WO2019098753A1 - 그라프트 공중합체의 제조방법 - Google Patents

그라프트 공중합체의 제조방법 Download PDF

Info

Publication number
WO2019098753A1
WO2019098753A1 PCT/KR2018/014099 KR2018014099W WO2019098753A1 WO 2019098753 A1 WO2019098753 A1 WO 2019098753A1 KR 2018014099 W KR2018014099 W KR 2018014099W WO 2019098753 A1 WO2019098753 A1 WO 2019098753A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
group
graft copolymer
phosphoric acid
seed
Prior art date
Application number
PCT/KR2018/014099
Other languages
English (en)
French (fr)
Inventor
조왕래
안봉근
김민정
황용연
박장원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/619,063 priority Critical patent/US11034778B2/en
Priority to JP2019570055A priority patent/JP6960000B2/ja
Priority to EP18878744.4A priority patent/EP3617242B1/en
Priority to CN201880035607.XA priority patent/CN110709438B/zh
Publication of WO2019098753A1 publication Critical patent/WO2019098753A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/06Vinyl aromatic monomers and methacrylates as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/24Polymer with special particle form or size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a method for producing a graft copolymer, and more particularly, to a method for producing a graft copolymer in which a phosphoric acid type emulsifier is added.
  • an ABS graft copolymer obtained by graft copolymerizing an aromatic vinyl monomer and a vinyl cyan monomer to a diene rubber polymer prepared by polymerizing a conjugated diene monomer has excellent impact resistance and processability, and has excellent mechanical properties and heat distortion temperature And is widely used for electric and electronic appliances, automobile parts, and office equipment.
  • the diene rubber polymer contains chemically unstable unsaturated bonds, it easily ages due to ultraviolet rays and has a problem that weather resistance is very weak.
  • a representative example of the weather-resistant thermoplastic resin using the acrylic rubber-like polymer not containing an unstable double bond is an acrylate-styrene-acrylonitrile (ASA) copolymer, which is a copolymer of an unstable double bond , Which are excellent in weather resistance, chemical resistance, chemical resistance and thermal stability, and are required to have such characteristics, for example, electric / electronic parts for outdoor use, building materials, agricultural equipment materials, ASA / ABS double- ), Profile extrusion, road signs, outdoor products, PVC for construction materials, leisure goods, sports goods, and automobile parts.
  • ASA acrylate-styrene-acrylonitrile
  • an emulsifier such as sodium rosinate, potassium rosinate, sodium laurate, potassium laurate, sodium oleate, potassium oleate, potassium stearate
  • An emulsifier containing sulfur such as a low molecular weight carboxylate having 20 or less carbon atoms, an alkylsulfosuccinic acid dipotassium salt having 12 to 18 carbon atoms, an alkyl sulfate or alkyl ester sulfate having 12 to 20 carbon atoms is applied.
  • the above-described conventional emulsifiers have a problem in that the thermal stability and the surface characteristics of the resin are lowered in the high-temperature molding process after polymerization.
  • the application range of ASA resin has become thinner by using siding, sheet and coextruded film.
  • the heat stability in the molding process by the residual emulsifier in the resin is improved, There is a growing need for technologies that can be improved.
  • a method for producing a polymer electrolyte membrane comprising the steps of: preparing a seed by emulsion polymerization of at least one member selected from the group consisting of an aromatic vinyl monomer, a vinyl cyan monomer and an alkyl (meth) acrylate monomer; Emulsion polymerization of the seed and the alkyl (meth) acrylate monomer to produce a core; And a step of emulsion-polymerizing the core, the aromatic vinyl monomer and the vinyl cyan monomer to prepare a shell, and a step of preparing the seed, the core and the shell,
  • a method for producing a graft copolymer which comprises injecting an emulsifier containing a compound represented by the formula:
  • R 1 is a C 6 to C 20 aryl group substituted with an alkyl group of C 1 to C 20 alkyl group or a C 1 to C 20 of,
  • M is hydrogen or an alkali metal
  • n 1 or 2
  • the present invention also relates to a graft copolymer prepared by the above process; And a copolymer comprising an aromatic vinyl-based monomer-derived unit and a vinylcyanide-based monomer-derived unit.
  • the graft copolymer prepared by the process for producing a graft copolymer according to the present invention has excellent thermal stability and can significantly reduce the amount of generated gas. Further, the thermoplastic resin composition according to the present invention is excellent in thermal stability, and has excellent whiteness and surface gloss, so that the appearance quality can be further improved. In addition, the thermoplastic resin composition of the present invention can further improve mechanical properties such as impact strength and tensile strength.
  • the alkyl group is preferably a methyl group, an ethyl group, a propyl group, a n-propyl group, an isopropyl group, a butyl group, a n-butyl group, an isobutyl group, Pentyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methylpentyl group, Methyl-2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, ethylhexyl group, 1-ethylhexyl group, 2-propylpentyl group, n-nonyl group, 2,2-dimethylheptyl group, Propyl
  • the aryl group may include monocyclic or polycyclic rings.
  • a polycyclic ring means a group in which an aryl group is directly connected to another ring group or condensed with another ring group.
  • the other ring group may be an aryl group, but may be another kind of ring group such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group and the like.
  • the aryl group includes a spiro group.
  • aryl group examples include a phenyl group, a biphenyl group, a triphenyl group, a naphthyl group, an anthryl group, a klychenyl group, a phenanthrenyl group, a perylenyl group, a fluoranthenyl group, a triphenylenyl group, An acenaphthyl group, a benzofluorenyl group, a spirobifluorenyl group, a 2,3-dihydro-1H-indenyl group, a condensed ring group thereof, a thiophenecarbonyl group, , But are not limited thereto.
  • R 1 is a C 6 to C 20 aryl group substituted with an alkyl group of C 1 to C 20 alkyl group or a C 1 to C 20 of,
  • M is hydrogen or an alkali metal
  • n 1 or 2
  • An emulsifier (hereinafter referred to as a 'phosphoric acid type emulsifier') containing the compound represented by the formula (1) improves the thermal stability of the graft copolymer and can significantly reduce the amount of gas generated.
  • a 'phosphoric acid type emulsifier' containing the compound represented by the formula (1) improves the thermal stability of the graft copolymer and can significantly reduce the amount of gas generated.
  • the thermoplastic resin composition containing the graft copolymer is injected, the appearance quality such as surface gloss and whiteness can be improved.
  • the R 1 may be a C 10 to C 20 alkyl group, and is preferably a C 13 to C 17 alkyl group.
  • the M is preferably sodium or potassium.
  • N 1 may be 1 to 15 or 2 to 10, preferably 2 to 10.
  • the compound represented by Formula 1 is preferably selected from the group consisting of lauryl ether hexaethylene oxide phosphoric acid, myristic ether hexaethylene oxide phosphoric acid, palmitic ether hexaethylene oxide phosphoric acid, stearic ether hexaethylene oxide phosphoric acid, (Lauryl ether hexaethylene oxide) phosphoric acid, stearic ether dioxyethylene phosphoric acid, stearic ether octaethylene oxide phosphoric acid, di (lauryl ether hexaethylene oxide) phosphoric acid , Di (myristic ether hexaethylene oxide) phosphoric acid, di (myristic ether hexaethylene oxide) phosphonic acid, di (palmitic ether hexaethylene oxide) phosphoric acid, di (stearic ether hexaethylene oxide) Phosphoric acid and di (palmitic ether octaethylene oxide) phospho Acid, and di (stearic
  • the compound represented by Formula 1 may have a cans number of 68186-29-8.
  • the phosphoric acid type emulsifier may further comprise a compound represented by the following general formula (2).
  • R 2 is an aryl group of C 6 to C 20 substituted with an alkyl group of C 1 to C 20 alkyl group or a C 1 to C 20 a, and
  • the R 2 may be a C 10 to C 20 alkyl group, preferably a C 13 to C 17 alkyl group.
  • N 2 may be 1 to 15 or 2 to 10, preferably 2 to 10.
  • the compound represented by Formula 2 may have a cascade number of 24938-91-8.
  • the phosphoric acid type emulsifier may contain the compound represented by Formula 1 and the compound represented by Formula 2 in a weight ratio of 80:20 to 99: 1, 85:15 to 98: 2, or 90:10 to 97: 3 , And it is preferably contained in a weight ratio of 90:10 to 97: 3.
  • the phosphoric acid type emulsifier may further include water, and may further contain 15 wt% or less, 1 to 14 wt%, or 5 to 13 wt% based on the total weight of the phosphoric acid type emulsifier.
  • Phosphanol RS-610NA of TOHO CHEMICAL INDUSTRY Co., Ltd. may be used as the phosphoric acid type emulsifier.
  • the phosphate emulsifier may be added in one of the steps of preparing the seed, preparing the core, and making the shell, in detail, preparing the core or making the shell. It is preferable that the phosphoric acid type emulsifier is added to at least two of the steps of preparing the seed, preparing the core and producing the shell, specifically, preparing the core and preparing the shell. And, it is most preferable to be put in all three stages.
  • the phosphoric acid type emulsifier may be mixed with at least one general emulsifier selected from the group consisting of C 1 to C 20 monocarboxylic acid salts, C 12 to C 18 succinate metal salts, sulfonic acid metal salts and rosin metal salts .
  • the phosphoric acid type emulsifier is preferably mixed with a C 1 to C 20 monocarboxylic acid salt.
  • the monocarboxylic acid salt may be a C 8 to C 20 fatty acid soap, and the C 12 to C 18 succinate metal salt may be a C 12 to C 18 alkenyl succinic acid dipotassium salt.
  • the sulfonic acid metal salt may be at least one member selected from the group consisting of sodium dodecyl sulfate, sodium dodecylbenzenesulfate, sodium octadecyl sulfate, sodium oleic sulfate, potassium dodecyl sulfate and potassium octadecyl sulfate.
  • the rosin acid metal salt may be at least one selected from the group consisting of potassium rosinate and sodium rosinate.
  • the phosphate emulsifier and the general emulsifier may be mixed in a weight ratio of 1: 1 to 1: 5, 1: 1.5 to 1: 4.5, or 1: 2 to 1: 4, By weight.
  • the thermal stability of the graft copolymer can be improved and the gas generation amount can be remarkably reduced.
  • the weight ratio of the phosphoric acid type emulsifier to the monocarboxylic acid salt is 1: 1 to 1: 5, 1: 1.5 to 1: 4.5, or 1: 2 to 1: : 4, preferably 1: 2 to 1: 4.
  • thermoplastic resin composition When the above range is satisfied, it is possible to improve the thermal stability of the graft copolymer and improve the appearance quality such as surface gloss and whiteness during injection of the thermoplastic resin composition.
  • At least one member selected from the group consisting of an aromatic vinyl monomer, a vinyl cyan monomer and an alkyl (meth) acrylate monomer is subjected to emulsion polymerization.
  • the aromatic vinyl monomer may be added alone, or the alkyl (meth) acrylate monomer may be added alone, or the aromatic vinyl monomer and the vinyl cyanide (Meth) acrylate-based monomer and an aromatic vinyl-based monomer are added together, or the alkyl (meth) acrylate-based monomer and vinyl cyanide monomer are added together, or the alkyl (meth)
  • the emulsion polymerization can be carried out by charging the rate-based monomer, the aromatic vinyl-based monomer, and the vinyl cyanide monomer together.
  • the alkyl (meth) acrylate-based monomer may be a C 1 to C 20 linear alkyl (meth) acrylate or a C 3 to C 20 branched alkyl (meth) acrylate, of which C 1 to C 20 Linear alkyl (meth) acrylates, and linear alkyl (meth) acrylates of C 1 to C 4 are more preferred.
  • the alkyl (meth) acrylate monomer may be at least one member selected from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate and 2-ethylhexyl acrylate. Of these, butyl acrylate is preferred.
  • the aromatic vinyl-based monomer may be at least one member selected from the group consisting of styrene,? -Methylstyrene, p-methylstyrene, and 2,4-dimethylstyrene, and styrene is preferable.
  • the vinyl cyan monomer may be at least one selected from acrylonitrile, methacrylonitrile, and ethacrylonitrile, and acrylonitrile is preferable.
  • the total amount of monomers charged in the step of preparing the seed may be 4 to 20% by weight, 4 to 15% by weight or 4 to 10% by weight based on the total weight of the monomers charged in the production of the graft copolymer And 4 to 10% by weight thereof is preferably added.
  • the graft copolymer has an excellent balance of physical properties such as impact resistance and weather resistance.
  • the emulsion polymerization may be carried out in the presence of at least one member selected from the group consisting of an emulsifier, an initiator, a crosslinking agent, a grafting agent, an electrolyte and water.
  • the emulsion polymerization is preferably carried out in the presence of all of these.
  • the emulsifier may be at least one selected from the group consisting of the above-mentioned phosphoric acid type emulsifiers and general emulsifiers, and it is preferable to use the above-mentioned phosphoric acid type emulsifiers, a mixture of the above-mentioned phosphoric acid type emulsifiers and general emulsifiers or a sulfonic acid metal salt in general emulsifiers Do.
  • the emulsifier may be added in an amount of 0.01 to 0.29 parts by weight, 0.01 to 0.25 parts by weight or 0.01 to 0.15 parts by weight based on 100 parts by weight of the total amount of the monomers to be added in the preparation of the graft copolymer, .
  • the thermal stability of the graft copolymer can be improved and the gas generation amount can be remarkably reduced.
  • the thermoplastic resin composition containing the graft copolymer is injected, the appearance quality such as surface gloss and whiteness can be improved.
  • the initiator may be at least one selected from the group consisting of a water-soluble initiator and a liposoluble initiator.
  • the water-soluble initiator may be at least one member selected from the group consisting of sodium persulfate, potassium persulfate, ammonium sulfate, superphosphate, and hydrogen peroxide.
  • the fat-soluble initiator may be at least one selected from the group consisting of t-butyl peroxide, cumene hydroperoxide, p-methane hydroperoxide, di-t-butyl peroxide, t- butyl cumyl peroxide, acetyl peroxide, isobutyl peroxide, , Dibenzoyl peroxide, diisopropylbenzene hydroperoxide, 5,5-trimethylhexanol peroxide, t-butylperoxyisobutylate, azobisisobutyronitrile, azobis-2,4-dimethylvalero Nitrile, azobiscyclohexanecarbonitrile, and azobis isobutyric acid (butyl acid) methyl.
  • potassium persulfate is preferable because it is easy to control the reaction rate at the initial stage of polymerization and can easily produce a polymer having an aimed average particle diameter.
  • the initiator may be added in an amount of 0.01 to 3 parts by weight, 0.01 to 1 part by weight or 0.01 to 0.5 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the production of the graft copolymer, .
  • the above-mentioned range is satisfied, polymerization stability and polymerization efficiency are improved.
  • the crosslinking agent may be an acrylic compound, and the acrylic compound may be selected from the group consisting of polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, ethylene glycol diacrylate, ethylene glycol di Methacrylate, divinylbenzene, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,3-butadiol dimethacrylate, hexane diol propoxylate diacrylate, neopentyl glycol dimethacrylate Acrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, trimethylolpropane triacrylate, trimethylolpropane triacrylate, trimethylolpropane triacrylate, trimethylolpropane triacrylate, trimethylolpropane triacrylate, Lantria Pentaerythritol ethoxylate tri
  • the crosslinking agent may be included in an amount of 0.01 to 1 part by weight or 0.01 to 0.5 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the production of the graft copolymer.
  • a part of monomers charged at the time of seed production can be made of a crosslinked polymer, and the remainder can be used to form a crosslinked structure of monomers charged at the core production step.
  • the grafting agent may be a compound containing at least two unsaturated vinyl groups having different reactivity, and the compound may be a compound selected from the group consisting of allyl methacrylate, triallyl isocyanurate, diallylamine and triallyl amine And among them, allyl methacrylate is preferable.
  • the grafting agent may be added in an amount of 0.01 to 3 parts by weight, 0.01 to 1 part by weight or 0.01 to 0.5 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the production of the graft copolymer, Most preferably in a weight part.
  • the grafting agent reacts first on the seed surface, thereby enhancing the grafting efficiency of the monomers injected in the core step.
  • the electrolyte may be, for example, KCl, NaCl, KHCO 3 , NaHCO 3 , K 2 CO 3 , Na 2 CO 3 , KHSO 3 , NaHSO 3 , K 4 P 2 O 7 , Na 4 P 2 O 7 , K 3 PO 4 , Na 3 PO 4 , K 2 HPO 4 , Na 2 HPO 4 , KOH, NaOH and Na 2 S 2 O 7 , among which KOH is preferable.
  • the electrolyte may be added in an amount of 0.001 to 1 part by weight, 0.005 to 1 part by weight or 0.01 to 0.5 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the production of the graft copolymer, .
  • the stability of the polymerization reaction is improved and a graft copolymer having a desired average particle diameter can be easily produced.
  • the emulsion polymerization may be carried out at 40 to 80 ° C or at 50 to 75 ° C and may be carried out after the temperature of the reactants has reached within the above-described range, in order to ensure polymerization stability and to form a seed having an even average particle size, It is preferable to inject it.
  • the average particle diameter of the seed may be 90 to 400 nm, 150 to 300 nm or 150 to 250 nm, and preferably 150 to 250 nm.
  • the mechanical properties such as impact resistance of the thermoplastic resin composition containing the graft copolymer can be further improved.
  • the average particle diameter of the seeds can be measured in a Gaussian mode by mixing 1 g of a rubber polymer latex with 100 g of distilled water and then using a dynamic laser light scaling method using Nicomp 380HPL (manufacturer: PSS, Nicomp, USA).
  • the seed and the alkyl (meth) acrylate monomer are subjected to emulsion polymerization.
  • the core can be made in the form of wrapping a seed.
  • alkyl (meth) acrylate-based monomer examples include the same as those described in the step of (1) producing a seed.
  • the alkyl (meth) acrylate monomer may be added in an amount of 30 to 60% by weight, 35 to 55% by weight or 40 to 50% by weight based on the total weight of the monomers to be added in the preparation of the graft copolymer, By weight based on the total weight of the composition.
  • the above-mentioned range is satisfied, it is possible to produce a graft copolymer excellent in reaction balance during emulsion polymerization and excellent in impact resistance and weather resistance.
  • the emulsion polymerization may be carried out in the presence of at least one member selected from the group consisting of an emulsifier, an initiator, a crosslinking agent, a grafting agent and water.
  • the emulsion polymerization is preferably carried out in the presence of all of these.
  • the emulsifier may be at least one selected from the group consisting of the above-mentioned phosphoric acid type emulsifiers and general emulsifiers, and it is preferable to use the above-mentioned phosphoric acid type emulsifiers, a mixture of the above-mentioned phosphoric acid type emulsifiers and general emulsifiers or a sulfonic acid metal salt in general emulsifiers Do.
  • the emulsifier may be added in an amount of 0.1 to 1 part by weight, 0.2 to 0.9 part by weight, or 0.3 to 0.8 part by weight based on 100 parts by weight of the total amount of monomers to be added in the production of the graft copolymer, .
  • the thermal stability of the graft copolymer can be improved and the gas generation amount can be remarkably reduced.
  • the thermoplastic resin composition containing the graft copolymer is injected, the appearance quality such as surface gloss and whiteness can be improved.
  • the initiator may be added in an amount of 0.005 to 0.1 part by weight, 0.01 to 0.09 part by weight or 0.02 to 0.08 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the production of the graft copolymer, .
  • polymerization stability and polymerization efficiency are improved.
  • the crosslinking agent may be added in an amount of 0.01 to 1 part by weight, 0.01 to 0.8 part by weight, or 0.01 to 0.6 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the production of the graft copolymer, .
  • some of the monomers charged in the core production may be made of a crosslinked polymer, and the remainder may be used to form a crosslinked structure of monomers charged in the shell stage.
  • the grafting agent may be added in an amount of 0.01 to 1 part by weight, 0.01 to 0.8 part by weight, or 0.01 to 0.6 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the production of the graft copolymer, By weight.
  • the grafting agent first reacts on the core surface, thereby increasing the grafting efficiency with the monomers injected in the shell stage.
  • emulsifier the initiator, the cross-linking agent and the grafting agent are as described in '1) the step of preparing the seed'.
  • the step of producing the core it is preferable to mix the reactants, which are put into the polymerization reaction, in separate reactors, and to continuously introduce them in terms of ensuring the reaction balance and polymerization stability.
  • the continuous addition can be carried out at a constant rate for a certain period of time, no less than 30 minutes, 60 minutes to 180 minutes, or 90 minutes to 120 minutes.
  • the continuous injection may include a drop by drop method.
  • the average particle diameter of the core is larger than the average particle diameter of the seed, and may be 180 to 600 nm, 250 to 550 nm or 300 to 500 nm, and preferably 300 to 500 nm.
  • the impact resistance, weather resistance, and appearance quality of the thermoplastic resin composition containing the graft copolymer can be further improved while the stability of the core latex is excellent.
  • the average particle diameter of the core can be measured in the same manner as the average particle diameter of the seed.
  • the core, the aromatic vinyl monomer and the vinyl cyan monomer are emulsion-polymerized.
  • the aromatic vinyl-based monomer may be added in an amount of 20 to 50% by weight or 25 to 45% by weight or 30 to 40% by weight based on the total weight of the monomers charged in the preparation of the graft copolymer, By weight.
  • a graft copolymer having excellent reaction balance and excellent impact resistance and weather resistance can be produced.
  • the vinyl cyanide monomer may be added in an amount of 5 to 20% by weight, 8 to 19% by weight or 10 to 18% by weight based on the total weight of the monomers to be added in the preparation of the graft copolymer, By weight.
  • a graft copolymer having excellent reaction balance and excellent impact resistance and weather resistance can be produced.
  • aromatic vinyl monomer and the vinyl cyan monomer are as described in the step of (1) producing a seed.
  • the emulsion polymerization may be carried out in the presence of at least one member selected from the group consisting of emulsifiers, initiators, molecular weight regulators and water.
  • the emulsion polymerization is preferably carried out in the presence of at least one member selected from the group consisting of an emulsifier, an initiator and water.
  • the emulsifier may be at least one selected from the group consisting of the above-mentioned phosphoric acid type emulsifiers and general emulsifiers, and it is preferable to use the above-mentioned phosphoric acid type emulsifiers, a mixture of the above-mentioned phosphoric acid type emulsifiers and general emulsifiers or a sulfonic acid metal salt in general emulsifiers Do.
  • the emulsifier may be added in an amount of 0.1 to 3 parts by weight, 0.2 to 2.8 parts by weight or 0.3 to 2.5 parts by weight based on 100 parts by weight of the total amount of the monomers to be added in the preparation of the graft copolymer, .
  • the thermal stability of the graft copolymer can be improved and the gas generation amount can be remarkably reduced.
  • the thermoplastic resin composition containing the graft copolymer is injected, the appearance quality such as surface gloss and whiteness can be improved.
  • the initiator may be added in an amount of 0.01 to 3 parts by weight, 0.05 to 1 part by weight, or 0.1 to 0.5 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the preparation of the graft copolymer, .
  • polymerization stability and polymerization efficiency are improved.
  • a specific example of the initiator is as described in the step of (1) producing a seed, and it is preferable to use a liposoluble initiator.
  • the initiator is preferably added with an oxidation-reduction catalyst in order to promote the activity of the initiator to improve the reaction efficiency.
  • the oxidation-reduction catalyst may be at least one member selected from the group consisting of sodium pyrophosphate, dextrose, ferrous sulfide, sodium sulfite, sodium formaldehyde sulfoxylate and sodium ethylenediamine tetraacetate, At least one selected from the group consisting of sodium phosphate, dextrose and ferrous sulfide is preferable.
  • the oxidation-reduction catalyst may be added in an amount of 0.001 to 1 part by weight, 0.002 to 0.7 part by weight or 0.002 to 0.5 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the preparation of the graft copolymer, Preferably 0.002 to 0.5 parts by weight.
  • 0.001 to 1 part by weight 0.002 to 0.7 part by weight or 0.002 to 0.5 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the preparation of the graft copolymer, Preferably 0.002 to 0.5 parts by weight.
  • the molecular weight adjuster may be at least one member selected from the group consisting of t-dodecyl mercaptan, n-dodecyl mercaptan and n-octyl mercaptan, and t-dodecyl mercaptan is preferable .
  • the molecular weight modifier may be added in an amount of 0.01 to 2 parts by weight, 0.01 to 1 part by weight, or 0.01 to 0.5 part by weight based on 100 parts by weight of the total amount of the monomers to be added in the preparation of the graft copolymer, 0.5 part by weight is preferable. When the above-mentioned range is satisfied, polymerization stability and efficiency can be improved.
  • the core, the aromatic vinyl monomer and the vinyl cyan monomer are first added to the reactor, and then the mixture prepared by mixing the emulsifier, the initiator, the molecular weight modifier, and the like in a separate reactor is continuously introduced into the reactor May be preferable in terms of improvement of reaction efficiency and stability.
  • the continuous addition may be carried out at a constant rate without interruption for a period of time, for a period of 30 minutes, for 60 minutes to 300 minutes, or for 90 minutes to 240 minutes.
  • the continuous injection may include a drop by drop method.
  • the graft copolymer latex obtained in the step of producing the shell may have a coagulated content of 1% by weight or less (based on 100% by weight of latex), 0.5% by weight or 0.1% by weight or less, and 0.1% desirable.
  • a coagulated content 1% by weight or less (based on 100% by weight of latex), 0.5% by weight or 0.1% by weight or less, and 0.1% desirable.
  • the graft copolymer latex may be obtained as a powder through conventional processes such as agglomeration, aging, dehydration, washing, and drying.
  • the average particle diameter of the graft copolymer containing the shell is larger than the average particle diameter of the core, and may be 250 to 700 nm, 300 to 600 nm or 300 to 500 nm, and preferably 300 to 500 nm.
  • the stability of the graft copolymer latex is excellent, and the impact resistance, weather resistance, and appearance quality of the thermoplastic resin composition containing the graft copolymer can be further improved.
  • the average particle diameter of the graft copolymer can be measured in the same manner as the average particle diameter of the seed.
  • thermoplastic resin composition is a graft copolymer prepared by the process for producing the graft copolymer; And a copolymer comprising an aromatic vinyl-based monomer-derived unit and a vinyl cyan-based monomer-derived unit.
  • the aromatic vinyl-based monomer-derived unit may be a unit derived from the aromatic vinyl-based monomer described in the step of producing the '1) seed, and the styrene-derived unit is preferable.
  • the unit derived from the vinyl cyan monomer may be a unit derived from the vinyl cyan monomer described in the step of (1) producing a seed, and the unit derived from the acrylonitrile is preferable.
  • the copolymer may be a styrene-acrylonitrile copolymer.
  • the weight ratio of the aromatic vinyl-based monomer-derived unit to the vinyl cyan-based monomer-derived unit may be 60:40 to 85:15 or 65:35 to 80:20.
  • the weight ratio of the graft copolymer to the copolymer may be 20:80 to 40:60, 30:70 to 50:50, or 40:60 to 50:50, with 40:60 to 50:50 being preferred .
  • the thermoplastic resin composition may further include an additive.
  • the additive may be at least one selected from flame retardants, lubricants, antibacterial agents, mold release agents, nucleating agents, plasticizers, heat stabilizers, antioxidants, light stabilizers, pigments, dyes and compatibilizers.
  • the additive may be added in an amount of 0.1 to 10 parts by weight, 0.5 to 7 parts by weight, or 1 to 5 parts by weight, preferably 1 to 5 parts by weight, based on 100 parts by weight of the sum of the graft copolymer and the copolymer.
  • thermoplastic resin composition may be subjected to one or more processes selected from the group consisting of extrusion and injection.
  • the thermoplastic resin composition is preferably injected after extrusion.
  • the extrusion may be performed in the form of pellets after kneading the components of the thermoplastic resin composition and then extruding the components.
  • the kneading and extruding may be performed at a temperature of 200 to 300 DEG C and 30 to 100 rpm or 200 to 280 DEG C and 30 To 70 rpm. When the above-mentioned range is satisfied, there is an effect of excellent workability.
  • the extruded thermoplastic resin composition may be injected at a temperature of 190 to 300 ° C and 30 to 80 bar, or 200 to 250 ° C and 30 to 70 bar. When the above-mentioned range is satisfied, excellent workability and desired mechanical properties and appearance quality can be obtained.
  • the extruded thermoplastic resin composition may have a retention thermal stability of 4 or less, 0.1 to 3.5 or 0.1 to 3.3.
  • the retention stability of the extruded thermoplastic resin composition was evaluated by the CIE LAB color coordinate system to determine the degree of discoloration of the extruded thermoplastic resin composition in an injection molding machine at 260 DEG C for 5 to 10 minutes, , the b value can be measured and the degree of discoloration (DELTA E) can be calculated using the following equation (1).
  • L ', a' and b ' are then stays for 5 to 10 min
  • the extruded thermoplastic resin composition within the injection molding machine of 260 °C measured by CIE LAB color coordinates L, a, and b values and the, L 0 , a 0 and b 0 are the L, a, and b values measured in the CIE LAB color coordinate system before residence in the injection molding machine.
  • butyl acrylate (BA), 0.6 part by weight of Phosphanol RS-610 (trade name, manufactured by Toho Chemical Industry) as an emulsifier, 0.1 part by weight of ethylene glycol dimethacrylate as a crosslinking agent, 0.04 part by weight of allyl methacrylate, 30 parts by weight of distilled water and 0.05 part by weight of potassium persulfate as an initiator was continuously added for 4 hours, and polymerization was continued for 1 hour after completion of the addition. After completion of the reaction, a rubber polymer latex as a core was obtained. At this time, the average particle diameter of the core was 320 nm.
  • the average particle diameter of the core was measured in the same manner as the seed.
  • the average particle diameter of the graft copolymer latex was measured in the same manner as the seed.
  • Copolymer powder was prepared.
  • styrene-acrylonitrile copolymer (trade name: 90HR, composition: 27% by weight of acrylonitrile-derived unit, 73% by weight of styrene- 1.5 parts by weight of a lubricant (manufacturer: Pioneer, trade name: EBS resin), 0.5 parts by weight of IRGANOX1076 (trade name, manufactured by BASF) and 0.5 parts by weight of IRGGAFOS168 (trade name: BASF) as antioxidants, Tinuvin P 0.5 part by weight of a trade name, manufactured by BASF) and 0.5 part by weight of Tinuvin 770 (trade name: BASF).
  • the mixture was prepared in the form of pellets using a 36 pie extrusion kneader at a cylinder temperature of 220 ⁇ , and the pellet-shaped resin was injected (injection temperature: 220 ⁇ , injection pressure: 50 bar) .
  • the average particle diameter of the seed was 155 nm
  • the average particle diameter of the core was 326 nm
  • the average particle diameter of the graft copolymer latex was 396 nm.
  • a specimen was prepared in the same manner as in Example 1 except that seed was prepared by adding 4.8 parts by weight of styrene and 6.0 parts by weight of styrene instead of 1.2 parts by weight of acrylonitrile in the production of the seed.
  • the seed had an average particle size of 152 nm
  • the core had an average particle diameter of 320 nm
  • the graft copolymer latex had an average particle diameter of 388 nm.
  • a sample was prepared in the same manner as in Example 1, except that 1.9 parts by weight of sodium rosinate was added instead of Phosphanol RS-610 in the preparation of the shell.
  • the average particle diameter of the graft copolymer latex was 390 nm.
  • a specimen was prepared in the same manner as in Example 1, except that 0.6 part by weight of sodium dodecyl sulfate was used instead of Phosphanol RS-610 in the production of the core.
  • the average particle diameter of the graft copolymer latex was 389 nm.
  • a specimen was prepared in the same manner as in Example 1, except that 0.025 part by weight of Phosphanol RS-610 was added instead of 0.05 part by weight of sodium dodecyl sulfate in the preparation of the seed.
  • the average particle diameter of the seed was 115 nm
  • the average particle diameter of the core was 241 nm
  • the average particle diameter of the graft copolymer latex was 300 nm.
  • the average particle diameter of the core was 316 nm and the average particle diameter of the graft copolymer latex was 384 nm.
  • the average particle diameter of the core was 310 nm
  • the average particle diameter of the graft copolymer latex was
  • Example 1 50 0.6 - 32 12 1.9 - Example 2 50 0.6 - 32 12 1.9 - Example 3 50 0.6 - 32 12 1.9 - Example 4 50 0.6 - 32 12 - 1.9 Example 5 50 - 0.6 32 12 1.9 - Example 6 50 0.6 - 32 12 1.9 - Comparative Example 1 50 - 0.6 32 12 - 1.9 Comparative Example 2 50 - 0.6 32 12 - 1.9
  • TGA analysis 1 g of the graft copolymer powder was heated at a rate of 20 ⁇ ⁇ / min from 30 ⁇ ⁇ to 250 ⁇ ⁇ in a nitrogen atmosphere, and the weight loss was measured while keeping it at 250 ⁇ ⁇ for 1 hour. ).
  • Example 1 99.1 480
  • Example 2 98.9 478
  • Example 3 98.7 472
  • Example 4 99.2 573
  • Example 5 99.1 532
  • the graft copolymer powders of Examples 1 to 6 had a high residual resin amount and a significantly low gas generation amount in the TGA analysis of the graft copolymer powder of Comparative Example 1 and Comparative Example 2 , The thermal stability was excellent, and the amount of the volatile organic compound in the graft copolymer was decreased. It was also found that as the content of the phosphoric acid type emulsifier added during the production of the graft copolymer increases, the resin residual amount is high and the gas generation amount is remarkably low.
  • L ', a' and b ' are L, a, and b values measured in a CIE LAB color coordinate system after the pelletized thermoplastic resin composition is allowed to stand in an injection molding machine at 260 ° C for 5 to 10 minutes
  • 0, a 0, and b 0 are the L, a, and b values measured in the CIE LAB color coordinate system prior to residence in the injection molding machine.
  • MI melt flow index, g / 10 min
  • Example 6 the specimen of Example 6 in which a phosphoric acid type emulsifier was added during the production of the seed, the core and the shell
  • Example 1 the specimen of Example 1 in which the phosphoric acid type emulsifier was added during the preparation of the core and the shell
  • the sample and the shell of Example 4 in which the system emulsifier was added were superior to the specimen of Example 5 in which the phosphoric acid type emulsifier was added.
  • Example 1 in which a phosphoric acid type emulsifier was added during the production of the core and shell and the specimen of Example 5 in which the phosphoric acid type emulsifier was added during the preparation of the shell had the same whiteness degree and staying thermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 방향족 비닐계 단량체, 비닐 시안계 단량체 및 알킬 (메트)아크릴레이트계 단량체로 이루어진 군에서 선택되는 1종 이상을 유화 중합하여 시드를 제조하는 단계; 상기 시드 및 알킬 (메트)아크릴레이트계 단량체를 유화 중합하여 코어를 제조하는 단계; 및 상기 코어, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 유화 중합하여 쉘을 제조하는 단계를 포함하고, 상기 시드, 코어 및 쉘을 제조하는 단계로 이루어진 군에서 선택되는 하나 이상의 단계에서 상기 화학식 1로 표시되는 화합물을 포함하는 유화제를 투입하는 그라프트 공중합체의 제조방법에 관한 것이다.

Description

그라프트 공중합체의 제조방법
[관련출원과의 상호인용]
본 발명은 2017.11.16에 출원된 한국 특허 출원 제10-2017-0152818호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 그라프트 공중합체의 제조방법에 관한 것으로서, 보다 상세하게는 인산계 유화제를 투입한 그라프트 공중합체의 제조방법에 관한 것이다.
일반적으로 공액 디엔계 단량체를 중합하여 제조한 디엔계 고무질 중합체에 방향족 비닐계 단량체와 비닐 시안계 단량체를 그라프트 공중합시킨 ABS 그라프트 공중합체는 내충격성과 가공성이 뛰어나고 기계적 특성, 열변형 온도 등이 우수하며 착색성이 양호하여 전기·전자용품, 자동차부품, 사무용기기 등 광범위하게 사용되고 있다.
그러나 디엔계 고무질 중합체는 화학적으로 불안정한 불포화 결합을 함유하고 있어 자외선에 의해 쉽게 노화되어 내후성이 매우 취약하다는 문제점이 있다.
이러한 단점을 개선하기 위해 ABS 그라프트 공중합체를 포함하는 열가소성 수지 조성물을 제조할 때 내후성을 향상시킬 수 있는 안정제를 첨가하는 방법이 제안되었으나, 그 효과가 미비하며 여전히 자외선 등에 취약하다는 문제점이 있었다. 이에 공액 디엔계 단량체와 아크릴계 단량체를 혼합하여 중합시킨 중합체를 사용하거나, 이중결합을 포함하는 디엔계 고무질 중합체 대신에 화학적으로 보다 안정한 아크릴계 고무질 중합체를 사용하는 방법이 제안되었다.
상기와 같이 불안정한 이중 결합을 포함하지 않는 아크릴계 고무질 중합체를 사용한 내후성 열가소성 수지의 대표적인 예는 아크릴레이트-스티렌-아크릴로니트릴 공중합체(Acrylate-Styrene-Acrylonitrile, ASA 공중합체)로, 중합체 내에 불안정한 이중결합을 포함하지 않음에 따라 내후성, 내화학성, 내약품성, 열 안정성 등이 매우 우수하고 이와 같은 특성이 요구되는 분야, 일례로 옥외용 전기·전자 부품, 건축용 자재, 농기구소재, ASA/ABS 이층 시트(Sheet), 프로파일(Profile) 압출, 도로표지판, 옥외제품, 건재용 PVC, 레져용품, 스포츠용품, 자동차부품 등에 광범위하게 사용되고 있다.
한편, 상기 ASA 공중합체를 비롯해 이와 유사한 ASA계열 수지의 제조에 있어서 유화제로 로진산 나트륨염, 로진산 칼륨염, 나트륨 라우레이트, 칼륨 라우레이트, 올레인산 나트륨, 올레인산 칼륨, 칼륨 스테아레이트 등을 포함하는 탄소수 20 이하의 저분자량 카르복실산염(carboxylate)이나 탄소수 12 내지 18개의 알킬 설포 숙신산 디포타슘염, 탄소수 12 내지 20개의 알킬 황산염 또는 알킬 에스테르 황산염 등의 황을 포함하는 유화제가 적용되고 있다.
그러나 상술한 종래 유화제는 중합 후 고온의 성형 공정에서 수지의 열안정성 및 표면특성을 저하시키는 문제점이 있었다. 최근 ASA계 수지의 적용 범위가 사이딩(siding), 시트(sheet) 및 공압출 필름 등으로 박막화됨에 따라 수지 내 잔류 유화제에 의한 성형 공정에서의 열안정성을 개선하여 열 변색을 저감하면서, 외관 품질을 향상시킬 수 있는 기술에 대한 필요성이 더욱 고조되고 있다.
본 발명의 목적은 열안정성이 우수하고, 가스발생량이 현저하게 저감되는 그라프트 공중합체를 제공하는 것이다. 또한, 본 발명의 목적은 열안정성 및 백색도가 우수한 열가소성 수지 조성물을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 방향족 비닐계 단량체, 비닐 시안계 단량체 및 알킬 (메트)아크릴레이트계 단량체로 이루어진 군에서 선택되는 1종 이상을 유화 중합하여 시드를 제조하는 단계; 상기 시드 및 알킬 (메트)아크릴레이트계 단량체를 유화 중합하여 코어를 제조하는 단계; 및 상기 코어, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 유화 중합하여 쉘을 제조하는 단계를 포함하고, 상기 시드, 코어 및 쉘을 제조하는 단계로 이루어진 군에서 선택되는 하나 이상의 단계에서 하기 화학식 1로 표시되는 화합물을 포함하는 유화제를 투입하는 그라프트 공중합체의 제조방법을 제공한다:
<화학식 1>
Figure PCTKR2018014099-appb-I000001
상기 화학식 1에서,
R1은 C1 내지 C20의 알킬기 또는 C1 내지 C20의 알킬기로 치환된 C6 내지 C20의 아릴기이고,
M은 수소 또는 알칼리 금속이고,
m은 1 또는 2이고,
n1은 1 내지 18이다.
또한, 본 발명은 상기 제조방법으로 제조된 그라프트 공중합체; 및 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 공중합체를 포함하는 열가소성 수지 조성물을 제공한다.
본 발명에 따른 그라프트 공중합체의 제조방법으로 제조된 그라프트 공중합체는 열 안정성이 우수하고 가스 발생량이 현저하게 저감될 수 있다. 또한, 본 발명에 따른 열가소성 수지 조성물은 열 안정성이 우수하고, 백색도와 표면광택도도 우수하여 외관 품질이 보다 개선될 수 있다. 또한, 본 발명의 열가소성 수지 조성물은 충격강도 및 인장강도 등의 기계적 특성도 보다 개선될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 시드, 코어, 그라프트 공중합체의 평균 입경은 시드, 코어, 또는 그라프트 공중합체 라텍스 1 g을 증류수 100 g과 혼합한 후, 다이나믹 레이저라이트 스케트링법으로 Nicomp 380HPL(제조사: 미국 PSS·Nicomp 사)를 이용하여 가우시안 모드로 측정할 수 있다.
본 발명에서 알킬기는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, t-부틸기, s-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, t-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥실메틸기, 옥틸기, n-옥틸기, t-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이에만 한정되는 것은 아니다.
본 발명에서 아릴기는 단환 또는 다환을 포함할 수 있다. 여기서, 다환이란 아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 헤테로아릴기 등일 수도 있다. 상기 아릴기는 스피로기를 포함한다. 상기 아릴기의 구체적인 예로는 페닐기, 비페닐기, 트리페닐기, 나프틸기, 안트릴기, 크라이세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 2,3-디히드로-1H-인데닐기, 이들의 축합고리기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
1. 그라프트 공중합체의 제조방법
본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법은 1) 방향족 비닐계 단량체, 비닐 시안계 단량체 및 알킬 (메트)아크릴레이트계 단량체로 이루어진 군에서 선택되는 1종 이상을 유화 중합하여 시드를 제조하는 단계; 2) 상기 시드 및 알킬 (메트)아크릴레이트계 단량체를 유화 중합하여 코어를 제조하는 단계; 및 3) 상기 코어, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 유화 중합하여 쉘을 제조하는 단계를 포함하고, 상기 시드, 코어 및 쉘을 제조하는 단계로 이루어진 군에서 선택되는 하나 이상의 단계에서 하기 화학식 1로 표시되는 화합물을 포함하는 유화제를 투입한다:
<화학식 1>
Figure PCTKR2018014099-appb-I000002
상기 화학식 1에서,
R1은 C1 내지 C20의 알킬기 또는 C1 내지 C20의 알킬기로 치환된 C6 내지 C20의 아릴기이고,
M은 수소 또는 알칼리 금속이고,
m은 1 또는 2이고,
n1은 1 내지 18이다.
상기 화학식 1로 표시되는 화합물을 포함하는 유화제(이하, ‘인산계 유화제’라 함)는 그라프트 공중합체의 열 안정성을 개선시키고, 가스 발생량을 현저하게 저감시킬 수 있다. 또한, 그라프트 공중합체를 포함하는 열가소성 수지 조성물의 사출 시 표면 광택도와 백색도 등의 외관 품질을 개선시킬 수 있다.
상기 R1은 C10 내지 C20의 알킬기일 수 있고, C13 내지 C17의 알킬기인 것이 바람직하다.
상기 M은 나트륨 또는 칼륨인 것이 바람직하다.
상기 n1은 1 내지 15 또는 2 내지 10일 수 있고, 이 중 2 내지 10인 것이 바람직하다.
상기 화학식 1로 표시되는 화합물은 라우릴 에테르 헥사에틸렌옥사이드 포스포릭산, 미리스틱 에테르 헥사에틸렌옥사이드 포스포릭산, 팔미틱 에테르 헥사에틸렌옥사이드 포스포릭산, 스테아릭 에테르 헥사에틸렌옥사이드 포스포릭산, 라우릴 에테르 옥타에틸렌옥사이드 포스포릭산, 미리스틱 에테르 옥타에틸렌옥사이드 포스포릭산, 팔미틱 에테르 옥타에틸렌옥사이드 포스포릭산, 스테아릭 에테르 옥타에틸렌옥사이드 포스포릭산, 디(라우릴 에테르 헥사에틸렌옥사이드)포스포릭산, 디(미리스틱 에테르 헥사에틸렌옥사이드)포스포릭산, 디(팔미틱 에테르 헥사에틸렌옥사이드)포스포릭산, 디(스테아릭 에테르 헥사에틸렌옥사이드)포스포릭산, 디(미리스틱 에테르 옥타에틸렌 옥사이드)포스포릭산 및 디(팔미틱 에테르 옥타에틸렌옥사이드)포스포릭산, 디(스테아릭 에테르 옥타에틸렌옥사이드)포스포릭산으로 이루어진 군에서 선택되는 1종 이상 또는 이의 알칼리 금속염일 수 있고, 이의 나트륨염 또는 칼륨염인 것이 바람직하고, 이의 나트륨염인 것이 가장 바람직하다.
상기 화학식 1로 표시되는 화합물은 카스 넘버가 68186-29-8일 수 있다.
상기 인산계 유화제는 하기 화학식 2로 표시되는 화합물을 더 포함할 수 있다.
<화학식 2>
R2(OC2H4)n2OH
상기 화학식 2에서
R2은 C1 내지 C20의 알킬기 또는 C1 내지 C20의 알킬기로 치환된 C6 내지 C20의 아릴기이고,
n2은 1 내지 18이다.
상기 R2은 C10 내지 C20의 알킬기일 수 있고, C13 내지 C17의 알킬기인 것이 바람직하다.
상기 n2은 1 내지 15 또는 2 내지 10일 수 있고, 이 중 2 내지 10인 것이 바람직하다.
상기 화학식 2로 표시되는 화합물은 카스 넘버가 24938-91-8일 수 있다.
상기 인산계 유화제는 상기 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 80:20 내지 99:1, 85:15 내지 98:2 또는 90:10 내지 97:3의 중량비로 포함할 수 있고, 이 중 90:10 내지 97:3의 중량비로 포함되는 것이 바람직하다.
상기 인산계 유화제는 물을 더 포함할 수 있고, 인산계 유화제 총 중량에 대하여, 15 중량% 이하, 1 내지 14 중량%, 5 내지 13 중량%로 더 포함할 수 있다.
상기 인산계 유화제는 시판되는 물질 중 TOHO CHEMICAL INDUSTRY Co., Ltd.의 Phosphanol RS-610NA을 이용할 수 있다.
상기 인산계 유화제는 시드를 제조하는 단계, 코어를 제조하는 단계 및 쉘을 제조하는 단계 중 하나의 단계, 상세하게는 코어를 제조하는 단계 또는 쉘을 제조하는 단계에서 투입될 수 있다. 상기 인산계 유화제는 시드를 제조하는 단계, 코어를 제조하는 단계 및 쉘을 제조하는 단계 중 2 이상의 단계, 상세하게는 코어를 제조하는 단계와 쉘을 제조하는 단계에 투입되는 것이 바람직하다. 그리고, 3단계 모두에 투입되는 것이 가장 바람직하다.
한편, 상기 인산계 유화제는 C1 내지 C20의 모노 카르복실산염, C12 내지 C18의 숙시네이트 금속염, 설폰산 금속염 및 로진산 금속염으로 이루어진 군에서 선택되는 1종 이상의 일반 유화제와 혼합하여 사용할 수 있다. 상기 인산계 유화제는 C1 내지 C20의 모노 카르복실산염과 혼합되는 것이 바람직하다.
상기 모노 카르복실산염은 C8 내지 C20의 지방산 비누일 수 있고, 상기 C12 내지 C18의 숙시네이트 금속염은 C12 내지 C18의 알케닐 숙신산 디포타슘염일 수 있다.
상기 설폰산 금속염은 나트륨 도데실 설페이트, 나트륨 도데실 벤젠 설페이트, 나트륨 옥타데실 설페이트, 나트륨 올레익 설페이트, 칼륨 도데실 설페이트 및 칼륨 옥타데실 설페이트로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 로진산 금속염은 로진산 칼륨염 및 로진산 나트륨염으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 인산계 유화제와 상기 일반 유화제는 1:1 내지 1:5, 1:1.5 내지 1:4.5, 또는 1:2 내지 1:4의 중량비로 혼합될 수 있고, 이 중 1:2 내지 1:4의 중량비로 혼합되는 것이 바람직하다.
상술한 범위를 만족하면, 그라프트 공중합체의 열 안정성을 개선시키고, 가스 발생량을 현저하게 저감시킬 수 있다.
상기 인산계 유화제와 모노 카르복실산염이 혼합된 상태로 투입된다면, 상기 인산계 유화제와 모노 카르복실산염의 중량비는 1:1 내지 1:5, 1:1.5 내지 1:4.5 또는 1:2 내지 1:4일 수 있고, 이 중 1:2 내지 1:4인 것이 바람직하다.
상술한 범위를 만족하면, 그라프트 공중합체의 열 안정성을 개선시키고, 열가소성 수지 조성물의 사출 시 표면광택도와 백색도 등의 외관 품질을 개선시킬 수 있다.
이하, 본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법의 각 단계를 보다 구체적으로 설명한다.
1) 시드를 제조하는 단계
먼저, 방향족 비닐계 단량체, 비닐 시안계 단량체 및 알킬 (메트)아크릴레이트계 단량체로 이루어진 군에서 선택되는 1종 이상을 유화 중합한다.
상기 시드를 제조 시, 내충격성 및 내후성을 보다 향상시키기 위하여 상기 방향족 비닐계 단량체를 단독으로 투입하거나, 상기 알킬 (메트)아크릴레이트계 단량체를 단독으로 투입하거나, 상기 방향족 비닐계 단량체와 비닐 시안계 단량체를 함께 투입하거나, 상기 알킬 (메트)아크릴레이트계 단량체와 방향족 비닐계 단량체를 함께 투입하거나, 상기 알킬 (메트)아크릴레이트계 단량체와 비닐 시안계 단량체를 함께 투입하거나, 상기 알킬 (메트)아크릴레이트계 단량체와 방향족 비닐계 단량체와 비닐 시안계 단량체를 함께 투입하여 유화 중합을 수행할 수 있다.
상기 알킬 (메트)아크릴레이트계 단량체는 C1 내지 C20의 선형 알킬 (메트)아크릴레이트 또는 C3 내지 C20의 분지형 알킬 (메트)아크릴레이트일 수 있고, 이 중 C1 내지 C20의 선형 알킬 (메트)아크릴레이트인 것이 바람직하고, C1 내지 C4의 선형 알킬 (메트)아크릴레이트가 보다 바람직하다.
상기 알킬 (메트)아크릴레이트계 단량체는 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 헥실 아크릴레이트, 옥틸 아크릴레이트, 2-에틸헥실 아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 부틸 아크릴레이트가 바람직하다.
상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, p-메틸스티렌 및 2,4-디메틸스티렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
상기 비닐 시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴 중에서 선택되는 1종 이상일 수 있으며, 이중 아크릴로니트릴이 바람직하다.
상기 시드를 제조하는 단계에서 투입되는 단량체들의 총 합은 그라프트 공중합체 제조 시 투입되는 단량체들의 총 중량에 대하여, 4 내지 20 중량%, 4 내지 15 중량% 또는 4 내지 10 중량%로 투입될 수 있고, 이 중 4 내지 10 중량% 로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 내충격성, 내후성 등의 물성 밸런스가 우수한 효과가 있다.
상기 유화 중합은 유화제, 개시제, 가교제, 그라프팅제, 전해질 및 물로 이루어진 군에서 선택되는 1종 이상의 존재 하에 수행될 수 있다. 상기 유화 중합은 이들 모두의 존재 하에 수행되는 것이 바람직하다.
상기 유화제는 상술한 인산계 유화제 및 일반 유화제로 이루어진 군에서 선택되는 1종 이상을 이용할 수 있으며, 상술한 인산계 유화제, 상기 인산계 유화제와 일반 유화제의 혼합물 또는 일반 유화제 중 술폰산 금속염을 이용하는 것이 바람직하다.
상기 유화제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 0.29 중량부, 0.01 내지 0.25 중량부 또는 0.01 내지 0.15 중량부로 투입될 수 있고, 이 중 0.01 내지 0.15 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 열 안정성을 개선시키고, 가스 발생량을 현저하게 저감시킬 수 있다. 또한, 그라프트 공중합체를 포함하는 열가소성 수지 조성물의 사출 시 표면광택도와 백색도 등의 외관 품질을 개선시킬 수 있다. 또한, 충격강도 등의 기계적 특성이 우수하면서 고온 성형 시 가스 발생량이 저감되는 효과가 있다.
상기 개시제는 수용성 개시제 및 지용성 개시제로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 수용성 개시제는 과황산나트륨, 과황산칼륨, 황산암모늄, 과인산 칼 및 과산화수소로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 지용성 개시제는 t-부틸 퍼옥사이드, 큐멘 하이드로 퍼옥사이드, p-메탄 하이드로 퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸쿠밀퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 디이소프로필벤젠 하이드로 퍼옥사이드, 5,5-트리메틸헥산올 퍼옥사이드, t-부틸 퍼옥시 이소부틸레이트, 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸발레로니트릴, 아조비스시클로헥산카르보니트릴 및 아조비스 이소낙산(부틸산) 메틸로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 개시제로는 중합 초기의 반응속도 제어가 용이하고, 목적하는 평균 입경을 갖는 중합체를 용이하게 제조할 수 있는 과황산칼륨이 바람직하다.
상기 개시제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 3 중량부, 0.01 내지 1 중량부 또는 0.01 내지 0.5 중량부로 투입될 수 있고, 이 중 0.01 내지 0.5 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 중합 안정성과 중합 효율이 개선되는 효과가 있다.
상기 가교제는 아크릴계 화합물일 수 있고, 상기 아크릴계 화합물은 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 폴리프로필렌글리콜 디아크릴레이트, 폴리프로필렌글리콜 디메타크릴레이트, 에틸렌글리콜 디아크릴레이트, 에틸렌글리콜 디메타크릴레이트, 디비닐벤젠, 디에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 1,3-부타디올 디메 타크릴레이트, 헥산디올프로폭시레이트 디아크릴레이트, 네오펜틸글리콜 디메타크릴레이트, 네오펜틸글리콜 에톡시레이트 디아크릴레이트, 네오펜틸글리콜 프로폭시레이트 디아크릴레이트, 트리메틸올프로판 트리메타크릴레이트, 트리메틸올메탄 트리아크릴레이트, 트리메틸프로판에톡시레이트 트리아크릴레이트, 트리메틸프로판프로폭시레이트 트리아크릴레이트, 펜타에리트리톨에톡시레이트 트리아크릴레이트, 펜타에리트로톨프로폭시레이트 트리아크릴레이트 및 비닐트리메톡시실란으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 에틸렌 글리콜 디메타크릴레이트가 바람직하다.
상기 가교제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 1 중량부 또는 0.01 내지 0.5 중량부로 포함될 수 있다. 상술한 범위를 만족하면, 시드 제조 시 투입된 단량체들의 일부는 가교 중합체로 제조되고, 나머지는 코어 제조 단계에서 투입되는 단량체의 가교 구조를 형성하는 데 사용될 수 있다.
상기 그라프팅제는 2 이상의 다른 반응성을 가지는 불포화 비닐기를 포함하는 화합물일 수 있으며, 상기 화합물은 알릴 메타크릴레이트, 트리알릴 이소시아누레이트, 디알릴아민 및 트리알릴아민으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 알릴 메타크릴레이트가 바람직하다.
상기 그라프팅제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 3중량부, 0.01 내지 1 중량부 또는 0.01 내지 0.5 중량부로 투입될 수 있으며, 이 중 0.01 내지 0.5 중량부로 투입되는 것이 가장 바람직하다. 상술한 범위를 만족하면, 그라프팅제가 시드 표면에서 먼저 반응하여, 코어 단계에서 투입되는 단량체의 그라프팅 효율을 높일 수 있다.
상기 전해질은 일례로 KCl, NaCl, KHCO3, NaHCO3, K2CO3, Na2CO3, KHSO3, NaHSO3, K4P2O7, Na4P2O7, K3PO4, Na3PO4, K2HPO4, Na2HPO4, KOH, NaOH 및 Na2S2O7으로 이루어지는 군으로부터 선택된 1종 이상일 수 있고, 이 중 KOH가 바람직하다.
상기 전해질은 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.001 내지 1 중량부, 0.005 내지 1 중량부 또는 0.01 내지 0.5 중량부로 투입될 수 있으며, 이 중 0.01 내지 0.5 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 중합 반응의 안정성이 향상되고, 목적하는 평균 입경을 가지는 그라프트 공중합체를 용이하게 제조할 수 있다.
상기 유화 중합은 40 내지 80℃ 또는 50 내지 75℃에서 수행될 수 있으며, 중합 안정성을 확보하고 평균 입경이 균일한 시드를 형성하기 위하여, 상기 개시제를 반응물의 온도가 상술한 범위 내에 도달한 후, 투입하는 것이 바람직하다.
상기 시드의 평균 입경은 90 내지 400 ㎚, 150 내지 300 ㎚ 또는 150 내지 250 ㎚일 수 있고, 이 중 150 내지 250 ㎚인 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체를 포함하는 열가소성 수지 조성물의 내충격성 등의 기계적 특성이 보다 향상될 수 있다.
상기 시드의 평균 입경은 고무 중합체 라텍스 1 g을 증류수 100 g과 혼합한 후, 다이나믹 레이저라이트 스케트링법으로 Nicomp 380HPL(제조사: 미국 PSS·Nicomp 사)를 이용하여 가우시안 모드로 측정할 수 있다.
2) 코어를 제조하는 단계
이어서, 상기 시드 및 알킬 (메트)아크릴레이트계 단량체를 유화 중합한다.
상기 코어는 시드를 감싸는 형태로 제조될 수 있다.
상기 알킬 (메트)아크릴레이트계 단량체의 구체적인 예는 ‘1) 시드를 제조하는 단계’에서 기재한 바와 같다.
상기 알킬 (메트)아크릴레이트계 단량체는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 중량에 대하여, 30 내지 60 중량%, 35 내지 55 중량% 또는 40 내지 50 중량%로 투입될 수 있고, 이 중 40 내지 50 중량%로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 유화 중합 시 반응 밸런스가 우수하고, 내충격성 및 내후성이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 유화 중합은 유화제, 개시제, 가교제, 그라프팅제 및 물로 이루어진 군에서 선택되는 1종 이상의 존재 하에 수행될 수 있다. 상기 유화 중합은 이들 모두의 존재 하에 수행되는 것이 바람직하다.
상기 유화제는 상술한 인산계 유화제 및 일반 유화제로 이루어진 군에서 선택되는 1종 이상을 이용할 수 있으며, 상술한 인산계 유화제, 상기 인산계 유화제와 일반 유화제의 혼합물 또는 일반 유화제 중 술폰산 금속염을 이용하는 것이 바람직하다.
상기 유화제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.1 내지 1 중량부, 0.2 내지 0.9 중량부 또는 0.3 내지 0.8 중량부로 투입될 수 있고, 이 중 0.3 내지 0.8 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 열 안정성을 개선시키고, 가스 발생량을 현저하게 저감시킬 수 있다. 또한, 그라프트 공중합체를 포함하는 열가소성 수지 조성물의 사출 시 표면광택도와 백색도 등의 외관 품질을 개선시킬 수 있다. 또한, 충격강도 등의 기계적 특성이 우수하면서 고온 성형 시 가스 발생량이 저감되는 효과가 있다.
상기 개시제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.005 내지 0.1 중량부, 0.01 내지 0.09 중량부 또는 0.02 내지 0.08 중량부로 투입될 수 있고, 이 중 0.02 내지 0.08 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 중합 안정성과 중합 효율이 개선되는 효과가 있다.
상기 가교제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 1 중량부, 0.01 내지 0.8 중량부 또는 0.01 내지 0.6 중량부로 투입될 수 있고, 이 중 0.01 내지 0.6 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 코어 제조 시 투입된 단량체들의 일부는 가교 중합체로 제조되고, 나머지는 쉘 단계에서 투입되는 단량체의 가교 구조를 형성하는데 사용될 수 있다.
상기 그라프팅제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 1 중량부, 0.01 내지 0.8 중량부 또는 0.01 내지 0.6 중량부로 투입될 수 있고, 이 중 0.01 내지 0.6 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프팅제가 코어 표면에서 먼저 반응하여, 쉘 단계에서 투입되는 단량체와의 그라프팅 효율을 높일 수 있다.
상기 유화제, 개시제, 가교제 및 그라프팅제의 구체적인 예는 ‘1) 시드를 제조하는 단계’에서 기재한 바와 같다.
상기 코어를 제조하는 단계에서는 중합 반응에 투입되는 반응물을 별도의 반응기에서 혼합한 후, 연속 투입하는 것이 반응 밸런스 및 중합 안정성의 확보 측면에서 바람직하다.
상기 연속 투입은 반응물을 일정 시간 동안, 30 분 이상, 60분 내지 180 분 동안, 또는 90 분 내지 120 분 동안 휴지기 없이 일정한 속도로 수행될 수 있다. 상기 연속 투입은 드롭 바이 드롭(drop by drop) 방식으로 투입하는 경우도 포함할 수 있다.
상기 코어의 평균 입경은 상기 시드의 평균 입경보다 크고, 180 내지 600 ㎚, 250 내지 550 ㎚ 또는 300 내지 500 ㎚일 수 있고, 이 중 300 내지 500 ㎚인 것이 바람직하다. 상술한 범위를 만족하면, 코어 라텍스의 안정성이 우수하면서, 그라프트 공중합체를 포함하는 열가소성 수지 조성물의 내충격성, 내후성 및 외관 품질이 보다 향상될 수 있다.
상기 코어의 평균 입경은 시드의 평균 입경과 동일한 방법으로 측정될 수 있다.
3) 쉘을 제조하는 단계
이어서, 상기 코어, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 유화 중합한다.
상기 방향족 비닐계 단량체는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 중량에 대하여, 20 내지 50 중량% 또는 25 내지 45 중량% 또는 30 내지 40 중량%로 투입될 수 있고, 이 중 30 내지 40 중량%로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 반응 밸런스가 우수하고, 내충격성 및 내후성이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 비닐 시안계 단량체는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 중량에 대하여, 5 내지 20 중량%, 8 내지 19 중량% 또는 10 내지 18 중량%로 투입될 수 있고, 이 중 10 내지 18 중량%로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 반응 밸런스가 우수하고, 내충격성 및 내후성이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 방향족 비닐계 단량체와 비닐 시안계 단량체의 구체적인 예는 ‘1) 시드를 제조하는 단계’에서 기재한 바와 같다.
상기 유화 중합은 유화제, 개시제, 분자량 조절제 및 물로 이루어진 군에서 선택되는 1종 이상의 존재 하에 수행될 수 있다. 상기 유화 중합은 유화제, 개시제 및 물로 이루어진 군에서 선택되는 1종 이상의 존재 하에 수행되는 것이 바람직하다.
상기 유화제는 상술한 인산계 유화제 및 일반 유화제로 이루어진 군에서 선택되는 1종 이상을 이용할 수 있으며, 상술한 인산계 유화제, 상기 인산계 유화제와 일반 유화제의 혼합물 또는 일반 유화제 중 술폰산 금속염을 이용하는 것이 바람직하다.
상기 유화제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.1 내지 3 중량부, 0.2 내지 2.8 중량부 또는 0.3 내지 2.5 중량부로 투입될 수 있고, 이 중 0.3 내지 2.5 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 열 안정성을 개선시키고, 가스 발생량을 현저하게 저감시킬 수 있다. 또한, 그라프트 공중합체를 포함하는 열가소성 수지 조성물의 사출 시 표면광택도와 백색도 등의 외관 품질을 개선시킬 수 있다. 또한, 충격강도 등의 기계적 특성이 우수하면서 고온 성형 시 가스 발생량이 저감되는 효과가 있다.
상기 개시제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 3 중량부, 0.05 내지 1 중량부 또는 0.1 내지 0.5 중량부로 투입될 수 있고, 이 중 0.1 내지 0.5 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 중합 안정성과 중합 효율이 개선되는 효과가 있다.
상기 개시제의 구체적인 예는 ‘1) 시드를 제조하는 단계’에서 기재한 바와 같고, 이 중 지용성 개시제를 이용하는 것이 바람직하다.
상기 개시제는 개시제의 활성을 촉진하여 반응 효율을 향상시키기 위하여 산화-환원계 촉매를 더 투입하는 것이 바람직하다.
상기 산화-환원계 촉매는 피로인산 나트륨, 덱스트로즈, 황화 제1 철, 아황산 나트륨, 나트륨 포름알데히드 술폭실레이트 및 나트륨 에틸렌디아민 테트라아세테이트로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 피로인산 나트륨, 덱스트로즈 및 황화 제1철로 이루어진 군에서 선택되는 1종 이상이 바람직하다.
상기 산화-환원계 촉매는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.001 내지 1 중량부, 0.002 내지 0.7 중량부 또는 0.002 내지 0.5 중량부로 투입될 수 있고, 이 중 0.002 내지 0.5 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 중합 안정성과 중합 효율이 개선되는 효과가 있다.
상기 분자량 조절제는 t-도데실 머캅탄, n-도데실 머캅탄 및 n-옥틸 머캅탄으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 t- 도데실 머캅탄이 바람직하다.
상기 분자량 조절제는 상기 그라프트 공중합체 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 2 중량부, 0.01 내지 1 중량부, 또는 0.01 내지 0.5 중량부로 투입될 수 있고, 이 중 0.01 내지 0.5 중량부가 바람직하다. 상술한 범위를 만족하면, 중합 안정성 및 효율이 향상될 수 있다.
상기 쉘을 제조하는 단계에서는 반응기에 상기 코어, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 먼저 투입한 후, 별도의 반응기에서 유화제, 개시제 및 분자량 조절제 등을 혼합하여 제조한 혼합물을 반응기에 연속 투입하는 것이 반응효율 및 안정성 향상 측면에서 바람직할 수 있다.
상기 연속 투입은 상기 혼합물을 일정 시간 동안, 30 분 이상, 60 분 내지 300 분 동안, 또는 90 분 내지 240 분 동안 휴지기 없이 일정한 속도로 수행될 수 있다. 상기 연속 투입은 드롭 바이 드롭(drop by drop)방식으로 투입하는 경우도 포함할 수 있다.
상기 쉘을 제조하는 단계에서 수득되는 그라프트 공중합체 라텍스는 응고물 함량이 1 중량% 이하(라텍스 100 중량% 기준), 0.5 중량% 이하 또는 0.1 중량% 이하일 수 있고, 이 중 0.1 중량% 이하가 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 생산성이 우수하고, 기계적 특성 및 외관 품질이 향상되는 이점이 있다.
상기 그라프트 공중합체 라텍스는 응집, 숙성, 탈수, 세척, 건조 등의 통상적인 공정을 거쳐 분말로 수득될 수 있다.
상기 쉘을 포함하는 그라프트 공중합체의 평균 입경은 상기 코어의 평균 입경보다 크고, 250 내지 700 ㎚, 300 내지 600 ㎚ 또는 300 내지 500 ㎚일 수 있고, 이 중 300 내지 500 ㎚인 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체 라텍스의 안정성이 우수하면서, 그라프트 공중합체를 포함하는 열가소성 수지 조성물의 내충격성, 내후성 및 외관 품질이 보다 향상될 수 있다.
상기 그라프트 공중합체의 평균 입경은 시드의 평균 입경과 동일한 방법으로 측정될 수 있다.
2. 열가소성 수지 조성물
상기 열가소성 수지 조성물은 상기 그라프트 공중합체의 제조방법으로 제조된 그라프트 공중합체; 및 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 공중합체를 포함한다.
상기 방향족 비닐계 단량체 유래 단위는 상기 ‘1) 시드를 제조하는 단계’에서 기재된 방향족 비닐계 단량체의 유래 단위일 수 있고, 이 중 스티렌 유래 단위가 바람직하다.
상기 비닐 시안계 단량체 유래 단위는 ‘1) 시드를 제조하는 단계’에서 기재된 비닐 시안계 단량체의 유래 단위일 수 있고, 이 중 아크릴로니트릴 유래 단위가 바람직하다.
상기 공중합체는 스티렌-아크릴로니트릴 공중합체일 수 있다.
상기 방향족 비닐계 단량체 유래 단위와 상기 비닐 시안계 단량체 유래 단위의 중량비는 60:40 내지 85:15 또는 65:35 내지 80:20일 수 있다. 상술한 범위를 만족하면, 공중합체의 기계적 특성, 내후성 및 외관 품질이 향상되는 이점이 있다.
상기 그라프트 공중합체와 공중합체의 중량비는 20:80 내지 40:60, 30:70 내지 50:50 또는 40:60 내지 50:50일 수 있고, 이 중 40:60 내지 50:50가 바람직하다.
상기 열가소성 수지 조성물은 첨가제를 더 포함할 수 있다. 상기 첨가제는 난연제, 활제, 항균제, 이형제, 핵제, 가소제, 열안정제, 산화방지제, 광안정제, 안료, 염료, 상용화제 중에서 선택된 1종 이상일 수 있다.
상기 첨가제는 상기 그라프트 공중합체와 공중합체의 합 100 중량부에 대하여, 0.1 내지 10 중량부, 0.5 내지 7 중량부 또는 1 내지 5 중량부로 포함될 수 있고, 이 중 1 내지 5 중량부가 바람직하다.
상기 열가소성 수지 조성물은 압출 및 사출로 이루어진 군에서 선택되는 1종 이상의 가공이 수행될 수 있다. 상기 열가소성 수지 조성물은 압출 후에 사출되는 것이 바람직하다.
상기 압출은 상기 열가소성 수지 조성물의 구성 성분을 혼련한 후, 이를 압출하여 펠렛 형태로 제공될 수 있으며, 상기 혼련 및 압출은 일례로 200 내지 300 ℃ 및 30 내지 100 rpm, 또는 200 내지 280 ℃ 및 30 내지 70 rpm인 조건에서 수행할 수 있다. 상술한 범위를 만족하면, 가공성이 우수한 효과가 있다.
상기 압출된 열가소성 수지 조성물은 190 내지 300 ℃ 및 30 내지 80 bar, 또는 200 내지 250 ℃ 및 30 내지 70 bar인 조건에서 사출할 수 있다. 상술한 범위를 만족하면, 가공성이 우수하고 목적하는 기계적 특성 및 외관 품질을 가질 수 있다.
상기 압출된 열가소성 수지 조성물은 체류 열 안정성은 4 이하, 0.1 내지 3.5 또는 0.1 내지 3.3일 수 있다.
상기 체류 안정성은 압출된 열가소성 수지 조성물을 260 ℃의 사출 성형기 내에 5 내지 10 분 동안 체류시킨 후, 성형한 시편에 대해 성형한 시편에 대해 변색된 정도를 판별하기 위해 CIE LAB 색 좌표계로 L, a, b 값을 측정하고 하기 수학식 1을 이용하여 변색 정도(△E)를 산출할 수 있다.
Figure PCTKR2018014099-appb-I000003
상기 식에서, L’, a’ 및 b’은 압출된 열가소성 수지 조성물을 260 ℃의 사출 성형기 내에 5 내지 10 분 동안 체류시킨 후 CIE LAB 색 좌표계로 측정한 L, a, 및 b 값이고, L0, a0 및 b0은 사출 성형기에 체류시키기 전에 CIE LAB 색 좌표계로 측정한 L, a, 및 b 값이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
<시드의 제조>
질소 치환된 반응기에 스티렌(S) 4.8 중량부, 아크릴로니트릴(AN) 1.2 중량부, 유화제로 나트륨 도데실 설페이트(SDS) 0.05 중량부, 가교제로 에틸렌 글리콜 디메타크릴레이트 0.03 중량부, 그라프팅제로 알릴 메타크릴레이트 0.02 중량부, 전해질로 KOH 0.025 중량부 및 증류수 53.32 중량부를 일괄 투입하고, 70 ℃까지 승온시킨 후, 개시제로 과황산칼륨 0.03 중량부를 일괄 투입하고 중합을 개시하였다. 2 시간 동안 중합을 수행한 후, 반응을 종료하고, 시드인 고무 중합체 라텍스를 수득하였다. 이때, 시드의 평균 입경은 150 ㎚이었다.
한편, 상기 시드의 평균 입경은 고무 중합체 라텍스 1g을 증류수 100 g과 혼합한 후, 다이나믹 레이저라이트 스케트링법으로 Nicomp 380HPL(제조사: 미국 PSS·Nicomp 사)를 이용하여 가우시안 모드로 측정하였다.
<코어의 제조>
상기 시드가 존재하는 반응기에, 부틸 아크릴레이트(BA) 50 중량부, 유화제로 Phosphanol RS-610(상품명, 제조사: Toho Chemical Industry) 0.6 중량부, 가교제로 에틸렌 글리콜 디메타크릴레이트 0.1 중량부, 그라프팅제로 알릴 메타크릴레이트 0.04 중량부, 증류수 30 중량부 및 개시제로 과황산 칼륨 0.05 중량부를 혼합한 반응 용액을 4 시간 동안 연속 투입하면서 중합을 수행하고, 투입 종료 후 1 시간 동안 중합을 지속하였다. 반응을 종료한 후, 코어인 고무 중합체 라텍스를 수득하였다. 이때, 코어의 평균 입경은 320 ㎚이었다.
한편, 상기 코어의 평균 입경은 시드와 동일한 방법으로 측정하였다.
<쉘의 제조>
상기 코어가 존재하는 반응기에 스티렌 32 중량부, 아크릴로니트릴 12 중량부, 및 증류수 39 중량부를 우선 투입하고, 유화제로 Phosphanol RS-610(상품명, 제조사: Toho Chemical Industry) 1.9 중량부, 개시제로 3급 부틸 퍼옥시 에틸헥실 모노 카보네이트 0.19 중량부, 산화환원계 촉매로 피로인산 나트륨 0.16 중량부, 덱스트로즈 0.24 중량부 및 황산제1철 0.004 중량부를 포함하는 혼합물을 각각 75 ℃에서 연속 투입하면서 중합을 수행하고, 투입 종료 후 1 시간 동안 중합을 지속하였다. 반응기의 온도를 60 ℃로 냉각시켜 반응을 종료한 후, 그라프트 공중합체 라텍스를 수득하였다. 이때, 그라프트 공중합체 라텍스의 평균 입경은 380 ㎚이었다.
한편, 상기 그라프트 공중합체 라텍스의 평균 입경은 상기 시드와 동일한 방법으로 측정하였다.
<그라프트 공중합체 분말의 제조>
상기 그라프트 공중합체 라텍스에 염화칼슘 수용액 0.8 중량부를 투입하고, 70℃에서 7분 동안 상압 응집하고, 93℃에서 7분 동안 숙성하고, 탈수 및 세척한 후 90℃의 열풍으로 30분 동안 건조하여 그라프트 공중합체 분말을 제조하였다.
<열가소성 수지 조성물의 제조>
상기 그라프트 공중합체 분말 44 중량부, 경질 매트릭스인 스티렌-아크릴로니트릴 공중합체(제조사: 엘지화학, 상품명: 90HR, 구성: 아크릴로니트릴 유래 단위 27 중량%, 스티렌 유래 단위 73 중량%) 56 중량부, 활제(제조사: 선구, 상품명: EBS 수지) 1.5 중량부, 산화방지제로 IRGANOX1076(상품명, 제조사: BASF) 0.5 중량부 및 IRGGAFOS168(상품명, 제조사: BASF) 0.5 중량부, 자외선 안정제로 Tinuvin P(상품명, 제조사: BASF) 0.5 중량부 및 Tinuvin 770(상품명, 제조사: BASF) 0.5 중량부를 혼합하였다. 상기 혼합물을 220℃의 실리더 온도에서 36 파이 압출 혼련기를 사용하여 펠렛 형태로 제조하고, 이 펠렛 형태의 수지를 사출(사출온도: 220 ℃, 사출압력: 50 bar)하여 물성측정을 위한 시편을 제조하였다.
실시예 2
스티렌 4.8 중량부, 아크릴로니트릴 1.2 중량부 대신 부틸 아크릴레이트 6.0 중량부를 투입하여 시드를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 시편을 제조하였다.
이때, 시드의 평균 입경은 155 ㎚, 코어의 평균 입경은 326 ㎚, 그라프트 공중합체 라텍스의 평균 입경은 396 ㎚이었다.
실시예 3
시드의 제조에서 스티렌 4.8 중량부, 아크릴로니트릴 1.2 중량부 대신 스티렌 6.0 중량부를 투입하여 시드를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 시편을 제조하였다.
이때, 시드의 평균 입경은 152 ㎚, 코어의 평균 입경은 320 ㎚, 그라프트 공중합체 라텍스의 평균 입경은 388 ㎚이었다.
실시예 4
쉘의 제조에서 Phosphanol RS-610 대신에 로진산 나트륨염 1.9 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 시편을 제조하였다.
이때, 그라프트 공중합체 라텍스의 평균 입경은 390 ㎚이었다.
실시예 5
코어의 제조에서 Phosphanol RS-610 대신에 나트륨 도데실 설페이트 0.6 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 시편을 제조하였다.
이때, 그라프트 공중합체 라텍스의 평균 입경은 389 ㎚이었다.
실시예 6
시드의 제조에서 나트륨 도데실 설페이트 0.05 중량부 대신에 Phosphanol RS-610 0.025 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 시편을 제조하였다.
이때, 시드의 평균 입경은 115 ㎚, 코어의 평균 입경은 241 ㎚, 그라프트 공중합체 라텍스의 평균 입경은 300 ㎚이었다.
비교예 1
코어의 제조에서 Phosphanol RS-610 대신에 나트륨 도데실 설페이트 0.6 중량부를 투입한 것과 쉘의 제조에서 Phosphanol RS-610 대신에 로진산 나트륨염 1.9 중량부를 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 시편을 제조하였다.
이때, 코어의 평균 입경은 316 ㎚, 그라프트 공중합체 라텍스의 평균 입경은 384 ㎚이었다.
비교예 2
시드의 제조에서 스티렌 4.8 중량부, 아크릴로니트릴 1.2 중량부 대신에 부틸 아크릴레이트 6.0 중량부를 투입하고, 코어의 제조에서 Phosphanol RS-610 대신에 나트륨 도데실 설페이트 0.6 중량부를 투입한 것과 쉘의 제조에서 Phosphanol RS-610 대신에 로진산 나트륨염 1.9 중량부를 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 시편을 제조하였다.
이때, 코어의 평균 입경은 310 ㎚, 그라프트 공중합체 라텍스의 평균 입경은
실시예 1 내지 6, 비교예 1 및 비교예 2의 단량체 및 유화제 투입량을 정리하여 하기 표 1 및 2에 기재하였다.
구분 시드(중량부)
S AN BA SDS PhosphanolRS-610NA
실시예 1 4.8 1.2 - 0.05 -
실시예 2 - - 6.0 0.05 -
실시예 3 6.0 - - 0.05 -
실시예 4 4.8 1.2 - 0.05 -
실시예 5 4.8 1.2 - 0.05 -
실시예 6 4.8 1.2 - - 0.025
비교예 1 4.8 1.2 - 0.05 -
비교예 2 - - 6.0 0.05 -
구분 코어(중량부) 쉘(중량부)
BA Phosphanol RS-610NA SDS S AN Phosphanol RS-610NA 로진산 나트륨염
실시예 1 50 0.6 - 32 12 1.9 -
실시예 2 50 0.6 - 32 12 1.9 -
실시예 3 50 0.6 - 32 12 1.9 -
실시예 4 50 0.6 - 32 12 - 1.9
실시예 5 50 - 0.6 32 12 1.9 -
실시예 6 50 0.6 - 32 12 1.9 -
비교예 1 50 - 0.6 32 12 - 1.9
비교예 2 50 - 0.6 32 12 - 1.9
실험예 1
실시예 1 내지 실시예 6, 비교예 1 및 비교예 2의 그라프트 공중합체 분말의 물성을 하기의 방법으로 측정하고 하기 표 3에 나타내었다.
(1) TGA 분석: 그라프트 공중합체 분말 1 g을 질소분위기 하에서 30℃에서 250℃까지 20 ℃/분의 속도로 승온하고 250 ℃에서 1 시간 유지하면서 감량분을 측정하고, 이를 수지 잔류량(%)으로 변환하여 나타내었다.
(1) 가스발생량 측정: 그라프트 공중합체 분말 1g에서 250 ℃에서 1시간 동안 발생되는 휘발성 유기 화합물의 총량을 HS-GC/MSD를 이용하여 측정하였다.
구분 TGA(%) 가스발생량(ppm)
실시예 1 99.1 480
실시예 2 98.9 478
실시예 3 98.7 472
실시예 4 99.2 573
실시예 5 99.1 532
실시예 6 99.5 463
비교예 1 98.0 1,010
비교예 2 97.6 1,021
표 3을 참조하면, 실시예 1 내지 실시예 6의 그라프트 공중합체 분말은 비교예 1 및 비교예 2의 그라프트 공중합체 분말 대비 TGA 분석 시에 수지 잔류량이 높고, 가스발생량이 현저하게 낮으므로, 열안정성이 우수하고, 그라프트 공중합체 내 휘발성 유기 화합물의 양이 감소하였음을 알 수 있었다. 그리고, 그라프트 공중합체의 제조 시 투입된 인산계 유화제의 함량이 증가할 수록, 수지 잔류량이 높고, 가스발생량이 현저하게 낮은 것을 알 수 있었다.
실험예 2
실시예 1 내지 실시예 6, 비교예 1 및 비교예 2의 시편의 물성을 하기의 방법으로 측정하고, 그 결과를 하기 표 4에 나타내었다.
(3) 백색도: 시편을 CIE Lab의 방법에 의거하여 측정하였다.
(4) 체류 열 안정성: 펠렛 형태의 열가소성 수지 조성물을 260 ℃의 사출 성형기 내에 5 분 동안 체류시킨 후, 변색된 정도를 판별하기 위해 CIE LAB 색 좌표계로 L, a 및 b 값을 측정하고 하기 식을 이용하여 변색 정도(△E)를 산출하였다.
여기서, △E는 0에 가까울수록 열 안정성이 좋음을 나타낸다.
Figure PCTKR2018014099-appb-I000004
상기 식에서, L’, a’ 및 b’은 펠렛 형태의 열가소성 수지 조성물을 260 ℃의 사출 성형기 내에 5 내지 10 분 동안 체류시킨 후 CIE LAB 색 좌표계로 측정한 L, a, 및 b 값이고, L0, a0 및 b0은 사출 성형기에 체류시키기 전에 CIE LAB 색 좌표계로 측정한 L, a, 및 b 값이다.
(5) 유동지수(MI: melt flow index, g/10min): 시편을 220℃, 하중 10㎏의 조건 하에서 ASTM D1238 법에 의거하여 10 분 동안 측정하였다.
구분 백색도 체류 열 안정성 유동지수
실시예 1 63.4 3.3 10.8
실시예 2 63.1 3.2 11.2
실시예 3 62.4 2.9 10.7
실시예 4 62.5 3.0 11.4
실시예 5 63.5 3.2 11.0
실시예 6 65.2 2.8 10.8
비교예 1 60.0 5.5 11.5
비교예 2 60.3 5.3 11.0
표 4를 참조하면, 실시예 1 내지 실시예 6의 시편은 비교예 1 및 비교예 2의 시편 대비 백색도 및 체류 열안정성이 우수하다는 것을 확인할 수 있었다.
보다 상세하게 설명하면, 시드, 코어 및 쉘의 제조 시 인산계 유화제를 투입한 실시예 6의 시편이, 코어와 쉘의 제조 시 인산계 유화제를 투입한 실시예 1의 시편과 코어의 제조 시 인산계 유화제를 투입한 실시예 4의 시편과 쉘의 제조 시 인산계 유화제를 투입한 실시예 5의 시편 대비, 체류 열 안정성이 우수한 것을 확인할 수 있었다.
또한, 코어와 쉘의 제조 시 인산계 유화제를 투입한 실시예 1의 시편과 쉘의 제조 시 인산계 유화제를 투입한 실시예 5의 시편은 백색도 및 체류 열 안정성이 동등 수준인 것을 확인할 수 있었다.

Claims (13)

  1. 방향족 비닐계 단량체, 비닐 시안계 단량체 및 알킬 (메트)아크릴레이트계 단량체로 이루어진 군에서 선택되는 1종 이상을 유화 중합하여 시드를 제조하는 단계;
    상기 시드 및 알킬 (메트)아크릴레이트계 단량체를 유화 중합하여 코어를 제조하는 단계; 및
    상기 코어, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 유화 중합하여 쉘을 제조하는 단계를 포함하고,
    상기 시드, 코어 및 쉘을 제조하는 단계로 이루어진 군에서 선택되는 하나 이상의 단계에서 하기 화학식 1로 표시되는 화합물을 포함하는 유화제를 투입하는 그라프트 공중합체의 제조방법:
    <화학식 1>
    Figure PCTKR2018014099-appb-I000005
    상기 화학식 1에서,
    R1은 C1 내지 C20의 알킬기 또는 C1 내지 C20의 알킬기로 치환된 C6 내지 C20의 아릴기이고,
    M은 수소 또는 알칼리 금속이고,
    m은 1 또는 2이고,
    n1은 1 내지 18이다.
  2. 청구항 1에 있어서,
    상기 R1은 C10 내지 C20의 알킬기인 것인 그라프트 공중합체의 제조방법.
  3. 청구항 1에 있어서,
    상기 M는 나트륨 또는 칼륨인 것인 그라프트 공중합체의 제조방법.
  4. 청구항 1에 있어서,
    상기 n1은 2 내지 10인 것인 그라프트 공중합체의 제조방법.
  5. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 라우릴 에테르 헥사에틸렌옥사이드 포스포릭산, 미리스틱 에테르 헥사에틸렌옥사이드 포스포릭산, 팔미틱 에테르 헥사에틸렌옥사이드 포스포릭산, 스테아릭 에테르 헥사에틸렌옥사이드 포스포릭산, 라우릴 에테르 옥타에틸렌옥사이드 포스포릭산, 미리스틱 에테르 옥타에틸렌옥사이드 포스포릭산, 팔미틱 에테르 옥타에틸렌옥사이드 포스포릭산, 스테아릭 에테르 옥타에틸렌옥사이드 포스포릭산, 디(라우릴 에테르 헥사에틸렌옥사이드)포스포릭산, 디(미리스틱 에테르 헥사에틸렌옥사이드)포스포릭산, 디(팔미틱 에테르 헥사에틸렌옥사이드)포스포릭산, 디(스테아릭 에테르 헥사에틸렌옥사이드)포스포릭산, 디(미리스틱 에테르 옥타에틸렌 옥사이드)포스포릭산 및 디(팔미틱 에테르 옥타에틸렌옥사이드)포스포릭산, 디(스테아릭 에테르 옥타에틸렌옥사이드)포스포릭산으로 이루어진 군에서 선택되는 1종 이상 또는 이의 알칼리 금속염인 것인 그라프트 공중합체의 제조방법.
  6. 청구항 1에 있어서,
    상기 유화제는 하기 화학식 2로 표시되는 화합물을 더 포함하는 것인 그라프트 공중합체의 제조방법:
    <화학식 2>
    R2(OC2H4)n2OH
    상기 화학식 2에서
    R2은 C1 내지 C20의 알킬기 또는 C1 내지 C20의 알킬기로 치환된 C6 내지 C20의 아릴기이고,
    n2은 1 내지 18이다.
  7. 청구항 1에 있어서,
    상기 시드를 제조하는 단계에서, 상기 유화제가 상기 그라프트 공중합체의 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.01 내지 0.29 중량부로 투입되는 것인 그라프트 공중합체의 제조방법.
  8. 청구항 1에 있어서,
    상기 코어를 제조하는 단계에서, 상기 유화제가 상기 그라프트 공중합체의 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.1 내지 1 중량부로 투입되는 것인 그라프트 공중합체의 제조방법.
  9. 청구항 1에 있어서,
    상기 쉘을 제조하는 단계에서, 상기 유화제가 상기 그라프트 공중합체의 제조 시 투입되는 단량체들의 총 합 100 중량부에 대하여, 0.1 내지 3 중량부로 투입되는 것인 그라프트 공중합체의 제조방법.
  10. 청구항 1에 있어서,
    상기 시드의 평균 입경은 90 내지 400 ㎚인 것인 그라프트 공중합체의 제조방법.
  11. 청구항 1에 있어서,
    상기 코어의 평균 입경은 180 내지 600 ㎚인 것인 그라프트 공중합체의 제조방법.
  12. 청구항 1에 있어서,
    상기 그라프트 공중합체의 평균 입경은 250 내지 700 ㎚인 것인 그라프트 공중합체의 제조방법.
  13. 청구항 1 내지 청구항 12 중 어느 한 항을 따른 제조방법으로 제조된 그라프트 공중합체; 및
    방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 공중합체를 포함하는 열가소성 수지 조성물.
PCT/KR2018/014099 2017-11-16 2018-11-16 그라프트 공중합체의 제조방법 WO2019098753A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/619,063 US11034778B2 (en) 2017-11-16 2018-11-16 Method of preparing graft copolymer
JP2019570055A JP6960000B2 (ja) 2017-11-16 2018-11-16 グラフト共重合体の製造方法
EP18878744.4A EP3617242B1 (en) 2017-11-16 2018-11-16 Method for producing graft copolymer
CN201880035607.XA CN110709438B (zh) 2017-11-16 2018-11-16 接枝共聚物的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170152818A KR102244956B1 (ko) 2017-11-16 2017-11-16 그라프트 공중합체의 제조방법
KR10-2017-0152818 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019098753A1 true WO2019098753A1 (ko) 2019-05-23

Family

ID=66539096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014099 WO2019098753A1 (ko) 2017-11-16 2018-11-16 그라프트 공중합체의 제조방법

Country Status (6)

Country Link
US (1) US11034778B2 (ko)
EP (1) EP3617242B1 (ko)
JP (1) JP6960000B2 (ko)
KR (1) KR102244956B1 (ko)
CN (1) CN110709438B (ko)
WO (1) WO2019098753A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210073050A (ko) * 2019-12-10 2021-06-18 주식회사 엘지화학 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015396A (ko) * 2003-08-05 2005-02-21 주식회사 엘지화학 그라프트 공중합체 라텍스 및 그의 건조 분말 제조방법
KR20090084334A (ko) * 2008-02-01 2009-08-05 주식회사 엘지화학 아크릴계 충격보강제, 이의 제조방법 및 이를 포함하는염화비닐수지 조성물
KR20100045830A (ko) * 2008-10-24 2010-05-04 주식회사 엘지화학 내스크래치성과 내열성이 우수한 내후성 열가소성 수지 조성물
KR20150002604A (ko) * 2012-04-18 2015-01-07 카네카 코포레이션 고무 그래프트 공중합체와 고무 그래프트 공중합체를 함유하는 열가소성 수지 조성물
KR20150142493A (ko) * 2014-06-12 2015-12-22 주식회사 엘지화학 코어-쉘 구조의 아크릴계 충격보강제 및 이를 포함하는 아크릴계 수지 조성물
KR20170122558A (ko) * 2016-04-27 2017-11-06 주식회사 엘지화학 수지 조성물, 이를 포함하는 광학 필름 및 이를 포함하는 편광판

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227606A (ja) * 1987-03-16 1988-09-21 Mitsubishi Rayon Co Ltd 熱可塑性樹脂の製造方法
JP3949975B2 (ja) 2001-05-24 2007-07-25 三菱レイヨン株式会社 ラテックス、重合体、および、重合体の凝固、回収方法
KR100426123B1 (ko) 2001-07-04 2004-04-08 주식회사 엘지화학 내후성 열가소성 수지의 제조방법
KR100654525B1 (ko) 2005-12-30 2006-12-05 제일모직주식회사 카르복시에틸 포스피네이트 에스테르 염 화합물과 이를함유하는 난연성 열가소성 수지조성물
US20070238825A1 (en) * 2006-04-07 2007-10-11 Basf Ag Electrically neutral dispersion
JP5599188B2 (ja) 2006-04-07 2014-10-01 ビーエーエスエフ ソシエタス・ヨーロピア 電気的に中性の分散液及びその製造方法
KR20090038507A (ko) 2007-10-16 2009-04-21 주식회사 엘지화학 아크릴레이트-스티렌-아크릴로니트릴 중합체 및 이의제조방법
EP2072542B1 (en) * 2007-12-20 2014-05-07 Rohm and Haas Company Core-shell polymers suitable for use in organic media
KR101425754B1 (ko) * 2012-08-27 2014-08-05 주식회사 엘지화학 아크릴로니트릴―아크릴레이트―스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
KR101605586B1 (ko) 2013-07-29 2016-03-22 주식회사 엘지화학 내한성 니트릴 고무의 제조방법
KR101656798B1 (ko) 2015-05-29 2016-09-12 금호석유화학 주식회사 아크릴레이트-스티렌-아크릴로니트릴 라텍스의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015396A (ko) * 2003-08-05 2005-02-21 주식회사 엘지화학 그라프트 공중합체 라텍스 및 그의 건조 분말 제조방법
KR20090084334A (ko) * 2008-02-01 2009-08-05 주식회사 엘지화학 아크릴계 충격보강제, 이의 제조방법 및 이를 포함하는염화비닐수지 조성물
KR20100045830A (ko) * 2008-10-24 2010-05-04 주식회사 엘지화학 내스크래치성과 내열성이 우수한 내후성 열가소성 수지 조성물
KR20150002604A (ko) * 2012-04-18 2015-01-07 카네카 코포레이션 고무 그래프트 공중합체와 고무 그래프트 공중합체를 함유하는 열가소성 수지 조성물
KR20150142493A (ko) * 2014-06-12 2015-12-22 주식회사 엘지화학 코어-쉘 구조의 아크릴계 충격보강제 및 이를 포함하는 아크릴계 수지 조성물
KR20170122558A (ko) * 2016-04-27 2017-11-06 주식회사 엘지화학 수지 조성물, 이를 포함하는 광학 필름 및 이를 포함하는 편광판

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617242A4 *

Also Published As

Publication number Publication date
US20200095346A1 (en) 2020-03-26
JP6960000B2 (ja) 2021-11-05
EP3617242A4 (en) 2020-07-22
EP3617242A1 (en) 2020-03-04
CN110709438A (zh) 2020-01-17
CN110709438B (zh) 2022-06-21
KR102244956B1 (ko) 2021-04-27
EP3617242B1 (en) 2021-05-19
US11034778B2 (en) 2021-06-15
JP2020524204A (ja) 2020-08-13
KR20190055943A (ko) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022010053A1 (ko) 열가소성 수지 및 이의 제조방법
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2020032505A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 이를 포함하는 열가소성 수지 성형품
WO2022019581A1 (ko) 열가소성 수지 및 이의 제조방법
WO2015026153A1 (ko) 아크릴레이트-스티렌-아크릴로니트릴 중합체 및 열가소성 수지 조성물
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2019093703A1 (ko) 열가소성 수지 조성물
WO2020101332A1 (ko) 열가소성 수지 조성물
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2021060743A1 (ko) 그라프트 중합체의 제조방법
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2019098753A1 (ko) 그라프트 공중합체의 제조방법
WO2019059664A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2020050544A1 (ko) 그라프트 공중합체의 제조방법 및 그라프트 공중합체
WO2020080735A1 (ko) 그라프트 공중합체 분말의 제조방법
WO2022035071A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2021066345A1 (ko) 아크릴계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020091336A1 (ko) 열가소성 수지 조성물
WO2019221448A1 (ko) 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물
WO2022085913A1 (ko) 비닐시안 화합물-공액디엔 고무-방향족 비닐 화합물 그라프트 공중합체의 제조방법 및 이를 포함하는 열가소성 수지 조성물의 제조방법
WO2023096220A1 (ko) 디엔계 고무질 중합체의 제조방법 및 이를 포함하는 그래프트 중합체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018878744

Country of ref document: EP

Effective date: 20191127

ENP Entry into the national phase

Ref document number: 2019570055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE