WO2020050544A1 - 그라프트 공중합체의 제조방법 및 그라프트 공중합체 - Google Patents

그라프트 공중합체의 제조방법 및 그라프트 공중합체 Download PDF

Info

Publication number
WO2020050544A1
WO2020050544A1 PCT/KR2019/011009 KR2019011009W WO2020050544A1 WO 2020050544 A1 WO2020050544 A1 WO 2020050544A1 KR 2019011009 W KR2019011009 W KR 2019011009W WO 2020050544 A1 WO2020050544 A1 WO 2020050544A1
Authority
WO
WIPO (PCT)
Prior art keywords
graft copolymer
weight
monomer
added
meth
Prior art date
Application number
PCT/KR2019/011009
Other languages
English (en)
French (fr)
Inventor
안봉근
김민정
조왕래
황용연
박장원
전지윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020547190A priority Critical patent/JP7098121B2/ja
Priority to EP19857448.5A priority patent/EP3736301A4/en
Priority to US16/968,996 priority patent/US11377515B2/en
Priority to CN201980012933.3A priority patent/CN111741990B/zh
Publication of WO2020050544A1 publication Critical patent/WO2020050544A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present invention relates to a method for preparing a graft copolymer and a graft copolymer, and relates to a graft copolymer and a graft copolymer having excellent impact resistance, thermal stability, surface clarity, whiteness, appearance quality and weather resistance.
  • ABS graft copolymer has excellent impact resistance, stiffness, chemical resistance, and workability, and is widely used in various fields in various fields such as electric and electronic, construction, and automobiles.
  • ABS graft copolymers as butadiene polymers as rubber has limited weather resistance, which limits their use for outdoor use.
  • the ASA graft copolymer is known as a material having excellent basic physical properties and aging resistance.
  • ASA graft copolymers are ferrous sulfate / dextrose / sodium pyrophosphate (FeS / DX / SPP) or ferrous sulfate / sodium formaldehyde sulfoxylate / as initiators and activators for acrylic polymers in the production of shells.
  • Sodium ethylenediamine tetraacetate (FeS / SFS / EDTA) system is used.
  • the dextrose used as a reducing agent is a material that is easily heat discolored and remains stable in the graft copolymer. Caused a drop.
  • FeS / SFS / EDTA sodium formaldehyde sulfoxylate used as a reducing agent is thermally decomposed to form an aldehyde, which becomes a gas-generating material during processing when remaining in the graft copolymer.
  • ferrous sulfate which is commonly used, is known to cause degradation of the performance of the graft copolymer when remaining in the graft copolymer.
  • An object of the present invention is to provide a method for preparing a graft copolymer having improved impact resistance, thermal stability, surface clarity, whiteness, appearance quality and weatherability, while maintaining basic properties.
  • the present invention is 1) alkyl (meth) acrylate-based monomer, aromatic vinyl-based monomer and a vinyl cyanide monomer is added to one or more selected from the group consisting of polymerization and preparing a seed ; 2) preparing a core by introducing and polymerizing an alkyl (meth) acrylate-based monomer in the presence of the seed; And 3) in the presence of the core, adding an aromatic vinyl monomer and a vinyl cyan monomer and polymerizing to prepare a shell, and in step 3), an activator comprising a compound represented by Formula 1 below is added.
  • the core provides a method for preparing a graft copolymer having an average particle diameter of 320 to 520 nm:
  • M 1 and M 2 are the same as or different from each other, and each independently an alkali metal.
  • the present invention is an alkyl (meth) acrylate monomer unit; Aromatic vinyl monomer units; Vinyl cyanide monomer units; And a compound derivative represented by Formula 1 below, wherein the core provides a graft copolymer having an average particle diameter of 320 to 520 nm:
  • M 1 and M 2 are the same as or different from each other, and each independently an alkali metal.
  • the present invention is the graft copolymer described above; And an aromatic vinyl-based monomer unit and a matrix copolymer comprising a vinyl cyan-based monomer unit, having an impact strength of 21.3 kg ⁇ cm / cm or more and a retention thermal stability of 4.5 or less. to provide.
  • the method of manufacturing the graft copolymer of the present invention while maintaining basic properties such as fluidity at the same level as the existing, impact resistance, thermal stability, surface clarity, whiteness, appearance quality and weatherability can be remarkably improved.
  • the average particle diameter of the seed, core, and graft copolymer can be measured using a dynamic light scattering method, and specifically, can be measured using a Nicomp 380 equipment (product name, manufacturer: PSS). have.
  • the average particle diameter may mean an arithmetic average particle size in a particle size distribution measured by dynamic light scattering.
  • the arithmetic average particle size can be measured as the average particle size of the scattering intensity (Intensity Distribution), the average particle size of the volume distribution, and the average particle size of the number distribution. Among these, it is preferable to measure the average particle size of the scattering intensity.
  • the total amount of the volatile organic compound is analyzed by analyzing the components of the volatile organic compound coming out from the conditions of 230 ° C, 60 minutes, and 20 ml of the graft copolymer 1 g using HS-GC / FID. Can be analyzed.
  • thermogravimetric analysis can be performed while heating 0.1 g of the graft copolymer powder from 30 ° C. to 250 ° C. under a nitrogen atmosphere at 20 ° C./min, and maintaining it at 250 ° C. for 1 hour. It can be measured and displayed as a residual amount (% by weight).
  • the impact strength can be measured in accordance with ASTM 256 specimens prepared by extrusion and injection of a thermoplastic resin composition.
  • the retention heat stability is introduced into the extruded thermoplastic resin composition in an injection molding machine, and then stayed in an injection molding machine at 260 ° C. for 5 minutes, and then injected at a temperature of 260 ° C. to prepare a retention specimen, and the pellet-type thermoplastic resin composition is prepared.
  • the L, a, and b values of the retained specimen and the non-retentive specimen are measured with a spectro-colorimeter, and the degree of discoloration using the following formula ( ⁇ E) was calculated.
  • the ⁇ monomers input in the method for producing the graft copolymer '' means ⁇ alkyl (meth) acrylate monomers, aromatic vinyl monomers and vinyl cyan monomers injected in the production of seeds, cores and shells Can mean '.
  • Method for producing a graft copolymer is 1) alkyl (meth) acrylate-based monomer, aromatic vinyl-based monomer and vinyl cyan-based monomer is added to one or more selected from the group consisting of polymerized Preparing a seed; 2) preparing a core by introducing and polymerizing an alkyl (meth) acrylate-based monomer in the presence of the seed; And 3) in the presence of the core, adding an aromatic vinyl monomer and a vinyl cyan monomer and polymerizing to prepare a shell, and in step 3), an activator comprising a compound represented by Formula 1 below is added. And, the core has an average particle diameter of 320 to 520 nm.
  • M 1 and M 2 are the same as or different from each other, and each independently an alkali metal.
  • an alkyl (meth) acrylate-based monomer, an aromatic vinyl-based monomer, and one or more selected from the group consisting of a vinyl cyan-based monomer are added and polymerized to prepare a seed.
  • the alkyl (meth) acrylate-based monomers are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl ( It may be one or more selected from the group consisting of meth) acrylate and lauryl (meth) acrylate, of which butyl methacrylate is preferred.
  • the aromatic vinyl-based monomer may be one or more selected from the group consisting of styrene, ⁇ -methyl styrene, ⁇ -ethyl styrene, p-methyl styrene, and vinyl toluene, of which styrene is preferred.
  • the vinyl cyan monomer may be at least one selected from acrylonitrile, methacrylonitrile, phenyl acrylonitrile, ⁇ -chloroacrylonitrile and ethacrylonitrile, and acrylonitrile is preferred.
  • the total amount of the monomers added in step 1) may be added in 1 to 20% by weight or 4 to 15% by weight relative to the total weight of the monomers added in the method for preparing the graft copolymer, 4 to 4 of which It is preferably added at 15% by weight. If the above-described range is satisfied, a graft copolymer having improved colorability, impact resistance and chemical resistance can be produced.
  • step 1) in order to prepare a graft copolymer having excellent impact resistance, it is preferable to prepare a seed by polymerization by adding an aromatic vinyl monomer and a vinyl cyan monomer.
  • step 1) the aromatic vinyl monomer and the vinyl cyan monomer may be added in a weight ratio of 60:40 to 80:20 or 65:35 to 75:25, of which 65:35 to 75:25 It can be introduced in a weight ratio of. If the above-mentioned range is satisfied, a graft copolymer excellent in impact resistance and colorability can be produced.
  • the seed may have an average particle diameter of 145 to 255 nm, 150 to 250 nm, or 170 to 230 nm, of which 170 to 230 nm is preferred. If the above-mentioned ranges are satisfied, a graft copolymer having excellent stability during polymerization and excellent impact resistance and surface gloss properties can be prepared.
  • the polymerization may be an emulsion polymerization, it may be carried out at 50 to 85 °C or 60 to 80 °C, it is preferably carried out at 60 to 80 °C. If the above-mentioned range is satisfied, emulsion polymerization can be stably performed.
  • step 1) one or more selected from the group consisting of an initiator, an emulsifier, a crosslinking agent, a grafting agent, an electrolyte, and water may be further added.
  • the initiator may be a radical initiator, the initiator may be an inorganic peroxide such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, p-mentanhydro peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyl peroxide, octa Organic peroxides such as noyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanol peroxide, and t-butyl peroxy isobutylate; It may be at least one selected from the group consisting of azobis isobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, and azo
  • the initiator may be added in an amount of 0.01 to 1 part by weight or 0.02 to 0.8 part by weight, based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, of which 0.02 to 0.8 part by weight desirable. If the above-mentioned range is satisfied, polymerization can be easily performed.
  • the emulsifier may be one or more selected from the group consisting of metal salts of alkyl sulfosuccinic acid salts, metal salts of alkyl sulfate esters, metal salts of rosin acids and metal salts of dimer acids, and it is preferable that metal salts of alkyl sulfate esters are added.
  • the alkyl sulfosuccinate metal salt is composed of sodium dicyclohexyl sulfosuccinate, sodium dihexyl sulfosuccinate, sodium di-2-ethylhexyl sulfosuccinate, potassium di-2-ethylhexyl sulfosuccinate and di-2-ethylhexyl sulfosuccinic acid. It may be one or more selected from the group.
  • the alkyl sulfate ester metal salt may be at least one selected from the group consisting of sodium dodecyl sulfate, sodium dodecyl benzene sulfate, sodium octadecyl sulfate, sodium oleic sulfate, potassium dodecyl sulfate and potassium octadecyl sulfate.
  • the rosin acid metal salt may be at least one selected from the group consisting of potassium rosin salt and sodium rosin salt.
  • the emulsifier may be added in an amount of 0.01 to 5 parts by weight or 0.05 to 4.5 parts by weight based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, of which 0.05 to 4.5 parts by weight is added. desirable. If the above-mentioned range is satisfied, a seed having a desired average particle diameter can be easily produced.
  • the crosslinking agent is ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, divinylbenzene, diethylene glycol di (meth) acrylate, triethylene glycol di ( Meth) acrylate, 1,3-butadiol dimethacrylate, hexanediol ethoxylate diacrylate, hexanediol propoxylate di (meth) acrylate, neopentyl glycol dimethacrylate, neopentyl glycol ethoxy Late di (meth) acrylate, neopentyl glycol propoxylate di (meth) acrylate, trimethylolmethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylpropane ethoxylate tri (meth) Acrylate, trimethylpropane propoxylate tri (
  • the crosslinking agent may be added in an amount of 0.01 to 1 part by weight or 0.02 to 0.8 part by weight based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, of which 0.02 to 0.8 part by weight desirable. If the above-mentioned range is satisfied, a part of the monomers introduced in step 1) may be crosslinked and polymerized to prepare a crosslinked product, and the rest may be grafted to the crosslinked product to produce a seed having a desired average particle diameter. Have it.
  • the grafting agent may be at least one selected from the group consisting of allyl methacrylate, triallyl isocyanurate, diallylamine, and triallylamine, of which allyl methacrylate is preferred.
  • the grafting agent may be added in 0.001 to 3 parts by weight, 0.005 to 2.5 parts by weight, and 0.005 to 2.5 parts by weight, based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer. It is most preferred. If the above-mentioned range is satisfied, a part of the monomers introduced in step 1) may be crosslinked and polymerized to prepare a crosslinked product, and the rest may be grafted to the crosslinked product to produce a seed having a desired average particle diameter. Have it.
  • the electrolyte is KCl, NaCl, KHCO 3 , NaHCO 3 , K 2 CO 3 , Na 2 CO 3 , KHSO 3 , NaHSO 4 , Na 2 S 2 O 7 , K 4 P 2 O 7 , K 3 PO 4 , Na 3 PO 4 or Na 2 HPO 4 , KOH and may be one or more selected from the group consisting of NaOH, of which KOH is preferred.
  • the electrolyte may be added in an amount of 0.001 to 1 part by weight or 0.01 to 0.8 part by weight, based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, of which 0.01 to 0.8 part by weight desirable. If the above-described range is satisfied, the pH of the polymerization solution can be increased while maintaining the seed latex stability during emulsion polymerization. Further, a seed having a desired average particle diameter can be stably obtained.
  • the water may be distilled water or ion exchanged water.
  • an alkyl (meth) acrylate-based monomer is introduced and polymerized to prepare a core.
  • the type of the alkyl (meth) acrylate monomer is as described above.
  • the alkyl (meth) acrylate-based monomer may be added in an amount of 40 to 60% by weight or 45 to 55% by weight, based on the total weight of the monomers added in the method for preparing the graft copolymer, of which 45 to 55 It is preferably added in weight percent. If the above-mentioned range is satisfied, a graft copolymer with improved impact resistance and weatherability can be manufactured.
  • the alkyl (meth) acrylate-based monomer may be continuously added at a constant rate in order to easily control the core having an appropriate average particle diameter and heat removal during polymerization.
  • the polymerization may be an emulsion polymerization, it may be carried out at 50 to 85 °C or 60 to 80 °C, it is preferably carried out at 60 to 80 °C. If the above-mentioned range is satisfied, emulsion polymerization can be stably performed.
  • the core may have an average particle diameter of 320 to 520 nm, preferably 330 to 500 nm, and more preferably 350 to 450 nm. If the above-mentioned ranges are satisfied, a graft copolymer having excellent stability during polymerization and excellent weather resistance, impact resistance, and surface gloss properties can be prepared. When it is less than the above-mentioned range, impact resistance falls, and when it exceeds the above-mentioned range, surface gloss characteristics decrease.
  • step 2) one or more selected from the group consisting of an initiator, an emulsifier, a crosslinking agent, a grafting agent, and water may be further added, and to easily control a core having heat removal and an appropriate average particle diameter during polymerization, alkyl ( It may be continuously added at a constant rate together with the meth) acrylate-based monomer.
  • the type of the initiator is as described above, of which inorganic peroxide is preferred, and potassium persulfate is more preferred.
  • the initiator may be added in an amount of 0.01 to 3 parts by weight or 0.02 to 2.5 parts by weight, based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, of which 0.02 to 2.5 parts by weight is added. desirable. If the above-mentioned range is satisfied, polymerization can be easily performed.
  • the type of the emulsifier is as described above, and it is preferable that an alkyl sulfate ester metal salt is added.
  • the emulsifier may be added in an amount of 0.01 to 5 parts by weight or 0.05 to 4.5 parts by weight based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, of which 0.05 to 4.5 parts by weight is added. desirable. If the above-described range is satisfied, emulsion polymerization can be easily performed, and a core having a desired average particle diameter can be easily produced.
  • the kind of the crosslinking agent is as described above.
  • the crosslinking agent may be added in an amount of 0.01 to 1 part by weight or 0.02 to 0.8 part by weight based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, of which 0.02 to 0.8 part by weight desirable. If the above-mentioned range is satisfied, the core may have an appropriate degree of crosslinking.
  • the type of the grafting agent is as described above.
  • the grafting agent may be added in an amount of 0.01 to 1 part by weight or 0.02 to 0.8 part by weight, and 0.02 to 0.8 part by weight, based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer. It is preferred. If the above-mentioned range is satisfied, the core can have an appropriate average particle diameter.
  • the water may be distilled water or ion exchanged water.
  • an aromatic vinyl monomer and a vinyl cyan monomer are added and polymerized to prepare a shell.
  • step 3 an activator containing a compound represented by the following Chemical Formula 1 is added:
  • M 1 and M 2 are the same as or different from each other, and each independently an alkali metal.
  • the compound represented by Chemical Formula 1 may significantly improve the impact resistance, thermal stability, surface clarity, and whiteness of the graft copolymer.
  • the compound represented by the formula (1) unlike sodium formaldehyde sulfoxylate used as an existing activator, does not generate formaldehyde upon decomposition, so the total amount of volatile organic compounds in the graft copolymer is significantly lowered . Due to this, when the graft copolymer is processed, gas generation from volatile organic compounds is significantly reduced, and thus, gas marks on the surface are minimized, so that a thermoplastic resin molded article having excellent appearance quality can be manufactured.
  • typical activators include ferrous sulfate and chelating agents sodium pyrophosphate or sodium ethylenediamine tetraacetate, reducing agents dextrose or sodium formaldehyde sulfoxylate.
  • Ferrous sulfate causes a decrease in the performance of the graft copolymer when left in the graft copolymer.
  • Dextrose is a material that is easy to discolor, so if it remains in the graft copolymer, it degrades the thermal stability of the graft copolymer.
  • Sodium formaldehyde sulfoxylate forms aldehydes when thermally decomposed, and the aldehydes generate gas during the injection process of the graft copolymer.
  • the compound represented by Formula 1 can act alone as an activator without input of ferrous sulfate, sodium pyrophosphate, sodium ethylenediamine tetraacetate, dextrose, sodium formaldehyde sulfoxylate, etc. No problem is caused.
  • M 1 and M 2 are the same or different from each other, and each independently is preferably Na or K, and more preferably Na.
  • the impact resistance, thermal stability, surface clarity, whiteness, appearance quality and weatherability of the graft copolymer can be further improved.
  • the activator may include a compound represented by Formula 2 below.
  • the activator is preferably continuously added to maintain excellent activity uniformly and to improve the fluidity and impact resistance of the graft copolymer.
  • the activator is preferably added in a mixed state with a solvent for continuous input.
  • the solvent may be water.
  • the activator may be added in an amount of 0.01 to 1 part by weight or 0.1 to 0.8 part by weight based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, and 0.1 to 0.8 part by weight It is preferred. If the above-mentioned content is satisfied, polymerization initiation can be promoted.
  • the activator may be manufactured directly, or a commercially available substance, Bruggolite ® FF6M (trade name, manufacturer: BrueggemannChemical) may be used.
  • the types of the aromatic vinyl monomer and vinyl cyan monomer are as described above.
  • the aromatic vinyl-based monomer and the vinyl cyan-based monomer may be added in an amount of 30 to 55% by weight or 35 to 50% by weight with respect to the total weight of the monomers added in the method for preparing the graft copolymer, of which It is preferably added at 35 to 50% by weight. If the above-mentioned range is satisfied, there is an advantage that the balance of weather resistance, fluidity and chemical resistance of the graft copolymer is excellent.
  • the aromatic vinyl-based monomer and the vinyl cyan-based monomer may be added in a weight ratio of 65:35 to 85:15 or 70:30 to 80:20, of which it is preferably added in a weight ratio of 70:30 to 80:20 Do.
  • a weight ratio of 65:35 to 85:15 or 70:30 to 80:20 of which it is preferably added in a weight ratio of 70:30 to 80:20 Do.
  • the aromatic vinyl-based monomer and the vinyl cyan-based monomer may be continuously added at a constant rate, and when introduced by the above-described method, a graft copolymer having excellent heat balance and excellent physical property balance during polymerization can be easily produced.
  • step 3 it is preferable not to add an alkyl (meth) acrylate-based monomer, since it may cause coloration, impact resistance, processability and surface gloss reduction of the graft copolymer.
  • the polymerization may be an emulsion polymerization, it may be carried out at 50 to 85 °C or 60 to 80 °C, it is preferably carried out at 60 to 80 °C. If the above-mentioned range is satisfied, emulsion polymerization can be stably performed.
  • the graft copolymer may have an average particle diameter of 400 to 700 nm or 450 to 600 nm, of which 450 to 600 nm is preferred. If the above-mentioned range is satisfied, a graft copolymer having excellent stability during polymerization and excellent impact resistance, fluidity, and chemical resistance can be prepared.
  • step 3 one or more selected from the group consisting of an initiator, an emulsifier, a molecular weight modifier, and water may be further added, and may be continuously added at a constant rate together with an aromatic vinyl monomer and a vinyl cyan monomer.
  • the type of the initiator is as described above, of which organic peroxide is preferred, and cumene hydroperoxide is more preferred.
  • the initiator may be added in an amount of 0.01 to 3 parts by weight or 0.02 to 2.5 parts by weight, based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, of which 0.02 to 2.5 parts by weight is added. desirable. If the above-described range is satisfied, polymerization of the graft copolymer having excellent mechanical properties and processability can be easily performed.
  • the type of the emulsifier is as described above, and it is preferable that a rosin acid metal salt is added.
  • the emulsifier may be added in an amount of 0.1 to 2.5 parts by weight or 0.5 to 2 parts by weight, based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, and 0.5 to 2 parts by weight of the emulsifier desirable. If the above-described range is satisfied, a graft copolymer having a desired average particle diameter can be easily produced.
  • the molecular weight modifier is a-methylstyrene dimer; mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan; And halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide, and sulfur-containing compounds such as tetra ethyl thiuram disulfide, dipentamethylene thiuram disulfide, and diisopropylkisanthogen disulfide. It may preferably be t-dodecyl mercaptan.
  • the molecular weight modifier may be added in an amount of 0.001 to 1 part by weight or 0.01 to 0.8 part by weight based on 100 parts by weight of the total amount of monomers added in the method for preparing the graft copolymer, and 0.01 to 0.8 part by weight It is preferred. If the above-described range is satisfied, the mechanical and surface properties of the graft copolymer can be further improved by properly maintaining the weight average molecular weight of the shell.
  • the water may be distilled water or ion exchanged water.
  • an aggregation process may be further performed. And after the agglomeration process, aging, dehydration, washing, drying processes, etc. may be further performed to produce a graft copolymer powder.
  • the graft copolymer according to another embodiment of the present invention includes an alkyl (meth) acrylate-based monomer unit; Aromatic vinyl monomer units; Vinyl cyanide monomer units; And a compound derivative represented by Formula 1 below, wherein the core has an average particle diameter of 320 to 520 nm:
  • M 1 and M 2 are the same as or different from each other, and each independently an alkali metal.
  • the derivative of the compound represented by Chemical Formula 1 may be a product in which the compound represented by Chemical Formula 1 is decomposed in the process of preparing a graft copolymer.
  • the core may be preferably 330 to 500 nm, and more preferably 350 to 450 nm. If the above-mentioned ranges are satisfied, a graft copolymer having excellent stability during polymerization and excellent weather resistance, impact resistance, and surface gloss properties can be prepared. When it is less than the above-mentioned range, impact resistance falls, and when it exceeds the above-mentioned range, surface gloss characteristics decrease.
  • the graft copolymer may have a total amount of volatile organic compounds of 640 ppm or less or 600 ppm or less, and preferably 600 ppm or less. If the above-mentioned range is satisfied, not only an environmentally friendly graft copolymer can be produced, but also gas-generating materials are significantly reduced in the process of processing the thermoplastic resin composition, so that a molded article having excellent appearance characteristics can be produced.
  • the graft copolymer may have a thermogravimetric analysis value of 98.6% by weight or more, or 99% by weight or more, and more preferably 99% by weight or more.
  • the thermal stability of the graft copolymer can be remarkably improved.
  • the description of the graft copolymer is' 1.
  • Graft copolymer manufacturing method 'as described above, the graft copolymer according to another embodiment of the present invention may be prepared according to the method of manufacturing a graft copolymer according to an embodiment of the present invention.
  • Thermoplastic resin composition according to another embodiment of the present invention is a graft copolymer according to another embodiment of the present invention; And a matrix copolymer comprising an aromatic vinyl monomer unit and a vinyl cyan monomer unit.
  • the matrix copolymer may include an aromatic vinyl monomer unit and a vinyl cyan monomer unit in a weight ratio of 60:40 to 80:20 or 65:35 to 75:25, of which 65:35 to 75:25 It is preferred to include in weight ratio. If the above-mentioned content is satisfied, it is possible to provide a thermoplastic resin composition having excellent heat resistance, fluidity, and chemical resistance.
  • the thermoplastic resin composition may include the graft copolymer and the matrix copolymer in a weight ratio of 35:65 to 55:45 or 40:60 to 50:50, of which a weight ratio of 40:60 to 50:50 It is preferred to include. If the above-mentioned ranges are satisfied, a thermoplastic resin composition excellent in colorability, weather resistance, heat resistance, fluidity, chemical resistance, heat stability and appearance characteristics can be produced.
  • thermoplastic resin composition may further include additives such as dyes, pigments, lubricants, antioxidants, ultraviolet stabilizers, heat stabilizers, reinforcing agents, fillers, flame retardants, blowing agents, plasticizers, or matte agents, depending on the application.
  • additives such as dyes, pigments, lubricants, antioxidants, ultraviolet stabilizers, heat stabilizers, reinforcing agents, fillers, flame retardants, blowing agents, plasticizers, or matte agents, depending on the application.
  • thermoplastic resin molded article made of the thermoplastic resin composition according to another embodiment of the present invention has an impact strength of 21.3 kg ⁇ cm / cm or more, a retention thermal stability of 4.5 or less, and an impact strength of 21.5 kg ⁇ cm. / Cm or more, and the retention thermal stability may be 3.9 or less.
  • thermoplastic resin molded article having better impact resistance and thermal stability can be manufactured.
  • styrene 5 parts by weight of styrene, 2 parts by weight of acrylonitrile, 0.2 parts by weight of sodium dodecyl sulfate as an emulsifier, 0.04 parts by weight of ethylene glycol dimethacrylate as a crosslinking agent, and 0.02 parts by weight of allyl methacrylate as a grafting agent, 0.1 parts by weight of KOH and 50 parts by weight of distilled water were added as an electrolyte, and the temperature was raised to 70 ° C, and then 0.04 parts by weight of potassium persulfate as an initiator was added to initiate the reaction. After polymerization for 2 hours, it was terminated to obtain a seed.
  • graft copolymer latex After adding 0.8 parts by weight of an aqueous calcium chloride solution (concentration: 23% by weight) to the graft copolymer latex, agglomerate at atmospheric pressure at 70 ° C, mature at 93 ° C, dehydrate and wash, and dry for 30 minutes with hot air at 90 ° C, then graf A copolymer powder was prepared.
  • an aqueous calcium chloride solution concentration: 23% by weight
  • thermoplastic resin composition ⁇ Production of thermoplastic resin composition>
  • thermoplastic resin composition comprising 44 parts by weight of the graft copolymer powder and 56 parts by weight of a hard matrix copolymer (trade name: 90HR, manufacturer: LG Chem).
  • an aqueous solution (concentration: 5% by weight) containing 0.25 parts by weight of Bruggolite ® FF6M (trade name: BrueggemannChemical) is polymerized before polymerization starts, 1 hour after polymerization starts, 2 hours after polymerization starts, and polymerization
  • a graft copolymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that the mixture was added in the same amount 3 hours after the start.
  • a graft copolymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that t-butyl hydroperoxide was used instead of cumene hydroperoxide as an initiator.
  • a graft copolymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that 0.275 parts by weight of sodium dodecyl sulfate was added as an emulsifier.
  • a graft copolymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that 0.25 parts by weight of sodium dodecyl sulfate was added as an emulsifier.
  • a graft copolymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that 0.18 parts by weight of sodium dodecyl sulfate was added as an emulsifier.
  • a graft copolymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that 0.15 parts by weight of sodium dodecyl sulfate was added as an emulsifier.
  • an aqueous solution (concentration: 5% by weight) containing 0.02 parts by weight of ethylene diamine tetraacetic acid (EDTA), 0.08 parts by weight of sodium formaldehyde sulfoxylate (SFS), and 0.002 parts by weight of ferrous sulfide
  • EDTA ethylene diamine tetraacetic acid
  • SSS sodium formaldehyde sulfoxylate
  • ferrous sulfide A graft copolymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except for one.
  • a graft copolymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that 0.3 parts by weight of sodium dodecyl sulfate was added as an emulsifier.
  • a graft copolymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that 0.125 parts by weight of sodium dodecyl sulfate was added as an emulsifier.
  • Average particle diameter (nm) Measured with a particle size analyzer (NICOMP 380) using a dynamic light scattering method.
  • Total amount of volatile organic compounds (TVOC): As a result of analyzing the components of volatile organic compounds from 230 °C, 60 minutes, 20 ml conditions of 1 g of graft copolymer powder using HS-GC / FID, the total content is ppm Units were analyzed.
  • Thermogravimetric Analysis (TGA): Graft copolymer powder 0. 1 g was heated from 20 ° C / min to 30 ° C under nitrogen atmosphere at 20 ° C / min, the weight loss was measured while maintaining at 250 ° C for 1 hour, and the residual amount (% by weight) ). At this time, the higher the residual amount, the better the thermal stability.
  • Example 1 210 420 525 99 550 99.6
  • Example 2 210 420 520 98.5 560 99.5
  • Example 3 210 420 522 98.7 540 99.4
  • Example 4 150 330 400 99.2 575 99.3
  • Example 5 170 350 425 99.1 570 99.2
  • Example 6 225 450 550 98.0 595 99.2
  • Example 7 240 500 600 97.5 600 99.3
  • Comparative Example 1 210 420 520 98 680 98 Comparative Example 2 210 420 515 97.5 800 97 Comparative Example 3 140 300 360 99.3 650 98 Comparative Example 4 270 550 650 95.0 900 96.5
  • the graft copolymers of Examples 1 to 7 had a significantly reduced total amount of volatile organic compounds compared to the graft copolymers of Comparative Examples 1 to 4, and that the residual resin amount was significantly high during thermogravimetric analysis. I could confirm.
  • the graft copolymers of Examples 1 to 7 were added with a specific activator in the manufacturing process, and due to the synergistic action of the average particle diameter of the core, the graft copolymer is environmentally friendly, and has excellent impact resistance and thermal stability. I could infer what was done.
  • thermoplastic resin composition lubricant (trade name: EBS, manufacturer: LG Household & Health Care) 1.5 parts by weight, antioxidants (trade name: IR1076, manufacturer: BASF) 1.0 parts by weight and UV stabilizer (trade name: Tinuvin 770, manufacturer: BASF) 1.0 parts by weight was uniformly mixed, and then pellets were prepared using a 36 pie extrusion kneader at 220 ° C. The fluidity of the pellets was measured by the following method, and the results are shown in Tables 2 and 3 below.
  • Retention thermal stability The pellet-type thermoplastic resin composition is introduced into an injection molding machine, stayed in an injection molding machine at 260 ° C for 5 minutes, and then injected at a temperature of 260 ° C to produce a retention specimen, and injection of the pellet-type thermoplastic resin composition After inserting into a molding machine and injection-free at a temperature of 260 ° C to prepare a non-retentive specimen, the L, a, and b values of the retained specimen and the non-retentive specimen are measured with a spectro-colorimeter, and the degree of discoloration is calculated using the following formula ( ⁇ E) was calculated.
  • Izod impact strength (kg ⁇ cm / cm): The thickness of the specimen was 1 / 4in and measured according to ASTM 256.
  • ⁇ E Weather-resistance-Using accelerated weather-testing device (weather-o-meter, Ci4000 from ATLAS, Xenon arc lamp, Quartz (inner) /S.Boro (outer) filter, irradiznce 0.55 W / m2 at 340 nm) Then, after the specimen was left for 2,000 hours according to ASTM G115-1, the degree of discoloration was measured with a colorimeter, and applied to the following formula to calculate the ⁇ E value.
  • accelerated weather-testing device weather-o-meter, Ci4000 from ATLAS, Xenon arc lamp, Quartz (inner) /S.Boro (outer) filter, irradiznce 0.55 W / m2 at 340 nm
  • ⁇ E is the arithmetic mean value of CIE L, a, and b values before and after the weathering test, and the closer the value to 0, the better the weathering resistance.
  • Example 2 Example 3
  • Example 4 Example 5
  • Example 7 Fluidity (g / 10mins) 10.5 10 10 9.5 9.8 11.0 11.2 Retention thermal stability ( ⁇ E) 3.3 3.5 3.7 3.9 3.7 3.9 3.7 Impact strength (kg ⁇ cm / cm) 26.5 27.0 26.0 21.5 23.5 28.0 29.0 L 88.5 88.2 87.8 88.8 88.5 87.6 87.4 a -1.45 -1.46 -1.36 -1.30 -1.32 -1.48 -1.50 b 7.5 7.6 7.9 8.3 8.1 7.2 7.0 Surface gloss 103.5 103.0 104.0 105 104.5 103.0 102.7 Whiteness 65.5 66.0 65.0 64.5 64.7 66.2 66.5 Number of protrusions (50 ⁇ 500 ⁇ m) 420 430 440 420 410 460 480 Weatherability ( ⁇ E) 1.6 1.8 1.9 1.5 1.5 1.9 2.0
  • Examples 1 to 7 were confirmed to have excellent overall thermal stability, impact strength, sharpness, color characteristics, gloss characteristics, whiteness, appearance characteristics, and weatherability compared to Comparative Examples 1 to 4.
  • Examples 1 to 3 and Comparative Examples 1 and 2 differ only in the activating agent introduced during the manufacturing process of the graft copolymer, it was confirmed that Examples 1 to 3 have excellent physical properties.
  • Comparative Example 3 comprising a graft copolymer smaller than the average particle diameter of the core of the graft copolymer of the present invention not only significantly lowered the impact strength, but also lowered the thermal stability, color characteristics, whiteness and appearance characteristics I could confirm that.
  • Comparative Example 4 comprising a graft copolymer larger than the average particle diameter of the core of the graft copolymer of the present invention had an impact strength equivalent to that of the Example, but retained thermal stability, clarity, color characteristics, whiteness, appearance characteristics And it was confirmed that the weather resistance is significantly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 1) 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상을 투입하고 중합하여 시드를 제조하는 단계; 2) 상기 시드 존재 하에, 알킬 (메트)아크릴레이트계 단량체를 투입하고 중합하여 코어를 제조하는 단계; 및 3) 상기 코어 존재 하에, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 투입하고 중합하여 쉘을 제조하는 단계를 포함하고, 상기 3) 단계에서 하기 화학식 1로 표시되는 화합물을 포함하는 활성화제를 투입하고, 상기 코어는 평균입경이 320 내지 520 ㎚인 그라프트 공중합체의 제조방법 및 그라프트 공중합체에 관한 것으로서, 상술한 제조방법을 따르면 내충격성, 열안정성, 표면 선명성, 백색도, 외관 품질 및 내후성이 특히 우수한 그라프트 공중합체 및 그라프트 공중합체를 제공할 수 있다.

Description

그라프트 공중합체의 제조방법 및 그라프트 공중합체
[관련출원과의 상호인용]
본 발명은 2018.09.05.에 출원된 한국 특허 출원 제10-2018-0106053호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 그라프트 공중합체의 제조방법 및 그라프트 공중합체에 관한 것으로서, 내충격성, 열안정성, 표면 선명성, 백색도, 외관 품질 및 내후성이 우수한 그라프트 공중합체 및 그라프트 공중합체에 관한 것이다.
ABS 그라프트 공중합체는 내충격성, 강성, 내약품성, 가공성이 우수하여 전기전자, 건축, 자동차 등의 다양한 분야에서 다양한 용도로 폭넓게 사용되고 있다. 그러나 ABS 그라프트 공중합체는 부타디엔 중합체를 고무로 사용함으로써 내후성이 취약하여 실외용에는 사용이 제한되었다.
이러한 내후성 문제를 해소할 수 있을 뿐만 아니라, 기본 물성 및 내노화성이 우수한 물질로 ASA 그라프트 공중합체가 대표적으로 알려져 있다.
ASA 그라프트 공중합체는 쉘의 제조 시 아크릴계 중합체에 개시제 및 활성화제로서 황산제1철/덱스트로즈/피로인산나트륨(FeS/DX/SPP)이나 황산제1철/ 나트륨 포름알데히드 술폭실레이트/ 나트륨 에틸렌디아민 테트라아세테이트(FeS/SFS/EDTA) 시스템을 사용하게 되는데, FeS/DX/SPP 시스템은 환원제로 사용되는 덱스트로즈는 열변색이 쉬운 물질로 그라프트 공중합체 내 잔류하게 되면 열안정성의 저하를 유발하였다. FeS/SFS/EDTA 시스템은 환원제로 사용되는 나트륨 포름알데히드 술폭실레이트는 열분해되면 알데히드가 형성되고, 이는 그라프트 공중합체 내에 잔류 시 가공과정에서 가스 발생 물질이 되었다. 아울러 공통적으로 사용되는 황산제1철은 그라프트 공중합체 내 잔류 시 그라프트 공중합체의 성능 저하를 유발하는 것으로 알려져있다.
최근 ASA 그라프트 공중합체의 적용 범위가 외장용 자재(siding), 시트(sheet) 및 공압출 필름 등으로 박막화됨에 따라 ASA 그라프트 공중합체 내 잔류물 감소를 통한 가스 발생 감소 및 열 안정성 향상에 대한 요구가 증가되고 있다. 또한, 화려한 미관을 갖는 외장용 자재에 대한 요구가 증가되고 있다.
이에 열안정성이 개선되면서 외관 품질 및 착색성도 우수한 ASA 그라프트 공중합체에 대한 연구가 진행되고 있다.
본 발명의 목적은 기본 물성을 유지하면서, 내충격성, 열안정성, 표면 선명성, 백색도, 외관 품질 및 내후성이 특히 개선된 그라프트 공중합체의 제조방법을 제공하는 것이다.
상술한 과제를 해결하기 위하여, 본 발명은 1) 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상을 투입하고 중합하여 시드를 제조하는 단계; 2) 상기 시드 존재 하에, 알킬 (메트)아크릴레이트계 단량체를 투입하고 중합하여 코어를 제조하는 단계; 및 3) 상기 코어 존재 하에, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 투입하고 중합하여 쉘을 제조하는 단계를 포함하고, 상기 3) 단계에서 하기 화학식 1로 표시되는 화합물을 포함하는 활성화제를 투입하고, 상기 코어는 평균입경이 320 내지 520 ㎚인 그라프트 공중합체의 제조방법을 제공한다:
<화학식 1>
Figure PCTKR2019011009-appb-I000001
상기 화학식 1에서
R1 및 R2는 서로 같거나 다르고, 각각 독립적으로 수소, C1 내지 C10의 알킬기, 또는 *-(C=O)OM2이나, R1 및 R2가 모두 수소는 아니고,
M1 및 M2는 서로 같거나 다르고, 각각 독립적으로 알칼리 금속이다.
또한, 본 발명은 알킬 (메트)아크릴레이트계 단량체 단위; 방향족 비닐계 단량체 단위; 비닐 시안계 단량체 단위; 및 하기 화학식 1로 표시되는 화합물 유도체를 포함하고, 코어는 평균입경이 320 내지 520 ㎚인 그라프트 공중합체를 제공한다:
<화학식 1>
Figure PCTKR2019011009-appb-I000002
상기 화학식 1에서
R1 및 R2는 서로 같거나 다르고, 각각 독립적으로 수소, C1 내지 C10의 알킬기, 또는 *-(C=O)OM2이나, R1 및 R2가 모두 수소는 아니고,
M1 및 M2는 서로 같거나 다르고, 각각 독립적으로 알칼리 금속이다.
또한, 본 발명은 상술한 그라프트 공중합체; 및 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체를 포함하는 열가소성 수지 조성물로 제조되고, 충격강도는 21.3 ㎏·㎝/㎝ 이상이고, 체류 열안정성은 4.5 이하인 열가소성 수지 성형품을 제공한다.
본 발명의 그라프트 공중합체의 제조방법을 따르면 유동성 등의 기본 물성을 기존과 동등 수준으로 유지하면서, 내충격성, 열안정성, 표면 선명성, 백색도, 외관 품질 및 내후성을 현저하게 개선시킬 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 시드, 코어 및 그라프트 공중합체의 평균입경은 동적 광산란(dynamic light scattering)법을 이용하여 측정할 수 있고, 상세하게는 Nicomp 380 장비(제품명, 제조사: PSS)를 이용하여 측정할 수 있다.
본 명세서에서 평균입경은 동적 광산란법에 의해 측정되는 입도분포에 있어서의 산술 평균입경을 의미할 수 있다. 산술 평균입경은 산란강도(Intensity Distribution) 평균입경, 체적(Volume Distribution) 평균입경 및 개수(Number Distribution) 평균입경으로서 측정할 수가 있고, 이 중 산란강도 평균입경을 측정하는 것이 바람직하다.
본 발명에서 휘발성 유기 화합물의 총량은 HS-GC/FID를 이용하여 그라프트 공중합체 1 g를 230 ℃, 60 분, 20 ㎖ 조건에서 나오는 휘발성 유기 화합물의 성분을 분석한 결과 총 함량을 ppm 단위로 분석할 수 있다.
본 발명에서 열중량 분석(TGA)은 그라프트 공중합체 분말 0.1 g을 질소분위기 하에서 30 ℃에서 250 ℃까지 20 ℃/min으로 승온시키고, 250 ℃에서 1 시간 유지하면서 수행할 수 있으며, 감량분을 측정하여 잔류량(중량%)으로 표시할 수 있다.
본 발명에서 충격강도는 열가소성 수지 조성물을 압출 및 사출하여 제조한 시편을 ASTM 256에 의거하여 측정할 수 있다.
본 발명에서 체류 열안정성은 압출한 열가소성 수지 조성물을 사출 성형기에 투입하고 260 ℃의 사출 성형기 내에 5 분 동안 체류시킨 후 260 ℃의 온도에서 사출하여 체류시편을 제조하고, 펠렛 형태의 열가소성 수지 조성물을 사출 성형기에 투입하고 체류 없이 260 ℃의 온도에서 사출하여 무체류 시편을 제조한 후, 체류 시편 및 무체류 시편의 L, a, b 값을 분광 색차계로 측정한 후, 하기 식을 이용하여 변색 정도(△E)를 산출하였다.
Figure PCTKR2019011009-appb-I000003
본 발명에서, ‘상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들'’은 ‘시드, 코어 및 쉘의 제조에서 투입되는 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체’를 의미할 수 있다.
1. 그라프트 공중합체의 제조방법
본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법은 1) 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상을 투입하고 중합하여 시드를 제조하는 단계; 2) 상기 시드 존재 하에, 알킬 (메트)아크릴레이트계 단량체를 투입하고 중합하여 코어를 제조하는 단계; 및 3) 상기 코어 존재 하에, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 투입하고 중합하여 쉘을 제조하는 단계를 포함하고, 상기 3) 단계에서 하기 화학식 1로 표시되는 화합물을 포함하는 활성화제를 투입하고, 상기 코어는 평균입경이 320 내지 520 ㎚이다.
<화학식 1>
Figure PCTKR2019011009-appb-I000004
상기 화학식 1에서
R1 및 R2는 서로 같거나 다르고, 각각 독립적으로 수소, C1 내지 C10의 알킬기, 또는 *-(C=O)OM2이나, R1 및 R2가 모두 수소는 아니고,
M1 및 M2는 서로 같거나 다르고, 각각 독립적으로 알칼리 금속이다.
이 하, 본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법에 대하여 상세하게 설명한다.
1) 단계
먼저, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상을 투입하고 중합하여 시드를 제조한다.
상기 알킬 (메트)아크릴레이트계 단량체는 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 부틸 (메트)아크릴레이트, 2-에틸헥실 (메트)아크릴레이트, 데실 (메트)아크릴레이트 및 라우릴 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 부틸 메타크릴레이트가 바람직하다.
상기 방향족 비닐계 단량체는 스티렌, α-메틸 스티렌, α-에틸 스티렌, p-메틸 스티렌 및 비닐 톨루엔으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
상기 비닐 시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 페닐 아크릴로니트릴, α-클로로아크릴로니트릴 및 에타크릴로니트릴 중에서 선택되는 1종 이상일 수 있으며, 이 중 아크릴로니트릴이 바람직하다.
상기 1) 단계에서 투입되는 단량체들의 총량은 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 중량에 대하여, 1 내지 20 중량% 또는 4 내지 15 중량%로 투입될 수 있고, 이 중 4 내지 15 중량%로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 착색성, 내충격성 및 내화학성이 개선된 그라프트 공중합체를 제조할 수 있다.
상기 1) 단계에서는 내충격성이 우수한 그라프트 공중합체를 제조하기 위하여, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 투입하여 중합하여 시드를 제조하는 것이 바람직하다.
이 경우, 상기 1) 단계에서는 방향족 비닐계 단량체와 비닐 시안계 단량체가 60:40 내지 80:20 또는 65:35 내지 75:25의 중량비로 투입될 수 있고, 이 중 65:35 내지 75:25의 중량비로 투입될 수 있다. 상술한 범위를 만족하면, 내충격성 및 착색성이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 시드는 평균입경이 145 내지 255 ㎚, 150 내지 250 ㎚ 또는 170 내지 230 ㎚일 수 있고, 이 중 170 내지 230 ㎚가 바람직하다. 상술한 범위를 만족하면, 중합 시 안정성이 우수하고, 내충격성 및 표면 광택 특성이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 중합은 유화 중합일 수 있으며, 50 내지 85 ℃ 또는 60 내지 80 ℃에서 수행될 수 있으며, 이 중 60 내지 80 ℃에서 수행되는 것이 바람직하다. 상술한 범위를 만족하면, 유화 중합이 안정적으로 수행될 수 있다.
상기 1) 단계에서는 개시제, 유화제, 가교제, 그라프팅제, 전해질 및 물로 이루어진 군에서 선택되는 1종 이상이 더 투입될 수 있다.
상기 개시제는 라디칼 개시제일 수 있고, 상기 개시제는 과황산나트륨, 과황산칼륨, 과황산암모늄, 과인산칼륨, 과산화수소 등의 무기 과산화물; t-부틸 퍼옥사이드, t-부틸 하이드로퍼옥사이드, 큐멘 하이드로퍼옥사이드, p-멘탄하이드로 퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸쿠밀 퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 3,5,5-트리메틸헥산올 퍼옥사이드, t-부틸 퍼옥시 이소부틸레이트 등의 유기 과산화물; 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸발레로니트릴, 아조비스시클로헥산카르보니트릴, 및 아조비스 이소 낙산(부틸산) 메틸로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 중, 무기 과산화물이 바람직하고, 과황산칼륨이 보다 바람직하다.
상기 개시제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 1 중량부 또는 0.02 내지 0.8 중량부로 투입될 수 있으며, 이 중 0.02 내지 0.8 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 중합을 용이하게 수행할 수 있다.
상기 유화제는 알킬 술포숙신산 금속염, 알킬 황산 에스테르 금속염, 로진산 금속염 및 이량체산의 금속염으로 이루어진 군에서 선택되는 1종 이상이 투입될 수 있고, 이 중 알킬 황산 에스테르 금속염이 투입되는 것이 바람직하다.
상기 알킬 술포숙신산 금속염은 디시클로헥실술포숙신산 나트륨, 디헥실술포숙신산 나트륨, 디-2-에틸헥실 술포숙신산 나트륨, 디-2-에틸헥실술포숙신산 칼륨염 및 디-2-에틸헥실 술포숙신산으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 알킬 황산 에스테르 금속염은 나트륨 도데실 설페이트, 나트륨 도데실 벤젠 설페이트, 나트륨 옥타데실 설페이트, 나트륨 올레익 설페이트, 칼륨 도데실 설페이트 및 칼륨 옥타데실 설페이트로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 로진산 금속염은 로진산 칼륨염 및 로진산 나트륨염으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 유화제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 5 중량부 또는 0.05 내지 4.5 중량부로 투입될 수 있으며, 이 중 0.05 내지 4.5 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 목적하는 평균입경을 갖는 시드를 용이하게 제조할 수 있다.
상기 가교제는 에틸렌글리콜 디(메타)아크릴레이트, 폴리에틸렌글리콜 디(메타)아크릴레이트, 폴리프로필렌글리콜 디(메타)아크릴레이트, 디비닐벤젠, 디에틸렌글리콜 디(메타)아크릴레이트, 트리에틸렌글리콜 디(메타)아크릴레이트, 1,3-부타디올 디메타크릴레이트, 헥산디올에톡시레이트 디아크릴레이트, 헥산디올프로폭시레이트 디(메타)아크릴레이트, 네오펜틸글리콜 디메타크릴레이트, 네오펜틸글리콜 에톡시레이트 디(메타)아크릴레이트, 네오펜틸글리콜 프로폭시레이트 디(메타)아크릴레이트, 트리메틸올메탄 트리(메타)아크릴레이트, 트리메틸올프로판 트리(메타)아크릴레이트, 트리메틸프로판 에톡시레이트 트리(메타)아크릴레이트, 트리메틸프로판 프로폭시레이트 트리(메타)아크릴레이트, 펜타에리트리톨 에톡시레이트 트리(메타)아크릴레이트, 펜타에리트리톨 프로폭시레이트 트리(메타)아크릴레이트, 비닐트리메톡시실란으로 이루어진 군으로부터 1종 이상일 수 있으며, 이 중 에틸렌글리콜 디메타크릴레이트가 바람직하다.
상기 가교제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 1 중량부 또는 0.02 내지 0.8 중량부로 투입될 수 있으며, 이 중 0.02 내지 0.8 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 상기 1) 단계에서 투입되는 단량체들의 일부는 가교 중합되어 가교물로 제조할 수 있고, 나머지는 상기 가교물에 그라프트 중합되어 목적하는 평균입경을 갖는 시드로 제조할 수 있게 한다.
상기 그라프팅제는 알릴 메타크릴레이트, 트리알릴 이소시아누레이트, 디알릴아민 및 트리알릴아민으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 알릴 메타크릴레이트가 바람직하다.
상기 그라프팅제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.001 내지 3 중량부, 0.005 내지 2.5 중량부로 투입될 수 있으며, 이 중 0.005 내지 2.5 중량부로 투입되는 것이 가장 바람직하다. 상술한 범위를 만족하면, 상기 1) 단계에서 투입되는 단량체들의 일부는 가교 중합되어 가교물로 제조할 수 있고, 나머지는 상기 가교물에 그라프트 중합되어 목적하는 평균입경을 갖는 시드로 제조할 수 있게 한다.
상기 전해질은 KCl, NaCl, KHCO3, NaHCO3, K2CO3, Na2CO3, KHSO3, NaHSO4, Na2S2O7, K4P2O7, K3PO4, Na3PO4 또는 Na2HPO4, KOH 및 NaOH로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중, KOH가 바람직하다.
상기 전해질은 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.001 내지 1 중량부 또는 0.01 내지 0.8 중량부로 투입될 수 있으며, 이 중 0.01 내지 0.8 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 중합 용액의 pH는 높이면서, 유화 중합 시 시드 라텍스 안정성을 유지할 수 있다. 또한, 목적하는 평균입경을 갖는 시드를 안정적으로 수득할 수 있다.
상기 물은 증류수 또는 이온교환수일 수 있다.
2) 단계
이어서, 상기 시드 존재 하에, 알킬 (메트)아크릴레이트계 단량체를 투입하고 중합하여 코어를 제조한다.
상기 알킬 (메트)아크릴레이트계 단량체의 종류는 상술한 바와 같다.
상기 알킬 (메트)아크릴레이트계 단량체는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 중량에 대하여, 40 내지 60 중량% 또는 45 내지 55 중량%로 투입될 수 있고, 이 중 45 내지 55 중량%로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 내충격성 및 내후성이 보다 개선된 그라프트 공중합체를 제조할 수 있다.
상기 알킬 (메트)아크릴레이트계 단량체는 중합 시 제열 및 적절한 평균입경을 갖는 코어를 용이하게 제어하기 위하여, 일정한 속도로 연속 투입될 수 있다.
상기 중합은 유화 중합일 수 있으며, 50 내지 85 ℃ 또는 60 내지 80 ℃에서 수행될 수 있으며, 이 중 60 내지 80 ℃에서 수행되는 것이 바람직하다. 상술한 범위를 만족하면, 유화 중합이 안정적으로 수행될 수 있다.
상기 코어는 평균입경이 320 내지 520 ㎚이고, 바람직하게는 330 내지 500 ㎚이고, 보다 바람직하게는 350 내지 450 ㎚일 수 있다. 상술한 범위를 만족하면, 중합 시 안정성이 우수하고, 내후성, 내충격성 및 표면 광택 특성이 우수한 그라프트 공중합체를 제조할 수 있다. 상술한 범위 미만이면, 내충격성이 저하되고, 상술한 범위를 초과하면, 표면 광택 특성이 저하된다.
상기 2) 단계에서는 개시제, 유화제, 가교제, 그라프팅제, 및 물로 이루어진 군에서 선택되는 1종 이상이 더 투입될 수 있으며, 중합 시 제열 및 적절한 평균입경을 갖는 코어를 용이하게 제어하기 위하여, 알킬 (메트)아크릴레이트계 단량체와 함께 일정한 속도로 연속 투입될 수 있다.
상기 개시제의 종류는 상술한 바와 같고, 이 중 무기 과산화물이 바람직하고, 과황산칼륨이 보다 바람직하다.
상기 개시제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 3 중량부 또는 0.02 내지 2.5 중량부로 투입될 수 있으며, 이 중 0.02 내지 2.5 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 중합을 용이하게 수행할 수 있다.
상기 유화제의 종류는 상술한 바와 같고, 이 중 알킬 황산 에스테르 금속염이 투입되는 것이 바람직하다.
상기 유화제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 5 중량부 또는 0.05 내지 4.5 중량부로 투입될 수 있으며, 이 중 0.05 내지 4.5 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 유화 중합은 용이하게 수행될 수 있으면서, 목적하는 평균입경을 갖는 코어를 용이하게 제조할 수 있다.
상기 가교제의 종류는 상술한 바와 같다.
상기 가교제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 1 중량부 또는 0.02 내지 0.8 중량부로 투입될 수 있으며, 이 중 0.02 내지 0.8 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 코어가 적절한 가교도를 가질 수 있다.
상기 그라프팅제의 종류는 상술한 바와 같다.
상기 그라프팅제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 1 중량부 또는 0.02 내지 0.8 중량부로 투입될 수 있으며, 이 중 0.02 내지 0.8 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 코어가 적절한 평균입경을 가질 수 있다.
상기 물은 증류수 또는 이온교환수일 수 있다.
3) 단계
이어서, 상기 코어 존재 하에, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 투입하고 중합하여 쉘을 제조한다.
이때, 상기 3) 단계에서는 하기 화학식 1로 표시되는 화합물을 포함하는 활성화제를 투입한다:
<화학식 1>
Figure PCTKR2019011009-appb-I000005
상기 화학식 1에서
R1 및 R2는 서로 같거나 다르고, 각각 독립적으로 수소, C1 내지 C10의 알킬기, 또는 *-(C=O)OM2이나, R1 및 R2가 모두 수소는 아니고,
M1 및 M2는 서로 같거나 다르고, 각각 독립적으로 알칼리 금속이다.
상기 화학식 1로 표시되는 화합물은 그라프트 공중합체의 내충격성, 열안정성, 표면 선명성 및 백색도를 현저하게 개선시킬 수 있다.
또한, 상기 화학식 1로 표시되는 표시되는 화합물은 기존의 활성화제로 사용되는 나트륨 포름알데히드 설폭실레이트와는 달리 분해 시 포름알데히드가 생성되지 않으므로, 그라프트 공중합체 내 휘발성 유기 화합물의 총량이 현저하게 낮아진다. 이로 인해 그라프트 공중합체의 가공 시, 휘발성 유기 화합물 유래 가스 발생이 현저하게 저감되므로, 표면에 가스 자국이 최소화되어 외관 품질이 우수한 열가소성 수지 성형품을 제조할 수 있다.
한편, 통상적인 활성화제는 황산제1철과 킬레이트제인 피로인산나트륨 또는 나트륨 에틸렌디아민 테트라아세테이트, 환원제인 덱스트로즈 또는 나트륨 포름알데히드 설폭실레이트를 포함한다. 황산제1철은 그라프트 공중합체 내에 잔류 시 그라프트 공중합체의 성능저하를 유발한다. 덱스트로즈는 열변색이 쉬운 물질이므로, 그라프트 공중합체 내 잔류하게 되면 그라프트 공중합체의 열안정성을 저하시킨다. 나트륨 포름알데히드 설폭실레이트는 열분해되면 알데히드를 형성하고, 알데히드는 그라프트 공중합체의 사출과정에서 가스를 발생시킨다.
상기 화학식 1로 표시되는 화합물은 황산제1철, 피로인산나트륨, 나트륨 에틸렌디아민 테트라아세테이트, 덱스트로즈, 나트륨 포름알데히드 설폭실레이트 등의 투입없이도 단독으로 활성화제 역할을 수행할 수 있으므로, 상술한 문제가 야기되지 않는다.
상기 화학식 1에서, M1 및 M2는 서로 같거나 다르고, 각각 독립적으로 Na 또는 K인 것이 바람직하고, Na인 것이 보다 바람직하다.
상기 화학식 1에서, R1 및 R2는 서로 같거나 다르고, 각각 독립적으로 수소, 또는 -(C=O)OM2인 것이 바람직하다.
상술한 조건을 만족하면, 그라프트 공중합체의 내충격성, 열안정성, 표면 선명성, 백색도, 외관 품질 및 내후성이 보다 개선될 수 있다.
상기 활성화제는 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
<화학식 2>
Figure PCTKR2019011009-appb-I000006
상기 활성화제는 우수한 활성도를 균일하게 유지하고, 그라프트 공중합체의 유동성과 내충격성을 개선시키기 위하여 연속 투입되는 것이 바람직하다. 그리고, 상기 활성화제는 연속 투입을 위하여 용매와 혼합된 상태로 투입되는 것이 바람직하다. 상기 용매는 물일 수 있다.
상기 활성화제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 1 중량부 또는 0.1 내지 0.8 중량부로 투입될 수 있으며, 이 중 0.1 내지 0.8 중량부로 투입되는 것이 바람직하다. 상술한 함량을 만족하면, 중합 개시를 촉진할 수 있다.
한편, 상기 활성화제는 직접 제조하거나, 시판되는 물질 중 Bruggolite ® FF6M(상품명, 제조사: BrueggemannChemical)를 이용할 수 있다.
상기 방향족 비닐계 단량체 및 비닐 시안계 단량체의 종류는 상술한 바와 같다.
상기 방향족 비닐계 단량체 및 비닐 시안계 단량체의 합은 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 중량에 대하여, 30 내지 55 중량% 또는 35 내지 50 중량%로 투입될 수 있고, 이 중 35 내지 50 중량%로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 내후성, 유동성 및 내화학성의 밸런스가 우수한 이점이 있다.
상기 방향족 비닐계 단량체와 비닐 시안계 단량체는 65:35 내지 85:15 또는 70:30 내지 80:20의 중량비로 투입될 수 있고, 이 중 70:30 내지 80:20의 중량비로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 유동성 및 내화학성의 밸런스가 우수한 이점이 있다.
상기 방향족 비닐계 단량체와 비닐 시안계 단량체는 일정한 속도로 연속 투입될 수 있으며, 상술한 방법으로 투입되면, 중합 시 제열 및 우수한 물성 밸런스를 갖는 그라프트 공중합체를 용이하게 제조할 수 있다.
상기 3) 단계에서는 그라프트 공중합체의 착색성, 내충격성, 가공성 및 표면 광택의 저하를 발생시킬 수 있으므로, 알킬 (메트)아크릴레이트계 단량체를 투입하지 않는 것이 바람직하다.
상기 중합은 유화 중합일 수 있으며, 50 내지 85 ℃ 또는 60 내지 80 ℃에서 수행될 수 있으며, 이 중 60 내지 80 ℃에서 수행되는 것이 바람직하다. 상술한 범위를 만족하면, 유화 중합이 안정적으로 수행될 수 있다.
상기 그라프트 공중합체는 평균입경이 400 내지 700 ㎚ 또는 450 내지 600 ㎚일 수 있고, 이 중 450 내지 600 ㎚가 바람직하다. 상술한 범위를 만족하면, 중합 시 안정성이 우수하고, 내충격성, 유동성 및 내화학성이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 3) 단계에서는 개시제, 유화제, 분자량 조절제, 및 물로 이루어진 군에서 선택되는 1종 이상이 더 투입될 수 있으며, 방향족 비닐계 단량체와 비닐 시안계 단량체와 함께 일정한 속도로 연속 투입될 수 있다.
상기 개시제의 종류는 상술한 바와 같고, 이 중 유기 과산화물이 바람직하고, 큐멘 하이드로 퍼옥사이드가 보다 바람직하다.
상기 개시제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 3 중량부 또는 0.02 내지 2.5 중량부로 투입될 수 있으며, 이 중 0.02 내지 2.5 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 우수한 기계적 물성과 가공성을 갖는 그라프트 공중합체의 중합을 용이하게 수행할 수 있다.
상기 유화제의 종류는 상술한 바와 같고, 이 중 로진산 금속염이 투입되는 것이 바람직하다.
상기 유화제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.1 내지 2.5 중량부 또는 0.5 내지 2 중량부로 투입될 수 있으며, 이 중 0.5 내지 2 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 목적하는 평균입경을 갖는 그라프트 공중합체를 용이하게 제조할 수 있다.
상기 분자량 조절제는 a-메틸스티렌다이머; t-도데실 머캅탄, n-도데실 머캅탄, 옥틸 머캅탄과 같은 머캅탄류; 사염화탄소, 염화메틸렌, 브롬화메틸렌과 같은 할로겐화 탄화수소, 테트라 에틸 티우람 다이 설파이드, 디펜타메틸렌 티우람 다이 설파이드, 디이소프로필키산토겐 다이 설파이드와 같은 황 함유 화합물일 수 있다. 바람직하게는 t-도데실 머캅탄일 수 있다.
상기 분자량 조절제는 상기 그라프트 공중합체의 제조방법에서 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.001 내지 1 중량부 또는 0.01 내지 0.8 중량부로 투입될 수 있으며, 이 중 0.01 내지 0.8 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 쉘의 중량평균분자량을 적절하게 유지하여 그라프트 공중합체의 기계적 특성 및 표면 특성을 보다 개선시킬 수 있다.
상기 물은 증류수 또는 이온교환수일 수 있다.
본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법은 상기 알킬 아크릴레이트계 중합체의 투입이 완료되면, 응집 공정을 더 수행할 수 있다. 그리고 응집 공정 후에, 숙성, 탈수, 세척, 건조 공정 등을 더 수행하여, 그라프트 공중합체 분말을 제조할 수 있다.
2. 그라프트 공중합체
본 발명의 다른 일실시예에 따른 그라프트 공중합체는 알킬 (메트)아크릴레이트계 단량체 단위; 방향족 비닐계 단량체 단위; 비닐 시안계 단량체 단위; 및 하기 화학식 1로 표시되는 화합물 유도체를 포함하고, 코어는 평균입경이 320 내지 520 ㎚이다:
<화학식 1>
Figure PCTKR2019011009-appb-I000007
상기 화학식 1에서
R1 및 R2는 서로 같거나 다르고, 각각 독립적으로 수소, C1 내지 C10의 알킬기, 또는 *-(C=O)OM2이나, R1 및 R2가 모두 수소는 아니고,
M1 및 M2는 서로 같거나 다르고, 각각 독립적으로 알칼리 금속이다.
상기 화학식 1로 표시되는 화합물의 유도체는 상기 화학식 1로 표시되는 화합물이 그라프트 공중합체 제조 과정에서 분해된 산물일 수 있다.
상기 화학식 1로 표시되는 화합물에 대한 설명은 상술한 바와 같다.
상기 코어는 바람직하게는 330 내지 500 ㎚일 수 있고, 보다 바람직하게는 350 내지 450 ㎚일 수 있다. 상술한 범위를 만족하면, 중합 시 안정성이 우수하고, 내후성, 내충격성 및 표면 광택 특성이 우수한 그라프트 공중합체를 제조할 수 있다. 상술한 범위 미만이면, 내충격성이 저하되고, 상술한 범위를 초과하면, 표면 광택 특성이 저하된다.
상기 그라프트 공중합체는 휘발성 유기 화합물의 총량이 640 ppm 이하 또는 600 ppm 이하일 수 있고, 이 중 600 ppm 이하인 것이 바람직하다. 상술한 범위를 만족하면, 환경 친화적인 그라프트 공중합체를 제조할 수 있을 뿐만 아니라, 열가소성 수지 조성물의 가공 과정에서 가스 발생 물질이 현저하게 저감되므로, 외관 특성이 우수한 성형품을 제조할 수 있다.
상기 그라프트 공중합체는 열중량 분석 값이 98.6 중량% 이상 또는 99 중량% 이상일 수 있고, 이 중 99 중량% 이상인 것이 바람직하다.
상술한 범위를 만족하면, 그라프트 공중합체의 열안정성이 현저하게 개선될 수 있다.
이 외 상기 그라프트 공중합체에 대한 설명은 ‘1. 그라프트 공중합체의 제조방법’에서 상술한 바와 같고, 본 발명의 다른 일실시예에 따른 그라프트 공중합체는 본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법에 따라 제조할 수 있다.
3. 열가소성 수지 조성물
본 발명의 또 다른 일실시예에 따른 열가소성 수지 조성물은 본 발명의 다른 일실시예에 따른 그라프트 공중합체; 및 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체를 포함한다.
상기 매트릭스 공중합체는 방향족 비닐계 단량체 단위와 비닐 시안계 단량체 단위를 60:40 내지 80:20 또는 65:35 내지 75:25의 중량비로 포함할 수 있고, 이 중 65:35 내지 75:25의 중량비로 포함하는 것이 바람직하다. 상술한 함량을 만족하면, 내열성, 유동성 및 내화학성이 모두 우수한 열가소성 수지 조성물을 제공할 수 있다.
상기 열가소성 수지 조성물은 상기 그라프트 공중합체와 매트릭스 공중합체를 35:65 내지 55:45 또는 40:60 내지 50:50의 중량비로 포함할 수 있고, 이 중 40:60 내지 50:50의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 착색성, 내후성, 내열성, 유동성, 내화학성, 열안정성 및 외관 특성이 우수한 열가소성 수지 조성물을 제조할 수 있다.
상기 열가소성 수지 조성물은 용도에 따라 염료, 안료, 활제, 산화방지제, 자외선안정제, 열 안정제, 보강제, 충전제, 난연제, 발포제, 가소제 또는 무광택제 등의 첨가제를 더 포함할 수 있다.
4. 열가소성 수지 성형품
본 발명의 또 다른 일실시예에 따른 열가소성 수지 조성물로 제조된 열가소성 수지 성형품은 충격강도는 21.3 ㎏·㎝/㎝ 이상이고, 체류 열안정성은 4.5 이하이고, 바람직하게는 충격강도가 21.5 ㎏·㎝/㎝ 이상이고, 체류 열안정성이 3.9 이하일 수 있다.
상술한 조건을 만족하면, 내충격성 및 열안정성이 보다 우수한 열가소성 수지 성형품이 제조될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
<시드의 제조>
질소 치환된 반응기에 스티렌 5 중량부, 아크릴로니트릴 2 중량부 및 유화제로 나트륨 도데실 설페이트 0.2 중량부, 가교제로 에틸렌글리콜 디메타크릴레이트 0.04 중량부, 그라프팅제로 알릴 메타크릴레이트 0.02 중량부, 전해질로 KOH 0.1 중량부 및 증류수 50 중량부를 일괄 투입하고, 70 ℃까지 승온시킨 후, 개시제로 과황산칼륨 0.04 중량부를 일괄 투입하여 반응을 개시시켰다. 이후 2 시간 동안 중합한 후 종료하여 시드를 수득하였다.
<코어의 제조>
상기 시드가 수득된 반응기에 부틸 아크릴레이트 50 중량부, 유화제로 나트륨 도데실 설페이트 0.5 중량부, 가교제로 에틸렌글리콜 디메타크릴레이트 0.2 중량부, 그라프팅제로 알릴 메타크릴레이트 0.2 중량부, 증류수 15 중량부 및 개시제로 과황산칼륨 0.05 중량부를 균일하게 혼합한 혼합물을 70 ℃ 에서 4 시간 동안 일정한 속도로 일정한 속도로 연속 투입하면서 중합하고, 연속 투입이 완료된 후 1 시간 동안 더 중합한 후, 종료하여 코어를 수득하였다.
<쉘의 제조>
상기 코어가 수득된 반응기에 증류수 23 중량부, 스티렌 31.5 중량부, 아크릴로니트릴 11.5 중량부, 유화제로 로진산 칼륨염 1.5중량부 및 개시제로 큐멘 하이드로퍼옥사이드 0.1 중량부를 균일하게 혼합한 혼합물과 활성화제로 Bruggolite ® FF6M(상품명, 제조사: BrueggemannChemical) 0.25 중량부를 포함하는 수용액(농도: 5 중량%)을 각각 75 ℃에서 3.5 시간 동안 연속 투입하면서 중합반응을 실시하였다. 연속 투입이 완료된 후 75 ℃에서 1 시간 동안 더 중합한 후 60 ℃까지 냉각시켜 중합 반응을 종료하여 그라프트 공중합체 라텍스를 제조하였다.
<그라프트 공중합체 분말 제조>
상기 그라프트 공중합체 라텍스에 염화칼슘 수용액(농도: 23 중량%) 0.8 중량부를 투입하여 70 ℃에서 상압 응집한 후, 93 ℃에서 숙성하고, 탈수 및 세척하여 90 ℃의 열풍으로 30 분 동안 건조한 후 그라프트 공중합체 분말을 제조하였다.
<열가소성 수지 조성물의 제조>
상기 그라프트 공중합체 분말 44 중량부, 및 경질 매트릭스 공중합체(상품명: 90HR, 제조사: 엘지화학) 56 중량부를 포함하는 열가소성 수지 조성물을 제조하였다.
실시예 2
쉘의 제조에서, Bruggolite ® FF6M(상품명, 제조사: BrueggemannChemical) 0.25 중량부를 포함하는 수용액(농도: 5 중량%)을 중합 개시 전, 중합 개시 후 1 시간 경과 후, 중합 개시 후 2 시간 경과 후, 중합 개시 후 3 시간 경과 후에 동일한 양으로 분할 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 공중합체 분말과 열가소성 수지 조성물을 제조하였다.
실시예 3
쉘의 제조에서, 개시제로 큐멘 하이드로퍼옥사이드 대신 t-부틸 하이드로퍼옥사이드를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 공중합체 분말과 열가소성 수지 조성물을 제조하였다.
실시예 4
시드의 제조에서, 유화제로 나트륨 도데실 설페이트 0.275 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 공중합체 분말과 열가소성 수지 조성물을 제조하였다.
실시예 5
시드의 제조에서, 유화제로 나트륨 도데실 설페이트 0.25 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 공중합체 분말과 열가소성 수지 조성물을 제조하였다.
실시예 6
시드의 제조에서, 유화제로 나트륨 도데실 설페이트 0.18 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 공중합체 분말과 열가소성 수지 조성물을 제조하였다.
실시예 7
시드의 제조에서, 유화제로 나트륨 도데실 설페이트 0.15 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 공중합체 분말과 열가소성 수지 조성물을 제조하였다.
비교예 1
쉘의 제조에서 활성화제로 피로인산 나트륨 0.09 중량부, 덱스트로즈 0.12 중량부 및 황화제1철 0.002 중량부를 포함하는 수용액(농도: 5 중량%)를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 공중합체 분말과 열가소성 수지 조성물을 제조하였다.
비교예 2
쉘의 제조에서 활성화제로 에틸렌 디아민 테트라아세틱산(EDTA) 0.02 중량부, 나트륨 포름알데히드 설폭실레이트(SFS) 0.08 중량부, 황화제1철 0.002 중량부를 포함하는 수용액(농도: 5 중량%)를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 공중합체 분말과 열가소성 수지 조성물을 제조하였다.
비교예 3
시드의 제조에서, 유화제로 나트륨 도데실 설페이트 0.3 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 공중합체 분말과 열가소성 수지 조성물을 제조하였다.
비교예 4
시드의 제조에서, 유화제로 나트륨 도데실 설페이트 0.125 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 그라프트 공중합체 분말과 열가소성 수지 조성물을 제조하였다.
실험예 1
실시예 및 비교예의 그라프트 공중합체의 물성을 하기와 같은 방법으로 측정하고, 그 결과를 하기 표 1 및 2에 나타내었다.
① 평균입경(㎚): 동적 광산란법을 이용하여 입도분석기(particle size analyzer: NICOMP 380)로 측정하였다.
② 중합전환율: {(실제로 수득된 그라프트 공중합체 라텍스의 고형분 중량)/ (처방상 투입된 단량체의 고형분 중량)} × 100
③ 휘발성 유기 화합물의 총량(TVOC): HS-GC/FID를 이용하여 그라프트 공중합체 분말 1 g를 230 ℃, 60 분, 20 ㎖ 조건에서 나오는 휘발성 유기 화합물의 성분을 분석한 결과 총 함량을 ppm 단위로 분석하였다.
④ 열중량 분석(TGA): 그라프트 공중합체 분말 0. 1g을 질소분위기 하에서 30 ℃에서 250 ℃까지 20 ℃/min으로 승온시키고, 250 ℃에서 1시간 유지하면서 감량분을 측정하고 잔류량(중량%)으로 표시하였다. 이때, 잔류량이 높을수록 열 안정성이 좋은 것을 의미한다.
구분 평균입경 중합전환율(%) TVOC(ppm) TGA(중량%)
시드(㎚) 코어(㎚) 그라프트 공중합체(㎚)
실시예 1 210 420 525 99 550 99.6
실시예 2 210 420 520 98.5 560 99.5
실시예 3 210 420 522 98.7 540 99.4
실시예 4 150 330 400 99.2 575 99.3
실시예 5 170 350 425 99.1 570 99.2
실시예 6 225 450 550 98.0 595 99.2
실시예 7 240 500 600 97.5 600 99.3
비교예 1 210 420 520 98 680 98
비교예 2 210 420 515 97.5 800 97
비교예 3 140 300 360 99.3 650 98
비교예 4 270 550 650 95.0 900 96.5
표 1을 참조하면, 실시예 1 내지 7의 그라프트 공중합체는 비교예 1 내지 4의 그라프트 공중합체 대비 휘발성 유기 화합물의 총량도 현저하게 감소되고, 열중량 분석시 잔류 수지량이 현저하게 높은 것을 확인할 수 있었다.
이러한 결과로부터 실시예 1 내지 7의 그라프트 공중합체는 제조 과정에서 특정 활성화제를 투입한 것과, 코어의 평균입경의 시너지 작용으로, 그라프트 공중합체가 환경 친화적이며, 내충격성 및 열안정성이 우수해진 것을 유추할 수 있었다.
실험예 2
실시예 및 비교예의 열가소성 수지 조성물에 활제(상품명: EBS, 제조사: LG 생활건강) 1.5 중량부, 산화방지제(상품명: IR1076, 제조사: BASF) 1.0 중량부 및 자외선 안정제(상품명: Tinuvin 770, 제조사: BASF) 1.0 중량부를 균일하게 혼합한 후, 220℃로 36 파이 압출 혼련기를 사용하여 펠렛을 제조하였다. 펠렛의 유동성을 하기와 같은 방법으로 측정하고, 그 결과를 하기 표 2 및 표 3에 나타내었다.
⑤ 유동지수(MI: melt flow index, g/10 mins): ASTM D-1238에 의거하여 220℃, 10㎏ 하에서 측정하였다.
실험예 3
실험예 2에서 제조된 펠렛을 사출하여 시편을 제조하였다. 시편의 물성을 하기와 같은 방법으로 측정하고, 그 결과를 표 2 및 3에 나타내었다.
⑥ 체류 열안정성: 펠렛 형태의 열가소성 수지 조성물을 사출 성형기에 투입하고 260 ℃의 사출 성형기 내에 5 분 동안 체류시킨 후 260 ℃의 온도에서 사출하여 체류시편을 제조하고, 펠렛 형태의 열가소성 수지 조성물을 사출 성형기에 투입하고 체류 없이 260 ℃의 온도에서 사출하여 무체류 시편을 제조한 후, 체류 시편 및 무체류 시편의 L, a, b 값을 분광 색차계로 측정한 후, 하기 식을 이용하여 변색 정도(△E)를 산출하였다.
Figure PCTKR2019011009-appb-I000008
⑦ 아이조드 충격강도(㎏·㎝/㎝): 시편의 두께를 1/4in로 하여 ASTM 256에 의거하여 측정하였다.
⑧ L, a, b: CIA LAB 색좌표를 이용하여 측정하였다.
⑨ 표면광택: - 45˚각도에서 ASTM D528의거하여 측정하였다.
⑩ 백색도: 슈가 색도계(Suga colorimetor)를 이용하여 측정하였다.
⑪ 내후성(△E)- 촉진내후성 시험 장치(weather-o-meter, ATLAS사 Ci4000, 크세논 아크 램프, Quartz(inner)/S.Boro(outer) 필터, irradiznce 0.55 W/m2 at 340 nm)를 이용하여 ASTM G115-1에 의거하여 시편을 2,000 시간 동안 방치한 후, 색차계로 변색 정도를 측정하였고, 하기 식에 적용하여 △E 값을 산출하였다.
여기서 △E는 내후성 실험 전후의 CIE L, a, b 값의 산술 평균 값이며, 값이 0에 가까울 수록 내후성이 좋음을 의미한다.
Figure PCTKR2019011009-appb-I000009
⑫ 돌기 개수: 열가소성 수지 조성물을 220 ℃에서 0.01 ㎜의 필름으로 압출 가공 후, 미용융 돌기를 세었다. 돌기의 개수가 적을 수록 박막 가공 시 외관이 우수한 것을 나타낸다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7
유동성(g/10mins) 10.5 10 10 9.5 9.8 11.0 11.2
체류 열안정성(△E) 3.3 3.5 3.7 3.9 3.7 3.9 3.7
충격강도(㎏·㎝/㎝) 26.5 27.0 26.0 21.5 23.5 28.0 29.0
L 88.5 88.2 87.8 88.8 88.5 87.6 87.4
a -1.45 -1.46 -1.36 -1.30 -1.32 -1.48 -1.50
b 7.5 7.6 7.9 8.3 8.1 7.2 7.0
표면광택 103.5 103.0 104.0 105 104.5 103.0 102.7
백색도 65.5 66.0 65.0 64.5 64.7 66.2 66.5
돌기 개수(50~500 ㎛) 420 430 440 420 410 460 480
내후성(△E) 1.6 1.8 1.9 1.5 1.5 1.9 2.0
구분 비교예 1 비교예 2 비교예 3 비교예 4
유동성(g/10min) 10.0 9.0 7.0 14.0
체류 열안정성(△E) 5.2 5.5 5.0 6.0
충격강도(㎏·㎝/㎝) 25.0 21.0 17.0 28.0
L 86.5 86.0 89.0 85.0
a -1.48 -1.50 -1.1 -1.7
b 8.8 9.5 9.0 95
표면광택 99.0 98.0 103 80
백색도 62.0 60.5 62.0 60.0
돌기 개수(50~500 ㎛) 900 1,000 700 1,200
내후성(△E) 2.8 2.5 1.8 3.5
표 2 및 3을 참조하면, 실시예 1 내지 7는 비교예 1 내지 4 대비 체류 열안정성, 충격강도, 선명도, 색상특성, 광택특성, 백색도, 외관특성 및 내후성이 전반적으로 우수한 것을 확인할 수 있었다.
특히 실시예 1 내지 실시예 3과 비교예 1 및 2는 그라프트 공중합체의 제조 공정 중 투입되는 활성화제만 다르지만, 실시예 1 내지 실시예 3이 모든 물성이 우수한 것을 확인할 수 있었다.
또한, 본 발명의 그라프트 공중합체의 코어의 평균입경보다 작은 그라프트 공중합체를 포함하는 비교예 3은 충격강도가 현저하게 떨어질 뿐만 아니라, 체류 열안정성, 색상 특성, 백색도 및 외관 특성도 저하되는 것을 확인할 수 있었다.
또한, 본 발명의 그라프트 공중합체의 코어의 평균입경보다 큰 그라프트 공중합체를 포함하는 비교예 4는 충격강도가 실시예와 동등 수준이었으나, 체류 열안정성, 선명도, 색상 특성, 백색도, 외관특성 및 내후성이 현저하게 저하되는 것을 확인할 수 있었다.

Claims (15)

1) 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상을 투입하고 중합하여 시드를 제조하는 단계;
2) 상기 시드 존재 하에, 알킬 (메트)아크릴레이트계 단량체를 투입하고 중합하여 코어를 제조하는 단계; 및
3) 상기 코어 존재 하에, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 투입하고 중합하여 쉘을 제조하는 단계를 포함하고,
상기 3) 단계에서 하기 화학식 1로 표시되는 화합물을 포함하는 활성화제를 투입하고,
상기 코어는 평균입경이 320 내지 520 ㎚인 그라프트 공중합체의 제조방법:
<화학식 1>
Figure PCTKR2019011009-appb-I000010
상기 화학식 1에서
R1 및 R2는 서로 같거나 다르고, 각각 독립적으로 수소, C1 내지 C10의 알킬기, 또는 *-(C=O)OM2이나, R1 및 R2가 모두 수소는 아니고,
M1 및 M2는 서로 같거나 다르고, 각각 독립적으로 알칼리 금속이다.
청구항 1에 있어서,
상기 코어는 평균입경이 330 내지 500 ㎚인 것인 그라프트 공중합체의 제조방법.
청구항 1에 있어서,
상기 3) 단계에서는 알킬 (메트)아크릴레이트계 단량체가 투입되지 않는 것인 그라프트 공중합체의 제조방법.
청구항 1에 있어서,
상기 화학식 1에서, R1 및 R2는 서로 같거나 다르고, 각각 독립적으로 수소, 또는 -(C=O)OM2 인 것인 그라프트 공중합체의 제조방법.
청구항 1에 있어서,
상기 화학식 1에서, M1 및 M2는 서로 같거나 다르고, 각각 독립적으로 Na 또는 K인 것인 그라프트 공중합체의 제조방법.
청구항 1에 있어서,
상기 활성화제는 하기 화학식 2로 표시되는 화합물을 포함하는 것인 그라프트 공중합체의 제조방법:
<화학식 2>
Figure PCTKR2019011009-appb-I000011
청구항 1에 있어서,
상기 활성화제를 연속 투입하는 것인 그라프트 공중합체의 제조방법.
청구항 1에 있어서,
상기 활성화제는 용매와 혼합된 상태로 투입되는 것인 그라프트 공중합체의 제조방법.
청구항 1에 있어서,
상기 활성화제는 상기 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 합 100 중량부에 대하여, 0.01 내지 1 중량부로 투입되는 것인 그라프트 공중합체의 제조방법.
청구항 1에 있어서,
상기 활성화제는 상기 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 합 100 중량부에 대하여, 0.1 내지 0.8 중량부로 투입되는 것인 그라프트 공중합체의 제조방법.
알킬 (메트)아크릴레이트계 단량체 단위;
방향족 비닐계 단량체 단위;
비닐 시안계 단량체 단위; 및
하기 화학식 1로 표시되는 화합물 유도체를 포함하고,
코어는 평균입경이 320 내지 520 ㎚인 그라프트 공중합체:
<화학식 1>
Figure PCTKR2019011009-appb-I000012
상기 화학식 1에서
R1 및 R2는 서로 같거나 다르고, 각각 독립적으로 수소, C1 내지 C10의 알킬기, 또는 *-(C=O)OM2이나, R1 및 R2가 모두 수소는 아니고,
M1 및 M2는 서로 같거나 다르고, 각각 독립적으로 알칼리 금속이다.
청구항 11에 있어서,
상기 코어는 평균입경이 330 내지 500 ㎚인 그라프트 공중합체.
청구항 11에 있어서,
상기 그라프트 공중합체는 휘발성 유기 화합물의 총량이 640 ppm 이하인 그라프트 공중합체.
청구항 11에 있어서,
상기 그라프트 공중합체는 열중량 분석 값이 98.6 중량% 이상인 그라프트 공중합체.
청구항 11 내지 청구항 14 중 어느 한 항에 따른 그라프트 공중합체; 및 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체를 포함하는 열가소성 수지 조성물로 제조되고,
충격강도는 21.3 ㎏·㎝/㎝ 이상이고,
체류 열안정성은 4.5 이하인 열가소성 수지 성형품.
PCT/KR2019/011009 2018-09-05 2019-08-28 그라프트 공중합체의 제조방법 및 그라프트 공중합체 WO2020050544A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020547190A JP7098121B2 (ja) 2018-09-05 2019-08-28 グラフト共重合体の製造方法及びグラフト共重合体
EP19857448.5A EP3736301A4 (en) 2018-09-05 2019-08-28 PROCESS FOR PREPARING A GRAFT COPOLYMER AND GRAFT COPOLYMER
US16/968,996 US11377515B2 (en) 2018-09-05 2019-08-28 Method for preparing graft copolymer and graft copolymer
CN201980012933.3A CN111741990B (zh) 2018-09-05 2019-08-28 接枝共聚物的制备方法和接枝共聚物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180106053A KR102278034B1 (ko) 2018-09-05 2018-09-05 그라프트 공중합체의 제조방법 및 그라프트 공중합체
KR10-2018-0106053 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020050544A1 true WO2020050544A1 (ko) 2020-03-12

Family

ID=69722078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011009 WO2020050544A1 (ko) 2018-09-05 2019-08-28 그라프트 공중합체의 제조방법 및 그라프트 공중합체

Country Status (7)

Country Link
US (1) US11377515B2 (ko)
EP (1) EP3736301A4 (ko)
JP (1) JP7098121B2 (ko)
KR (1) KR102278034B1 (ko)
CN (1) CN111741990B (ko)
TW (1) TWI809181B (ko)
WO (1) WO2020050544A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377515B2 (en) 2018-09-05 2022-07-05 Lg Chem, Ltd. Method for preparing graft copolymer and graft copolymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102074489B1 (ko) * 2017-12-14 2020-02-06 주식회사 엘지화학 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090067965A (ko) * 2007-12-21 2009-06-25 제일모직주식회사 단분산 고분자 입자의 제조방법
US20130131261A1 (en) * 2010-08-02 2013-05-23 Wacker Chemie Ag Process for Preparing Vinyl Acetate-Ethylene Copolymers by Means of Emulsion Polymerization
KR20140027872A (ko) * 2012-08-27 2014-03-07 주식회사 엘지화학 아크릴로니트릴―아크릴레이트―스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
KR20150015899A (ko) * 2013-08-02 2015-02-11 주식회사 엘지화학 고무강화 열가소성 고투명 수지의 제조방법
KR20150028194A (ko) * 2013-09-04 2015-03-13 주식회사 엘지화학 내후성 보강 아크릴레이트계 수지의 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517980A (ja) 2000-09-21 2004-06-17 ローム アンド ハース カンパニー 極性モノマーと多価カチオンとに関わる方法および組成物
EP1439197A1 (en) * 2003-01-15 2004-07-21 Rohm And Haas Company Precision fragmentation assemblages and olefin polymerization catalysts made therefrom
KR100591447B1 (ko) 2004-01-05 2006-06-22 주식회사 엘지화학 대전방지성이 우수한아크릴레이트-스티렌-아크릴로니트릴계 수지 조성물
DE102008023076A1 (de) * 2008-05-09 2009-11-12 Henkel Ag & Co. Kgaa Polymerisierbare Zusammensetzung
EP2492295A1 (en) 2011-02-22 2012-08-29 Momentive Specialty Chemicals Research Belgium S.A. Elastomeric polymer composition for coatings and sealants
KR20150002267A (ko) * 2013-06-28 2015-01-07 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
EP3020755B1 (en) * 2014-11-14 2018-01-10 3M Innovative Properties Company Post-curable rubber-based pressure-sensitive adhesive
JP2018507940A (ja) * 2015-03-12 2018-03-22 トタル リサーチ アンド テクノロジー フエリユイ 改良された電導性を有する半結晶性ポリマーをベースにした複合材料を製造するためのマスターバッチと、その製造方法と、それから製造された複合材料
KR101895112B1 (ko) * 2015-12-31 2018-09-04 롯데첨단소재(주) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
KR102005364B1 (ko) 2016-11-02 2019-07-30 주식회사 엘지화학 Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
KR102278034B1 (ko) 2018-09-05 2021-07-15 주식회사 엘지화학 그라프트 공중합체의 제조방법 및 그라프트 공중합체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090067965A (ko) * 2007-12-21 2009-06-25 제일모직주식회사 단분산 고분자 입자의 제조방법
US20130131261A1 (en) * 2010-08-02 2013-05-23 Wacker Chemie Ag Process for Preparing Vinyl Acetate-Ethylene Copolymers by Means of Emulsion Polymerization
KR20140027872A (ko) * 2012-08-27 2014-03-07 주식회사 엘지화학 아크릴로니트릴―아크릴레이트―스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
KR20150015899A (ko) * 2013-08-02 2015-02-11 주식회사 엘지화학 고무강화 열가소성 고투명 수지의 제조방법
KR20150028194A (ko) * 2013-09-04 2015-03-13 주식회사 엘지화학 내후성 보강 아크릴레이트계 수지의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377515B2 (en) 2018-09-05 2022-07-05 Lg Chem, Ltd. Method for preparing graft copolymer and graft copolymer

Also Published As

Publication number Publication date
TW202012472A (zh) 2020-04-01
US11377515B2 (en) 2022-07-05
EP3736301A1 (en) 2020-11-11
US20210024678A1 (en) 2021-01-28
JP2021516716A (ja) 2021-07-08
CN111741990A (zh) 2020-10-02
CN111741990B (zh) 2023-07-04
JP7098121B2 (ja) 2022-07-11
EP3736301A4 (en) 2021-05-05
TWI809181B (zh) 2023-07-21
KR102278034B1 (ko) 2021-07-15
KR20200027796A (ko) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2020032505A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 이를 포함하는 열가소성 수지 성형품
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022019581A1 (ko) 열가소성 수지 및 이의 제조방법
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2022010053A1 (ko) 열가소성 수지 및 이의 제조방법
WO2020101332A1 (ko) 열가소성 수지 조성물
WO2020050544A1 (ko) 그라프트 공중합체의 제조방법 및 그라프트 공중합체
WO2019059664A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2019151776A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020080735A1 (ko) 그라프트 공중합체 분말의 제조방법
WO2022035071A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2020091336A1 (ko) 열가소성 수지 조성물
WO2021066345A1 (ko) 아크릴계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2019221448A1 (ko) 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2019156394A1 (ko) 그라프트 공중합체의 제조방법 및 열가소성 수지 성형품
WO2023243910A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2023243909A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2023068499A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2023068498A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2019098753A1 (ko) 그라프트 공중합체의 제조방법
WO2015163608A1 (ko) 내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019857448

Country of ref document: EP

Effective date: 20200804

ENP Entry into the national phase

Ref document number: 2020547190

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE