WO2020091336A1 - 열가소성 수지 조성물 - Google Patents

열가소성 수지 조성물 Download PDF

Info

Publication number
WO2020091336A1
WO2020091336A1 PCT/KR2019/014261 KR2019014261W WO2020091336A1 WO 2020091336 A1 WO2020091336 A1 WO 2020091336A1 KR 2019014261 W KR2019014261 W KR 2019014261W WO 2020091336 A1 WO2020091336 A1 WO 2020091336A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
weight
copolymer
graft copolymer
thermoplastic resin
Prior art date
Application number
PCT/KR2019/014261
Other languages
English (en)
French (fr)
Inventor
성다은
황용연
박춘호
안용희
장정민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020563916A priority Critical patent/JP7066228B2/ja
Priority to US17/054,731 priority patent/US11286383B2/en
Priority to EP19880674.7A priority patent/EP3875535B1/en
Priority to CN201980021988.0A priority patent/CN111918921B/zh
Publication of WO2020091336A1 publication Critical patent/WO2020091336A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a thermoplastic resin composition, and relates to a thermoplastic resin composition excellent in chemical resistance and appearance properties.
  • an acrylic graft copolymer in which an aromatic vinyl monomer and a vinyl cyan monomer are graft polymerized to an acrylic rubber polymer has excellent weather resistance and aging resistance.
  • the thermoplastic resin composition containing such an acrylic graft copolymer is used in various fields such as automobiles, ships, leisure products, building materials, and horticultural purposes, and its usage is rapidly increasing.
  • Deco sheet containing an acrylic graft copolymer is attracting attention as an eco-friendly material because it has superior processing stability and does not contain heavy metal components compared to conventional PVC or PP.
  • a pressing mark occurs during storage, or the dimension of the sheet is deformed (stretched or shrunk) during processing.
  • an adhesive for adhesion to the substrate there is also a problem of melting due to poor chemical resistance.
  • thermoplastic resin composition with improved appearance quality and chemical resistance.
  • An object of the present invention is to provide a thermoplastic resin composition having improved basic chemical properties such as processability, hardness, colorability, and impact resistance, while improving chemical resistance, heat resistance, and appearance characteristics.
  • the present invention is a C 4 to C 10 alkyl (meth) acrylate monomer unit, C 1 to C 3 alkyl substituted styrene-based monomer unit, and a vinyl cyan-based monomer unit 1 graft copolymer;
  • a second graft copolymer comprising C 4 to C 10 alkyl (meth) acrylate monomer units, alkyl unsubstituted styrene monomer units, and vinyl cyan monomer units;
  • a first styrenic copolymer comprising a C 1 to C 3 alkyl substituted styrene monomer unit and a vinyl cyan monomer unit;
  • a second styrene-based copolymer comprising an alkyl unsubstituted styrene-based monomer unit and a vinyl cyan-based monomer unit;
  • it provides a thermoplastic resin composition comprising an olefin-based copolymer comprising a C 1
  • thermoplastic resin composition of the present invention while having excellent basic physical properties such as processability, hardness, colorability, and impact resistance, can significantly improve chemical resistance, heat resistance, and appearance characteristics.
  • the weight average molecular weight of the shell of the graft copolymer may mean the weight average molecular weight of the copolymer including the aromatic vinyl monomer unit and vinyl cyan monomer unit grafted to the core.
  • the aromatic vinyl monomer unit may be at least one selected from the group consisting of C 1 to C 3 alkyl substituted styrene monomer units and alkyl unsubstituted styrene monomer units.
  • the weight-average molecular weight of the shell of the graft copolymer is dissolved in acetone and centrifuged, and then dissolved in acetone (sol) in tetrahydrofuran, followed by gel permeation chromatography ( GPC, waters breeze can be used to measure relative values to standard PS (standard polystyrene) samples.
  • GPC gel permeation chromatography
  • the graft ratio of the graft copolymer can be calculated based on the following formula.
  • Graft ratio (%) weight of grafted monomer (g) / rubber weight (g) ⁇ 100
  • the average particle diameter of the seed, core, and graft copolymer can be measured using a dynamic light scattering method, and specifically, measured using Nicomp 380 equipment (product name, manufacturer: PSS). Can be.
  • the average particle diameter may mean an arithmetic average particle size in a particle size distribution measured by a dynamic light scattering method, specifically, an average particle size of scattering intensity.
  • the weight average molecular weight may be measured as a relative value to a standard PS (standard polystyrene) sample through GPC (Gel Permeation Chromatography, waters breeze) using THF (tetrahydrofuran) as the eluent.
  • PS standard polystyrene
  • GPC Gel Permeation Chromatography, waters breeze
  • THF tetrahydrofuran
  • thermoplastic resin composition is A-1) C 4 to C 10 alkyl (meth) acrylate monomer unit, C 1 to C 3 alkyl substituted styrene monomer unit, and A first graft copolymer comprising a vinyl cyan monomer unit; A-2) a second graft copolymer comprising C 4 to C 10 alkyl (meth) acrylate monomer units, alkyl unsubstituted styrene monomer units, and vinyl cyan monomer units; B-1) a first styrenic copolymer comprising a C 1 to C 3 alkyl substituted styrene monomer unit and a vinyl cyan monomer unit; B-2) a second styrene-based copolymer comprising an alkyl unsubstituted styrene-based monomer unit and a vinyl cyan-based monomer unit; And C) C 1 to C 3 alkyl (meth)
  • thermoplastic resin composition of the present invention will be described in detail.
  • the first graft copolymer includes C 4 to C 10 alkyl (meth) acrylate monomer units, C 1 to C 3 alkyl substituted styrene monomer units, and vinyl cyan monomer units.
  • the first graft copolymer includes C 1 to C 3 alkyl-substituted styrene-based monomer units, it may impart remarkably excellent heat resistance and appearance characteristics to the thermoplastic resin composition.
  • compatibility with the first styrene-based copolymer, which will be described later, is remarkably improved, and can be uniformly dispersed in the thermoplastic resin composition.
  • first graft copolymer may impart excellent impact resistance to the thermoplastic resin composition.
  • the first graft copolymer comprises a core composed of a crosslinked polymer comprising C 4 to C 10 alkyl (meth) acrylate monomer units; And a shell including an alkyl-substituted styrene-based monomer unit grafted to the core and a vinyl cyan-based monomer unit.
  • the C 4 to C 10 alkyl (meth) acrylate monomer units may be units derived from C 4 to C 10 alkyl (meth) acrylate monomers.
  • the C 4 to C 10 alkyl (meth) acrylate-based monomers are butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate , 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, and decyl (meth) acrylate may be one or more selected from the group consisting of butyl acrylate desirable.
  • the C 4 to C 10 alkyl (meth) acrylate monomer units may be included in 40 to 60% by weight or 45 to 55% by weight relative to the total weight of the first graft copolymer, of which 45 to 55 It is preferably included in weight percent. If the above-described range is satisfied, the impact resistance of the first graft copolymer can be further improved.
  • the C 1 to C 3 alkyl substituted styrene monomer units may be units derived from C 1 to C 3 alkyl substituted styrene monomers.
  • the C 1 to C 3 alkyl substituted styrene-based monomer may be at least one selected from the group consisting of ⁇ -methyl styrene, p-methyl styrene, and 2,4-dimethyl styrene, of which ⁇ -methyl styrene desirable.
  • the alkyl substituted styrene-based monomer units of C 1 to C 3 may be included in an amount of 25 to 45% by weight or 30 to 40% by weight, based on the total weight of the first graft copolymer, 30 to 40% by weight It is preferably included. If the above-mentioned range is satisfied, the heat resistance, appearance characteristics, and impact resistance of the thermoplastic resin composition may be further improved.
  • the vinyl cyan monomer unit may be a unit derived from a vinyl cyan monomer.
  • the vinyl cyan monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, and ethacrylonitrile, of which acrylonitrile is preferred.
  • the vinyl cyan monomer unit may be included in 5 to 25% by weight or 10 to 20% by weight relative to the total weight of the first graft copolymer, and is preferably included in 10 to 20% by weight. If the above-described range is satisfied, the chemical resistance of the first graft copolymer can be further improved.
  • the first graft copolymer may further include an alkyl unsubstituted styrene-based monomer unit in order to perform polymerization more easily.
  • the alkyl unsubstituted styrene monomer unit may be a unit derived from an alkyl unsubstituted styrene monomer.
  • the alkyl unsubstituted styrene-based monomer may be at least one selected from the group consisting of styrene, p-bromo styrene, o-bromo styrene, and p-chloro styrene, of which styrene is preferred.
  • the alkyl unsubstituted styrene-based monomer unit may be included in 0.1 to 15% by weight or 1 to 10% by weight, based on the total weight of the first graft copolymer, of which 1 to 10% by weight is included. desirable. If the above-described range is satisfied, polymerization of the first graft copolymer can be more easily performed.
  • the average particle diameter of the second graft copolymer and the core may be different, and specifically, the first graft copolymer has a larger average particle diameter than the second graft copolymer. Can be.
  • thermoplastic resin composition includes two or more graft copolymers having different average particle diameters of the core, impact resistance, weather resistance, colorability, surface gloss characteristics, and appearance characteristics can all be improved.
  • the first graft copolymer may have an average particle diameter of 300 to 500 nm, or 350 to 450 nm, and preferably 350 to 450 nm. If the above-described range is satisfied, impact resistance and surface gloss properties of the thermoplastic resin composition may be further improved. If it is less than the above-described range, the impact resistance of the thermoplastic resin composition may decrease, and if it exceeds the above-described range, surface gloss properties may deteriorate.
  • the first graft copolymer may have a graft ratio of 20 to 100%, 40 to 80%, or 45 to 60%, of which 40 to 60% is preferred. If the above-described range is satisfied, impact resistance and dispersibility of the thermoplastic resin composition may be further improved.
  • the first graft copolymer may have a weight average molecular weight of the shell of 100,000 to 300,000 g / mol or 150,000 to 250,000 g / mol, of which 150,000 to 250,000 g / mol is preferred. If the above-mentioned range is satisfied, impact resistance of the thermoplastic resin composition may be further improved.
  • the first graft copolymer may be selected from the group consisting of butyl acrylate- ⁇ -methyl styrene-acrylonitrile copolymer and butyl acrylate-styrene- ⁇ -methyl styrene-acrylonitrile copolymer, of which Butyl acrylate-styrene- ⁇ -methyl styrene-acrylonitrile copolymers are preferred.
  • the first graft copolymer is 5 to 30 parts by weight based on 100 parts by weight of the sum of the first graft copolymer, the second graft copolymer, the first styrene copolymer, and the second styrene copolymer. , 10 to 25 parts by weight or 10 to 15 parts by weight, of which is preferably included in 10 to 15 parts by weight. If the above-mentioned range is satisfied, the impact resistance of the thermoplastic resin composition can be remarkably improved. When included below the above-described range, the impact resistance and the appearance characteristics of the thermoplastic resin composition is significantly lowered, and when it is included beyond the above-described range, the appearance characteristics may be significantly lowered.
  • the first graft copolymer includes 1) C 4 to C 10 alkyl (meth) acrylate monomers, C 1 to C 3 alkyl substituted styrene monomers, alkyl unsubstituted styrene monomers, and vinyl cyan. Polymerizing at least one selected from the group consisting of monomers to prepare a core; 2) In the presence of the core, C 1 to C 3 alkyl-substituted styrene-based monomers, and may be prepared by a production method comprising the steps of polymerizing a vinyl cyan-based monomer to produce a shell.
  • the step of preparing the core comprises a group consisting of C 4 to C 10 alkyl (meth) acrylate monomers, C 1 to C 3 alkyl substituted styrene monomers, alkyl unsubstituted styrene monomers, and vinyl cyan monomers.
  • Preparing a seed by polymerizing at least one selected from; And in the presence of the seed, polymerizing a C 4 to C 10 alkyl (meth) acrylate-based monomer to prepare a core.
  • the step of preparing the seed and core may be performed in the presence of one or more selected from the group consisting of emulsifiers, initiators, crosslinking agents, grafting agents, electrolytes, and water.
  • the emulsifier may be at least one selected from the group consisting of metal salt derivatives of alkyl sulfosuccinic acids of C 12 to C 18 and metal salt derivatives of alkyl sulfates of C 12 to C 20 .
  • the metal salt derivatives of C 12 to C 18 alkylsulfosuccinic acid are sodium dicyclohexylsulfosuccinate, sodium dihexylsulfosuccinate, sodium di-2-ethylhexyl sulfosuccinate, potassium di-2-ethylhexylsulfosuccinate and di-2 -Ethyl hexyl sulfosuccinate may be one or more selected from the group consisting of lithium.
  • the metal salt derivative of the alkyl sulfate ester of C 12 to C 20 is selected from the group consisting of sodium dodecyl sulfate, sodium dodecylbenzene sulfate, sodium octadecyl sulfate, sodium oleic sulfate, potassium dodecyl sulfate and potassium octadecyl sulfate. It may be one or more.
  • the initiator may be an inorganic peroxide or an organic peroxide.
  • the inorganic peroxide may be one or more selected from the group consisting of potassium persulfate, sodium persulfate and ammonium persulfate as a water-soluble initiator.
  • the organic peroxide may be at least one selected from the group consisting of cumene hydroperoxide and benzoyl peroxide as a fat-soluble initiator.
  • the crosslinking agent is ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol It may be one or more selected from the group consisting of dimethacrylate, trimethylolpropane trimethacrylate and trimethylolmethane triacrylate.
  • the grafting agent may be at least one selected from the group consisting of allyl methacrylate, triallyl isocyanurate, triallylamine and diallylamine.
  • the electrolyte is KCl, NaCl, KHCO 3 , NaHCO 3 , K 2 CO 3 , Na 2 CO 3 , KHSO 3 , NaHSO 4 , Na 2 S 2 O 7 , K 4 P 2 O 7 , K 3 PO 4 , Na 3 PO 4 or Na 2 HPO 4 , KOH and may be one or more selected from the group consisting of NaOH, of which KOH is preferred.
  • the water serves as a medium during emulsion polymerization, and may be ion-exchanged water.
  • C 1 to C 3 alkyl-substituted styrene-based monomers and vinyl cyan-based monomers may be polymerized while being continuously charged at a constant rate. Congestion due to overheating can be easily suppressed.
  • the polymerization may be an emulsion polymerization, it may be carried out at 50 to 85 °C or 60 to 80 °C, it is preferably carried out at 60 to 80 °C. If the above-described range is satisfied, emulsion polymerization can be stably performed.
  • the step of preparing the shell may be performed in the presence of at least one selected from the group consisting of emulsifiers, initiators, and water.
  • the emulsifier, initiator and water are polymerized while continuously input together with the styrene-based monomer and the vinyl cyan-based monomer. If the above conditions are satisfied, the pH is kept constant to facilitate graft polymerization, and the stability of the graft copolymer particles is excellent, and the inside of the particles can be uniformly produced.
  • the emulsifier may be a carboxylic acid metal salt derivative, and the carboxylic acid metal salt derivative may be at least one selected from the group consisting of C 12 to C 20 fatty acid metal salts and rosin metal salts.
  • the fatty acid metal salt of C 12 to C 20 may be one or more selected from the group consisting of sodium fatty acid, sodium lauryl, sodium oleate and potassium oleate.
  • the metal rosin salt may be one or more selected from the group consisting of sodium rosin salt and potassium rosin salt.
  • the type of the initiator is as described above, of which organic peroxide is preferred, and t-butylperoxy ethylhexyl carbonate is more preferred.
  • the graft copolymer prepared by the above-described manufacturing method may be in the form of latex.
  • the latex-type graft copolymer may be prepared in powder form by performing agglomeration, aging, washing, dehydration and drying.
  • the second graft copolymer includes C 4 to C 10 alkyl (meth) acrylate monomer units, alkyl unsubstituted styrene monomer units, and vinyl cyan monomer units.
  • the second graft copolymer may impart excellent weather resistance, colorability, impact resistance, chemical resistance, and surface gloss characteristics to the thermoplastic resin composition.
  • the second graft copolymer includes an alkyl unsubstituted styrene-based monomer unit, compatibility with a second styrene-based copolymer, which will be described later, is remarkably improved, and can be uniformly dispersed in the thermoplastic resin composition. .
  • the second graft copolymer comprises at least one member selected from the group consisting of C 4 to C 10 alkyl (meth) acrylate monomer units, alkyl unsubstituted styrene monomer units, and vinyl cyan monomer units.
  • a core made of a crosslinked polymer; And a shell including an alkyl unsubstituted styrene-based monomer unit grafted to the core and a vinyl cyan-based monomer unit.
  • the C 4 to C 10 alkyl (meth) acrylate-based monomer unit may be included in an amount of 40 to 60% by weight or 45 to 55% by weight based on the total weight of the second graft copolymer, of which 45 to 55 It is preferably included in weight percent. If the above-mentioned range is satisfied, the weather resistance and impact resistance of the second graft copolymer can be further improved.
  • the alkyl unsubstituted styrene-based monomer unit may be included in an amount of 25 to 45% by weight or 30 to 40% by weight based on the total weight of the second graft copolymer, and is preferably included in 30 to 40% by weight. Do. If the above-described range is satisfied, the processability and impact resistance of the second graft copolymer can be further improved.
  • the vinyl cyan monomer unit may be included in 5 to 25% by weight or 10 to 20% by weight relative to the total weight of the second graft copolymer, and is preferably included in 10 to 20% by weight. If the above-described range is satisfied, the chemical resistance of the second graft copolymer can be further improved.
  • the second graft copolymer may have an average particle diameter of 50 to 150 nm or 75 to 125 nm of the core, and preferably 75 to 125 nm. If the above-mentioned range is satisfied, the specific surface area of the core in the thermoplastic resin composition is increased, thereby significantly improving weather resistance, and since visible light can penetrate without scattering from the core, coloring properties can be remarkably improved. In addition, the chemical resistance, appearance properties and surface gloss properties of the thermoplastic resin composition may be further improved. If it is less than the above-described range, the weather resistance, chemical resistance, appearance characteristics and surface gloss characteristics of the thermoplastic resin composition may be significantly lowered, and if it exceeds the above-described range, weatherability and colorability may be significantly lowered.
  • the second graft copolymer may have a graft ratio of 20 to 80% or 25 to 60%, of which 25 to 60% is preferred. If the above-mentioned range is satisfied, a second graft copolymer excellent in colorability, dispersibility, and surface gloss properties can be produced.
  • the second graft copolymer may have a weight average molecular weight of 50,000 to 200,000 g / mol or 70,000 to 170,000 g / mol of the shell, and 70,000 to 170,000 g / mol is preferable. If the above-mentioned range is satisfied, a second graft copolymer excellent in dispersibility and mechanical properties can be prepared.
  • the second graft copolymer may be a butyl acrylate-styrene-acrylonitrile copolymer.
  • the second graft copolymer is 0.1 to 15 parts by weight based on 100 parts by weight of the sum of the first graft copolymer, the second graft copolymer, the first styrene copolymer, and the second styrene copolymer. , 1 to 10 parts by weight or 5 to 8 parts by weight, it is preferably included as 5 to 8 parts by weight. If the above-mentioned ranges are satisfied, weatherability, chemical resistance, colorability, appearance characteristics and surface gloss characteristics of the thermoplastic resin composition can be remarkably improved. If it is less than the above-described range, the appearance characteristics, weather resistance and colorability of the thermoplastic resin composition may be lowered, and if it exceeds the above-described range, the impact resistance of the thermoplastic resin composition may be lowered.
  • the second graft copolymer polymerizes at least one selected from the group consisting of 1) C 4 to C 10 alkyl (meth) acrylate monomers, alkyl unsubstituted styrene monomers, and vinyl cyan monomers.
  • a seed is prepared by polymerizing at least one selected from the group consisting of C 4 to C 10 alkyl (meth) acrylate monomers, alkyl unsubstituted styrene monomers, and vinyl cyan monomers. step; And in the presence of the seed, polymerizing a C 4 to C 10 alkyl (meth) acrylate-based monomer to prepare a core.
  • the method for producing the second graft copolymer is as described in the method for producing the first graft copolymer.
  • the sum of the first graft copolymer and the second graft copolymer, the first graft copolymer, the second graft copolymer, the first styrene-based copolymer and the second It may be 10 to 35 parts by weight, preferably 15 to 30 parts by weight based on 100 parts by weight of the styrene-based copolymer. If the above-described range is satisfied, the thermoplastic resin composition can realize excellent impact resistance, appearance characteristics, and hardness. When included below the above-mentioned range, the impact resistance of the thermoplastic resin composition is significantly lowered, and when it is included above the above-mentioned range, the flow index may be lowered and the appearance characteristics may be significantly lowered.
  • the weight ratio of the first graft copolymer and the second graft copolymer is 1.5: 1 to 10: 1, preferably 1.5: 1 to 5: 1, more preferably 1.5: 1. To 3: 1. If the above-described range is satisfied, impact resistance and appearance characteristics of the thermoplastic resin composition may be further improved. If it is less than the above-described range, the impact resistance of the thermoplastic resin composition may be lowered, and if it exceeds the above-described range, the appearance characteristics of the thermoplastic resin composition may be lowered.
  • the first styrenic copolymer is a matrix copolymer, and includes C 1 to C 3 alkyl substituted styrene monomer units and vinyl cyan monomer units.
  • the first styrene-based copolymer may impart excellent heat resistance and appearance characteristics to the thermoplastic resin composition. Specifically, due to the excellent heat resistance, it is possible to improve the dimensional stability of the molded article made of a thermoplastic resin composition, it is possible to minimize the pressing marks.
  • the first styrene-based copolymer includes C 1 to C 3 alkyl-substituted styrene-based monomer units, compatibility with the first graft copolymer may be excellent.
  • the types of the C 1 to C 3 alkyl substituted styrene monomer units and vinyl cyan monomer units are as described above.
  • the first styrene-based copolymer may be a copolymer of a monomer mixture comprising a C 1 to C 3 alkyl-substituted styrene-based monomer and a vinyl cyan-based monomer.
  • the monomer mixture may include C 1 to C 3 alkyl-substituted styrene-based monomers and vinyl cyan-based monomers in a weight ratio of 60:40 to 90:10 or 65:35 to 85:15, of which 65:35 It is preferably included in a weight ratio of 85 to 85. If the above-mentioned range is satisfied, heat resistance can be further improved.
  • the first styrene-based copolymer may further include an alkyl unsubstituted styrene-based monomer unit in order to facilitate polymerization.
  • the first styrene-based copolymer may be a copolymer of a monomer mixture including C 1 to C 3 alkyl-substituted styrene-based monomers, vinyl cyan-based monomers, and alkyl unsubstituted styrene-based monomers.
  • the type of the alkyl unsubstituted styrene monomer unit is as described above.
  • the monomer mixture includes 55 to 75% by weight of the alkyl substituted styrene monomers of C 1 to C 3 , 20 to 40% by weight of vinyl cyanide monomers, and 0.1 to 15% by weight of the alkyl unsubstituted styrene monomers.
  • the C 1 to C 3 alkyl-substituted styrene-based monomers 60 to 70% by weight, the vinyl cyanic monomers 25 to 35% by weight, the alkyl unsubstituted styrene-based monomers 1 to 10% by weight It can contain. If the above-mentioned range is satisfied, polymerization of the first styrene-based copolymer can be more easily performed.
  • the first styrene-based copolymer may have a weight average molecular weight of 50,000 to 150,000 g / mol or 70,000 to 130,000 g / mol, of which 70,000 to 130,000 g / mol is preferred. If the above-described range is satisfied, excellent chemical resistance and mechanical properties can be realized. If it is less than the above-described range, the mechanical properties of the thermoplastic resin composition may be lowered. When it exceeds the above-mentioned range, workability may deteriorate.
  • the first styrene-based copolymer may be selected from the group consisting of ⁇ -methyl styrene-acrylonitrile copolymer and ⁇ -methyl styrene-styrene-acrylonitrile copolymer, of which ⁇ -methyl styrene-acrylonitrile Copolymers are preferred.
  • the first styrene-based copolymer is 2 to 25 parts by weight based on 100 parts by weight of the sum of the first graft copolymer, the second graft copolymer, the first styrene copolymer and the second styrene copolymer , 7 to 20 parts by weight, 14 to 20 parts by weight or 14 to 16 parts by weight, it may be included as 14 to 16 parts by weight. If the above-described range is satisfied, heat resistance, processability, and appearance characteristics of the thermoplastic resin composition may be further improved. Specifically, when included below the above-described range, the heat resistance of the thermoplastic resin composition may be lowered and the appearance characteristics may be lowered. When it exceeds the above-mentioned range, workability and chemical resistance may deteriorate.
  • the first styrene-based copolymer may be a copolymer prepared by suspending or bulk polymerization of a monomer mixture containing a C 1 to C 3 alkyl-substituted styrene-based monomer and a vinyl cyan-based monomer, and among them, a high-purity polymer is prepared. It is preferable that it is a copolymer produced by bulk polymerization which can be performed.
  • the second styrene-based copolymer is a matrix copolymer, and includes an alkyl unsubstituted styrene-based monomer unit and a vinyl cyan-based monomer unit.
  • the second styrene-based copolymer may impart excellent processability, chemical resistance and mechanical properties to the thermoplastic resin composition. Since the second styrene-based copolymer includes an alkyl unsubstituted styrene-based monomer unit, compatibility with the second graft copolymer is improved, so that the second graft copolymer is uniformly dispersed in the thermoplastic resin composition. I can do it.
  • alkyl unsubstituted styrene monomer units and vinyl cyan monomer units are as described above.
  • the second styrene-based copolymer may be a copolymer of a monomer mixture comprising an alkyl unsubstituted styrene-based monomer and a vinyl cyan-based monomer.
  • the monomer mixture may include an alkyl unsubstituted styrene-based monomer and a vinyl cyan-based monomer in a weight ratio of 60:40 to 90:10 or 65:35 to 85:15, of which a weight ratio of 65:35 to 85:15 It is preferred to include. If the above-described range is satisfied, processability and chemical resistance can be further improved.
  • the second styrene-based copolymer may have a weight average molecular weight of 100,000 to 250,000 g / mol or 130,000 to 220,000 g / mol, of which 130,000 to 220,000 g / mol is preferred. If the above-described range is satisfied, excellent chemical resistance and mechanical properties can be realized. If it is less than the above-mentioned range, the mechanical properties of the thermoplastic resin composition may deteriorate, and if it exceeds the above-described range, the processability of the thermoplastic resin composition may deteriorate.
  • the second styrene copolymer is a styrene-acrylonitrile copolymer.
  • the second styrene-based copolymer is 50 to 80 parts by weight, based on 100 parts by weight of the sum of the first graft copolymer, the second graft copolymer, the first styrene-based copolymer and the second styrene-based copolymer, 55 to 75 parts by weight or 62 to 66 parts by weight may be included, of which 62 to 66 parts by weight is preferred. If the above-mentioned ranges are satisfied, processability, chemical resistance and mechanical properties of the thermoplastic resin composition may be further improved. When included below the above-mentioned range, the chemical resistance and processability of the thermoplastic resin composition is lowered, and when it is included above the above-mentioned range, mechanical properties of the thermoplastic resin composition may be lowered.
  • the second styrene-based copolymer may be a copolymer prepared by suspension or bulk polymerization of an alkyl unsubstituted styrene-based monomer and a vinyl cyan-based monomer, and among them, a copolymer prepared by bulk polymerization capable of producing a high-purity copolymer. It is preferred.
  • the content of the sum of the first styrene-based copolymer and the second styrene-based copolymer is the first graft copolymer, the second graft copolymer, the first styrene copolymer and the second It may be 65 to 90 parts by weight, preferably 70 to 85 parts by weight based on 100 parts by weight of the styrene-based copolymer.
  • the processability of the thermoplastic resin composition may be lowered, and when it exceeds the above-described range, impact resistance of the thermoplastic resin composition may be lowered.
  • the olefin-based copolymer includes, as additives, C 1 to C 3 alkyl (meth) acrylate-based monomer units.
  • the olefin-based copolymer may be a copolymer of a monomer mixture comprising an C 2 to C 4 olefin monomer and a C 1 to C 3 alkyl (meth) acrylate monomer.
  • the C 2 to C 4 olefin-based monomers may be at least one selected from the group consisting of ethylene, propylene and butene, of which ethylene is preferred.
  • the C 1 to C 3 alkyl (meth) acrylate-based monomers may be at least one selected from the group consisting of methyl (meth) acrylate, ethyl (meth) acrylate and propyl (meth) acrylate, of which Methyl acrylate is preferred.
  • the olivine-based copolymer has a weight ratio of C 2 to C 4 olefin monomer units and C 1 to C 3 alkyl (meth) acrylate monomer units of 85:15 to 65:35 or 80:20 to 70:30. It can be included, it is preferred to include in a weight ratio of 80:20 to 70:30. If the above-described range is satisfied, chemical resistance of the olefin-based copolymer may be further improved.
  • the first graft copolymer, the second graft copolymer, the first styrene copolymer and the second styrene copolymer may lower the effect of improving the chemical resistance.
  • compatibility with the first graft copolymer, the second graft copolymer, the first styrene copolymer, and the second styrene copolymer is improved.
  • the content of the olefinic monomer unit is reduced, so the effect of improving chemical resistance may be deteriorated.
  • the olefin-based copolymer may have a weight average molecular weight of 50,000 to 200,000 g / mol, 70,000 to 150,000 g / mol, or 90,000 to 120,000 g / mol, of which 90,000 to 120,000 g / mol is preferred. If the above-described range is satisfied, a thermoplastic resin composition having excellent compatibility with the first graft copolymer, the second graft copolymer, the first styrene copolymer and the second styrene copolymer, and excellent mechanical properties are provided. can do.
  • the first graft copolymer, the second graft copolymer, the first styrene-based copolymer and the second styrene-based copolymer Compatibility with the lowered, and can not be uniformly dispersed in the thermoplastic resin composition may decrease the effect of improving the chemical resistance.
  • the olefin-based copolymer is an ethylene-methyl acrylate copolymer.
  • the olefin-based copolymer is 0.01 to 2 parts by weight or 0.5 to 0.5 parts by weight based on 100 parts by weight of the first graft copolymer, the second graft copolymer, the first styrene copolymer and the second styrene copolymer It can be included in the thermoplastic resin composition in 1 part by weight, and is preferably included in 0.5 to 1 part by weight. If the above-described range is satisfied, chemical resistance may be improved without affecting the hardness, mechanical properties, and heat resistance of the thermoplastic resin composition. When included below the above-mentioned range, the chemical resistance of the thermoplastic resin composition may be lowered, and when it is included above the above-described range, impact resistance of the thermoplastic resin composition may be lowered.
  • the olefin-based polymer can be used by using a commercially available material or by directly manufacturing it.
  • the olefin-based polymer When the olefin-based polymer is directly prepared, it may be prepared by one or more polymerization methods selected from the group consisting of solution polymerization, slurry polymerization, gas phase polymerization, and high pressure polymerization.
  • thermoplastic resin composition is an anti-dropping agent, flame retardant, antibacterial agent, antistatic agent, stabilizer, mold release agent, heat stabilizer, ultraviolet stabilizer, inorganic additive, lubricant, antioxidant, light stabilizer, pigment, dye and inorganic It may further include one or more additives selected from the group consisting of fillers.
  • thermoplastic resin composition according to an embodiment of the present invention includes at least one selected from the group consisting of lubricants, antioxidants and ultraviolet stabilizers.
  • thermoplastic resin molded article according to another embodiment of the present invention is made of a thermoplastic resin composition according to an embodiment of the present invention, the heat deflection temperature is 87 ° C or higher, and the impact strength may be 6.5 kg ⁇ cm / cm or higher, and heat It is preferable that the deformation temperature is 89 ° C or higher and the impact strength is 6.7 kg ⁇ cm / cm or higher.
  • thermoplastic resin molded article excellent in appearance characteristics, heat resistance and impact resistance can be produced.
  • thermoplastic resin molded article may be a sheet, and may preferably be a deco sheet for furniture.
  • the average particle diameter of the seed was measured by a dynamic light scattering method using Nicomp 380 equipment (product name, manufacturer: PSS).
  • the average particle diameter of the core was measured by a dynamic light scattering method using Nicomp 380 equipment (product name, manufacturer: PSS).
  • the reaction was further performed at 75 ° C. for 1 hour, and the polymerization reaction was terminated by cooling to 60 ° C. to prepare a graft copolymer latex (average particle diameter: 500 nm) including a shell.
  • the average particle diameter of the graft copolymer latex was measured by a dynamic light scattering method using Nicomp 380 equipment (product name, manufacturer: PSS).
  • the average particle diameter of the seed was measured by a dynamic light scattering method using Nicomp 380 equipment (product name, manufacturer: PSS).
  • the average particle diameter of the core was measured by a dynamic light scattering method using Nicomp 380 equipment (product name, manufacturer: PSS).
  • the average particle diameter of the graft copolymer latex was measured by a dynamic light scattering method using Nicomp 380 equipment (product name, manufacturer: PSS).
  • a graft copolymer powder was prepared in the same manner as in Preparation Example 1.
  • the reaction temperature was dropped to room temperature, and then the non-solvent ethanol was added to precipitate the copolymer prepared as a solid phase.
  • the solid phase was settled to remove the supernatant, and ethanol was added again to wash the solid phase and then settled to remove the supernatant, followed by stirring by adding water to solidify the remaining solid phase particles, followed by filtration. Only the copolymer was recovered.
  • the copolymer thus obtained was dried in a vacuum oven at 60 ° C for one day.
  • the weight average molecular weight of the obtained copolymer was 104,000 g / mol, and included 24% by weight of methyl acrylate units and 76% by weight of ethylene units.
  • the weight average molecular weight of the obtained copolymer was measured as a relative value to a standard PS (standard polystyrene) sample through GPC (Gel Permeation Chromatography, waters breeze) using THF (tetrahydrofuran) as the eluent.
  • the weight average molecular weight was measured as a relative value to a standard PS (standard polystyrene) sample through GPC (Gel Permeation Chromatography, waters breeze) using THF (tetrahydrofuran) as the eluent.
  • the weight average molecular weight was measured as a relative value to a standard PS (standard polystyrene) sample through GPC (Gel Permeation Chromatography, waters breeze) using THF (tetrahydrofuran) as the eluent.
  • (C) Olefin-based copolymer The copolymer prepared in Preparation Example 3 was used.
  • thermoplastic resin composition The above-mentioned components were mixed and stirred according to the contents described in [Table 1] to prepare a thermoplastic resin composition.
  • thermoplastic resin compositions of Examples and Comparative Examples were introduced into a twin-screw extrusion kneader set at 230 ° C, and pellets were prepared. The pellets were evaluated for their physical properties by the method described below and are shown in Table 1 below.
  • Izod impact strength (kg ⁇ cm / cm): Measured according to ASTM 256.
  • the pellet prepared in Experimental Example 1 was prepared with a film extruder of 0.3 mm, and the film was evaluated for physical properties by the method described below, and the results are shown in Table 1 below.
  • Chemical resistance In a beaker containing methyl ethyl ketone, the film was immersed for 2 minutes. Chemical resistance was evaluated according to the time at which the film began to melt.
  • 20 seconds or less, ⁇ : more than 40 seconds, less than 100 seconds, ⁇ : more than 100 seconds
  • Examples 1 to 5 were excellent in flow index, hardness, impact strength, film appearance characteristics and chemical resistance, and high thermal deformation temperature.
  • Comparative Example 1 which did not include the first styrene-based copolymer, showed that the flow index, heat distortion temperature, and impact strength were significantly lower than those of the Examples, and the film appearance characteristics were not excellent.
  • Comparative Example 4 which did not include the first graft copolymer, showed that the impact strength was significantly lowered and the film appearance characteristics were not excellent.
  • Comparative Example 5 without the second graft copolymer was confirmed that the chemical resistance and film appearance characteristics are not excellent.
  • thermoplastic resin molded article having excellent processability, hardness, impact resistance, heat resistance, chemical resistance, and appearance characteristics could be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 제1 그라프트 공중합체; C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제2 그라프트 공중합체; C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제1 스티렌계 공중합체; 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제2 스티렌계 공중합체; 및 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하는 올레핀계 공중합체를 포함하는 열가소성 수지 조성물에 관한 것으로서, 기본 물성을 유지하면서, 내화학성 및 외관 특성이 현저하게 우수한 열가소성 수지 조성물에 관한 것이다.

Description

열가소성 수지 조성물
[관련출원과의 상호인용]
본 발명은 2018.10.31.에 출원된 한국 특허 출원 제10-2018-0132191호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 열가소성 수지 조성물에 관한 것으로서, 내화학성 및 외관 특성이 우수한 열가소성 수지 조성물에 관한 것이다.
일반적으로 아크릴계 고무질 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체가 그라프트 중합된 아크릴계 그라프트 공중합체는 내후성 및 내노화성이 우수하다. 이러한 아크릴계 그라프트 공중합체를 포함하는 열가소성 수지 조성물은 자동차, 선박, 레저용품, 건축자재, 원예용 등 다방면에서 사용되며 그 사용량이 급격하게 증가되고 있다.
한편, 사용자들의 감성품질 요구 수준이 높아지면서, PVC, 철판 등의 기재를 열가소성 수지 조성물로 마감 처리하여 고급스러운 외관, 우수한 착색성 및 내후성을 구현하고자 하는 연구가 진행되고 있다.
아크릴계 그라프트 공중합체를 포함하는 데코 시트는 기존의 PVC나 PP에 비해 가공 안정성이 우수하고, 중금속 성분을 포함하지 않아, 친환경 소재로 주목받고 있다. 그러나 보관 과정에서 눌림 자국이 발생하거나, 가공과정에서 시트의 치수가 변형(늘어나거나 줄어듦)되는 문제가 발생하고 있다. 또한 기재와의 접착을 위하여 접착제 사용 시, 내화학성의 열세로 녹는 문제도 발생한다.
따라서 외관 품질 및 내화학성이 개선된 열가소성 수지 조성물의 개발이 필요하다.
본 발명의 목적은 가공성, 경도, 착색성, 내충격성 등의 기본 물성이 우수하면서, 내화학성, 내열성 및 외관 특성이 개선된 열가소성 수지 조성물을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 제1 그라프트 공중합체; C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제2 그라프트 공중합체; C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제1 스티렌계 공중합체; 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제2 스티렌계 공중합체; 및 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하는 올레핀계 공중합체를 포함하는 열가소성 수지 조성물을 제공한다.
본 발명의 열가소성 수지 조성물은 가공성, 경도, 착색성, 내충격성 등의 기본 물성이 우수하면서, 내화학성, 내열성 및 외관 특성을 현저하게 개선시킬 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 그라프트 공중합체의 쉘의 중량평균분자량은 코어에 그라프트된 방향족 비닐계 단량체 단위와 비닐 시안계 단량체 단위를 포함하는 공중합체의 중량평균분자량을 의미할 수 있다.
여기서, 방향족 비닐계 단량체 단위는 C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위 및 알킬 비치환된 스티렌계 단량체 단위로 이루어진 군에서 선택되는 1종 이상일 수 있다.
본 발명에서 그라프트 공중합체의 쉘의 중량평균분자량은 그라프트 공중합체를 아세톤에 용해시키고 원심 분리한 후, 아세톤에 용해된 부분(sol)을 테트라하이드로퓨란에 용해시킨 후, 겔 투과 크로마토그래피(GPC, waters breeze)를 이용하여 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다.
본 발명에서 그라프트 공중합체의 그라프트율은 하기 식에 의거하여 산출할 수 있다.
그라프트율(%): 그라프트된 단량체의 중량(g)/고무질 중량(g) × 100
그라프트된 단량체의 중량(g): 그라프트 공중합체 분말을 아세톤에 용해시키고 원심 분리한 후의 불용성 물질(gel)의 중량
고무질 중량(g): 그라프트 공중합체 분말의 제조 공정 중 이론상 투입된 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체의 중량
본 발명에서 시드, 코어, 및 그라프트 공중합체의 평균입경은 동적 광산란(dynamic light scattering)법을 이용하여 측정할 수 있고, 상세하게는 Nicomp 380 장비(제품명, 제조사: PSS)를 이용하여 측정할 수 있다.
본 발명에서 평균입경은 동적 광산란법에 의해 측정되는 입도분포에 있어서의 산술 평균입경, 구체적으로는 산란강도 평균입경을 의미할 수 있다.
본 발명에서 중량평균분자량은 용출액으로 THF(테트라하이드로퓨란)을 이용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다.
1. 열가소성 수지 조성물
본 발명의 일 실시예에 따른 열가소성 수지 조성물은 본 발명은 A-1) C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 제1 그라프트 공중합체; A-2) C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제2 그라프트 공중합체; B-1) C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제1 스티렌계 공중합체; B-2) 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제2 스티렌계 공중합체; 및 C) C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하는 올레핀계 공중합체를 포함한다.
이하, 본 발명의 열가소성 수지 조성물의 각 구성요소들을 구체적으로 설명한다.
A-1) 제1 그라프트 공중합체
제1 그라프트 공중합체는 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함한다.
상기 제1 그라프트 공중합체는 C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위를 포함하므로, 열가소성 수지 조성물에 현저하게 우수한 내열성, 외관 특성을 부여해줄 수 있다. 또한, 후술할 제1 스티렌계 공중합체와의 상용성이 현저하게 개선되어, 열가소성 수지 조성물 내에 균일하게 분산될 수 있다.
또한, 상기 제1 그라프트 공중합체는 열가소성 수지 조성물에 우수한 내충격성을 부여해줄 수 있다.
상기 제1 그라프트 공중합체는 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하는 가교 중합체로 이루어진 코어; 및 상기 코어에 그라프트된 알킬 치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 쉘을 포함하는 코어-쉘 구조일 수 있다.
상기 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위는 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체로부터 유래된 단위일 수 있다.
상기 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체는 부틸 (메트)아크릴레이트, 펜틸 (메트)아크릴레이트, 헥실 (메트)아크릴레이트, 헵틸 (메트)아크릴레이트, 옥틸 (메트)아크릴레이트, 2-에틸헥실 (메트)아크릴레이트, 노닐 (메트)아크릴레이트, 이소노닐 (메트)아크릴레이트 및 데실 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 부틸 아크릴레이트가 바람직하다.
상기 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위는 상기 제1 그라프트 공중합체 총 중량에 대하여, 40 내지 60 중량% 또는 45 내지 55 중량%로 포함될 수 있고, 이 중 45 내지 55 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 상기 제1 그라프트 공중합체의 내충격성이 보다 개선될 수 있다.
상기 C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위는 C1 내지 C3의 알킬 치환된 스티렌계 단량체로부터 유래된 단위일 수 있다.
상기 C1 내지 C3의 알킬 치환된 스티렌계 단량체는 α-메틸 스티렌, p-메틸 스티렌, 및 2,4-디메틸 스티렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 α-메틸 스티렌이 바람직하다.
상기 C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위는 상기 제1 그라프트 공중합체 총 중량에 대하여, 25 내지 45 중량% 또는 30 내지 40 중량%로 포함될 수 있고, 이 중 30 내지 40 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 내열성, 외관 특성 및 내충격성이 보다 개선될 수 있다.
상기 비닐 시안계 단량체 단위는 비닐 시안계 단량체로부터 유래된 단위일 수 있다.
상기 비닐 시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 아크릴로니트릴이 바람직하다.
상기 비닐 시안계 단량체 단위는 상기 제1 그라프트 공중합체 총 중량에 대하여, 5 내지 25 중량% 또는 10 내지 20 중량%로 포함될 수 있으며, 이 중 10 내지 20 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 상기 제1 그라프트 공중합체의 내화학성이 보다 개선될 수 있다.
상기 제1 그라프트 공중합체는 중합을 보다 용이하게 수행하기 위하여, 알킬 비치환된 스티렌계 단량체 단위를 더 포함할 수 있다. 상기 알킬 비치환된 스티렌계 단량체 단위는 알킬 비치환된 스티렌계 단량체로부터 유래된 단위일 수 있다. 상기 알킬 비치환된 스티렌계 단량체는 스티렌, p-브로모 스티렌, o-브로모 스티렌 및 p-클로로 스티렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
상기 알킬 비치환된 스티렌계 단량체 단위는 상기 제1 그라프트 공중합체의 총 중량에 대하여, 0.1 내지 15 중량% 또는 1 내지 10 중량%로 포함될 수 있고, 이 중 1 내지 10 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 상기 제1 그라프트 공중합체의 중합이 보다 용이하게 수행될 수 있다.
상기 제1 그라프트 공중합체는 상기 제2 그라프트 공중합체와 코어의 평균입경이 상이할 수 있고, 구체적으로는 상기 제1 그라프트 공중합체가 상기 제2 그라프트 공중합체 대비 평균입경이 더 클 수 있다.
상기 열가소성 수지 조성물이 코어의 평균입경이 서로 다른 그라프트 공중합체를 2종 이상 포함함으로써, 내충격성, 내후성, 착색성, 표면 광택 특성 및 외관 특성이 모두 개선될 수 있다.
상기 제1 그라프트 공중합체는 코어의 평균입경이 300 내지 500 ㎚, 또는 350 내지 450 ㎚일 수 있고, 이 중 350 내지 450 ㎚인 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 내충격성 및 표면 광택 특성이 보다 개선될 수 있다. 상술한 범위 미만이면, 열가소성 수지 조성물의 내충격성이 저하될 수 있고, 상술한 범위를 초과하면, 표면 광택 특성이 저하될 수 있다.
상기 제1 그라프트 공중합체는 그라프트율이 20 내지 100 %, 40 내지 80 % 또는 45 내지 60 %일 수 있고, 이 중 40 내지 60 %가 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 내충격성 및 분산성이 보다 개선될 수 있다.
상기 제1 그라프트 공중합체는 쉘의 중량평균분자량이 100,000 내지 300,000 g/mol 또는 150,000 내지 250,000 g/mol일 수 있고, 이 중 150,000 내지 250,000 g/mol가 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 내충격성이 보다 개선될 수 있다.
상기 제1 그라프트 공중합체는 부틸 아크릴레이트-α-메틸 스티렌-아크릴로니트릴 공중합체 및 부틸 아크릴레이트-스티렌-α-메틸 스티렌-아크릴로니트릴 공중합체로 이루어진 군으로부터 선택될 수 있고, 이 중 부틸 아크릴레이트-스티렌-α-메틸 스티렌-아크릴로니트릴 공중합체가 바람직하다.
상기 제1 그라프트 공중합체는 상기 제1 그라프트 공중합체, 상기 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여, 5 내지 30 중량부, 10 내지 25 중량부 또는 10 내지 15 중량부로 포함될 수 있고, 이 중 10 내지 15 중량부로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 내충격성을 현저하게 개선시킬 수 있다. 상술한 범위 미만으로 포함되면, 열가소성 수지 조성물의 내충격성 및 외관 특성이 현저하게 저하되고, 상술한 범위를 초과하여 포함되면, 외관 특성이 현저하게 저하될 수 있다.
한편, 상기 제1 그라프트 공중합체는 1) C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체, C1 내지 C3의 알킬 치환된 스티렌계 단량체, 알킬 비치환된 스티렌계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상을 중합하여 코어를 제조하는 단계; 2) 상기 코어 존재 하에, C1 내지 C3의 알킬 치환된 스티렌계 단량체, 및 비닐 시안계 단량체를 중합하여 쉘을 제조하는 단계를 포함하는 제조방법으로 제조될 수 있다.
상기 코어를 제조하는 단계는 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체, C1 내지 C3의 알킬 치환된 스티렌계 단량체, 알킬 비치환된 스티렌계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상을 중합하여 시드를 제조하는 단계; 및 상기 시드 존재 하에, C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체를 중합하여 코어를 제조하는 단계를 포함할 수 있다.
상기 시드 및 코어를 제조하는 단계는 유화제, 개시제, 가교제, 그라프팅제, 전해질 및 물로 이루어진 군에서 선택되는 1종 이상의 존재 하에 수행될 수 있다.
상기 유화제는 C12 내지 C18인 알킬술포숙신산의 금속염 유도체 및 C12 내지 C20인 알킬 황산에스테르의 금속염 유도체로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 C12 내지 C18인 알킬술포숙신산의 금속염 유도체는 디시클로헥실술포숙신산 나트륨, 디헥실술포숙신산 나트륨, 디-2-에틸헥실 술포숙신산 나트륨, 디-2-에틸헥실술포숙신산 칼륨 및 디-2-에틸헥실 술포숙신산 리튬으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 C12 내지 C20인 알킬 황산에스테르의 금속염 유도체는 나트륨 도데실설페이트, 나트륨 도데실벤젠설페이트, 나트륨 옥타데실설페이트, 나트륨 올레익설페이트, 칼륨 도데실설페이트 및 칼륨 옥타데실설페이트로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 개시제는 무기 과산화물 또는 유기 과산화물일 수 있다. 상기 무기 과산화물은 수용성 개시제로서, 과황산칼륨, 과황산나트륨 및 과황산암모늄으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 유기 과산화물은 지용성 개시제로서, 큐멘 하이드로 퍼옥사이드 및 벤조일 퍼옥사이드로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 가교제는 에틸렌글리콜 디메타크릴레이트, 디에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 1,3-부탄디올 디메타크릴레이트, 1,6-헥산디올 디메타크릴레이트, 네오펜틸글리콜 디메타크릴레이트, 트리메틸올프로판 트리메타크릴레이트 및 트리메틸올메탄 트리아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 그라프팅제는 알릴메타크릴레이트, 트리알릴이소시아누레이트, 트리알릴아민 및 디알릴아민으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 전해질은 KCl, NaCl, KHCO3, NaHCO3, K2CO3, Na2CO3, KHSO3, NaHSO4, Na2S2O7, K4P2O7, K3PO4, Na3PO4 또는 Na2HPO4, KOH 및 NaOH로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중, KOH가 바람직하다.
상기 물은 유화 중합 시 매질 역할을 수행하며, 이온교환수일 수 있다.
한편, 상기 쉘을 제조하는 단계에서 C1 내지 C3의 알킬 치환된 스티렌계 단량체와 비닐 시안계 단량체는 일정한 속도로 연속 투입되면서 중합될 수 있으며, 상술한 방법으로 투입되면, 중합 시 제열 및 과다 과열에 의한 폭주를 용이하게 억제할 수 있다.
상기 중합은 유화 중합일 수 있으며, 50 내지 85 ℃ 또는 60 내지 80 ℃에서 수행될 수 있으며, 이 중 60 내지 80 ℃에서 수행되는 것이 바람직하다. 상술한 범위를 만족하면, 유화 중합이 안정적으로 수행될 수 있다.
상기 쉘을 제조하는 단계는 유화제, 개시제, 및 물로 이루어진 군에서 선택되는 1종 이상의 존재 하에 수행될 수 있다.
상기 유화제, 개시제 및 물은 상기 스티렌계 단량체 및 비닐 시안계 단량체와 함께 연속 투입하면서, 중합되는 것이 바람직하다. 상술한 조건을 만족하면, pH가 일정하게 유지되어 그라프트 중합이 용이하며, 그라프트 공중합체 입자의 안정성이 우수할 뿐만 아니라, 입자의 내부가 균일하게 제조될 수 있다.
상기 유화제는 카르복실산 금속염 유도체일 수 있으며, 상기 카르복실산 금속염 유도체는 C12 내지 C20의 지방산 금속염 및 로진산 금속염으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 C12 내지 C20의 지방산 금속염은 지방산 나트륨, 라우릴산 나트륨, 올레인산 나트륨 및 올레인산 칼륨으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 로진산 금속염은 로진산 나트륨염 및 로진산 칼륨염으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 개시제의 종류는 상술한 바와 같고, 이 중 유기 과산화물이 바람직하고, t-부틸퍼옥시 에틸헥실 카보네이트가 보다 바람직하다.
한편, 상술한 제조방법으로 제조된 그라프트 공중합체는 라텍스 형태일 수 있다.
상기 라텍스 형태의 그라프트 공중합체는 응집, 숙성, 세척, 탈수 및 건조를 수행하여 분말 형태로 제조될 수 있다.
A-2) 제2 그라프트 공중합체
제2 그라프트 공중합체는 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함한다.
상기 제2 그라프트 공중합체는 열가소성 수지 조성물에 우수한 내후성, 착색성, 내충격성, 내화학성 및 표면 광택 특성을 부여해줄 수 있다.
또한, 상기 제2 그라프트 공중합체가 알킬 비치환된 스티렌계 단량체 단위를 포함하므로, 후술할 제2 스티렌계 공중합체와의 상용성이 현저하게 개선되어, 열가소성 수지 조성물 내에 균일하게 분산될 수 있다.
상기 제2 그라프트 공중합체는 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 가교 중합체로 이루어진 코어; 및 상기 코어에 그라프트된 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 쉘을 포함하는 코어-쉘 구조일 수 있다.
상기 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위는 상기 제2 그라프트 공중합체 총 중량에 대하여, 40 내지 60 중량% 또는 45 내지 55 중량%로 포함될 수 있고, 이 중 45 내지 55 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 상기 제2 그라프트 공중합체의 내후성 및 내충격성이 보다 개선될 수 있다.
상기 알킬 비치환된 스티렌계 단량체 단위는 상기 제2 그라프트 공중합체 총 중량에 대하여, 25 내지 45 중량% 또는 30 내지 40 중량%로 포함될 수 있고, 이 중 30 내지 40 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 상기 제2 그라프트 공중합체의 가공성 및 내충격성이 보다 개선될 수 있다.
상기 비닐 시안계 단량체 단위는 상기 제2 그라프트 공중합체 총 중량에 대하여, 5 내지 25 중량% 또는 10 내지 20 중량%로 포함될 수 있으며, 이 중 10 내지 20 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 상기 제2 그라프트 공중합체의 내화학성이 보다 개선될 수 있다.
상기 C4 내지 C10의 알킬 비치환된 스티렌계 단량체 단위, 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위에 대한 설명은 상술한 바와 같다.
상기 제2 그라프트 공중합체는 코어의 평균입경이 50 내지 150 ㎚ 또는 75 내지 125 ㎚일 수 있고, 이 중 75 내지 125 ㎚인 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물 내 코어의 비표면적이 높아져 내후성이 현저하게 개선되고, 가시광선이 코어에서 산란되지 않고 침투할 수 있으므로 착색성이 현저하게 개선될 수 있다. 또한, 열가소성 수지 조성물의 내화학성, 외관 특성 및 표면 광택 특성이 보다 개선될 수 있다. 상술한 범위 미만이면, 열가소성 수지 조성물의 내후성, 내화학성, 외관 특성 및 표면 광택 특성이 현저하게 저하될 수 있고, 상술한 범위를 초과하면, 내후성 및 착색성이 현저하게 저하될 수 있다.
상기 제2 그라프트 공중합체는 그라프트율이 20 내지 80 % 또는 25 내지 60 %일 수 있고, 이 중 25 내지 60 %가 바람직하다. 상술한 범위를 만족하면, 착색성, 분산성 및 표면 광택 특성이 우수한 제2 그라프트 공중합체를 제조할 수 있다.
상기 제2 그라프트 공중합체는 쉘의 중량평균분자량이 50,000 내지 200,000 g/mol 또는 70,000 내지 170,000 g/mol일 수 있고, 이 중 70,000 내지 170,000 g/mol가 바람직하다. 상술한 범위를 만족하면, 분산성 및 기계적 특성이 우수한 제2 그라프트 공중합체를 제조할 수 있다.
상기 제2 그라프트 공중합체는 부틸 아크릴레이트-스티렌-아크릴로니트릴 공중합체일 수 있다.
상기 제2 그라프트 공중합체는 상기 제1 그라프트 공중합체, 상기 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여, 0.1 내지 15 중량부, 1 내지 10 중량부 또는 5 내지 8 중량부로 포함될 수 있고, 이 중 5 내지 8 중량부로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 내후성, 내화학성, 착색성, 외관 특성 및 표면 광택 특성을 현저하게 개선시킬 수 있다. 상술한 범위 미만이면, 열가소성 수지 조성물의 외관 특성, 내후성 및 착색성이 저하될 수 있고, 상술한 범위를 초과하면, 열가소성 수지 조성물의 내충격성이 저하될 수 있다.
한편, 상기 제2 그라프트 공중합체는 1) C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체, 알킬 비치환된 스티렌계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상을 중합하여 코어를 제조하는 단계; 2) 상기 코어 존재 하에 알킬 비치환된 스티렌계 단량체, 및 비닐 시안계 단량체를 중합하여 쉘을 제조하는 단계를 포함하는 제조방법으로 제조될 수 있다.
상기 코어를 제조하는 단계는 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체, 알킬 비치환된 스티렌계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상을 중합하여 시드를 제조하는 단계; 및 상기 시드 존재 하에, C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체를 중합하여 코어를 제조하는 단계를 포함할 수 있다.
이 외, 상기 제2 그라프트 공중합체의 제조방법은 상기 제1 그라프트 공중합체의 제조방법에 기재한 바와 같다.
한편, 본 발명에 있어서, 상기 제1 그라프트 공중합체 및 제2 그라프트 공중합체를 합한 함량은, 상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여, 10 내지 35 중량부, 바람직하게는 15 내지 30중량부일 수 있다. 상술한 범위를 만족하면, 열가소성 수지 조성물이 우수한 내충격성, 외관 특성 및 경도를 구현할 수 있다. 상술한 범위 미만으로 포함되면, 열가소성 수지 조성물의 내충격성이 현저하게 저하되고, 상술한 범위를 초과하여 포함되면, 유동지수가 낮아지고, 외관 특성이 현저하게 저하될 수 있다.
또한, 본 발명에 있어서, 상기 제1 그라프트 공중합체와 제2 그라프트 공중합체의 중량비는 1.5:1 내지 10:1, 바람직하게는 1.5:1 내지 5:1, 더 바람직하게는 1.5:1 내지 3:1 일 수 있다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 내충격성 및 외관 특성이 보다 개선될 수 있다. 상술한 범위 미만이면, 열가소성 수지 조성물의 내충격성이 저하될 수 있고, 상술한 범위를 초과하면, 열가소성 수지 조성물의 외관 특성이 저하될 수 있다.
B-1) 제1 스티렌계 공중합체
제1 스티렌계 공중합체는 매트릭스 공중합체로서, C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함한다.
상기 제1 스티렌계 공중합체는 열가소성 수지 조성물에 우수한 내열성 및 외관 특성을 부여해줄 수 있다. 상세하게는 우수한 내열성으로 인해, 열가소성 수지 조성물로 제조된 성형품의 치수 안정성을 개선시킬 수 있고, 눌림 자국을 최소화할 수 있다.
또한, 상기 제1 스티렌계 공중합체가 C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위를 포함하므로, 상기 제1 그라프트 공중합체와의 상용성이 우수할 수 있다.
상기 C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위와 비닐 시안계 단량체 단위의 종류는 상술한 바와 같다.
상기 제1 스티렌계 공중합체는 C1 내지 C3의 알킬 치환된 스티렌계 단량체 및 비닐 시안계 단량체를 포함하는 단량체 혼합물의 공중합물일 수 있다.
상기 단량체 혼합물은 C1 내지 C3의 알킬 치환된 스티렌계 단량체 및 비닐 시안계 단량체를 60:40 내지 90:10 또는 65:35 내지 85:15의 중량비로 포함할 수 있고, 이 중 65:35 내지 85:15의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 내열성이 보다 개선될 수 있다.
상기 제1 스티렌계 공중합체는 중합을 용이하게 수행하기 위하여, 알킬 비치환된 스티렌계 단량체 단위를 더 포함할 수 있다.
즉, 상기 제1 스티렌계 공중합체는 C1 내지 C3의 알킬 치환된 스티렌계 단량체, 비닐 시안계 단량체 및 알킬 비치환 스티렌계 단량체를 포함하는 단량체 혼합물의 공중합물일 수 있다. 상기 알킬 비치환된 스티렌계 단량체 단위의 종류는 상술한 바와 같다.
이 경우, 상기 단량체 혼합물은 상기 C1 내지 C3의 알킬 치환된 스티렌계 단량체 55 내지 75 중량%, 비닐 시안계 단량체 20 내지 40 중량%, 상기 알킬 비치환 스티렌계 단량체 0.1 내지 15 중량%로 포함할 수 있고, 바람직하게는 상기 C1 내지 C3의 알킬 치환된 스티렌계 단량체 60 내지 70 중량%, 상기 비닐 시안계 단량체 25 내지 35 중량%, 상기 알킬 비치환 스티렌계 단량체 1 내지 10 중량%를 포함할 수 있다. 상술한 범위를 만족하면, 제1 스티렌계 공중합체의 중합이 보다 용이하게 진행될 수 있다.
상기 제1 스티렌계 공중합체는 중량평균분자량이 50,000 내지 150,000 g/mol 또는 70,000 내지 130,000 g/mol일 수 있고, 이 중 70,000 내지 130,000 g/mol이 바람직하다. 상술한 범위를 만족하면, 우수한 내화학성 및 기계적 특성을 구현할 수 있다. 상술한 범위를 미만이면, 열가소성 수지 조성물의 기계적 특성이 저하될 수 있다. 상술한 범위를 초과하면, 가공성이 저하될 수 있다.
상기 제1 스티렌계 공중합체는 α-메틸 스티렌-아크릴로니트릴 공중합체 및 α-메틸 스티렌-스티렌-아크릴로니트릴 공중합체로 이루어진 군으로부터 선택될 수 있고, 이 중 α-메틸 스티렌-아크릴로니트릴 공중합체가 바람직하다.
상기 제1 스티렌계 공중합체는 상기 제1 그라프트 공중합체, 상기 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여, 2 내지 25 중량부, 7 내지 20 중량부, 14 내지 20 중량부 또는 14 내지 16 중량부로 포함될 수 있고, 이 중 14 내지 16 중량부로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 내열성, 가공성 및 외관 특성이 보다 개선될 수 있다. 구체적으로는, 상술한 범위 미만으로 포함되면, 열가소성 수지 조성물의 내열성이 저하되어 외관 특성이 저하될 수 있다. 상술한 범위를 초과하면, 가공성 및 내화학성이 저하될 수 있다.
상기 제1 스티렌계 공중합체는 C1 내지 C3의 알킬 치환된 스티렌계 단량체와 비닐 시안계 단량체를 포함하는 단량체 혼합물을 현탁 또는 괴상 중합으로 제조한 공중합물일 수 있고, 이 중 고순도의 중합체를 제조할 수 있는 괴상 중합으로 제조한 공중합물인 것이 바람직하다.
B-2) 제2 스티렌계공중합체
제2 스티렌계 공중합체는 매트릭스 공중합체로서, 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함한다.
상기 제2 스티렌계 공중합체는 열가소성 수지 조성물에 우수한 가공성, 내화학성 및 기계적 특성을 부여해줄 수 있다. 상기 제2 스티렌계 공중합체는 알킬 비치환된 스티렌계 단량체 단위를 포함하므로, 상기 제2 그라프트 공중합체와의 상용성이 개선되어, 상기 제2 그라프트 공중합체가 열가소성 수지 조성물 내에 균일하게 분산되게 할 수 있다.
상기 알킬 비치환된 스티렌계 단량체 단위와 비닐 시안계 단량체 단위의 종류는 상술한 바와 같다.
상기 제2 스티렌계 공중합체는 알킬 비치환 스티렌계 단량체 및 비닐 시안계 단량체를 포함하는 단량체 혼합물의 공중합물일 수 있다.
상기 단량체 혼합물은 알킬 비치환 스티렌계 단량체 및 비닐 시안계 단량체를 60:40 내지 90:10 또는 65:35 내지 85:15의 중량비로 포함할 수 있고, 이 중 65:35 내지 85:15의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 가공성 및 내화학성이 보다 개선될 수 있다.
상기 제2 스티렌계 공중합체는 중량평균분자량이 100,000 내지 250,000 g/mol 또는 130,000 내지 220,000 g/mol일 수 있고, 이 중 130,000 내지 220,000 g/mol가 바람직하다. 상술한 범위를 만족하면, 우수한 내화학성 및 기계적 특성을 구현할 수 있다. 상술한 범위 미만이면, 열가소성 수지 조성물의 기계적 특성이 저하될 수 있고, 상술한 범위를 초과하면, 열가소성 수지 조성물의 가공성이 저하될 수 있다.
상기 제2 스티렌 공중합체는 스티렌-아크릴로니트릴 공중합체인 것이 바람직하다.
상기 제2 스티렌계 공중합체는 상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여, 50 내지 80 중량부, 55 내지 75 중량부 또는 62 내지 66 중량부로 포함될 수 있고, 이 중 62 내지 66 중량부로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 가공성, 내화학성 및 기계적 특성이 보다 개선될 수 있다. 상술한 범위 미만으로 포함되면, 열가소성 수지 조성물의 내화학성 및 가공성이 저하되고, 상술한 범위를 초과하여 포함되면, 열가소성 수지 조성물의 기계적 특성이 저하될 수 있다.
상기 제2 스티렌계 공중합체는 알킬 비치환 스티렌계 단량체와 비닐 시안계 단량체를 현탁 또는 괴상 중합하여 제조한 공중합물일 수 있고, 이 중 고순도의 공중합체를 제조할 수 있는 괴상 중합으로 제조한 공중합물인 것이 바람직하다.
한편, 본 발명에 있어서, 상기 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체를 합한 함량은 상기 제1 그라프트 공중합체, 상기 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여, 65 내지 90 중량부, 바람직하게는 70 내지 85 중량부일 수 있다. 상술한 범위 미만으로 포함되면, 열가소성 수지 조성물의 가공성이 저하될 수 있고, 상술한 범위를 초과하면, 열가소성 수지 조성물의 내충격성이 저하될 수 있다.
C) 올레핀계 공중합체
올레핀계 공중합체는 첨가제로서, C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함한다.
상기 올레핀계 공중합체 열가소성 수지 조성물에 우수한 내화학성을 부여해줄 수 있다.
상기 올레핀계 공중합체는 C2 내지 C4의 올레핀계 단량체 및 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체를 포함하는 단량체 혼합물의 공중합물일 수 있다.
상기 C2 내지 C4의 올레핀계 단량체는 에틸렌, 프로필렌 및 부텐으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 에틸렌이 바람직하다.
상기 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체는 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트 및 프로필 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 메틸 아크릴레이트가 바람직하다.
상기 올리펜계 공중합체는 C2 내지 C4의 올레핀계 단량체 단위 및 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 85:15 내지 65:35 또는 80:20 내지 70:30의 중량비로 포함할 수 있고, 이 중 80:20 내지 70:30의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 상기 올레핀계 공중합체의 내화학성이 보다 개선될 수 있다. 구체적으로는, 상기 알킬 (메트)아크릴레이트계 단량체 단위의 함량이 너무 적으면, 상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체와의 상용성이 저하되어, 열가소성 수지 조성물 내에 균일하게 분산될 수 없어 내화학성 개선 효과가 저하될 수 있다. 상기 알킬 (메트)아크릴레이트계 단량체 단위의 함량이 너무 많으면, 상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체와의 상용성은 개선되나, 올레핀계 단량체 단위의 함량이 감소하여 내화학성 개선 효과가 저하될 수 있다.
상기 올레핀계 공중합체는 중량평균분자량이 50,000 내지 200,000 g/mol, 70,000 내지 150,000 g/mol 또는 90,000 내지 120,000 g/mol 일 수 있고, 이 중 90,000 내지 120,000 g/mol 이 바람직하다. 상술한 범위를 만족하면, 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체와 상용성이 우수하고, 기계적 특성이 우수한 열가소성 수지 조성물을 제공할 수 있다. 구체적으로는, 상술한 범위 미만이면, 기계적 특성이 저하되고, 상술한 범위를 초과하면, 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체와의 상용성이 저하되어, 열가소성 수지 조성물 내에 균일하게 분산될 수 없어 내화학성 개선 효과가 저하될 수 있다.
상기 올레핀계 공중합체는 에틸렌-메틸 아크릴레이트 공중합체인 것이 바람직하다.
상기 올레핀계 공중합체는 상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여, 0.01 내지 2 중량부 또는 0.5 내지 1 중량부로 열가소성 수지 조성물에 포함될 수 있고, 이 중 0.5 내지 1 중량부로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 경도, 기계적 특성 및 내열성에 영향을 주지 않으면서 내화학성이 보다 개선될 수 있다. 상술한 범위 미만으로 포함되면, 열가소성 수지 조성물의 내화학성이 저하될 수 있고, 상술한 범위를 초과하여 포함되면, 열가소성 수지 조성물의 내충격성이 저하될 수 있다.
상기 올레핀계 중합체는 시판되는 물질을 이용하거나, 직접 제조하여 이용할 수 있다.
상기 올레핀계 중합체를 직접 제조할 경우, 용액 중합, 슬러리 중합, 기상 중합 및 고압 중합으로 이루어진 군에서 선택되는 1종 이상의 중합법으로 제조할 수 있다.
한편, 본 발명의 일실시예에 따른 열가소성 수지 조성물은 적하방지제, 난연제, 향균제, 대전 방지제, 안정제, 이형제, 열안정제, 자외선 안정제, 무기물 첨가제, 활제, 산화방지제, 광안정제, 안료, 염료 및 무기 충전제로 이루어진 군으로부터 선택되는 1종 이상의 첨가제를 더 포함할 수 있다.
본 발명의 일실시예에 따른 열가소성 수지 조성물은 활제, 산화방지제 및 자외선 안정제로부터 이루어진 군에서 선택되는 1종 이상을 포함하는 것이 바람직하다.
2. 열가소성 수지 성형품
본 발명의 다른 일실시예 따른 열가소성 수지 성형품은 본 발명의 일실시예에 따른 열가소성 수지 조성물로 제조되고, 열변형 온도가 87 ℃ 이상이고, 충격강도가 6.5 kg·㎝/㎝ 이상일 수 있고, 열 변형온도가 89 ℃ 이상이고, 충격강도가 6.7 kg·㎝/㎝ 이상인 것이 바람직하다.
상술한 조건을 만족하면, 외관 특성, 내열성 및 내충격성이 우수한 열가소성 수지 성형품을 제조할 수 있다.
본 발명의 일실시예에 따른 열가소성 수지 성형품은 시트일 수 있고, 바람직하게는 가구용 데코 시트일 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1
<시드의 제조>
질소 치환된 반응기에 스티렌 3 중량부, 아크릴로니트릴 3 중량부, 유화제로 나트륨 도데실 설페이트 0.1 중량부, 가교제로 에틸렌 글리콜 디메타크릴레이트 0.03 중량부, 그라프팅제로 알릴 메타크릴레이트 0.02 중량부, 전해질로 KOH 0.025 중량부 및 증류수 53.32 중량부를 일괄 투입하고, 70 ℃까지 승온시킨 후, 개시제로 과황산칼륨 0.03 중량부를 일괄 투입하여 중합을 개시하였다. 이후 2 시간 동안 중합한 후 종료하여 시드(평균입경: 200 ㎚)를 수득하였다.
상기 시드의 평균입경은 Nicomp 380 장비(제품명, 제조사: PSS)를 이용하여 동적 광산란법으로 측정하였다.
<코어의 제조>
상기 시드가 수득된 반응기에 부틸 아크릴레이트 50 중량부, 유화제로 나트륨 도데실 설페이트 0.6 중량부, 가교제로 에틸렌 글리콜 디메타크릴레이트 0.1 중량부, 그라프팅제로 알릴 메타크릴레이트 0.04 중량부, 증류수 30 중량부 및 개시제로 과황산칼륨 0.05 중량부를 혼합한 혼합물을 70 ℃에서 4 시간 동안 일정한 속도로 연속 투입하면서 중합하고, 투입 종료 후 1 시간 동안 더 중합한 후, 종료하여 코어(평균입경: 400 ㎚)를 수득하였다.
상기 코어의 평균입경은 Nicomp 380 장비(제품명, 제조사: PSS)를 이용하여 동적 광산란법으로 측정하였다.
<쉘의 제조>
상기 코어가 수득된 반응기에 α-메틸 스티렌 35 중량부, 아크릴로니트릴 9 중량부, 증류수 39 중량부를 투입하고, 유화제로 로진산 칼륨염 1.9 중량부, 및 개시제로 t-부틸퍼옥시 에틸헥실 카보네이트 0.19 중량부를 포함하는 제1 혼합물과, 활성화제로 피로인산 나트륨 0.16 중량부, 텍스트로즈 0.24 중량부, 황산제1철 0.004 중량부를 포함하는 제2 혼합물을 각각 75 ℃에서 3 시간 동안 일정한 속도로 연속 투입하면서 중합하였다. 연속 투입이 완료된 후 75 ℃에서 1 시간 동안 더 반응시키고 60 ℃까지 냉각시켜 중합 반응을 종료하여 쉘을 포함하는 그라프트 공중합체 라텍스(평균입경: 500 ㎚)를 제조하였다.
상기 그라프트 공중합체 라텍스의 평균입경은 Nicomp 380 장비(제품명, 제조사: PSS)를 이용하여 동적 광산란법으로 측정하였다.
<그라프트 공중합체 분말 제조>
상기 그라프트 공중합체 라텍스에 염화칼슘 수용액(농도: 23 중량%) 0.8 중량부를 투입하여 70 ℃에서 7 분 동안 상압 응집한 후, 93 ℃에서 7 분 동안 숙성하고, 탈수 및 세척한 후 90 ℃의 열풍으로 30 분 동안 건조한 후 그라프트 공중합체 분말을 제조하였다.
제조예 2
<시드의 제조>
질소 치환된 반응기에 부틸아크릴레이트 6 중량부, 유화제로 나트륨 도데실 설페이트 0.5 중량부, 가교제로 에틸렌 글리콜 디메타크릴레이트 0.03 중량부, 그라프팅제로 알릴 메타크릴레이트 0.02 중량부, 전해질로 KOH 0.025 중량부 및 증류수 53.32 중량부를 일괄 투입하고, 70 ℃까지 승온시킨 후, 개시제로 과황산칼륨 0.03 중량부를 일괄 투입하여 중합을 개시하였다. 이후 2 시간 동안 중합한 후 종료하여 시드(평균입경: 54 ㎚)를 수득하였다.
상기 시드의 평균입경은 Nicomp 380 장비(제품명, 제조사: PSS)를 이용하여 동적 광산란법으로 측정하였다.
<코어의 제조>
상기 시드가 수득된 반응기에 부틸 아크릴레이트 43 중량부, 유화제로 나트륨 도데실 설페이트 0.5 중량부, 가교제로 에틸렌 글리콜 디메타크릴레이트 0.1 중량부, 그라프팅제로 알릴 메타크릴레이트 0.1 중량부, 증류수 30 중량부 및 개시제로 과황산칼륨 0.05 중량부를 혼합한 혼합물을 70 ℃에서 2.5 시간 동안 일정한 속도로 연속 투입하면서 중합하고, 투입 종료 후 1 시간 동안 더 중합한 후, 종료하여 코어(평균입경: 101 ㎚)를 수득하였다.
상기 코어의 평균입경은 Nicomp 380 장비(제품명, 제조사: PSS)를 이용하여 동적 광산란법으로 측정하였다.
<쉘의 제조>
상기 코어가 수득된 반응기에 스티렌 36 중량부, 아크릴로니트릴 15 중량부, 증류수 39 중량부를 투입하고, 유화제로 로진산 칼륨염 1.5 중량부, 분자량 조절제로 t-도데실 머캅탄 0.1 중량부 및 개시제로 t-부틸퍼옥시 에틸헥실 카보네이트 0.04 중량부를 포함하는 제1 혼합물과, 활성화제로 피로인산 나트륨 0.1 중량부, 텍스트로즈 0.12 중량부, 황산제1철 0.002 중량부를 포함하는 제2 혼합물을 각각 75 ℃에서 2.5 시간 동안 일정한 속도로 연속 투입하면서 중합하였다. 연속 투입이 완료된 후 75 ℃에서 1 시간 동안 더 반응시키고 60 ℃까지 냉각시켜 중합 반응을 종료하여 쉘을 포함하는 그라프트 공중합체 라텍스(평균입경: 130 ㎚)를 제조하였다.
상기 그라프트 공중합체 라텍스의 평균입경은 Nicomp 380 장비(제품명, 제조사: PSS)를 이용하여 동적 광산란법으로 측정하였다.
<그라프트 공중합체 분말 제조>
제조예 1과 동일한 방법으로 그라프트 공중합체 분말을 제조하였다.
제조예 3
125 ㎖의 고압 반응기를 진공으로 만든 후 질소를 충진한 다음, 톨루엔 30 ㎖를 투입하였다. 이후 상기 반응기를 적정 항온조에 넣어 염화 알루미늄(Ⅲ) 31 mmol을 투입한 다음, 메틸 아크릴레이트 31 mmol(약 2.67 g)를 투입하고 반응온도가 안정화되기까지 30 분 동안 기다렸다. 이후 AIBN(Azobisisobutyronitrile) 0.0031 mmol을 클로로벤젠 5 ㎖에 녹여 상기 반응기에 주입하였다. 이어서, 에틸렌을 35 bar로 반응기에 충진하고, 반응온도를 70 ℃로 승온하여 20 시간 동안 중합을 실시하였다. 중합반응이 완료된 후 반응온도를 상온으로 떨어뜨린 다음, 비용매인 에탄올을 투입하여 제조된 공중합체를 고체상으로 침전시켰다. 이 고체상을 가라앉혀 상층액을 제거하고, 다시 에탄올을 첨가하여 고체상을 씻어준 뒤 가라앉혀 상층액을 제거하고, 남아있는 고체상에 입자를 견고하게 하기 위해 물을 첨가하여 교반한 다음, 이를 여과하여 공중합체만을 회수하였다. 이렇게 얻어진 공중합체를 60 ℃의 진공오븐에서 하루 동안 건조하였다.
한편, 수득된 공중합체의 중량평균분자량은 104,000 g/mol이었고, 메틸 아크릴레이트 단위 24 중량%, 에틸렌 단위 76 중량%를 포함하였다.
수득된 공중합체의 중량평균분자량은 용출액으로 THF(테트라하이드로퓨란)을 이용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정하였다.
실시예 비교예
하기 실시예 및 비교예에서 사용된 성분의 사양은 다음과 같다.
(A-1) 제1 그라프트 공중합체: 상기 제조예 1에서 제조된 그라프트 공중합체 분말을 사용하였다.
(A-2) 제2 그라프트 공중합체: 상기 제조예 2에서 제조된 그라프트 공중합체 분말을 사용하였다.
(B-1) 제1 스티렌계 공중합체: 엘지화학 社의 98UHM(α-메틸 스티렌 및 아크릴로니트릴의 공중합물, 중량평균분자량: 100,000 g/mol)를 사용하였다.
중량평균분자량은 용출액으로 THF(테트라하이드로퓨란)을 이용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정하였다.
(B-2) 제2 스티렌계 공중합체: 엘지화학 社의 97HC(스티렌 및 아크릴로니트릴의 공중합물, 중량평균분자량: 170,000 g/mol)를 사용하였다.
중량평균분자량은 용출액으로 THF(테트라하이드로퓨란)을 이용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정하였다.
(C) 올레핀계 공중합체: 상기 제조예 3에서 제조된 공중합체를 사용하였다.
상술한 성분을 하기 [표 1]에 기재된 함량대로 혼합하고 교반하여 열가소성 수지 조성물을 제조하였다.
실험예 1
실시예 및 비교예의 열가소성 수지 조성물을 230 ℃로 설정된 이축 압출 혼련기에 투입하고, 펠렛을 제조하였다. 상기 펠렛을 하기에 기재된 방법으로 물성을 평가하고 하기 [표 1]에 기재하였다.
① 유동지수(g/10 분): ASTM D1238에 의거하여, 220 ℃에서 측정하였다.
실험예 2
실험예 1에서 제조한 펠렛을 사출하여 시편을 제조하고, 상기 시편을 하기에 기재된 방법으로 물성을 평가하고 그 결과를 하기 [표 1]에 기재하였다.
② 경도: ASTM 785 방법으로 측정하였다.
③ 아이조드 충격강도(kg·cm/cm): ASTM 256에 의거하여 측정하였다.
④ 열변형 온도(heat deflection temperature, ℃): ASTM D648에 의거하여 측정하였다.
실험예 3
실험예 1에서 제조한 펠렛을 필름 압출기로 0.3 ㎜의 필름을 제조하고, 상기 필름을 하기에 기재된 방법으로 물성을 평가하고, 그 결과를 하기 [표 1]에 기재하였다.
⑤ 필름 외관: 필름 눌림 자국 및 돌기를 육안으로 평가하였다.
×: 필름 변형, ○: 좋음, ◎: 아주 좋음
⑥ 내화학성: 메틸에틸케톤을 담은 비커에, 필름을 2 분 동안 침지시켰다. 필름이 녹기 시작하는 시간에 따라 내화학성을 평가하였다.
×: 20 초 이하, ○: 40 초 초과, 100 초 미만, ◎: 100 초 이상
구분 실시예 비교예
1 2 3 4 5 1 2 3 4 5
(A-1) 제1 그라프트 공중합체 (중량부) 14 19 15 14 17 3 14 14 - 22
(A-2) 제2 그라프트 공중합체 (중량부) 7 2 6 7 4 35 7 7 23 -
(B-1) 제1 스티렌계 공중합체 15 12 12 15 12 - 79 15 15 15
(B-2) 제2 스티렌계 공중합체 64 67 67 64 67 62 - 64 62 63
(C) 올레핀계 공중합체 0.5 0.5 0.5 0.7 0.5 0.5 0.5 - 0.5 0.5
유동지수 10.1 12.4 13 10.3 12.7 7.7 9.9 9 15.8 8.7
경도 112.6 112 112.3 112 112.1 104 111.9 114 113 112
충격강도 7.1 7.1 6.7 6.6 6.9 6 7.9 7.7 4.4 7
열변형온도 91.3 89.3 89.4 90 89.3 85 98.5 91.5 90.5 90
필름 외관 특성 × × ×
내화학성 × × ×
표 1을 참조하면, 실시예 1 내지 실시예 5는 유동지수, 경도, 충격강도, 필름 외관 특성 및 내화학성이 우수하고, 열변형 온도도 높은 것을 확인할 수 있었다.
반면에 제1 스티렌계 공중합체를 포함하지 않는 비교예 1은 실시예들 대비 유동지수, 열변형 온도, 충격강도가 현저하게 저하되었고, 필름 외관 특성도 우수하지 못한 것을 확인할 수 있었다.
제2 스티렌계 공중합체를 포함하지 않는 비교예 2와 제3 공중합체를 포함하지 않는 비교예 3은 유동지수와 내화학성이 현저하게 저하된 것을 확인할 수 있었다.
제1 그라프트 공중합체를 포함하지 않는 비교예 4는 충격강도가 현저하게 저하되었고, 필름 외관 특성도 우수하지 못한 것을 확인할 수 있었다.
제2 그라프트 공중합체를 포함하지 않는 비교예 5는 내화학성 및 필름 외관 특성이 우수하지 못한 것을 확인할 수 있었다.
이러한 결과로부터 본 발명의 구성요소들을 모두 포함해야만, 가공성, 경도, 내충격성, 내열성, 내화학성 및 외관 특성이 모두 우수한 열가소성 수지 성형품을 제조할 수 있다는 것을 예측할 수 있었다.

Claims (15)

  1. C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 제1 그라프트 공중합체;
    C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체 단위, 알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제2 그라프트 공중합체;
    C1 내지 C3의 알킬 치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제1 스티렌계 공중합체;
    알킬 비치환된 스티렌계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 제2 스티렌계 공중합체; 및
    C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하는 올레핀계 공중합체를 포함하는 열가소성 수지 조성물.
  2. 청구항 1에 있어서,
    상기 제1 그라프트 공중합체는 알킬 비치환된 스티렌계 단량체 단위를 더 포함하는 것인 열가소성 수지 조성물.
  3. 청구항 1에 있어서,
    상기 제1 그라프트 공중합체와 제2 그라프트 공중합체는 코어의 평균입경이 서로 상이한 것인 열가소성 수지 조성물.
  4. 청구항 1에 있어서,
    상기 제1 그라프트 공중합체는 코어의 평균입경이 300 내지 500 ㎚인 것인 열가소성 수지 조성물.
  5. 청구항 1에 있어서,
    상기 제2 그라프트 공중합체는 코어의 평균입경이 50 내지 150 ㎚인 것인 열가소성 수지 조성물.
  6. 청구항 1에 있어서,
    상기 올레핀계 공중합체는 C2 내지 C4의 올레핀계 단량체 단위 및 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 85:15 내지 65:35의 중량비로 포함하는 것인 열가소성 수지 조성물.
  7. 청구항 1에 있어서,
    상기 올레핀계 공중합체는 중량평균분자량이 50,000 내지 200,000 g/mol인 것인 열가소성 수지 조성물.
  8. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은
    상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체, 제2 스티렌계 공중합체의 합 100 중량부에 대하여,
    상기 올레핀계 공중합체 0.01 내지 2 중량부를 포함하는 것인 열가소성 수지 조성물.
  9. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은
    상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체, 제2 스티렌계 공중합체의 합 100 중량부에 대하여,
    상기 올레핀계 공중합체 0.5 내지 1 중량부를 포함하는 것인 열가소성 수지 조성물.
  10. 청구항 1에 있어서,
    상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여,
    상기 제1 그라프트 공중합체 및 제2 그라프트 공중합체를 합한 함량이 10 내지 35 중량부인 것인 열가소성 수지 조성물.
  11. 청구항 10에 있어서,
    상기 제1 그라프트 공중합체와 제2 그라프트 공중합체의 중량비가 1.5:1 내지 10:1인 것인 열가소성 수지 조성물.
  12. 청구항 1에 있어서,
    상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여,
    상기 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체를 합한 함량이 65 내지 90 중량부인 것인 열가소성 수지 조성물.
  13. 청구항 12에 있어서,
    상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여,
    상기 제1 스티렌계 공중합체 함량이 14 내지 20 중량부인 것인 열가소성 수지 조성물.
  14. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은
    상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여,
    상기 제1 그라프트 공중합체 5 내지 30 중량부;
    상기 제2 그라프트 공중합체 0.1 내지 15 중량부;
    상기 제1 스티렌계 공중합체 2 내지 25 중량부; 및
    상기 제2 스티렌계 공중합체 50 내지 80 중량부;를 포함하는 것인 열가소성 수지 조성물.
  15. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은
    상기 제1 그라프트 공중합체, 제2 그라프트 공중합체, 제1 스티렌계 공중합체 및 제2 스티렌계 공중합체의 합 100 중량부에 대하여,
    상기 제1 그라프트 공중합체 10 내지 15 중량부;
    상기 제2 그라프트 공중합체 5 내지 8 중량부;
    상기 제1 스티렌계 공중합체 14 내지 16 중량부;
    상기 제2 스티렌계 공중합체 62 내지 66 중량부; 및
    상기 올레핀계 공중합체 0.3 내지 0.6 중량부를 포함하는 것인 열가소성 수지 조성물.
PCT/KR2019/014261 2018-10-31 2019-10-28 열가소성 수지 조성물 WO2020091336A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020563916A JP7066228B2 (ja) 2018-10-31 2019-10-28 熱可塑性樹脂組成物
US17/054,731 US11286383B2 (en) 2018-10-31 2019-10-28 Thermoplastic resin composition
EP19880674.7A EP3875535B1 (en) 2018-10-31 2019-10-28 Thermoplastic resin composition
CN201980021988.0A CN111918921B (zh) 2018-10-31 2019-10-28 热塑性树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180132191A KR102257968B1 (ko) 2018-10-31 2018-10-31 열가소성 수지 조성물
KR10-2018-0132191 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020091336A1 true WO2020091336A1 (ko) 2020-05-07

Family

ID=70462656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014261 WO2020091336A1 (ko) 2018-10-31 2019-10-28 열가소성 수지 조성물

Country Status (7)

Country Link
US (1) US11286383B2 (ko)
EP (1) EP3875535B1 (ko)
JP (1) JP7066228B2 (ko)
KR (1) KR102257968B1 (ko)
CN (1) CN111918921B (ko)
TW (1) TWI822891B (ko)
WO (1) WO2020091336A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022550104A (ja) * 2020-06-26 2022-11-30 エルジー・ケム・リミテッド 熱可塑性樹脂組成物及びそれを含む成形品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060035002A (ko) * 2004-10-20 2006-04-26 주식회사 엘지화학 열가소성 수지 조성물 및 그의 제조방법
KR20150026532A (ko) * 2013-09-03 2015-03-11 제일모직주식회사 열가소성 수지 조성물을 이용한 자동차용 성형품
KR20170005288A (ko) * 2015-07-02 2017-01-12 롯데첨단소재(주) 내열성 열가소성 수지 조성물 및 이를 이용한 성형품
KR20180023492A (ko) * 2016-08-26 2018-03-07 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR20180076637A (ko) * 2016-12-28 2018-07-06 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 사출 성형품

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1220587A (en) * 1983-11-30 1987-04-14 Kazuo Kishida Thermoplastic resin having excellent impact resistance and heat resistance
DE4437501A1 (de) * 1994-10-20 1996-04-25 Basf Ag Thermoplastische Formmassen
KR100232625B1 (ko) * 1997-08-30 1999-12-01 박병재 내약품성 및 내열성을 가지는 스티렌계 수지 조성물
KR100530567B1 (ko) 1999-02-04 2005-11-22 제일모직주식회사 내충격성이 우수한 열가소성 수지 조성물
KR100509868B1 (ko) * 2003-06-09 2005-08-22 주식회사 엘지화학 내후성 및 외관특성이 우수한 열가소성 수지 조성물
US8372518B1 (en) 2006-11-30 2013-02-12 E I Du Pont De Nemours And Company Antistatic styrenic polymer compositions and articles therefrom
KR101114039B1 (ko) 2007-02-05 2012-03-14 주식회사 엘지화학 기계적 물성, 내후성 및 저발연성이 우수한 열가소성 수지조성물 및 이로부터 제조된 고분자 수지 물품
KR101457403B1 (ko) * 2011-12-28 2014-11-12 제일모직주식회사 고온 내열변색 특성이 우수한 asa 수지 조성물
KR20150114239A (ko) * 2014-04-01 2015-10-12 제일모직주식회사 내열성 및 착색성이 향상된 열가소성 수지 조성물
KR20160067675A (ko) 2014-12-04 2016-06-14 주식회사 엘지화학 열가소성 수지 조성물 및 이를 적용한 성형품
US11021602B2 (en) 2016-04-21 2021-06-01 Ineos Styrolution Group Gmbh ABS molding composition having improved crack and chemical resistance and its use
KR102080102B1 (ko) * 2016-11-04 2020-04-24 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR102171738B1 (ko) * 2016-12-22 2020-10-29 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 사출 성형품
KR102298295B1 (ko) * 2018-10-31 2021-09-07 주식회사 엘지화학 열가소성 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060035002A (ko) * 2004-10-20 2006-04-26 주식회사 엘지화학 열가소성 수지 조성물 및 그의 제조방법
KR20150026532A (ko) * 2013-09-03 2015-03-11 제일모직주식회사 열가소성 수지 조성물을 이용한 자동차용 성형품
KR20170005288A (ko) * 2015-07-02 2017-01-12 롯데첨단소재(주) 내열성 열가소성 수지 조성물 및 이를 이용한 성형품
KR20180023492A (ko) * 2016-08-26 2018-03-07 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR20180076637A (ko) * 2016-12-28 2018-07-06 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 사출 성형품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3875535A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022550104A (ja) * 2020-06-26 2022-11-30 エルジー・ケム・リミテッド 熱可塑性樹脂組成物及びそれを含む成形品
JP7342252B2 (ja) 2020-06-26 2023-09-11 エルジー・ケム・リミテッド 熱可塑性樹脂組成物及びそれを含む成形品

Also Published As

Publication number Publication date
EP3875535A1 (en) 2021-09-08
US20210246297A1 (en) 2021-08-12
CN111918921B (zh) 2023-04-04
JP7066228B2 (ja) 2022-05-13
EP3875535A4 (en) 2021-12-01
CN111918921A (zh) 2020-11-10
KR102257968B1 (ko) 2021-05-28
TW202024222A (zh) 2020-07-01
US11286383B2 (en) 2022-03-29
JP2021523278A (ja) 2021-09-02
TWI822891B (zh) 2023-11-21
KR20200049215A (ko) 2020-05-08
EP3875535B1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020032505A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 이를 포함하는 열가소성 수지 성형품
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2022019581A1 (ko) 열가소성 수지 및 이의 제조방법
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2020101332A1 (ko) 열가소성 수지 조성물
WO2022010053A1 (ko) 열가소성 수지 및 이의 제조방법
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2019093703A1 (ko) 열가소성 수지 조성물
WO2019151776A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2019059664A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2020050544A1 (ko) 그라프트 공중합체의 제조방법 및 그라프트 공중합체
WO2020080735A1 (ko) 그라프트 공중합체 분말의 제조방법
WO2020091336A1 (ko) 열가소성 수지 조성물
WO2022035071A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2019221448A1 (ko) 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물
WO2019156394A1 (ko) 그라프트 공중합체의 제조방법 및 열가소성 수지 성형품
WO2021066345A1 (ko) 아크릴계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2019098753A1 (ko) 그라프트 공중합체의 제조방법
WO2015163608A1 (ko) 내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물
WO2020101326A1 (ko) 열가소성 수지 조성물
WO2024085398A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019880674

Country of ref document: EP

Effective date: 20210531