WO2019112239A1 - 열가소성 수지 조성물 - Google Patents

열가소성 수지 조성물 Download PDF

Info

Publication number
WO2019112239A1
WO2019112239A1 PCT/KR2018/014904 KR2018014904W WO2019112239A1 WO 2019112239 A1 WO2019112239 A1 WO 2019112239A1 KR 2018014904 W KR2018014904 W KR 2018014904W WO 2019112239 A1 WO2019112239 A1 WO 2019112239A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
weight
unit
thermoplastic resin
resin composition
Prior art date
Application number
PCT/KR2018/014904
Other languages
English (en)
French (fr)
Inventor
김태훈
김성룡
권경재
조준휘
정규성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180149687A external-priority patent/KR102225311B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880076166.8A priority Critical patent/CN111386309B/zh
Priority to US16/765,777 priority patent/US11359086B2/en
Priority to EP18887076.0A priority patent/EP3705524B1/en
Priority to JP2020527868A priority patent/JP7039104B2/ja
Publication of WO2019112239A1 publication Critical patent/WO2019112239A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a thermoplastic resin composition, and more particularly, to a thermoplastic resin composition having excellent impact resistance, injection surface characteristics, metal vapor deposition properties, and metal adhesion properties.
  • ABS resin Acrylonitrile-butadiene-styrene resin
  • ABS resin is widely used for construction materials, interior and exterior materials for vehicles such as automobiles and motorcycles, and electric and electronic products because of excellent workability, impact resistance and chemical resistance.
  • the ABS resin When the ABS resin is used for an automobile exterior material, particularly a rear lamp housing (tail lamp or rear combination lamp) or a rear garnish, it is subjected to painting and aluminum deposition processes.
  • the pre-deposition painting process causes environmental pollution and cost increase .
  • the light reflectance of the deposition surface should be excellent after aluminum deposition, and the material should not be deformed due to heat generated when the product is used.
  • ASA-based resin Styrene-acrylonitrile-based resin
  • ASA-based resin Styrene-acrylonitrile-based resin
  • Based resin has an excellent weather resistance as compared with an ABS-based resin, but has a disadvantage in that the appearance characteristics are low.
  • the materials to be applied to the exterior of automobiles and motorcycles should have excellent appearance after molding and good mechanical properties (especially room temperature and low temperature impact strength, stiffness) It should have excellent weatherability. In addition, it has excellent moldability and should serve as an exterior material. Particularly, lamp housings among automotive exterior materials should have excellent impact resistance and molding processability.
  • ABS resin is a ternary copolymer of butadiene, styrene, and acrylonitrile. It has excellent impact resistance and rigidity, and has excellent mechanical properties, excellent moldability, , Electronic housings, automotive interiors and lamp housing materials.
  • mechanical properties depending on the composition and the production method of the raw material, and basically, it has a rubber component having an unsaturated bond, and is vulnerable to oxygen, ozone, heat or light (ultraviolet rays) in the air. Therefore, it is somewhat deteriorated in applicability as a material for exterior use, and it is disadvantageous in that it must be painted for application to exterior materials.
  • ABS acrylonitrile-butadiene-styrene
  • a base coating is applied to the surface of an acrylonitrile-butadiene-styrene (ABS)
  • Aluminum is deposited, and a second coating is applied to protect the aluminum film.
  • the painting may cause defective coating, and environmental burden due to the use of excessive solvent, toxicity and scattering of the solvent, and the like cause workers to be avoided as well as problems such as a decrease in productivity and an increase in cost due to the occurrence of additional processing.
  • ABS acrylonitrile-butadiene-styrene
  • the acrylate-styrene-acrylonitrile (ASA) resin is an acrylonitrile-butadiene-styrene (ABS) resin which is obtained by using an acrylate-based rubber component having no unsaturated bond instead of a butadiene rubber which is a rubber component having an unsaturated bond has excellent mechanical properties and molding processability, and has been remarkably improved in weather resistance, which is a greatest defect, and is widely applied to outdoor applications using painted products or metal materials.
  • ASA resin has excellent weather resistance without being subjected to post-processing such as painting, so that it has a merit of less discoloration and less deterioration of mechanical properties even when exposed to long-term light.
  • the acrylate-based rubber-like polymer having no unsaturated bond has a disadvantage in that the impact strength reinforcing effect is lower than that of the butadiene-based rubber-like polymer and the impact strength reinforcing effect is low at a low temperature. Further, there is a problem that the gloss is lower than that of acrylonitrile-butadiene-styrene (ABS) resin.
  • ABS acrylonitrile-butadiene-styrene
  • ABS acrylonitrile-butadiene-styrene
  • An object of the present invention is to provide a thermoplastic resin composition capable of imparting excellent surface characteristics and metal vapor deposition properties to a molded article and capable of imparting excellent metal adhesion to a molded article on which a metal is deposited even when heat-sealed.
  • the present invention relates to a first copolymer comprising an alkyl acrylate rubber-like polymer, an aromatic vinyl unit and a vinyl cyan unit; A second copolymer comprising an alkyl acrylate rubbery polymer, an aromatic vinyl unit and a vinyl cyan unit; A third copolymer comprising an aromatic vinyl unit and a vinyl cyan unit; A fourth copolymer comprising an aromatic vinyl unit and a vinyl cyan unit; And a fifth copolymer comprising a maleimide-based unit, an aromatic vinyl-based unit and a vinyl cyanide unit, wherein the first and second copolymers have different average particle diameters of the alkyl acrylate-based rubber- 3 and the fourth copolymer have different weight average molecular weights.
  • thermoplastic resin composition according to the present invention can impart excellent surface properties and metal vapor deposition properties to a molded article and can impart excellent metal adhesion to a molded article on which a metal is deposited even when heat-sealed.
  • the average particle size of the alkyl acrylate-based rubbery polymer and the graft copolymer can be measured using a dynamic light scattering method. Specifically, the average particle size can be measured using Nicomp 380 HPL equipment (product name: Nicomp) .
  • the average particle size may mean an arithmetic average particle size in a particle size distribution measured by a dynamic light scattering method, specifically, an average particle size of a scattering intensity.
  • the weight average molecular weight can be measured relative to a standard polystyrene (PS) sample through gel permeation chromatography (waters breeze) using THF (tetrahydrofuran) as an eluent.
  • PS polystyrene
  • THF tetrahydrofuran
  • the weight average molecular weight of the shell of the first or second copolymer is determined by dissolving the first or second copolymer in acetone and centrifuging, dissolving the sol dissolved in acetone in tetrahydrofuran , And relative permeability to standard PS (standard polystyrene) samples using gel permeation chromatography (GPC, waters breeze).
  • PS standard polystyrene
  • the glass transition temperature can be measured according to ASTM D3418.
  • the alkyl acrylate-based rubbery polymer is prepared by polymerizing, specifically cross-linking, an alkyl acrylate monomer to produce a seed, and in the presence of the seed, the alkyl acrylate monomer is polymerized, specifically crosslinked .
  • the alkyl acrylate monomer may be a C 1 to C 10 alkyl acrylate, the C 1 to C 10 alkyl acrylate is a group consisting of methyl acrylate, ethyl acrylate, butyl acrylate and ethyl hexyl acrylate . Of these, butyl acrylate is preferable.
  • the aromatic vinyl-based monomer unit refers to a unit derived from an aromatic vinyl-based monomer
  • the aromatic vinyl-based monomer is one or more kinds selected from the group consisting of styrene,? -Methylstyrene,? -Ethylstyrene, Or more, and styrene is preferable.
  • the vinyl cyanide unit means a unit derived from a vinyl cyan monomer
  • the vinyl cyan monomer is a unit derived from a group consisting of acrylonitrile, methacrylonitrile, phenyl acrylonitrile and? -Chloroacrylonitrile And may be at least one selected from the group consisting of acrylonitrile and acrylonitrile.
  • the maleimide-based unit is a unit derived from maleimide-based monomer
  • the maleimide-based monomer is a unit derived from maleimide, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, Butyl maleimide, N-butyl maleimide, N-lauryl maleimide, N-cyclohexyl maleimide, N-phenyl maleimide, N- (4-chlorophenyl) N-phenylmaleimide, N- (4-bromophenyl) maleimide, N- (4- Methoxyphenyl) maleimide, N- (4-carboxyphenyl) maleimide, and N-benzylmaleimide, among which N-phenylmaleimide is preferable.
  • a fifth copolymer comprising a maleimide-based unit, an aromatic vinyl-based unit and a vinyl cyanide unit, wherein the first and second copolymers differ in the average particle diameters of the alkyl acrylate-based rubbery polymers,
  • the third and fourth copolymers have different weight average molecular weights.
  • thermoplastic resin composition includes the first and second copolymers in which the alkyl acrylate rubber-like polymer has different average particle diameters, the weatherability, impact resistance, surface characteristics, metal vapor deposition property, All excellent thermoplastic resin compositions can be produced. If the thermoplastic resin composition contains only one kind of graft copolymer having the same average particle diameter, it can not provide a thermoplastic resin composition having excellent impact resistance, surface characteristics, metal vapor deposition property and metal adhesion property. Specifically, if the first copolymer containing an alkyl acrylate-based rubbery polymer is not included, the impact resistance of the thermoplastic resin composition may be remarkably lowered.
  • thermoplastic resin composition does not contain a second copolymer containing an alkyl acrylate-based rubbery polymer having a small average particle diameter, the surface properties, the metal vapor deposition property and the metal adhesion property may be remarkably lowered.
  • thermoplastic resin composition includes the third and fourth copolymers having different weight average molecular weights, a thermoplastic resin composition having excellent injection surface characteristics, metal vapor deposition properties, and metal adhesion properties can be produced . If the thermoplastic resin composition contains only a matrix copolymer having the same weight average molecular weight, it is impossible to produce a thermoplastic resin composition which is excellent in all of the injection surface characteristics, metal fusing and metal adhesion. Specifically, if the thermoplastic resin composition does not contain a third copolymer having a low weight average molecular weight, surface properties and metal vapor deposition properties may be significantly lowered. Also, if the thermoplastic resin composition does not contain a fourth copolymer having a high weight average molecular weight, the surface properties, the metal vapor deposition property and the metal adhesion property may be remarkably lowered.
  • thermoplastic resin composition according to one embodiment of the present invention will be described in detail.
  • the first copolymer comprises an alkyl acrylate rubbery polymer, an aromatic vinyl unit and a vinyl cyanide unit.
  • the first copolymer can impart excellent surface properties and metal vapor deposition properties to a molded article made of a thermoplastic resin composition, and can impart excellent metal adhesion to a molded article on which a metal is deposited even when heat-sealed.
  • the first copolymer may be prepared by graft-polymerizing an aromatic vinyl monomer and a vinyl cyan monomer to an alkyl acrylate rubber-like polymer.
  • the alkyl acrylate-based rubbery polymer may have an average particle diameter of 0.05 to 0.18 mu m, 0.08 to 0.18 mu m, or 0.1 to 0.15 mu m, preferably 0.1 to 0.15 mu m.
  • the above-mentioned range it is possible to impart better surface properties and metal vapor deposition properties to a molded article made of the thermoplastic resin composition.
  • the amount exceeds the above-mentioned range, the surface properties of the molded product made of the thermoplastic resin composition are lowered, thereby deteriorating the metal vapor deposition property.
  • a seal mark or bubble marks may be formed on the surface, which may make it unusable for use as an automobile rear limb housing.
  • the alkyl acrylate rubber-like polymer may be contained in an amount of 35 to 60 wt%, 40 to 55 wt%, or 45 to 50 wt% based on the total weight of the first copolymer, and 45 to 50 wt% .
  • the above-mentioned range is satisfied, it is possible to impart better impact resistance, surface properties, and metal vapor deposition properties to a molded article produced from the thermoplastic resin composition. Further, when a molded article on which a metal is deposited is thermally fused, more excellent metal adhesion can be imparted.
  • the aromatic vinyl unit may be contained in an amount of 25 to 45% by weight, 30 to 45% by weight or 35 to 40% by weight based on the total weight of the first copolymer, preferably 35 to 40% by weight Do.
  • the processability of the thermoplastic resin composition is further improved and the surface characteristics of the molded article made of the thermoplastic resin composition can be further improved.
  • the vinyl cyanide unit may be contained in an amount of 5 to 25% by weight, 5 to 20% by weight, or 10 to 15% by weight based on the total weight of the first copolymer, preferably 10 to 15% by weight Do.
  • the mechanical properties and chemical resistance of the thermoplastic resin composition can be further improved.
  • the first copolymer may have a weight average molecular weight of 90,000 to 180,000 g / mol, 100,000 to 170,000 g / mol or 110,000 to 150,000 g / mol, and more preferably 110,000 to 150,000 g / mol.
  • the fluidity of the thermoplastic resin composition can be further improved.
  • the first copolymer is prepared by graft polymerization using at least one polymerization method selected from the group consisting of bulk polymerization, emulsion polymerization and suspension polymerization of an alkyl acrylate rubbery polymer, an aromatic vinyl monomer and a vinyl cyan monomer , And it is preferable that they are produced by graft polymerization using emulsion polymerization.
  • the first copolymer may be prepared in an amount of 10 to 35% by weight, 15 to 30% by weight, or 20 to 25% by weight based on the total weight of the thermoplastic resin composition, and preferably 20 to 25% by weight of the first copolymer .
  • the above-mentioned range is satisfied, it is possible to impart better impact resistance and surface properties to the molded article made of the thermoplastic resin composition. Further, when a molded article on which a metal is deposited is thermally fused, more excellent metal adhesion can be imparted.
  • the second copolymer comprises an alkyl acrylate rubbery polymer, an aromatic vinyl unit and a vinyl cyanide unit.
  • the second copolymer can impart excellent impact resistance to a molded article made of a thermoplastic resin composition.
  • the second copolymer may be prepared by graft-polymerizing an aromatic vinyl monomer and a vinyl cyan monomer to the alkyl acrylate rubber-like polymer.
  • the alkyl acrylate rubbery polymer may have an average particle diameter of 0.2 to 1.0 ⁇ ⁇ , 0.2 to 0.7 ⁇ ⁇ , or 0.22 to 0.5 ⁇ ⁇ , and preferably 0.22 to 0.5 ⁇ ⁇ .
  • excellent impact resistance can be imparted to the thermoplastic resin composition. If the amount is less than the above-mentioned range, the impact resistance of the thermoplastic resin composition remarkably decreases. On the other hand, if it exceeds the above-mentioned range, the surface properties of the molded article made of the thermoplastic resin composition are remarkably lowered.
  • the alkyl acrylate rubber-like polymer may be contained in an amount of 35 to 60 wt%, 40 to 55 wt%, or 45 to 50 wt% based on the total weight of the second copolymer, and 45 to 50 wt% .
  • excellent impact resistance can be imparted to a molded article produced from the thermoplastic resin composition.
  • the aromatic vinyl-based monomer may be contained in an amount of 25 to 45% by weight, 30 to 45% by weight or 35 to 40% by weight based on the total weight of the second copolymer, preferably 35 to 40% by weight Do.
  • the processability of the thermoplastic resin composition is further improved and the surface characteristics of the molded article made of the thermoplastic resin composition can be further improved.
  • the vinyl cyanide unit may be contained in an amount of 5 to 25% by weight, 5 to 20% by weight or 10 to 15% by weight based on the total weight of the second copolymer, preferably 10 to 15% by weight Do.
  • the chemical resistance of the thermoplastic resin composition can be further improved.
  • the second copolymer may have a weight average molecular weight of 110,000 to 170,000 g / mol, 120,000 to 160,000 g / mol or 130,000 to 150,000 g / mol, and more preferably 130,000 to 150,000 g / mol.
  • the flowability and impact resistance of the thermoplastic resin composition can be further improved.
  • the second copolymer is prepared by graft polymerization using at least one polymerization method selected from the group consisting of bulk polymerization, emulsion polymerization and suspension polymerization of an alkyl acrylate rubbery polymer, an aromatic vinyl monomer and a vinyl cyan monomer , And it is preferable that they are produced by graft polymerization using emulsion polymerization.
  • the second copolymer may be prepared in an amount of from 1 to 25% by weight, from 5 to 20% by weight, or from 10 to 15% by weight based on the total weight of the thermoplastic resin composition, and preferably from 10 to 15% by weight .
  • a molded article made of the thermoplastic resin composition can have better impact resistance.
  • the third copolymer includes an aromatic vinyl unit and a vinyl cyan monomer unit.
  • the third copolymer can balance the physical properties of the thermoplastic resin composition, that is, balance between heat resistance, impact resistance and fluidity.
  • the difference between the weight average molecular weights of the third copolymer and the fourth copolymer may be 100,000 to 200,000 g / mol, and preferably 120,000 to 180,000 g / mol.
  • the above-mentioned range it is possible to produce a thermoplastic resin composition having excellent injection surface characteristics, metal vapor deposition properties and metal adhesion properties. If it is less than the above-mentioned range, the impact strength may be low and cracks may occur. If it exceeds the above range, the flowability is low and the injection processability may be deteriorated.
  • the third copolymer may have a weight average molecular weight of 100,000 to 200,000 g / mol, 110,000 to 180,000 g / mol, or 120,000 to 160,000 g / mol, and preferably 120,000 to 160,000 g / mol.
  • the weight average molecular weight of the third copolymer is less than the above-mentioned range, the impact resistance may remarkably decrease. If the weight average molecular weight of the third copolymer exceeds the above range, it may be difficult to achieve a balance between mechanical properties, fluidity and heat resistance.
  • the third copolymer may contain the aromatic vinyl unit and the vinyl cyan monomer unit in a weight ratio of 85:15 to 60:40, 80:20 to 65:35, or 75:25 to 70:30, Preferably in a weight ratio of 75:25 to 70:30.
  • the balance of mechanical properties, fluidity and heat resistance can be better achieved.
  • the third copolymer may be produced by one or more methods selected from the group consisting of bulk polymerization, emulsion polymerization and suspension polymerization of an aromatic vinyl monomer and a vinyl cyan monomer, and it is preferable that the third copolymer is produced by bulk polymerization .
  • the third copolymer may be prepared in an amount of from 10 to 35% by weight, from 15 to 30% by weight or from 20 to 25% by weight based on the total weight of the thermoplastic resin composition, and preferably from 20 to 25% by weight .
  • the balance of the mechanical properties, fluidity and heat resistance of the thermoplastic resin composition can be better achieved.
  • the fourth copolymer includes an aromatic vinyl unit and a vinyl cyan monomer unit.
  • the fourth copolymer can provide a balance of physical properties of the thermoplastic resin composition, that is, a balance between heat resistance, impact resistance and fluidity.
  • the fourth copolymer may have a weight average molecular weight of 210,000 to 300,000 g / mol, 210,000 to 290,000 g / mol, or 220,000 to 280,000 g / mol, preferably 220,000 to 280,000 g / mol.
  • a weight average molecular weight of 210,000 to 300,000 g / mol, 210,000 to 290,000 g / mol, or 220,000 to 280,000 g / mol, preferably 220,000 to 280,000 g / mol.
  • the fourth copolymer may contain the aromatic vinyl unit and the vinyl cyan monomer unit in a weight ratio of 85:15 to 60:40, 80:20 to 65:35, or 75:25 to 70:30, Preferably in a weight ratio of 75:25 to 70:30.
  • the fourth copolymer may be produced by one or more methods selected from the group consisting of bulk polymerization, emulsion polymerization and suspension polymerization of an aromatic vinyl monomer and a vinyl cyan monomer, and it is preferable that the fourth copolymer is prepared by suspension polymerization .
  • the fourth copolymer may be prepared in an amount of 5 to 30% by weight, 10 to 25% by weight or 15 to 20% by weight based on the total weight of the thermoplastic resin composition, and preferably 15 to 20% by weight thereof .
  • a seal mark, a bubble mark or the like is not formed when the molded article on which the metal is deposited is heat-sealed. Which may be more suitable for housing the rear lamp of a motor vehicle.
  • the fifth copolymer includes a maleimide-based unit, an aromatic vinyl-based unit and a vinylcyanide unit.
  • the fifth copolymer may impart heat resistance to the thermoplastic resin composition.
  • the fifth copolymer may have a glass transition temperature of 150 to 190 ° C, 160 to 185 ° C or 170 to 180 ° C, and preferably 170 to 180 ° C. When the above-mentioned range is satisfied, superior heat resistance can be imparted to the thermoplastic resin composition.
  • the maleimide-based unit may be contained in an amount of 25 to 50% by weight, 30 to 45% by weight or 35 to 40% by weight based on the total weight of the fifth copolymer, and 35 to 40% by weight thereof desirable. When the above range is satisfied, the heat resistance of the fifth copolymer can be further improved.
  • the aromatic vinyl unit may be contained in an amount of 45 to 70% by weight, 50 to 65% by weight or 55 to 60% by weight based on the total weight of the fifth copolymer, preferably 55 to 60% by weight Do. When the above-mentioned range is satisfied, the processability and appearance characteristics of the fifth copolymer can be improved.
  • the vinyl cyanide unit may be contained in an amount of 0.1 to 20% by weight, 1 to 15% by weight or 5 to 10% by weight based on the total weight of the fifth copolymer, preferably 5 to 10% by weight Do.
  • the compatibility of the maleimide-based unit and the aromatic vinyl-based unit can be improved.
  • the fifth copolymer may be prepared in an amount of 15 to 40% by weight, 20 to 35% by weight, or 25 to 30% by weight based on the total weight of the thermoplastic resin composition, and preferably 25 to 30% by weight of the copolymer .
  • the heat resistance of the thermoplastic resin composition can be further improved.
  • Second copolymer The graft copolymer prepared in Preparation Example 2 was used.
  • thermoplastic resin composition The above components were mixed in the amounts shown in Table 1 below and stirred to prepare a thermoplastic resin composition.
  • thermoplastic resin compositions of Examples and Comparative Examples were injected to prepare specimens, and the properties were evaluated by the methods described below. The results are shown in Table 1 below.
  • HDT ( ⁇ ⁇ ): Measured under the condition of 1/4 In, 18.6 kgf, and 120 ⁇ ⁇ / hr according to ASTM D648-7.
  • Diffuse reflectance (%) The diffuse reflectance was measured using a surface reflectance measuring instrument (trade name: TR1100A, manufacturer: Tokyo FULL CO., LTD.).
  • Comparative Example 1 since the first copolymer was not included, it was confirmed that the injection surface characteristics deteriorated and the aluminum vapor deposition property was deteriorated. In addition, it was confirmed that the thermal fusibility was lowered. In the case of Comparative Example 2, since the second copolymer was not included, it was confirmed that the impact strength remarkably decreased. In the case of Comparative Example 3, since the third copolymer was not included, it was confirmed that the diffuse reflectance was increased and the injection surface characteristics and aluminum vapor deposition properties were lowered. In the case of Comparative Example 4, since the fourth copolymer was not included, it was confirmed that the heat-sealability was lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제1 공중합체; 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제2 공중합체; 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제3 공중합체; 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제4 공중합체; 및 말레이미드계 단위, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제5 공중합체를 포함하고, 상기 제1 및 제2 공중합체는 알킬 아크릴레이트계 고무질 중합체의 평균입경이 서로 다르고, 상기 제3 및 제4 공중합체는 중량평균분자량이 서로 다른 열가소성 수지 조성물에 관한 것이다.

Description

열가소성 수지 조성물
[관련출원과의 상호인용]
본 발명은 2017.12.04에 출원된 한국 특허 출원 제10-2017-0165310호 및 2018.11.28에 출원된 한국 특허 출원 제10-2018-0149687호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 열가소성 수지 조성물에 관한 것으로서, 보다 상세하게는 내충격성, 사출 표면 특성, 금속 증착성 및 금속 밀착성이 모두 우수한 열가소성 수지 조성물에 관한 것이다.
아크릴로니트릴-부타디엔-스티렌계 수지(ABS계 수지)는 가공성, 내충격성 및 내약품성이 우수하여 건축용 자재, 자동차나 오토바이 등 차량류의 내외장재, 전기전자 제품 등 광범위하게 사용되고 있다.
상기 ABS계 수지를 자동차 외장재 특히 리어 램프 하우징(후미등 또는 리어 콤비네이션 램프)이나 리어 가니쉬 등에 사용하는 경우, 도장 및 알루미늄 증착 공정을 거치게 되는데, 증착 전 도장 공정은 환경 오염 및 원가 상승의 문제를 야기한다.
이에 후가공의 효율성을 높이고 환경 오염을 줄이기 위해서 기존에 행하였던 도장 공정을 생략하고 사출물에 직접 알루미늄 증착하는 무도장 증착 공정이 증가하고 있다.
상기와 같이 무도장 증착 공정을 통해 제품을 제조하는 경우, 알루미늄 증착 후 증착면의 빛 반사율이 우수해야 하며 제품 사용시 발생하는 열에 의해 소재의 변형이 발생하지 않도록 하여야 한다.
그러나, ABS계 수지를 포함하여 제조된 리어 램프 하우징의 경우, 수지 내에 충격 보강 용도로 사용되는 부타디엔 고무의 이중결합이 공기 중의 산소, 오존 또는 빛 등에 의해 분해되면서 변색 및 물성 저하 현상 등의 문제점을 야기하였다.
이에 불안정한 부타디엔 고무질 중합체 대신 부틸 아크릴레이트 고무질 중합체에 스티렌 및 아크릴로니트릴을 그라프트 공중합시킨 아크릴레이트-스티렌-아크릴로니트릴계 수지(ASA계 수지)를 ABS계 수지 대신 사용하는 방법이 제안되었으나, ASA계 수지는 ABS계 수지 대비 내후성이 우수한 반면에 외관 특성이 낮은 단점이 있었다.
이러한 ASA계 수지의 단점을 개선하기 위해 외관특성이 우수한 폴리메틸메타크릴레이트(PMMA) 및 폴리카보네이트(PC)를 블렌딩하여 사용하는 방법이 제안되었으나, PMMA나 PC를 블렌딩할 경우 수지 조성물의 유동성이 저하되어 가공성, 성형성 등이 떨어지는 문제점이 있었다.
한편, 자동차나 모터사이클 등의 외장에 적용할 소재는 그 목적에 부합하기 위하여 성형 후 미려한 외관을 가지고 기계적 물성(특히 상온 및 저온 충격강도, 강성)이 우수하여야 하며 빛(특히, 자외선)에 대한 안정성인 내후성이 우수하여야 한다. 또한, 성형성이 우수하여 외장재로서 역할을 하여야 한다. 특히, 자동차 외장재 중 램프 하우징(lamp housing)은 내충격성 및 성형 가공성이 우수하여야 한다.
일반적으로 아크릴로니트릴-부타디엔-스티렌(ABS) 수지는 부타디엔, 스티렌, 아크릴로니트릴의 3원 공중합체로서 우수한 내충격성과 강성을 동시에 가지고 있어 기계적 성질이 우수하고 성형성이 우수하며 착색성이 우수하여 전기, 전자 하우징, 자동차 내장재 및 램프 하우징 재료와 같은 다양한 용도로 광범위하게 사용되고 있다. 그러나, 원료의 조성 및 제조방법에 따라 기계적 물성의 차이가 있으며, 기본적으로 불포화 결합을 가진 고무 성분을 가지고 있어 공기 중의 산소, 오존 및 열 또는 빛(자외선) 등에 취약한 약점이 있다. 이에, 외장용 소재로는 적용성이 다소 떨어지며, 외장용 소재에 적용하기 위해서는 도장을 하여야 하는 단점이 있다. 예컨대, 아크릴로니트릴-부타디엔-스티렌(ABS) 수지를 외장재, 특히 램프 하우징으로 적용하기 위해서는, 사출 성형한 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 표면에 1차 도장(base coating)을 한 후, 알루미늄 증착을 하고 다시 알루미늄 막을 보호하기 위하여 2차 도장(top coating)을 실시한다. 상기 도장은 도장 불량이 발생할 수 있으며 과다한 용매의 사용으로 인한 환경 파괴 및 용매의 독성 및 비산으로 인해 작업자들의 기피 대상이 되고 있을 뿐 아니라 추가 공정 발생으로 인한 생산성 하락 및 원가 상승 등의 문제점을 가져온다.
이에, 도장을 하지 않고 바로 증착하는 연구가 진행되고 있으며, 증착성을 높이기 위하여 바이모달이나 다른 종류의 고무 성분을 사용하여 고무 함량을 조절하는 방법, 계면활성제 등을 사용하여 도장성 및 도장 퍼짐성을 향상시키는 방법 등이 제안되고 있다. 그러나, 상기와 같은 방법은 불포화 결합을 갖는 고무 성분을 가진 아크릴로니트릴-부타디엔-스티렌(ABS) 수지를 기본 수지로 사용하고 있어, 상기 불포화 결합을 갖는 고무 성분에 의한 내후성 취약 문제, 즉 장기간 외부에서 열 또는 빛에 노출되면, 표면 색상이 황변하고 균열이 발생하며 충격강도가 현저히 떨어지는 등의 근본적인 문제는 해결하지 못하였다.
한편, 아크릴레이트-스티렌-아크릴로니트릴(ASA) 수지는 불포화 결합을 가진 고무 성분인 부타디엔 고무 대신 불포화 결합을 갖지 않는 아크릴레이트계 고무 성분을 사용함으로써 아크릴로니트릴-부타디엔-스티렌(ABS) 수지의 우수한 기계적 물성 및 성형 가공성을 가지면서 최대 결점인 내후성을 현저하게 개선한 소재로서 도장품 또는 금속재료를 이용한 옥외 용도에 많이 적용되고 있다. 아크릴레이트-스티렌-아크릴로니트릴(ASA) 수지는 도장 등의 후 가공을 하지 않아도 우수한 내후성이 있으므로, 장기간 빛에 노출되어도 변색이 적고 기계적 물성의 저하가 비교적 적은 장점이 있다.
그러나, 불포화 결합을 가지지 않는 아크릴레이트계 고무질 중합체는 부타디엔계 고무질 중합체에 비하여 충격강도 보강 효과가 떨어지고 저온에서 충격강도 보강 효과가 낮은 단점이 있다. 또한, 광택도가 아크릴로니트릴-부타디엔-스티렌(ABS) 수지에 비하여 떨어지는 문제점이 있다.
따라서, 아크릴로니트릴-부타디엔-스티렌(ABS) 수지가 갖는 우수한 기계적 물성 및 성형 가공성을 가짐과 동시에 내후성, 증착성, 표면 특성 및 광택도가 우수한, 외장재로서 용이하게 적용할 수 있는 수지의 개발이 필요한 실정이다.
본 발명의 목적은 성형품에 우수한 표면 특성 및 금속 증착성을 부여해 줄 수 있고, 금속이 증착된 성형품을 열융착 시에도 우수한 금속 밀착성을 부여해 줄 수 있는 열가소성 수지 조성물을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제1 공중합체; 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제2 공중합체; 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제3 공중합체; 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제4 공중합체; 및 말레이미드계 단위, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제5 공중합체를 포함하고, 상기 제1 및 제2 공중합체는 알킬 아크릴레이트계 고무질 중합체의 평균입경이 서로 다르고, 상기 제3 및 제4 공중합체는 중량평균분자량이 서로 다른 열가소성 수지 조성물을 제공한다.
본 발명에 따른 열가소성 수지 조성물은 성형품에 우수한 표면 특성 및 금속 증착성을 부여해 줄 수 있고, 금속이 증착된 성형품을 열융착 시에도 우수한 금속 밀착성을 부여해 줄 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 알킬 아크릴레이트계 고무질 중합체 및 그라프트 공중합체의 평균입경은 동적 광산란(dynamic light scattering)법을 이용하여 측정할 수 있고, 상세하게는 Nicomp 380 HPL 장비(제품명, 제조사: Nicomp)를 이용하여 측정할 수 있다.
본 명세서에서 평균입경은 동적 광산란법에 의해 측정되는 입도분포에 있어서의 산술 평균입경, 구체적으로는 산란강도 평균입경을 의미할 수 있다.
본 발명에서 중량평균분자량은 용출액으로 THF(테트라하이드로퓨란)을 이용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다.
본 발명에서 제1 또는 제2 공중합체의 쉘의 중량평균분자량은 제1 또는 제2 공중합체를 아세톤에 용해시키고 원심 분리한 후, 아세톤에 용해된 부분(sol)을 테트라하이드로퓨란에 용해시킨 후, 겔 투과 크로마토그래피(GPC, waters breeze)를 이용하여 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다.
본 발명에서 유리 전이 온도는 ASTM D3418에 의거하여 측정할 수 있다.
본 발명에서 알킬 아크릴레이트계 고무질 중합체는 알킬 아크릴레이트계 단량체가 중합, 상세하게는 가교 반응되어 시드를 제조하고, 상기 시드 존재 하에, 알킬 아크릴레이트계 단량체가 중합, 상세하게는 가교 반응됨으로써 제조될 수 있다. 상기 알킬 아크릴레이트계 단량체는 C1 내지 C10인 알킬 아크릴레이트일 수 있고, 상기 C1 내지 C10인 알킬 아크릴레이트는 메틸 아크릴레이트, 에틸 아크릴레이트, 부틸 아크릴레이트 및 에틸헥실 아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 부틸 아크릴레이트가 바람직하다.
본 발명에서 방향족 비닐계 단위는 방향족 비닐계 단량체로부터 유래된 단위를 의미하는 것으로서, 방향족 비닐계 단량체는 스티렌, α-메틸 스티렌, α-에틸 스티렌 및 p-메틸 스티렌으로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
본 발명에서 비닐 시안계 단위는 비닐 시안계 단량체로부터 유래된 단위를 의미하는 것으로서, 비닐 시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 아크릴로니트릴이 바람직하다.
본 발명에서 말레이미드계 단위는 말레이미드계 단량체로부터 유래된 단위로서, 상기 말레이미드계 단량체는 말레이미드, N-메틸 말레이미드, N-에틸 말레이미드, N-프로필 말레이미드, N-이소프로필 말레이미드, N-부틸 말레이미드, N-이소부틸 말레이미드, N-t-부틸 말레이미드, N-라우릴 말레이미드, N-시클로헥실 말레이미드, N-페닐 말레이미드, N-(4-클로로페닐) 말레이미드, 2-메틸-N-페닐 말레이미드, N-(4-브로모페닐) 말레이미드, N-(4-니트로페닐) 말레이미드, N-(4-히드록시페닐) 말레이미드, N-(4-메톡시페닐) 말레이미드, N-(4-카르복시페닐) 말레이미드 및 N-벤질 말레이미드로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 N-페닐 말레이미드가 바람직하다.
본 발명의 일실시예에 따른 열가소성 수지 조성물은 1. 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제1 공중합체; 2. 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제2 공중합체; 3. 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제3 공중합체; 4. 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제4 공중합체; 및 5. 말레이미드계 단위, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제5 공중합체를 포함하고, 상기 제1 및 제2 공중합체는 알킬 아크릴레이트계 고무질 중합체의 평균입경이 서로 다르고, 상기 제3 및 제4 공중합체는 중량평균분자량이 서로 다르다.
본 발명의 일실시예에 따른 열가소성 수지 조성물은 알킬 아크릴레이트계 고무질 중합체의 평균입경이 서로 다른 제1 및 제2 공중합체를 포함하므로, 내후성, 내충격성, 표면 특성, 금속 증착성 및 금속 밀착성이 모두 우수한 열가소성 수지 조성물을 제조할 수 있다. 만약 열가소성 수지 조성물이, 평균입경이 같은 1종의 그라프트 공중합체만을 포함한다면, 내충격성, 표면 특성, 금속 증착성 및 금속 밀착성이 모두 우수한 열가소성 수지 조성물을 제공할 수 없다. 상세하게는 알킬 아크릴레이트계 고무질 중합체를 포함하는 제1 공중합체를 포함하지 않는다면, 열가소성 수지 조성물의 내충격성이 현저하게 저하될 수 있다. 또한, 열가소성 수지 조성물이 평균입경이 작은 알킬 아크릴레이트계 고무질 중합체를 포함하는 제2 공중합체를 포함하지 않는다면, 표면 특성, 금속 증착성 및 금속 밀착성이 현저하게 저하될 수 있다.
본 발명의 일실시예에 따른 열가소성 수지 조성물은 중량평균분자량이 서로 다른 제3 및 제4 공중합체를 포함하므로, 사출 표면 특성, 금속 증착성 및 금속 밀착성이 모두 우수한 열가소성 수지 조성물을 제조할 수 있다. 만약 열가소성 수지 조성물이 중량평균분자량이 동일한 매트릭스 공중합체만을 포함한다면, 사출 표면 특성, 금속 중착성 및 금속 밀착성이 모두 우수한 열가소성 수지 조성물을 제조할 수 없다. 상세하게는 열가소성 수지 조성물이 중량평균분자량이 낮은 제3 공중합체를 포함하지 않는다면, 표면 특성 및 금속 증착성이 현저하게 저하될 수 있다. 또한 열가소성 수지 조성물이 중량평균분자량이 높은 제4 공중합체를 포함하지 않는다면, 표면 특성, 금속 증착성 및 금속 밀착성이 현저하게 저하될 수 있다.
이하, 본 발명의 일실시예에 따른 열가소성 수지 조성물의 각 구성요소에 대하여 상세하게 설명한다.
1. 제1 공중합체
제1 공중합체는 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함한다.
상기 제1 공중합체는 열가소성 수지 조성물로 제조된 성형품에 우수한 표면 특성 및 금속 증착성을 부여해 줄 수 있고, 금속이 증착된 성형품을 열융착 시에도 우수한 금속 밀착성을 부여해 줄 수 있다.
상기 제1 공중합체는 알킬 아크릴레이트계 고무질 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체가 그라프트 중합됨으로써 제조될 수 있다.
상기 알킬 아크릴레이트계 고무질 중합체는 평균입경이 0.05 내지 0.18 ㎛, 0.08 내지 0.18 ㎛ 또는 0.1 내지 0.15 ㎛일 수 있고, 이 중 0.1 내지 0.15 ㎛인 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물로 제조된 성형품에 보다 우수한 표면 특성 및 금속 증착성을 부여해 줄 수 있다. 또한, 금속이 증착된 성형품을 열융착시 보다 우수한 금속 밀착성을 부여해줄 수 있다. 상술한 범위 미만이면, 열가소성 수지 조성물의 내충격성이 현저하게 저하될 수 있다. 또한, 상술한 범위를 초과하면, 열가소성 수지 조성물로 제조된 성형물의 표면 특성이 저하되고, 이로 인해 금속 증착성이 저하된다. 그리고, 금속이 증착된 성형품을 열융착 시, 표면에 실 자국, 기포 자국 등이 발생하여 자동차 리어 림프 하우징용으로 이용할 수 없게 될 수 있다.
상기 알킬 아크릴레이트계 고무질 중합체는 상기 제1 공중합체의 총 중량에 대하여, 35 내지 60 중량%, 40 내지 55 중량% 또는 45 내지 50 중량%로 포함될 수 있고, 이 중 45 내지 50 중량%로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물로 제조된 성형품에 보다 우수한 내충격성, 표면 특성, 금속 증착성을 부여해 줄 수 있다. 또한, 금속이 증착된 성형품을 열융착 시, 보다 우수한 금속 밀착성을 부여해 줄 수 있다.
상기 방향족 비닐계 단위는 상기 제1 공중합체 총 중량에 대하여, 25 내지 45 중량%, 30 내지 45 중량% 또는 35 내지 40 중량%로 포함될 수 있고, 이 중 35 내지 40 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면 열가소성 수지 조성물의 가공성이 보다 개선되고, 열가소성 수지 조성물로 제조된 성형품의 표면 특성이 보다 개선될 수 있다.
상기 비닐 시안계 단위는 상기 제1 공중합체 총 중량에 대하여, 5 내지 25 중량%, 5 내지 20 중량% 또는 10 내지 15 중량%로 포함될 수 있고, 이 중 10 내지 15 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면 열가소성 수지 조성물의 기계적 물성과 내화학성이 보다 개선될 수 있다.
상기 제1 공중합체는 쉘의 중량평균분자량이 90,000 내지 180,000 g/mol, 100,000 내지 170,000 g/mol 또는 110,000 내지 150,000 g/mol일 수 있고, 이 중 110,000 내지 150,000 g/mol인 것이 보다 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 유동성이 보다 개선될 수 있다.
상기 제1 공중합체는 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단량체 및 비닐 시안계 단량체가 괴상 중합, 유화 중합 및 현탁 중합으로 이루어진 군에서 선택되는 1종 이상의 중합법을 이용하여 그라프트 중합되어 제조될 수 있으며, 이 중 유화 중합을 이용하여 그라프트 중합되어 제조되는 것이 바람직하다.
상기 제1 공중합체는 열가소성 수지 조성물 총 중량에 대하여, 10 내지 35 중량%, 15 내지 30 중량% 또는 20 내지 25 중량%로 제조될 수 있으며, 이 중 20 내지 25 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물로 제조된 성형품에 보다 우수한 내충격성 및 표면 특성을 부여해 줄 수 있다. 또한, 금속이 증착된 성형품을 열융착 시, 보다 우수한 금속 밀착성을 부여해 줄 수 있다.
2. 제2 공중합체
제2 공중합체는 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함한다.
상기 제2 공중합체는 열가소성 수지 조성물로 제조된 성형품에 우수한 내충격성을 부여해 줄 수 있다.
상기 제2 공중합체는 상기 알킬 아크릴레이트계 고무질 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체를 그라프트 중합함으로써 제조될 수 있다.
상기 알킬 아크릴레이트계 고무질 중합체는 평균입경이 0.2 내지 1.0 ㎛, 0.2 내지 0.7 ㎛ 또는 0.22 내지 0.5 ㎛일 수 있고, 이 중 0.22 내지 0.5 ㎛가 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물에 보다 우수한 내충격성을 부여해 줄 수 있다. 상술한 범위 미만이면, 열가소성 수지 조성물의 내충격성이 현저하게 저하된다. 또한, 상술한 범위를 초과하면, 열가소성 수지 조성물로 제조된 성형물의 표면 특성이 현저하게 저하된다.
상기 알킬 아크릴레이트계 고무질 중합체는 상기 제2 공중합체의 총 중량에 대하여, 35 내지 60 중량%, 40 내지 55 중량% 또는 45 내지 50 중량%로 포함될 수 있고, 이 중 45 내지 50 중량%로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물로 제조된 성형품에 보다 우수한 내충격성을 부여해줄 수 있다.
상기 방향족 비닐계 단위는 상기 제2 공중합체 총 중량에 대하여, 25 내지 45 중량%, 30 내지 45 중량% 또는 35 내지 40 중량%로 포함될 수 있고, 이 중 35 내지 40 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면 열가소성 수지 조성물의 가공성이 보다 개선되고, 열가소성 수지 조성물로 제조된 성형품의 표면 특성이 보다 개선될 수 있다.
상기 비닐 시안계 단위는 상기 제2 공중합체 총 중량에 대하여, 5 내지 25 중량%, 5 내지 20 중량% 또는 10 내지 15 중량%로 포함될 수 있고, 이 중 10 내지 15 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면 열가소성 수지 조성물의 내화학성이 보다 개선될 수 있다.
상기 제2 공중합체는 쉘의 중량평균분자량이 110,000 내지 170,000 g/mol, 120,000 내지 160,000 g/mol 또는 130,000 내지 150,000 g/mol일 수 있고, 이 중 130,000 내지 150,000 g/mol인 것이 보다 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 유동성 및 내충격성이 보다 개선될 수 있다.
상기 제2 공중합체는 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단량체 및 비닐 시안계 단량체가 괴상 중합, 유화 중합 및 현탁 중합으로 이루어진 군에서 선택되는 1종 이상의 중합법을 이용하여 그라프트 중합되어 제조될 수 있으며, 이 중 유화 중합을 이용하여 그라프트 중합되어 제조되는 것이 바람직하다.
상기 제2 공중합체는 열가소성 수지 조성물 총 중량에 대하여, 1 내지 25 중량%, 5 내지 20 중량% 또는 10 내지 15 중량%로 제조될 수 있으며, 이 중 10 내지 15 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물로 제조된 성형품에 보다 우수한 내충격성을 부여해 줄 수 있다.
3. 제3 공중합체
제3 공중합체는 방향족 비닐계 단위 및 비닐 시안계 단위를 포함한다.
상기 제3 공중합체는 열가소성 수지 조성물의 물성의 균형, 즉 내열성, 내충격성 및 유동성의 균형을 부여해 줄 수 있다.
상기 제3 공중합체와 제4 공중합체의 중량평균분자량의 차이는 100,000 내지 200,000 g/mol일 수 있고, 120,000 내지 180,000 g/mol인 것이 바람직하다. 상술한 범위를 만족하면, 사출 표면 특성, 금속 증착성 및 금속 밀착성이 모두 우수한 열가소성 수지 조성물을 제조할 수 있다. 상술한 범위 미만이면, 충격강도가 낮아 크랙 등이 발생할 수 있고, 상술한 범위를 초과하면, 유동성이 낮아 사출 가공성이 저하될 수 있다.
상기 제3 공중합체는 중량평균분자량이 100,000 내지 200,000 g/mol, 110,000 내지 180,000 g/mol, 또는 120,000 내지 160,000 g/mol일 수 있고, 이 중 120,000 내지 160,000 g/mol이 바람직하다. 상술한 범위를 만족하면, 기계적 특성, 유동성 및 내열성의 균형을 보다 잘 이룰 수 있다. 상기 제3 공중합체의 중량평균분자량이 상술한 범위 미만이면, 내충격성이 현저하게 저하될 수 있다. 상기 제3 공중합체의 중량평균분자량이 상술한 범위를 초과하면, 기계적 특성, 유동성 및 내열성의 균형을 이루기 어려울 수 있다.
상기 제3 공중합체는 상기 방향족 비닐계 단위 및 비닐 시안계 단위를 85:15 내지 60:40, 80:20 내지 65:35 또는 75:25 내지 70:30의 중량비로 포함할 수 있고, 이 중 75:25 내지 70:30의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 기계적 특성, 유동성 및 내열성의 균형을 보다 잘 이룰 수 있다.
상기 제3 공중합체는 방향족 비닐계 단량체 및 비닐 시안계 단량체를 괴상 중합, 유화 중합 및 현탁 중합으로 이루어진 군에서 선택되는 1종 이상의 방법으로 제조할 수 있고, 이 중 괴상 중합으로 제조하는 것이 바람직하다.
상기 제3 공중합체는 열가소성 수지 조성물 총 중량에 대하여, 10 내지 35 중량%, 15 내지 30 중량% 또는 20 내지 25 중량%로 제조될 수 있으며, 이 중 20 내지 25 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 기계적 특성, 유동성 및 내열성의 균형을 보다 잘 이룰 수 있다.
4. 제4 공중합체
제4 공중합체는 방향족 비닐계 단위 및 비닐 시안계 단위를 포함한다.
상기 제4 공중합체는 열가소성 수지 조성물의 물성의 균형, 즉 내열성, 내충격성 및 유동성의 균형을 부여해 줄 수 있다.
상기 제4 공중합체는 중량평균분자량이 210,000 내지 300,000 g/mol, 210,000 내지 290,000 g/mol 또는 220,000 내지 280,000 g/mol일 수 있고, 이 중 220,000 내지 280,000 g/mol이 바람직하다. 상술한 범위를 만족하면, 성형품을 열융착 시, 융착실 발생이 적고 기포 자국 등이 형성되지 않는다. 이로 인해 자동차 리어 램프 하우징용으로 보다 적합할 수 있다. 상술한 범위 미만이면, 금속이 증착된 성형품을 열융착시, 실 자국, 기포 자국 등이 다량 발생할 수 있으므로, 자동차 리어 램프 하우징용으로 적합하지 않을 수 있다. 상술한 범위를 초과하면, 유동성이 너무 낮아져 가공성이 저하될 수 있다.
상기 제4 공중합체는 상기 방향족 비닐계 단위 및 비닐 시안계 단위를 85:15 내지 60:40, 80:20 내지 65:35 또는 75:25 내지 70:30의 중량비로 포함할 수 있고, 이 중 75:25 내지 70:30의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 내충격성 및 가공성이 우수한 이점이 있다.
상기 제4 공중합체는 방향족 비닐계 단량체 및 비닐 시안계 단량체를 괴상 중합, 유화 중합 및 현탁 중합으로 이루어진 군에서 선택되는 1종 이상의 방법으로 제조할 수 있고, 이 중 현탁 중합으로 제조하는 것이 바람직하다.
상기 제4 공중합체는 열가소성 수지 조성물 총 중량에 대하여, 5 내지 30 중량%, 10 내지 25 중량% 또는 15 내지 20 중량%로 제조될 수 있으며, 이 중 15 내지 20 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 금속이 증착된 성형품을 열융착시, 실 자국, 기포 자국 등이 형성되지 않는다. 이로 인해 자동차 리어 램프 하우징용으로 보다 적합할 수 있다.
5. 제5 공중합체
제5 공중합체는 말레이미드계 단위, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함한다.
상기 제5 공중합체는 열가소성 수지 조성물에 내열성을 부여해줄 수 있다.
상기 제5 공중합체는 유리전이온도가 150 내지 190 ℃, 160 내지 185 ℃ 또는 170 내지 180 ℃일 수 있고, 이 중 170 내지 180 ℃인 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물에 보다 우수한 내열성을 부여해줄 수 있다.
상기 말레이미드계 단위는 상기 제5 공중합체 총 중량에 대하여, 25 내지 50 중량%, 30 내지 45 중량% 또는 35 내지 40 중량%로 포함할 수 있고, 이 중 35 내지 40 중량%로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 제5 공중합체의 내열성이 보다 개선될 수 있다.
상기 방향족 비닐계 단위는 상기 제5 공중합체 총 중량에 대하여, 45 내지 70 중량%, 50 내지 65 중량% 또는 55 내지 60 중량%로 포함될 수 있고, 이 중 55 내지 60 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 제5 공중합체의 가공성 및 외관 특성이 개선될 수 있다.
상기 비닐 시안계 단위는 상기 제5 공중합체 총 중량에 대하여, 0.1 내지 20 중량%, 1 내지 15 중량% 또는 5 내지 10 중량%로 포함될 수 있고, 이 중 5 내지 10 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 상기 말레이미드계 단위와 방향족 비닐계 단위의 상용성이 개선될 수 있다.
상기 제5 공중합체는 열가소성 수지 조성물 총 중량에 대하여, 15 내지 40 중량%, 20 내지 35 중량% 또는 25 내지 30 중량%로 제조될 수 있으며, 이 중 25 내지 30 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 열가소성 수지 조성물의 내열성이 보다 개선될 수 있다.
본 발명의 일실시예에 따른 열가소성 수지 조성물로 제조되고, 확산 반사율이 2.5% 이하이고, 열융착시 실이 발생하지 않고, ASTM D256에 의거한 충격강도(1/4 In)가 7 ㎏·㎝/㎝ 이상인 성형품을 제공할 수 있다. 상술한 범위를 만족하면, 금속 증착성, 금속 밀착성, 및 내충격성이 우수한 성형품을 제공할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1: 제1 공중합체의 제조
평균입경이 0.12 ㎛인 부틸 아크릴레이트 고무질 중합체 50 중량부, 스티렌 36.5 중량부 및 아크릴로니트릴 13.5 중량부를 그라프트 유화 중합하여 그라프트 공중합체를 제조하였다. 이때, 수득된 그라프트 공중합체의 쉘의 중량평균분자량은 120,000 g/mol이었다.
제조예 2: 제2 공중합체의 제조
평균입경이 0.22 ㎛인 부틸 아크릴레이트 고무질 중합체 50 중량부, 스티렌 36.5 중량부 및 아크릴로니트릴 13.5 중량부를 그라프트 유화 중합하여 그라프트 공중합체를 제조하였다. 이때, 수득된 그라프트 공중합체의 쉘의 중량평균분자량은 140,000 g/mol이었다.
제조예 3: 제3 공중합체의 제조
145 ℃의 반응기에 스티렌 73 중량부, 아크릴로니트릴 27 중량부, 개시제로 t-부틸퍼옥사이드 0.1 중량부, 분자량 조절제로 t-도데실 머캅탄 0.05 중량부 및 반응용매로 톨루엔 20 중량부 일정한 속도로 2 시간 동안 연속 투입하면서 괴상 중합하여 중합 생성물을 제조하였다. 수득된 중합 생성물을 탈휘발조에 이송시키고, 미반응 단량체 및 용매를 회수 및 제거하고, 이축압출기에 투입하여 펠렛 형태의 공중합체를 제조하였다. 이때, 공중합체의 중량평균분자량은 125,000 g/mol이었다.
제조예 4: 제4 공중합체의 제조
반응기에 스티렌 73 중량부, 아크릴로니트릴 27 중량부, 이온교환수 100 중량부, 개시제로 1,1’-아조비스(사이클로헥산-1-카르보니트릴) 0.1 중량부, 현탁제로 트리칼슘포스페이트 2 중량부 및 분자량 조절제로 t-도데실 머캅탄 0.3 중량부를 투입하였다. 상기 반응기를 92 ℃로 승온시킨 후, 360 분 동안 중합을 수행한 후 종료하였다. 이어서, 상기 반응기에 포름산을 투입하여 중합 용액의 pH가 2.5가 되도록 한 후, 수세, 탈수 및 건조하여 공중합체를 제조하였다. 이때, 공중합체의 중량평균분자량은 270,000 g/mol이었다.
실시예 비교예
하기 실시예 및 비교예에서 사용된 성분의 사양은 다음과 같다.
1) 제1 공중합체: 제조예 1로 제조된 그라프트 공중합체를 사용하였다.
2) 제2 공중합체: 제조예 2로 제조된 그라프트 공중합체를 사용하였다.
3) 제3 공중합체: 제조예 3으로 제조된 공중합체를 사용하였다.
4) 제4 공중합체: 제조예 4로 제조된 공중합체를 사용하였다.
5) 제5 공중합체: NIPPON SHOKUBAI 社의 PAS 1460(N-페닐말레이미드/스티렌/아크릴로니트릴 공중합체, 유리 전이 온도: 167 ℃)를 사용하였다.
상술한 성분을 하기 [표 1]에 기재된 함량대로 혼합하고 교반하여 열가소성 수지 조성물을 제조하였다.
실험예 1
실시예 및 비교예의 열가소성 수지 조성물을 사출하여 시편을 제작하고 하기에 기재된 방법으로 물성을 평가하고, 그 결과를 하기 [표 1]에 기재하였다.
1) 충격강도(㎏·㎝/㎝, 1/4 In): ASTM D256에 의거하여 측정하였다.
2) HDT(℃): ASTM D648-7에 의거하여 1/4In, 18.6 ㎏f, 120 ℃/hr 조건 하에서 측정하였다.
실험예 2
실시예 및 비교예의 열가소성 수지 조성물을 사출하여 10 × 10 ㎝로 제작된 시편 상에 진공증착장치(상품명: DSC-500A, 제조사: 대한진공)을 이용하여 표면에 Al을 진공 증착시켰다. Al 막이 형성된 시편을 하기와 같은 방법으로 물성을 측정하고, 그 결과를 [표 1]에 나타내었다.
3) 확산 반사율(%): 표면 반사율 측정기기(상품명: TR1100A, 제조사: 도쿄전색)를 이용하여 확산 반사율을 측정하였다.
4) 상온 열융착성: Al 막이 형성된 시편을 상온에서 24시간 보관한 후, 240 ℃의 열판에 20 초 동안 접촉 열융착 시험을 하였고, 육안으로 융착면을 관찰하였다.
5) 습윤 열융착성: Al 막이 형성된 시편을 50℃, 상대 습도 95% 조건 하에서 보관한 후, 240℃의 열판에 20초 동안 접촉 열융착 시험을 하였고, 육안으로 융착면을 관찰하였다.
◎: 실발생이 없고 기포 발생 없음
○: 실발생이 없고 기포 소량 발생
△: 짧은 실이 발생하고 기포 소량 발생
×: 긴 실이 발생하고 기포 다량 발생
구분 실시예 비교예
1 2 3 4 1 2 3 4 5 6
1) 제1 공중합체 25 20 25 25 - 35 25 25 36 42
2) 제2 공중합체 10 15 10 10 35 - 10 10 14 18
3) 제3 공중합체 20 20 25 20 20 20 - 35 29 36
4) 제4 공중합체 15 15 15 20 15 15 35 - 21 -
5) 제5 공중합체 30 30 25 25 30 30 30 30 - -
충격강도 7 8 9 9 10 3 9 7 13 18
HDT 103 103 101 101 103 103 103 102 85 84
확산반사율 2.2 2.5 1.8 2.4 4.5 1.6 5.2 2.0 3.5 3.3
상온 열융착성 × ×
습윤 열융착성 × ×
표 1을 참조하면, 실시예 1 내지 실시예 4의 경우, 충격강도가 7㎏·㎝/㎝ 이상이므로, 내충격성이 우수하고, HDT가 101℃ 이상이므로 내열성이 우수하고, 확산반사율이 2.5% 이하이므로 사출 표면 특성 및 알루미늄 증착성이 우수하고, 열융착성 평가에서 실 및 기포가 발생하지 않았으므로, 알루미늄 밀착성이 모두 우수한 것을 확인할 수 있었다. 실시예 5의 경우 제5 공중합체를 소량 포함하였으므로, 내열성이 저하되었고, 제3 공중합체를 과량 포함하였으므로, 열융착성이 저하된 것을 확인할 수 있었다. 실시예 6의 경우, 제3 공중합체를 소량 포함하고, 제4 공중합체를 과량 포함하였으므로, 확산반사율이 5%가 되었고, 이 결과로부터 사출 표면 특성이 우수하지 못하고, 이로 인해 알루미늄 증착성이 저하된 것을 확인할 수 있었다.
실시예 1 내지 실시예 6의 결과로부터 청구항 1의 구성요소를 최적 비율로 혼합할 때, 내충격성, 내열성, 알루미늄 증착성 및 알루미늄 밀착성이 모두 우수해지는 것을 확인할 수 있었다.
한편, 비교예 1의 경우, 제1 공중합체를 포함하지 않았으므로, 사출 표면 특성이 저하되어 알루미늄 증착성이 저하된 것을 확인할 수 있었다. 또한, 열융착성도 저하된 것을 확인할 수 있었다. 비교예 2의 경우, 제2 공중합체를 포함하지 않았으므로, 충격강도가 현저하게 저하된 것을 확인할 수 있었다. 비교예 3의 경우, 제3 공중합체를 포함하지 않았으므로, 확산반사율이 높아져 사출 표면 특성 및 알루미늄 증착성이 저하된 것을 확인할 수 있었다. 비교예 4의 경우, 제4 공중합체를 포함하지 않으므로, 열융착성이 저하된 것을 확인할 수 있었다. 비교예 5의 경우, 제5 공중합체를 포함하지 않으므로, 내열성이 저하되고, 확산반사율이 높아져 사출 표면 특성 및 알루미늄 증착성이 저하된 것을 확인할 수 있었다. 비교예 6의 경우, 제4 및 제5 공중합체를 모두 포함하지 않으므로 내열성이 저하되고, 확산반사율이 높아져 사출 표면 특성 및 알루미늄 증착성이 저하되었고, 열융착성도 저하된 것을 확인할 수 있었다.

Claims (10)

  1. 알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제1 공중합체;
    알킬 아크릴레이트계 고무질 중합체, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제2 공중합체;
    방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제3 공중합체;
    방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제4 공중합체; 및
    말레이미드계 단위, 방향족 비닐계 단위 및 비닐 시안계 단위를 포함하는 제5 공중합체를 포함하고,
    상기 제1 및 제2 공중합체는 알킬 아크릴레이트계 고무질 중합체의 평균입경이 서로 다르고,
    상기 제3 및 제4 공중합체는 중량평균분자량이 서로 다른 열가소성 수지 조성물.
  2. 청구항 1에 있어서,
    상기 제1 공중합체의 알킬 아크릴레이트계 고무질 중합체는 평균입경이 0.05 내지 0.18 ㎛인 것인 열가소성 수지 조성물.
  3. 청구항 1에 있어서,
    상기 제2 공중합체의 알킬 아크릴레이트계 고무질 중합체는 평균입경이 0.2 내지 1.0 ㎛인 것인 열가소성 수지 조성물.
  4. 청구항 1에 있어서,
    상기 제3 공중합체와 상기 제4 공중합체의 중량평균분자량의 차이는 100,000 내지 200,000 g/mol인 것인 열가소성 수지 조성물.
  5. 청구항 1에 있어서,
    상기 제3 공중합체는 중량평균분자량이 100,000 내지 200,000 g/mol인 것인 열가소성 수지 조성물.
  6. 청구항 1에 있어서,
    상기 제4 공중합체는 중량평균분자량이 210,000 내지 300,000 g/mol인 것인 열가소성 수지 조성물.
  7. 청구항 1에 있어서,
    상기 제5 공중합체는 유리 전이 온도가 165 내지 190 ℃인 것인 열가소성 수지 조성물.
  8. 청구항 1에 있어서,
    상기 제5 공중합체는 N-페닐말레이미드/스티렌/아크릴로니트릴 공중합체인 것인 열가소성 수지 조성물.
  9. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은
    상기 제1 공중합체 10 내지 35 중량%;
    상기 제2 공중합체 1 내지 25 중량%;
    상기 제3 공중합체 10 내지 35 중량%;
    상기 제4 공중합체 5 내지 30 중량%; 및
    상기 제5 공중합체 15 내지 40 중량%를 포함하는 것인 열가소성 수지 조성물.
  10. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은
    상기 제1 공중합체 15 내지 30 중량%;
    상기 제2 공중합체 5 내지 20 중량%;
    상기 제3 공중합체 15 내지 30 중량%;
    상기 제4 공중합체 10 내지 25 중량%; 및
    상기 제5 공중합체 20 내지 35 중량%를 포함하는 것인 열가소성 수지 조성물.
PCT/KR2018/014904 2017-12-04 2018-11-29 열가소성 수지 조성물 WO2019112239A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880076166.8A CN111386309B (zh) 2017-12-04 2018-11-29 热塑性树脂组合物
US16/765,777 US11359086B2 (en) 2017-12-04 2018-11-29 Thermoplastic resin composition
EP18887076.0A EP3705524B1 (en) 2017-12-04 2018-11-29 Thermoplastic resin composition
JP2020527868A JP7039104B2 (ja) 2017-12-04 2018-11-29 熱可塑性樹脂組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170165310 2017-12-04
KR10-2017-0165310 2017-12-04
KR1020180149687A KR102225311B1 (ko) 2017-12-04 2018-11-28 열가소성 수지 조성물
KR10-2018-0149687 2018-11-28

Publications (1)

Publication Number Publication Date
WO2019112239A1 true WO2019112239A1 (ko) 2019-06-13

Family

ID=66750487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014904 WO2019112239A1 (ko) 2017-12-04 2018-11-29 열가소성 수지 조성물

Country Status (1)

Country Link
WO (1) WO2019112239A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490716A (zh) * 2019-10-21 2021-10-08 株式会社Lg化学 热塑性树脂组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120100530A (ko) * 2011-03-04 2012-09-12 주식회사 엘지화학 열가소성 수지 조성물 및 그 제조방법
KR20130075812A (ko) * 2011-12-28 2013-07-08 제일모직주식회사 고온 내열변색 특성이 우수한 asa 수지 조성물
KR20150066647A (ko) * 2013-12-06 2015-06-17 현대모비스 주식회사 증착성 및 내후성이 우수한 열가소성 수지 조성물
KR20160057601A (ko) * 2014-11-14 2016-05-24 주식회사 엘지화학 열가소성 수지 조성물
US20160312026A1 (en) * 2015-04-24 2016-10-27 Samsung Sdi Co., Ltd. Polycarbonate Resin Composition and Molded Article Using the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120100530A (ko) * 2011-03-04 2012-09-12 주식회사 엘지화학 열가소성 수지 조성물 및 그 제조방법
KR20130075812A (ko) * 2011-12-28 2013-07-08 제일모직주식회사 고온 내열변색 특성이 우수한 asa 수지 조성물
KR20150066647A (ko) * 2013-12-06 2015-06-17 현대모비스 주식회사 증착성 및 내후성이 우수한 열가소성 수지 조성물
KR20160057601A (ko) * 2014-11-14 2016-05-24 주식회사 엘지화학 열가소성 수지 조성물
US20160312026A1 (en) * 2015-04-24 2016-10-27 Samsung Sdi Co., Ltd. Polycarbonate Resin Composition and Molded Article Using the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705524A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490716A (zh) * 2019-10-21 2021-10-08 株式会社Lg化学 热塑性树脂组合物

Similar Documents

Publication Publication Date Title
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016052832A1 (ko) 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016080675A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2012015128A1 (ko) 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
KR20190065944A (ko) 열가소성 수지 조성물
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2018124517A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하여 제조되는 성형품
WO2017082649A1 (ko) 저광 특성, 내후성 및 기계적 물성이 우수한 열가소성 수지 조성물 및 이로부터 제조되는 압출 물품
WO2019103519A2 (ko) 수지 조성물
WO2017082661A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2016085222A1 (ko) 열가소성 수지 조성물 및 이를 적용한 성형품
WO2018124505A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 사출 성형품
WO2013022205A2 (ko) 알킬 (메트)아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2019112239A1 (ko) 열가소성 수지 조성물
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020149504A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020091371A1 (ko) 열가소성 수지 조성물
WO2018080250A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품
WO2020101326A1 (ko) 열가소성 수지 조성물
WO2022075579A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2019124857A2 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018887076

Country of ref document: EP

Effective date: 20200605