WO2020101332A1 - 열가소성 수지 조성물 - Google Patents

열가소성 수지 조성물 Download PDF

Info

Publication number
WO2020101332A1
WO2020101332A1 PCT/KR2019/015387 KR2019015387W WO2020101332A1 WO 2020101332 A1 WO2020101332 A1 WO 2020101332A1 KR 2019015387 W KR2019015387 W KR 2019015387W WO 2020101332 A1 WO2020101332 A1 WO 2020101332A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
copolymer
thermoplastic resin
resin composition
Prior art date
Application number
PCT/KR2019/015387
Other languages
English (en)
French (fr)
Inventor
박춘호
황용연
성다은
안용희
장정민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020564180A priority Critical patent/JP7123471B2/ja
Priority to EP19884117.3A priority patent/EP3778763B1/en
Priority to CN201980032141.2A priority patent/CN112119121B/zh
Priority to US17/055,493 priority patent/US11499046B2/en
Publication of WO2020101332A1 publication Critical patent/WO2020101332A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/04Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a thermoplastic resin composition, and relates to a thermoplastic resin composition having improved elongation, processability, weatherability, colorability, chemical resistance, scratch resistance, whitening, surface gloss, and appearance quality.
  • PCM polymer coated metal
  • VCM vinyl coated metal
  • VCM is a material coated with PVC and PET film on a galvanized steel sheet, and is used as an external material for household appliances.
  • VCM can further be used for building materials, furniture, automobiles, electrical materials, roof tiles, and the like.
  • ASA graft copolymer mainly uses an acrylic rubbery polymer to improve impact as a core, and the shell uses styrene, acrylonitrile, methyl methacrylate, and the like to improve colorability and dispersibility with the matrix copolymer. .
  • ASA graft copolymer In order to apply the ASA graft copolymer to the VCM, a high elongation to prevent tearing in the press process for sheet metal is required, and the surface quality must be excellent even at high temperature processing.
  • thermoplastic resin composition comprising an ASA graft copolymer having high elongation and not generating bubbles even during high temperature processing.
  • An object of the present invention is to provide a thermoplastic resin composition with improved elongation, processability, weatherability, colorability, chemical resistance, scratch resistance, whitening, surface gloss, and appearance quality while maintaining basic properties such as impact resistance and hardness. .
  • the present invention is a graft copolymer obtained by graft polymerization of an aromatic vinyl monomer and a vinyl cyan monomer to an acrylic rubber polymer having an average particle diameter of 50.0 to 90.0 nm; C 1 to C 3 alkyl (meth) acrylate-based monomer unit, an aromatic vinyl-based monomer unit and a matrix copolymer comprising a vinyl cyanide monomer unit; And it provides a thermoplastic resin composition comprising an additive comprising a polymer comprising a C 1 to C 3 alkyl (meth) acrylate-based monomer units.
  • thermoplastic resin composition according to the present invention while having excellent basic properties such as impact resistance and hardness, elongation, processability, weatherability, colorability, chemical resistance, scratch resistance, whitening phenomenon, surface gloss, appearance quality can be remarkably improved .
  • the average particle diameter of the seed, core, acrylic rubber polymer and graft copolymer can be measured using a dynamic light scattering method, and specifically, Nicomp 380 HPL equipment (product name, manufacturer: Nicomp). Can be measured.
  • the average particle diameter in the present specification means the arithmetic mean particle size in the particle size distribution measured by the dynamic light scattering method, that is, the average particle size of the scattering intensity.
  • the graft ratio of the graft copolymer can be calculated by the following formula.
  • Weight of the grafted monomer (g) 1 g of the graft copolymer dissolved in 30 g of acetone and the weight of the insoluble material (gel) after centrifugation
  • the acrylic weight (g) of rubber polymer graft copolymer powder of theoretical C 4 to C 10 alkyl (meth) acrylate-based monomer by weight or graft copolymer C 4 to C 10 injected in the preparation of the alkyl (meth ) Weight of acrylate monomer
  • the weight average molecular weight of the shell of the graft copolymer may mean the weight average molecular weight of the copolymer comprising an aromatic vinyl monomer unit and a vinyl cyan monomer unit grafted to an acrylic rubber polymer.
  • the weight average molecular weight of the shell of the graft copolymer is dissolved in acetone in a tetrahydrofuran solution when measuring the graft ratio, and then relative to a standard PS (standard polystyrene) sample through gel permeation chromatography. Can be measured.
  • PS standard polystyrene
  • the weight average molecular weight of the matrix copolymer can be measured by using tetrahydrofuran as the eluent, and relative to poly (methyl methacrylate) of Polymer Laboratories, a standard sample, through gel permeation chromatography.
  • the polymerization conversion rate of the matrix copolymer can be calculated by the following equation.
  • Polymerization conversion rate (%) ⁇ (weight of solid content of the copolymer actually obtained) / (weight of the monomers put in the prescription) ⁇ ⁇ 100
  • the weight-average molecular weight of the polymer contained in the additive is measured by relative value with respect to the standard sample poly (methyl methacrylate) (manufacturer: Polymer Laboratories) using tetrahydrofuran as the eluent and gel permeation chromatography. can do.
  • the polymerization conversion rate of the polymer contained in the additive is measured by extracting residual monomer components from the polymer by reprecipitation using chloroform (CHCl 3 ) and methanol and quantitative analysis using gas chromatography / mass spectrometry (GC / MSD). can do.
  • the polymer may be meant to include both a homopolymer formed by polymerizing one monomer and a copolymer formed by polymerizing two or more monomers.
  • the aromatic vinyl-based monomer unit may be a unit derived from an aromatic vinyl-based monomer, and the aromatic vinyl-based monomer is a group consisting of styrene, ⁇ -methyl styrene, p-methyl styrene, 2,4-dimethyl styrene, and vinyl toluene. It may be one or more selected from, styrene is preferred.
  • the vinyl cyan-based monomer unit may be a unit derived from a vinyl cyan-based monomer, and the vinyl cyan-based monomer may be one or more selected from the group consisting of acrylonitrile, methacrylonitrile and ethacrylonitrile, , Of these, acrylonitrile is preferred.
  • C 1 to C 3 alkyl (meth) acrylate-based monomer units may be units derived from C 1 to C 3 alkyl (meth) acrylate-based monomers, and C 1 to C 3 alkyl (meth )
  • the acrylate-based monomer may be at least one selected from the group consisting of methyl (meth) acrylate, ethyl (meth) acrylate and propyl (meth) acrylate, of which methyl methacrylate and methyl acrylate One or more selected from the group is preferred.
  • thermoplastic resin composition includes: 1) a graft copolymer obtained by graft polymerization of an aromatic vinyl monomer and a vinyl cyan monomer on an acrylic rubber polymer having an average particle diameter of 50.0 to 90.0 nm; 2) a matrix copolymer comprising C 1 to C 3 alkyl (meth) acrylate monomer units, aromatic vinyl monomer units, and vinyl cyan monomer units; And 3) a C 1 to C 3 alkyl (meth) acrylate-based monomer unit.
  • thermoplastic resin composition according to an embodiment of the present invention will be described in detail.
  • the graft copolymer is obtained by graft polymerization of an aromatic vinyl monomer and a vinyl cyan monomer to an acrylic rubber polymer having an average particle diameter of 50.0 to 90.0 nm.
  • the graft copolymer may improve weather resistance, elongation, colorability, chemical resistance, processability, surface gloss properties, and whitening properties of the thermoplastic resin composition.
  • the acrylic rubber polymer has an average particle diameter of 50.0 to 90.0 nm, and preferably 65.0 to 75.0 nm. If the above-described range is satisfied, weather resistance may increase because the specific surface area increases as the average particle diameter of the acrylic rubber polymer increases. In addition, since visible light can pass through the acrylic rubber polymer, coloring property can be remarkably improved. In addition, since the graft copolymer can be evenly dispersed at a high content in the thermoplastic resin composition, elongation and whitening properties can be remarkably improved. If it is less than the above-mentioned range, the impact strength may be remarkably lowered, and if it exceeds the above-mentioned range, whitening properties may be remarkably lowered.
  • the graft copolymer may be a copolymer obtained by graft copolymerization of styrene and acrylonitrile with a butyl acrylate rubbery polymer.
  • the graft copolymer may have a graft ratio of 25 to 50% or 30 to 45%, of which 30 to 45% is preferred.
  • a graft ratio of 25 to 50% or 30 to 45%, of which 30 to 45% is preferred.
  • the graft copolymer may have a weight average molecular weight of the shell of 30,000 to 200,000 g / mol, 50,000 to 180,000 g / mol, or 80,000 to 150,000 g / mol, of which 80,000 to 150,000 g / mol is preferred.
  • compatibility with other components may be improved, and dispersibility of the acrylic rubber polymer in the thermoplastic resin composition may be improved.
  • the graft copolymer is C 4 to C 10 alkyl (meth) acrylate-based monomer, aromatic vinyl-based monomer and vinyl cyan-based monomer is added to one or more selected from the group consisting of crosslinking reaction to prepare a seed Then, in the presence of the seed, C 4 to C 10 alkyl (meth) acrylate monomers are added and crosslinked to prepare a core, and in the presence of the core, aromatic vinyl monomers and vinyl cyan monomers are added and graphed. It can be prepared by polymerizing to prepare a shell.
  • the core may mean the aforementioned acrylic rubber polymer.
  • the C 4 to C 10 alkyl (meth) acrylate-based monomers are butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate , Ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate and decyl (meth) acrylate may be at least one selected from the group consisting of butyl acrylate is preferred. .
  • the C 4 to C 10 alkyl (meth) acrylate-based monomer may be added in an amount of 30 to 50% by weight or 35 to 45% by weight based on the total weight of the monomers added during the preparation of the graft copolymer, It is preferably added at 35 to 45% by weight. If the above-mentioned ranges are satisfied, the weather resistance, impact resistance, surface gloss properties, elongation and whitening properties of the graft copolymer can be further improved.
  • the aromatic vinyl-based monomer may be added in an amount of 30 to 50% by weight or 35 to 45% by weight, based on the total weight of the monomers added during the production of the graft copolymer, and the total weight of the graft copolymer. , Of which it is preferably added at 35 to 45% by weight. If the above-mentioned range is satisfied, not only the processability of the graft copolymer can be improved, but the graft copolymer can be more uniformly dispersed in the thermoplastic resin composition, and the coloring property of the thermoplastic resin composition can be further improved. .
  • the vinyl cyan-based monomer may be added at 10 to 30% by weight or 15 to 25% by weight, based on the total weight of the monomers added at the time of preparing the graft copolymer, of which 15 to 25% by weight is added. It is preferred. If the above-described range is satisfied, not only the chemical resistance of the graft copolymer can be improved, but the graft copolymer can be more uniformly dispersed in the thermoplastic resin composition, and the coloring property of the thermoplastic resin composition can be further improved. have.
  • the total weight of the monomers added during the production of the seed may be 1 to 20% by weight or 5 to 15% by weight relative to the total weight of the monomers added during the production of the graft copolymer, of which 5 to 5 15% by weight is preferred.
  • the total weight of the monomers added during the preparation of the core may be 20 to 50% by weight or 25 to 45% by weight, based on the total weight of the monomers added during the preparation of the graft copolymer, of which 25 to 45% by weight % Is preferred.
  • the total weight of the monomers added during the preparation of the shell may be 40 to 70% by weight or 45 to 65% by weight relative to the total weight of the monomers added during the preparation of the graft copolymer, of which 45 to 65% by weight % Is preferred.
  • the graft copolymer may be included in 30 to 80% by weight or 35 to 75% by weight based on the total weight of the thermoplastic resin composition, and is preferably included in 35 to 75% by weight. If the above range is satisfied, the elongation, weather resistance, chemical resistance, colorability, processability, surface gloss properties, appearance quality and whitening properties of the thermoplastic resin composition can be remarkably improved.
  • the matrix copolymer is a random copolymer, and includes C 1 to C 3 alkyl (meth) acrylate monomer units, aromatic vinyl monomer units, and vinyl cyan monomer units.
  • the matrix copolymer includes C 1 to C 3 alkyl (meth) acrylate monomer units that are components of the additive, and aromatic vinyl monomer units and vinyl cyan monomer units that are components of the shell of the graft copolymer. Since it contains, it is not only excellent in compatibility with the graft copolymer and the additive, it is possible to improve the compatibility of the graft copolymer and the polymer. Accordingly, in the thermoplastic resin composition according to an embodiment of the present invention, phase separation does not occur even at high temperature molding.
  • the matrix copolymer may further improve colorability, weatherability, and hardness of the thermoplastic resin composition.
  • the matrix copolymer may be a copolymer of a monomer mixture comprising a C 1 to C 3 alkyl (meth) acrylate-based monomer, an aromatic vinyl-based monomer, and a vinyl cyan-based monomer.
  • the monomer mixture may include 25 to 75% by weight or 30 to 70% by weight of the C 1 to C 3 alkyl (meth) acrylate-based monomer, preferably 30 to 70% by weight. .
  • the above-described range is satisfied, not only the compatibility with the polymer contained in the additive is remarkably improved, but also the colorability, weatherability and hardness of the thermoplastic resin composition can be remarkably improved.
  • the monomer mixture may include the aromatic vinyl-based monomer in 15 to 60% by weight or 20 to 55% by weight, and preferably 20 to 55% by weight.
  • the above-mentioned range is satisfied, not only the compatibility with the graft copolymer is remarkably improved, but also the colorability, weatherability and hardness of the thermoplastic resin composition can be remarkably improved.
  • the monomer mixture may include the vinyl cyan-based monomer at 1 to 20% by weight or 5 to 15% by weight, and preferably 5 to 15% by weight.
  • the above-mentioned range is satisfied, not only the compatibility with the graft copolymer is remarkably improved, but also the colorability, weatherability and hardness of the thermoplastic resin composition can be remarkably improved.
  • the matrix copolymer may be a copolymer of methyl methacrylate, styrene and acrylonitrile.
  • the matrix copolymer may have a weight average molecular weight of 50,000 to 200,000 g / mol, 60,000 to 170,000 g / mol, or 70,000 to 140,000 g / mol, and preferably 70,000 to 140,000 g / mol. If the above-mentioned range is satisfied, the balance of workability, compatibility, and hardness may be excellent.
  • the matrix copolymer may be included in an amount of 0.1 to 30.0% by weight or 1.0 to 25.0% by weight based on the total weight of the thermoplastic resin composition, and is preferably included in 1.0 to 25.0% by weight.
  • the above-described range is satisfied, not only the compatibility of the graft copolymer and the additive can be remarkably improved, but also the colorability, weatherability and hardness of the thermoplastic resin composition can be remarkably improved.
  • Additives include polymers comprising C 1 to C 3 alkyl (meth) acrylate based monomer units.
  • the additive can improve the hardness, surface gloss, scratch resistance, appearance quality and weather resistance of the thermoplastic resin composition.
  • the polymer may have a weight average molecular weight of 150,000 to 250,000 g / mol, 170,000 to 230,000 g / mol, or 190,000 to 210,000 g / mol, and preferably 190,000 to 210,000 g / mol. If the above-described range is satisfied, gas derived from the polymer is not generated during processing of the thermoplastic resin composition, and the polymer may not decompose. In addition, it is possible to significantly improve the hardness, weather resistance, surface gloss, scratch resistance, and appearance quality of the thermoplastic resin composition.
  • the polymer can be poly (methyl methacrylate).
  • the polymer may be a copolymer containing two or more C 1 to C 3 alkyl (meth) acrylate monomer units in order to improve transparency and processability, and preferably C 1 to C 3 alkyl methacryl It may be a copolymer comprising a rate-based monomer unit and C 1 to C 3 alkyl acrylate-based monomer units.
  • the copolymer may be a copolymer of a monomer mixture comprising a C 1 to C 3 alkyl methacrylate monomer and a C 1 to C 3 alkyl acrylate monomer.
  • the monomer mixture is C 1 to C 3 alkyl methacrylate-based monomer and C 1 to C 3 alkyl acrylate-based monomer in a weight ratio of 80:20 to 99: 1 or 85:15 to 95: 5. It can be included, and among these, it is preferable to include in a weight ratio of 85:15 to 95: 5. If the above-mentioned range is satisfied, the balance of workability, surface gloss, hardness, and tensile strength may be excellent.
  • the copolymer may be a copolymer of methyl methacrylate and methyl acrylate.
  • the polymer may be included in an amount of 5 to 50% by weight, or 10 to 45% by weight, based on the total weight of the thermoplastic resin composition, and is preferably included in 10 to 45% by weight. If the above-mentioned range is satisfied, the hardness, weather resistance, surface gloss, scratch resistance and appearance quality of the thermoplastic resin composition can be remarkably improved.
  • the polymerization was terminated by cooling to 60 ° C. to obtain a graft copolymer latex (average particle diameter: 350.0 nm).
  • the polymerization conversion rate of the graft copolymer latex was 98%
  • the pH was 9.5
  • the graft rate was 38%.
  • An activator solution was prepared comprising 0.015 parts by weight of disodium ethylenediamine tetraacetate, 0.02 parts by weight of sodium formaldehyde sulfoxylate, 0.001 parts by weight of ferrous sulfate 7 salt and 1.165 parts by weight of distilled water.
  • the polymer latex After cooling the polymer latex slowly at room temperature, it was cooled at -15 ° C for 8 hours. When the cooled copolymer latex is melted at room temperature, it is separated into two phases, and the portion that has sunk to the bottom is collected. The collected part was washed with distilled water and dried in a vacuum oven for 24 hours to remove moisture and unreacted monomers, thereby obtaining white fine particles.
  • An activator solution was prepared comprising 0.015 parts by weight of disodium ethylenediamine tetraacetate, 0.02 parts by weight of sodium formaldehyde sulfoxylate, 0.001 parts by weight of ferrous sulfate 7 salt and 1.165 parts by weight of distilled water.
  • the polymer latex After cooling the polymer latex slowly at room temperature, it was cooled at -15 ° C for 8 hours. When the cooled copolymer latex is melted at room temperature, it is separated into two phases, and the portion that has sunk to the bottom is collected. The collected part was washed with distilled water and dried in a vacuum oven for 24 hours to remove moisture and unreacted monomers, thereby obtaining white fine particles.
  • An activator solution was prepared comprising 0.015 parts by weight of disodium ethylenediamine tetraacetate, 0.02 parts by weight of sodium formaldehyde sulfoxylate, 0.001 parts by weight of ferrous sulfate 7 salt and 1.165 parts by weight of distilled water.
  • the polymer latex After cooling the polymer latex slowly at room temperature, it was cooled at -15 ° C for 8 hours. When the cooled copolymer latex is melted at room temperature, it is separated into two phases, and the portion that has sunk to the bottom is collected. The collected part was washed with distilled water and dried in a vacuum oven for 24 hours to remove moisture and unreacted monomers, thereby obtaining white fine particles.
  • An activator solution was prepared comprising 0.015 parts by weight of disodium ethylenediamine tetraacetate, 0.02 parts by weight of sodium formaldehyde sulfoxylate, 0.001 parts by weight of ferrous sulfate 7 salt and 1.165 parts by weight of distilled water.
  • the polymer latex After cooling the polymer latex slowly at room temperature, it was cooled at -15 ° C for 8 hours. When the cooled copolymer latex is melted at room temperature, it is separated into two phases, and the portion that has sunk to the bottom is collected. The collected part was washed with distilled water and dried in a vacuum oven for 24 hours to remove moisture and unreacted monomers, thereby obtaining white fine particles.
  • the obtained second copolymer was transferred to a volatilization tank to remove unreacted monomers and reaction media at 215 ° C. to prepare a pellet-type copolymer (weight average molecular weight: 120,000 g / mol).
  • (B-4) 4th matrix copolymer The copolymer of Preparation Example 6 was used.
  • thermoplastic resin composition The above-mentioned components were mixed according to the contents described in [Table 1] to [Table 3], followed by stirring to prepare a thermoplastic resin composition.
  • thermoplastic resin compositions of Examples and Comparative Examples were extruded and injected to prepare specimens.
  • the physical properties of the specimens were evaluated by the methods described below, and the results are shown in [Table 1] to [Table 3] below.
  • ⁇ E Accelerated weathering test device (weather-o-meter, ATLAS Ci4000, Xenon arc lamp, Quartz (inner) /S.Boro (outer) filter, irradiance 0.55 W / m2 at 340 nm) SAE
  • the test was conducted under J1960 conditions for 2,000 hours, and the following ⁇ E is the arithmetic average value before and after the accelerated weathering test, and the closer the value to 0, the better the weathering resistance.
  • L ', a' and b ' are L, a and b values measured by the CIE LAB color coordinate system after irradiating the specimen with SAE J1960 conditions for 2,000 hours, and L O , a 0 and b 0 are light.
  • Gloss was measured at 60 ° using a VG7000 (gloss meter) from NIPPON DENSHOKU, according to ASTM D523.
  • Graft copolymer Graft copolymer (B-1) of Preparation Example 2 in which styrene and acrylonitrile were grafted to a butyl acrylate rubbery polymer having an average particle diameter of 280.0 nm
  • B-1 First matrix copolymer : methyl methacrylate 30
  • Copolymer of Preparation Example 3 which is a copolymer of 52.5 parts by weight of styrene, 52.5 parts by weight of styrene and 17.5 parts by weight of acrylonitrile (weight average molecular weight: 80,000 g / mol)
  • Second matrix copolymer 70 parts by weight of methyl methacrylate
  • Copolymer of Preparation Example 4 (weight average molecular weight: 80,000 g / mol), which is a copolymer of 22.5 parts by weight of styrene and 7.5 parts by weight of acrylonitrile
  • B-3) Third matrix copolymer :
  • Graft copolymer Graft copolymer (B-1) of Preparation Example 2 in which styrene and acrylonitrile were grafted to a butyl acrylate rubbery polymer having an average particle diameter of 280.0 nm
  • B-1 First matrix copolymer : methyl methacrylate 30
  • Copolymer of Preparation Example 3 which is a copolymer of 52.5 parts by weight of styrene, 52.5 parts by weight of styrene and 17.5 parts by weight of acrylonitrile (weight average molecular weight: 80,000 g / mol)
  • B-2) Second matrix copolymer 70 parts by weight of methyl methacrylate
  • Copolymer of Preparation Example 4 (weight average molecular weight: 80,000 g / mol), which is a copolymer of 22.5 parts by weight of styrene and 7.5 parts by weight of acrylonitrile (B-5) 5th matrix copolymer
  • Graft copolymer Graft copolymer (B-1) of Preparation Example 2 in which styrene and acrylonitrile were grafted to a butyl acrylate rubbery polymer having an average particle diameter of 280.0 nm
  • B-1 First matrix copolymer : methyl methacrylate 30
  • Copolymer of Preparation Example 3 which is a copolymer of 52.5 parts by weight of styrene, 52.5 parts by weight of styrene and 17.5 parts by weight of acrylonitrile (weight average molecular weight: 80,000 g / mol)
  • B-2) Second matrix copolymer 70 parts by weight of methyl methacrylate
  • Copolymer of Preparation Example 4 (weight average molecular weight: 80,000 g / mol), which is a copolymer of 22.5 parts by weight of styrene and 7.5 parts by weight of acrylonitrile (B-5) 5th matrix copolymer
  • thermoplastic resin compositions of Examples 1 to 4 have higher impact strength and elongation as the content of the small particle size graft copolymer increases.
  • thermoplastic resin composition of Examples 2 to 4 was confirmed that the higher the content of the matrix copolymer and the additive, the better the hardness, weather resistance and surface gloss.
  • thermoplastic resin composition of Example 1 comprising a matrix copolymer made of 30 parts by weight of methyl methacrylate, the matrix air made of 15 parts by weight of methyl methacrylate It was confirmed that the impact strength, hardness, elongation, weatherability, trimming properties, whitening, surface gloss, and appearance quality were all superior to those of the thermoplastic resin composition of Example 7 including the coalescence.
  • the thermoplastic resin composition of Example 1 comprising a matrix copolymer made of 30 parts by weight of methyl methacrylate comprises a matrix copolymer made of 85 parts by weight of methyl methacrylate.
  • thermoplastic resin composition of Example 7 were all excellent. From these results, when a matrix copolymer containing an appropriate amount of methyl methacrylate is used, compatibility with graft copolymers and additives is remarkably improved, impact strength, elongation, weatherability, trimming properties, whitening, surface gloss and appearance It was confirmed that the quality was improved.
  • Example 1 and Comparative Example 4 are compared, the thermoplastic resin composition of Example 1 containing the matrix copolymer is compared with the thermoplastic resin composition of Comparative Example 4 not containing the matrix copolymer, and has an impact strength, elongation, weather resistance, and trimming. It was confirmed that the property, whitening, surface gloss, and appearance quality were excellent.
  • thermoplastic resin composition of Example 1 compared to the thermoplastic resin composition of Comparative Example 5 comprising a styrene / acrylonitrile polymer as a matrix copolymer, impact strength, hardness, elongation, weather resistance, It was confirmed that the trimming property, whitening, surface gloss, and appearance quality were remarkably excellent. From these results, when using a matrix copolymer containing methyl methacrylate, compatibility with graft copolymers and additives is significantly improved, impact strength, elongation, weather resistance, trimming properties, whitening, surface gloss and appearance quality It was confirmed that this was significantly improved.
  • thermoplastic resin composition of Example 1 contains 67 parts by weight of a small particle size graft copolymer but does not contain any additives. , It was confirmed that the whitening, surface gloss and appearance quality were remarkably excellent. From these results, when a matrix copolymer containing methyl methacrylate is used, compatibility with graft copolymers and additives is significantly improved, and impact strength, trimming properties, even if a small amount of graft copolymer is included, It was confirmed that whitening and surface gloss were improved.
  • Example 1 and Comparative Example 9 are compared, the impact strength of the thermoplastic resin composition of Example 1 containing a small particle size graft copolymer is lower than that of Comparative Example 9 of a large particle size graft copolymer. However, it was confirmed that the weather resistance, whitening and surface gloss were remarkably excellent.
  • thermoplastic resin composition of Example 2 comprising a matrix copolymer made of 70 parts by weight of methyl methacrylate comprises a matrix copolymer made of 85 parts by weight of methyl methacrylate. It was confirmed that the impact strength, elongation, trimming, whitening, surface gloss, and appearance quality of the thermoplastic resin composition of Example 6 were excellent.
  • thermoplastic resin composition of Example 2 compared to the thermoplastic resin composition of Comparative Example 6 comprising a styrene / acrylonitrile polymer as a matrix copolymer, impact strength, hardness, elongation, weather resistance, It was confirmed that the trimming property, whitening, surface gloss, and appearance quality were excellent.
  • thermoplastic resin composition of Example 2 containing a small particle size graft copolymer compared with the thermoplastic resin composition of Comparative Example 10 containing a large particle size graft copolymer, impact strength and elongation Although it was reduced, it was confirmed that the weather resistance, whitening, and surface gloss were remarkably excellent.
  • thermoplastic resin composition of Example 2 compared to the thermoplastic resin composition of Comparative Example 7 containing no matrix copolymer, impact strength, elongation, weatherability, trimming, whitening, surface gloss and It was confirmed that all the appearance quality was excellent.
  • thermoplastic resin composition of Example 5 containing 20 parts by weight of the matrix copolymer compared with the thermoplastic resin composition of Example 7 containing 15 parts by weight of the matrix copolymer, has an impact strength and weather resistance. , It was confirmed that the trimming property and the surface gloss were somewhat improved.
  • thermoplastic resin composition of Example 5 is superior to the thermoplastic resin composition of Comparative Example 4, which does not contain a matrix copolymer, and has excellent impact strength and trimming properties.
  • thermoplastic resin composition of Comparative Example 1 which contained an excessively large particle diameter graft copolymer, was superior in impact strength, elongation, and trimming property to the thermoplastic resin composition of Comparative Example 2, but was weather resistant And it was confirmed that the surface gloss is lowered.
  • thermoplastic resin composition of Comparative Example 3 further comprising a small particle size graft copolymer, compared to the thermoplastic resin composition of Comparative Example 3, elongation, weather resistance, whitening, surface gloss It was excellent, but both did not have good overall properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 평균입경이 50.0 내지 90.0 ㎚인 아크릴계 고무질 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체를 그라프트 중합한 그라프트 공중합체; C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체; 및 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하는 중합체를 포함하는 첨가제를 포함하는 열가소성 수지 조성물에 관한 것으로서, 상세하게는 기본 물성이 우수하면서, 신율, 가공성, 내후성, 착색성, 경도, 내화학성, 내스크래치성, 백화 현상, 표면 광택, 외관 품질이 개선된 열가소성 수지 조성물에 관한 것이다.

Description

열가소성 수지 조성물
[관련출원과의 상호인용]
본 발명은 2018.11.13.에 출원된 한국 특허 출원 제10-2018-0139152호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 열가소성 수지 조성물에 관한 것으로서, 신율, 가공성, 내후성, 착색성, 내화학성, 내스크래치성, 백화 현상, 표면 광택, 외관 품질이 개선된 열가소성 수지 조성물에 관한 것이다.
경화(curing) 공정을 포함하는 종래의 페인트 코팅 공정에서는 휘발성 유기 화합물(volatile organic compounds)과 같은 유해한 물질들이 대기로 방출되는 환경 오염문제로 인해 전 세계적으로 법적 규제가 강화되고 있다.
이러한 이유로, 현재 가전제품의 외판소재는 부식방지, 저마찰, 및 표면 광택을 위한 PCM(polymer coated metal)이 일반적으로 사용된다. 특히 최종 제품의 고급화 수요와 맞물려서 PCM 소재 중 비닐수지가 코팅된 VCM(vinyl coated metal)의 사용이 증가하는 추세이다. VCM은 아연도금강판 위에 PVC와 PET 필름이 코팅된 소재로 가전제품의 외판소재로 사용되고 있다. VCM은 나아가 건장재, 가구, 자동차, 전기재료, 지붕(roof tile) 등에 사용될 수 있다.
현재 다양한 VCM용 코팅 소재를 개발하고 있으나, PVC와 PET 필름이 코팅된 외판소재는 내후성이 열세이므로, 내후성이 우수한 ASA 그라프트 공중합체가 대안이 될 수 있다. 이러한 ASA 그라프트 공중합체는 코어로 충격 향상을 위해 주로 아크릴계 고무질 중합체를 이용하고, 쉘은 매트릭스 공중합체와의 착색성 및 분산성을 향상시키기 위해 스티렌, 아크릴로니트릴, 메틸 메타크릴레이트 등을 사용한다.
ASA 그라프트 공중합체를 VCM에 적용하기 위해서는, 판금을 위한 프레스 공정 시 찢김을 방지하기 위한 높은 신율이 필요하고, 고온 가공 시에도 표면 품질이 우수해야 한다.
이에 따라, 높은 신율을 가지면서, 고온 가공 시에도 기포가 발생하지 않는 ASA 그라프트 공중합체를 포함하는 열가소성 수지 조성물을 개발하고자 하는 노력이 계속되고 있다.
본 발명의 목적은 내충격성 및 경도 등의 기본 물성은 유지하면서, 신율, 가공성, 내후성, 착색성, 내화학성, 내스크래치성, 백화 현상, 표면 광택, 외관 품질이 개선된 열가소성 수지 조성물을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 평균입경이 50.0 내지 90.0 ㎚인 아크릴계 고무질 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체를 그라프트 중합한 그라프트 공중합체; C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체; 및 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하는 중합체를 포함하는 첨가제를 포함하는 열가소성 수지 조성물을 제공한다.
본 발명에 따른 열가소성 수지 조성물은 내충격성 및 경도 등의 기본 물성이 우수하면서, 신율, 가공성, 내후성, 착색성, 내화학성, 내스크래치성, 백화 현상, 표면 광택, 외관 품질이 현저하게 개선될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 시드, 코어, 아크릴계 고무질 중합체 및 그라프트 공중합체의 평균입경은 동적 광산란(dynamic light scattering)법을 이용하여 측정할 수 있고, 상세하게는 Nicomp 380 HPL 장비(제품명, 제조사: Nicomp)를 이용하여 측정할 수 있다.
본 명세서에서 평균입경은 동적 광산란법에 의해 측정되는 입도분포에 있어서의 산술 평균입경 즉, 산란강도 평균입경을 의미한다.
본 발명에서 그라프트 공중합체의 그라프트율은 하기 식으로 산출할 수 있다.
그라프트율(%): 그라프트된 단량체의 중량(g)/아크릴계 고무질 중합체의 중량(g) × 100
그라프트된 단량체의 중량(g): 그라프트 공중합체 1 g을 아세톤 30 g 에 용해시키고 원심 분리한 후의 불용성 물질(gel)의 중량
아크릴계 고무질 중합체의 중량(g): 그라프트 공중합체 분말 중 이론상 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체의 중량 또는 그라프트 공중합체의 제조 시 투입된 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체의 중량
본 발명에서 그라프트 공중합체의 쉘의 중량평균분자량은 아크릴계 고무질 중합체에 그라프트된 방향족 비닐계 단량체 단위와 비닐 시안계 단량체 단위를 포함하는 공중합체의 중량평균분자량을 의미할 수 있다.
본 발명에서 그라프트 공중합체의 쉘의 중량평균분자량은 그라프트율 측정 시 아세톤에 녹은 부분(sol)을 테트라하이드로퓨란 용액에 녹인 후, 겔 투과 크로마토그래피를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다.
본 발명에서 매트릭스 공중합체의 중량평균분자량은 용출액으로 테트라하이드로퓨란을 이용하고, 겔 투과 크로마토그래피를 통해 표준 시료인 Polymer Laboratories 사의 폴리(메틸 메타크릴레이트)에 대한 상대 값으로 측정할 수 있다.
본 발명에서 매트릭스 공중합체의 중합전환율은 하기 식으로 계산될 수 있다.
중합전환율(%)={(실제로 수득된 공중합체의 고형분 중량)/(처방상 투입된 단량체들의 중량)} × 100
본 발명에서 첨가제에 포함된 중합체의 중량평균분자량은 용출액으로 테트라하이드로퓨란을 이용하고, 겔 투과 크로마토그래피를 통해 표준 시료인 폴리(메틸 메타크릴레이트)(제조사: Polymer Laboratories)에 대한 상대 값으로 측정할 수 있다.
본 발명에서 첨가제에 포함된 중합체의 중합전환율은 중합체로부터 잔류 단량체 성분을 클로로포름(CHCl3)과 메탄올을 이용한 재침전법으로 추출하고 가스 크로마토그래피/질량분광법(GC/MSD)을 이용하여 정량분석하여 측정할 수 있다.
본 발명에서 중합체는 1 종의 단량체를 중합하여 형성되는 단일 중합체(homopolymer) 및 2 종 이상의 단량체를 중합하여 형성되는 공중합체(copolymer)를 모두 포함하는 의미일 수 있다.
본 발명에서 방향족 비닐계 단량체 단위는 방향족 비닐계 단량체로부터 유래된 단위일 수 있고, 방향족 비닐계 단량체는 스티렌, α-메틸 스티렌, p-메틸 스티렌, 2,4-디메틸 스티렌 및 비닐 톨루엔으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
본 발명에서 비닐 시안계 단량체 단위는 비닐 시안계 단량체로부터 유래된 단위일 수 있고, 비닐 시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로부터 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 아크릴로니트릴이 바람직하다.
본 발명에서 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위는 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체로부터 유래된 단위일 수 있고, C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체는 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트 및 프로필 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 메틸 메타크릴레이트 및 메틸 아크릴레이트로 이루어진 군에서 선택되는 1종 이상이 바람직하다.
1. 열가소성 수지 조성물
본 발명의 일실시예에 따른 열가소성 수지 조성물은 1) 평균입경이 50.0 내지 90.0 ㎚인 아크릴계 고무질 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체를 그라프트 중합한 그라프트 공중합체; 2) C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체; 및 3) C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하는 중합체를 포함하는 첨가제를 포함한다.
이하, 본 발명의 일실시예에 따른 열가소성 수지 조성물의 구성요소에 대하여 상세하게 설명한다.
1) 그라프트 공중합체
그라프트 공중합체는 평균입경이 50.0 내지 90.0 ㎚인 아크릴계 고무질 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체를 그라프트 중합한 것이다.
상기 그라프트 공중합체는 열가소성 수지 조성물의 내후성, 신율, 착색성, 내화학성, 가공성, 표면 광택 특성, 백화 특성을 개선시킬 수 있다.
상기 아크릴계 고무질 중합체의 평균입경이 50.0 내지 90.0 ㎚이고, 바람직하게는 65.0 내지 75.0 ㎚일 수 있다. 상술한 범위를 만족하면, 상기 아크릴계 고무질 중합체의 평균입경이 작을수록 비표면적이 증가하기 때문에 내후성이 증가할 수 있다. 또한, 가시광선이 아크릴계 고무질 중합체를 통과할 수 있으므로, 착색성이 현저하게 개선될 수 있다. 또한, 상기 그라프트 공중합체가 열가소성 수지 조성물에 높은 함량으로 고르게 분산될 수 있으므로, 신율 및 백화 특성이 현저하게 개선될 수 있다. 상술한 범위 미만이면, 충격강도가 현저하게 저하될 수 있고, 상술한 범위를 초과하면, 백화 특성이 현저하게 저하될 수 있다.
상기 그라프트 공중합체는 부틸 아크릴레이트 고무질 중합체에 스티렌 및 아크릴로니트릴을 그라프트 공중합한 공중합물일 수 있다.
상기 그라프트 공중합체는 그라프트율이 25 내지 50 % 또는 30 내지 45 %일 수 있고, 이 중, 30 내지 45 %가 바람직하다. 상술한 범위를 만족하면, 아크릴계 고무질 중합체에 그라프트된 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위로 인해 매트릭스 공중합체와의 상용성이 현저하게 개선될 뿐만 아니라, 열가소성 수지 조성물의 신율, 백화 특성 및 내충격성이 현저하게 개선될 수 있다.
상기 그라프트 공중합체는 쉘의 중량평균분자량이 30,000 내지 200,000 g/mol, 50,000 내지 180,000 g/mol 또는 80,000 내지 150,000 g/mol일 수 있고, 이 중 80,000 내지 150,000 g/mol가 바람직하다. 상술한 범위를 만족하면, 다른 구성 요소들과 상용성이 향상되고, 열가소성 수지 조성물 내 아크릴계 고무질 중합체의 분산성이 향상될 수 있다.
한편, 상기 그라프트 공중합체는 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상을 투입하고 가교 반응하여 시드를 제조하고, 상기 시드 존재 하에 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체를 투입하고 가교 반응하여 코어를 제조하고, 상기 코어의 존재 하에, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 투입하고 그라프트 중합하여 쉘을 제조함으로써 제조될 수 있다.
여기서, 상기 코어는 상술한 아크릴계 고무질 중합체를 의미할 수 있다.
상기 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체는 부틸 (메트)아크릴레이트, 펜틸 (메트)아크릴레이트, 헥실 (메트)아크릴레이트, 헵틸 (메트)아크릴레이트, 옥틸 (메트)아크릴레이트, 에틸헥실 (메트)아크릴레이트, 노닐 (메트)아크릴레이트, 이소노닐 (메트)아크릴레이트 및 데실 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 부틸 아크릴레이트가 바람직하다.
상기 C4 내지 C10의 알킬 (메트)아크릴레이트계 단량체는 상기 그라프트 공중합체의 제조 시 투입되는 단량체들의 총 중량에 대하여, 30 내지 50 중량% 또는 35 내지 45 중량%로 투입될 수 있고, 이 중 35 내지 45 중량%로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 내후성, 내충격성, 표면 광택 특성, 신율 및 백화 특성이 보다 개선될 수 있다.
상기 방향족 비닐계 단량체는 상기 그라프트 공중합체의 제조 시 투입되는 단량체들의 총 중량에 대하여, 상기 그라프트 공중합체의 총 중량에 대하여, 30 내지 50 중량% 또는 35 내지 45 중량%로 투입될 수 있고, 이 중 35 내지 45 중량%로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 가공성이 보다 개선될 수 있을 뿐만 아니라, 그라프트 공중합체가 열가소성 수지 조성물 내에 보다 균일하게 분산될 수 있고, 열가소성 수지 조성물의 착색성을 보다 개선시킬 수 있다.
상기 비닐 시안계 단량체는 상기 그라프트 공중합체의 제조 시 투입되는 단량체들의 총 중량에 대하여, 10 내지 30 중량% 또는 15 내지 25 중량%로 투입될 수 있고, 이 중 15 내지 25 중량%로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 내화학성이 보다 개선될 수 있을 뿐만 아니라, 그라프트 공중합체가 열가소성 수지 조성물 내에 보다 균일하게 분산될 수 있고, 열가소성 수지 조성물의 착색성을 보다 개선시킬 수 있다.
한편, 상기 시드의 제조 시 투입되는 단량체들의 총 중량은 상기 그라프트 공중합체의 제조 시 투입되는 단량체들의 총 중량에 대하여, 1 내지 20 중량% 또는 5 내지 15 중량%일 수 있고, 이 중 5 내지 15 중량%가 바람직하다.
상기 코어의 제조 시 투입되는 단량체들의 총 중량은 상기 그라프트 공중합체의 제조 시 투입되는 단량체들의 총 중량에 대하여, 20 내지 50 중량% 또는 25 내지 45 중량%일 수 있고, 이 중 25 내지 45 중량%가 바람직하다.
상기 쉘의 제조 시 투입되는 단량체들의 총 중량은 상기 그라프트 공중합체의 제조 시 투입되는 단량체들의 총 중량에 대하여, 40 내지 70 중량% 또는 45 내지 65 중량%일 수 있고, 이 중 45 내지 65 중량%가 바람직하다.
상기 그라프트 공중합체는 상기 열가소성 수지 조성물의 총 중량에 대하여, 30 내지 80 중량% 또는 35 내지 75 중량%로 포함될 수 있고, 이 중 35 내지 75 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 신율, 내후성, 내화학성, 착색성, 가공성, 표면 광택 특성, 외관 품질 및 백화 특성을 현저하게 개선시킬 수 있다.
2) 매트릭스 공중합체
상기 매트릭스 공중합체는 랜덤 공중합체로서, C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위를 포함한다.
상기 매트릭스 공중합체는 첨가제의 구성요소인 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하고, 그라프트 공중합체의 쉘의 구성요소인 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하므로, 그라프트 공중합체와 첨가제와 상용성이 뛰어날 뿐만 아니라, 그라프트 공중합체와 중합체의 상용성을 개선시킬 수 있다. 이에 따라, 본 발명의 일실시예에 따른 열가소성 수지 조성물은 고온 성형 시에도 상분리가 발생하지 않는다.
또한, 상기 매트릭스 공중합체는 열가소성 수지 조성물의 착색성, 내후성, 경도를 보다 개선시킬 수 있다.
상기 매트릭스 공중합체는 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 포함하는 단량체 혼합물의 공중합물일 수 있다.
상기 단량체 혼합물은 상기 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체를 25 내지 75 중량% 또는 30 내지 70 중량%로 포함할 수 있고, 이 중 30 내지 70 중량%로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 첨가제에 포함된 중합체와의 상용성이 현저하게 개선될 뿐만 아니라, 열가소성 수지 조성물의 착색성, 내후성 및 경도를 현저하게 개선시킬 수 있다.
상기 단량체 혼합물은 상기 방향족 비닐계 단량체를 15 내지 60 중량% 또는 20 내지 55 중량%로 포함할 수 있고, 이 중 20 내지 55 중량%로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체와의 상용성이 현저하게 개선될 뿐만 아니라, 열가소성 수지 조성물의 착색성, 내후성 및 경도를 현저하게 개선시킬 수 있다.
상기 단량체 혼합물은 상기 비닐 시안계 단량체를 1 내지 20 중량% 또는 5 내지 15 중량%로 포함할 수 있고, 이 중 5 내지 15 중량%로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체와의 상용성이 현저하게 개선될 뿐만 아니라, 열가소성 수지 조성물의 착색성, 내후성 및 경도를 현저하게 개선시킬 수 있다.
상기 매트릭스 공중합체는 메틸 메타크릴레이트, 스티렌 및 아크릴로니트릴의 공중합물일 수 있다.
상기 매트릭스 공중합체는 중량평균분자량이 50,000 내지 200,000 g/mol, 60,000 내지 170,000 g/mol 또는 70,000 내지 140,000 g/mol일 수 있고, 이 중 70,000 내지 140,000 g/mol인 것이 바람직하다. 상술한 범위를 만족하면, 가공성, 상용성 및 경도의 밸런스가 우수해질 수 있다.
상기 매트릭스 공중합체는 상기 열가소성 수지 조성물의 총 중량에 대하여, 0.1 내지 30.0 중량% 또는 1.0 내지 25.0 중량%로 포함될 수 있고, 이 중 1.0 내지 25.0 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체와 첨가제의 상용성이 현저하게 개선될 뿐만 아니라, 열가소성 수지 조성물의 착색성, 내후성 및 경도가 현저하게 개선될 수 있다.
3) 첨가제
첨가제는 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하는 중합체를 포함한다.
상기 첨가제는 열가소성 수지 조성물의 경도, 표면 광택, 내스크래치성, 외관 품질 및 내후성을 개선시킬 수 있다.
상기 중합체는 중량평균분자량이 150,000 내지 250,000 g/mol, 170,000 내지 230,000 g/mol 또는 190,000 내지 210,000 g/mol일 수 있고, 이 190,000 내지 210,000 g/mol이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 가공 시 중합체로부터 유래된 가스가 발생하지 않고, 중합체가 분해되지 않을 수 있다. 또한, 열가소성 수지 조성물의 경도, 내후성, 표면 광택, 내스크래치성 및 외관 품질을 현저하게 개선시킬 수 있다.
상기 중합체는 폴리(메틸 메타크릴레이트)일 수 있다.
상기 중합체는 투명도 및 가공성을 개선시키기 위하여, C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 2종 이상 포함하는 공중합체일 수 있고, 바람직하게는 C1 내지 C3의 알킬 메타크릴레이트계 단량체 단위 및 C1 내지 C3의 알킬 아크릴레이트계 단량체 단위를 포함하는 공중합체일 수 있다. 상기 공중합체는 C1 내지 C3의 알킬 메타크릴레이트계 단량체 및 C1 내지 C3의 알킬 아크릴레이트계 단량체를 포함하는 단량체 혼합물의 공중합물일 수 있다. 이 때, 상기 단량체 혼합물은 C1 내지 C3의 알킬 메타크릴레이트계 단량체 및 C1 내지 C3의 알킬 아크릴레이트계 단량체를 80:20 내지 99:1 또는 85:15 내지 95:5의 중량비로 포함할 수 있고, 이 중, 85:15 내지 95:5의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 가공성, 표면 광택, 경도, 인장강도의 밸런스가 우수해질 수 있다.
상기 공중합체는 메틸 메타크릴레이트 및 메틸 아크릴레이트의 공중합물일 수 있다.
상기 중합체는 상기 열가소성 수지 조성물의 총 중량에 대하여, 5 내지 50 중량%, 또는 10 내지 45 중량%로 포함될 수 있고, 이 중 10 내지 45 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 경도, 내후성, 표면 광택, 내스크래치성 및 외관 품질이 현저하게 개선될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1
<시드의 제조>
질소 치환된 반응기에 부틸 아크릴레이트 10 중량부, 개시제로 과황산칼륨 0.04 중량부, 유화제로 디-2-에틸헥실 설폭숙시네이트 나트륨염 2 중량부, 가교제로 에틸렌글리콜 디메타크릴레이트 0.02 중량부, 그라프팅제로 알릴 메타크릴레이트 0.04 중량부, 전해질로 NaHCO3 0.1 중량부 및 증류수 40 중량부를 일괄 투입하고, 65 ℃로 승온시킨 후, 1 시간 동안 중합한 후, 종료하여 시드인 부틸 아크릴레이트 고무질 중합체(평균입경: 52.5 ㎚)를 수득하였다.
<코어의 제조>
상기 시드가 수득된 반응기에 부틸 아크릴레이트 30 중량부, 유화제로 디-2-에틸헥실 설폭숙시네이트 나트륨염 0.5 중량부, 가교제로 에틸렌 글리콜 디메타크릴레이트 0.2 중량부, 그라프팅제로 알릴 메타크릴레이트 0.2 중량부, 전해질로 NaHCO3 0.1 중량부 및 증류수 20 중량부를 포함하는 혼합물과, 개시제인 과황산칼륨 0.06 중량부 각각을 70 ℃에서 3 시간 동안 일정한 속도로 연속 투입하면서 중합하고, 연속 투입이 완료된 후 1 시간 동안 더 중합한 후, 종료하여 코어인 부틸 아크릴레이트 고무질 중합체(평균입경: 68.5 ㎚)를 수득하였다.
<그라프트 공중합체의 제조>
상기 코어가 수득된 반응기에 스티렌 40 중량부, 아크릴로니트릴 20 중량부, 유화제로 로진산칼륨염 1.4 중량부, 전해질로 KOH 0.042 중량부, 분자량 조절제로 t-도데실 머캅탄 0.05 중량부, 및 증류수 63 중량부를 포함하는 혼합물과 개시제로 과황산칼륨 0.1 중량부 각각을 70 ℃에서 5 시간 동안 일정한 속도로 연속 투입하면서 중합하고, 연속 투입이 완료된 후, 70 ℃에서 1 시간 동안 더 중합한 후, 60 ℃까지 냉각시켜 중합을 종료하고 그라프트 공중합체 라텍스(평균입경: 95.0 ㎚)를 수득하였다. 여기서 그라프트 공중합체 라텍스의 중합전환율은 98 %이었으며, pH는 9.5, 그라프트율은 42 %이었다.
상기 그라프트 공중합체 라텍스에 염화칼슘 수용액 (농도: 10 중량%) 2 중량부를 투입하고 85 ℃에서 상압 응집하고, 95 ℃에서 숙성하고, 탈수 및 세척하고, 90 ℃의 열풍으로 30 분 동안 건조한 후 그라프트 공중합체 분말을 제조하였다.
제조예 2
<시드의 제조>
질소 치환된 반응기에 스티렌 7.5 중량부, 아크릴로니트릴 2.5 중량부, 유화제로 디-2-에틸헥실 설폭숙시네이트 나트륨염 0.2 중량부, 가교제로 에틸렌글리콜 디메타크릴레이트 0.04 중량부, 그라프팅제로 알릴 메타크릴레이트 0.04 중량부, 전해질로 NaHCO3 0.2 중량부 및 증류수 40 중량부를 일괄 투입하고, 70 ℃로 승온시킨 후, 과황산칼륨 0.05 중량부를 일괄 투입하여 중합을 개시하였다. 이 후, 70 ℃에서 1 시간 동안 중합한 후, 종료하여 시드인 스티렌-아크릴로니트릴 고무질 중합체(평균입경: 160.0 ㎚)를 수득하였다.
<코어의 제조>
상기 시드가 수득된 반응기에 부틸 아크릴레이트 40 중량부, 유화제로 디-2-에틸헥실 설폭숙시네이트 나트륨염 0.5 중량부, 가교제로 에틸렌 글리콜 디메타크릴레이트 0.2 중량부, 그라프팅제로 알릴 메타크릴레이트 0.2 중량부, 전해질로 NaHCO3 0.1 중량부, 과황산칼륨 0.05 중량부 및 증류수 20 중량부를 포함하는 혼합물을 70 ℃에서 3 시간 동안 일정한 속도로 연속 투입하면서 중합하고, 연속 투입이 완료된 후 1 시간 동안 더 중합한 후, 종료하여 코어인 부틸 아크릴레이트 고무질 중합체(평균입경: 280.0 ㎚)를 수득하였다.
<그라프트 공중합체의 제조>
상기 코어가 수득된 반응기에 스티렌 37.5 중량부, 아크릴로니트릴 12.5 중량부, 개시제로 과황산칼륨 0.1 중량부, 유화제로 로진산 칼륨염 1.5 중량부, 분자량 조절제로 t-도데실 머캅탄 0.05 중량부, 및 증류수 63 중량부를 포함하는 혼합물과, 개시제인 과황산칼륨 0.1 중량부 각각을 70 ℃에서 5 시간 동안 일정한 속도로 연속 투입하면서 중합하고, 연속 투입이 완료된 후, 75 ℃에서 1 시간 동안 더 중합한 후, 60 ℃까지 냉각시켜 중합을 종료하고 그라프트 공중합체 라텍스(평균입경: 350.0 ㎚)를 수득하였다. 여기서 그라프트 공중합체 라텍스의 중합전환율은 98 %이었으며, pH는 9.5, 그라프트율은 38 %이었다.
상기 그라프트 공중합체 라텍스에 염화칼슘 수용액 (농도: 10 중량%) 2 중량부를 투입하고 85 ℃에서 상압 응집하고, 95 ℃에서 숙성하고, 탈수 및 세척하고, 90 ℃의 열풍으로 30 분 동안 건조한 후 그라프트 공중합체 분말을 제조하였다.
제조예 3
디나트륨 에틸렌디아민 테트라아세테이트 0.015 중량부, 포름알데히드 나트륨 설폭실레이트 0.02 중량부, 황산제1철 7수염 0.001 중량부 및 증류수 1.165 중량부를 포함하는 활성화제 용액을 제조하였다.
한편, 온도계, 질소 투입기, 냉각기 및 교반기를 장착한 3 리터 4구 반응기에 증류수 100 중량부, 유화제로 나트륨 라우릴 설페이트 수용액(농도: 3 중량%) 4 중량부를 투입하고, 교반하면서, 메틸 메타크릴레이트 9 중량부, 스티렌 15.75 중량부, 아크릴로니트릴 5.25 중량부, 분자량 조절제로 t-도데실 머캅탄 0.01 중량부를 투입하였다. 이어서, 질소를 연속적으로 투입하면서 60 ℃까지 승온시켰다.
반응기 내 온도를 60 ℃로 유지하면서 개시제로 과황산칼륨 수용액(농도: 3 중량%) 0.3 중량부, 활성화제 용액 5 중량부를 일괄 투입하고, 2 시간 동안 중합한 후, 공중합체 라텍스를 수득하였다.
한편, 증류수 50 중량부, 나트륨 라우릴 설페이트 수용액(농도: 3 중량) 5 중량부, 메틸 메타크릴레이트 21 중량부, 스티렌 36.75 중량부, 아크릴로니트릴 12.25 중량부를 혼합하고, 안정화시켜 프리에멀젼을 제조하였다.
상기 반응기를 65 ℃로 승온시킨 후, 상기 프리에멀젼, 개시제로 과황산칼륨 수용액(농도: 3 중량%) 0.1 중량부, 활성화제 용액 5 중량부를 일괄 투입하고, 2 시간 동안 중합하여 중합체 라텍스를 제조하였다. 이때, 중합체 라텍스의 중합전환율은 99%이고, 평균입경은 150.0 ㎚, 중량평균분자량은 80,000 g/mol이었다.
상기 중합체 라텍스를 상온에서 서서히 냉각한 후, - 15 ℃에서 8 시간 동안 냉각하였다. 냉각된 공중합체 라텍스를 상온에서 녹이면 2 상으로 분리되는 데, 바닥으로 가라앉은 부분을 수거하였다. 수거된 부분을 증류수로 세척하고, 진공 오븐에서 24 시간 건조시켜 수분과 미반응 단량체를 제거한 후 희고 미세한 형태의 입자를 수득하였다.
제조예 4
디나트륨 에틸렌디아민 테트라아세테이트 0.015 중량부, 포름알데히드 나트륨 설폭실레이트 0.02 중량부, 황산제1철 7수염 0.001 중량부 및 증류수 1.165 중량부를 포함하는 활성화제 용액을 제조하였다.
한편, 온도계, 질소 투입기, 냉각기 및 교반기를 장착한 3 리터 4구 반응기에 증류수 100 중량부, 유화제로 나트륨 라우릴 설페이트 수용액(농도: 3 중량%) 4 중량부를 투입하고, 교반하면서, 메틸 메타크릴레이트 21 중량부, 스티렌 6.75 중량부, 아크릴로니트릴 2.25 중량부, 분자량 조절제로 t-도데실 머캅탄 0.01 중량부를 투입하였다. 이어서, 질소를 연속적으로 투입하면서 60 ℃까지 승온시켰다.
반응기 내 온도를 60 ℃로 유지하면서 개시제로 과황산칼륨 수용액(농도: 3 중량%) 0.3 중량부, 활성화제 용액 5 중량부를 일괄 투입하고, 2 시간 동안 중합한 후, 공중합체 라텍스를 수득하였다.
한편, 증류수 50 중량부, 나트륨 라우릴 설페이트 수용액(농도: 3 중량) 5 중량부, 메틸 메타크릴레이트 49 중량부, 스티렌 15.75 중량부, 아크릴로니트릴 5.25 중량부를 혼합하고, 안정화시켜 프리에멀젼을 제조하였다.
상기 반응기를 65 ℃로 승온시킨 후, 상기 프리에멀젼, 개시제로 과황산칼륨 수용액(농도: 3 중량%) 0.1 중량부, 활성화제 용액 5 중량부를 일괄 투입하고, 2 시간 동안 중합하여 중합체 라텍스를 제조하였다. 이때, 중합체 라텍스의 중합전환율은 99%이고, 평균입경은 150.0 ㎚, 중량평균분자량은 80,000 g/mol이었다.
상기 중합체 라텍스를 상온에서 서서히 냉각한 후, - 15 ℃에서 8 시간 동안 냉각하였다. 냉각된 공중합체 라텍스를 상온에서 녹이면 2 상으로 분리되는 데, 바닥으로 가라앉은 부분을 수거하였다. 수거된 부분을 증류수로 세척하고, 진공 오븐에서 24 시간 건조시켜 수분과 미반응 단량체를 제거한 후 희고 미세한 형태의 입자를 수득하였다.
제조예 5
디나트륨 에틸렌디아민 테트라아세테이트 0.015 중량부, 포름알데히드 나트륨 설폭실레이트 0.02 중량부, 황산제1철 7수염 0.001 중량부 및 증류수 1.165 중량부를 포함하는 활성화제 용액을 제조하였다.
한편, 온도계, 질소 투입기, 냉각기 및 교반기를 장착한 3 리터 4구 반응기에 증류수 100 중량부, 유화제로 나트륨 라우릴 설페이트 수용액(농도: 3 중량%) 4 중량부를 투입하고, 교반하면서, 메틸 메타크릴레이트 4.5 중량부, 스티렌 19.12 중량부, 아크릴로니트릴 6.38 중량부, 분자량 조절제로 t-도데실 머캅탄 0.01 중량부를 투입하였다. 이어서, 질소를 연속적으로 투입하면서 60 ℃까지 승온시켰다.
반응기 내 온도를 60 ℃로 유지하면서 개시제로 과황산칼륨 수용액(농도: 3 중량%) 0.3 중량부, 활성화제 용액 5 중량부를 일괄 투입하고, 2 시간 동안 중합한 후, 공중합체 라텍스를 수득하였다.
한편, 증류수 50 중량부, 나트륨 라우릴 설페이트 수용액(농도: 3 중량) 5 중량부, 메틸 메타크릴레이트 10.5 중량부, 스티렌 44.63 중량부, 아크릴로니트릴 14.87 중량부를 혼합하고, 안정화시켜 프리에멀젼을 제조하였다.
상기 반응기를 65 ℃로 승온시킨 후, 상기 프리에멀젼, 개시제로 과황산칼륨 수용액(농도: 3 중량%) 0.1 중량부, 활성화제 용액 5 중량부를 일괄 투입하고, 2 시간 동안 중합하여 중합체 라텍스를 제조하였다. 이때, 중합체 라텍스의 중합전환율은 99%이고, 평균입경은 150.0 ㎚, 중량평균분자량은 80,000 g/mol이었다.
상기 중합체 라텍스를 상온에서 서서히 냉각한 후, - 15 ℃에서 8 시간 동안 냉각하였다. 냉각된 공중합체 라텍스를 상온에서 녹이면 2 상으로 분리되는 데, 바닥으로 가라앉은 부분을 수거하였다. 수거된 부분을 증류수로 세척하고, 진공 오븐에서 24 시간 건조시켜 수분과 미반응 단량체를 제거한 후 희고 미세한 형태의 입자를 수득하였다.
제조예 6
디나트륨 에틸렌디아민 테트라아세테이트 0.015 중량부, 포름알데히드 나트륨 설폭실레이트 0.02 중량부, 황산제1철 7수염 0.001 중량부 및 증류수 1.165 중량부를 포함하는 활성화제 용액을 제조하였다.
한편, 온도계, 질소 투입기, 냉각기 및 교반기를 장착한 3 리터 4구 반응기에 증류수 100 중량부, 유화제로 나트륨 라우릴 설페이트 수용액(농도: 3 중량%) 4 중량부를 투입하고, 교반하면서, 메틸 메타크릴레이트 25.5 중량부, 스티렌 3.38 중량부, 아크릴로니트릴 1.12 중량부, 분자량 조절제로 t-도데실 머캅탄 0.01 중량부를 투입하였다. 이어서, 질소를 연속적으로 투입하면서 60 ℃까지 승온시켰다.
반응기 내 온도를 60 ℃로 유지하면서 개시제로 과황산칼륨 수용액(농도: 3 중량%) 0.3 중량부, 활성화제 용액 5 중량부를 일괄 투입하고, 2 시간 동안 중합한 후, 공중합체 라텍스를 수득하였다.
한편, 증류수 50 중량부, 나트륨 라우릴 설페이트 수용액(농도: 3 중량) 5 중량부, 메틸 메타크릴레이트 59.5 중량부, 스티렌 7.88 중량부, 아크릴로니트릴 2.62 중량부를 혼합하고, 안정화시켜 프리에멀젼을 제조하였다.
상기 반응기를 65 ℃로 승온시킨 후, 상기 프리에멀젼, 개시제로 과황산칼륨 수용액(농도: 3 중량%) 0.1 중량부, 활성화제 용액 5 중량부를 일괄 투입하고, 2 시간 동안 중합하여 중합체 라텍스를 제조하였다. 이때, 중합체 라텍스의 중합전환율은 99%이고, 평균입경은 150.0 ㎚, 중량평균분자량은 80,000 g/mol이었다.
상기 중합체 라텍스를 상온에서 서서히 냉각한 후, - 15 ℃에서 8 시간 동안 냉각하였다. 냉각된 공중합체 라텍스를 상온에서 녹이면 2 상으로 분리되는 데, 바닥으로 가라앉은 부분을 수거하였다. 수거된 부분을 증류수로 세척하고, 진공 오븐에서 24 시간 건조시켜 수분과 미반응 단량체를 제거한 후 희고 미세한 형태의 입자를 수득하였다.
제조예 7
질소 치환된 26 ℓ의 제1 반응기에 톨루엔 25 중량부, 스티렌 75 중량부, 아크릴로니트릴 25 중량부, 개시제로 1,1-비스(t-부틸퍼옥시)-3,3,5-트리메틸 사이클로헥산 0.02 중량부, 분자량 조절제로 n-도데실 머캅탄 0.08 중량부를 포함하는 중합 용액을 14 ℓ/시의 속도로 1 시간 동안 연속 투입하면서, 140 ℃에서 중합하여 제1 공중합물을 수득하고, 상기 제1 공중합물을 질소 치환된 26 ℓ의 제2 반응기에 14 ℓ/시의 속도로 1 시간 동안 연속 투입하면서 150 ℃로 중합하여 제2 공중합물을 수득하였다. 이때 중합전환율이 60% 이었다. 수득된 제2 공중합물을 휘발조로 이송하여 215 ℃로 미반응 단량체 및 반응 매질을 제거하고 펠렛 형태의 공중합체(중량평균분자량: 120,000 g/mol)를 제조하였다.
실시예 비교예
하기 실시예 및 비교예에서 사용된 성분의 사양은 다음과 같다.
(A) 그라프트 공중합체
(A-1) 소입경 그라프트 공중합체: 제조예 1의 그라프트 공중합체를 사용하였다.
(A-2) 대입경 그라프트 공중합체: 제조예 2의 그라프트 공중합체를 사용하였다.
(B) 매트릭스 공중합체
(B-1) 제1 매트릭스 공중합체: 제조예 3의 공중합체를 사용하였다.
(B-2) 제2 매트릭스 공중합체: 제조예 4의 공중합체를 사용하였다.
(B-3) 제3 매트릭스 공중합체: 제조예 5의 공중합체를 사용하였다.
(B-4) 제4 매트릭스 공중합체: 제조예 6의 공중합체를 사용하였다.
(B-5) 제5 매트릭스 공중합체: 제조예 7의 공중합체를 사용하였다.
(C) 첨가제: LG MMA 社의 IH830(메틸 메타크릴레이트 및 메틸 아크릴레이트의 공중합물)을 건조한 후 그대로 사용하였다.
상술한 성분을 하기 [표 1] 내지 [표 3]에 기재된 함량대로 혼합하고 교반하여 열가소성 수지 조성물을 제조하였다.
실험예 1
실시예 및 비교예의 열가소성 수지 조성물을 압출 및 사출하여 시편을 제조하였다. 시편의 물성을 하기에 기재된 방법으로 평가하고, 그 결과를 하기 [표 1] 내지 [표 3]에 기재하였다.
① 충격강도(kg·cm/cm): ASTM 256에 의거하여 측정하였다.
② 경도: ASTM 785에 의거하여 측정하였다.
③ 신율(%): ASTM D638에 의거하여 측정하였다.
④ 내후성(△E): 촉진내후성 시험 장치(weather-o-meter, ATLAS사 Ci4000, 크세논 아크 램프, Quartz(inner)/S.Boro(outer) 필터, irradiance 0.55 W/㎡ at 340 nm) 적용 SAE J1960조건으로 2,000 시간 동안 테스트를 진행하였고, 하기 △E 는 촉진 내후성 실험 전후의 산술평균 값이며, 값이 0에 가까울수록 내후성이 우수함을 나타낸다.
Figure PCTKR2019015387-appb-I000001
상기 식에서, L’, a’ 및 b’은 시편에 2,000 시간 동안 SAE J1960 조건으로 광을 조사한 후에 CIE LAB 색 좌표계로 측정한 L, a 및 b 값이고, LO, a0 및 b0는 광 조사 전에 CIE LAB 색 좌표계로 측정한 L, a 및 b 값이다.
실험예 2
실시예 및 비교예의 열가소성 수지 조성물에 검정색 안료인 무일화성 社의 CB5093을 컴파운딩하고, 시트 압출기를 이용하여 폭 10 ㎝, 두께 0.15 ㎜의 시트를 제조하고, 시트의 물성을 하기에 기재된 방법으로 평가하고, 그 결과를 하기 [표 1] 내지 [표 3]에 기재하였다.
⑤ 트리밍성: 수정하이텍 社의 SJ600로 300rpm으로 절단한 후, 절단 면을 육안으로 확인하였다
○: 양호, ×: 불량
실험예 3
실험예 2에서 제조된 시트와 아연도금강판을 접착제를 이용하여 200 ℃에서 접착시켜 시편을 제조하였다. 상기 시편의 물성을 하기에 기재된 방법으로 평가하고, 그 결과를 하기 [표 1] 내지 [표 3]에 기재하였다.
⑥ 백화: Labthink 社의 FDI(Ball Drop 테스트기)을 이용하여1 ㎏의 쇠공을 1 m 높이에서 상기 시편 상에 떨어뜨린 후, 측정하였다.
○: 백화 현상 미발생
×: 백화 현상 발생 또는 시트가 찢어지거나 갈라짐
⑦ 표면 광택: ASTM D523에 의거하여 NIPPON DENSHOKU 社의 VG7000(광택 측정기)를 이용하여 60 °에서 광택을 측정하였다.
⑧ 외관 품질: 시편의 외관을 육안으로 관찰하였다.
○: 전체적으로 광택 차이와 표면 굴곡이 없음
×: 국부적으로 광택 차이가 있고, 표면 굴곡이 있음.
구분 실시예
1 2 3 4 5 6 7 8
(A)그라프트 공중합체(중량부) (A-1) 60 40 80 70 60 40 60 60
(A-2) - - - - - - - -
(B) 매트릭스 공중합체(중량부) (B-1) 15.0 - - - - - - -
(B-2) - 20.0 5.0 10.0 - - - -
(B-3) - - - - 20.0 - 15.0 -
(B-4) - - - - - 30 - 15.0
(C) 첨가제 (중량부) 25 40 15 20 20 30 25 25
충격강도 10.80 7.50 18.30 13.90 7.50 3.50 4.20 4.50
경도 86 101 65 76 85 98 78 85
신율 88 58 156 132 25 17 29 25
내후성 0.60 0.58 0.74 0.61 2.27 0.61 2.96 1.21
트리밍성 × × ×
백화 × × × ×
표면 광택 113 119 91 99 55 105 48 55
외관 품질 × × × ×
(A-1) 소입경 그라프트 공중합체 : 평균입경이 68.5 ㎚인 부틸 아크릴레이트 고무질 중합체에 스티렌 및 아크릴로니트릴이 그라프트된 제조예 1의 그라프트 공중합체 (A-2) 대입경 그라프트 공중합체 : 평균입경이 280.0 ㎚인 부틸 아크릴레이트 고무질 중합체에 스티렌 및 아크릴로니트릴이 그라프트된 제조예 2의 그라프트 공중합체 (B-1) 제1 매트릭스 공중합체 : 메틸 메타크릴레이트 30 중량부, 스티렌 52.5 중량부 및 아크릴로니트릴 17.5 중량부의 공중합물인 제조예 3의 공중합체(중량평균분자량: 80,000 g/mol) (B-2) 제2 매트릭스 공중합체 : 메틸 메타크릴레이트 70 중량부, 스티렌 22.5 중량부 및 아크릴로니트릴 7.5 중량부의 공중합물인 제조예 4의 공중합체(중량평균분자량: 80,000 g/mol) (B-3) 제3 매트릭스 공중합체 : 메틸 메타크릴레이트 15 중량부, 스티렌 63.75 중량부 및 아크릴로니트릴 21.25 중량부의 공중합물인 제조예 5의 공중합체(중량평균분자량: 80,000 g/mol) (B-4) 제4 매트릭스 공중합체 : 메틸 메타크릴레이트 85 중량부, 스티렌 11.26 중량부 및 아크릴로니트릴 3.74 중량부의 공중합물인 제조예 6의 공중합체(중량평균분자량: 80,000 g/mol) (C) 첨가제 : LG MMA 社의 IH830(메틸 메타크릴레이트 및 메틸 아크릴레이트의 공중합물)
구분 비교예
1 2 3 4 5
(A)그라프트 공중합체(중량부) (A-1) - - 30 60 60
(A-2) 60 40 30 - -
(B) 매트릭스 공중합체(중량부) (B-1) - - - - -
(B-2) - 60.0 - - -
(B-5) 40.0 - 40.0 - 15.0
(C) 첨가제 (중량부) - - - 40 25
충격강도 40.30 13.60 30.80 4.40 5.20
경도 90 104 84 85 77
신율 40 25 89 25 26
내후성 12.50 1.27 5.18 0.93 3.26
트리밍성 × × ×
백화 × × × ×
표면 광택 42 67 45 50 44
외관 품질 × × × × ×
(A-1) 소입경 그라프트 공중합체 : 평균입경이 68.5 ㎚인 부틸 아크릴레이트 고무질 중합체에 스티렌 및 아크릴로니트릴이 그라프트된 제조예 1의 그라프트 공중합체 (A-2) 대입경 그라프트 공중합체 : 평균입경이 280.0 ㎚인 부틸 아크릴레이트 고무질 중합체에 스티렌 및 아크릴로니트릴이 그라프트된 제조예 2의 그라프트 공중합체 (B-1) 제1 매트릭스 공중합체 : 메틸 메타크릴레이트 30 중량부, 스티렌 52.5 중량부 및 아크릴로니트릴 17.5 중량부의 공중합물인 제조예 3의 공중합체(중량평균분자량: 80,000 g/mol) (B-2) 제2 매트릭스 공중합체 : 메틸 메타크릴레이트 70 중량부, 스티렌 22.5 중량부 및 아크릴로니트릴 7.5 중량부의 공중합물인 제조예 4의 공중합체(중량평균분자량: 80,000 g/mol) (B-5) 제5 매트릭스 공중합체 : 스티렌 75 중량부 및 아크릴로니트릴 25 중량부의 공중합물인 제조예 7의 공중합체(중량평균분자량: 120,000 g/mol) (C) 첨가제 : LG MMA 社의 IH830(메틸 메타크릴레이트 및 메틸 아크릴레이트의 공중합물)
구분 비교예
6 7 8 9 10
(A)그라프트 공중합체(중량부) (A-1) 40 80 67 - -
(A-2) - - - 60 40
(B) 매트릭스 공중합체(중량부) (B-1) - - 33.0 15.0 -
(B-2) - 20.0 - - 20.0
(B-5) 20.0 - - - -
(C) 첨가제 (중량부) 40 - - 25 40
충격강도 3.10 21.50 7.20 49.60 35.00
경도 84 54 65 87 103
신율 19 142 101 121 81
내후성 2.73 1.82 2.51 1.84 1.25
트리밍성 × × ×
백화 × × × ×
표면 광택 54 72 70 92 96
외관 품질 ×
(A-1) 소입경 그라프트 공중합체 : 평균입경이 68.5 ㎚인 부틸 아크릴레이트 고무질 중합체에 스티렌 및 아크릴로니트릴이 그라프트된 제조예 1의 그라프트 공중합체 (A-2) 대입경 그라프트 공중합체 : 평균입경이 280.0 ㎚인 부틸 아크릴레이트 고무질 중합체에 스티렌 및 아크릴로니트릴이 그라프트된 제조예 2의 그라프트 공중합체 (B-1) 제1 매트릭스 공중합체 : 메틸 메타크릴레이트 30 중량부, 스티렌 52.5 중량부 및 아크릴로니트릴 17.5 중량부의 공중합물인 제조예 3의 공중합체(중량평균분자량: 80,000 g/mol) (B-2) 제2 매트릭스 공중합체 : 메틸 메타크릴레이트 70 중량부, 스티렌 22.5 중량부 및 아크릴로니트릴 7.5 중량부의 공중합물인 제조예 4의 공중합체(중량평균분자량: 80,000 g/mol) (B-5) 제5 매트릭스 공중합체 : 스티렌 75 중량부 및 아크릴로니트릴 25 중량부의 공중합물인 제조예 7의 공중합체(중량평균분자량: 120,000 g/mol) (C) 첨가제 : LG MMA 社의 IH830(메틸 메타크릴레이트 및 메틸 아크릴레이트의 공중합물)
표 1 내지 표 3을 참조하면, 실시예 1 내지 실시예 4의 열가소성 수지 조성물은 소입경 그라프트 공중합체의 함량이 높아질수록, 충격강도, 및 신율이 우수해지는 것을 확인할 수 있었다. 또한, 실시예 2 내지 실시예 4의 열가소성 수지 조성물은 매트릭스 공중합체 및 첨가제의 함량이 높아질수록, 경도, 내후성 및 표면 광택이 우수해지는 것을 확인할 수 있었다.
실시예 1, 실시예 7 및 실시예 8을 비교하면, 메틸 메타크릴레이트 30 중량부로 제조된 매트릭스 공중합체를 포함하는 실시예 1의 열가소성 수지 조성물이, 메틸 메타크릴레이트 15 중량부로 제조된 매트릭스 공중합체를 포함하는 실시예 7의 열가소성 수지 조성물 대비 충격강도, 경도, 신율, 내후성, 트리밍성, 백화, 표면 광택 및 외관 품질이 모두 우수한 것을 확인할 수 있었다. 실시예 1과 실시예 8을 비교하면, 메틸 메타크릴레이트 30 중량부로 제조된 매트릭스 공중합체를 포함하는 실시예 1의 열가소성 수지 조성물이, 메틸 메타크릴레이트 85 중량부로 제조된 매트릭스 공중합체를 포함하는 실시예 7의 열가소성 수지 조성물 대비 충격강도, 신율, 내후성, 트리밍성, 백화, 표면 광택 및 외관 품질이 모두 우수한 것을 확인할 수 있었다. 이러한 결과로부터 메틸 메타크릴레이트를 적정량 포함하는 매트릭스 공중합체를 이용하면, 그라프트 공중합체 및 첨가제와의 상용성이 현저하게 개선되어, 충격강도, 신율, 내후성, 트리밍성, 백화, 표면 광택 및 외관 품질이 개선되는 것을 확인할 수 있었다.
실시예 1과 비교예 4를 비교하면, 매트릭스 공중합체를 포함하는 실시예 1의 열가소성 수지 조성물이, 매트릭스 공중합체를 포함하지 않는 비교예 4의 열가소성 수지 조성물 대비, 충격강도, 신율, 내후성, 트리밍성, 백화, 표면 광택 및 외관 품질이 우수한 것을 확인할 수 있었다.
실시예 1과 비교예 5를 비교하면, 실시예 1의 열가소성 수지 조성물이, 스티렌/아크릴로니트릴 중합체를 매트릭스 공중합체로 포함하는 비교예 5의 열가소성 수지 조성물 대비 충격강도, 경도, 신율, 내후성, 트리밍성, 백화, 표면 광택 및 외관 품질이 현저하게 우수한 것을 확인할 수 있었다. 이러한 결과로부터 메틸 메타크릴레이트를 포함하는 매트릭스 공중합체를 이용하면, 그라프트 공중합체 및 첨가제와의 상용성이 현저하게 개선되어, 충격강도, 신율, 내후성, 트리밍성, 백화, 표면 광택 및 외관 품질이 현저하게 개선되는 것을 확인할 수 있었다.
실시예 1과 비교예 8을 비교하면, 실시예 1의 열가소성 수지 조성물이, 소입경 그라프트 공중합체를 67 중량부로 포함하지만 첨가제를 포함하지 않는 비교예 8 대비 충격강도, 경도, 내후성, 트리밍성, 백화, 표면 광택 및 외관 품질이 현저하게 우수한 것을 확인할 수 있었다. 이러한 결과로부터, 메틸 메타크릴레이트를 포함하는 매트릭스 공중합체를 이용하면, 그라프트 공중합체 및 첨가제와의 상용성이 현저하게 개선되어, 그라프트 공중합체를 소량으로 포함하여도 충격강도, 트리밍성, 백화, 표면 광택이 개선되는 것을 확인할 수 있었다.
실시예 1과 비교예 9를 비교하면, 소입경 그라프트 공중합체를 포함하는 실시예 1의 열가소성 수지 조성물이, 대입경 그라프트 공중합체를 포함하는 비교예 9의 열가소성 수지 조성물 대비 충격강도는 저하되지만, 내후성, 백화 및 표면 광택이 현저하게 우수한 것을 확인할 수 있었다.
실시예 2와 실시예 6을 비교하면, 메틸 메타크릴레이트 70 중량부로 제조된 매트릭스 공중합체를 포함하는 실시예 2의 열가소성 수지 조성물이, 메틸 메타크릴레이트 85 중량부로 제조된 매트릭스 공중합체를 포함하는 실시예 6의 열가소성 수지 조성물 대비 충격강도, 신율, 트리밍성, 백화, 표면 광택 및 외관 품질이 우수한 것을 확인할 수 있었다.
실시예 2와 비교예 6을 비교하면, 실시예 2의 열가소성 수지 조성물이, 스티렌/아크릴로니트릴 중합체를 매트릭스 공중합체로 포함하는 비교예 6의 열가소성 수지 조성물 대비 충격강도, 경도, 신율, 내후성, 트리밍성, 백화, 표면 광택 및 외관 품질이 우수한 것을 확인할 수 있었다.
실시예 2와 비교예 10을 비교하면, 소입경 그라프트 공중합체를 포함하는 실시예 2의 열가소성 수지 조성물이, 대입경 그라프트 공중합체를 포함하는 비교예 10의 열가소성 수지 조성물 대비 충격강도 및 신율은 저하되지만, 내후성, 백화, 표면 광택이 현저하게 우수한 것을 확인할 수 있었다.
실시예 3과 비교예 7을 비교하면, 실시예 2의 열가소성 수지 조성물이, 매트릭스 공중합체를 포함하지 않는 비교예 7의 열가소성 수지 조성물 대비 충격강도, 신율, 내후성, 트리밍성, 백화, 표면 광택 및 외관 품질이 모두 우수한 것을 확인할 수 있었다.
실시예 5와 실시예 7을 비교하면, 매트릭스 공중합체를 20 중량부로 포함하는 실시예 5의 열가소성 수지 조성물이, 매트릭스 공중합체를 15 중량부로 포함하는 실시예 7의 열가소성 수지 조성물 대비 충격강도, 내후성, 트리밍성 및 표면 광택이 다소 개선되는 것을 확인할 수 있었다.
또한, 실시예 5와 비교예 4를 비교하면, 실시예 5의 열가소성 수지 조성물이, 매트릭스 공중합체를 포함하지 않는 비교예 4의 열가소성 수지 조성물 대비 충격강도 및 트리밍성이 우수한 것을 확인할 수 있었다.
비교예 1과 비교예 2를 비교하면, 대입경 그라프트 공중합체를 과량으로 포함하는 비교예 1의 열가소성 수지 조성물이, 비교예 2의 열가소성 수지 조성물 대비 충격강도, 신율, 트리밍성은 우수하였으나, 내후성 및 표면 광택은 저하되는 것을 확인할 수 있었다.
또한, 비교예 1과 비교예 3을 비교하면, 소입경 그라프트 공중합체를 더 포함하는 비교예 3의 열가소성 수지 조성물이, 비교예 3의 열가소성 수지 조성물 대비, 신율, 내후성, 백화, 표면 광택은 우수하였으나, 둘 다 전반적인 물성은 우수하지 못하였다.

Claims (8)

  1. 평균입경이 50.0 내지 90.0 ㎚인 아크릴계 고무질 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체를 그라프트 중합한 그라프트 공중합체;
    C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체; 및
    C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 포함하는 중합체를 포함하는 첨가제를 포함하는 열가소성 수지 조성물.
  2. 청구항 1에 있어서,
    상기 아크릴계 고무질 중합체는 평균입경이 65.0 내지 75.0 ㎚인 것인 열가소성 수지 조성물.
  3. 청구항 1에 있어서,
    상기 매트릭스 공중합체는 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 포함하는 단량체 혼합물의 공중합물인 것인 열가소성 수지 조성물.
  4. 청구항 3에 있어서,
    상기 단량체 혼합물은
    상기 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 25 내지 75 중량%;
    상기 방향족 비닐계 단량체 15 내지 60 중량%; 및
    상기 비닐 시안계 단량체 1 내지 20 중량%를 포함하는 것인 열가소성 수지 조성물.
  5. 청구항 3에 있어서,
    상기 매트릭스 공중합체는 메틸 메타크릴레이트, 스티렌 및 아크릴로니트릴의 공중합물인 것인 열가소성 수지 조성물.
  6. 청구항 1에 있어서,
    상기 매트릭스 공중합체는 중량평균분자량이 50,000 내지 200,000 g/mol인 것인 열가소성 수지 조성물.
  7. 청구항 1에 있어서,
    상기 중합체는 C1 내지 C3의 알킬 (메트)아크릴레이트계 단량체 단위를 2종 이상 포함하는 공중합체인 것인 열가소성 수지 조성물.
  8. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은
    상기 열가소성 수지 조성물의 총 중량에 대하여,
    상기 그라프트 공중합체 30 내지 80 중량%;
    상기 매트릭스 공중합체 0.1 내지 30.0 중량%; 및
    상기 첨가제 5 내지 50 중량%를 포함하는 것인 열가소성 수지 조성물.
PCT/KR2019/015387 2018-11-13 2019-11-13 열가소성 수지 조성물 WO2020101332A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020564180A JP7123471B2 (ja) 2018-11-13 2019-11-13 熱可塑性樹脂組成物
EP19884117.3A EP3778763B1 (en) 2018-11-13 2019-11-13 Thermoplastic resin composition
CN201980032141.2A CN112119121B (zh) 2018-11-13 2019-11-13 热塑性树脂组合物
US17/055,493 US11499046B2 (en) 2018-11-13 2019-11-13 Thermoplastic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180139152 2018-11-13
KR10-2018-0139152 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020101332A1 true WO2020101332A1 (ko) 2020-05-22

Family

ID=70731644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015387 WO2020101332A1 (ko) 2018-11-13 2019-11-13 열가소성 수지 조성물

Country Status (7)

Country Link
US (1) US11499046B2 (ko)
EP (1) EP3778763B1 (ko)
JP (1) JP7123471B2 (ko)
KR (1) KR102298297B1 (ko)
CN (1) CN112119121B (ko)
TW (1) TWI813809B (ko)
WO (1) WO2020101332A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115244129A (zh) * 2021-01-22 2022-10-25 株式会社Lg化学 热塑性树脂组合物、其制备方法以及包含其的成型品
EP4006102A4 (en) * 2020-07-07 2022-11-09 LG Chem, Ltd. THERMOPLASTIC RESIN AND METHOD FOR PREPARING IT

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641530B (zh) * 2020-08-11 2024-04-19 株式会社Lg化学 透明热塑性树脂及其制备方法
CN117999314A (zh) 2021-09-14 2024-05-07 英力士苯领集团股份公司 透光率增加的asa-共聚物组合物及其制备方法
CN116348550A (zh) * 2021-10-22 2023-06-27 株式会社Lg化学 热塑性树脂组合物、其制备方法和使用其制造的成型制品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120072972A (ko) * 2010-12-24 2012-07-04 제일모직주식회사 아크릴계 수지 조성물 및 이를 이용한 성형품
KR20140005510A (ko) * 2012-07-04 2014-01-15 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
KR20180075743A (ko) * 2016-12-26 2018-07-05 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하여 제조되는 성형품
KR20190052798A (ko) * 2017-11-09 2019-05-17 주식회사 엘지화학 열가소성 수지 조성물
KR20190064989A (ko) * 2017-12-01 2019-06-11 주식회사 엘지화학 열가소성 수지 조성물 및 이를 이용한 열가소성 수지 성형품

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100602848B1 (ko) 2003-12-24 2006-07-19 제일모직주식회사 착색성이 향상된 내후성 열가소성 수지조성물
JP2007302742A (ja) 2006-05-09 2007-11-22 Kaneka Corp 熱可塑性樹脂組成物
KR101396697B1 (ko) 2010-11-12 2014-05-16 주식회사 엘지화학 저광택 열가소성 수지 조성물
KR20120078583A (ko) * 2010-12-31 2012-07-10 제일모직주식회사 저온에서의 백탁 현상이 개선된 열가소성 수지 조성물
WO2013100448A1 (ko) 2011-12-30 2013-07-04 제일모직주식회사 내충격성, 내후성, 및 착색성이 우수한 asa 그라프트 공중합체 및 그 제조방법
KR101654722B1 (ko) 2012-12-28 2016-09-13 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 포함한 성형품
KR102072433B1 (ko) * 2016-01-29 2020-02-03 주식회사 엘지화학 열가소성 수지 조성물
KR102465681B1 (ko) * 2019-09-06 2022-11-11 주식회사 엘지화학 열가소성 수지 조성물 및 이의 성형품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120072972A (ko) * 2010-12-24 2012-07-04 제일모직주식회사 아크릴계 수지 조성물 및 이를 이용한 성형품
KR20140005510A (ko) * 2012-07-04 2014-01-15 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
KR20180075743A (ko) * 2016-12-26 2018-07-05 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하여 제조되는 성형품
KR20190052798A (ko) * 2017-11-09 2019-05-17 주식회사 엘지화학 열가소성 수지 조성물
KR20190064989A (ko) * 2017-12-01 2019-06-11 주식회사 엘지화학 열가소성 수지 조성물 및 이를 이용한 열가소성 수지 성형품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778763A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4006102A4 (en) * 2020-07-07 2022-11-09 LG Chem, Ltd. THERMOPLASTIC RESIN AND METHOD FOR PREPARING IT
CN115244129A (zh) * 2021-01-22 2022-10-25 株式会社Lg化学 热塑性树脂组合物、其制备方法以及包含其的成型品
CN115244129B (zh) * 2021-01-22 2024-03-29 株式会社Lg化学 热塑性树脂组合物、其制备方法以及包含其的成型品

Also Published As

Publication number Publication date
KR102298297B1 (ko) 2021-09-07
CN112119121B (zh) 2023-05-23
JP7123471B2 (ja) 2022-08-23
CN112119121A (zh) 2020-12-22
EP3778763A1 (en) 2021-02-17
US11499046B2 (en) 2022-11-15
JP2021523283A (ja) 2021-09-02
EP3778763A4 (en) 2021-08-11
TWI813809B (zh) 2023-09-01
US20210108070A1 (en) 2021-04-15
EP3778763B1 (en) 2023-12-27
KR20200055675A (ko) 2020-05-21
TW202035555A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2020101332A1 (ko) 열가소성 수지 조성물
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2014035055A1 (ko) 아크릴로니트릴-아크릴레이트-스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2015026153A1 (ko) 아크릴레이트-스티렌-아크릴로니트릴 중합체 및 열가소성 수지 조성물
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2017082649A1 (ko) 저광 특성, 내후성 및 기계적 물성이 우수한 열가소성 수지 조성물 및 이로부터 제조되는 압출 물품
WO2020032505A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 이를 포함하는 열가소성 수지 성형품
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2019093703A1 (ko) 열가소성 수지 조성물
WO2022097867A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020101326A1 (ko) 열가소성 수지 조성물
WO2020080735A1 (ko) 그라프트 공중합체 분말의 제조방법
WO2020050544A1 (ko) 그라프트 공중합체의 제조방법 및 그라프트 공중합체
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022035071A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2021066345A1 (ko) 아크릴계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020091336A1 (ko) 열가소성 수지 조성물
WO2021015485A1 (ko) 아크릴계 공중합체 응집제 및 이를 이용한 그라프트 공중합체의 제조방법
WO2022085899A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020050639A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019884117

Country of ref document: EP

Effective date: 20201105

Ref document number: 2020564180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE