WO2015163608A1 - 내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물 - Google Patents

내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물 Download PDF

Info

Publication number
WO2015163608A1
WO2015163608A1 PCT/KR2015/003541 KR2015003541W WO2015163608A1 WO 2015163608 A1 WO2015163608 A1 WO 2015163608A1 KR 2015003541 W KR2015003541 W KR 2015003541W WO 2015163608 A1 WO2015163608 A1 WO 2015163608A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
acrylonitrile
copolymer
weight
resin composition
Prior art date
Application number
PCT/KR2015/003541
Other languages
English (en)
French (fr)
Inventor
강병일
한창훈
서재범
최은정
성다은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016534550A priority Critical patent/JP6210254B2/ja
Priority to US14/909,924 priority patent/US10047179B2/en
Priority claimed from KR1020150049695A external-priority patent/KR101743816B1/ko
Publication of WO2015163608A1 publication Critical patent/WO2015163608A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the present invention provides a heat-resistant styrene copolymer comprising ⁇ -methylstyrene, acrylonitrile and t-butyl methacrylate, a styrene resin composition comprising the same, and improved conversion, while maintaining excellent mechanical and chemical properties. It relates to a manufactured styrene resin molded article.
  • styrene-based copolymers have excellent moldability, rigidity, and electrical properties, and are widely used in various industrial fields including OA devices such as computers, printers, and copiers, home appliances such as televisions and audio, electric and electronic components, automobile parts, and sundries. Widely used.
  • heat-resistant styrene-based copolymers that withstand high external temperatures by increasing heat resistance have been used for special applications such as home appliance housings and automotive interior materials.
  • ⁇ -methylstyrene In order to obtain a styrenic copolymer having high heat resistance, ⁇ -methylstyrene (AMS) is commonly used. ⁇ -methylstyrene is relatively inexpensive and has excellent heat resistance characteristics, but due to the low ceiling temperature (Tc), the polymerization proceeds at a temperature lower than the polymerization temperature of the conventional styrene-based copolymer, and thus there is a problem that the conversion rate is greatly reduced. . Low conversion rates directly lead to lower productivity, which poses a major obstacle to industrial applications.
  • Tc low ceiling temperature
  • the inventors of the present invention have been studying ways to improve the conversion rate of the heat resistant styrenic copolymer and increase productivity while not affecting the mechanical and chemical properties of the copolymer.
  • a small amount of t-butyl methacrylate was added to ⁇ -methylstyrene and acrylonitrile constituting the copolymer to prepare and analyze a heat resistant styrene copolymer by bulk polymerization, and as a result, the conversion rate of the heat resistant styrene copolymer was improved, but the physical properties were improved.
  • the present invention was completed by confirming that no change occurred.
  • Another object of the present invention is to provide a styrene resin composition comprising the heat resistant styrene copolymer and a rubbery polymer.
  • Still another object of the present invention is to provide a styrene resin molded article prepared from the styrene resin composition.
  • the present invention A) 60% to 78% by weight of ⁇ -methylstyrene; B) 20% to 38% by weight of acrylonitrile; And C) 0.5 wt% to 7 wt% of t-butyl methacrylate.
  • the present invention is a) 60% by weight to 80% by weight of the heat-resistant styrene copolymer; And b) 20 to 40% by weight of the rubbery polymer provides a styrene resin composition.
  • this invention provides the styrene resin molded article manufactured from said styrene resin composition.
  • the heat-resistant styrenic copolymer according to the present invention comprises ⁇ -methylstyrene, acrylonitrile and t-butyl methacrylate in a proportion, such as a weight ratio of 70: 25: 5, thereby modifying and mechanically modifying the heat-resistant styrenic copolymer.
  • the conversion rate is improved without deteriorating the chemical properties, and thus productivity may be improved to facilitate commercialization.
  • the styrene resin molded article prepared from the styrene resin composition according to the present invention includes the above heat resistant styrene copolymer as a matrix copolymer, and thus has high heat resistance and excellent impact strength, tensile strength, tensile elongation and flowability. There is a characteristic.
  • the heat resistant styrene copolymer and the styrene resin composition including the same may be widely applied to various industrial fields requiring the same.
  • the present invention provides a heat resistant styrene copolymer having increased conversion while maintaining excellent mechanical and chemical properties, including ⁇ -methylstyrene, acrylonitrile and t-butyl methacrylate.
  • Heat-resistant styrene-based copolymers are also widely applied to special applications such as automotive interior materials, home appliance housing.
  • ⁇ -methylstyrene AMS
  • AMS ⁇ -methylstyrene
  • Tc low ceiling temperature Since the polymerization is carried out at a temperature, there is a problem that the conversion rate is greatly reduced. Low conversion rates directly lead to lower productivity, which poses a major obstacle to industrial applications.
  • the present invention is deteriorated in the mechanical and chemical properties of the original ⁇ -methylstyrene-acrylonitrile copolymer (AMS-AN) copolymerized by adding t-butyl methacrylate to ⁇ -methylstyrene and acrylonitrile. It is possible to provide a heat resistant styrene-based copolymer having improved conversion rate without increasing the conversion rate.
  • AMS-AN ⁇ -methylstyrene-acrylonitrile copolymer
  • Heat resistant styrene-based copolymer is A) 60% to 78% by weight of ⁇ -methylstyrene; B) 20% to 38% by weight of acrylonitrile; And C) 0.5 wt% to 7 wt% t-butyl methacrylate.
  • the heat resistant styrene-based copolymer is a graft copolymer of ⁇ -methylstyrene, acrylonitrile and t-butyl methacrylate, and as mentioned above, 60 wt% to 78 wt% ⁇ -methylstyrene and acrylonitrile 20 ⁇ -methylstyrene-acrylonitrile-t-butyl methacrylate copolymer (AMS-AN-TBMA) comprising from about 38% by weight to about 0.5% to about 7% by weight of t-butyl methacrylate. .
  • A) ⁇ -methylstyrene (AMS) according to the present invention is an alkylated styrene compound represented by the following Chemical Formula 1, and has excellent heat resistance and impact strength characteristics, thereby providing heat resistance and impact strength when preparing resins and polymers. It is used as a chemical intermediate or raw material.
  • the ⁇ -methylstyrene has excellent heat resistance and impact strength, and may serve to improve impact strength and impart excellent heat resistance to the heat resistant styrene copolymer which is a matrix copolymer.
  • the ⁇ -methyl styrene has a very low ceiling temperature (Tc, 66 ° C.), and when it is polymerized alone, the ⁇ -methyl styrene must be polymerized for a long time at a low temperature, and the polymerized polymer is not only unstable but also has low conversion rate. There is a problem with this falling.
  • the present invention is to add a copolymerization of acrylonitrile and t-butyl methacrylate described later to the ⁇ -methyl styrene and copolymerization to further improve the mechanical and chemical properties and at the same time increase the ceiling temperature to facilitate polymerization. It was.
  • the ceiling temperature means the upper limit of the temperature range that allows the exothermic reaction to proceed thermodynamically in the reversible reaction, the polymerization rate and the depolymerization rate when any material is the ceiling temperature
  • the same or higher than the ceiling temperature depolymerization rate is faster than the polymerization rate can be inhibited polymerization may cause a problem that the polymerization to the desired polymer does not occur easily.
  • the heat resistant styrene-based copolymer which is the matrix copolymer may include 60 wt% to 78 wt% of the ⁇ -methylstyrene, and specifically, may include 68 wt% to 73 wt%. If the ⁇ -methylstyrene is included in less than 60% by weight, the effect of improving heat resistance may be insignificant. When the ⁇ -methylstyrene is included in excess of 78% by weight, acrylonitrile and t-butyl, which will be described later, will be described later.
  • the effect of improving the conversion rate is insignificant, and as a result, the purity of the copolymer may be reduced due to the decrease in molecular weight due to low conversion and the generation of a large amount of residual monomer.
  • the low molecular weight material and a large amount of the residual monomer acts as an impurity in the copolymer, which generates a large amount of volatile material during processing, making it difficult to process, and the glass transition temperature (Tg) can be improved, but the heat deformation The temperature can result in a decrease.
  • acrylonitrile according to the present invention is a kind of unsaturated nitrile compound, and has been widely used as a raw material for synthetic rubber and synthetic resin due to its high reactivity and polymerizability.
  • the B) acrylonitrile is a final production by increasing the molecular weight of the heat-resistant styrenic copolymer comprising the same, to facilitate the polymerization by supplementing the low ceiling temperature of the A) -methyl styrene It may serve to impart mechanical and chemical properties such as impact strength and chemical resistance of the copolymer.
  • the heat resistant styrene-based copolymer which is the matrix copolymer may include 20 wt% to 38 wt% of the acrylonitrile, and specifically, may be 25 wt% to 32 wt%. If the heat resistant styrene-based copolymer contains less than 20% by weight of acrylonitrile, polymerization may be incomplete, resulting in a large amount of unreacted material, and a high molecular weight may not be formed, thereby degrading mechanical properties. If it contains more than 38% by weight, it may cause a decrease in heat resistance.
  • the C) t-butyl methacrylate (TBMA) according to the present invention is a kind of alkyl methacrylate, which is very reactive due to a double bond present in the t-butyl methacrylate, and thus easily polymers. There is a characteristic that can form.
  • the t-butyl methacrylate has excellent reactivity and high ceiling temperature (above 200 ° C.), thereby increasing the polymerization temperature by supplementing the low ceiling temperature of A) ⁇ -methylstyrene with B) acrylonitrile. At the same time, it can play a role of increasing polymerization reactivity so that polymerization can be easily performed. Thus, the conversion rate can be increased without lowering the heat resistance of the heat resistant styrene copolymer.
  • the heat resistant styrene-based copolymer which is the matrix copolymer may include 0.5 wt% to 7 wt% of t-butyl methacrylate, and specifically 1 wt% to 5 wt%. If the t-butyl methacrylate is included in less than 0.5% by weight, the effect of improving the ceiling temperature and polymerization reactivity is insignificant, and thus the conversion rate of the heat resistant styrene copolymer may not be improved, and the t-butyl methacrylate In the case of containing more than 7% by weight, the effect of improving the ceiling temperature and polymerization reactivity may be increased, but the conversion may be significantly improved, but the effect of improving the conversion is insignificant compared to the amount used, and the t-butyl methacrylate may be used in the polymerization.
  • the mechanical and chemical properties of the styrenic copolymer may be broken (for example, an excessive glass transition temperature may be improved).
  • ABS acrylonitrile-butadiene-styrene copolymer
  • the heat resistant styrene-based copolymer according to an embodiment of the present invention has a weight ratio of A) ⁇ -methylstyrene, B) acrylonitrile and C) t-butyl methacrylate of 70 to 72: 23 to 29.5: 0.5 to 7 And A) ⁇ -methylstyrene to B) acrylonitrile to C) t-butyl methacrylate may be from 70:23 to 29.5: 0.5 to 5. More specifically, it may be included to have a weight ratio of 70:25 to 27: 3 to 5.
  • the conversion rate is 40% to 60%
  • the glass transition temperature (Tg) is in the range of 123 ° C. to 128 ° C.
  • the weight average molecular weight (Mw) is 87,000 to It may be desirable to be 91,000.
  • the matrix copolymer is a heat-resistant styrene-based copolymer is not particularly limited and can be prepared through bulk polymerization commonly known in the art.
  • the bulk polymerization is not limited thereto.
  • ⁇ -methylstyrene, acrylonitrile and t-butyl methacrylate may be mixed with a reaction medium and heated to a temperature of 80 ° C. to 130 ° C. to prepare a polymer. It may be carried out by removing the unreacted material and the reaction medium.
  • the reaction medium may be a conventional organic solvent, for example, aromatic compounds such as ethylbenzene, benzene, toluene, xylene and methyl ethyl ketone, acetone, n-hexane, chloroform, cyclohexane may be used, but is not limited thereto. It doesn't happen.
  • the bulk polymerization may further include additives such as a polymerization initiator and a molecular weight regulator in addition to the materials described above.
  • the polymerization initiator is not particularly limited, but for example, water-soluble persulfate-based polymerization initiators such as potassium persulfate, sodium persulfate or ammonium persulfate, hydrogen peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, tertiary butyl hydroper Redox-based polymerization initiators containing peroxides such as oxides and paramentane hydroperoxides as one component may be added alone or in combination.
  • water-soluble persulfate-based polymerization initiators such as potassium persulfate, sodium persulfate or ammonium persulfate, hydrogen peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, tertiary butyl hydroper Redox-based polymerization initiators containing peroxides such as oxides and paramentane hydroperoxides as one component may be added alone or in combination.
  • the molecular weight modifier may be used conventional materials such as mercaptans, for example, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan and the like, specifically t-dode Silmercaptan.
  • mercaptans for example, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan and the like, specifically t-dode Silmercaptan.
  • the present invention also provides a styrene resin composition comprising the heat resistant styrene copolymer and a rubbery polymer.
  • the styrene resin composition according to an embodiment of the present invention comprises a) 60 wt% to 80 wt% of a heat resistant styrene copolymer; And b) 20% to 40% by weight of the rubbery polymer.
  • the a) heat resistant styrenic copolymer is a-methylstyrene-acrylonitrile-t-butyl containing A) ⁇ -methylstyrene, B) acrylonitrile and C) t-butyl methacrylate as mentioned above.
  • AMS-AN-TBMA methacrylate copolymer
  • the styrene resin composition may act as a matrix copolymer (continuous phase).
  • the styrene resin composition of the present invention may include the heat resistant styrene copolymer in an amount of 60 wt% to 80 wt%, and specifically, 70 wt% to 80 wt%. If the heat resistant styrene copolymer is included outside the above range, the fluidity of the styrene resin composition may be lowered, thereby reducing the moldability in the manufacture of the molded article using the same, or the tensile strength and heat resistance of the molded article manufactured therefrom. As a result, a problem of deteriorating impact resistance may occur.
  • the b) rubbery polymer according to the present invention is added as a kind of filler, may be present in a dispersed phase in the styrene-based resin composition, it may be preferable that the rubbery polymer has an average particle diameter of 250 nm to 500 nm.
  • the b) rubbery polymer is b-1) acrylonitrile-butadiene-styrene graft copolymer (ABS) of core-shell structure and b-2) acrylate-styrene-acrylonitrile graft air of core-shell structure It may be one or more selected from the group consisting of coalescence (ASA).
  • ABS Acrylonitrile-butadiene-styrene graft copolymer
  • the core-shell structure acrylonitrile-butadiene-styrene graft copolymer may be a graft of a diene-based polymer core and a shell including a styrene-based monomer and an acrylonitrile-based monomer on the core.
  • the core-shell structure acrylonitrile-butadiene-styrene graft copolymer is 50 to 80% by weight of the diene polymer core; And 20 wt% to 50 wt% of a shell including a styrene-based monomer and an acrylonitrile-based monomer may be grafted on the core.
  • the thickness ratio of the core to the shell may be 4: 6 to 8: 2, specifically, 5: 5 to 7: 3.
  • the shell may include a styrene monomer and an acrylonitrile monomer in a weight ratio of 7: 3 to 8: 2.
  • the average particle diameter of the acrylonitrile-butadiene-styrene graft copolymer of the core-shell structure is not particularly limited as long as it is within the average particle size range of the rubbery polymer, but specifically, the average particle diameter of 250 nm to 400 nm. Can be.
  • the core-shell structure acrylonitrile-butadiene-styrene graft copolymer is not particularly limited and may be prepared and used by a method commonly known in the art, or a commercially available material may be purchased and used.
  • the acrylonitrile-butadiene-styrene graft copolymer of the core-shell structure when the acrylonitrile-butadiene-styrene graft copolymer of the core-shell structure is prepared and used, the acrylonitrile-butadiene-styrene graft copolymer of the core-shell structure prepares a diene polymer core. And, it may be prepared by graft copolymerization of a shell comprising a styrene monomer and an acrylonitrile monomer in the diene polymer core prepared above.
  • the diene polymer core is not particularly limited and may be prepared by a method commonly known in the art.
  • an additive such as ion exchanged water, an emulsifier, a polymerization initiator, an electrolyte, and a molecular weight regulator may be added to a conjugated diene monomer. It may be prepared by emulsion polymerization.
  • the emulsion polymerization is not particularly limited and may be carried out by conventional methods known in the art, but for example, additives such as ion-exchanged water, an emulsifier, a polymerization initiator, and the like may be collectively added to the reactor to react with the conjugated diene monomer. Alternatively, the reaction may be performed by dividing the polymerization conversion point in time and continuously.
  • molecular weight regulator 0.1 part by weight to 1 part by weight may be carried out by a method comprising the step of reacting in a polymerization reactor at a temperature range of 50 °C to 90 °C.
  • the conjugated diene monomer may be added and reacted in a batch with other constituent materials or additives, or may be dividedly added or continuously added several times during the polymerization reaction.
  • the conjugated diene monomer may be one or more selected from the group consisting of 1,3-butadiene, isoprene, chloroprene and piperylene. Specifically, it may be 1,3-butadiene.
  • the polymerization initiator and the molecular weight regulator may be the same as or mentioned above.
  • the emulsifier is not particularly limited, but may be, for example, one or two or more selected from the group consisting of alkyl aryl sulfonates, alkali methyl alkyl sulfates, sulfonated alkyl esters, fatty acid soaps and alkali salts of rosin acid. have.
  • the electrolyte is not particularly limited, but for example, potassium chloride, sodium chloride, potassium bicarbonate, sodium carbonate, potassium carbonate, potassium hydrogen sulfite, sodium hydrogen sulfite, potassium pyrophosphate, tetrasodium pyrophosphate, tripotassium phosphate, trisodium phosphate, and dihydrogen phosphate It may be one or more selected from the group consisting of potassium and disodium hydrogen phosphate.
  • the shell including the styrene-based monomer and acrylonitrile-based monomer is graft copolymerized by adding additives such as styrene-based monomer and acrylonitrile-based monomer, emulsifier, polymerization initiator, molecular weight regulator, etc. It may be formed on the diene polymer core.
  • the styrene monomer may be one or more selected from the group consisting of styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, p-ethylstyrene, vinyltoluene, and derivatives thereof, and specifically, may be styrene.
  • the acrylonitrile-based monomer may be one or more selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, and derivatives thereof, and specifically, may be acrylonitrile.
  • Additives such as emulsifiers, polymerization initiators, molecular weight regulators may be the same as or mentioned above.
  • ASA acrylate-styrene-acrylonitrile graft copolymer
  • the acrylate-styrene-acrylonitrile graft copolymer of the core-shell structure may be grafted with an acrylate polymer core and a shell including a styrene monomer and an acrylonitrile monomer on the core.
  • the core-shell structure of the acrylate-styrene-acrylonitrile graft copolymer is 40 to 60% by weight of the acrylate polymer core; And 40 wt% to 60 wt% of a shell including a styrene monomer and an acrylonitrile monomer on the core.
  • the thickness ratio of the core to the shell may be 4: 6 to 8: 2, specifically, 5: 5 to 7: 3.
  • the shell may include a styrene monomer and an acrylonitrile monomer in a weight ratio of 7: 2 to 8: 2.
  • the average particle diameter of the acrylate-styrene-acrylonitrile graft copolymer of the core-shell structure is not particularly limited as long as it is within the average particle size range of the rubbery polymer, but may be specifically 250 nm to 400 nm.
  • the core-shell structure of the acrylate-styrene-acrylonitrile graft copolymer is not particularly limited and can be prepared and used by methods commonly known in the art, or a commercially available material can be purchased and used.
  • the acrylate-styrene-acrylonitrile graft copolymer of the core-shell structure is an acrylate polymer.
  • the core may be prepared, and graft copolymerization of a shell including a styrene-based monomer and an acrylonitrile-based monomer in the prepared acrylate-based polymer core may be performed.
  • the acrylate-based polymer core is not particularly limited and may be prepared by methods commonly known in the art, but for example, alkyl acrylate monomers include ion-exchanged water, emulsifiers, polymerization initiators, grafting agents, crosslinking agents, electrolytes, and molecular weight modifiers. It may be prepared by adding an additive such as emulsion polymerization.
  • the alkyl acrylate monomer 70 parts by weight to 120 parts by weight of ion-exchanged water, 0.1 parts by weight to 3 parts by weight of the emulsifier, 0.05 parts by weight to 0.3 parts by weight of the polymerization initiator, a grafting agent 0.01 parts by weight to 0.07 parts by weight, 0.02 parts by weight to 0.3 parts by weight of the crosslinking agent, 0.05 parts by weight to 0.4 parts by weight of the electrolyte, 0.02 parts by weight to 0.2 parts by weight of the molecular weight modifier in a batch, the temperature of 50 °C to 90 °C It can be carried out by a method comprising the step of reacting. In this case, the alkyl acrylate monomers may be added and reacted in batches with other constituent materials or additives, or may be dividedly added or continuously added several times during the polymerization reaction.
  • the alkyl acrylate monomer may be butyl acrylate, ethyl hexyl acrylate or a mixture thereof, but may specifically be butyl acrylate.
  • the emulsifier, the polymerization initiator, the electrolyte, the molecular weight regulator may be the same as or mentioned above.
  • the grafting agent may be one or more selected from the group consisting of aryl methacrylate (AMA), triaryl isocyanurate (TAIC), triaryl amine (TAA) and diaryl amine (DAA).
  • AMA aryl methacrylate
  • TAIC triaryl isocyanurate
  • TAA triaryl amine
  • DAA diaryl amine
  • the crosslinking agent is ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol It may be one or more selected from the group consisting of dimethacrylate, trimethylol propane trimethacrylate and trimethylol triacrylate.
  • the shell including the styrene-based monomer and the acrylonitrile-based monomer is added to the acrylate-based polymer core, the additives such as styrene-based monomer and acrylonitrile-based monomer, emulsifier, polymerization initiator, molecular weight regulator, and graft copolymerization To form on the acrylate-based polymer core.
  • the graft copolymerization may be reacted by collectively administering an additive including the styrene-based monomer, acrylonitrile-based monomer, and an emulsifier, but divided or continuous administration may be performed to uniformly graft the acrylate-based polymer core. It may be desirable to proceed.
  • the styrene monomer and acrylonitrile monomer may be the same as or mentioned above.
  • the styrene resin composition according to an embodiment of the present invention may be selected from the group consisting of a heat stabilizer, a lubricant, an antioxidant, a light stabilizer, a flame retardant, an antistatic agent, a colorant, a filler, and an ultraviolet stabilizer, if necessary, in addition to the above-mentioned active ingredients. It may further comprise one or more additives.
  • this invention provides the styrene resin molded article manufactured from said styrene resin composition.
  • the styrene-based resin molded article according to an embodiment of the present invention has an impact strength of 20 J / m to 25 J / m measured according to ASTM D256 when 1/4 ′′ thick, and 5 cm / according to ASTM D638.
  • the tensile elongation measured under the speed condition of min is characterized in that 28% to 40%.
  • ASTM American Society for Testing and Materials
  • ASTM D256 means Izod impact resistance test
  • ASTM D638 is tensile It means testing.
  • a monomer mixture comprising 70% by weight of ⁇ -methylstyrene, 29.5% by weight of acrylonitrile and 0.5% by weight of t-butyl methacrylate and 5 parts by weight of ethylbenzene, per 100 parts by weight of the monomer mixture, in a 1L batch reactor; 0.1 parts by weight of polymerization initiators (Perhexa C, NOF) were added and mixed, and the mixture was bulk polymerized for 6 hours while rotating at 200 rpm at a polymerization temperature of 104 ° C. After the polymerization was completed, precipitated with methanol and dried in a vacuum oven at 220 °C for 2 hours to prepare a heat-resistant styrene copolymer.
  • Polymerization initiators Perhexa C, NOF
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 1, except that acrylonitrile was used at 29 wt% and t-butyl methacrylate was used at 1 wt%.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 1, except that 27 wt% of acrylonitrile was used and 3 wt% of t-butyl methacrylate.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 1, except that acrylonitrile was used at 25 wt% and t-butyl methacrylate was used at 5 wt%.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 1, except that 72 wt% of ⁇ -methylstyrene, 27 wt% of acrylonitrile, and 1 wt% of t-butyl methacrylate were used. It was.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 1, except that 72 wt% of ⁇ -methylstyrene, 25 wt% of acrylonitrile, and 3 wt% of t-butyl methacrylate were used. It was.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 1, except that the polymerization temperature was adjusted to 106 ° C.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 2 except that the polymerization temperature was adjusted to 106 ° C.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 3 except that the polymerization temperature was adjusted to 106 ° C.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 4, except that the polymerization temperature was adjusted to 106 ° C.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 5 except that the polymerization temperature was adjusted to 106 ° C.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 6 except that the polymerization temperature was adjusted to 106 ° C.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 1, except that 72 wt% of ⁇ -methylstyrene, 20 wt% of acrylonitrile, and 8 wt% of t-butyl methacrylate were used. It was.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 1, except that 72 wt% of ⁇ -methylstyrene and 28 wt% of acrylonitrile were used and t-butyl methacrylate was not used. It was.
  • a heat resistant styrene copolymer was prepared in the same manner as in Preparation Example 1, except that 70 wt% of ⁇ -methylstyrene, 29.7 wt% of acrylonitrile, and 0.3 wt% of t-butyl methacrylate were used. It was.
  • a heat-resistant styrenic copolymer was prepared in the same manner as in Preparation Example 1, except that 70 wt% of ⁇ -methylstyrene and 30 wt% of acrylonitrile were used and t-butyl methacrylate was not used. Prepared.
  • a heat resistant styrene copolymer was prepared in the same manner as in Comparative Example 1 except that the polymerization temperature was adjusted to 106 ° C.
  • a heat resistant styrene copolymer was prepared in the same manner as in Comparative Example 2 except that the polymerization temperature was adjusted to 106 ° C.
  • a heat resistant styrene copolymer was prepared in the same manner as in Comparative Example 3 except that the polymerization temperature was adjusted to 106 ° C.
  • a heat resistant styrene copolymer was prepared in the same manner as in Comparative Example 4 except that the polymerization temperature was adjusted to 106 ° C.
  • the glass transition temperature was measured by raising the temperature of each heat-resistant styrene copolymer to 150 ° C and quenching the melt and then raising the temperature by 10 ° C / min by the DSC method.
  • the conversion rate measured the initial mass of each reactant before polymerization of each heat resistant styrenic copolymer and recorded the weight of the monomer basis without the solvent content, and measured the weight of each heat resistant styrene copolymer produced after the polymerization reaction. It measured by the ratio of the weight of the monomer before superposition
  • the weight average molecular weight was measured using GPC (Gel Permeation Chromatography, Waters 2410 RI Detector, 515 HPLC pump. 717 Auto Sampler). Each sample was prepared by dissolving 20 ml of THF (tetrahydrofuran) in 0.02 g of each heat-resistant styrenic copolymer, filtered through a 0.45 ⁇ m filter, and placed in a GPC vial (4 ml). The solvent (THF) was injected at a rate of 1.0 ml / min from 1 hour before the measurement, and the measurement time was 25 minutes, injection volume 150 ⁇ l, flow rate 1.0 ml / min, isocratic pump mode, and RI detector at 40 ° C. At this time, it was calibrated using PS standard.
  • THF tetrahydrofuran
  • the heat-resistant styrene-based copolymer prepared in Preparation Examples 1 to 12 according to the present invention containing t-butyl methacrylate has excellent glass transition temperature and weight with improved conversion. It was confirmed that the average molecular weight value was shown.
  • each heat resistant styrene copolymer prepared in Production Examples 1 to 12 according to the present invention may improve the conversion rate. It was primarily confirmed through the above results that the deformation and physical properties of the copolymer were not changed.
  • styrene resin composition by mixing 75% by weight of the heat-resistant styrene copolymer prepared in Preparation Example 1 and 25% by weight of acrylonitrile-butadiene-styrene graft copolymer (LG Chem) of the core-shell structure .
  • Pellet was prepared using a twin screw extruder at 240 °C.
  • Pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 2 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • a pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 3 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 4 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Pellet was prepared in the same manner as in Example 1 except that the heat resistant styrene copolymer prepared in Preparation Example 5 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • a pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 6 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 7 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Pellet was prepared in the same manner as in Example 1 except that the heat resistant styrene copolymer prepared in Preparation Example 8 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Pellet was prepared in the same manner as in Example 1 except that the heat resistant styrene copolymer prepared in Preparation Example 9 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 10 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 11 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 12 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • a pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 1 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Pellet was prepared in the same manner as in Example 1 except that the heat resistant styrene copolymer prepared in Preparation Example 2 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • a pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 3 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • a pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 4 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • a pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 5 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Pellets were prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 6 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • a pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 7 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • a pellet was prepared in the same manner as in Example 1, except that the heat resistant styrene copolymer prepared in Preparation Example 8 was used instead of the heat resistant styrene copolymer prepared in Preparation Example 1.
  • Impact strength was analyzed according to ASTM D256.
  • the pellets of Examples 1 to 12 and Comparative Examples 1 to 8 were molded to a thickness of 1/4 ′′ to prepare a specimen, and then supported by an Izod impact tester, and then hit by a hammer.
  • the particle width was measured and the impact strength value was obtained through Equation 3 below.
  • the impact speed of the hammer is about 240 cm / sec.
  • Nw represents the width (m) of the test piece entanglement portion
  • E represents the energy (J) required to break the test piece.
  • the fluidity was analyzed according to ASTM D1238.
  • Each pellet prepared in Examples 1 to 12 and Comparative Examples 1 to 8 was injection molded at 300 ° C. to produce 1/4 ′′ specimens, and each specimen was heated to a temperature of 220 ° C., put in a cylinder, and A 10 kg load was applied and the weight (g) of the resin melted for 10 minutes was measured.
  • Heat resistance was analyzed in accordance with ASTM D648.
  • Each pellet prepared in Examples 1 to 12 and Comparative Examples 1 to 8 was injection molded at 300 ° C. to prepare each specimen having a thickness of 1/4 ′′, and each specimen was placed on a support 4 inches away from the center of 66 psi. The temperature of the specimen was deformed by 0.010 inch while the ambient temperature was raised at a rate of 2 ⁇ 0.2 ° C. per minute while applying a load of.
  • each of the styrenic resin molded articles prepared in Examples 1 to 12 according to the present invention is similar or superior to each of the styrene-based resin molded articles prepared in Comparative Examples 1 to 8. It was confirmed that the mechanical and chemical properties were shown.
  • Comparative Example 2 comprising the heat-resistant styrene copolymer of Comparative Comparative Example 2, Comparative Comparative Example 4, Comparative Comparative Example 6 and Comparative Comparative Example 8 containing no t-butyl methacrylate as a matrix copolymer
  • Comparative Example 6 and Comparative Example 8 the heat-resistant styrene-based copolymer of Preparation Examples 1 to 12 containing t-butyl methacrylate in an appropriate ratio
  • thermoplastic styrenic copolymers prepared in Preparation Examples 1 to 12 according to the present invention contain t-butyl methacrylate in an appropriate ratio, thereby improving the conversion rate and changing deformation or physical properties in the copolymer. It means not to.
  • Comparative Example 1 and Comparative Example comprising a heat-resistant styrene copolymer prepared in Comparative Comparative Example 1 and Preparation Comparative Example 5 containing an excess of t-butyl methacrylate according to the present invention as a matrix copolymer
  • the styrenic resin molded article of 5 has a much lower tensile elongation, impact strength and fluidity than the styrene resin molded articles of Examples 1 to 12 and the styrene resin molded articles of other comparative examples according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 우수한 기계·화학적 특성을 유지하면서 전환율이 개선된, α-메틸스티렌, 아크릴로니트릴 및 t-부틸 메타크릴레이트를 포함하는 내열성 스티렌계 공중합체, 이를 포함하는 스티렌계 수지 조성물 및 이로부터 제조된 스티렌계 수지 성형품에 관한 것이다. 이에 따른, 상기 내열성 스티렌계 공중합체는 물질 자체의 변형 및 기계·화학적 특성 저하 없이 전환율이 개선되는 효과가 있으며, 이에 생산성이 향상되어 상업화가 용이할 수 있다. 또한, 본 발명에 따른 스티렌계 수지 조성물로부터 제조된 스티렌계 수지 성형품은 상기의 내열성 스티렌계 공중합체를 매트릭스 공중합체로 포함함으로써, 높은 내열성을 가지면서 충격강도, 인장강도, 인장신율 및 유동성이 우수한 특성이 있다.

Description

내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물
본 발명은 우수한 기계·화학적 특성을 유지하면서 전환율이 개선된, α-메틸스티렌, 아크릴로니트릴 및 t-부틸 메타크릴레이트를 포함하는 내열성 스티렌계 공중합체, 이를 포함하는 스티렌계 수지 조성물 및 이로부터 제조된 스티렌계 수지 성형품에 관한 것이다.
일반적으로 스티렌계 공중합체는 성형성, 강성, 전기적 특성이 우수하여 컴퓨터, 프린터, 복사기 등의 OA 기기, 텔레비전, 오디오 등의 가전 제품, 전기 전자 부품, 자동차 부품, 잡화 등을 포함한 다양한 산업 분야에서 광범위하게 사용되고 있다. 특히, 내열도를 높여 외부의 높은 온도에서도 잘 견디는 내열 스티렌계 공중합체는 가전제품 하우징용, 자동차 내장재 등의 특별한 용도로 사용되고 있다.
내열성이 높은 스티렌계 공중합체를 얻기 위해서 통상적으로 α-메틸스티렌(AMS)이 사용되고 있다. α-메틸스티렌은 가격이 비교적 저렴하고 우수한 내열 특성이 있으나, 낮은 천정온도(Tc)로 인하여 기존의 스티렌계 공중합체의 중합 온도보다 낮은 온도에서 중합을 진행하며, 이에 전환율이 크게 떨어지는 문제가 있다. 낮은 전환율은 생산성의 저하와 직결되며, 이에 산업 적용에 큰 장애가 따르고 있다.
따라서, 내열성 스티렌계 공중합체를 용이하게 산업에 적용하기 위해서는 α-메틸스티렌의 낮은 천정온도의 단점을 보완하여 상기 내열성 스티렌계 공중합체의 전환율을 향상시켜 생산성은 높이면서 본래 내열성 스티렌계 공중합체가 가진 기계·화학적 특성을 저하시키지 않는 기술, 즉 전환율은 향상시키고 본래 내열성 스티렌계 공중합체에 변형은 일으키지 않는 기술이 필요한 실정이다.
상기와 같은 배경 하에, 본 발명자들은 내열성 스티렌계 공중합체의 전환율을 향상시켜 생산성을 높이면서 상기 공중합체가 가진 기계·화학적 특성에는 영향을 미치지 않는 방안을 연구하던 중, 종래의 통상적인 내열성 스티렌계 공중합체를 구성하는 α-메틸스티렌 및 아크릴로니트릴에 t-부틸 메타크릴레이트를 소량 첨가하여 괴상중합으로 내열성 스티렌계 공중합체를 제조하고 분석한 결과 상기 내열성 스티렌계 공중합체의 전환율은 향상되나 물성에는 변화를 일으키지 않음을 확인함으로써 본 발명을 완성하였다.
본 발명의 목적은 우수한 기계·화학적 특성을 유지하면서 전환율이 향상된, α-메틸스티렌, 아크릴로니트릴 및 t-부틸 메타크릴레이트를 포함하는 내열성 스티렌계 공중합체를 제공하는 것이다.
본 발명의 다른 목적은 상기의 내열성 스티렌계 공중합체 및 고무질 중합체를 포함하는 스티렌계 수지 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기의 스티렌계 수지 조성물로부터 제조된 스티렌계 수지 성형품을 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 A) α-메틸스티렌 60 중량% 내지 78 중량%; B) 아크릴로니트릴 20 중량% 내지 38 중량%; 및 C) t-부틸 메타크릴레이트 0.5 중량% 내지 7 중량%를 포함하는 내열성 스티렌계 공중합체를 제공한다.
또한, 본 발명은 상기의 a) 내열성 스티렌계 공중합체 60 중량% 내지 80 중량%; 및 b) 고무질 중합체 20 중량% 내지 40 중량%를 포함하는 스티렌계 수지 조성물을 제공한다.
아울러, 본 발명은 상기의 스티렌계 수지 조성물로부터 제조된 스티렌계 수지 성형품을 제공한다.
본 발명에 따른 내열성 스티렌계 공중합체는 α-메틸스티렌, 아크릴로니트릴 및 t-부틸 메타크릴레이트를 일정비율, 예컨대 70:25:5의 중량비로 포함함으로써 상기 내열성 스티렌계 공중합체의 변형 및 기계·화학적 특성 저하 없이 전환율이 개선되는 효과가 있으며, 이에 생산성이 향상되어 상업화가 용이할 수 있다.
또한, 본 발명에 따른 스티렌계 수지 조성물로부터 제조된 스티렌계 수지 성형품은 상기의 내열성 스티렌계 공중합체를 매트릭스 공중합체로 포함함으로써, 높은 내열성을 가지면서 충격강도, 인장강도, 인장신율 및 유동성이 우수한 특성이 있다.
따라서, 상기 내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물은 이를 필요로 하는 다양한 산업 분야에 널리 적용될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 α-메틸스티렌, 아크릴로니트릴 및 t-부틸 메타크릴레이트를 포함하는, 우수한 기계·화학적 특성은 유지하면서 전환율이 증가된 내열성 스티렌계 공중합체를 제공한다.
내열성 스티렌계 공중합체는 자동차 내장재, 가전제품 하우징 등의 특별한 용도로도 많이 적용되고 있다. 이러한 내열성이 높은 스티렌계 공중합체를 얻기 위해서 통상적으로 α-메틸스티렌(AMS)이 사용되고 있으나, 상기 α-메틸스티렌은 낮은 천정온도(Tc)로 인하여 기존의 스티렌계 공중합체의 중합 온도보다 현저히 낮은 온도에서 중합을 실시하고 있어 전환율이 크게 떨어지는 문제가 있다. 낮은 전환율은 생산성의 저하와 직결되며, 이에 산업 적용에 큰 장애가 따르고 있다.
따라서, 내열성 스티렌계 공중합체를 용이하게 산업에 적용하기 위해서는 α-메틸스티렌의 전환율을 향상시켜 생산성을 높이는 동시에 본래 내열성 스티렌계 공중합체가 가지는 기계·화학적 특성을 저하시키지 않는 기술이 필요한 실정이다.
이에, 본 발명은 α-메틸스티렌 및 아크릴로니트릴에 t-부틸 메타크릴레이트를 첨가하여 공중합한, 본래 α-메틸스티렌-아크릴로니트릴 공중합체(AMS-AN)가 가진 기계·화학적 특성은 저하시키지 않으면서 전환율이 개선된 내열성 스티렌계 공중합체를 제공한다.
본 발명의 일 실시예에 따른 내열성 스티렌계 공중합체는 A) α-메틸스티렌 60 중량% 내지 78 중량%; B) 아크릴로니트릴 20 중량% 내지 38 중량%; 및 C) t-부틸 메타크릴레이트 0.5 중량% 내지 7 중량%를 포함하는 것을 특징으로 한다.
상기 내열성 스티렌계 공중합체는 α-메틸스티렌, 아크릴로니트릴 및 t-부틸 메타크릴레이트의 그라프트 공중합체인 것으로, 앞서 언급한 바와 같이 α-메틸스티렌 60 중량% 내지 78 중량%, 아크릴로니트릴 20 중량% 내지 38 중량% 및 t-부틸 메타크릴레이트 0.5 중량% 내지 7 중량%를 포함하는 α-메틸스티렌-아크릴로니트릴-t-부틸 메타크릴레이트 공중합체(AMS-AN-TBMA)일 수 있다.
본 발명에 따른 상기 A) α-메틸스티렌(AMS, alpha-methylstyrene)은 하기 화학식 1로 표시되는 알킬화 스티렌 화합물로, 우수한 내열성 및 충격 강도 특성을 가지고 있어 수지 및 고분자 제조 시 내열성 및 충격 강도를 부여하기 위한 화학적 중간체 또는 원료 물질로 사용되고 있다.
[화학식 1]
Figure PCTKR2015003541-appb-I000001
본 발명에서 상기 α-메틸스티렌은 앞서 언급한 바와 같이, 우수한 내열성 및 충격 강도를 가지고 있어 매트릭스 공중합체인 상기 내열성 스티렌계 공중합체에 우수한 내열성을 부여함과 동시에 충격 강도를 향상시키는 역할을 할 수 있다. 그러나, 상기 α-메틸스티렌은 매우 낮은 천정온도(Tc, 66℃)를 가지고 있어 이를 단독 중합할 경우 낮은 온도에서 오랜 시간 동안 중합을 진행해야 하며, 중합된 중합체도 불안정할 뿐 아니라 전환율도 낮아 생산성이 떨어지는 문제가 있다. 따라서, 본 발명은 상기 α-메틸스티렌에 후술하는 아크릴로니트릴 및 t-부틸 메타크릴레이트를 첨가하고 공중합함으로써 추가적인 기계·화학적 특성 향상을 도모함과 동시에 천정온도를 높여 중합을 보다 용이하게 이뤄질 수 있도록 하였다.
여기에서, 상기 천정온도(Tc, ceiling temperature)는 가역반응에 있어 발열반응이 열역학적으로 진행하는 것을 가능하게 하는 온도범위의 상한값을 의미하는 것으로, 어떠한 물질이 천정온도일 때 중합속도와 해중합속도는 같으며 천정온도 이상일 경우 해중합속도가 중합속도보다 빨라져 중합이 억제되어 원하는 중합체로의 중합이 용이하게 일어나지 못하는 문제가 발생할 수 있다.
상기 매트릭스 공중합체인 내열성 스티렌계 공중합체는 상기 α-메틸스티렌을 60 중량% 내지 78 중량%로 포함할 수 있으며, 구체적으로는 68 중량% 내지 73 중량%로 포함할 수 있다. 만약, 상기 α-메틸스티렌이 60 중량% 미만으로 포함될 경우에는 내열성 향상 효과가 미미할 수 있으며, 상기 α-메틸스티렌이 78 중량%를 초과하여 포함될 경우에는 상대적으로 후술하는 아크릴로니트릴과 t-부틸 메타크릴레이트의 함량이 줄어들어 전환율 향상 효과가 미미하여, 결과적으로 낮은 전환율로 인한 분자량 감소와 다량의 잔류 단량체 발생으로 상기 공중합체의 순도가 저하될 수 있다. 또한, 저분자 물질과 다량의 잔류 단량체는 상기 공중합체 내에서 불순물로 작용하고, 이는 가공 시 휘발 물질을 다량 발생시켜 가공이 용이하지 못하게 하며, 유리전이온도(Tg)는 향상시킬 수 있으나, 열변형온도는 감소시키는 결과를 초래할 수 있다.
본 발명에 따른 상기 B) 아크릴로니트릴(acrylonitrile)은 불포화 니트릴계 화합물의 일종으로, 반응성 및 중합성이 커 합성 고무, 합성 수지의 원료로 넓게 사용되고 있다.
본 발명에서 상기 B) 아크릴로니트릴은 상기 A) α-메틸스티렌의 낮은 천정온도를 보완하여 중합이 용이하게 이뤄질 수 있도록 함과 동시에 이를 포함하는 상기 내열성 스티렌계 공중합체의 분자량을 증가시켜 최종 생성되는 상기 공중합체의 충격강도 및 내화학성 등의 기계·화학적 특성 향상을 부여하는 역할을 할 수 있다.
상기 매트릭스 공중합체인 내열성 스티렌계 공중합체는 상기 아크릴로니트릴을 20 중량% 내지 38 중량%로 포함할 수 있으며, 구체적으로는 25 중량% 내지 32 중량%일 수 있다. 만약, 상기 내열성 스티렌계 공중합체가 상기 아크릴로니트릴을 20 중량% 미만으로 포함할 경우에는 중합이 불완전하게 되어 미반응 물질이 많아지고, 충분히 높은 분자량이 형성되지 않아 기계적 성질이 저하될 수 있으며, 38 중량%를 초과하여 포함하는 경우에는 내열성의 저하를 유발할 수 있다.
본 발명에 따른 상기 C) t-부틸 메타크릴레이트(TBMA, tert-butyl methacrylate)는 알킬 메타크릴레이트의 일종으로, 상기 t-부틸 메타크릴레이트 내에 존재하는 이중 결합에 의하여 반응성이 매우 좋아 쉽게 중합체를 형성할 수 있는 특성이 있다.
본 발명에서 상기 t-부틸 메타크릴레이트는 우수한 반응성과 높은 천정온도(200℃ 이상)를 가지고 있어 상기 B) 아크릴로니트릴과 함께 A) α-메틸스티렌의 낮은 천정온도를 보완하여 중합온도를 높임과 동시에 중합 반응성을 높여 중합이 용이하게 이뤄질 수 있도록 하는 역할을 할 수 있다. 이에, 상기 내열성 스티렌계 공중합체의 내열성 저하 없이 전환율을 높일 수 있다.
상기 매트릭스 공중합체인 내열성 스티렌계 공중합체는 상기 t-부틸 메타크릴레이트를 0.5 중량% 내지 7 중량%로 포함할 수 있으며, 구체적으로는 1 중량% 내지 5 중량%일 수 있다. 만약, 상기 t-부틸 메타크릴레이트를 0.5 중량% 미만으로 포함할 경우에는 천정온도 및 중합 반응성 향상 효과가 미미하여 상기 내열성 스티렌계 공중합체의 전환율이 개선되지 않을 수 있으며, 상기 t-부틸 메타크릴레이트를 7 중량%를 초과하여 포함할 경우에는 천정온도 및 중합 반응성 향상 효과가 더 커져 전환율이 더 크게 개선될 수는 있으나 사용량에 비하여 전환율 향상 효과는 미미하고, 상기 t-부틸 메타크릴레이트가 중합에 사용된 다른 단량체에 비하여 고가이기 때문에 경제성도 떨어지는 문제가 있을 수 있다. 뿐만 아니라, 상기 t-부틸 메타크릴레이트가 과량으로(7 중량% 초과) 포함될 경우에는 상기 스티렌계 공중합체가 가진 기계·화학적 특성 균형을 깨트려(예컨대, 과도한 유리전이온도의 향상) 결과적으로 고무질 중합체, 예컨대 아크릴로니트릴-부타디엔-스티렌 공중합체(ABS) 수지와 블렌딩하여 성형품을 제조할 경우 상기 성형품의 기계·화학적 특성을 현저히 저하시키는 문제를 유발할 수 있다.
본 발명의 일 실시예에 따른 상기 내열성 스티렌계 공중합체는 A) α-메틸스티렌, B) 아크릴로니트릴 및 C) t-부틸 메타크릴레이트가 70 내지 72 : 23 내지 29.5 : 0.5 내지 7의 중량비를 갖도록 포함할 수 있으며, 구체적으로는 A) α-메틸스티렌 대 B) 아크릴로니트릴 대 C) t-부틸 메타크릴레이트가 70:23 내지 29.5:0.5 내지 5일 수 있다. 더욱 구체적으로는 70:25 내지 27: 3 내지 5의 중량비를 갖도록 포함하는 것일 수 있다.
상기 내열성 스티렌계 공중합체는 105℃의 중합온도에서 중합하였을 경우, 전환율이 40% 내지 60%이고, 유리전이온도(Tg)가 123℃ 내지 128℃ 범위이며, 중량평균분자량(Mw)이 87,000 내지 91,000인 것이 바람직할 수 있다.
한편, 상기 매트릭스 공중합체인 내열성 스티렌계 공중합체는 특별히 한정되지 않고 당업계에 통상적으로 알려진 괴상중합을 통하여 제조할 수 있다.
상기 괴상중합은 이에 한정되는 것은 아니나, 예컨대 α-메틸스티렌, 아크릴로니트릴 및 t-부틸 메타크릴레이트와 반응매질을 혼합하고, 80℃ 내지 130℃의 온도로 가열하면서 반응시켜 중합물을 제조한 후, 미반응된 물질 및 반응매질을 제거하는 단계에 의하여 수행할 수 있다.
상기 반응매질은 통상의 유기용매가 사용될 수 있으며, 예컨대 에틸벤젠, 벤젠, 톨루엔, 자일렌 등의 방향족 화합물과 메틸에틸케톤, 아세톤, n-헥산, 클로로포름, 사이클로 헥산 등이 사용될 수 있으나, 이에 제한되는 것은 아니다.
상기 괴상중합은 상기 기재한 물질 이외에 중합개시제 및 분자량 조절제와 같은 첨가제를 추가로 포함할 수 있다.
상기 중합개시제는 특별히 한정되지 않으나, 예컨대 과황산 칼륨, 과황산 나트륨 또는 과황산 암모늄 등의 수용성 과황산염계 중합개시제, 과산화수소, 큐멘하이드로퍼옥사이드, 디이소프로필벤젠 하이드로퍼옥사이드, 3급 부틸 하이드로퍼옥사이드, 파라멘탄 하이드로퍼옥사이드 등의 과산화물을 일 성분으로 하는 레독스계 중합개시제 등을 단독 또는 혼합하여 첨가할 수 있다.
상기 분자량 조절제는 메르캅탄류 등 통상적인 물질을 사용할 수 있으나, 예컨대 n-부틸머캅탄, n-옥틸머캅탄, n-도데실머캅탄, t-도데실머캅탄 등일 수 있으며, 구체적으로는 t-도데실머캅탄일 수 있다.
또한, 본 발명은 상기의 내열성 스티렌계 공중합체 및 고무질 중합체를 포함하는 스티렌계 수지 조성물을 제공한다.
본 발명의 일 실시예에 따른 상기 스티렌계 수지 조성물은 a) 내열성 스티렌계 공중합체 60 중량% 내지 80 중량%; 및 b) 고무질 중합체 20 중량% 내지 40 중량%를 포함하는 것을 특징으로 한다.
상기 a) 내열성 스티렌계 공중합체는 앞서 언급한 바와 같이 A) α-메틸스티렌, B) 아크릴로니트릴 및 C) t-부틸 메타크릴레이트를 포함하는 α-메틸스티렌-아크릴로니트릴-t-부틸 메타크릴레이트 공중합체(AMS-AN-TBMA)로, 상기 스티렌계 수지 조성물 내에서 매트릭스 공중합체(연속상)로 작용하는 것일 수 있다.
본 발명의 상기 스티렌계 수지 조성물은 앞서 언급한 바와 같이 상기 내열성 스티렌계 공중합체를 60 중량% 내지 80 중량%로 포함할 수 있으며, 구체적으로는 70 중량% 내지 80 중량%로 포함할 수 있다. 만약, 상기 내열성 스티렌계 공중합체가 상기의 범위를 벗어나서 포함될 경우에는, 상기 스티렌계 수지 조성물의 유동성이 저하되어 이를 이용한 성형품의 제조시 성형성이 감소되거나, 이로부터 제조된 성형품의 인장강도, 내열성, 내충격성이 저하되는 문제가 발생할 수 있다.
본 발명에 따른 상기 b) 고무질 중합체는 일종의 충진제로서 첨가되는 것으로, 상기 스티렌계 수지 조성물 내에 분산상으로 존재하는 것일 수 있으며, 상기 고무질 중합체는 평균입경이 250 nm 내지 500 nm인 것이 바람직할 수 있다.
상기 b) 고무질 중합체는 b-1) 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(ABS) 및 b-2) 코어-쉘 구조의 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체(ASA)로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
이하, 상기 b) 고무질 중합체에 대하여 더욱 상세하게 설명한다.
b-1) 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(ABS)
상기 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(ABS)는 디엔계 중합체 코어 및 상기 코어 상에 스티렌계 단량체 및 아크릴로니트릴계 단량체를 포함하는 쉘이 그라프트된 것일 수 있다.
구체적으로, 상기 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(ABS)는 디엔계 중합체 코어 50 중량% 내지 80 중량%; 및 상기 코어 상에 스티렌계 단량체 및 아크릴로니트릴계 단량체를 포함하는 쉘 20 중량% 내지 50 중량%가 그라프트된 것일 수 있다. 이때, 상기 코어 대 쉘의 두께 비율은 4:6 내지 8:2인 것일 수 있으며, 구체적으로는 5:5 내지 7:3일 수 있다.
또한, 상기 쉘은 스티렌계 단량체과 아크릴로니트릴계 단량체를 7:3 내지 8:2의 중량비로 포함하는 것일 수 있다.
상기 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체의 평균입경은 상기 고무질 중합체의 평균입경 범위 내이면 특별히 한정되는 것은 아니나, 구체적으로는 250 nm 내지 400 nm의 평균입경을 갖는 것일 수 있다.
한편, 상기 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 특별히 한정되지 않고 당업계에 통상적으로 공지된 방법에 의하여 제조하여 사용하거나, 시판되는 물질을 구입하여 사용할 수 있다.
예컨대, 상기 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 제조하여 사용할 경우에는, 상기 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 디엔계 중합체 코어를 제조하고, 상기 제조된 디엔계 중합체 코어에 스티렌계 단량체 및 아크릴로니트릴계 단량체를 포함하는 쉘을 그라프트 공중합하여 제조할 수 있다.
상기 디엔계 중합체 코어는 특별히 한정되지 않고 당업계에 통상적으로 공지된 방법에 의하여 제조할 수 있으나, 예컨대 공액 디엔계 단량체에 이온 교환수, 유화제, 중합개시제, 전해질 및 분자량 조절제 등의 첨가제를 투입하고 유화중합하여 제조한 것일 수 있다.
상기 유화중합은 특별히 한정되지 않고 당업계에 공지된 통상적인 방법에 의하여 수행할 수 있으나, 예컨대 공액 디엔계 단량체에 이온 교환수, 유화제, 중합개시제 등의 첨가제를 일괄적으로 반응기에 투입하고 반응시키거나, 또는 중합 전환율 시점으로 나누어 연속으로 투입하면서 반응시켜 수행할 수 있다.
구체적으로, 공액 디엔계 단량체, 공액 디엔계 단량체 100 중량부에 대하여 이온 교환수 70 중량부 내지 120 중량부, 유화제 0.2 중량부 내지 2.5 중량부, 중합개시제 0.1 중량부 내지 1.5 중량부, 전해질 0.5 중량부 내지 2 중량부, 분자량 조절제 0.1 중량부 내지 1 중량부를 일괄적으로 중합 반응기에 투입하고 50℃ 내지 90℃의 온도범위에서 반응시키는 단계를 포함하는 방법에 의하여 수행할 수 있다. 이때, 상기 공액 디엔계 단량체는 다른 구성 물질 또는 첨가제와 일괄 첨가되어 반응시키거나, 중합 반응 중 여러 차례에 걸쳐 분할 투입 또는 연속 투입할 수 있다.
상기 공액 디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피퍼릴렌(piperylene)으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. 구체적으로는 1,3-부타디엔일 수 있다.
상기 중합개시제 및 분자량 조절제는 앞서 언급한 것과 같거나, 포함되는 물질일 수 있다.
상기 유화제는 특별히 한정되는 것은 아니나, 예컨대 알킬 아릴 설포네이트, 알카리 메틸 알킬 설페이트, 설포네이트화된 알킬에스테르, 지방산의 비누 및 로진산의 알카리염으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 조합일 수 있다.
상기 전해질은 특별히 한정되는 것은 아니나, 예컨대 염화칼륨, 염화나트륨, 중탄산칼륨, 탄산나트륨, 탄산칼륨, 아황산수소칼륨, 아황산수소나트륨, 피로인산사칼륨, 피로인산사나트륨, 인산삼칼륨, 인산삼나트륨, 인산수소이칼륨 및 인산수소이나트륨으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 스티렌계 단량체 및 아크릴로니트릴계 단량체를 포함하는 쉘은 상기 제조된 디엔계 중합체 코어에 스티렌계 단량체 및 아크릴로니트릴계 단량체, 유화제, 중합개시제, 분자량 조절제 등의 첨가제를 투입하고 그라프트 공중합하여 상기 디엔계 중합체 코어 상에 형성시킬 수 있다.
상기 스티렌계 단량체는 스티렌, α-메틸스티렌, α-에틸스티렌, p-에틸스티렌, 비닐톨루엔 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 구체적으로는 스티렌일 수 있다.
상기 아크릴로니트릴계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 구체적으로는 아크릴로니트릴일 수 있다.
상기 유화제, 중합개시제, 분자량 조절제 등의 첨가제는 앞서 언급한 것과 같거나, 포함되는 물질일 수 있다.
b-2) 코어-쉘 구조의 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체(ASA)
상기 코어-쉘 구조의 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체는 아크릴레이트계 중합체 코어 및 상기 코어 상에 스티렌계 단량체 및 아크릴로니트릴계 단량체를 포함하는 쉘이 그라프트된 것일 수 있다.
구체적으로, 상기 코어-쉘 구조의 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체는 아크릴레이트계 중합체 코어 40 중량% 내지 60 중량%; 및 상기 코어 상에 스티렌계 단량체 및 아크릴로니트릴계 단량체를 포함하는 쉘 40 중량% 내지 60 중량%가 그라프트된 것일 수 있다. 이때, 상기 코어 대 쉘의 두께 비율은 4:6 내지 8:2일 수 있으며, 구체적으로는 5:5 내지 7:3일 수 있다.
또한, 상기 쉘은 스티렌계 단량체 및 아크릴로니트릴계 단량체를 7:3 내 8:2의 중량비로 포함하는 것일 수 있다.
상기 코어-쉘 구조의 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체의 평균입경은 상기 고무질 중합체의 평균입경 범위 내이면 특별히 한정되는 것은 아니나, 구체적으로는 250 nm 내지 400 nm일 수 있다.
한편, 상기 코어-쉘 구조의 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체는 특별히 한정되지 않고 당업계에 통상적으로 공지된 방법에 의하여 제조하여 사용하거나, 시판되는 물질을 구입하여 사용할 수 있다.
예컨대, 상기 코어-쉘 구조의 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체를 제조하여 사용할 경우에는, 상기 코어-쉘 구조의 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체는 아크릴레이트계 중합체 코어를 제조하고, 상기 제조된 아크릴레이트계 중합체 코어에 스티렌계 단량체 및 아크릴로니트릴계 단량체를 포함하는 쉘을 그라프트 공중합하여 제조할 수 있다.
상기 아크릴레이트계 중합체 코어는 특별히 한정되지 않고 당업계에 통상적으로 공지된 방법에 의하여 제조할 수 있으나, 예컨대 알킬 아크릴레이트 단량체에 이온 교환수, 유화제, 중합개시제, 그라프팅제, 가교제, 전해질 및 분자량 조절제 등의 첨가제를 투입하고 유화중합하여 제조한 것일 수 있다.
구체적으로, 알킬 아크릴레이트 단량체, 상기 알킬 아크릴레이트 단량체 100 중량부에 대하여 이온 교환수 70 중량부 내지 120 중량부, 유화제 0.1 중량부 내지 3 중량부, 중합개시제 0.05 중량부 내지 0.3 중량부, 그라프팅제 0.01 중량부 내지 0.07 중량부, 가교제 0.02 중량부 내지 0.3 중량부, 전해질 0.05 중량부 내지 0.4 중량부, 분자량 조절제 0.02 중량부 내지 0.2 중량부를 일괄적으로 중합 반응기에 투입하고 50℃ 내지 90℃의 온도에서 반응시키는 단계를 포함하는 방법에 의하여 수행할 수 있다. 이때, 상기 알킬 아크릴레이트 단량체는 다른 구성 물질 또는 첨가제와 일괄 첨가되어 반응시키거나, 중합 반응 중 여러 차례에 걸쳐 분할 투입 또는 연속 투입할 수 있다.
상기 알킬 아크릴레이트 단량체는 부틸 아크릴레이트, 에틸 헥실 아크릴레이트 또는 이들의 혼합물인 것일 수 있으나, 구체적으로는 부틸 아크릴레이트일 수 있다.
상기 유화제, 중합개시제, 전해질, 분자량 조절제는 앞서 언급한 것과 같거나, 포함되는 물질일 수 있다.
상기 그라프팅제는 아릴 메타크릴레이트(AMA), 트리아릴 이소시아누레이트(TAIC), 트리아릴 아민(TAA) 및 디아릴 아민(DAA)로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 가교제는 에틸렌글리콜 디메타크릴레이트, 디에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 1,3-부탄디올 디메타크릴레이트, 1,6-헥산디올 디메타크릴레이트, 네오펜틸 글리콜 디메타크릴레이트, 트리메틸올 프로판 트리메타크릴레이트 및 트리메틸올 트리아크릴레이트로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 스티렌계 단량체 및 아크릴로니트릴계 단량체를 포함하는 쉘은 상기 제조된 아크릴레이트계 중합체 코어에 스티렌계 단량체 및 아크릴로니트릴계 단량체, 유화제, 중합개시제, 분자량 조절제 등의 첨가제를 투입하고 그라프트 공중합하여 상기 아크릴레이트계 중합체 코어 상에 형성시킬 수 있다. 이때, 그라프트 공중합은 상기의 스티렌계 단량체, 아크릴로니트릴계 단량체 및 유화제를 포함하는 첨가제를 일괄투여하여 반응시킬 수 있으나 상기 아크릴레이트계 중합체 코어 상에 균일하게 그라프트 시키기 위해서 분할 투여 또는 연속 투여하여 진행하는 것이 바람직할 수 있다.
상기 스티렌계 단량체 및 아크릴로니트릴계 단량체는 앞서 언급한 것과 같거나, 포함되는 물질일 수 있다.
본 발명의 일 실시예에 다른 상기 스티렌계 수지 조성물은 상기 언급한 유효성분 이외에 필요에 따라 열안정제, 활제, 산화방지제, 광 안정제, 난연제, 대전방지제, 착색제, 충진제 및 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상의 첨가제를 추가로 포함할 수 있다.
아울러, 본 발명은 상기의 스티렌계 수지 조성물로부터 제조된 스티렌계 수지 성형품을 제공한다.
본 발명의 일 실시예에 다른 상기 스티렌계 수지 성형품은 1/4″ 두께일 때 ASTM D256에 의거하여 측정한 충격강도가 20 J/m 내지 25 J/m이고, ASTM D638에 의거하여 5 cm/min의 속도 조건에서 측정한 인장신율이 28% 내지 40%인 것을 특징으로 한다.
여기에서, 상기 ASTM(American Society for Testing and Materials)은 플라스틱의 성능을 시험하는 하나의 표준시험방법 및 규격을 나타내는 것으로, ASTM D256은 아이조드(Izod) 충격저항 시험을 의미하는 것이고, ASTM D638은 인장시험을 의미하는 것이다.
이하, 하기 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로, 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
제조 실시예 1
1 ℓ의 배치 반응기에 α-메틸스티렌 70 중량%, 아크릴로니트릴 29.5 중량% 및 t-부틸 메타크릴레이트 0.5 중량%를 포함하는 단량체 혼합물과 상기 단량체 혼합물 100 중량부에 대하여 5 중량부의 에틸벤젠, 0.1 중량부의 중합개시제(Perhexa C, NOF)를 투입하여 혼합하고, 이를 104℃의 중합온도에서 200 rpm으로 회전하면서 6시간 괴상중합시켰다. 중합이 완료된 후 메탄올로 침전시키고 진공오븐에서 220℃에서 2시간 동안 건조시켜 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 2
아크릴로니트릴을 29 중량%로 사용하고, t-부틸 메타크릴레이트를 1 중량%로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 3
아크릴로니트릴을 27 중량%로 사용하고, t-부틸 메타크릴레이트를 3 중량%로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 4
아크릴로니트릴을 25 중량%로 사용하고, t-부틸 메타크릴레이트를 5 중량%로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 5
α-메틸스티렌을 72 중량%, 아크릴로니트릴을 27 중량%, t-부틸 메타크릴레이트를 1 중량%로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 6
α-메틸스티렌을 72 중량%, 아크릴로니트릴을 25 중량%, t-부틸 메타크릴레이트를 3 중량%로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 7
중합온도를 106℃로 조정한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 8
중합온도를 106℃로 조정한 것을 제외하고는 상기 제조 실시예 2와 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 9
중합온도를 106℃로 조정한 것을 제외하고는 상기 제조 실시예 3과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 10
중합온도를 106℃로 조정한 것을 제외하고는 상기 제조 실시예 4와 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 11
중합온도를 106℃로 조정한 것을 제외하고는 상기 제조 실시예 5와 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 실시예 12
중합온도를 106℃로 조정한 것을 제외하고는 상기 제조 실시예 6과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 비교예 1
α-메틸스티렌을 72 중량%, 아크릴로니트릴을 20 중량%, t-부틸 메타크릴레이트를 8 중량%로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 비교예 2
α-메틸스티렌을 72 중량%, 아크릴로니트릴을 28 중량%로 사용하고 t-부틸 메타크릴레이트를 사용하지 않은 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 비교예 3
α-메틸스티렌을 70 중량%, 아크릴로니트릴을 29.7 중량%, t-부틸 메타크릴레이트를 0.3 중량%로 사용한 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 비교예 4
α-메틸스티렌을 70 중량%, 아크릴로니트릴을 30 중량%로 사용하고, t-부틸 메타크릴레이트를 사용하지 않은 것을 제외하고는 상기 제조 실시예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 비교예 5
중합온도를 106℃로 조정한 것을 제외하고는 상기 제조 비교예 1과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 비교예 6
중합온도를 106℃로 조정한 것을 제외하고는 상기 제조 비교예 2와 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 비교예 7
중합온도를 106℃로 조정한 것을 제외하고는 상기 제조 비교예 3과 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
제조 비교예 8
중합온도를 106℃로 조정한 것을 제외하고는 상기 제조 비교예 4와 동일한 방법을 통하여 내열성 스티렌계 공중합체를 제조하였다.
실험예 1
상기 제조 실시예 1 내지 제조 실시예 12 및 제조 비교예 1 내지 제조 비교예 8에서 제조한 각 내열성 스티렌계 공중합체의 유리전이온도(Tg), 전환율(%) 및 중량평균분자량(Mw)을 측정하였으며, 하기 표 1에 측정값을 나타내었다.
1) 유리전이온도(Tg, ℃)
유리전이온도는 각 내열성 스티렌계 공중합체를 150℃까지 승온시키고 용융 급랭시킨 후 DSC법으로 승온속도를 10 ℃/min으로하여 측정하였다.
2) 전환율(%)
전환율은 각 내열성 스티렌계 공중합체의 중합 전 각 반응물의 초기 질량을 측정하고 용매의 함량을 뺀 단량체 기준의 무게를 기록해 두고, 중합반응 후 생성된 각 내열성 스티렌계 공중합체의 무게를 측정한 뒤 상기 중합전 단량체의 무게와 중합 후 내열성 스티렌계 공중합체의 무게의 비율로 측정하였다.
3) 중량평균분자량(Mw, g/mol)
중량평균분자량은 GPC(Gel Permeation Chromatography, Waters 2410 RI Detector, 515 HPLC pump. 717 Auto Sampler)를 사용하여 측정하였다. 각 내열성 스티렌계 공중합체 0.02 g에 THF(tetrahydrofuran) 20 ㎖를 넣어 녹인 뒤에, 0.45 ㎛ 필터로 거르고 GPC vial(4 ㎖)에 넣어 각 샘플을 만들었다. 측정 1시간 전부터 용매(THF)를 1.0 ㎖/min 속도로 주입시키고, 측정시간 25분, 주입부피 150 ㎕, 유동속도 1.0 ㎖/min, isocratic 펌프모드, RI detector로 40℃의 조건에서 측정하였다. 이때 PS 스탠다드를 사용하여 캘리브레이션 하였다.
표 1
구분(중합온도: 104℃) 제조 실시예 1 제조 실시예 2 제조 실시예 3 제조 실시예 4 제조 실시예 5 제조 실시예 6 제조 비교예 1 제조 비교예 2 제조 비교예 3 제조 비교예 4
TBMA 첨가량(wt%) 0.5 1 3 5 1 3 8 0 0.3 0
Tg(℃) 125 125 126 128 127 127 130 126 126 125
전환율(%) 47 49 53 55 47 50 52 44 44 46
Mw(g/mol) 90,000 88,500 89,000 91,000 87,000 88,000 92,000 87,000 87,000 91,000
구분(중합온도: 106℃) 제조 실시예 7 제조 실시예8 제조 실시예 9 제조 실시예 10 제조 실시예 11 제조 실시예 12 제조 비교예 5 제조 비교예 6 제조 비교예 7 제조 비교예 8
TBMA 첨가량(wt%) 0.5 1 3 5 1 3 8 0 0.3 0
Tg(℃) 123 123 124 126 124 126 128 124 124 123
전환율(%) 43 45 49 52 43 45 49 40 40 42
Mw(g/mol) 89,000 88,500 89,000 91,000 87,000 88,000 91,000 85,000 85,000 86,000
상기 표 1에 나타낸 바와 같이, t-부틸 메타크릴레이트를 포함하는 본 발명에 따른 상기 제조 실시예 1 내지 제조 실시예 12에서 제조한 내열성 스티렌계 공중합체가 전환율이 개선되면서 우수한 유리전이온도 및 중량평균분자량 수치를 나타내는 것을 확인하였다.
구체적으로, 104℃의 중합온도에서 중합반응을 실시한 제조 실시예 1 내지 제조 실시예 6 및 제조 비교예 1 내지 제조 비교예 4에서 제조한 각 내열성 스티렌계 공중합체를 비교한 결과, t-부틸 메타크릴레이트를 포함하지 않은 제조 비교예 2 및 제조 비교예 4의 내열성 스티렌계 공중합체에 비하여 본 발명에 따른 제조 실시예 1 내지 제조 실시예 6의 내열성 스티렌계 공중합체가 유사한 유리전이온도 및 중량평균분자량 수치를 유지하면서 전환율이 향상(최소 1%에서 최대 11% 향상)되었다.
또한, 106℃의 중합온도에서 중합반응을 실시한 제조 실시예 7 내지 제조 실시예 12 및 제조 비교예 5 내지 제조 비교예 8에서 제조한 각 내열성 스티렌계 공중합체를 비교한 결과, t-부틸 메타크릴레이트를 포함하지 않은 제조 비교예 6 및 제조 비교예 8의 내열성 스티렌계 공중합체에 비하여 본 발명에 따른 제조 실시예 7 내지 제조 실시예 12의 내열성 스티렌계 공중합체가 유사한 유리전이온도 및 중량평균분자량 수치를 유지하면서 전환율이 향상(최소 1%에서 최대 12% 향상)되었다.
한편, t-부틸 메타크릴레이트를 포함하나 본 발명에 따른 함량 범위 미만으로 포함한 제조 비교예 3(중합온도 104℃) 및 제조 비교예 7(중합온도 106℃)의 경우에는 t-부틸 메타크릴레이트를 포함하지 않은 제조 비교예 2 및 제조 비교예 6과 동등한 전환율을 나타내었다. 이는, t-부틸 메타크릴레이트가 특정량 미만으로 사용될 경우에는 내열성 스티렌계 공중합체의 전환율 향상에 도움이 되지 못함을 의미하는 결과이다. 또한, t-부틸 메타크릴레이트를 포함하나 본 발명에 따른 함량 범위를 초과하여 포함한 제조 비교예 1(중합온도 104℃) 및 제조 비교예 5(중합온도 106℃)의 경우에는 전환율이 각각 동일 조건에서 제조한 제조 실시예 1 내지 제조 실시예 6 및 제조 실시예 7 내지 제조 실시예 12와 유사한 수준으로 증가하였으나 유리전이온도 또한 다소 크게 증가하는 경향을 나타내었다. 이는, 다량의 t-부틸 메타크릴레이트를 첨가하여 중합할 경우 제조된 내열성 스티렌계 공중합체의 내에 변형을 일으키거나 물성을 변화시킬 수 있음을 나타내며, 더 나아가 이를 매트릭스 공중합체로 사용하여 다른 고무질 중합체와 같은 충진제(분산상)와 블렌딩할 경우 균형을 깨뜨려 최종 생성되는 수지 성형품의 물성을 현저히 저하시키는 문제가 발생될 수 있다.
즉, 내열성 스티렌계 공중합체 내의 변형이나 물성의 변화 없이 전환율만 향상시키는 것이 중요하며, 본 발명에 따른 상기 제조 실시예 1 내지 제조 실시예 12에서 제조한 각 내열성 스티렌계 공중합체는 전환율은 개선하고 상기 공중합체 내의 변형이나 물성에 변화를 시키지 않았음을 상기의 결과를 통하여 1차적으로 확인하였다.
상기 제조 실시예 1 내지 제조 실시예 12 및 제조 비교예 1 내지 제조 비교예 8에서 제조한 각 내열성 스티렌계 공중합체의 특성 비교 분석, 특히 내열성 스티렌계 공중합체 내의 변형 또는 물성의 변화 여부에 대한 2차 확인을 위하여, 하기 실시예 1 내지 실시예 12 및 비교예 1 내지 비교예 6에 따라 각 스티렌계 수지 성형품(펠렛)을 제조하고 비교 분석을 실시하였다.
실시예 1
상기 제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 75 중량%와 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(LG 화학) 25 중량%를 혼합하여 스티렌계 수지 조성물을 제조하고, 이를 240℃에서 2축 압출기를 이용하여 펠렛을 제조하였다.
실시예 2
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 2에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실시예 3
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 3에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실시예 4
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 4에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실시예 5
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 5에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실시예 6
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 6에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실시예 7
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 7에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실시예 8
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 8에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실시예 9
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 9에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실시예 10
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 10에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실시예 11
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 11에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실시예 12
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 실시예 12에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
비교예 1
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 비교예 1에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
비교예 2
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 비교예 2에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
비교예 3
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 비교예 3에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
비교예 4
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 비교예 4에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
비교예 5
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 비교예 5에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
비교예 6
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 비교예 6에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
비교예 7
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 비교예 7에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
비교예 8
제조 실시예 1에서 제조한 내열성 스티렌계 공중합체 대신에 상기 제조 비교예 8에서 제조한 내열성 스티렌계 공중합체를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛을 제조하였다.
실험예 2
상기 실시예 1 내지 12 및 비교예 1 내지 8에서 제조한, 스티렌계 수지 조성물로부터 제조된 성형품인 펠렛 각각의 기계?화학적 특성 비교 분석을 위하여, 각 펠렛에 대한 인장강도(TS), 인장신율(TE), 충격강도, 유동성 및 내열성(HDT) 분석을 실시하였으며, 결과를 하기 표 2에 나타내었다.
1) 인장강도(TS) 및 인장신율(TE) 분석
인장강도 및 인장신율은 ASTM D638에 의거하여 분석을 실시하였다. 상기 실시예 1 내지 12 및 비교예 1 내지 6의 각 펠렛을 300℃에서 사출 성형하여 두께 1/8″의 각 시편을 제조하고, 시편의 양끝을 인장 시험기의 물림쇠에 물린 후, 한쪽 물림쇠는 고정하고 다른쪽 물림쇠를 5 cm/min으로 당겨 절단시의 하중값을 얻고, 하기 수학식 1 및 수학식 2를 통하여 인장강도(MPa) 및 인장신율(%)을 얻었다.
[수학식 1]
Figure PCTKR2015003541-appb-I000002
[수학식 2]
Figure PCTKR2015003541-appb-I000003
2) 충격강도(내충격성, J/m)
충격강도는 ASTM D256에 의거하여 분석을 실시하였다. 상기 실시예 1 내지 12 및 비교예 1 내지 8의 각 펠렛을 두께 1/4″로 성형하여 시편을 제조하고 이를 아이조드 충격 시험기에 지지시킨 후 함마로 타격하여 수행하였으며, 이에 소요된 에너지와 시험편 절입폭을 측정하여 하기 수학식 3을 통하여 충격강도 값을 얻었다. 상기 함마의 타격속도는 약 240 cm/sec이다.
[수학식 3]
Figure PCTKR2015003541-appb-I000004
상기 식에서, Nw는 시험편 접입부의 폭(m)을 나타내고, E는 시험편 파괴에 소요된 에너지(J)을 나타낸다.
3) 유동성(용융지수, g/10 min)
유동성은 ASTM D1238에 의거하여 분석을 실시하였다. 상기 실시예 1 내지 12 및 비교예 1 내지 8에서 제조한 각 펠렛을 300℃에서 사출성형하여 1/4″의 각 시편을 제조하고, 각 시편을 220℃의 온도로 가열하고 실린더에 넣고 피스톤으로 10 kg의 부하를 가하여 10분 동안 용융되어 나온 수지의 무게(g)을 측정하였다.
4) 내열성(HDT, ℃)
내열성은 ASTM D648에 의거하여 분석을 실시하였다. 상기 실시예 1 내지 12 및 비교예 1 내지 8에서 제조한 각 펠렛을 300℃에서 사출성형하여 두께 1/4″의 각 시편을 제조하고, 각 시편을 4 inch 떨어진 지지대 위에 올려놓고 중심에 66 psi의 부하를 가하면서 주위의 온도를 분당 2±0.2℃의 속도로 올려 시편이 0.010 inch 변형되는 온도를 측정하였다.
표 2
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 비교예 1 비교예 2 비교예 3 비교예 3
TS(MPa) 578 580 563 570 559 562 579 590 582 552
TE(%) 34 35 30 29 3 33 15 32 30 36
충격강도(J/m) 21 22 20 20 25 23 16 24 24 25
유동성(g/10 min) 8 9 8 7 9 8 4 9 9 10
내열성(℃) 98 99 100 100 98 99 101 98 98 97
구분 실시예 7 실시예 8 실시예 9 실시예 10 실시예 11 실시예 12 비교예 5 비교예 6 비교예 7 비교예 8
TS(MPa) 565 582 575 575 559 564 573 590 591 552
TE(%) 31 32 30 28 37 33 15 32 30 36
충격강도(J/m) 23 22 21 22 25 24 14 24 24 25
유동성(g/10 min) 8 9 8 7 9 8 4 9 9 10
내열성(℃) 96 97 97 99 97 98 100 96 96 96
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 상기 실시예 1 내지 실시예 12에서 제조한 각 스티렌계 수지 성형품이 비교예 1 내지 비교예 8에서 제조한 각 스티렌계 수지 성형품과 비교하여 유사하거나 우수한 기계·화학적 특성을 보이는 것을 확인하였다.
구체적으로, t-부틸 메타크릴레이트를 포함하지 않은 제조 비교예 2, 제조 비교예 4, 제조 비교예 6 및 제조 비교예 8의 내열성 스티렌계 공중합체를 매트릭스 공중합체로 포함하는 비교예 2, 비교예 4, 비교예 6 및 비교예 8의 스티렌계 수지 성형품과 비교한 결과, t-부틸 메타크릴레이트를 적정 비율로 포함하는 제조 실시예 1 내지 제조 실시예 12의 내열성 스티렌계 공중합체를 매트릭스 공중합체로 포함하는 실시예 1 내지 실시예 12의 스티렌계 수지 성형품이 유사하거나 다소 우수한 인장강도, 인장신율, 충격강도, 유동성 및 내열성을 나타내었다. 이는, 본 발명에 따른 상기 제조 실시예 1 내지 제조 실시예 12에서 제조한 내열성 스티렌계 공중합체가 적정한 비율로 t-부틸 메타크릴레이트를 포함함으로써 전환율은 개선하고 상기 공중합체 내의 변형이나 물성을 변화시키지 않았음을 의미한다.
한편, t-부틸 메타크릴레이트를 본 발명에 따른 함량을 벗어나 과량으로 포함하는 제조 비교예 1 및 제조 비교예 5에서 제조된 내열성 스티렌계 공중합체를 매트릭스 공중합체로 포함하는 비교예 1 및 비교예 5의 스티렌계 수지 성형품은 본 발명에 따른 실시예 1 내지 실시예 12의 스티렌계 수지 성형품이나 다른 비교예의 스티렌계 수지 성형품에 비하여 인장신율, 충격강도 및 유동성이 매우 저하되었다. 이는, 과량의 t-부틸 메타크릴레이트를 포함함으로 인해 내열성 스티렌계 공중합체 내에 t-부틸 메타크릴레이트이 겔화되어 불순물로 존재하게 되고, 이에 따라 물성 저하를 일으켰음을 의미하는 결과이다.

Claims (18)

  1. A) α-메틸스티렌 60 중량% 내지 78 중량%;
    B) 아크릴로니트릴 20 중량% 내지 38 중량%; 및
    C) t-부틸 메타크릴레이트 0.5 중량% 내지 7 중량%를 포함하는 내열성 스티렌계 공중합체.
  2. 청구항 1에 있어서,
    상기 C) t-부틸 메타크릴레이트는 1 중량% 내지 5 중량%로 포함되는 것을 특징으로 하는 내열성 스티렌계 공중합체.
  3. 청구항 1에 있어서,
    상기 A) α-메틸스티렌, B) 아크릴로니트릴 및 C) t-부틸 메타크릴레이트는 70 내지 72 : 23 내지 29.5 : 0.5 내지 7의 중량비를 갖는 것을 특징으로 하는 내열성 스티렌계 공중합체.
  4. 청구항 1에 있어서,
    상기 스티렌계 공중합체는 105℃의 중합온도에서 중합시 전환율이 40% 내지 60%이고, 유리전이온도(Tg)가 123℃ 내지 128℃ 범위이며, 중량평균분자량(Mw)이 87,000 내지 91,000인 것을 특징으로 하는 내열성 스티렌계 공중합체.
  5. a) 청구항 1에 기재된 내열성 스티렌계 공중합체 60 중량% 내지 80 중량%; 및
    b) 고무질 중합체 20 중량% 내지 40 중량%를 포함하는 스티렌계 수지 조성물.
  6. 청구항 5에 있어서,
    상기 b) 고무질 중합체는 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(ABS) 및 코어-쉘 구조의 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체(ASA)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 스티렌계 수지 조성물.
  7. 청구항 5에 있어서,
    상기 b) 고무질 중합체는 평균입경이 250 nm 내지 500 nm인 것을 특징으로 하는 스티렌계 수지 조성물.
  8. 청구항 6에 있어서,
    상기 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(ABS)는,
    디엔계 중합체 코어 50 중량% 내지 80 중량%; 및
    상기 코어 상에 그라프트된 스티렌계 단량체 및 아크릴로니트릴계 단량체를 포함하는 쉘 20 중량% 내지 50 중량%를 포함하고;
    상기 코어 대 쉘의 두께 비율이 4:6 내지 8:2인 것을 특징으로 하는 스티렌계 수지 조성물.
  9. 청구항 8에 있어서,
    상기 쉘은 스티렌계 단량체과 아크릴로니트릴계 단량체를 7:3 내지 8:2의 중량비로 포함하는 것을 특징으로 하는 스티렌계 수지 조성물.
  10. 청구항 8에 있어서,
    상기 디엔계 중합체는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피퍼릴렌으로 이루어진 군으로부터 선택된 1종 이상의 공액 디엔계 단량체로부터 유래된 것인 것을 특징으로 하는 스티렌계 수지 조성물.
  11. 청구항 6에 있어서,
    상기 코어-쉘 구조의 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체(ASA)는,
    아크릴레이트계 중합체 코어 40 중량% 내지 60 중량%; 및
    상기 코어 상에 그라프트된 스티렌계 단량체 및 아크릴로니트릴계 단량체를 포함하는 쉘 40 중량% 내지 60 중량%를 포함하고;
    상기 코어 및 쉘의 두께 비율이 4:6 내지 8:2인 것을 특징으로 하는 스티렌계 수지 조성물.
  12. 청구항 11에 있어서,
    상기 쉘은 스티렌계 단량체 및 아크릴로니트릴계 단량체를 7:3 내지 8:2의 중량비로 포함하는 것을 특징으로 하는 스티렌계 수지 조성물.
  13. 청구항 11에 있어서,
    상기 아크릴레이트계 중합체는 부틸 아크릴레이트, 에틸 헥실 아크릴레이트 또는 이들의 혼합물로부터 유래된 것인 것을 특징으로 하는 스티렌계 수지 조성물.
  14. 청구항 8 또는 청구항 11에 있어서,
    상기 스티렌계 단량체는 스티렌, α-메틸스티렌, α-에틸 스티렌, p-에틸 스티렌, 비닐톨루엔 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 스티렌계 수지 조성물.
  15. 청구항 8 또는 청구항 11에 있어서,
    상기 아크릴로니트릴계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 스티렌계 수지 조성물.
  16. 청구항 5에 있어서,
    상기 스티렌계 수지 조성물은 열안정제, 활제, 산화방지제, 광 안정제, 난연제, 대전방지제, 착색제, 충진제 및 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상의 첨가제를 추가로 포함하는 것을 특징으로 하는 스티렌계 수지 조성물.
  17. 청구항 5에 기재된 스티렌계 수지 조성물로부터 제조된 스티렌계 수지 성형품.
  18. 청구항 17에 있어서,
    상기 스티렌계 수지 성형품은 1/4″ 두께일 때 ASTM D256에 의거하여 측정한 충격강도가 20 J/m 내지 25 J/m이고, 1/8″ 두께일 때 ASTM D638에 의거하여 5 cm/min의 속도 조건에서 측정한 인장신율이 28% 내지 40%인 것을 특징으로 하는 스티렌계 수지 성형품.
PCT/KR2015/003541 2014-04-25 2015-04-08 내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물 WO2015163608A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016534550A JP6210254B2 (ja) 2014-04-25 2015-04-08 耐熱性スチレン系共重合体及びこれを含むスチレン系樹脂組成物
US14/909,924 US10047179B2 (en) 2014-04-25 2015-04-08 Heat-resistant styrene copolymer and styrene resin composition comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0050047 2014-04-25
KR20140050047 2014-04-25
KR10-2015-0049695 2015-04-08
KR1020150049695A KR101743816B1 (ko) 2014-04-25 2015-04-08 내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물

Publications (1)

Publication Number Publication Date
WO2015163608A1 true WO2015163608A1 (ko) 2015-10-29

Family

ID=54332725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003541 WO2015163608A1 (ko) 2014-04-25 2015-04-08 내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물

Country Status (1)

Country Link
WO (1) WO2015163608A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200226285A1 (en) * 2016-08-23 2020-07-16 BBM Health LLC Blockchain-based mechanisms for secure health information resource exchange

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010138A (en) * 1988-08-16 1991-04-23 Bayer Aktiengesellschaft Thermoplastic interpolymers and their use in mixtures of polyamide and styrene copolymers and/or graft polymers
US5639826A (en) * 1993-02-24 1997-06-17 Basf Aktiengesellschaft Thermoplastic molding materials based on polycarbonates thermoplastic polyurethanes and styrene copolymers
KR0173878B1 (ko) * 1996-04-03 1999-04-01 사공누영 중공성형용 열가소성 수지조성물
JP2011513544A (ja) * 2008-03-05 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア α−メチルスチレン−アクリロニトリルコポリマーとブロックコポリマーの強靭で剛直な混合物
KR20140027872A (ko) * 2012-08-27 2014-03-07 주식회사 엘지화학 아크릴로니트릴―아크릴레이트―스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010138A (en) * 1988-08-16 1991-04-23 Bayer Aktiengesellschaft Thermoplastic interpolymers and their use in mixtures of polyamide and styrene copolymers and/or graft polymers
US5639826A (en) * 1993-02-24 1997-06-17 Basf Aktiengesellschaft Thermoplastic molding materials based on polycarbonates thermoplastic polyurethanes and styrene copolymers
KR0173878B1 (ko) * 1996-04-03 1999-04-01 사공누영 중공성형용 열가소성 수지조성물
JP2011513544A (ja) * 2008-03-05 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア α−メチルスチレン−アクリロニトリルコポリマーとブロックコポリマーの強靭で剛直な混合物
KR20140027872A (ko) * 2012-08-27 2014-03-07 주식회사 엘지화학 아크릴로니트릴―아크릴레이트―스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200226285A1 (en) * 2016-08-23 2020-07-16 BBM Health LLC Blockchain-based mechanisms for secure health information resource exchange
US11657176B2 (en) * 2016-08-23 2023-05-23 Health Blockchain Convergence, Inc. Blockchain-based mechanisms for secure health information resource exchange

Similar Documents

Publication Publication Date Title
WO2020032505A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 이를 포함하는 열가소성 수지 성형품
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2022019581A1 (ko) 열가소성 수지 및 이의 제조방법
WO2020101332A1 (ko) 열가소성 수지 조성물
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2019151776A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2019059664A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020050544A1 (ko) 그라프트 공중합체의 제조방법 및 그라프트 공중합체
WO2020080735A1 (ko) 그라프트 공중합체 분말의 제조방법
WO2015163608A1 (ko) 내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물
WO2020091336A1 (ko) 열가소성 수지 조성물
WO2022035071A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2019221448A1 (ko) 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물
WO2015163609A1 (ko) 내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물
WO2019156394A1 (ko) 그라프트 공중합체의 제조방법 및 열가소성 수지 성형품
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018088677A1 (ko) 열가소성 수지 및 열가소성 수지 조성물
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2021066345A1 (ko) 아크릴계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2022075578A1 (ko) 비닐시안 화합물-공액디엔 고무-방향족 비닐 화합물 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 열가소성 수지 조성물
WO2019098753A1 (ko) 그라프트 공중합체의 제조방법
WO2022085913A1 (ko) 비닐시안 화합물-공액디엔 고무-방향족 비닐 화합물 그라프트 공중합체의 제조방법 및 이를 포함하는 열가소성 수지 조성물의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14909924

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016534550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783574

Country of ref document: EP

Kind code of ref document: A1