의 분자량 분포가 2.5보다 큰 경우에는, 저분자량에 의해 제 1 수지와 제 2 수지가 쉽게 혼화되거나, 고분자량에 의해 제 2 수지의 유동성이 저하되어 층 분리 현상이 용이하게 발생하기 어렵다.
본 발명의 또 다른 구현예에 따르면, 상기 수지 혼합물의 제 2 수지의 중량평균분자량(Mw)은 3만 내지 20만, 5만 내지 20만, 8만 내지 20만, 5만 내지 15만, 8만 내지 15만, 5만 내지 12만, 또는 8만 내지 12만일 수 있다. 상기 제 2 수지의 중량평균분자량의 상한 및 하한은 3만 내지 20만의 임의의 값일 수 있다.
상기 중량평균분자량이 3만 보다 작은 경우는 제 1 수지와 제 2 수지가 쉽게 혼화되고, 20만 보다 큰 경우는 제 2 수지의 유동성이 저하되어 층 분리 현상이 용이하게 발생하기 어렵다.
또한, 본 발명의 또 다른 구현예에 의하면, 제 2 수지는 제 1 수지보다 높은 유리전이온도(Tg)를 가지며, 상기 제 1 수지와 제 2 수지의 유리 전이 온도의 차이가 10℃ 이상, 20℃ 이상 또는 23℃ 이상일 수 있다. 이러한 제 1 수지와 제 2 수지의 유리전이온도 차이의 최대값은 특별히 제한되지 않으나, 150℃ 이하일 수 있다.
상기 제 2 수지의 유리 전이 온도가 상기 제 1 수지에 비하여 10℃ 이상 높은 경우에는, 유리 전이 온도가 높은 제 2 수지가 수지 성형품의 외부에 위치하게 되어 표면 경도를 크게 향상시킬 수 있다.
특히, 본 발명의 일 예시로서, 상기 제 2 수지는 수소 결합 제공자 및 수용자를 포함하는 경우, 상기 제 2 수지는 높은 유리 전이 온도를 가질 수 있고, 이에 따라 최종 성형품의 표면 경도를 추가적으로 상승시킬 수 있다.
본 명세서에서, 수소 결합 제공자(donor)로는, N 또는 O와 결합된 수소를 포함하는 관능기 또는 잔기 등이면 특별히 한정되지 않지만, 예를 들면, OH기, NH2기, NHR기, COOH기, CONH2기, NHOH 기, 또는 분자 내에 NHCO 결합, NH 결합, CONHCO 결합, NH-NH 결합 등의 잔기를 들 수 있다.
또한, 본 명세서에서, 수소 결합 수용자(acceptor)는 N 또는 O를 포함하는 관능기 또는 잔기 등이면 특별히 한정되지 않지만, 예를 들면, OH기, OR기, NH2기, NHR기, NR2기, COOH기, COOR기, CONH2기, CONR2기, NHOH기, NROR기 또는 분자 내에 NHCO 결합, NRCO 결합, O 결합, NH 결합, NR 결합, COO 결합, CONHCO 결합, CONRCO 결합, NH-NH 결합, NR-NH 결합, NR-NR 결합 등의 잔기를 들 수 있다. 상기에서 R은 지방족 탄화 수소, 방향족 탄화 수소 및 이들의 유도체일 수 있으며, 예를 들면, 탄소수 1 내지 16 또는 탄소수 1 내지 9의 지방족 탄화수소, 탄소수 5 내지 30 또는 탄소수 5 내지 16의 방향족 탄화수소 및 이들의 유도체 일 수 있다. 이론에 의하여 특별히 한정하는 것은 아니나, 대부분의 수소 결합 제공자는 수소 결합 수용자로도 작용할 수 있다. 수소 결합 제공자는 전기음성도가 큰 원자에 결합되어 있는 수소를 제공하는 것으로, 한편으로는 전기음성도가 큰 원자 부분이 수소 결합 수용자로도 작용할 수 있기 때문이다. 그러나, -(NH4)+기와 같이 수소 결합 제공자로만 작용하는 관능기도 존재한다.
제 2 수지의 유리전이온도 상승 효과는 제 2 수지가 수소 결합 제공자와 수용자를 함께 포함하고 있는 경우에 나타날 수 있다.
하나의 예시에서 수소 결합 제공자 및 수용자는 한 종류의 수지 내에 존재할 수 있다. 수소 결합 제공자 및 수용자를 포함하는 한 종류의 수지는, 수소 결합 제공자 및 수용자를 모두 포함하는 단량체로부터 수지를 중합하거나, 또는 수소 결합 제공자를 포함하는 단량체 및 수소 결합 수용자를 포함하는 단량체로부터 수지를 중합하여 얻을 수 있다. 상기에서, 각각의 단량체는 1종 또는 2종 이상을 사용할 수 있다.
다른 예시에서 수소 결합 제공자 및 수용자는 각각 다른 종류의 수지에 존재할 수 있다. 즉, 수소 결합 제공자를 포함하는 단량체로부터 중합된 수지와 수소 결합 수용자를 포함하는 단량체로부터 중합된 수지를 혼합하여 제 2 수지에 포함시킬 수 있다. 상기에서, 각각의 단량체는 1종 또는 2종 이상을 사용할 수 있다. 또한, 제 2 수지에는, 1종 또는 2종 이상의 수지로 수소 결합 제공자 및 수용자가 존재한다면, 그 외의 수소 결합 제공자 및/또는 수용자를 포함하지 않는 수지가 더 포함될 수 있다.
제 2 수지에 수소 결합 제공자 및/또는 수용자를 부여할 수 있는 단량체는 수소 결합 제공자 및/또는 수용자의 관능기 또는 잔기를 하나 이상 포함할 수 있으며, 예를 들면, 2개 이상 또는 3개 이상도 포함할 수 있다.
수소 결합 제공자 및/또는 수용자를 포함하는 단량체는 특별히 제한되지 않으나, 예를 들면, 메틸 비닐에테르, 에틸 비닐에테르 와 같은 비닐에테르; (메타)아크릴아미드, N-치환 (메타)아크릴아미드, N,N-치환 (메타)아크릴아미드와 같은 질소 함유 단량체; 비닐 아세테이트; 히드록시알킬 (메타)아크릴레이트와 같은 히드록시기 함유 단량체; (메타)아크릴산, 2-(메타)아크릴로일옥시 아세트산, 3-(메타)아크릴로일옥시 프로필산, 4-(메타)아크릴로일옥시 부틸산, 아크릴산 이중체, 이타콘산, 말레산 또는 말레산 무수물 등과 같은 카복실기 함유 단량체; 비닐 피롤리돈, 아크릴로일 모폴린 또는 2-우레이도-4-피리미디논(2-ureido-4-pyrimidinone)기 함유 단량체와 같은 헤테로 고리 화합물 등일 수 있다.
한편, 상기 제 1 수지는 목적하는 성형품의 물성을 주로 결정하는 수지로서, 목적하는 성형품의 종류 및 이용되는 공정조건에 따라 선택될 수 있다. 이러한 제 1 수지로는 일반적인 합성 수지를 별 다른 제한 없이 사용할 수 있으며, 예를 들면, ABS(acrylonitrile butadiene styrene)계 수지, 폴리스티렌계 수지, ASA(acrylonitrile styrene acrylate)계 수지 또는 스티렌-부타디엔-스티렌 블록공중합체계 수지와 같은 스티렌계 수지; 고밀도폴리에틸렌계 수지, 저밀도폴리에틸렌계 수지, 또는 폴리프로필렌계 수지와 같은 폴리올레핀계 수지; 에스터계 열가소성 엘라스토머 또는 올레핀계 열가소성 엘라스토머와 같은 열가소성 엘라스토머; 폴리옥시메틸렌계 수지 또는 폴리옥시에틸렌계 수지와 같은 폴리옥시알킬렌계 수지; 폴리에틸렌 테레프탈레이트계 수지 또는 폴리부틸렌 테레프탈레이트계 수지와 같은 폴리에스테르계 수지; 폴리염화비닐계 수지; 폴리카보네이트계 수지; 폴리페닐렌설파이드계 수지; 비닐알콜계 수지; 폴리아미드계 수지; 아크릴레이트계 수지; 엔지니어링 플라스틱; 이들의 공중합체 또는 이들의 혼합물을 들 수 있다. 상기 엔지니어링 플라스틱은 우수한 기계적 및 열적 성질을 나타내는 플라스틱이다. 예를 들면, 폴리에테르케톤, 폴리설폰 및 폴리이미드 등이 엔지니어링 플라스틱으로 사용될 수 있다. 하나의 예시에서 제 1 수지로는 스티렌계 수지와 아크릴레이트계 수지의 공중합체를 사용할 수 있다.
상기 제 2 수지는 상기 제 1 수지와의 관계에서 상술한 바와 같은 물성 차이를 나타내고, 목적하는 성형품의 표면에 우수한 기계적 특성 및 높은 표면 경도를 부여할 수 있는 수지를 의미한다.
하나의 예시에서 제 2 수지는, 상술한 바와 같이, 화학식 2로 표시되는 단량체를 중합 단위로 포함하는 중합체일 수 있다. 예를 들면, 화학식 2로 표시되는 단량체는 이와 다른 단량체와 공중합된 형태로 제 2 수지에 포함될 수 있다. 제 2 수지에 포함될 수 있는 수지의 구체적인 종류는 크게 제한되는 것은 아니지만, 예를 들면, (메타)아크릴레이트계 수지, 에폭시계 수지, 옥세탄계 수지, 이소시아네이트계 수지, 불소계 수지 및 이들의 공중합체 등을 들 수 있다.
하나의 예시에서 제 2 수지에 (메타)아크릴레이트계 수지가 포함되는 경우, 화학식 2로 표시되는 단량체는 (메타)아크릴 단량체와 중합되어 제 2 수지에 포함될 수 있다. 이러한 (메타)아크릴 단량체로는, 예를 들면, 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 프로필(메타)아크릴레이트, 부틸(메타)아크릴레이트, 사이클로헥실(메타)아크릴레이트, 옥틸(메타)아크릴레이트, 라우릴(메타)아크릴레이트 또는 스테아릴(메타)아크릴레이트와 같은 알킬(메타)아크릴레이트류; 또는 글리시딜(메타)아크릴레이트류 등을 들 수 있으며, 이에 제한되지 않는다.
다른 예시에서 제 2 수지에 에폭시계 수지가 포함되는 경우, 화학식 2로 표시되는 단량체는 에폭시계 수지를 제공하기 위한 단량체와 중합되어 제 2 수지에 포함될 수 있다. 에폭시계 수지의 예로는,비스페놀 A 형, 비스페놀 F 형, 비스페놀 S 형 및 이들의 수첨가물 등의 비스페놀형; 페놀노볼락형이나 크레졸노볼락형 등의 노볼락형; 트리글리시딜이소시아누레이트형이나 히단토인형 등의 함질소 고리형; 지환식형; 지방족형; 나프탈렌형, 비페닐형 등의 방향족형; 글리시딜에테르형, 글리시딜아민형, 글리시딜에스테르형 등의 글리시딜형; 디시클로펜타디엔형 등의 디시클로형; 에스테르형; 또는 에테르에스테르형 등이 있으며, 이에 제한되지 않는다.
또 다른 예시에서, 제 2 수지에 옥세탄계 수지가 포함되는 경우, 화학식 2로 표시되는 단량체는 1개 이상의 옥세탄 고리를 갖는 옥세탄 단량체와 중합되어 제 2 수지에 포함될 수 있다. 이러한 옥세탄 단량체로는, 예를 들면, 1,4-비스[(3-에틸-3-옥세타닐메톡시)메틸]벤젠, 디[1-에틸(3-옥세타닐)]메틸에테르, 페놀노볼락 옥세탄, 테레프탈레이트 비스옥세탄 또는 비페닐렌 비스옥세탄 등을 들 수 있으나, 이에 제한되지 않는다.
또, 다른 예시에서 제 2 수지에 이소시아네이트계 수지가 포함되는 경우, 화학식 2로 표시되는 단량체는 이소시아네이트기를 함유하는 단량체와 중합되어 제 2 수지에 포함될 수 있다. 이러한 이소시아네이트기를 함유하는 단량체로는, 예를 들면, 디페닐메탄디이소시아네이트(MDI), 톨루엔디이소시아네이트(TDI) 또는 이소포론디이소시아네이트(IPDI) 등이 있으며, 이에 제한되지 않는다.
또, 다른 예시에서 제 2 수지에 불소계 수지가 포함되는 경우, 화학식 2로 표시되는 단량체는 불소계 단량체와 중합되어 제 2 수지에 포함될 수 있다. 이러한 불소계 단량체로는, 예를 들면, 테트라플루오로에틸렌, 클로로트리플루오로에틸렌, 플루오린화비닐리덴 또는 플루오린화비닐 등이 있으며, 이에 제한되지 않는다.
화학식 2로 표시되는 단량체의 함량은, 제 2 수지에 소수성을 부여하되, 제 1 수지와 층분리가 일어날 수 있는 범위에서 적절하게 제어될 수 있다. 하나의 예시에서 화학식 2로 표시되는 단량체의 함량은 제 2 수지를 중합하기 위한 전체 단량체 100 중량부 기준 0.01 내지 15 중량부, 0.01 내지 10 중량부, 0.01 내지 5 중량부, 0.1 내지 15 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부 또는 0.5 내지 4 중량부의 범위에서 조절될 수 있다.
상기 제 2 수지로 (메타)아크릴레이트계 수지, 에폭시계 수지, 옥세탄계 수지, 이소시아네이트계 수지, 불소계 수지 또는 이들의 공중합체를 사용한다는 의미는 제 2 수지의 주된(major) 수지로 상술한 수지를 사용한다는 의미이다. 이에 따라, 하나의 예시인 제 2 수지로는, 상기 주된 수지를 제공할 수 있는 단량체 및 화학식 2로 표시되는 단량체를 포함하는 단량체 혼합물로부터 중합된 중합체가 사용될 수 있다. 다른 예시에서 제 2 수지로는 상기 주된 수지를 제공할 수 있는 단량체 및 화학식 2로 표시되는 단량체에, 추가로 상기 벌키한 유기 작용기; 및/또는 수소 결합 제공자 및 수용자를 도입할 수 있는 단량체를 포함하는 단량체 혼합물을 중합한 중합체가 사용될 수도 있다.
상기 벌키한 유기 작용기를 도입할 수 있는 단량체로는, 예를 들면, 터셔리부틸 (메타)아크릴레이트, 아이소부틸 (메타)아크릴레이트, 아이소프로필 (메타)아크릴레이트, 아이소보닐 (메타)아크릴레이트, 싸이클로헥실 (메타)아크릴레이트, 나프틸 (메타)아크릴레이트, 페닐 (메타)아크릴레이트, 안트라세닐 (메타)아크릴레이트, 또는 벤질 (메타)아크릴레이트 등을 들 수 있다.
또한, 상기 수소 결합 제공자 및 수용자를 도입할 수 있는 단량체로는 상기 예시된 단량체들이 사용될 수 있다.
상기 수지 혼합물은 상기 제 1 수지 100 중량부에 대하여 0.1 내지 50 중량부의 제 2 수지를 포함할 수 있으며, 또는 1 내지 20 중량부, 1 내지 15 중량부 또는 5 내지 15 중량부를 포함할 수도 있다.
제 2 수지가 제 1 수지 100 중량부에 대하여 0.1 중량부보다 적은 양을 포함하는 경우, 상분리 현상이 일어나지 않으며, 50 중량부보다 많은 양을 포함하는 경우, 제 2 수지의 고가로 인하여 제조 비용이 상승하는 단점이 있다.
상기 수지 혼합물은 압출에 의하여 펠렛으로 제조될 수 있다. 상기 수지 혼합물을 이용하여 제조된 펠렛은 도 6과 같이, 제 1 수지가 중심부에 위치하고, 제 2 수지가 제 1 수지와 층 분리되어 펠렛의 셀(shell)에 위치한 층을 구성할 수 있다.
본 발명의 일 구현예에 의하면, 본 발명은 제 1 수지를 포함하는 코어; 및 주쇄에 하기 화학식 1로 표시되는 소수성 부위를 포함하고, 25℃에서 상기 제 1 수지와 표면 에너지 차이가 0.1 내지 20 mN/m 인 제 2 수지를 포함하는 셀을 포함하는 펠렛을 제공할 수 있다.
[화학식 1]
Figure PCTKR2012010057-appb-I000004
상기 화학식 1에서, Ra 내지 Rd 및 n은 상기 정의한 바와 같다. 또한, 상술한 바와 같이 상기 제 1 수지와 제 2 수지는 서로 다른 물성을 가질 수 있다. 예를 들면, 상기 제 1 수지와 제 2 수지는 25℃에서 0.1 내지 20 mN/m의 표면 에너지 차이, 100 내지 1000 s-1의 전단속도 및 상기 펠렛의 가공 온도에서 0.1 내지 3000 pa*s의 용융 점도 차이, 25℃에서 0.001 내지 10.0 (J/cm3)1/2의 용해도 파라미터의 차이를 가질 수 있다. 또한, 제 2 수지의 분자량 분포는 1 내지 2.5, 중량평균분자량은 3만 내지 20만일 수 있다. 또한, 제 2 수지는 제 1 수지보다 유리전이온도가 높으며, 제 1 수지와 제 2 수지의 유리 전이 온도의 차이는 10℃ 내지 150℃일 수 있다.
상기 제 1 수지 및 제 2 수지의 종류 및 물성에 관한 내용은 이미 구체적으로 상술하였는 바, 구체적인 내용은 생략하기로 한다.
한편, 발명의 또 다른 구현예에 따르면, 층분리 구조를 갖는 수지 성형품의 제조 방법이 제공될 수 있다. 상기 제조 방법은 제 1 수지 및 제 2 수지의 혼합물을 용융시켜 용융 혼합물(melt blend)을 형성하는 단계, 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함할 수 있다.
상술한 바와 같이, 상기 제 1 수지와 제 2 수지와의 물성 차이에 의해, 상기 수지 혼합물을 용융 가공하는 과정에서 층 분리 현상이 발생할 수 있고, 이러한 층 분리 현상으로 인하여 별도의 추가 공정 없이도 펠렛 또는 성형품의 표면을 선택적으로 코팅하는 효과를 낼 수 있다.
특히, 본 발명의 상기 제 2 수지는 주쇄에 화학식 1로 표시되는 소수성 부위를 도입하여 보다 낮은 표면 에너지를 가질 수 있어서, 층분리 효율이 증가하고, 이에 따라 제 2 수지, 예를 들면 고경도 수지가 표면에 보다 용이하게 위치하여 기계적 특성 및 표면 특성이 향상된 성형품이 제공될 수 있다.
한편, 상기 용융 가공은 전단 응력 하에서 수행될 수 있으며, 예를 들면 압출 및/또는 사출 가공이 있지만, 이에 제한되지 않는다.
본 발명의 또 다른 일 구현예에 따르면, 상기 수지 혼합물은 압출 등의 용융 가공에 의하여 펠렛으로 제조될 수 있다. 예를 들면, 전술한 바와 같이, 제 1 수지 및 제 2 수지를 포함하는 수지 혼합물은 용융 가공 과정에서 제 2 수지는 제 1 수지에 비해 소수성이 크기 때문에 공기와 접하도록 이동하여 펠렛의 표면층을 형성하고, 제 1 수지는 펠렛의 중심부에 위치하여 코어(core)를 형성할 수 있다. 또한, 상기 수지 혼합물은 압출에 의하여 펠렛으로 제조된 후 제조된 펠렛을 사출 등의 용융 가공에 의해 성형품으로 제조될 수 있다. 한편, 상기 수지 혼합물은 직접, 사출 등과 같은 용융 가공에 의하여 성형품으로 제조될 수도 있다.
상기 수지 혼합물을 용융 가공하는 단계에서는 사용되는 제 1 수지 및 제 2 수지의 종류에 따라 적용되는 온도를 달리할 수 있다.
상기 수지 성형품의 제조 방법에서는 상기 수지 혼합물을 용융 가공하여 얻어지는 결과물, 즉 상기 수지 혼합물의 용융 가공물을 경화하는 단계를 더 포함할 수 있다. 상기 경화는 예를 들면, 열경화 또는 UV 경화일 수 있다. 또한, 화학적 또는 물리적 처리를 추가로 수행할 수 있음은 당업자에게 자명할 것이다.
한편, 상기 수지 성형품의 제조 방법은 상기 수지 혼합물을 용융 가공하는 단계 이전에 제 2 수지를 제조하는 단계를 더 포함할 수 있다. 제 2 수지는 상술한 바와 같이 제 1 수지에 따라 선택될 수 있고, 선택된 제 2 수지는 수지 성형품의 표면층에 특정 기능, 예를 들면, 고경도성을 부여할 수 있다. 제 2 수지의 제조를 위해서는 일반적으로 단량체의 중합을 통해 수지를 제조하는 방식이라면 특별히 제한되지 않으며, 예를 들면, 벌크 중합, 용액 중합, 현탁 중합 또는 유화 중합 등의 방법을 사용할 수 있다.
상기 제 2 수지를 제조하는 단계는 화학식 1의 소수성 부위를 도입할 수 있는 단량체, 예를 들면, 화학식 2로 표시되는 단량체 및 주된 수지를 제공할 수 있는 단량체 등을 반응 용매에 분산시키는 단계; 사슬이동제, 개시제 및 분산 안정제로 이루어진 군에서 선택된 1종 이상의 첨가제를 상기 반응 용매에 첨가하여 혼합하는 단계; 및 상기 혼합물을 40℃ 이상의 온도에서 반응시키는 중합 단계를 포함할 수 있다.
상기 반응 매질은 합성 수지, 중합체 또는 공중합체를 제조하는 데 통상적으로 사용될 수 있는 것으로 알려진 매질이면 다른 제한 없이 사용 가능하다. 이러한 반응 매질의 예로는 메틸에틸케톤, 에탄올, 메틸이소부틸케톤 또는 증류수 등을 사용할 수 있으며, 2 종 이상을 혼합하여 사용할 수도 있다.
상기 반응 용매에 첨가될 수 있는 사슬 이동제로는 n-부틸 머캡탄, n-도데실 머캡탄, 터셔리 도데실머캡탄 또는 이소프로필 머캡탄 등의 알킬 머캡탄; 또는 페닐 머캡탄, 나프틸 머캡탄 또는 벤질 머캡탄 등의 아릴 머캡탄; 카본 테트라 클로라이드 등의 할로겐 화합물; 알파-메틸스티렌 다이머, 알파-에틸스티렌 다이머 등의 방향족 화합물 등을 사용할 수 있으나, 상기 예에 한정되는 것은 아니다.
상기 개시제로는 현탁 중합에 통상적으로 사용될 수 있는 것으로 알려진 중합 개시제, 예를 들어 옥타노일 퍼옥사이드, 데칸오일 퍼옥사이드, 라우로일 퍼옥사이드 등의 과산화물 또는 아조비스이소부티로니트릴, 아조비스-(2,4-디메틸)-발레로니트릴 등의 아조계 화합물 등을 별 다른 제한 없이 사용할 수 있다.
상기 반응 매질에 포함될 수 있는 분산안정제로의 예로는 폴리비닐알콜, 폴리올리핀-말레인산, 셀룰로오스 등의 유기 분산제 또는 트리칼슘포스페이트 등의 무기 분산제 등이 있으나, 이에 한정되는 것은 아니다.
상기 제 1 수지, 제 2 수지 및 소수성 부위에 관한 구체적인 내용은 이미 상술하였는바, 구체적인 설명은 생략하기로 한다.
한편, 발명의 또 다른 구현예에 따르면, 본 발명은 제 1 수지층; 상기 제 1 수지층 상에 형성되어 있는 제 2 수지층; 및 제 1 수지 및 제 2 수지를 포함하고, 상기 제 1 수지층과 제 2 수지층 사이에 형성되어 있는 계면층을 포함하고, 상기 제 2 수지층은 주쇄에 하기 화학식 1로 표시되는 소수성 부위를 포함하는 제 2 수지를 포함하는 수지 성형품이 제공될 수 있다.
[화학식 1]
Figure PCTKR2012010057-appb-I000005
상기 화학식 1에서, Ra 내지 Rd 및 n은 상기 정의한 바와 같다.
특정의 제 1 수지와 상기 제 1 수지와 물성 차이를 가지며, 상술한 주쇄에 상기 화학식 1로 표시되는 소수성 부위를 포함하는 제 2 수지를 포함하는 수지 혼합물로부터 제조되는 수지 성형품은 예를 들면, 제 1 수지층이 내부에 위치하고 제 2 수지층이 수지 성형품의 표면에 형성된 층 분리 구조일 수 있다.
상기 수지 성형품의 구조, 즉 상기 제 1 수지층과 제 2 수지층이 계면층에 의하여 구분되고 상기 제 2 수지층이 외부에 노출되는 구조는 종래에 알려지지 않은 신규한 것으로서, 표면 특성을 향상시키기 위한 코팅 공정 또는 페인팅 공정을 생략할 수 있고, 생산 공정 시간 및 생산 비용을 줄일 수 있으며 최종 제품의 생산성을 증가시킬 수 있다. 일반적인 수지를 압출 또는 사출하여서는 상기와 같은 구조를 형성할 수 없으며 상기 구조에 따른 효과를 구현하기도 어렵다.
특히, 상기 수지 성형품은 주쇄에 상기 화학식 1로 표시되는 소수성 부위를 포함하는 제 2 수지를 사용함에 따라 층 분리 효율의 증가로 수지 성형품의 표면 경도를 추가적으로 상승시킬 수 있다.
상기 '제 1 수지층'은 상기 제 1 수지가 주로 포함되고, 성형품의 물성을 결정하며, 수지 성형품 내부에 위치할 수 있다. 그리고, 상기 '제 2 수지층'은 상기 제 2 수지가 주로 포함되고, 수지 성형품 외곽에 위치하여 성형품의 표면에 일정한 기능을 부여할 수 있다.
상기 제 1 수지, 제 2 수지 및 소수성 부위에 관한 구체적인 내용은 이미 상술하였는 바, 관련 내용의 설명은 생략하기로 한다.
한편, 상기 수지 성형품은 상기 제 1 수지층과 제 2 수지층 사이에 형성되어 있으며 제 1 수지 및 제 2 수지의 혼화물을 포함하는 계면층을 포함할 수 있다. 상기 계면층은 층 분리된 제 1 수지층과 제 2 수지층 사이에 형성되어 경계면 역할을 할 수 있으며, 제 1 수지 및 제 2 수지의 혼화물을 포함할 수 있다. 상기 혼화물은 상기 제 1 수지 및 제 2 수지가 물리적 또는 화학적으로 결합된 상태일 수 있으며, 이러한 혼화물을 통하여 상기 제 1 수지층과 제 2 수지층이 결합될 수 있다.
상술한 바와 같이, 상기 수지 성형품은 상기 제 1 수지층과 제 2 수지층이 이러한 계면층에 의하여 구분되고, 상기 제 2 수지층이 외부에 노출되는 구조를 포함할 수 있다. 예를 들어, 상기 성형품은 상기 제 1 수지층; 계면층; 및 제 2 수지층이 순차적으로 적층된 구조를 포함할 수 있고, 제 1 수지의 상하단으로 계면 및 제 2 수지가 적층된 구조일 수 있다. 또한, 상기 수지 성형품은 다양한 입체 형태, 예를 들어 구형, 원형, 다면체, 시트형 등의 형태를 갖는 제 1 수지층을 상기 계면 및 제 2 수지층이 순차적으로 둘러싸고 있는 구조를 포함할 수 있다.
상기 수지 성형품에서 나타나는 층 분리 현상은 상이한 물성을 갖는 특정의 제 1 수지 및 제 2 수지를 적용하여 수지 성형품을 제조함에 따른 것으로 보인다. 이러한 상이한 물성의 예로는 표면 에너지, 용융 점도 및 용해도 파라미터를 들 수 있다. 이러한 물성의 차이에 관한 구체적인 내용은 상술한 바와 같다.
한편, 상기 제 1 수지층, 제 2 수지층 및 계면층은, 시편을 저온 충격 시험 후, 파단면을 THF vapor를 이용하여 에칭(etching)하고 SEM을 이용하여 확인할 수 있으며, 각 층의 두께 측정은 시편을 microtoming 장비를 이용하여 다이아몬드 칼로 절단하여 매끄러운 단면으로 만든 후 제 1 수지에 비해 제 2 수지를 선택적으로 더 잘 녹일 수 있는 용액을 사용하여 매끄러운 단면을 에칭한다. 에칭된 단면 부분은 제 1 수지 및 제 2 수지의 함량에 따라 녹아나간 정도가 다르게 되고 이를 SEM을 이용하여 단면을 표면으로부터 45도 위에서 보면 음영의 차이에 의해 제 1 수지층, 제 2 수지층, 계면층 및 표면을 관찰할 수 있으며, 각 층의 두께를 측정할 수 있다. 본 발명에서 상기 제 2 수지를 선택적으로 더 잘 녹이는 용액으로 1,2-dichloroethane 용액(10 부피%, in EtOH) 을 사용하였으나, 이는 예시적인 것으로 제 1 수지에 비해 제 2 수지의 용해도가 높은 용액이라면 특별히 제한되지 않으며, 당업자라면 제 2 수지의 종류 및 조성에 따라 용액을 적절히 선택하여 적용할 수 있다.
상기 계면층은 상기 제 2 수지층 및 계면층 총 두께의 0.01 내지 95%, 0.1 내지 70%, 0.1 내지 50%, 5 내지 50%, 10 내지 50%, 15 내지 50% 또는 20 내지 50%의 두께를 가질 수 있다. 상기 계면층이 상기 제 2 수지층 및 계면층 총 두께의 0.01 내지 95%의 두께이면 제 1 수지층과 제 2 수지층의 계면 결합력이 우수하여 양 층의 박리 현상이 일어나지 않으며, 제 2 수지층으로 인한 표면 특성이 크게 향상될 수 있다. 이에 반해, 상기 계면층이 상기 제 2 수지층에 비하여 너무 얇으면 제 1 수지층과 제 2 수지층의 결합력이 낮아서 양 층의 박리 현상이 발생할 수 있으며, 너무 두꺼우면 제 2 수지층에 의한 표면 특성 향상의 효과가 미미해질 수 있다.
상기 제 2 수지층은 전체 수지 성형품 대비 0.01 내지 60%, 0.01 내지 40%, 0.01 내지 20%, 0.01 내지 10%, 0.01 내지 5% 0.01 내지 3% 또는 0.1 내지 3%의 두께를 가질 수 있다. 상기 제 2 수지층이 일정 범위의 두께를 가짐에 따라 성형품의 표면에 향상된 표면 경도 또는 내스크래치성을 부여할 수 있게 되는데, 상기 제 2 수지층의 두께가 너무 얇으면 성형품의 표면 특성을 충분히 향상시키기 어려울 수 있고, 상기 제 2 수지층의 두께가 너무 두꺼우면 기능성 수지 자체의 기계적 물성이 수지 성형품에 반영되어 제 1 수지의 기계적 물성이 변화될 수 있다.
상기 제 1 수지, 제 2 수지, 제 1 수지와 제 2 수지의 물성 차이 및 제 2 수지에 포함되는 소수성 부위에 관한 구체적인 내용은 이미 상술하였는바, 관련 내용의 설명은 생략하기로 한다.
한편, 본 발명의 또 다른 구현예에 의하면, 제 1 수지층; 및 상기 제 1 수지층 상에 형성되어 있는 제 2 수지층을 포함하고, 상기 제 2 수지층의 표면에서 적외선 분광기(IR)에 의해 제 1 수지층 성분이 검출되며, 상기 제 2 수지층은 주쇄에 상기 화학식 1로 표시되는 소수성 부위를 포함하는 제 2 수지를 포함하는 수지 성형품을 제공할 수 있다.
상기 성형품의 구조 즉, 제 2 수지층의 표면에서 제 1 수지층 성분이 적외선 분광기에 의해 검출되는 구조는 종래에 알려지지 않은 신규한 것으로, 일반적으로 코팅 공정 등에서는 제 2 수지층 표면에서 제 1 수지층 성분이 검출되기 어렵다.
상기에서 제 2 수지층 표면은 제 1 수지층 쪽이 아닌 외부(예를 들면, 공기)에 노출되는 면을 의미한다.
상기 제 1 수지, 제 2 수지, 제 1 수지와 제 2 수지의 물성 차이 및 제 2 수지에 포함되는 소수성 부위에 관한 구체적인 내용은 이미 상술하였는바, 관련 내용의 설명은 생략하기로 한다.
또한, 본 명세서에서, 제 1 수지와 제 2 수지의 물성 차이는, 제 1 수지와 제 2 수지의 물성 차이 또는 제 1 수지층과 제 2 수지층의 물성 차이를 의미할 수 있다.
또한, 본 발명의 다른 구현예에 의하면, 상기 수지 성형품을 포함하는 자동차부품, 헬멧, 전기기기 부품, 방적기계 부품, 완구류, 파이프 등을 제공할 수 있다.
본 발명에 따르면, 성형품의 기계적 특성 및 표면 경도를 향상시킬 수 있을 뿐만 아니라, 추가적인 표면 코팅 단계를 생략하여 공정 시간 단축, 생산성 증가, 생산 비용 절감의 효과 발휘할 수 있는 수지 혼합물, 펠렛, 이를 이용한 수지 성형품의 제조 방법 및 이로부터 제조되는 수지 성형품이 제공될 수 있다.
도 1은 본 발명의 일 예시로서 수지 혼합물의 예시적인 개략도를 나타낸 것이다.
도 2는 본 발명의 다른 예시로서 수지 혼합물의 예시적인 개략도를 나타낸 것이다.
도 3은 본 발명의 일 예시로서 제 1 수지 및 제 2 수지를 포함하는 수지 혼합물로 형성된 층 분리 구조의 예시적인 개략도를 나타낸 것이다.
도 4는 본 발명의 다른 예시로서 제 1 수지, 제 2 수지 및 제 3 수지를 포함하는 수지 혼합물로 형성된 층 분리 구조의 예시적인 개략도를 나타낸 것이다.
도 5는 본 발명의 다른 예시로서, 층 분리 구조의 예시적인 개략도를 나타낸 것이다.
도 6은 코어 및 셀을 갖는 펠렛의 예시적인 개략도를 나타낸 것이다.
도 7은 실시예 3에서 제조된 성형품의 층분리된 단면 형상 SEM사진을 나타낸 것이다.
도 8은 비교예 1에서 제조된 성형품의 단면 형상 SEM사진을 나타낸 것이다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
유리 전이 온도 측정
시차주사열량계(DSC823e, Mettler-toledo사 제품)를 이용하여 유리 전이 온도를 측정하였다. 보다 구체적으로, 1mg의 제 1 수지 또는 제 2 수지의 샘플을 넣은 알루미늄 팬을 측정 기기에 장착한 후, -50℃ 내지 300℃(10℃/min, 2cycle)에서 유리 전이 온도를 측정하였다.
표면 에너지 측정
Owens-Wendt-Rabel-Kaelble 방법에 의거하여, 물방울모양분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 표면 에너지를 측정하였다.
보다 구체적으로, 제 1 수지 또는 제 2 수지를 메틸 에틸 케톤(methyl ethyl ketone) 및 메틸 이소부틸 케톤(methyl isobutyl ketone)(2:1) 혼합용액에 10중량%로 녹인 후, 트리아세틸셀룰로오스(TAC) 필름에 바코팅(bar coating)하였다. 그리고, 상기 코팅된 TAC 필름을 90℃의 오븐에서 5분간 건조하였다.
건조(또는 경화) 후, 상기 코팅 면에 탈이온화수 및 diiodomethane을 각각 10번씩 떨어뜨려서 접촉각의 평균값을 구하고, Owens-Wendt-Rabel-Kaelble 방법에 수치를 대입하여 표면에너지를 구하였다.
용융 점도 측정
모세관 레오미터(Capillary Rheometer 1501, Gottfert사)를 사용하여, 용융 점도를 측정하였다.
보다 구체적으로, 모세관 다이(Capillary die)를 바렐(Barrel)에 부착한 후, 제 1 수지 또는 제 2 수지를 3차례 나누어 채워 넣었다. 그리고, 240℃의 가공 온도에서 100 내지 1000 s-1의 전단 속도(shear rate)에 따른 전단 점도(shear viscosity, pa*s)를 측정하였다.
분자량 분포(PDI) 및 중량평균분자량(Mw)측정
분자량 분포는 GPC(Gel permeation chromatography)를 사용하여 측정하였으며, 조건은 하기와 같다.
- 기기 : Agilent technologies 사의 1200 series
- 컬럼 : Polymer laboratories 사의 PLgel mixed B 2개 사용
- 용매 : THF
- 컬럼온도 : 40도
- 샘플 농도 : 1mg/mL, 100L 주입
- 표준 : 폴리스티렌(Mp : 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)
분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, GPC에 의해 중량평균분자량(Mw), 수평균분자량(Mn)을 구한 후, 중량평균분자량/수평균분자량(Mw/Mn)으로부터 분자량분포(PDI)를 계산하였다.
단면 형상 관찰
실시예 및 비교예의 시편을 저온 충격 시험 후, 파단면을 THF vapor를 이용하여 에칭(etching)하고 SEM을 이용하여 층분리된 단면 형상을 관찰하였다. 한편, 층분리된 제 1 수지층, 제 2 수지층 및 계면층의 두께를 측정하기 위해서는, 하기 실시예 및 비교예의 시편을 microtoming 장비(Leica EM FC6)를 이용하여 -120℃에서 다이아몬드 칼로 절단하여 매끄러운 단면을 만든다. microtoming된 매끄러운 단면을 포함하는 시편의 단면부를 1,2-dichloroethane 용액(10 부피%, in EtOH)에 담가 10초간 에칭(etching)한 후 증류수로 씻어낸다. 에칭된 단면 부분은 제 1 수지 및 제 2 수지의 함량에 따라 녹아나간 정도가 다르게 되고 이를 SEM을 이용하여 관측할 수 있다. 즉, 단면을 표면을 기준으로 45도 위에서 보면 음영의 차이에 의해 제 1 수지층, 제 2 수지층 및 계면층을 관찰할 수 있으며, 각각의 두께를 측정할 수 있다.
연필 경도 측정 실험
연필경도계(충북테크)를 이용하여 일정하중 500g하에서 상기 실시예 및 비교예의 시편의 표면 연필 경도를 측정하였다. 표준연필(미쓰비시 사)를 6B 내지 9H로 변화시키면서 45도의 각도를 유지하여 스크래치를 가하여 표면의 변화율을 관찰하였다(ASTM 3363-74). 측정 결과는 5회 반복 실험 결과의 평균값이다.
강도 측정 실험
ASTM D256 에 의거하여 실시예 및 비교예에서 제조된 시편의 강도를 측정하였다. 구체적으로, 진자 끝에 달려 있는 추를 들었다가 V자형 홈(Notch)를 판 시편을 파괴시키는데 필요한 에너지(Kg*cm/cm)을 충격 시험기(Impact 104, Tinius Olsen사)를 이용하여 측정하였다. 1/8" 및 1/4" 시편에 대하여 각각 5회 측정하고 평균값을 구하였다.
적외선 분광기(IR)에 의한 표면 분석
Varian FTS-7000 분광기(Varian, USA) 및 MCT(mercury cadmium telluride) 검출기를 장착한UMA-600 적외선 현미경을 사용하였으며, 스펙트럼 측정 및 데이터 가공은 Win-IR PRO 3.4 소프트웨어(Varian, USA)를 사용하였으며, 조건은 하기와 같다.
- 굴절률이 4.0인 게르마늄(Ge) ATR 크리스탈
- ATR(attenuated total reflection) 법에 의해 중적외선 스펙트럼이 8cm-1의 분광해상도 및 16 스캔으로 4000cm-1 부터 600cm-1까지 스캔
- 내부 레퍼런스 밴드(internal reference band): 아크릴레이트의 카보닐기(C=O str., ~1725 cm-1)
- 제 1 수지의 고유성분: 부타디엔 화합물[C=C str.(~1630 cm-1) 또는 =C-H out-of-plane vib.(~970 cm-1)]
피크 강도 비율[IBD(C=C) / IA(C=O)] 및 [IBD(out-of-plane) / IA(C=O)]을 계산하고, 스펙트럼 측정은 한 샘플 내의 각각 다른 영역에서 5회 수행되어, 평균 값 및 표준 편차가 계산되었다.
실시예1
(1) 제 1 수지 및 제 2 수지의 제조 및 물성의 측정
제 1 수지로는 메틸메타크릴레이트 60 중량%, 아크릴로니트릴 7 중량%, 부타디엔 10 중량% 및 스티렌 23 중량%로 이루어진 열가소성 수지를 사용하였다. 제 2 수지의 제조를 위해, 3리터의 반응기에 증류수 1500 g 및 분산제인 폴리비닐알콜 2% 수용액 4 g을 투입하고, 용해하였다. 이어서, 상기 반응기에 메틸메타크릴레이트 792g, 디싸이올 말단(terminated) 폴리디메틸실록산(PDMS, Mw: 1670) 8 g, 사슬이동제인 n-도데실머캡탄 1.6g 및 개시제인 아조비스디메틸발레로니트릴 2.4g을 추가로 투입하고, 400 rpm으로 교반하면서 혼합하였다. 상기 혼합물을 60℃에서 3 시간 동안 반응시켜 중합하고, 30℃로 냉각하여 비드 형태의 제 2 수지(A)를 얻었다. 이어서, 상기 제 2 수지(A)를 3회에 걸쳐 증류수로 세척하고 탈수한 후, 오븐에서 건조하였다.
상기 제 1 수지와 제 2 수지(A)의 표면에너지 차이는 12 mN/m이고, 용융 점도 차이는 325 pa*s이며, 제 1 수지의 유리전이온도는 70℃이고, 제 2 수지(A)의 유리 전이 온도는 102℃이고, GPC에 의해 측정된 제 2 수지(A)의 중량평균분자량은 100 K, 분자량 분포(PDI)는 2.1 이었다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 제 1수지 90 중량부와 상기 제 2 수지(A) 10중량부를 혼합한 후, 트윈 스크류 압출기(Leistritz사)에서 240℃의 온도로 압출하여 펠렛(pellet)을 얻었다. 그리고, 이러한 펠렛을 EC100Φ30사출기(ENGEL사)에서 240℃의 온도로 사출하여 두께 3200㎛의 수지 성형품 시편 1을 제작하였다. 상기 시편의 제 2 수지층 두께는 19㎛이고, 계면층의 두께는 8㎛이며, 연필 경도는 H이고, 강도는 IZOD 1/8"의 경우 9 kg*cm/cm이며, IZOD 1/4"의 경우 9 kg*cm/cm이고, 층분리 현상이 관찰되었다.
실시예2
(1) 제 1 수지 및 제 2 수지의 제조 및 물성의 측정
실시예 1과 동일한 제 1 수지를 사용하고, 메틸메타크릴레이트 792g, 디싸이올 말단(terminated) 폴리디메틸실록산(Mw: 1670) 8g 대신, 메틸메타크릴레이트 784 g 및 디싸이올 말단 폴리디메틸실록산(Mw: 1670) 16g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 제 2 수지(B)를 제조하였다.
상기 제 1 수지와 제 2 수지(B)의 표면에너지 차이는 14 mN/m이고, 용융 점도 차이는 340 pa*s이며, 제 2 수지(B)의 유리 전이 온도는 101℃이고, GPC에 의해 측정된 제 2 수지(B)의 중량평균분자량은 100 K, 분자량 분포는 2.2 였다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 제 2 수지(B)를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 3200㎛의 시편 2를 제조하였다. 상기 시편의 제 2 수지층 두께는 36㎛이고, 계면층의 두께는 27㎛이며, 연필 경도는 H이고, 강도는 IZOD 1/8"의 경우 9 kg*cm/cm이며, IZOD 1/4"의 경우 9 kg*cm/cm이고, 층분리 현상이 관찰되었다.
실시예3
(1) 제 1 수지 및 제 2 수지의 제조 및 물성의 측정
실시예 1과 동일한 제 1 수지를 사용하고, 메틸메타크릴레이트 792g, 디싸이올 말단(terminated) 폴리디메틸실록산(Mw: 1670) 8g 대신, 메틸메타크릴레이트 776 g 및 디싸이올 말단 폴리디메틸실록산(Mw: 1670) 24g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 제 2 수지(C)를 제조하였다.
상기 제 1 수지와 제 2 수지(C)의 표면에너지 차이는 15 mN/m이고, 용융 점도 차이는 350 pa*s이며, 제 2 수지(C)의 유리 전이 온도는 99℃이고, GPC에 의해 측정된 제 2 수지(C)의 중량평균분자량은 100 K, 분자량 분포는 2.2 였다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 제 2 수지(C)를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 3200㎛의 시편 3을 제조하였다. 상기 시편의 제 2 수지층 두께는 43㎛이고, 계면층의 두께는 19㎛이며, 연필 경도는 2H이고, 강도는 IZOD 1/8"의 경우 9 kg*cm/cm이며, IZOD 1/4"의 경우 9 kg*cm/cm이고, 층분리 현상이 관찰되었다.
실시예4
(1) 제 1 수지 및 제 2 수지의 제조 및 물성의 측정
실시예 1과 동일한 제 1 수지를 사용하고, 메틸메타크릴레이트 792g, 디싸이올 말단(terminated) 폴리디메틸실록산(Mw: 1670) 8g 대신, 메틸메타크릴레이트 776 g 및 모노싸이올 말단 폴리디메틸실록산(Mw: 1900) 24g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 제 2 수지(D)를 제조하였다.
상기 제 1 수지와 제 2 수지(D)의 표면에너지 차이는 12 mN/m이고, 용융 점도 차이는 330 pa*s이며, 제 2 수지(D)의 유리 전이 온도는 103℃이고, GPC에 의해 측정된 제 2 수지(D)의 중량평균분자량은 100 K, 분자량 분포는 2.3 이었다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 제 2 수지(D)를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 3200㎛의 시편 4를 제조하였다. 상기 시편의 제 2 수지층 두께는 45㎛이고, 계면층의 두께는 33㎛이며, 연필 경도는 2H이고, 강도는 IZOD 1/8"의 경우 9 kg*cm/cm이며, IZOD 1/4"의 경우 9 kg*cm/cm이고, 층분리 현상이 관찰되었다.
실시예5
(1) 제 1 수지 및 제 2 수지의 제조 및 물성의 측정
실시예 1과 동일한 제 1 수지를 사용하고, 메틸메타크릴레이트 792g, 디싸이올 말단(terminated) 폴리디메틸실록산(Mw: 1670) 8g 대신, 메틸메타크릴레이트 576 g, 싸이클로헥실메타크릴레이트 200 g 및 디싸이올 말단 폴리디메틸실록산(Mw: 1670) 24g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 제 2 수지(E)를 제조하였다.
상기 제 1 수지와 제 2 수지(E)의 표면에너지 차이는 17 mN/m이고, 용융 점도 차이는 470 pa*s이며, 제 2 수지(E)의 유리 전이 온도는 96℃이고, GPC에 의해 측정된 제 2 수지(E)의 중량평균분자량은 100 K, 분자량 분포는 2.1 이었다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 제 2 수지(E)를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 3200㎛의 시편 5를 제조하였다. 상기 시편의 제 2 수지층 두께는 49㎛이고, 계면층의 두께는 35㎛이며, 연필 경도는 2.5H이고, 강도는 IZOD 1/8"의 경우 9 kg*cm/cm이며, IZOD 1/4"의 경우 9 kg*cm/cm이고, 층분리 현상이 관찰되었다.
실시예6
(1) 제 1 수지 및 제 2 수지의 제조 및 물성의 측정
실시예 1과 동일한 제 1 수지를 사용하고, 메틸메타크릴레이트 792g, 디싸이올 말단(terminated) 폴리디메틸실록산(Mw: 1670) 8g 대신, 메틸메타크릴레이트 576 g, 페닐메타크릴레이트 200 g 및 디싸이올 말단 폴리디메틸실록산(Mw: 1670) 24g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 제 2 수지(F)를 제조하였다.
상기 제 1 수지와 제 2 수지(F)의 표면에너지 차이는 20 mN/m이고, 용융 점도 차이는 455 pa*s이며, 제 2 수지(F)의 유리 전이 온도는 102℃이고, GPC에 의해 측정된 제 2 수지(F)의 중량평균분자량은 100 K, 분자량 분포는 2.1 이었다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 제 2 수지(F)를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 3200㎛의 시편 6을 제조하였다. 상기 시편의 제 2 수지층 두께는 50㎛이고, 계면층의 두께는 32㎛이며, 연필 경도는 2.5H이고, 강도는 IZOD 1/8"의 경우 9 kg*cm/cm이며, IZOD 1/4"의 경우 9 kg*cm/cm이고, 층분리 현상이 관찰되었다. 적외선 분광기에 의해 측정된 피크 강도 비율[IBD(C=C) / IA(C=O)]은 평균 0.0121, 표준편차는 0.0005이고, 피크 강도 비율[IBD(out-of-plane) / IA(C=O)]은 평균 0.413, 표준편차는 0.0029이었다.
실시예7
(1) 제 1 수지 및 제 2 수지의 제조 및 물성의 측정
실시예 1과 동일한 제 1 수지를 사용하고, 메틸메타크릴레이트 792g, 디싸이올 말단(terminated) 폴리디메틸실록산(Mw: 1670) 8g 대신, 메틸메타크릴레이트 536 g, 아크릴아미드 120g, 히드록시에틸메타크릴레이트 120 g 및 디싸이올 말단 폴리디메틸실록산(Mw: 1670) 24g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 제 2 수지(G)를 제조하였다.
상기 제 1 수지와 제 2 수지(G)의 표면에너지 차이는 6 mN/m이고, 용융 점도 차이는 395 pa*s이며, 제 2 수지(G)의 유리 전이 온도는 122℃이고, GPC에 의해 측정된 제 2 수지(G)의 중량평균분자량은 100 K, 분자량 분포는 1.9 였다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 제 2 수지(G)를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 3200㎛의 시편 7을 제조하였다. 상기 시편의 제 2 수지층 두께는 65㎛이고, 계면층의 두께는 28㎛이며, 연필 경도는 1.5H이고, 강도는 IZOD 1/8"의 경우 7 kg*cm/cm이며, IZOD 1/4"의 경우 7 kg*cm/cm이고, 층분리 현상이 관찰되었다.
실시예8
(1) 제 1 수지 및 제 2 수지의 제조 및 물성의 측정
실시예 1과 동일한 제 1 수지를 사용하고, 메틸메타크릴레이트 792g, 디싸이올 말단(terminated) 폴리디메틸실록산(Mw: 1670) 8g 대신, 메틸메타크릴레이트 536 g, 히드록시에틸 메타크릴레이트 240 g 및 디싸이올 말단 폴리디메틸실록산(Mw: 1670) 24g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 제 2 수지(H)를 제조하였다.
상기 제 1 수지와 제 2 수지(H)의 표면에너지 차이는 7 mN/m이고, 용융 점도 차이는 450 pa*s이며, 제 2 수지(H)의 유리 전이 온도는 108℃이고, GPC에 의해 측정된 제 2 수지(H)의 중량평균분자량은 100 K, 분자량 분포는 1.9 였다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 제 2 수지(H)를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 3200㎛의 시편 8을 제조하였다. 상기 시편의 제 2 수지층 두께는 54㎛이고, 계면층의 두께는 30㎛이며, 연필 경도는 2H이고, 강도는 IZOD 1/8"의 경우 9 kg*cm/cm이며, IZOD 1/4"의 경우 9 kg*cm/cm이고, 층분리 현상이 관찰되었다.
실시예9
(1) 제 1 수지 및 제 2 수지의 제조 및 물성의 측정
실시예 1과 동일한 제 1 수지를 사용하고, 메틸메타크릴레이트 792g, 디싸이올 말단(terminated) 폴리디메틸실록산(Mw: 1670) 8g 대신, 메틸메타크릴레이트 536g, 비닐피롤리돈 120g, 히드록시에틸 메타크릴레이트 120g 및 디싸이올 말단 폴리디메틸실록산(Mw: 1670) 24g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 제 2 수지(I)를 제조하였다.
상기 제 1 수지와 제 2 수지(I)의 표면에너지 차이는 6 mN/m이고, 용융 점도 차이는 410 pa*s이며, 제 2 수지(I)의 유리 전이 온도는 110℃이고, GPC에 의해 측정된 제 2 수지(I)의 중량평균분자량은 100 K, 분자량 분포는 2.2 였다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 제 2 수지(I)를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 3200㎛의 시편 9을 제조하였다. 상기 시편의 제 2 수지층 두께는 62㎛이고, 계면층의 두께는 32㎛이며, 연필 경도는 2H이고, 강도는 IZOD 1/8"의 경우 8 kg*cm/cm이며, IZOD 1/4"의 경우 8 kg*cm/cm이고, 층분리 현상이 관찰되었다.
비교예1
실시예 1과 동일한 제 1 수지 펠렛(pellet) 100중량부를 오븐에서 건조하고, EC100Φ30사출기(ENGEL사)에서 240℃의 온도로 사출하여 두께 3200㎛의 시편 10을 제작하였다.
상기에서 제작한 시편 10의 물성을 측정한 결과, 유리 전이 온도(Tg)는 70℃이고, 강도는 IZOD 1/8"의 경우 10 kg*cm/cm이며, IZOD 1/4"의 경우 10 kg*cm/cm이고, 연필 경도는 F였다.
비교예2
실시예 1과 동일한 제 1 수지를 사용하고, 메틸메타크릴레이트 792g, 디싸이올 말단(terminated) 폴리디메틸실록산(Mw: 1670) 8g 대신, 메틸메타크릴레이트 640g 및 디싸이올 말단 폴리디메틸실록산(Mw: 1670) 160g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 제 2 수지(J)를 제조하였다.
상기 제 1 수지와 제 2 수지(J)의 표면에너지 차이는 22 mN/m이고, 용융 점도 차이는 620 pa*s이며, 제 2 수지(J)의 유리 전이 온도는 45℃ 였다. GPC에 의해 측정된 제 2 수지(J)의 중량평균분자량은 100 K, 분자량 분포는 4.2 였다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 제 2 수지(J)를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 3200㎛의 시편 11을 제조하였다. 상기 시편은 박리되어 층분리 현상을 관찰할 수 없었고, 연필 경도 또한 측정할 수 없었다. 또한, 제 2 수지층과 계면층의 두께도 측정될 수 없었다. 강도는 IZOD 1/8"의 경우 3 kg*cm/cm이며, IZOD 1/4"의 경우 2 kg*cm/cm이었다.
비교예3
실시예 1과 동일한 제 1 수지를 사용하고, 제 2 수지로서는 폴리메틸메타크릴레이트(LGMMA IF870)을 사용하였다. 상기 제 1 수지와 제 2 수지의 표면에너지 차이는 없었고, 용융 점도 차이는 270 pa*s이며, 제 2 수지의 유리 전이 온도는 104℃ 였다. GPC에 의해 측정된 제 2 수지의 중량평균분자량은 73K, 분자량 분포는 1.9 였다.
(2) 수지 혼합물의 제조 및 물성의 측정
상기 폴리메틸메타크릴레이트를 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 3200㎛의 시편 13을 제조하였다. 상기 시편으로는 층분리 현상을 관찰할 수 없었다. 또한, 제 2 수지층과 계면층의 두께도 측정될 수 없었다. 연필 경도는 H 였다. 강도는 IZOD 1/8"의 경우 5.2 kg*cm/cm이며, IZOD 1/4"의 경우 4.9 kg*cm/cm이었다.
비교예4
실시예 1과 동일한 제 1 수지 펠렛(pellet) 100중량부를 오븐에서 건조하고, EC100Φ30사출기(ENGEL사)에서 240℃의 온도로 사출하여 시편을 제작하였다.
상기 시편 위에 다관능 아크릴레이트를 포함한 자체제조 내오염하드코팅액(디펜타에리스리톨 헥실아크릴레이트(DPHA) 17.5중량%, 펜타에리스리톨 트리아크릴레이트(PETA) 10중량%, 퍼플루오로헥실에틸 메타크릴레이트 1.5 중량%, SK cytech사의 우레탄아크릴레이트인 EB 1290 5중량%, methyl ethyl ketone 45중량 %, 이소프로필알코올 20중량 %, Ciba사의 UV개시제 IRGACURE184 1중량%)를 Mayer bar #9으로 코팅한 후 이를 60 내지 90 ℃에서 4분 정도 건조하여 막을 형성한 다음, UV를 3,000 mJ/㎠ 세기로 조사하여 코팅액 조성물을 경화시켜, 하드 코팅막을 형성하였다.
상기 하드 코팅막의 연필경도는 3H이며, 적외선 분광기에 의해 측정된 피크 강도 비율[IBD(C=C) / IA(C=O)] 및 피크 강도 비율[IBD(out-of-plane) / IA(C=O)]은 모두 평균 및 표준편차가 0이었다.

Claims (18)

  1. 제 1 수지; 및 주쇄에 화학식 1로 표시되는 소수성 부위를 가지고, 25℃에서 상기 제 1 수지와 표면 에너지 차이가 0.1 내지 20 mN/m 인 제 2 수지를 포함하며, 층분리 구조를 형성할 수 있는, 수지 혼합물:
    [화학식 1]
    Figure PCTKR2012010057-appb-I000006
    상기 화학식 1에서, Ra 내지 Rd는 각각 독립적으로 탄소수 1 내지 16의 알킬기이고, n은 1 내지 100의 수이다.
  2. 제 1 항에 있어서,
    제 1 수지와 제 2 수지의 용융 점도의 차이가 100 내지 1000s-1의 전단속도 및 상기 수지 혼합물의 가공 온도에서 0.1 내지 3000 pa*s인 수지 혼합물.
  3. 제 1 항에 있어서,
    제 2 수지는 제 1 수지 보다 높은 유리전이온도를 가지며, 제 1 수지와 제 2 수지의 유리전이온도 차이가 10℃ 내지 150℃ 인 수지 혼합물.
  4. 제 1 항에 있어서,
    제 2 수지의 분자량분포가 1 내지 2.5인 수지 혼합물.
  5. 제 1 항에 있어서,
    제 2 수지의 중량평균분자량이 3만 내지 20만인 수지 혼합물.
  6. 제 1 항에 있어서,
    상기 화학식 1로 표시되는 소수성 부위는 제 2 수지 100 중량부 기준 0.01 내지 15 중량부로 포함되는 수지 혼합물.
  7. 제 1 항에 있어서,
    제 2 수지는 탄소수 2 내지 20의 알킬기; 탄소수 5 내지 40의 지환족 고리; 및 탄소수 6 내지 40의 방향족 고리로 이루어진 군에서 선택된 1종 이상의 유기 작용기를 추가로 포함하는 수지 혼합물.
  8. 제 1 항에 있어서,
    제 2 수지는 수소 결합 제공자 및 수용자를 추가로 포함하는 수지 혼합물.
  9. 제 1 항에 있어서,
    제 1 수지는 스티렌계 수지, 폴리올레핀계 수지, 열가소성 엘라스토머, 폴리옥시알킬렌계 수지, 폴리에스테르계 수지, 폴리염화비닐계 수지, 폴리카보네이트계 수지, 폴리페닐렌설파이드계 수지, 비닐알콜계 수지, 아크릴레이트계 수지, 엔지니어링 플라스틱, 및 이들의 공중합체로 이루어진 군에서 선택된 1종 이상을 포함하는 수지 혼합물.
  10. 제 1 항에 있어서,
    제 2 수지는 (메타)아크릴레이트계 수지, 에폭시계 수지, 옥세탄계 수지, 이소시아네이트계 수지, 불소계 수지 및 이들의 공중합체로 이루어진 군에서 선택된 1종 이상을 포함하는 수지 혼합물.
  11. 제 1 수지를 포함하는 코어; 및
    주쇄에 하기 화학식 1로 표시되는 소수성 부위를 가지고, 25℃에서 상기 제 1 수지와 표면 에너지 차이가 0.1 내지 20 mN/m 인 제 2 수지를 포함하는 셀을 포함하는 펠렛:
    [화학식 1]
    Figure PCTKR2012010057-appb-I000007
    상기 화학식 1에서, Ra 내지 Rd는 각각 독립적으로 탄소수 1 내지 16의 알킬기이고, n은 1 내지 100의 수이다.
  12. 제 1 항의 수지 혼합물을 용융시켜 용융 혼합물을 형성하는 단계; 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함하는 수지 성형품의 제조 방법.
  13. 제 12 항에 있어서,
    상기 수지 혼합물의 층 분리 구조를 경화하는 단계를 더 포함하는 수지 성형품의 제조 방법.
  14. 제 12 항에 있어서,
    용융 및 가공하는 단계는 전단 응력 하에서 수행되는 수지 성형품의 제조 방법.
  15. 제 13 항에 있어서,
    경화는 열 경화 또는 UV 경화인 수지 성형품의 제조 방법.
  16. 제 11 항의 펠렛을 용융시켜 용융 혼합물을 형성하는 단계; 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함하는 수지 성형품의 제조 방법.
  17. 제 1 수지층; 상기 제 1 수지층 상에 형성되어 있는 제 2 수지층; 및 제 1 수지 및 제 2 수지를 포함하고, 상기 제 1 수지층과 제 2 수지층 사이에 형성되어 있는 계면층을 포함하고, 상기 제 2 수지층은 주쇄에 하기 화학식 1로 표시되는 소수성 부위를 가지는 제 2 수지를 포함하는 수지 성형품:
    [화학식 1]
    Figure PCTKR2012010057-appb-I000008
    상기 화학식 1에서, Ra 내지 Rd는 각각 독립적으로 탄소수 1 내지 16의 알킬기이고, n은 1 내지 100의 수이다.
  18. 제 17 항에 있어서,
    제 2 수지층의 표면에서 적외선 분광기에 의해 제 1 수지층 성분이 검출되는 수지 성형품.
PCT/KR2012/010057 2011-11-25 2012-11-26 수지 혼합물 WO2013077694A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280067787.2A CN104066800B (zh) 2011-11-25 2012-11-26 树脂共混物
EP12852359.4A EP2784132B1 (en) 2011-11-25 2012-11-26 Resin mixture
US14/286,417 US9650510B2 (en) 2011-11-25 2014-05-23 Resin blend

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0124652 2011-11-25
KR20110124652 2011-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/286,417 Continuation US9650510B2 (en) 2011-11-25 2014-05-23 Resin blend

Publications (1)

Publication Number Publication Date
WO2013077694A1 true WO2013077694A1 (ko) 2013-05-30

Family

ID=48470068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010057 WO2013077694A1 (ko) 2011-11-25 2012-11-26 수지 혼합물

Country Status (5)

Country Link
US (1) US9650510B2 (ko)
EP (1) EP2784132B1 (ko)
KR (1) KR101640630B1 (ko)
CN (1) CN104066800B (ko)
WO (1) WO2013077694A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2578639B1 (en) * 2010-05-28 2019-08-07 LG Chem, Ltd. Resin blend for melt-processing, pellet, method for manufacturing resin-molded product using same and resin-molded product
CN109535573A (zh) * 2018-11-23 2019-03-29 佛山市质量计量监督检测中心 一种自分层防污易清洁塑料管材及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080306222A1 (en) * 1999-12-01 2008-12-11 Canon Kabushiki Kaisha Surface treatment solution with polymer material, method for producing surface treatment solution, liquid-contacting surface structure, and surface treatment method using liquid-phase polymer
KR20110003061A (ko) * 2009-07-03 2011-01-11 (주)엘지하우시스 터치스크린용 수지 조성물, 점착 필름 및 터치스크린
KR20110026318A (ko) * 2009-09-07 2011-03-15 제일모직주식회사 플렉시블 가스 배리어 필름, 그 제조방법 및 이를 이용한 플렉시블 디스플레이 소자
KR20110059173A (ko) * 2009-11-27 2011-06-02 부산대학교 산학협력단 초소수 코팅막 조성물과 이를 이용한 초소수 코팅막

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792490A (fr) * 1971-12-10 1973-03-30 Gen Electric Ecrans fluorescents
US4692492A (en) * 1984-05-25 1987-09-08 Mobil Oil Corporation Non-staining, non-sticking styrenic polymers
JPH07281143A (ja) * 1994-01-10 1995-10-27 Motoo Takayanagi 液晶ポリマー組成物
JPH08127686A (ja) * 1994-09-09 1996-05-21 Nippon G Ii Plast Kk ポリカーボネート系樹脂組成物
WO2000032690A1 (fr) * 1998-12-03 2000-06-08 Kaneka Corporation Composition elastomere et composition de resine thermoplastique la contenant
JP2001049078A (ja) * 1999-08-05 2001-02-20 Nippon Shokubai Co Ltd 耐候性樹脂組成物
WO2004052963A1 (en) * 2002-12-09 2004-06-24 Suprapolix B.V. Siloxane polymers with quadruple hydrogen bonding units
EP2010588B1 (en) * 2006-04-18 2012-01-04 Henkel AG & Co. KGaA Organosilicon polyurea polymers, elastomers manufactured therefrom and their use
BRPI0806825A2 (pt) * 2007-02-06 2011-09-13 Ciba Holding Inc copolimeros em bloco polissiloxano
KR100923459B1 (ko) * 2007-12-27 2009-10-27 제일모직주식회사 무도장용 방오 공중합체, 그 제조방법 및 이를 이용한전자재료 외장재
CN101381496B (zh) * 2008-11-06 2010-11-03 内蒙古蒙牛乳业(集团)股份有限公司 一种聚苯乙烯材料的制备方法及其食品包装材料
KR101758399B1 (ko) * 2009-08-20 2017-07-14 덴카 주식회사 아크릴 고무 조성물 및 그의 가교체
EP2578639B1 (en) * 2010-05-28 2019-08-07 LG Chem, Ltd. Resin blend for melt-processing, pellet, method for manufacturing resin-molded product using same and resin-molded product
KR101560020B1 (ko) * 2010-05-28 2015-10-15 주식회사 엘지화학 용융 가공 수지 성형품

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080306222A1 (en) * 1999-12-01 2008-12-11 Canon Kabushiki Kaisha Surface treatment solution with polymer material, method for producing surface treatment solution, liquid-contacting surface structure, and surface treatment method using liquid-phase polymer
KR20110003061A (ko) * 2009-07-03 2011-01-11 (주)엘지하우시스 터치스크린용 수지 조성물, 점착 필름 및 터치스크린
KR20110026318A (ko) * 2009-09-07 2011-03-15 제일모직주식회사 플렉시블 가스 배리어 필름, 그 제조방법 및 이를 이용한 플렉시블 디스플레이 소자
KR20110059173A (ko) * 2009-11-27 2011-06-02 부산대학교 산학협력단 초소수 코팅막 조성물과 이를 이용한 초소수 코팅막

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEESTRA ET AL.: "Two component injection molding of phase separating blends", INTERNATIONAL POLYMER PROCESSING, vol. 21, no. 2, 2006, pages 168 - 174, XP055069902 *
SCHNEL ET AL.: "Evolution of viscosities and morphology for the two-phase system polyethylene oxide/poly(dimethylsiloxane)", RHEOL ACTA, vol. 47, 2008, pages 469 - 476, XP019628682 *
See also references of EP2784132A4 *

Also Published As

Publication number Publication date
KR101640630B1 (ko) 2016-07-18
CN104066800B (zh) 2016-09-21
CN104066800A (zh) 2014-09-24
EP2784132B1 (en) 2017-09-27
US9650510B2 (en) 2017-05-16
EP2784132A4 (en) 2015-10-28
KR20130058650A (ko) 2013-06-04
US20140255700A1 (en) 2014-09-11
EP2784132A1 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2011149299A2 (ko) 용융 가공 수지 성형품
WO2013077695A1 (ko) 수지 혼합물
WO2012050401A2 (ko) 용융 가공용 수지 혼합물
WO2011149294A2 (ko) 용융 가공용 수지 혼합물, 펠렛 및 이를 이용한 수지 성형품의 제조 방법 및 수지 성형품
WO2011149298A2 (ko) 용융 가공용 수지 혼합물, 펠렛 및 이를 이용한 수지 성형품의 제조 방법
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2016068423A1 (ko) 플렉시블 디스플레이 장치
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016080675A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2013077696A1 (ko) 수지 혼합물
WO2022010053A1 (ko) 열가소성 수지 및 이의 제조방법
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2012050400A2 (ko) 용융 가공용 수지 혼합물
WO2013077694A1 (ko) 수지 혼합물
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2012050399A2 (ko) 용융 가공용 수지 혼합물
WO2022158720A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022035071A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2022019410A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2021071152A1 (ko) 플렉서블 윈도우 필름 및 이를 포함하는 디스플레이 장치
WO2018062784A1 (en) Dope solution for preparing optical film and optical film using the same
WO2015016677A1 (ko) 수지
WO2015093763A1 (ko) 태양전지용 불소계 코팅 조성물, 불소계 다층필름 및 이를 포함하는 태양전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852359

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012852359

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012852359

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE