WO2011105574A1 - 全固体二次電池及び全固体二次電池の製造方法 - Google Patents

全固体二次電池及び全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2011105574A1
WO2011105574A1 PCT/JP2011/054369 JP2011054369W WO2011105574A1 WO 2011105574 A1 WO2011105574 A1 WO 2011105574A1 JP 2011054369 W JP2011054369 W JP 2011054369W WO 2011105574 A1 WO2011105574 A1 WO 2011105574A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
active material
electrode active
material layer
solid
Prior art date
Application number
PCT/JP2011/054369
Other languages
English (en)
French (fr)
Inventor
吉田 直樹
直治 藪田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020127022198A priority Critical patent/KR101664526B1/ko
Priority to US13/581,188 priority patent/US20130040206A1/en
Priority to JP2012501893A priority patent/JP5644851B2/ja
Priority to CN201180020463.9A priority patent/CN102859780B/zh
Publication of WO2011105574A1 publication Critical patent/WO2011105574A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an all-solid-state secondary battery such as an all-solid-state lithium ion secondary battery, and a manufacturing method thereof.
  • secondary batteries such as lithium batteries have been used in various applications such as portable power terminals such as personal digital assistants and portable electronic devices, as well as small household power storage devices, motorcycles, electric vehicles, and hybrid electric vehicles. Has increased.
  • An inorganic solid electrolyte is a solid electrolyte made of an inorganic substance and is a non-flammable substance, and is very safe compared to a commonly used organic solvent electrolyte. As described in Patent Document 1, development of an all-solid secondary battery having high safety using an inorganic solid electrolyte is progressing.
  • the all solid state secondary battery has an inorganic solid electrolyte layer as an electrolyte layer between a positive electrode and a negative electrode.
  • Patent Document 2 and Patent Document 3 an all-solid lithium secondary in which a solid electrolyte layer is formed by applying and drying a slurry composition for a solid electrolyte layer containing solid electrolyte particles and a solvent on a positive electrode or a negative electrode. A battery is described.
  • the solid electrolyte layer is formed by the roll press.
  • an object of the present invention is to provide an all-solid-state secondary battery in which the solid electrolyte layer can be thinned and the internal resistance is low.
  • Another object of the present invention is to provide a method for producing an all-solid secondary battery capable of forming an extremely thin solid electrolyte layer. Furthermore, it aims at providing the manufacturing method of the all-solid-state secondary battery which can reduce application
  • An all-solid secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between the positive and negative electrode active material layers,
  • the solid electrolyte layer has a thickness of 1 to 15 ⁇ m;
  • the solid electrolyte layer includes solid electrolyte particles A having an average particle size of 1.5 ⁇ m or less, 90% cumulative particle diameter of the solid electrolyte particles A is 2.5 ⁇ m or less,
  • the positive electrode active material layer and the negative electrode active material layer include solid electrolyte particles B,
  • An all-solid secondary battery in which the average particle size of the solid electrolyte particles B is smaller than the average particle size of the solid electrolyte particles A, and the difference is 0.3 ⁇ m or more and 2.0 ⁇ m or less.
  • the solid electrolyte layer includes a binder a, The all-solid-state secondary battery according to (1) or (2), wherein the binder a is an acrylic polymer including a monomer unit derived from (meth) acrylate.
  • the positive electrode active material layer includes a binder b1,
  • the binder b1 is an acrylic polymer containing a monomer unit derived from (meth) acrylate,
  • the negative electrode active material layer includes a binder b2.
  • the binder b2 is a diene polymer including a monomer unit derived from a conjugated diene and a monomer unit derived from an aromatic vinyl;
  • the content ratio of the monomer unit derived from the conjugated diene in the diene polymer is 30 to 70% by mass,
  • a method for producing the all solid state secondary battery according to any one of (1) to (5) above A step of applying a slurry composition for a positive electrode active material layer containing a positive electrode active material, solid electrolyte particles B, and a binder b1 on a current collector to form a positive electrode active material layer; Applying a slurry composition for a negative electrode active material layer containing a negative electrode active material, solid electrolyte particles B, and a binder b2 on a current collector to form a negative electrode active material layer; Applying a slurry composition for a solid electrolyte layer containing solid electrolyte particles A and a binder a on the positive electrode active material layer and / or the negative electrode active material layer to form a solid electrolyte layer;
  • the viscosity of the slurry composition for a positive electrode active material layer or the slurry composition for a negative electrode active material layer is 3000 to 50000 mPa ⁇ s, A method for producing an all-solid secondary
  • the solid electrolyte layer can be thinned by using solid electrolyte particles having a specific particle diameter. Therefore, it is possible to provide an all solid state secondary battery having a low internal resistance. Further, according to the present invention, the dispersibility and the viscosity of the slurry composition for the positive electrode active material layer or the slurry composition for the negative electrode active material layer and the viscosity of the slurry composition for the solid electrolyte layer are set within a specific range. Since a slurry composition having good coatability can be obtained, the solid electrolyte layer can be formed extremely thin. Therefore, it is possible to provide an all solid state secondary battery having a low internal resistance. Moreover, the all-solid-state secondary battery which shows high ion conductivity can be provided by using these slurry compositions. Furthermore, according to the present invention, it is possible to manufacture an all-solid secondary battery having excellent productivity.
  • the all solid state secondary battery of the present invention includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers.
  • the positive electrode has a positive electrode active material layer on the current collector, and the negative electrode has a negative electrode active material layer on the current collector.
  • (1) the solid electrolyte layer, (2) the positive electrode active material layer, (3) the negative electrode active material layer, and (4) the current collector will be described in this order.
  • Solid electrolyte layer The solid electrolyte layer is obtained by applying a slurry composition for a solid electrolyte layer containing solid electrolyte particles A and preferably a binder a onto a positive electrode active material layer or a negative electrode active material layer described later, It is formed by drying.
  • the slurry composition for a solid electrolyte layer is produced by kneading the solid electrolyte particles A, the binder a, an organic solvent, and other components added as necessary.
  • the average particle diameter (number average particle diameter) of the solid electrolyte particles A is 1.5 ⁇ m or less, preferably 0.3 to 1.3 ⁇ m. Further, the 90% cumulative particle diameter of the solid electrolyte particles A is 2.5 ⁇ m or less, and preferably 0.5 to 2.3 ⁇ m. When the average particle size and the cumulative 90% particle size of the solid electrolyte particles A are in the above range, a slurry composition for a solid electrolyte layer with good dispersibility and coating property can be obtained.
  • the average particle diameter of the solid electrolyte particles A is larger than 1.5 ⁇ m, the sedimentation rate of the solid electrolyte particles A in the slurry composition for the solid electrolyte layer is high, and it becomes difficult to form a homogeneous thin film by a coating method or the like. Become.
  • the 90% cumulative particle diameter of the solid electrolyte particles A is larger than 2.5 ⁇ m, the porosity in the solid electrolyte layer is increased and the ionic conductivity is decreased.
  • the average particle size or the cumulative 90% particle size of the solid electrolyte particles A is too small, the surface area of the particles increases and the organic solvent in the slurry composition is difficult to evaporate. For this reason, the drying time becomes longer, and the productivity of the battery decreases.
  • the solid electrolyte particle A is not particularly limited as long as it has lithium ion conductivity, but preferably contains a crystalline inorganic lithium ion conductor or an amorphous inorganic lithium ion conductor.
  • Examples of crystalline inorganic lithium ion conductors include Li 3 N, LIICON (Li 14 Zn (GeO 4 ) 4 , perovskite-type Li 0.5 La 0.5 TiO 3 , LIPON (Li 3 + y PO 4 ⁇ x N x ). , Thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ) and the like.
  • the amorphous inorganic lithium ion conductor is not particularly limited as long as it contains S and has ion conductivity.
  • the all-solid secondary battery in the present invention is an all-solid lithium secondary battery
  • the sulfide solid electrolyte material to be used Li 2 S and sulfides of elements of Group 13 to Group 15 are used. What uses the raw material composition containing this can be mentioned.
  • Examples of a method for synthesizing a sulfide solid electrolyte material using such a raw material composition include an amorphization method.
  • the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because according to the mechanical milling method, processing at room temperature is possible, and the manufacturing process can be simplified.
  • Examples of the Group 13 to Group 15 elements include Al, Si, Ge, P, As, and Sb.
  • the sulfides of the elements of Group 13 to Group 15 specifically, Al 2 S 3 , SiS 2 , GeS 2 , P 2 S 3 , P 2 S 5 , As 2 S 3 , Sb 2 S 3 etc. can be mentioned.
  • a sulfide solid electrolyte material using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15 is Li 2 SP—P 2 S 5.
  • the material is Li 2 S—SiS 2 material, Li 2 S—GeS 2 material or Li 2 S—Al 2 S 3 material, and more preferably Li 2 S—P 2 S 5 material. This is because Li ion conductivity is excellent.
  • the sulfide solid electrolyte material in the present invention preferably has bridging sulfur. It is because ion conductivity becomes high by having bridge
  • the molar fraction of Li 2 S in the Li 2 S—P 2 S 5 material or the Li 2 S—Al 2 S 3 material may be, for example, in the range of 50 to 74%, particularly in the range of 60 to 74%. preferable. It is because the sulfide solid electrolyte material which has bridge
  • the sulfide solid electrolyte material in the present invention may be sulfide glass, or may be crystallized sulfide glass obtained by heat-treating the sulfide glass.
  • the sulfide glass can be obtained, for example, by the above-described amorphization method. Crystallized sulfide glass can be obtained, for example, by heat-treating sulfide glass.
  • the sulfide solid electrolyte material is preferably a crystallized sulfide glass represented by Li 7 P 3 S 11 .
  • Li 7 P 3 S 11 a crystallized sulfide glass represented by Li 7 P 3 S 11 .
  • Li 2 S and P 2 S 5 are mixed at a molar ratio of 70:30 and amorphized by a ball mill to synthesize sulfide glass.
  • Li 7 P 3 S 11 can be synthesized by heat-treating the obtained sulfide glass at 150 ° C. to 360 ° C.
  • the binder a is for binding the solid electrolyte particles A to each other to form a solid electrolyte layer.
  • the binder a include polymer compounds such as a fluorine polymer, a diene polymer, an acrylic polymer, and a silicone polymer, and include a fluorine polymer, a diene polymer, and an acrylic polymer.
  • a polymer is preferable, and an acrylic polymer is more preferable in that the withstand voltage can be increased and the energy density of the all-solid-state secondary battery can be increased.
  • the acrylic polymer is a polymer containing a monomer unit derived from (meth) acrylate, specifically, a (meth) acrylate homopolymer, a (meth) acrylate copolymer, and (meth) acrylate. And other monomers copolymerizable with the (meth) acrylate.
  • (meth) acrylates include acrylic acid such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, and benzyl acrylate.
  • Alkyl esters acrylic acid alkoxyalkyl esters such as 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate; acrylics such as 2- (perfluorobutyl) ethyl acrylate and 2- (perfluoropentyl) ethyl acrylate 2- (perfluoroalkyl) ethyl acid; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, and t-butyl methacrylate, 2-ethylhexyl methacrylate Methacrylic acid alkyl esters such as methacrylic acid, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, benzyl methacrylate; 2-methacrylic acid 2- (perfluorobutyl) ethyl methacrylate, 2-
  • acrylic acid alkyl esters such as -2-ethylhexyl and benzyl acrylate
  • acrylic acid alkoxyalkyl esters such as 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate.
  • the content ratio of the monomer unit derived from (meth) acrylate in the acrylic polymer is usually 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more.
  • the upper limit of the content ratio of the monomer unit derived from (meth) acrylate in the acrylic polymer is usually 100% by mass or less, preferably 95% by mass or less.
  • the acrylic polymer is preferably a copolymer of (meth) acrylate and a monomer copolymerizable with the (meth) acrylate.
  • the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • Carboxylates having carbon double bonds including styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, Styrene monomers such as divinylbenzene; Amide monomers such as acrylamide, methacrylamide, N-methylolacrylamide, acrylamide-2-methylpropanesulfonic acid; Acrylonitrile, Methacrylonite ⁇ , ⁇ -unsaturated nitrile compounds such as ethylene; olefins such as ethylene and propylene; diene monomers such as butadiene and isoprene; halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; vinyl acetate and propionic acid Vinyl esters such as vinyl, vinyl butyrate and
  • the content of the copolymerizable monomer unit in the acrylic polymer is usually 60% by mass or less, preferably 55% by mass or less, more preferably 25% by mass or more and 45% by mass or less.
  • the method for producing the acrylic polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the polymerization initiator used for the polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • Organic peroxides, azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.
  • the glass transition temperature (Tg) of the binder a is preferably ⁇ 50 to 25 ° C., more preferably ⁇ 45 to 15 ° C., and particularly preferably ⁇ 40 to 5 ° C.
  • Tg of binder a is in the above range, an all-solid secondary battery having excellent strength and flexibility and high output characteristics can be obtained.
  • the glass transition temperature of the binder a can be adjusted by combining various monomers.
  • the content of the binder a in the slurry composition for the solid electrolyte layer is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, particularly 100 parts by mass of the solid electrolyte particles A.
  • the amount is preferably 0.5 to 5 parts by mass.
  • organic solvent examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene. These solvents can be used alone or in admixture of two or more, and can be appropriately selected and used from the viewpoint of drying speed and environment. Among them, in the present invention, from the viewpoint of reactivity with the solid electrolyte particles A, It is preferable to use a nonpolar solvent selected from aromatic hydrocarbons.
  • the content of the organic solvent in the solid electrolyte layer slurry composition is preferably 10 to 700 parts by mass, more preferably 30 to 500 parts by mass with respect to 100 parts by mass of the solid electrolyte particles A.
  • the slurry composition for a solid electrolyte layer may contain, in addition to the above components, components having functions of a dispersant, a leveling agent, and an antifoaming agent as other components added as necessary. These components are not particularly limited as long as they do not affect the battery reaction.
  • Dispersant examples include an anionic compound, a cationic compound, a nonionic compound, and a polymer compound.
  • a dispersing agent is selected according to the solid electrolyte particle to be used.
  • the content of the dispersant in the slurry composition for the solid electrolyte layer is preferably within a range that does not affect the battery characteristics. Specifically, the content is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
  • Leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, it is possible to prevent the repelling that occurs when the slurry composition for the solid electrolyte layer is applied to the surface of the positive electrode active material layer or the negative electrode active material layer, which will be described later. Can be improved.
  • the content of the leveling agent in the solid electrolyte layer slurry composition is preferably in a range that does not affect the battery characteristics, and specifically, is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
  • Examples of the antifoaming agent include mineral oil antifoaming agents, silicone antifoaming agents, and polymer antifoaming agents.
  • An antifoaming agent is selected according to the solid electrolyte particle to be used.
  • the content of the antifoaming agent in the solid electrolyte layer slurry composition is preferably in a range that does not affect the battery characteristics, and specifically, 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
  • the positive electrode active material layer is a positive electrode active material layer, and a positive electrode active material layer slurry composition containing solid electrolyte particles B and preferably a binder b1 is applied to the surface of a current collector, which will be described later. It is formed by drying.
  • the slurry composition for the positive electrode active material layer is produced by kneading the positive electrode active material, the solid electrolyte particles B, the binder b1, an organic solvent, and other components added as necessary.
  • the positive electrode active material is a compound that can occlude and release lithium ions.
  • the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
  • the positive electrode active material made of an inorganic compound examples include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • transition metal Fe, Co, Ni, Mn and the like are used.
  • Specific examples of the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
  • Examples of the positive electrode active material made of an organic compound include polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds, and N-fluoropyridinium salts.
  • the positive electrode active material may be a mixture of the above inorganic compound and organic compound.
  • the average particle size of the positive electrode active material used in the present invention is usually 0.1 to 50 ⁇ m, preferably 1 to 20 ⁇ m, from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics.
  • the average particle size can be determined by measuring the particle size distribution by laser diffraction.
  • Solid electrolyte particle B The solid electrolyte particles B have an average particle size (number average particle size) smaller than the average particle size of the solid electrolyte particles A described above, and the difference is 0.3 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably. It is 0.7 ⁇ m or more and 2.0 ⁇ m or less, preferably 1.3 ⁇ m or less, more preferably 1.0 ⁇ m or less.
  • the difference between the average particle size of the solid electrolyte particles B and the average particle size of the solid electrolyte particles A is less than 0.3 ⁇ m or more than 2.0 ⁇ m, the adhesion between the solid electrolyte layer and the positive electrode active material layer decreases, and the electrode The internal resistance inside increases.
  • the solid electrolyte particles B can be the same as the solid electrolyte particles A described above except for the particle diameter, and can be the same as those exemplified in the solid electrolyte particles A.
  • the weight ratio of the positive electrode active material is less than the above range, the amount of the positive electrode active material in the battery is reduced, leading to a decrease in capacity as a battery.
  • the weight ratio of the solid electrolyte particles is smaller than the above range, sufficient conductivity cannot be obtained, and the positive electrode active material cannot be used effectively, leading to a decrease in capacity as a battery.
  • the binder b1 is for binding the positive electrode active materials, the solid electrolyte particles B, and the positive electrode active material and the solid electrolyte particles B to form a positive electrode active material layer.
  • the binder b1 include polymer compounds such as a fluorine polymer, a diene polymer, an acrylic polymer, and a silicone polymer, and include a fluorine polymer, a diene polymer, or an acrylic polymer.
  • a polymer is preferable, and an acrylic polymer is more preferable in that the withstand voltage can be increased and the energy density of the all-solid-state secondary battery can be increased.
  • the acrylic polymer is a polymer containing a monomer unit derived from (meth) acrylate, and examples of (meth) acrylate include the same ones as exemplified in the binder a in the solid electrolyte layer described above. . Further, the content ratio of the monomer unit derived from (meth) acrylate in the acrylic polymer suitable as the binder b1 is preferably 60 to 100% by mass, more preferably 65 to 90% by mass.
  • the acrylic polymer is preferably a copolymer of (meth) acrylate and a monomer copolymerizable with the (meth) acrylate.
  • the copolymerizable monomer, the method for producing the acrylic polymer, and the polymerization initiator used in the production method are the same as those exemplified for the binder in the solid electrolyte layer.
  • the glass transition temperature (Tg) of the binder b1 is preferably ⁇ 50 to 25 ° C., more preferably ⁇ 45 to 15 ° C., and particularly preferably ⁇ 40 to 5 ° C. When the Tg of the binder b1 is in the above range, an all-solid secondary battery having excellent strength and flexibility and high output characteristics can be obtained.
  • the glass transition temperature of the binder b1 can be adjusted by combining various monomers.
  • the content of the binder b1 in the positive electrode active material layer slurry composition is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass with respect to 100 parts by mass of the positive electrode active material. is there.
  • the content of the binder b1 is in the above range, it is possible to prevent the positive electrode active material from dropping from the electrode without inhibiting the battery reaction.
  • the organic solvent in the positive electrode active material layer slurry composition and other components added as necessary may be the same as those exemplified for the solid electrolyte layer.
  • the content of the organic solvent in the positive electrode active material layer slurry composition is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the content of the organic solvent in the positive electrode active material layer slurry composition is in the above range, good coating properties can be obtained while maintaining the dispersibility of the solid electrolyte.
  • the slurry composition for the positive electrode active material layer may contain, in addition to the above components, additives that exhibit various functions such as a conductive agent and a reinforcing material as other components added as necessary. These are not particularly limited as long as they do not affect the battery reaction.
  • the conductive agent is not particularly limited as long as it can impart conductivity, and usually includes carbon powders such as acetylene black, carbon black and graphite, and fibers and foils of various metals.
  • reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • Negative electrode active material layer The negative electrode active material layer is coated with a negative electrode active material, a slurry composition for a negative electrode active material layer containing solid electrolyte particles B, and preferably a binder b2, on the surface of a current collector, which will be described later. It is formed by drying.
  • the slurry composition for a negative electrode active material layer is produced by kneading a negative electrode active material, solid electrolyte particles B, a binder b2, an organic solvent, and other components added as necessary.
  • the solid electrolyte particles B, the organic solvent, and other components added as necessary in the slurry composition for the negative electrode active material layer may be the same as those exemplified for the positive electrode active material layer. it can.
  • the negative electrode active material examples include carbon allotropes such as graphite and coke.
  • the negative electrode active material composed of the allotrope of carbon can also be used in the form of a mixture with a metal, a metal salt, an oxide, or the like or a cover.
  • oxides and sulfates such as silicon, tin, zinc, manganese, iron, and nickel, lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, Lithium transition metal nitride, silicon, etc.
  • the average particle size of the negative electrode active material is usually 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics.
  • the binder b2 is for binding the negative electrode active materials, the solid electrolyte particles B, and the negative electrode active material and the solid electrolyte particles B to form a negative electrode active material layer.
  • the binder b2 include polymer compounds such as a fluorine polymer, a diene polymer, an acrylic polymer, and a silicone polymer.
  • a diene polymer containing a monomer unit derived from a conjugated diene and a monomer unit derived from an aromatic vinyl is preferable.
  • the content ratio of the monomer unit derived from the conjugated diene in the diene polymer is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and the content ratio of the monomer unit derived from the aromatic vinyl is preferably Is 30 to 70% by mass, more preferably 35 to 65% by mass.
  • conjugated diene examples include butadiene, isoprene, 2-chloro-1,3-butadiene, chloroprene and the like. Of these, butadiene is preferred.
  • aromatic vinyl examples include styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinyl benzene, and the like. . Of these, styrene, ⁇ -methylstyrene, and divinylbenzene are preferable.
  • the binder b2 contained in the negative electrode active material layer may be a copolymer of a conjugated diene, an aromatic vinyl, and a monomer copolymerizable therewith.
  • the copolymerizable monomer include ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; ethylene, propylene, and the like Olefins; Halogen-containing monomers such as vinyl chloride and vinylidene chloride; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; Methyl vinyl Examples thereof include vinyl ketones such as ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone
  • the method for producing the binder b2 contained in the negative electrode active material layer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the polymerization initiator used for the polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • Organic peroxides, azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.
  • the glass transition temperature (Tg) of the binder b2 is preferably ⁇ 50 to 25 ° C., more preferably ⁇ 45 to 15 ° C., and particularly preferably ⁇ 40 to 5 ° C. When the Tg of the binder b2 is in the above range, an all-solid secondary battery having excellent strength and flexibility and high output characteristics can be obtained.
  • the glass transition temperature of the binder b2 can be adjusted by combining various monomers.
  • the content of the binder b2 in the negative electrode active material layer slurry composition is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass with respect to 100 parts by mass of the negative electrode active material. is there.
  • the content of the binder b2 is in the above range, it is possible to prevent the electrode active material from dropping from the electrode without inhibiting the battery reaction.
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of having heat resistance, for example, iron, copper, Metal materials such as aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode, and copper is particularly preferable for the negative electrode.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength between the current collector and the positive and negative electrode active material layers described above, the current collector is preferably used after being subjected to a roughening treatment.
  • Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity between the current collector and the positive / negative electrode active material layer.
  • the slurry composition for a solid electrolyte layer is obtained by mixing the solid electrolyte particles A, the binder a, the organic solvent, and other components added as necessary.
  • the slurry composition for the positive electrode active material layer is obtained by mixing the positive electrode active material, the solid electrolyte particles B, the binder b1, the organic solvent, and other components added as necessary.
  • the slurry composition for the negative electrode active material layer is obtained by mixing the negative electrode active material, the solid electrolyte particles B, the binder b2, the organic solvent, and other components added as necessary.
  • the method of mixing the slurry composition is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, and a planetary kneader may be used. From the viewpoint that aggregation of solid electrolyte particles can be suppressed, a planetary mixer, a ball mill Alternatively, a method using a bead mill is preferable.
  • the viscosity of the solid electrolyte layer slurry composition produced as described above is 10 to 500 mPa ⁇ s, preferably 15 to 400 mPa ⁇ s, more preferably 20 to 300 mPa ⁇ s.
  • the viscosity of the slurry composition for the solid electrolyte layer is in the above range, the dispersibility and the coating property of the slurry composition are improved.
  • the viscosity of the slurry composition is less than 10 mPa ⁇ s, the slurry composition for the solid electrolyte layer tends to sag.
  • the viscosity of the slurry composition exceeds 500 mPa ⁇ s, it is difficult to reduce the thickness of the solid electrolyte layer.
  • the viscosity of the positive electrode active material layer slurry composition and the negative electrode active material layer slurry composition produced as described above is 3000 to 50000 mPa ⁇ s, preferably 4000 to 30000 mPa ⁇ s, and more preferably 5000 to 10000 mPa ⁇ s. .
  • the viscosity of the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer is in the above range, the dispersibility and the coatability of the slurry composition are improved.
  • the viscosity of the slurry composition is less than 3000 mPa ⁇ s, the active material and the solid electrolyte particles B in the slurry composition are likely to settle.
  • the viscosity of the slurry composition exceeds 50000 mPa ⁇ s, the uniformity of the coating film is lost.
  • the all solid state secondary battery of the present invention includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers.
  • the thickness of the solid electrolyte layer is 1 to 15 ⁇ m, preferably 2 to 13 ⁇ m, more preferably 3 to 10 ⁇ m. When the thickness of the solid electrolyte layer is in the above range, the internal resistance of the all-solid secondary battery can be reduced. If the thickness of the solid electrolyte layer is less than 1 ⁇ m, the all-solid-state secondary battery is short-circuited. On the other hand, when the thickness of the solid electrolyte layer is greater than 15 ⁇ m, the internal resistance of the battery increases.
  • the positive electrode in the all-solid-state secondary battery of the present invention is manufactured by applying the positive electrode active material layer slurry composition onto a current collector and drying to form a positive electrode active material layer.
  • the negative electrode in the all-solid-state secondary battery of the present invention is obtained by applying the above slurry composition for the negative electrode active material layer on a current collector different from the positive electrode current collector and drying the negative electrode active material layer. Formed and manufactured.
  • the solid electrolyte layer slurry composition is applied on the formed positive electrode active material layer or negative electrode active material layer and dried to form a solid electrolyte layer.
  • an all-solid-state secondary battery element is manufactured by bonding together the electrode which did not form a solid electrolyte layer, and the electrode which formed said solid electrolyte layer.
  • the method for applying the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer to the current collector is not particularly limited.
  • the doctor blade method, the dip method, the reverse roll method, the direct roll method, the gravure method It is applied by the extrusion method, brush coating or the like.
  • the amount to be applied is not particularly limited, but is such an amount that the thickness of the active material layer formed after removing the organic solvent is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m.
  • the drying method is not particularly limited, and examples thereof include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying conditions are usually adjusted so that the organic solvent volatilizes as quickly as possible within a speed range in which stress concentration occurs and the active material layer cracks or the active material layer does not peel from the current collector. Furthermore, you may stabilize an electrode by pressing the electrode after drying. Examples of the pressing method include, but are not limited to, a mold press and a calendar press.
  • the drying temperature is a temperature at which the organic solvent is sufficiently volatilized. Specifically, 50 to 250 ° C. is preferable, and 80 to 200 ° C. is more preferable. By setting it as the said range, it becomes possible to form a favorable active material layer, without thermal decomposition of a binder.
  • the drying time is not particularly limited, but is usually in the range of 10 to 60 minutes.
  • the method for applying the slurry composition for the solid electrolyte layer to the positive electrode active material layer or the negative electrode active material layer is not particularly limited, and the current collection of the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer described above is performed.
  • the gravure method is preferable from the viewpoint that a thin solid electrolyte layer can be formed.
  • the amount to be applied is not particularly limited, but is an amount such that the thickness of the solid electrolyte layer formed after removing the organic solvent is usually 1 to 15 ⁇ m, preferably 2 to 13 ⁇ m.
  • the drying method, drying conditions, and drying temperature are also the same as those of the positive electrode active material layer slurry composition and the negative electrode active material layer slurry composition described above.
  • the pressurizing method is not particularly limited, and examples thereof include a flat plate press, a roll press, and CIP (Cold Isostatic Press).
  • the pressure for pressing is preferably 5 to 700 MPa, more preferably 7 to 500 MPa. This is because by setting the pressure of the pressure press within the above range, the resistance at each interface between the electrode and the solid electrolyte layer, and further, the contact resistance between particles in each layer is lowered, and good battery characteristics are exhibited.
  • the solid electrolyte layer and the active material layer may be compressed by pressing, and may be thinner than before pressing. When pressing is performed, the thickness of the solid electrolyte layer and the active material layer in the present invention may be such that the thickness after pressing is in the above range.
  • the positive electrode active material layer or the negative electrode active material layer is coated with the slurry composition for the solid electrolyte layer, but the solid electrolyte layer slurry is applied to the active material layer having the larger particle diameter of the electrode active material to be used. It is preferable to apply the composition.
  • the particle diameter of the electrode active material is large, irregularities are formed on the surface of the active material layer. Therefore, the irregularities on the surface of the active material layer can be reduced by applying the slurry composition. Therefore, when the electrode formed with the solid electrolyte layer and the electrode not formed with the solid electrolyte layer are bonded and laminated, the contact area between the solid electrolyte layer and the electrode is increased, and the interface resistance can be suppressed. .
  • the obtained all-solid-state secondary battery element is put into a battery container as it is or wound or folded according to the shape of the battery, and sealed to obtain an all-solid-state secondary battery.
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate or the like can be placed in the battery container to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • ⁇ Particle size measurement> In accordance with JIS Z8825-1: 2001, a 50% cumulative particle size from the fine particle side of the cumulative particle size distribution (number average particle size) by a laser analyzer (Laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation) And the particle diameter of 90% of accumulation was measured.
  • a laser analyzer Laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation
  • ⁇ Battery characteristics Output characteristics> A 10-cell all-solid-state secondary battery is charged to 4.3 V by a constant current method of 0.1 C, and then discharged to 3.0 V at 0.1 C to obtain a 0.1 C discharge capacity a. Thereafter, the battery is charged to 4.3 V at 0.1 C, and then discharged to 3.0 V at 10 C to obtain a 10 C discharge capacity b. Using an average value of 10 cells as a measured value, a capacity retention ratio represented by a ratio (b / a (%)) of an electric capacity between 10C discharge capacity b and 0.1C discharge capacity a is obtained, and this is evaluated for output characteristics. Use the following criteria for evaluation. Higher values indicate better output characteristics, that is, lower internal resistance. A: 70% or more B: 60% or more and less than 70% C: 40% or more and less than 60% D: 20% or more and less than 40% E: Less than 20%
  • ⁇ Battery characteristics Charging / discharging cycle characteristics> Using the obtained all-solid-state secondary battery, the battery was charged at a constant current until it reached 4.2 V by a constant current constant voltage charging method at 25 ° C. and 0.5 C, and then charged at a constant voltage. A charge / discharge cycle was carried out to discharge to 3.0 V at a constant current of 5 C. The charge / discharge cycle is performed up to 50 cycles, and the ratio of the discharge capacity at the 50th cycle to the initial discharge capacity is defined as the capacity maintenance rate, and the following criteria are used for determination.
  • the solid content concentration was adjusted to 74% with xylene, and then mixed for 10 minutes to prepare a slurry composition for a positive electrode active material layer.
  • the viscosity of the slurry composition for a positive electrode active material layer was 6100 mPa ⁇ s.
  • the positive electrode active material layer slurry composition was applied to the surface of the current collector and dried (110 ° C., 20 minutes) to form a 50 ⁇ m positive electrode active material layer to produce a positive electrode. Also, the negative electrode active material layer slurry composition was applied to another current collector surface and dried (110 ° C., 20 minutes) to form a 30 ⁇ m negative electrode active material layer to produce a negative electrode.
  • the solid electrolyte layer slurry composition was applied to the surface of the positive electrode active material layer and dried (110 ° C., 10 minutes) to form an 11 ⁇ m solid electrolyte layer.
  • the solid electrolyte layer laminated on the surface of the positive electrode active material layer and the negative electrode active material layer of the negative electrode were bonded together and pressed to obtain an all-solid secondary battery.
  • the thickness of the solid electrolyte layer of the all-solid secondary battery after pressing was 9 ⁇ m.
  • the number average particle size of the solid electrolyte particles B was smaller than the number average particle size of the solid electrolyte particles A, and the difference was 0.8 ⁇ m.
  • output characteristics and charge / discharge cycle characteristics were evaluated. The results are shown in Table 1.
  • Example 2 An all-solid secondary battery was produced and evaluated in the same manner as in Example 1 except that the following solid electrolyte layer slurry composition was used. In addition, the thickness of the solid electrolyte layer of the all-solid-state secondary battery after pressing was 7 ⁇ m. The number average particle size of the solid electrolyte particles B was smaller than the number average particle size of the solid electrolyte particles A, and the difference was 0.4 ⁇ m. The results are shown in Table 1.
  • the mixture was further mixed with xylene as an organic solvent to adjust the solid content concentration to 30%, and then mixed with a planetary mixer to prepare a slurry composition for a solid electrolyte layer.
  • the viscosity of the solid electrolyte layer slurry composition was 130 mPa ⁇ s.
  • Example 3 The solid content concentration of the solid electrolyte layer slurry composition is adjusted to 35%, and the solid electrolyte layer slurry composition is applied and dried (110 ° C., 10 minutes) to form a 17 ⁇ m solid electrolyte layer, and press An all-solid secondary battery was produced and evaluated in the same manner as in Example 1 except that the thickness of the solid electrolyte layer of the later all-solid secondary battery was 14 ⁇ m.
  • the viscosity of the solid electrolyte layer slurry composition was 130 mPa ⁇ s.
  • Example 4 The all-solid secondary as in Example 1 except that the solid content concentration of the positive electrode active material layer slurry composition was adjusted to 76% and the viscosity of the positive electrode active material layer slurry composition was adjusted to 9500 mPa ⁇ s. Batteries were manufactured and evaluated.
  • Example 5 The solid content concentration of the solid electrolyte layer slurry composition is adjusted to 37%, and the solid electrolyte layer slurry composition is applied and dried (110 ° C., 10 minutes) to form a 19 ⁇ m solid electrolyte layer, and press An all-solid secondary battery was produced and evaluated in the same manner as in Example 1 except that the thickness of the solid electrolyte layer of the later all-solid secondary battery was 15 ⁇ m. In addition, the viscosity of the slurry composition for solid electrolyte layers was 280 mPa * s.
  • Example 2 An all-solid secondary battery was produced and evaluated in the same manner as in Example 1 except that the following solid electrolyte layer slurry composition was used. In addition, the thickness of the solid electrolyte layer of the all-solid-state secondary battery after pressing was 15 ⁇ m. The number average particle size of the solid electrolyte particles B was smaller than the number average particle size of the solid electrolyte particles A, and the difference was 1.4 ⁇ m. The results are shown in Table 1.
  • Example 3 An all-solid secondary battery was produced and evaluated in the same manner as in Example 1 except that the following solid electrolyte layer slurry composition was used. In addition, the thickness of the solid electrolyte layer of the all-solid-state secondary battery after pressing was 15 ⁇ m. The number average particle size of the solid electrolyte particles B was smaller than the number average particle size of the solid electrolyte particles A, and the difference was 0.9 ⁇ m. The results are shown in Table 1.
  • the mixture was further mixed with xylene as an organic solvent to adjust the solid content concentration to 32%, and then mixed with a planetary mixer to prepare a slurry composition for a solid electrolyte layer.
  • the viscosity of the solid electrolyte layer slurry composition was 44 mPa ⁇ s.
  • Example 4 An all-solid secondary battery was produced and evaluated in the same manner as in Example 1 except that the following positive electrode active material layer slurry composition and negative electrode active material layer slurry composition were used.
  • the viscosity of the slurry composition for solid electrolyte layers was 52 mPa * s.
  • the thickness of the solid electrolyte layer of the all-solid-state secondary battery after pressing was 9 ⁇ m.
  • the number average particle size of the solid electrolyte particles B was larger than the number average particle size of the solid electrolyte particles A, and the difference was ⁇ 0.8 ⁇ m. The results are shown in Table 1.
  • Li 2 S / P 2 S 5 70 mol
  • Li 2 S and P 2 S 5 as the solid electrolyte particles B % / 30 mol%, number average particle diameter: 2.0 ⁇ m
  • 150 parts acetylene black 13 parts as a conductive agent
  • butyl acrylate-styrene copolymer butyl acrylate / styrene copolymer ratio
  • binder 70/30 Tg-2 ° C.
  • the solid content concentration was adjusted to 77% with xylene and mixed for 10 minutes to prepare a slurry composition for a positive electrode active material layer.
  • the viscosity of the positive electrode active material layer slurry composition was 4800 mPa ⁇ s.
  • the viscosity of the negative electrode active material layer slurry composition was 4800 mPa ⁇ s.
  • Example 5 An all-solid secondary battery was produced and evaluated in the same manner as in Example 1 except that the following positive electrode active material layer slurry composition and negative electrode active material layer slurry composition were used.
  • the viscosity of the slurry composition for solid electrolyte layers was 52 mPa * s.
  • the thickness of the solid electrolyte layer of the all-solid-state secondary battery after pressing was 9 ⁇ m.
  • the average particle diameter of the solid electrolyte particle B and the average particle diameter of the solid electrolyte particle A were the same. The results are shown in Table 1.
  • Li 2 S / P 2 S 5 70 mol
  • Li 2 S and P 2 S 5 as the solid electrolyte particles B % / 30 mol%, number average particle diameter: 1.2 ⁇ m
  • 150 parts 13 parts of acetylene black as a conductive agent, and butyl acrylate-styrene copolymer (butyl acrylate / styrene copolymer ratio) as a binder 70/30, Tg-2 ° C.) xylene solution was added in an amount of 3 parts corresponding to the solid content, and the solid content was adjusted to 80% with xylene as an organic solvent, and then mixed for 60 minutes with a planetary mixer.
  • the solid content concentration was adjusted to 76% with xylene, and then mixed for 10 minutes to prepare a positive electrode active material layer slurry composition.
  • the viscosity of the slurry composition for a positive electrode active material layer was 5300 mPa ⁇ s.
  • the viscosity of the negative electrode active material layer slurry composition was 5300 mPa ⁇ s.
  • the thickness of the solid electrolyte layer is 1 to 15 ⁇ m
  • the solid electrolyte layer is composed of the solid electrolyte particles A having an average particle diameter of 1.5 ⁇ m or less, and the cumulative amount of the solid electrolyte particles A is 90%.
  • the particle diameter is 2.5 ⁇ m or less
  • the positive electrode active material layer and the negative electrode active material layer contain solid electrolyte particles B
  • the average particle diameter of the solid electrolyte particles B is smaller than the average particle diameter of the solid electrolyte particles A
  • a solid electrolyte layer is formed by applying the product on the positive electrode active material layer and / or the negative electrode active material layer, and the viscosity of the slurry composition for the positive electrode active material layer or the slurry composition for the negative electrode active material layer
  • the viscosity of the slurry composition for the solid electrolyte layer is 3000 to 20000 mPa ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 【課題】 固体電解質層の薄層化が可能であり、内部抵抗の小さい全固体二次電池を提供すること。また、極薄の固体電解質層を形成することができる全固体二次電池の製造方法を提供すること。さらにまた、固体電解質層用スラリー組成物の塗布ムラが少なく、内部抵抗を小さくすることができる全固体二次電池の製造方法を提供すること。 【解決手段】 本発明に係る全固体二次電池は、正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、前記固体電解質層の厚さが、1~15μmであり、前記固体電解質層は、平均粒子径が1.5μm以下の固体電解質粒子Aを含み、前記固体電解質粒子Aの累積90%の粒子径が2.5μm以下であり、前記正極活物質層及び前記負極活物質層には固体電解質粒子Bが含まれ、前記固体電解質粒子Bの平均粒子径が、前記固体電解質粒子Aの平均粒子径よりも小さく、その差が0.3μm以上2.0μm以下であることを特徴とする。

Description

全固体二次電池及び全固体二次電池の製造方法
 本発明は、全固体リチウムイオン二次電池等の全固体二次電池、及び、その製造方法に関する。
 近年、リチウム電池等の二次電池は、携帯情報端末や携帯電子機器などの携帯端末に加えて、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車など、様々な用途での需要が増加している。
 用途が広がるに伴い、二次電池の更なる安全性の向上が要求されている。安全性を確保するために、液漏れを防止する方法や、引火性が高く漏洩時の発火危険性が非常に高い有機溶媒電解質に代えて、無機固体電解質を用いる方法が有効である。
 無機固体電解質は、無機物からなる固体電解質であって不燃性物質であり、通常使用される有機溶媒電解質と比較し安全性が非常に高い。特許文献1に記載されているように、無機固体電解質を用いた高い安全性を備えた全固体二次電池の開発が進んでいる。
 全固体二次電池は、正極及び負極の間に、電解質層として無機固体電解質層を有する。特許文献2及び特許文献3には、固体電解質粒子と溶媒とを含む固体電解質層用スラリー組成物を、正極又は負極の上に塗布し乾燥することにより固体電解質層を形成した全固体リチウム二次電池が記載されている。
特開昭59-151770号公報 特開2009-176484号公報 特開2009-211950号公報
 しかしながら、本発明者らの検討によれば、特許文献2や3に記載の全固体リチウム二次電池では、固体電解質層と活物質層との密着性が必ずしも十分ではなく、電池の内部抵抗が大きくなる場合があることがわかった。そして、その原因が、固体電解質層と活物質層において、同一の固体電解質粒子、すなわち粒子径が同一の固体電解質粒子を使用していることにあることがわかった。
 さらに、特許文献2では、実施例において、ロールプレスにより固体電解質層を形成している。ロールプレスにより固体電解質層を形成するためには、固体電解質層にある程度の厚みを持たせる必要がある。固体電解質層が厚くなると、全固体二次電池の内部抵抗が増大し、出力特性が低下するという問題があることがわかった。
 したがって、本発明は、固体電解質層の薄層化が可能であり、内部抵抗の小さい全固体二次電池を提供することを目的としている。また、本発明は、極薄の固体電解質層を形成することができる全固体二次電池の製造方法を提供することを目的としている。さらにまた、固体電解質層用スラリー組成物の塗布ムラが少なく、内部抵抗を小さくすることができる全固体二次電池の製造方法を提供することを目的とする。
 このような課題の解決を目的とした本発明の要旨は以下のとおりである。
(1)正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、
 前記固体電解質層の厚さが、1~15μmであり、
 前記固体電解質層は、平均粒子径が1.5μm以下の固体電解質粒子Aを含み、
 前記固体電解質粒子Aの累積90%の粒子径が2.5μm以下であり、
 前記正極活物質層及び前記負極活物質層には固体電解質粒子Bが含まれ、
 前記固体電解質粒子Bの平均粒子径が、前記固体電解質粒子Aの平均粒子径よりも小さく、その差が0.3μm以上2.0μm以下である、全固体二次電池。
(2)前記固体電解質粒子Aおよび/または前記固体電解質粒子Bが、LiSとPとからなる硫化物ガラスである(1)に記載の全固体二次電池。
(3)前記固体電解質層には結着剤aが含まれ、
前記結着剤aが、(メタ)アクリレートから導かれるモノマー単位を含むアクリル系重合体である(1)または(2)に記載の全固体二次電池。
(4)前記正極活物質層には結着剤b1が含まれ、
 前記結着剤b1が、(メタ)アクリレートから導かれるモノマー単位を含むアクリル系重合体であり、
 前記アクリル系重合体における(メタ)アクリレートから導かれるモノマー単位の含有割合が、60~100質量%である(1)~(3)のいずれかに記載の全固体二次電池。
(5)前記負極活物質層には結着剤b2が含まれ、
 前記結着剤b2が、共役ジエンから導かれるモノマー単位と芳香族ビニルから導かれるモノマー単位を含むジエン系重合体であり、
 前記ジエン系重合体における共役ジエンから導かれるモノマー単位の含有割合が、30~70質量%であり、
 前記ジエン系重合体における芳香族ビニルから導かれるモノマー単位の含有割合が、30~70質量%である(1)~(4)のいずれかに記載の全固体二次電池。
(6)上記(1)~(5)のいずれかに記載の全固体二次電池を製造する方法であって、
 正極活物質、固体電解質粒子B及び結着剤b1を含む正極活物質層用スラリー組成物を、集電体上に塗布して正極活物質層を形成する工程、
 負極活物質、固体電解質粒子B及び結着剤b2を含む負極活物質層用スラリー組成物を、集電体上に塗布して負極活物質層を形成する工程、
 固体電解質粒子A及び結着剤aを含む固体電解質層用スラリー組成物を、前記正極活物質層および/または前記負極活物質層の上に塗布して固体電解質層を形成する工程を有し、
 前記正極活物質層用スラリー組成物または前記負極活物質層用スラリー組成物の粘度が、3000~50000mPa・sであり、
 前記固体電解質層用スラリー組成物の粘度が、10~500mPa・sである全固体二次電池の製造方法。
 本発明によれば、特定の粒子径を有する固体電解質粒子を用いることにより、固体電解質層を薄層化することができる。そのため、内部抵抗の小さい全固体二次電池を提供することができる。また、本発明によれば、正極活物質層用スラリー組成物または負極活物質層用スラリー組成物の粘度並びに固体電解質層用スラリー組成物の粘度を特定の範囲に設定することにより、分散性及び塗工性の良好なスラリー組成物を得ることができるため、固体電解質層を極薄に形成することができる。そのため、内部抵抗の小さい全固体二次電池を提供することができる。また、これらのスラリー組成物を用いることにより、高いイオン伝導性を示す全固体二次電池を提供することができる。さらにまた、本発明により、生産性に優れる全固体二次電池を製造することができる。
(全固体二次電池)
 本発明の全固体二次電池は、正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する。正極は集電体上に正極活物質層を有し、負極は集電体上に負極活物質層を有する。以下において、(1)固体電解質層、(2)正極活物質層、(3)負極活物質層、(4)集電体の順に説明する。
(1)固体電解質層
 固体電解質層は、固体電解質粒子A及び好ましくは結着剤aを含む固体電解質層用スラリー組成物を、後述する正極活物質層または負極活物質層の上に塗布し、乾燥することにより形成される。固体電解質層用スラリー組成物は、固体電解質粒子A、結着剤a、有機溶媒及び必要に応じて添加される他の成分を混練することにより製造される。
(固体電解質粒子A)
 固体電解質粒子Aの平均粒子径(個数平均粒子径)は1.5μm以下であり、好ましくは0.3~1.3μmである。また、固体電解質粒子Aの累積90%の粒子径は2.5μm以下であり、好ましくは0.5~2.3μmである。固体電解質粒子Aの平均粒子径及び累積90%の粒子径が上記範囲にあることで、分散性及び塗工性の良好な固体電解質層用スラリー組成物を得ることができる。固体電解質粒子Aの平均粒子径が1.5μmより大きくなると、固体電解質層用スラリー組成物中での固体電解質粒子Aの沈降速度が速く、塗布法等で均質な薄膜を形成することが困難になる。また、固体電解質粒子Aの累積90%の粒子径が2.5μmより大きくなると、固体電解質層中の空孔率が高くなり、イオン伝導度が低下する。また、固体電解質粒子Aの平均粒子径または累積90%の粒子径が小さすぎると、粒子の表面積が増加し、該スラリー組成物中の有機溶媒が蒸発しにくくなる。そのため、乾燥時間が長くなり、電池の生産性が落ちる。
 固体電解質粒子Aは、リチウムイオンの伝導性を有していれば特に限定されないが、結晶性の無機リチウムイオン伝導体、又は非晶性の無機リチウムイオン伝導体を含むことが好ましい。
 結晶性の無機リチウムイオン伝導体としては、LiN、LISICON(Li14Zn(GeO、ペロブスカイト型Li0.5La0.5TiO、LIPON(Li3+yPO4-x)、Thio-LISICON(Li3.25Ge0.250.75)などが挙げられる。
 非晶性の無機リチウムイオン伝導体としては、Sを含有し、かつ、イオン伝導性を有するものであれば特に限定されるものではない。ここで、本発明における全固体二次電池が、全固体リチウム二次電池である場合、用いられる硫化物固体電解質材料として、LiSと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。このような原料組成物を用いて硫化物固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法および溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。メカニカルミリング法によれば、常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 上記第13族~第15族の元素としては、例えばAl、Si、Ge、P、As、Sb等を挙げることができる。また、第13族~第15族の元素の硫化物としては、具体的には、Al、SiS、GeS、P、P、As、Sb等を挙げることができる。中でも、本発明においては、第14族または第15族の硫化物を用いることが好ましい。特に、本発明においては、LiSと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなる硫化物固体電解質材料は、LiS-P材料、LiS-SiS材料、LiS-GeS材料またはLiS-Al材料であることが好ましく、LiS-P材料であることがより好ましい。これらは、Liイオン伝導性が優れているからである。
 また、本発明における硫化物固体電解質材料は、架橋硫黄を有することが好ましい。架橋硫黄を有することで、イオン伝導性が高くなるからである。さらに、硫化物固体電解質材料が架橋硫黄を有する場合、正極活物質との反応性が高く、高抵抗層が生じやすいため、高抵抗層の発生を抑制できるという本発明の効果を充分に発揮することができる。なお、「架橋硫黄を有する」ことは、例えば、ラマン分光スペクトルによる測定結果、原料組成比、NMRによる測定結果等を考慮することでも判断することができる。
 LiS-P材料またはLiS-Al材料におけるLiSのモル分率は、例えば50~74%の範囲内、中でも60~74%の範囲内であることが好ましい。上記範囲内であれば、より確実に架橋硫黄を有する硫化物固体電解質材料を得ることができるからである。
 また、本発明における硫化物固体電解質材料は、硫化物ガラスであっても良く、その硫化物ガラスを熱処理して得られる結晶化硫化物ガラスであっても良い。硫化物ガラスは、例えば、上述した非晶質化法により得ることができる。結晶化硫化物ガラスは、例えば、硫化物ガラスを熱処理することにより得ることができる。
 特に、本発明においては、硫化物固体電解質材料が、Li11で表される結晶化硫化物ガラスであることが好ましい。Liイオン伝導度が特に優れているからである。Li11を合成する方法としては、例えば、LiSおよびPを、モル比70:30で混合し、ボールミルで非晶質化することで、硫化物ガラスを合成し、得られた硫化物ガラスを150℃~360℃で熱処理することにより、Li11を合成することができる。
(結着剤a)
 結着剤aは、固体電解質粒子A同士を結着して固体電解質層を形成するためのものである。結着剤aとしては、例えば、フッ素系重合体、ジエン系重合体、アクリル系重合体、シリコーン系重合体等の高分子化合物が挙げられ、フッ素系重合体、ジエン系重合体又はアクリル系重合体が好ましく、アクリル系重合体が、耐電圧を高くでき、かつ全固体二次電池のエネルギー密度を高くすることができる点でより好ましい。
 アクリル系重合体は、(メタ)アクリレートから導かれるモノマー単位を含む重合体であり、具体的には、(メタ)アクリレートの単独重合体、(メタ)アクリレートの共重合体、並びに(メタ)アクリレートと該(メタ)アクリレートと共重合可能な他の単量体との共重合体が挙げられる。
 (メタ)アクリレートとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、ベンジルアクリレートなどのアクリル酸アルキルエステル;アクリル酸-2-メトキシエチル、アクリル酸-2-エトキシエチルなどのアクリル酸アルコキシアルキルエステル;アクリル酸2-(パーフルオロブチル)エチル、アクリル酸2-(パーフルオロペンチル)エチルなどのアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、およびメタクリル酸t-ブチル、メタクリル酸-2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、ベンジルメタクリレートなどのメタクリル酸アルキルエステル;メタクリル酸2-(パーフルオロブチル)エチル、メタクリル酸2-(パーフルオロペンチル)エチルなどのメタクリル酸2-(パーフルオロアルキル)エチル;が挙げられる。これらの中でも、本発明においては固体電解質との密着性の高さからアクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、ベンジルアクリレートなどのアクリル酸アルキルエステル;アクリル酸-2-メトキシエチル、アクリル酸-2-エトキシエチルなどのアクリル酸アルコキシアルキルエステルが好ましい。
 アクリル系重合体における(メタ)アクリレートから導かれるモノマー単位の含有割合は、通常40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上である。なお、アクリル系重合体における(メタ)アクリレートから導かれるモノマー単位の含有割合の上限は、通常100質量%以下、好ましくは95質量%以下である。
 また、アクリル系重合体としては、(メタ)アクリレートと、該(メタ)アクリレートと共重合可能な単量体との共重合体が好ましい。前記共重合可能な単量体としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系単量体;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体; 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類; N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。その中でも、有機溶媒への溶解性の観点から、スチレン系単量体、アミド系単量体、α,β-不飽和ニトリル化合物が好ましい。アクリル系重合体における、前記共重合可能な単量体単位の含有割合は、通常60質量%以下、好ましくは55質量%以下、より好ましくは25質量%以上45質量%以下である。
 アクリル系重合体の製造方法は特に限定はされず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。
 結着剤aのガラス転移温度(Tg)は、好ましくは-50~25℃、より好ましくは-45~15℃、特に好ましくは-40~5℃である。結着剤aのTgが上記範囲にあることにより、優れた強度と柔軟性を有し、高い出力特性の全固体二次電池を得ることができる。なお、結着剤aのガラス転移温度は、様々な単量体を組み合わせることによって調製可能である。
 固体電解質層用スラリー組成物中の結着剤aの含有量は、固体電解質粒子A100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~7質量部、特に好ましくは0.5~5質量部である。結着剤aの含有量が上記範囲にあることで、固体電解質粒子A同士の結着性を維持しながら、リチウムの移動を阻害して固体電解質層の抵抗が増大することを抑制できる。
(有機溶媒)
 有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレンなどの芳香族炭化水素類が挙げられる。これらの溶媒は、単独または2種以上を混合して、乾燥速度や環境上の観点から適宜選択して用いることができ、中でも、本発明においては固体電解質粒子Aとの反応性の観点から、芳香族炭化水素類から選ばれる非極性溶媒を用いることが好ましい。
 固体電解質層用スラリー組成物中の有機溶媒の含有量は、固体電解質粒子A100質量部に対して、好ましくは10~700質量部、より好ましくは30~500質量部である。有機溶媒の含有量を上記範囲とすることにより、固体電解質層用スラリー組成物中の固体電解質粒子Aの分散性を保持しながら、良好な塗料特性を得ることができる。
 固体電解質層用スラリー組成物は、上記成分の他に、必要に応じて添加される他の成分として、分散剤、レベリング剤及び消泡剤の機能を有する成分を含んでいてもよい。これらの成分は、電池反応に影響を及ぼさないものであれば、特に制限されない。
(分散剤)
 分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は、用いる固体電解質粒子に応じて選択される。固体電解質層用スラリー組成物中の分散剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
(レベリング剤)
 レベリング剤としてはアルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。上記界面活性剤を混合することにより、固体電解質層用スラリー組成物を後述する正極活物質層又は負極活物質層の表面に塗工する際に発生するはじきを防止でき、正負極の平滑性を向上させることができる。固体電解質層用スラリー組成物中のレベリング剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
(消泡剤)
 消泡剤としてはミネラルオイル系消泡剤、シリコーン系消泡剤、ポリマー系消泡剤が例示される。消泡剤は、用いる固体電解質粒子に応じて選択される。固体電解質層用スラリー組成物中の消泡剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
(2)正極活物質層
 正極活物質層は、正極活物質、固体電解質粒子B及び好ましくは結着剤b1を含む正極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。正極活物質層用スラリー組成物は、正極活物質、固体電解質粒子B、結着剤b1、有機溶媒及び必要に応じて添加される他の成分を混練することにより製造される。
(正極活物質)
 正極活物質は、リチウムイオンを吸蔵および放出可能な化合物である。正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。
 有機化合物からなる正極活物質としては、例えば、ポリアニリン、ポリピロール、ポリアセン、ジスルフィド系化合物、ポリスルフィド系化合物、N-フルオロピリジニウム塩などが挙げられる。正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。
 本発明で用いる正極活物質の平均粒子径は、負荷特性、サイクル特性などの電池特性の向上の観点から、通常0.1~50μm、好ましくは1~20μmである。平均粒子径が上記範囲であると、充放電容量が大きい全固体二次電池を得ることができ、かつ正極活物質層用スラリー組成物の取扱い、および正極を製造する際の取扱いが容易である。平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる。
(固体電解質粒子B)
 固体電解質粒子Bは、その平均粒子径(個数平均粒子径)が、上述した固体電解質粒子Aの平均粒子径よりも小さく、その差は0.3μm以上、好ましくは0.5μm以上、より好ましくは0.7μm以上、2.0μm以下、好ましくは1.3μm以下、より好ましくは1.0μm以下である。固体電解質粒子Bの平均粒子径と固体電解質粒子Aの平均粒子径との差が0.3μm未満または2.0μmを超えると、固体電解質層と正極活物質層との密着性が低下し、電極中の内部抵抗が大きくなる。なお、固体電解質粒子Bとしては、粒子径を除き、上述した固体電解質粒子Aと同様のものを用いることができ、固体電解質粒子Aにおいて例示したものと同じものを例示することができる。
 正極活物質と固体電解質粒子Bの重量比率は、正極活物質:固体電解質粒子B=90:10~50:50、好ましくは60:40~80:20である。上記範囲よりも正極活物質の重量比率が少ない場合、電池内の正極活物質量が低減し、電池としての容量低下につながる。また、上記範囲よりも固体電解質粒子の重量比率が少ない場合、導電性が十分に得られず、正極活物質を有効に利用することができない為、電池としての容量低下につながる。
(結着剤b1)
 結着剤b1は、正極活物質同士、固体電解質粒子B同士、正極活物質と固体電解質粒子Bとを結着して正極活物質層を形成するためのものである。結着剤b1としては、例えば、フッ素系重合体、ジエン系重合体、アクリル系重合体、シリコーン系重合体等の高分子化合物が挙げられ、フッ素系重合体、ジエン系重合体又はアクリル系重合体が好ましく、アクリル系重合体が、耐電圧を高くでき、かつ全固体二次電池のエネルギー密度を高くすることができる点でより好ましい。
 アクリル系重合体は、(メタ)アクリレートから導かれるモノマー単位を含む重合体であり、(メタ)アクリレートとしては、上述の固体電解質層における結着剤aにおいて例示したものと同様のものが挙げられる。また、結着剤b1として好適なアクリル系重合体における(メタ)アクリレートから導かれるモノマー単位の含有割合は、好ましくは60~100質量%、より好ましくは65~90質量%である。
 また、アクリル系重合体としては、(メタ)アクリレートと、該(メタ)アクリレートと共重合可能な単量体との共重合体が好ましい。前記共重合可能な単量体、アクリル系重合体の製造方法、該製造方法に用いられる重合開始剤は、上述の固体電解質層における結着剤において例示したものと同様である。
 結着剤b1のガラス転移温度(Tg)は、好ましくは-50~25℃、より好ましくは-45~15℃、特に好ましくは-40~5℃である。結着剤b1のTgが上記範囲にあることにより、優れた強度と柔軟性を有し、高い出力特性の全固体二次電池を得ることができる。なお、結着剤b1のガラス転移温度は、様々な単量体を組み合わせることによって調製可能である。
 正極活物質層用スラリー組成物中の結着剤b1の含有量は、正極活物質100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~4質量部である。結着剤b1の含有量が上記範囲にあることで、電池反応を阻害せずに、電極から正極活物質が脱落するのを防ぐことができる。
 正極活物質層用スラリー組成物中の有機溶媒及び必要に応じて添加される他の成分は、上記の固体電解質層で例示するものと同様のものを用いることができる。正極活物質層用スラリー組成物中の有機溶媒の含有量は、正極活物質100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部である。正極活物質層用スラリー組成物中の有機溶媒の含有量が上記範囲にあることで、固体電解質の分散性を保持しながら、良好な塗料特性を得ることができる。
 正極活物質層用スラリー組成物は、上記成分の他に、必要に応じて添加される他の成分として、導電剤、補強材などの各種の機能を発現する添加剤を含んでいてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
(導電剤)
 導電剤は、導電性を付与できるものであれば特に制限されないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。
(補強材)
 補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。
(3)負極活物質層
 負極活物質層は、負極活物質、固体電解質粒子B及び好ましくは結着剤b2を含む負極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。負極活物質層用スラリー組成物は、負極活物質、固体電解質粒子B、結着剤b2、有機溶媒及び必要に応じて添加される他の成分を混練することにより製造される。なお、負極活物質層用スラリー組成物中の固体電解質粒子B、有機溶媒及び必要に応じて添加される他の成分は、上記の正極活物質層で例示するものと同様のものを用いることができる。
(負極活物質)
 負極活物質としては、グラファイトやコークス等の炭素の同素体が挙げられる。前記炭素の同素体からなる負極活物質は、金属、金属塩、酸化物などとの混合体や被覆体の形態で利用することも出来る。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の酸化物や硫酸塩、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。負極活物質の平均粒子径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1~50μm、好ましくは15~30μmである。
(結着剤b2)
 結着剤b2は、負極活物質同士、固体電解質粒子B同士、負極活物質と固体電解質粒子Bとを結着して負極活物質層を形成するためのものである。結着剤b2としては、例えば、フッ素系重合体、ジエン系重合体、アクリル系重合体、シリコーン系重合体等の高分子化合物が挙げられる。結着剤b2としては、共役ジエンから導かれるモノマー単位と芳香族ビニルから導かれるモノマー単位とを含むジエン系重合体が好ましい。
 ジエン系重合体における共役ジエンから導かれるモノマー単位の含有割合が、好ましくは30~70質量%、より好ましくは35~65質量%であり、芳香族ビニルから導かれるモノマー単位の含有割合が、好ましくは30~70質量%、より好ましくは35~65質量%である。ジエン系重合体に含まれる共役ジエンから導かれるモノマー単位の含有割合及び芳香族ビニルから導かれるモノマー単位の含有割合を上記範囲とすることで、負極活物質同士、固体電解質粒子B同士、負極活物質と固体電解質粒子Bの粒子間の密着性が高い負極を得ることができる。
 共役ジエンとしては、ブタジエン、イソプレン、2-クロロ-1,3-ブタジエン、クロロプレンなどが挙げられる。これらの中でもブタジエンが好ましい。
 芳香族ビニルとしては、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼンなどが挙げられる。これらの中でもスチレン、α―メチルスチレン、ジビニルベンゼンが好ましい。
 また、負極活物質層に含まれる結着剤b2は、共役ジエンと、芳香族ビニルと、これらと共重合可能な単量体との共重合体であってもよい。前記共重合可能な単量体としては、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。ジエン系重合体における、前記共重合可能な単量体単位の含有割合は、好ましくは40質量%以下、より好ましくは20質量%以上40質量%以下である。
 負極活物質層に含まれる結着剤b2の製造方法は特に限定はされず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。
 結着剤b2のガラス転移温度(Tg)は、好ましくは-50~25℃、より好ましくは-45~15℃、特に好ましくは-40~5℃である。結着剤b2のTgが上記範囲にあることにより、優れた強度と柔軟性を有し、高い出力特性の全固体二次電池を得ることができる。なお、結着剤b2のガラス転移温度は、様々な単量体を組み合わせることによって調製可能である。
 負極活物質層用スラリー組成物中の結着剤b2の含有量は、負極活物質100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~4質量部である。結着剤b2の含有量が上記範囲にあることで、電池反応を阻害せずに、電極から電極活物質が脱落するのを防ぐことができる。
(4)集電体
 集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、上述した正・負極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、集電体と正・負極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
(固体電解質層用スラリー組成物の製造)
 固体電解質層用スラリー組成物は、上述した固体電解質粒子A、結着剤a、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。
(正極活物質層用スラリー組成物の製造)
 正極活物質層用スラリー組成物は、上述した正極活物質、固体電解質粒子B、結着剤b1、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。
(負極活物質層用スラリー組成物の製造)
 負極活物質層用スラリー組成物は、上述した負極活物質、固体電解質粒子B、結着剤b2、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。
 上記のスラリー組成物の混合法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、ビーズミル、プラネタリーミキサー、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用した方法が挙げられ、固体電解質粒子の凝集を抑制できるという観点からプラネタリーミキサー、ボールミル又はビーズミルを使用した方法が好ましい。
 上記により製造された固体電解質層用スラリー組成物の粘度は、10~500mPa・s、好ましくは15~400mPa・s、より好ましくは20~300mPa・sである。固体電解質層用スラリー組成物の粘度が上記範囲にあることで、該スラリー組成物の分散性及び塗工性が良好になる。該スラリー組成物の粘度が10mPa・s未満であると、固体電解質層用スラリー組成物が垂れやすい。また、該スラリー組成物の粘度が500mPa・sを超えると、固体電解質層の薄膜化が困難になる。
 上記により製造された正極活物質層用スラリー組成物及び負極活物質層用スラリー組成物の粘度は、3000~50000mPa・s、好ましくは4000~30000mPa・s、より好ましくは5000~10000mPa・sである。正極活物質層用スラリー組成物及び負極活物質層用スラリー組成物の粘度が上記範囲にあることで、該スラリー組成物の分散性及び塗工性が良好になる。該スラリー組成物の粘度が3000mPa・s未満であると、該スラリー組成物中の活物質及び固体電解質粒子Bが沈降しやすくなる。また、該スラリー組成物の粘度が50000mPa・sを超えると、塗膜の均一性が失われる。
(全固体二次電池)
 本発明の全固体二次電池は、正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する。固体電解質層の厚さは1~15μm、好ましくは2~13μm、より好ましくは3~10μmである。固体電解質層の厚さが上記範囲にあることで、全固体二次電池の内部抵抗を小さくすることができる。固体電解質層の厚さが1μm未満であると、全固体二次電池がショートしてしまう。また、固体電解質層の厚さが15μmよりも大きいと、電池の内部抵抗が大きくなる。
 本発明の全固体二次電池における正極は、上記の正極活物質層用スラリー組成物を集電体上に塗布、乾燥して正極活物質層を形成して製造される。また、本発明の全固体二次電池における負極は、上記の負極活物質層用スラリー組成物を、正極の集電体とは別の集電体上に塗布、乾燥して負極活物質層を形成して製造される。次いで、形成した正極活物質層または負極活物質層の上に、固体電解質層用スラリー組成物を塗布し、乾燥して固体電解質層を形成する。そして、固体電解質層を形成しなかった電極と、上記の固体電解質層を形成した電極とを貼り合わせることで、全固体二次電池素子を製造する。
 正極活物質層用スラリー組成物および負極活物質層用スラリー組成物の集電体への塗布方法は特に限定されず、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって塗布される。塗布する量も特に制限されないが、有機溶媒を除去した後に形成される活物質層の厚さが通常5~300μm、好ましくは10~250μmになる程度の量である。乾燥方法も特に制限されず、例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥が挙げられる。乾燥条件は、通常は応力集中が起こって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲の中で、できるだけ早く有機溶媒が揮発するように調整する。更に、乾燥後の電極をプレスすることにより電極を安定させてもよい。プレス方法は、金型プレスやカレンダープレスなどの方法が挙げられるが、限定されるものではない。
 乾燥温度は、有機溶媒が十分に揮発する温度で行う。具体的には50~250℃が好ましく、さらには80~200℃が好ましい。上記範囲とすることにより、結着剤の熱分解なく良好な活物質層を形成することが可能となる。乾燥時間については、特に限定されることはないが、通常10~60分の範囲で行われる。
 固体電解質層用スラリー組成物を、正極活物質層又は負極活物質層へ塗布する方法は特に限定されず、上述した正極活物質層用スラリー組成物および負極活物質層用スラリー組成物の集電体への塗布方法と同様の方法により行われるが、薄膜の固体電解質層を形成できるという観点からグラビア法が好ましい。塗布する量も特に制限されないが、有機溶媒を除去した後に形成される固体電解質層の厚さが通常1~15μm、好ましくは2~13μmになる程度の量である。乾燥方法、乾燥条件及び乾燥温度も、上述の正極活物質層用スラリー組成物および負極活物質層用スラリー組成物と同様である。
 更に、上記の固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせた積層体を、加圧してもよい。加圧方法としては特に限定されず、例えば、平板プレス、ロールプレス、CIP(Cold Isostatic Press)などが挙げられる。加圧プレスする圧力としては、好ましくは5~700MPa、より好ましくは7~500MPaである。加圧プレスの圧力を上記範囲とすることにより、電極と固体電解質層との各界面における抵抗、更には各層内の粒子間の接触抵抗が低くなり良好な電池特性を示すからである。なお、プレスにより固体電解質層および活物質層は圧縮され、プレス前よりも厚みが薄くなることがある。プレスを行う場合、本発明における固体電解質層および活物質層の厚みは、プレス後の厚みが前記範囲にあればよい。
 正極活物質層または負極活物質層のどちらに固体電解質層用スラリー組成物を塗布するかは特に限定されないが、使用する電極活物質の粒子径が大きい方の活物質層に固体電解質層用スラリー組成物を塗布することが好ましい。電極活物質の粒子径が大きいと、活物質層表面に凹凸が形成されるため、スラリー組成物を塗布することで、活物質層表面の凹凸を緩和することができる。そのため、固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせて積層する際に、固体電解質層と電極との接触面積が大きくなり、界面抵抗を抑制することができる。
 得られた全固体二次電池素子を、電池形状に応じてそのままの状態又は巻く、折るなどして電池容器に入れ、封口して全固体二次電池が得られる。また、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを電池容器に入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
 以下に、実施例を挙げて本発明を説明するが、本発明はこれらの実施例によりなんら限定されるものではない。各特性は、以下の方法により評価する。なお、本実施例における「部」および「%」は、特に断りのない限り、それぞれ、「質量部」および「質量%」である。
<固体電解質層の厚さ測定>
 JIS K5600-1-7:1999に準じて、プレス後の全固体二次電池固体電解質層断面を走査型電子顕微鏡 ( 日立ハイテクフィールディング社製 S-4700)を用いて5000倍で電解質層膜厚をランダムに10点計測し、その平均値から算出した。
<粒子径測定>
 JIS Z8825-1:2001に準じて、レーザー解析装置(島津製作所社製 レーザー回折式粒度分布測定装置 SALD-3100)により累積粒度分布の微粒側からの累積50%の粒子径(個数平均粒子径)及び累積90%の粒子径を測定した。
<粘度測定>
 JIS Z8803:1991に準じて、単一円筒形回転粘度計(東機産業社製 RB80L)(25℃、回転数:6rpm、ローター形状:No.1(粘度1,000mPa・s以下、No.2(粘度1,000~5,000mPa・s)、No.3(粘度5,000~20,000mPa・s))により測定し、測定開始後1分の粘度を測定し、これをスラリー組成物の粘度とした。
<電池特性:出力特性>
 10セルの全固体二次電池を0.1Cの定電流法によって4.3Vまで充電しその後0.1Cにて3.0Vまで放電し、0.1C放電容量aを求める。その後0.1Cにて4.3Vまで充電しその後10Cにて3.0Vまで放電し、10C放電容量bを求める。10セルの平均値を測定値とし、10C放電容量bと0.1C放電容量aの電気容量の比(b/a(%))で表される容量保持率を求め、これを出力特性の評価基準とし、以下の基準で評価する。この値が高いほど出力特性に優れている、すなわち内部抵抗が小さいことを意味する。
A:70%以上
B:60%以上70%未満
C:40%以上60%未満
D:20%以上40%未満
E:20%未満
<電池特性:充放電サイクル特性>
 得られた全固体二次電池を用いて、それぞれ25℃で0.5Cの定電流定電圧充電法という方式で、4.2Vになるまで定電流で充電、その後定電圧で充電し、また0.5Cの定電流で3.0Vまで放電する充放電サイクルを行った。充放電サイクルは50サイクルまで行い、初期放電容量に対する50サイクル目の放電容量の比を容量維持率とし、下記の基準で判定する。この値が大きいほど繰り返し充放電による容量減が少ない、すなわち、内部抵抗が小さいことにより活物質、結着剤の劣化が抑制でき、充放電サイクル特性に優れることを示す。
A:60%以上
B:55%以上60%未満
C:50%以上55%未満
D:45%以上50%未満
E:45%未満
(実施例1)
<正極活物質層用スラリー組成物の製造>
 正極活物質としてコバルト酸リチウム(平均粒子径:11.5μm)100部と、固体電解質粒子BとしてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:0.4μm)150部と、導電剤としてアセチレンブラック13部と、結着剤としてアクリル酸ブチル-スチレン共重合体(アクリル酸ブチル/スチレンの共重合比率=70/30、Tg-2℃)のキシレン溶液を固形分相当で3部とを加え、さらに有機溶媒としてキシレンで固形分濃度78%に調整した後にプラネタリーミキサーで60分混合した。さらにキシレンで固形分濃度74%に調整した後に10分間混合して正極活物質層用スラリー組成物を調製した。正極活物質層用スラリー組成物の粘度は、6100mPa・sであった。
<負極活物質層用スラリー組成物の製造>
 負極活物質としてグラファイト(平均粒子径:20μm)100部と、固体電解質粒子BとしてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:0.4μm)50部と、結着剤としてスチレン-ブタジエン共重合体(スチレン/ブタジエンの共重合比率=50/50、Tg20℃)のキシレン溶液を固形分相当で3部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度60%に調整した後にプラネタリーミキサーで混合して負極活物質層用スラリー組成物を調製した。負極活物質層用スラリー組成物の粘度は、6100mPa・sであった。
<固体電解質層用スラリー組成物の製造>
 固体電解質粒子AとしてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:1.2μm、累積90%の粒子径:2.1μm)100部と、結着剤としてアクリル酸ブチル-スチレン共重合体(アクリル酸ブチル/スチレンの共重合比率=70/30、Tg-2℃)のキシレン溶液を固形分相当で3部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度30%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物を調製した。固体電解質層用スラリー組成物の粘度は、52mPa・sであった。
<全固体二次電池の製造>
 集電体表面に上記正極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて50μmの正極活物質層を形成して正極を製造した。また、別の集電体表面に上記負極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて30μmの負極活物質層を形成して負極を製造した。
 次いで、上記正極活物質層の表面に、上記固体電解質層用スラリー組成物を塗布し、乾燥(110℃、10分)させて11μmの固体電解質層を形成した。
 正極活物質層の表面に積層された固体電解質層と、上記負極の負極活物質層とを貼り合わせ、プレスして全固体二次電池を得た。プレス後の全固体二次電池の固体電解質層の厚さは9μmであった。また、固体電解質粒子Bの個数平均粒子径は、固体電解質粒子Aの個数平均粒子径よりも小さく、その差は、0.8μmであった。この電池を用いて出力特性及び充放電サイクル特性を評価した。結果を表1に示す。
(実施例2)
 以下の固体電解質層用スラリー組成物を用いたこと以外は、実施例1と同様に全固体二次電池を製造し、評価を行った。なお、プレス後の全固体二次電池の固体電解質層の厚さは7μmであった。また、固体電解質粒子Bの個数平均粒子径は、固体電解質粒子Aの個数平均粒子径よりも小さく、その差は、0.4μmであった。結果を表1に示す。
 固体電解質粒子AとしてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:0.8μm、累積90%の粒子径:1.8μm)100部と、結着剤としてアクリル酸ブチル-スチレン共重合体(アクリル酸ブチル/スチレンの共重合比率=70/30、Tg-2℃)のキシレン溶液を固形分相当で3部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度30%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物を調製した。固体電解質層用スラリー組成物の粘度は、130mPa・sであった。
(実施例3)
 固体電解質層用スラリー組成物の固形分濃度を35%に調整し、上記固体電解質層用スラリー組成物を塗布し、乾燥(110℃、10分)させて17μmの固体電解質層を形成し、プレス後の全固体二次電池の固体電解質層の厚さを14μmとしたこと以外は、実施例1と同様に全固体二次電池を製造し、評価を行った。なお、固体電解質層用スラリー組成物の粘度は、130mPa・sであった。
(実施例4)
 正極活物質層用スラリー組成物の固形分濃度を76%に調整し、正極活物質層用スラリー組成物の粘度を9500mPa・sに調整したこと以外は、実施例1と同様に全固体二次電池を製造し、評価を行った。
(実施例5)
 固体電解質層用スラリー組成物の固形分濃度を37%に調整し、上記固体電解質層用スラリー組成物を塗布し、乾燥(110℃、10分)させて19μmの固体電解質層を形成し、プレス後の全固体二次電池の固体電解質層の厚さを15μmとしたこと以外は、実施例1と同様に全固体二次電池を製造し、評価を行った。なお、固体電解質層用スラリー組成物の粘度は、280mPa・sであった。
(比較例1)
 固体電解質層用スラリー組成物の固形分濃度を45%に調整し、上記固体電解質層用スラリー組成物を塗布し、乾燥(110℃、10分)させて30μmの固体電解質層を形成し、プレス後の全固体二次電池の固体電解質層の厚さを25μmとしたこと以外は、実施例1と同様に全固体二次電池を製造し、評価を行った。なお、固体電解質層用スラリー組成物の粘度は、400mPa・sであった。
(比較例2)
 以下の固体電解質層用スラリー組成物を用いたこと以外は、実施例1と同様に全固体二次電池を製造し、評価を行った。なお、プレス後の全固体二次電池の固体電解質層の厚さは15μmであった。また、固体電解質粒子Bの個数平均粒子径は、固体電解質粒子Aの個数平均粒子径よりも小さく、その差は、1.4μmであった。結果を表1に示す。
 固体電解質粒子AとしてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:1.8μm、累積90%の粒子径:2.5μm)100部と、結着剤としてアクリル酸ブチル-スチレン共重合体(アクリル酸ブチル/スチレンの共重合比率=70/30、Tg-2℃)のキシレン溶液を固形分相当で3部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度33%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物を調製した。固体電解質層用スラリー組成物の粘度は、47mPa・sであった。
(比較例3)
 以下の固体電解質層用スラリー組成物を用いたこと以外は、実施例1と同様に全固体二次電池を製造し、評価を行った。なお、プレス後の全固体二次電池の固体電解質層の厚さは15μmであった。また、固体電解質粒子Bの個数平均粒子径は、固体電解質粒子Aの個数平均粒子径よりも小さく、その差は、0.9μmであった。結果を表1に示す。
 固体電解質粒子AとしてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:1.3μm、累積90%の粒子径:3.0μm)100部と、結着剤としてアクリル酸ブチル-スチレン共重合体(アクリル酸ブチル/スチレンの共重合比率=70/30、Tg-2℃)のキシレン溶液を固形分相当で3部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度32%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物を調製した。固体電解質層用スラリー組成物の粘度は、44mPa・sであった。
(比較例4)
 以下の正極活物質層用スラリー組成物及び負極活物質層用スラリー組成物を用いたこと以外は、実施例1と同様に全固体二次電池を製造し、評価を行った。なお、固体電解質層用スラリー組成物の粘度は、52mPa・sであった。また、プレス後の全固体二次電池の固体電解質層の厚さは9μmであった。また、固体電解質粒子Bの個数平均粒子径は、固体電解質粒子Aの個数平均粒子径よりも大きく、その差は、-0.8μmであった。結果を表1に示す。
 正極活物質としてコバルト酸リチウム(平均粒子径:11.5μm)100部と、固体電解質粒子BとしてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:2.0μm)150部と、導電剤としてアセチレンブラック13部と、結着剤としてアクリル酸ブチル-スチレン共重合体(アクリル酸ブチル/スチレンの共重合比率=70/30、Tg-2℃)のキシレン溶液を固形分相当で3部とを加え、さらに有機溶媒としてキシレンで固形分濃度80%に調整した後にプラネタリーミキサーで60分混合した。さらにキシレンで固形分濃度77%に調整した後に10分間混合して正極活物質層用スラリー組成物を調製した。正極活物質層用スラリー組成物の粘度は、4800mPa・sであった。
 負極活物質としてグラファイト(平均粒子径:20μm)100部と、固体電解質粒子BとしてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:2.0μm)50部と、結着剤としてスチレン-ブタジエン共重合体(スチレン/ブタジエンの共重合比率=50/50、Tg20℃)のキシレン溶液を固形分相当で3部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度65%に調整した後にプラネタリーミキサーで混合して負極活物質層用スラリー組成物を調製した。負極活物質層用スラリー組成物の粘度は、4800mPa・sであった。
(比較例5)
 以下の正極活物質層用スラリー組成物及び負極活物質層用スラリー組成物を用いたこと以外は、実施例1と同様に全固体二次電池を製造し、評価を行った。なお、固体電解質層用スラリー組成物の粘度は、52mPa・sであった。また、プレス後の全固体二次電池の固体電解質層の厚さは9μmであった。また、固体電解質粒子Bの平均粒子径と固体電解質粒子Aの平均粒子径は同じであった。結果を表1に示す。
 正極活物質としてコバルト酸リチウム(平均粒子径:11.5μm)100部と、固体電解質粒子BとしてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:1.2μm)150部と、導電剤としてアセチレンブラック13部と、結着剤としてアクリル酸ブチル-スチレン共重合体(アクリル酸ブチル/スチレンの共重合比率=70/30、Tg-2℃)のキシレン溶液を固形分相当で3部とを加え、さらに有機溶媒としてキシレンで固形分濃度80%に調整した後にプラネタリーミキサーで60分混合した。さらにキシレンで固形分濃度76%に調整した後に10分間混合して正極活物質層用スラリー組成物を調製した。正極活物質層用スラリー組成物の粘度は、5300mPa・sであった。
 負極活物質としてグラファイト(平均粒子径:20μm)100部と、固体電解質粒子BとしてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:1.2μm)50部と、結着剤としてスチレン-ブタジエン共重合体(スチレン/ブタジエンの共重合比率=50/50、Tg20℃)のキシレン溶液を固形分相当で3部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度65%に調整した後にプラネタリーミキサーで混合して負極活物質層用スラリー組成物を調製した。負極活物質層用スラリー組成物の粘度は、5300mPa・sであった。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、固体電解質層の厚さが、1~15μmであり、固体電解質層は、平均粒子径が1.5μm以下の固体電解質粒子Aからなり、固体電解質粒子Aの累積90%の粒子径が2.5μm以下であり、正極活物質層及び負極活物質層には固体電解質粒子Bが含まれ、固体電解質粒子Bの平均粒子径が固体電解質粒子Aの平均粒子径よりも小さく、その差が0.3μm以上である全固体二次電池を用いることによって、固体電解質層を薄層化することができる。そのため、全固体二次電池の内部抵抗を小さくすることができる。
 また、固体電解質粒子B、結着剤及び正極活物質からなる正極活物質層用スラリー組成物を、集電体上に塗布して正極活物質層を形成する工程、固体電解質粒子B、結着剤及び負極活物質からなる負極活物質層用スラリー組成物を、集電体上に塗布して負極活物質層を形成する工程、固体電解質粒子A及び結着剤からなる固体電解質層用スラリー組成物を、正極活物質層および/または負極活物質層の上に塗布して固体電解質層を形成する工程を有し、正極活物質層用スラリー組成物または負極活物質層用スラリー組成物の粘度が、3000~20000mPa・sであり、固体電解質層用スラリー組成物の粘度が、10~500mPa・sである全固体二次電池の製造方法によれば、分散性及び塗工性の良好なスラリー組成物を得ることができるため、固体電解質層を極めて薄く形成することができる。そのため、全固体二次電池の内部抵抗を小さくすることができる。また、これらのスラリー組成物を用いることにより、全固体二次電池のイオン伝導性を高めることができる。さらにまた、本発明の全固体二次電池は、生産性に優れる。

Claims (6)

  1.  正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、
     前記固体電解質層の厚さが、1~15μmであり、
     前記固体電解質層は、平均粒子径が1.5μm以下の固体電解質粒子Aを含み、
     前記固体電解質粒子Aの累積90%の粒子径が2.5μm以下であり、
     前記正極活物質層及び前記負極活物質層には固体電解質粒子Bが含まれ、
     前記固体電解質粒子Bの平均粒子径が、前記固体電解質粒子Aの平均粒子径よりも小さく、その差が0.3μm以上2.0μm以下である、全固体二次電池。
  2.  前記固体電解質粒子Aおよび/または前記固体電解質粒子Bが、LiSとPとからなる硫化物ガラスである請求項1に記載の全固体二次電池。
  3.  前記固体電解質層には結着剤aが含まれ、
    前記結着剤aが、(メタ)アクリレートから導かれるモノマー単位を含むアクリル系重合体である請求項1または2に記載の全固体二次電池。
  4.  前記正極活物質層には結着剤b1が含まれ、
     前記結着剤b1が、(メタ)アクリレートから導かれるモノマー単位を含むアクリル系重合体であり、
     前記アクリル系重合体における(メタ)アクリレートから導かれるモノマー単位の含有割合が、60~100質量%である請求項1~3のいずれかに記載の全固体二次電池。 
  5.  前記負極活物質層には結着剤b2が含まれ、
     前記結着剤b2が、共役ジエンから導かれるモノマー単位と芳香族ビニルから導かれるモノマー単位を含むジエン系重合体であり、
     前記ジエン系重合体における共役ジエンから導かれるモノマー単位の含有割合が、30~70質量%であり、
     前記ジエン系重合体における芳香族ビニルから導かれるモノマー単位の含有割合が、30~70質量%である請求項1~4のいずれかに記載の全固体二次電池。
  6.  請求項1~5のいずれかに記載の全固体二次電池を製造する方法であって、
     正極活物質、固体電解質粒子B及び結着剤b1を含む正極活物質層用スラリー組成物を、集電体上に塗布して正極活物質層を形成する工程、
     負極活物質、固体電解質粒子B及び結着剤b2を含む負極活物質層用スラリー組成物を、集電体上に塗布して負極活物質層を形成する工程、
     固体電解質粒子A及び結着剤aを含む固体電解質層用スラリー組成物を、前記正極活物質層および/または前記負極活物質層の上に塗布して固体電解質層を形成する工程を有し、
     前記正極活物質層用スラリー組成物または前記負極活物質層用スラリー組成物の粘度が、3000~50000mPa・sであり、
     前記固体電解質層用スラリー組成物の粘度が、10~500mPa・sである全固体二次電池の製造方法。
PCT/JP2011/054369 2010-02-26 2011-02-25 全固体二次電池及び全固体二次電池の製造方法 WO2011105574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127022198A KR101664526B1 (ko) 2010-02-26 2011-02-25 전고체 2 차 전지 및 전고체 2 차 전지의 제조 방법
US13/581,188 US20130040206A1 (en) 2010-02-26 2011-02-25 All solid-state secondary battery and a production method of an all solid-state secondary battery
JP2012501893A JP5644851B2 (ja) 2010-02-26 2011-02-25 全固体二次電池及び全固体二次電池の製造方法
CN201180020463.9A CN102859780B (zh) 2010-02-26 2011-02-25 全固体二次电池及全固体二次电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-043016 2010-02-26
JP2010043016 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105574A1 true WO2011105574A1 (ja) 2011-09-01

Family

ID=44506971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054369 WO2011105574A1 (ja) 2010-02-26 2011-02-25 全固体二次電池及び全固体二次電池の製造方法

Country Status (5)

Country Link
US (1) US20130040206A1 (ja)
JP (1) JP5644851B2 (ja)
KR (1) KR101664526B1 (ja)
CN (1) CN102859780B (ja)
WO (1) WO2011105574A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094437A (ja) * 2010-10-28 2012-05-17 Toyota Motor Corp 全固体電池
WO2013076854A1 (ja) * 2011-11-24 2013-05-30 トヨタ自動車株式会社 全固体電池
JP2013157084A (ja) * 2012-01-26 2013-08-15 Toyota Motor Corp 全固体電池
WO2013153693A1 (ja) * 2012-04-13 2013-10-17 株式会社村田製作所 硫化物固体電池用の固体電解質、電極、それらを用いた硫化物固体電池、およびそれらの製造方法
JP2013258080A (ja) * 2012-06-13 2013-12-26 Nagase Chemtex Corp 正極合材
WO2014010341A1 (ja) * 2012-07-12 2014-01-16 トヨタ自動車株式会社 被覆活物質の製造方法
JP2014035818A (ja) * 2012-08-07 2014-02-24 Tdk Corp 全固体リチウムイオン二次電池
US20140227593A1 (en) * 2012-11-30 2014-08-14 Lg Chem, Ltd. Slurry wth improved dispersibility and its use
US20140377664A1 (en) * 2012-01-10 2014-12-25 The Regents Of The University Of Colorado, A Body Corporate Lithium all-solid-state battery
WO2015125800A1 (ja) * 2014-02-24 2015-08-27 富士フイルム株式会社 固体電解質組成物およびその製造方法、これを用いた電池用電極シートおよび全固体二次電池
JP2016502746A (ja) * 2013-11-26 2016-01-28 エルジー・ケム・リミテッド 固体電解質層を含む二次電池
WO2016017758A1 (ja) * 2014-07-31 2016-02-04 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
JP2017062938A (ja) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 電極積層体及び全固体電池の製造方法
JP2017157305A (ja) * 2016-02-29 2017-09-07 Fdk株式会社 全固体電池の製造方法および全固体電池
JP2017168387A (ja) * 2016-03-18 2017-09-21 古河機械金属株式会社 無機固体電解質材料、固体電解質シートおよび全固体型リチウムイオン電池
KR20180041091A (ko) 2015-08-27 2018-04-23 니폰 제온 가부시키가이샤 전고체 전지용 바인더 조성물
KR20180050603A (ko) 2015-09-10 2018-05-15 니폰 제온 가부시키가이샤 전고체 전지용 바인더 조성물
JP2018120709A (ja) * 2017-01-24 2018-08-02 日立造船株式会社 全固体電池およびその製造方法
CN110165300A (zh) * 2018-02-14 2019-08-23 丰田自动车株式会社 全固体电池的制造方法
JP2019192597A (ja) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 固体電解質層の製造方法
US10535896B2 (en) 2014-02-17 2020-01-14 Fujifilm Corporation Solid electrolyte composition containing nonspherical polymer particles, dispersion medium and inorganic solid electrolyte
WO2020039999A1 (ja) * 2018-08-21 2020-02-27 エムテックスマート株式会社 全固体電池の製造方法
US10763542B2 (en) 2014-07-31 2020-09-01 Fujifilm Corporation All solid-state secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for battery, and method for manufacturing all solid-state secondary battery
US10797304B2 (en) 2015-03-25 2020-10-06 Zeon Corporation All-solid-state secondary battery
US10797343B2 (en) 2015-09-16 2020-10-06 Zeon Corporation Binder for all-solid-state secondary batteries, and all-solid-state secondary battery
WO2020241322A1 (ja) * 2019-05-31 2020-12-03 日本ゼオン株式会社 全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池、並びに全固体二次電池用スラリー組成物の製造方法
WO2021210315A1 (ja) * 2020-04-16 2021-10-21 古河機械金属株式会社 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2022518316A (ja) * 2019-05-15 2022-03-15 エルジー エナジー ソリューション リミテッド 全固体電池用電極及びそれを含む電極組立体の製造方法
WO2023008151A1 (ja) * 2021-07-30 2023-02-02 日本ゼオン株式会社 全固体二次電池用スラリー組成物、固体電解質含有層及び全固体二次電池
CN116001332A (zh) * 2022-12-26 2023-04-25 江苏大学 固态隔膜的制造设备及方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455471B2 (en) * 2012-03-28 2016-09-27 Zeon Corporation Electrode for all solid-state secondary battery and method for producing same
JP5742905B2 (ja) * 2013-09-27 2015-07-01 トヨタ自動車株式会社 正極活物質層
KR101788232B1 (ko) * 2014-10-06 2017-10-19 주식회사 엘지화학 접착력이 개선된 리튬 이차전지용 전극
KR101637775B1 (ko) 2014-12-11 2016-07-07 현대자동차주식회사 황화물계 고체전해질 시트 및 이를 이용한 전고체 전지
KR101724817B1 (ko) * 2015-01-08 2017-04-07 현대자동차주식회사 고체 전해질막의 제조방법
JP6681603B2 (ja) * 2015-05-26 2020-04-15 パナソニックIpマネジメント株式会社 全固体リチウムイオン二次電池、および、その製造方法
JP6296030B2 (ja) * 2015-09-24 2018-03-20 トヨタ自動車株式会社 電極積層体及び全固体電池の製造方法
JP6319335B2 (ja) * 2016-01-18 2018-05-09 トヨタ自動車株式会社 全固体電池の製造方法
WO2017150354A1 (ja) * 2016-02-29 2017-09-08 日立造船株式会社 全固体二次電池およびその製造方法
WO2017209233A1 (ja) * 2016-06-03 2017-12-07 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池ならびに固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
PL3471182T3 (pl) * 2016-06-09 2021-02-08 Zeon Corporation Kompozycja substancji wiążącej do baterii z elektrolitem stałym i kompozycja zawiesinowa do baterii z elektrolitem stałym
US9972863B2 (en) 2016-07-29 2018-05-15 Blue Current, Inc. Compliant solid-state ionically conductive composite electrolytes and materials
KR101846695B1 (ko) * 2016-08-18 2018-04-06 현대자동차주식회사 전고체 전지용 양극 슬러리 조성물 및 이를 포함하는 전고체 전지용 양극
KR102496183B1 (ko) 2016-12-28 2023-02-03 현대자동차주식회사 전고체 전지용 고체 전해질 시트 및 이의 제조방법, 및 이를 이용한 전고체 전지
CN108258305B (zh) * 2016-12-28 2020-08-18 财团法人工业技术研究院 电解质与电池
JP6941808B2 (ja) * 2017-02-03 2021-09-29 パナソニックIpマネジメント株式会社 全固体電池
US10079404B1 (en) 2017-03-03 2018-09-18 Blue Current, Inc. Polymerized in-situ hybrid solid ion-conductive compositions
US10457781B2 (en) 2017-03-03 2019-10-29 Blue Current, Inc. Polymerized in-situ hybrid solid ion-conductive compositions
KR102359583B1 (ko) * 2017-05-08 2022-02-07 현대자동차주식회사 고체전해질 및 이를 포함하는 전고체 전지의 제조방법
KR102507006B1 (ko) * 2017-09-11 2023-03-06 현대자동차주식회사 전고체 전지 및 그 제조방법
KR102540503B1 (ko) 2017-12-06 2023-06-05 현대자동차주식회사 전고체 전지용 바인더 용액
KR102621697B1 (ko) 2018-08-16 2024-01-04 현대자동차주식회사 전고체 전지용 바인더 용액, 이를 포함하는 전극 슬러리 및 이를 사용한 전고체 전지의 제조방법
JP7045292B2 (ja) * 2018-09-11 2022-03-31 太陽誘電株式会社 全固体電池、全固体電池の製造方法、および固体電解質ペースト
KR102602825B1 (ko) * 2018-09-28 2023-11-15 후지필름 가부시키가이샤 전극용 조성물, 전고체 이차 전지용 전극 시트와 전고체 이차 전지, 및 전고체 이차 전지용 전극 시트 혹은 전고체 이차 전지의 제조 방법
JP7380579B2 (ja) * 2018-09-28 2023-11-15 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
EP3904405A4 (en) * 2018-12-28 2022-09-21 Zeon Corporation ALL SOLID SECONDARY BATTERY ELECTRODE CONDUCTIVE MATERIAL PASTE
US11581570B2 (en) 2019-01-07 2023-02-14 Blue Current, Inc. Polyurethane hybrid solid ion-conductive compositions
US11108035B2 (en) * 2019-01-08 2021-08-31 Samsung Electronics Co., Ltd. Solid-state positive electrode, method of manufacture thereof, and battery including the electrode
CN111416115A (zh) * 2019-01-08 2020-07-14 三星电子株式会社 用于固态二次电池的正极、其制备方法、正极组件及固态二次电池
CN113544875A (zh) * 2019-03-12 2021-10-22 三菱瓦斯化学株式会社 全固体电池的制造方法
WO2021003712A1 (zh) * 2019-07-10 2021-01-14 瑞声声学科技(深圳)有限公司 固态电池的制备方法及固态电池
JP7297916B2 (ja) * 2019-10-30 2023-06-26 富士フイルム株式会社 リチウムイオン二次電池及びその製造方法、並びにリチウムイオン二次電池用固体電解質膜及びその製造方法
WO2021127542A1 (en) 2019-12-20 2021-06-24 Blue Current, Inc. Composite electrolytes with binders
US11394054B2 (en) 2019-12-20 2022-07-19 Blue Current, Inc. Polymer microspheres as binders for composite electrolytes
KR20210082575A (ko) 2019-12-26 2021-07-06 현대자동차주식회사 리튬 이온 전도성이 있는 전고체 전지용 바인더 용액 및 이를 포함하는 전극 슬러리
KR20210155840A (ko) 2020-06-16 2021-12-24 현대자동차주식회사 입자 형태의 바인더를 포함하는 전고체 전지용 바인더 용액 및 이의 제조방법
KR20220014451A (ko) 2020-07-28 2022-02-07 현대자동차주식회사 전고체 전지용 복합 바인더 조성물, 이를 포함하는 전극 슬러리 및 이를 이용한 전고체 전지용 전극의 제조방법
CN112803064B (zh) * 2021-02-02 2022-08-30 中国科学院青岛生物能源与过程研究所 一种硫化物复合固态电解质膜、制备方法及应用
JP2023089551A (ja) * 2021-12-16 2023-06-28 株式会社リコー 液体組成物、収容容器、並びに固体電解質層又は電極合材層の製造装置及び製造方法
CN115064655B (zh) * 2022-06-29 2024-02-09 中汽创智科技有限公司 一种全固态电池极片及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195310A (ja) * 1996-11-18 1998-07-28 Nippon Zeon Co Ltd ラテックス、その製法および用途
JP2004185862A (ja) * 2002-11-29 2004-07-02 Ohara Inc リチウムイオン二次電池及びその製造方法
JP2005011540A (ja) * 2003-06-16 2005-01-13 Toshiba Corp 非水電解液二次電池
JP2006086102A (ja) * 2004-08-17 2006-03-30 Ohara Inc リチウムイオン二次電池および固体電解質
JP2007141649A (ja) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd 非水電解液二次電池用正極合剤ペーストの製造方法とその正極合剤ペーストを用いた非水電解液二次電池
JP2008546135A (ja) * 2005-05-17 2008-12-18 エルジー・ケム・リミテッド 多重積層電気化学セルを含む電気化学素子用のバインダー
JP2009181877A (ja) * 2008-01-31 2009-08-13 Ohara Inc 固体電池およびその電極の製造方法
JP2009211950A (ja) * 2008-03-04 2009-09-17 Idemitsu Kosan Co Ltd 固体電解質及びその製造方法
JP2009545128A (ja) * 2006-07-28 2009-12-17 エルジー・ケム・リミテッド 高温における貯蔵性能を改良するためのアノード及びそれを備えてなるリチウム二次バッテリー
JP2010056093A (ja) * 2009-12-01 2010-03-11 Ohara Inc リチウムイオン二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670906B2 (ja) 1983-02-16 1994-09-07 三洋電機株式会社 固体電解質電池
EP1028476A4 (en) * 1998-09-08 2007-11-28 Sumitomo Metal Ind NEGATIVE ELECTRODE MATERIAL FOR NONAQUEOUS ELECTRODE SECONDARY ACCUMULATOR AND PROCESS FOR PRODUCTION THEREOF
KR100754258B1 (ko) * 2003-02-20 2007-09-03 미쓰비시 가가꾸 가부시키가이샤 리튬 2 차 전지의 음전극용 활성 재료, 리튬 2 차 전지의 음전극 및 리튬 2 차 전지
CN101040401A (zh) * 2004-08-17 2007-09-19 株式会社小原 锂离子二次电池及其固体电解质
CN101233648B (zh) * 2005-08-02 2011-02-16 出光兴产株式会社 固体电解质片
US9580320B2 (en) * 2005-10-13 2017-02-28 Ohara Inc. Lithium ion conductive solid electrolyte and method for manufacturing the same
JP2009176484A (ja) 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195310A (ja) * 1996-11-18 1998-07-28 Nippon Zeon Co Ltd ラテックス、その製法および用途
JP2004185862A (ja) * 2002-11-29 2004-07-02 Ohara Inc リチウムイオン二次電池及びその製造方法
JP2005011540A (ja) * 2003-06-16 2005-01-13 Toshiba Corp 非水電解液二次電池
JP2006086102A (ja) * 2004-08-17 2006-03-30 Ohara Inc リチウムイオン二次電池および固体電解質
JP2008546135A (ja) * 2005-05-17 2008-12-18 エルジー・ケム・リミテッド 多重積層電気化学セルを含む電気化学素子用のバインダー
JP2007141649A (ja) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd 非水電解液二次電池用正極合剤ペーストの製造方法とその正極合剤ペーストを用いた非水電解液二次電池
JP2009545128A (ja) * 2006-07-28 2009-12-17 エルジー・ケム・リミテッド 高温における貯蔵性能を改良するためのアノード及びそれを備えてなるリチウム二次バッテリー
JP2009181877A (ja) * 2008-01-31 2009-08-13 Ohara Inc 固体電池およびその電極の製造方法
JP2009211950A (ja) * 2008-03-04 2009-09-17 Idemitsu Kosan Co Ltd 固体電解質及びその製造方法
JP2010056093A (ja) * 2009-12-01 2010-03-11 Ohara Inc リチウムイオン二次電池

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094437A (ja) * 2010-10-28 2012-05-17 Toyota Motor Corp 全固体電池
WO2013076854A1 (ja) * 2011-11-24 2013-05-30 トヨタ自動車株式会社 全固体電池
US20140377664A1 (en) * 2012-01-10 2014-12-25 The Regents Of The University Of Colorado, A Body Corporate Lithium all-solid-state battery
US20220223907A1 (en) * 2012-01-10 2022-07-14 The Regents Of The University Of Colorado, A Body Corporate Lithium all-solid-state battery
US11870032B2 (en) * 2012-01-10 2024-01-09 The Regents Of The University Of Colorado, A Body Corporate Lithium all-solid-state battery
JP2013157084A (ja) * 2012-01-26 2013-08-15 Toyota Motor Corp 全固体電池
WO2013153693A1 (ja) * 2012-04-13 2013-10-17 株式会社村田製作所 硫化物固体電池用の固体電解質、電極、それらを用いた硫化物固体電池、およびそれらの製造方法
JP2013258080A (ja) * 2012-06-13 2013-12-26 Nagase Chemtex Corp 正極合材
CN104412421A (zh) * 2012-07-12 2015-03-11 丰田自动车株式会社 被覆活性物质的制造方法
EP2874209A4 (en) * 2012-07-12 2016-03-16 Toyota Motor Co Ltd PROCESS FOR PRODUCING COATED ACTIVE MATERIAL
JP2014022074A (ja) * 2012-07-12 2014-02-03 Toyota Motor Corp 被覆活物質の製造方法
WO2014010341A1 (ja) * 2012-07-12 2014-01-16 トヨタ自動車株式会社 被覆活物質の製造方法
JP2014035818A (ja) * 2012-08-07 2014-02-24 Tdk Corp 全固体リチウムイオン二次電池
US20140227593A1 (en) * 2012-11-30 2014-08-14 Lg Chem, Ltd. Slurry wth improved dispersibility and its use
US9991491B2 (en) * 2012-11-30 2018-06-05 Lg Chem, Ltd. Slurry including inorganic particles with improve dispersibility by controlling particle size and slurry viscosity
JP2015534710A (ja) * 2012-11-30 2015-12-03 エルジー・ケム・リミテッド 改善された分散性を有するスラリー及びその用途
US11031656B2 (en) 2012-11-30 2021-06-08 Lg Chem, Ltd. Composite separator including porous coating layer made from slurry having improved dispersibility
JP2016502746A (ja) * 2013-11-26 2016-01-28 エルジー・ケム・リミテッド 固体電解質層を含む二次電池
US9583786B2 (en) 2013-11-26 2017-02-28 Lg Chem, Ltd. Secondary battery including solid electrolyte layer
US10535896B2 (en) 2014-02-17 2020-01-14 Fujifilm Corporation Solid electrolyte composition containing nonspherical polymer particles, dispersion medium and inorganic solid electrolyte
WO2015125800A1 (ja) * 2014-02-24 2015-08-27 富士フイルム株式会社 固体電解質組成物およびその製造方法、これを用いた電池用電極シートおよび全固体二次電池
JPWO2016017758A1 (ja) * 2014-07-31 2017-04-27 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
WO2016017758A1 (ja) * 2014-07-31 2016-02-04 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
US11817548B2 (en) 2014-07-31 2023-11-14 Fujifilm Corporation All solid-state secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for battery, and method for manufacturing all solid-state secondary battery
US10763542B2 (en) 2014-07-31 2020-09-01 Fujifilm Corporation All solid-state secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for battery, and method for manufacturing all solid-state secondary battery
US10644349B2 (en) 2014-07-31 2020-05-05 Fujifilm Corporation All solid-state secondary battery, solid electrolyte composition, electrode sheet for battery using same, method for manufacturing electrode sheet for battery, and method for manufacturing all solid-state secondary battery
US10797304B2 (en) 2015-03-25 2020-10-06 Zeon Corporation All-solid-state secondary battery
KR20180041091A (ko) 2015-08-27 2018-04-23 니폰 제온 가부시키가이샤 전고체 전지용 바인더 조성물
US10622633B2 (en) 2015-09-10 2020-04-14 Zeon Corporation Binder composition for all-solid-state battery
KR20180050603A (ko) 2015-09-10 2018-05-15 니폰 제온 가부시키가이샤 전고체 전지용 바인더 조성물
US10797343B2 (en) 2015-09-16 2020-10-06 Zeon Corporation Binder for all-solid-state secondary batteries, and all-solid-state secondary battery
JP2017062938A (ja) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 電極積層体及び全固体電池の製造方法
JP2017157305A (ja) * 2016-02-29 2017-09-07 Fdk株式会社 全固体電池の製造方法および全固体電池
JP2017168387A (ja) * 2016-03-18 2017-09-21 古河機械金属株式会社 無機固体電解質材料、固体電解質シートおよび全固体型リチウムイオン電池
US11876171B2 (en) 2017-01-24 2024-01-16 Hitachi Zosen Corporation All-solid-state battery and production method of the same
WO2018139448A1 (ja) * 2017-01-24 2018-08-02 日立造船株式会社 全固体電池およびその製造方法
JP2018120709A (ja) * 2017-01-24 2018-08-02 日立造船株式会社 全固体電池およびその製造方法
JP7129144B2 (ja) 2017-01-24 2022-09-01 日立造船株式会社 全固体電池およびその製造方法
CN110165300A (zh) * 2018-02-14 2019-08-23 丰田自动车株式会社 全固体电池的制造方法
CN110165300B (zh) * 2018-02-14 2022-06-14 丰田自动车株式会社 全固体电池的制造方法
JP2019192597A (ja) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 固体電解質層の製造方法
US11894542B2 (en) 2018-08-21 2024-02-06 Mtek-Smart Corporation Method for manufacturing all-solid-state battery
WO2020039999A1 (ja) * 2018-08-21 2020-02-27 エムテックスマート株式会社 全固体電池の製造方法
US11811043B2 (en) 2019-05-15 2023-11-07 Lg Energy Solution, Ltd. Electrode for all-solid-state battery and method for manufacturing electrode assembly comprising the same
JP2022518316A (ja) * 2019-05-15 2022-03-15 エルジー エナジー ソリューション リミテッド 全固体電池用電極及びそれを含む電極組立体の製造方法
JP7125548B2 (ja) 2019-05-15 2022-08-24 エルジー エナジー ソリューション リミテッド 全固体電池用電極及びそれを含む電極組立体の製造方法
EP3979361A4 (en) * 2019-05-31 2023-05-24 Zeon Corporation FULLY SOLID SECONDARY BATTERY PASTE COMPOSITION, SOLID ELECTROLYTE CONTAINING LAYER, FULLY SOLID SECONDARY BATTERY, AND METHOD FOR MAKING A FULLY SOLID SECONDARY BATTERY PASTE COMPOSITION
WO2020241322A1 (ja) * 2019-05-31 2020-12-03 日本ゼオン株式会社 全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池、並びに全固体二次電池用スラリー組成物の製造方法
WO2021210315A1 (ja) * 2020-04-16 2021-10-21 古河機械金属株式会社 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP7477602B2 (ja) 2020-04-16 2024-05-01 古河機械金属株式会社 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
WO2023008151A1 (ja) * 2021-07-30 2023-02-02 日本ゼオン株式会社 全固体二次電池用スラリー組成物、固体電解質含有層及び全固体二次電池
CN116001332A (zh) * 2022-12-26 2023-04-25 江苏大学 固态隔膜的制造设备及方法
CN116001332B (zh) * 2022-12-26 2024-05-10 江苏大学 固态隔膜的制造设备及方法

Also Published As

Publication number Publication date
US20130040206A1 (en) 2013-02-14
KR20130056204A (ko) 2013-05-29
JP5644851B2 (ja) 2014-12-24
JPWO2011105574A1 (ja) 2013-06-20
CN102859780A (zh) 2013-01-02
KR101664526B1 (ko) 2016-10-11
CN102859780B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5644851B2 (ja) 全固体二次電池及び全固体二次電池の製造方法
CN107210482B (zh) 全固体二次电池
JP6834963B2 (ja) 全固体二次電池および全固体二次電池の製造方法
JP5768815B2 (ja) 全固体二次電池
JP6459691B2 (ja) 全固体二次電池
JP7017081B2 (ja) 全固体二次電池用バインダー、全固体二次電池用バインダーの製造方法および全固体二次電池
JP7003917B2 (ja) 固体電解質電池用バインダー組成物
JP6904345B2 (ja) 固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物
WO2014051032A1 (ja) 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池
JP6904360B2 (ja) 全固体電池用バインダ組成物、全固体電池用スラリー組成物、全固体電池用電極、および全固体電池
WO2017033600A1 (ja) 全固体電池用バインダ組成物
JP2016181472A (ja) 全固体二次電池
WO2019225705A1 (ja) 二次電池電極合剤層用組成物及び二次電池電極

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020463.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501893

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127022198

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13581188

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11747530

Country of ref document: EP

Kind code of ref document: A1