WO2011092748A1 - 皿形砥石を用いたレンズ球面の研削加工方法 - Google Patents

皿形砥石を用いたレンズ球面の研削加工方法 Download PDF

Info

Publication number
WO2011092748A1
WO2011092748A1 PCT/JP2010/000563 JP2010000563W WO2011092748A1 WO 2011092748 A1 WO2011092748 A1 WO 2011092748A1 JP 2010000563 W JP2010000563 W JP 2010000563W WO 2011092748 A1 WO2011092748 A1 WO 2011092748A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
lens
processing pressure
grindstone
spherical
Prior art date
Application number
PCT/JP2010/000563
Other languages
English (en)
French (fr)
Inventor
小嶋秀夫
福沢浩
大槻善之
Original Assignee
有限会社コジマエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社コジマエンジニアリング filed Critical 有限会社コジマエンジニアリング
Priority to US13/575,711 priority Critical patent/US20120289127A1/en
Priority to KR1020127020725A priority patent/KR101584265B1/ko
Priority to PCT/JP2010/000563 priority patent/WO2011092748A1/ja
Priority to EP10844519.8A priority patent/EP2529886B1/en
Priority to JP2011551589A priority patent/JP5453459B2/ja
Priority to CN201080062578.XA priority patent/CN102725104B/zh
Priority to TW099105673A priority patent/TWI415709B/zh
Publication of WO2011092748A1 publication Critical patent/WO2011092748A1/ja
Priority to HK13102050.8A priority patent/HK1174871A1/xx

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/02Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made

Definitions

  • the present invention relates to a method of grinding a spherical lens using a ball core type lens grinding apparatus. More specifically, the present invention relates to a method for grinding a lens spherical surface capable of continuously performing rough grinding and fine grinding of a lens material using only a dish-shaped grindstone for fine grinding, by unifying the rough grinding process and the fine grinding process.
  • a spherical lens In grinding processing of a spherical lens, rough grinding is performed on a lens material made of a press-formed product or a cylindrical lens material obtained by cutting a round rod-like lens material (rough grinding process), A rough grinding lens having an approximately spherical lens surface is obtained. Next, the spherical lens surface of the rough grinding lens is finely ground (fine grinding step) to obtain a finely ground lens having a spherical lens surface with a predetermined shape accuracy. The spherical lens surface obtained by grinding is subjected to polishing to obtain a lens having a lens spherical surface with a target final shape accuracy.
  • the conventional grinding process of the spherical lens includes the rough grinding process and the fine grinding process.
  • the rough grinding process is performed by a grinding machine using a cup-type grindstone
  • the fine grinding process is performed by a grinding device using a disc-shaped grindstone.
  • Methods for grinding such a spherical lens are disclosed in Patent Documents 1, 2, and 3.
  • Patent Literatures 1 and 2 rough grinding and fine grinding are performed without using separate devices by exchanging the cup-shaped grindstone and the disc-shaped grindstone in the same grinding device.
  • Patent Document 3 discloses a method of performing precision grinding using a cup-type grinding wheel used for rough grinding.
  • the object of the present invention is to unify the rough grinding process and the fine grinding process, grind the surface of the lens material using only the plate-shaped tool used for the fine grinding, and carry out the polishing process. It is an object of the present invention to propose a method of grinding a spherical lens which can obtain a lens surface in a finely ground state which can be transferred.
  • the present invention is A disc-shaped grindstone having a spherical grindstone surface provided with diamond abrasive grains is pressed against a surface to be ground of a lens material to be ground at a predetermined processing pressure, and in this state, the disc-shaped grindstone is rotated at a predetermined rotation number.
  • the second processing pressure is a pressure at which the spherical grindstone surface can bite into the lens material, and the hardness of the lens material, the ground surface of the lens material and the spherical grindstone surface of the dish-shaped grindstone
  • the bite amount of the disc-shaped grindstone is determined from the contact area of the second, and the second processing pressure is calculated based on the bite amount;
  • the second rotation number is set to a rotation number at which the diamond abrasive grains of the dish-shaped grindstone can bite into the lens material when the processing pressure is set to the second processing pressure
  • the first processing pressure is set to a value lower than the second processing pressure
  • the first rotation speed is set to a value lower than the second rotation speed.
  • the third processing pressure is set to a value lower than the first processing pressure, and the third rotation speed is set to a value lower than the second rotation speed and higher than the first rotation speed. .
  • the above-mentioned "number of rotations capable of biting into the lens material” is the maximum rotation at which the change in the processing time is almost eliminated when the number of rotations of the disc-shaped grindstone is changed by setting the processing pressure to the second processing pressure. It means the number of revolutions below the number. That is, if the number of rotations is higher than the maximum rotation number, the processing time will not be shortened, slippage will occur between the spherical grindstone surface of the dish-shaped grindstone and the surface to be ground of the lens material, and the abrasive grains will be on the surface of the lens material It will be a situation that can not eat.
  • the initial grinding process is performed until a state in which the to-be-ground surface of the lens material comes into contact with the spherical grindstone surface as a whole is formed, and in the middle-term grinding process, the central thickness of the lens material is a target It may be performed until a state thicker by a predetermined dimension than the value is formed.
  • the area where the surface to be ground of the lens material slides on the spherical grindstone surface of the dish-shaped grindstone is periodically changed at least in the middle-stage grinding step.
  • the second processing pressure is 10 kg / square cm
  • the second rotation speed is 1500 rpm
  • the first processing pressure is 2 kg / square cm.
  • the first rotation number may be set to 400 to 600 rpm
  • the third processing pressure may be set to 1.5 kg / square cm
  • the third rotation number may be set to 1000 rpm.
  • the ball core type lens grinding apparatus of the present invention is A lens holder for holding the lens material; A disc-shaped grindstone provided with a spherical grindstone surface against which the to-be-ground surface of the lens material held by the lens holder is pressed; A pressure mechanism capable of selectively applying a first processing pressure, a second processing pressure, and a third processing pressure as a processing pressure for pressing the lens material onto the spherical grindstone surface; A rotation mechanism for rotating the dish-shaped grinding wheel; A rocking mechanism for rocking the countersink; It is characterized by having a controller which controls driving of the above-mentioned pressurization mechanism, the above-mentioned rotation mechanism, and the above-mentioned rocking mechanism, and performs the above-mentioned grinding method.
  • the present invention it is possible to simplify the processing technology, unify the facilities, and unify the management by processing only by the fine grinding processing of the lens, thereby the accuracy of the grinding processing of the lens spherical surface, Quality can be improved.
  • FIG. 1 is a mechanism diagram showing an example of a ball core type lens grinding apparatus for grinding a spherical lens according to the method of the present invention.
  • the ball core type lens grinding apparatus 1 includes an upper unit 2 and a lower unit 3.
  • the upper unit 2 is provided with the lens holder 4 in the downward state, and the lens holder 4 is attached to the lower end of the lens pressing shaft 5 and pressed downward by the pressing cylinder 6 in the direction of the unit central axis 2a. It is possible.
  • the downward lens holding surface 4 a of the lens holder 4 can hold the lens material 7 to be processed in a rotatable state around the unit central axis 2 a.
  • the upper unit 2 is movable relative to the lower unit 3 in a direction toward and away from the lower unit 3.
  • the lower unit 3 is provided with a dish-shaped grindstone 8 in an upward state, and the dish-shaped grindstone 8 has a concave spherical grindstone surface 8a provided with diamond abrasive grains, and the upper unit 2 is provided on the spherical grindstone surface 8a.
  • the surface to be ground 7a of the lens material 7 held on the side of the lens is pressed.
  • the disc-shaped grindstone 8 is coaxially fixed to the upper end of the spindle shaft 9, and the spindle shaft 9 is rotationally driven by a spindle motor 10 about its central axis 9a.
  • the disc-shaped grindstone 8 and its rotation mechanism (spindle shaft 9 and spindle motor 10) are supported by a swing mechanism 11, and the swing mechanism 11 is a disc-shaped grindstone 8 whose spherical grindstone surface 8a is the central axis It is possible to rock in the set rocking direction at a set machining radius R at a set rocking angle ⁇ around a rocking center O located on 2a.
  • the pressurizing force by the pressurizing cylinder 6 can be switched in three stages by the first regulator 12, the second regulator 13 and the third regulator 14.
  • the working fluid whose pressure is set by these first to third regulators 12, 13 and 14 is supplied to the pressurizing cylinder 6 via the first to third switching valves 15, 16 and 17 which can be switched on and off, respectively.
  • the switching control of the pressing force by the pressing mechanism is the first to sixth This can be done by switching the third switching valves 15-17.
  • the controller 18 performs drive control of each part, and switching control of the first to third switching valves 15 to 17 of the pressurizing mechanism is performed by the controller 18. Further, the controller 18 monitors the grinding amount of the lens material 7 based on the measurement result by the length measuring device 19 and performs switching control of the switching valves 15 to 17 in accordance with the grinding amount. The processing pressure for pressing the to-be-ground surface 7 a against the spherical grindstone surface 8 a of the dish-shaped grindstone 8 is switched. Furthermore, the controller 18 drives and controls the spindle motor 10 via the inverter 20 to control the rotational speed of the dish-shaped grinding wheel 8. Furthermore, the controller 18 drives and controls the swing mechanism 11 via the driver 21 to perform switching control of the swing direction of the countersunk stone 8 and the swing angle ⁇ , and change the swing position and the like.
  • FIG. 2 is a schematic flow chart showing the grinding processing operation of the spherical lens by the ball core type lens grinding processing apparatus 1.
  • the lens material 7 is attached to the lens holding surface 4a of the lens holder 4 and the ground surface 7a of the lens material 7 is pressed against the spherical grindstone surface 8a of the disc-shaped grindstone 8
  • the applied state is formed (lens material supply process ST1).
  • initial grinding process ST2 until predetermined time passes from the start time of grinding processing, grinding processing is performed in the state which pressed lens raw material 7 on plate shaped grinding stone 8 with processing pressure set to the 1st regulator 12.
  • the processing pressure is preferably kept to a minimum so that the lens material 7 does not fall off between the lens holder 4 and the disc-shaped grindstone 8 because the area in which the lens material 7 contacts the dish-shaped grindstone 8 is small. It is smaller than the processing pressure in the middle stage grinding process which is the next process.
  • the rotational speed of the dish-shaped grindstone 8 in the initial grinding process be a low rotational speed
  • the processing pressure is increased. It switches to the processing pressure set to the regulator 13. As a result, the grinding process shifts to the middle-stage grinding step S3.
  • the processing pressure in the middle-stage grinding step ST3 is a pressure at which the abrasive grains (diamond cutting tool) of the dish-shaped grinding stone 8 can bite into the lens material 7. It is desirable to set the processing pressure to the minimum value of the pressure that can penetrate into the lens material 7 or a value close thereto.
  • the surface roughness usually required in spherical lens grinding is about 4 ⁇ m. Therefore, the processing pressure to be applied to the lens material 7 is the bite amount of the disk-shaped grindstone 8 from the hardness of the lens material 7 and the contact area of the surface to be ground 7a of the lens material and the spherical grindstone surface 8a of the disk-shaped grindstone 8 Based on this, it is possible to calculate the processing pressure in the medium-term grinding process.
  • the number of rotations of the dish-shaped grinding stone 8 in the middle-stage grinding process is set to a number of rotations in which the abrasive grains (diamond bites) of the dish-shaped grinding stone 8 can bite into the lens material 7.
  • the number of rotations capable of biting into the lens material 7 refers to the number of rotations equal to or less than the maximum number of rotations at which almost no change in machining time occurs when changing the number of rotations of the dish-shaped grinding wheel under the processing pressure set as described above. I mean.
  • the number of rotations is preferably set to the maximum value of the number of rotations that can be cut into the lens material 7 or a value near that.
  • the grinding proceeds in the middle stage grinding process, and the processing pressure is switched to the processing pressure set in the third regulator 14 when the center thickness of the lens material 7 becomes a value before the target thickness. Thereby, the grinding process shifts to the late grinding process ST4.
  • the progressing speed of the grinding process is reduced (the rotation speed of the dish-shaped grindstone 8 is decreased), and the surface thickness of the surface to be ground 7a is roughened in a state where no variation occurs in the center thickness of the lens material 7 Grind to achieve the target surface roughness.
  • the working pressure is set to a pressure lower than the working pressure in the initial grinding process, the number of revolutions of the disc-shaped grindstone 8 is lower than the number of revolutions in the middle stage grinding process, and the number of revolutions in the initial grinding process Is also set to a high value.
  • the processing pressure as the grinding processing condition and the number of rotations of the countersink can be set according to the hardness of the lens material. That is, the processing pressure may be in proportion to the hardness of the lens material, and the rotational speed may be in inverse proportion thereto.
  • the hardness data of the lens material can be easily obtained in the material catalog etc., and based on this, the optimum processing pressure and rotation number can be determined.
  • the position of the spherical grinding wheel surface 8a (the sliding area of the grinding surface 7a on the spherical grinding wheel surface 8a) on which the grinding surface 7a of the lens material 7 contacts is periodically changed to cause partial wear of the spherical grinding wheel surface 8a. It is desirable to keep the grinding accuracy constant by preventing it so that the whole wears uniformly. It is desirable to change at least in the medium-term grinding process.
  • the processing pressure at the initial stage of processing to a low pressure and the number of rotations to be low, it is possible to prevent chipping and cracking of the lens material to be processed.
  • the processing time can be shortened by switching the processing pressure to a high pressure and the number of rotations higher than in the initial processing.
  • the accuracy of the center thickness of the lens material is achieved by setting the processing pressure lower than in the initial processing, and making the rotation speed faster than the initial processing and to have a medium speed slower than the middle processing. Can be secured.
  • by changing the grinding conditions in multiple stages in accordance with the progress of grinding it is possible to form a highly precise polished surface on the lens material using only the dish-shaped grindstone.
  • the present inventors worked as follows using the grinding method of the present invention.
  • the processing data of this embodiment are as follows.
  • test was performed to determine the processing pressure.
  • the test conditions are as follows, and the test results are shown in the table and graph of FIG.
  • Ball core type lens grinding processing equipment NC polishing machine PM50 type (manufacturer: Kojima Engineering Co., Ltd.) Number of revolutions of dish type grinding wheel 1000rpm Lens contact area of dish-shaped whetstone 4.52 square cm Machining amount 0.1 mm
  • this point is the point of maximum processing efficiency, since the amount of wear hardly changes from around the rotational speed of 1500 rpm. That is, the rotation speed at which the change in processing time hardly disappears when the processing pressure is kept constant while the processing pressure is the maximum value of the "number of rotations capable of biting in”. If the rotation speed is higher than this, the lens material The disc-shaped grindstone slips, and the abrasive grains of the dish-shaped grindstone can not bite into the surface of the lens material. The maximum value of this "number of rotations that can be bitten” is the point of maximum processing efficiency. This maximum value varies depending on the hardness of the lens material, the particle size of the abrasive grains of the dish-shaped grindstone, the performance of the cutting fluid, and the like, and may be set by performing a test.
  • the processing pressure in the middle-stage grinding step ST3 is optimum at a processing pressure of 10 kg / square cm and a rotational speed of the dish-shaped grinding wheel of 1,500 rpm. Based on this, processing conditions in the initial grinding process ST2 and the late grinding process ST4 are set.
  • the thickness accuracy was within ⁇ 0.005 ⁇ m.
  • ⁇ H changed by ⁇ 0.001 ⁇ m after 150 times of processing.
  • the rocking position was shifted by 10% and processing was performed 150 times further, since ⁇ H returned to the reference value, the rocking position was returned to the original. It was confirmed that the curvature of the ground surface was within the range of 0 to 0.001 ⁇ m in ⁇ H by the continuation of these.

Abstract

球芯式レンズ研削加工装置(1)はダイヤモンド砥粒を備えた球状砥石面(8a)を備えた皿形砥石(8)を研削対象のレンズ素材(7)の被研削面(7a)に押しつけ、皿形砥石(8)を回転させ、同時に揺動させながら被研削面(7a)を球面に研削する。初期研削工程では第1加工圧力、第1回転数で研削を行い、中期研削工程では第2加工圧力、第2回転数で研削を行い、後期研削工程では第3加工圧力、第3回転数で研削を行う。第2加工圧力は球状砥石面(8a)がレンズ素材(7)に食い込み可能な圧力であり、レンズ素材(7)の硬さ及び、被研削面(7a)と球状砥石面(8a)の接触面積から、皿形砥石(8)の食い込み量を求め、当該食い込み量に基づき第2加工圧力を算出する。粗研削工程と精研削工程を一元化し、精研削に用いる皿形砥石のみを用いてレンズ素材の表面を球面に研削加工できる。

Description

皿形砥石を用いたレンズ球面の研削加工方法
 本発明は球芯式レンズ研削加工装置を用いた球面レンズの研削加工方法に関する。更に詳しくは、粗研削工程と精研削工程を一元化し、精研削用の皿形砥石のみを用いてレンズ素材の粗研削および精研削を連続して行うことのできるレンズ球面の研削加工方法に関する。
 球面レンズの研削加工においては、プレス成形品からなるレンズ素材、あるいは、丸棒状のレンズ素材をカットすることにより得られた円柱状のレンズ素材に対して粗研削を施して(粗研削工程)、大凡の球状レンズ面を備えた粗研削レンズを得るようにしている。次に、粗研削レンズの球状レンズ面に精研削を施して(精研削工程)、所定の形状精度の球状レンズ面を備えた精研削レンズを得るようにしている。研削加工によって得られた球状レンズ面には研磨加工が施されて、目標とする最終形状精度のレンズ球面を備えたレンズが得られる。
 このように、従来における球面レンズの研削加工は粗研削工程と精研削工程を含んでいる。粗研削工程ではカップ型砥石を用いた研削盤により粗研削加工が行われ、精研削工程では皿形砥石を用いた研削装置により精研削加工が行われる。このような球面レンズの研削加工方法は特許文献1、2、3に開示されている。特許文献1、2には、同一の研削装置においてカップ型砥石と皿形砥石を交換することにより、別個の装置を用いることなく、粗研削および精研削を行うようにしている。特許文献3には、粗研削に用いたカップ型砥石を用いて精研削を行う方法が開示されている。
特開2006-297520号公報 特開2009-66724号公報 特開2009-90414号公報
 粗研削工程と精研削工程からなる球面レンズの研削加工方法においては次のような解決すべき課題がある。まず、粗研削の加工精度の維持が困難な為、精研削工程において、レンズ素材の形状ばらつきに起因して皿形砥石の摩耗が激しく、精研削の精度を維持することが困難な場合がある。また、粗研削と精研削ではそれぞれ異なる加工技術が必要であり、それぞれの加工技術に熟練した技術者が必要とされている。
 本発明の課題は、このような点に鑑みて、粗研削工程と精研削工程を一元化し、精研削に用いる皿形工具のみを用いてレンズ素材の表面に研削加工を施して、研磨工程に移すことのできる精研削状態のレンズ球面を得ることのできる球面レンズの研削加工方法を提案することにある。
 上記の課題を解決するために、本発明は、
 ダイヤモンド砥粒を備えた球状砥石面を有する皿形砥石を、研削対象のレンズ素材の被研削面に所定の加工圧力で押しつけ、この状態で、前記皿形砥石を所定の回転数で回転させると共に揺動させながら前記被研削面を球面に研削する皿形砥石を用いたレンズ球面の研削加工方法であって、
 前記加工圧力が第1加工圧力、前記回転数が第1回転数で研削を行う初期研削工程と、
 前記加工圧力が第2加工圧力、前記回転数が第2回転数で研削を行う中期研削工程と、
 前記加工圧力が第3加工圧力、前記回転数が第3回転数で研削を行う後期研削工程とを有し、
 前記第2加工圧力は前記球状砥石面が前記レンズ素材に食い込み可能な圧力であり、前記レンズ素材の硬さ、および、前記レンズ素材の前記被研削面と前記皿形砥石の前記球状砥石面との接触面積から、前記皿形砥石の食い込み量を求め、当該食い込み量に基づき前記第2加工圧力を算出し、
 前記第2回転数を、前記加工圧力を前記第2加工圧力に設定した場合において前記皿形砥石の前記ダイヤモンド砥粒が前記レンズ素材に食い込み可能な回転数に設定し、
 前記第1加工圧力を前記第2加工圧力よりも低い値に設定し、前記第1回転数を前記第2回転数よりも低い値に設定し、
 前記第3加工圧力を前記第1加工圧力よりも低い値に設定し、前記第3回転数を前記第2回転数よりも低く前記第1回転数よりも高い値に設定することを特徴としている。
 上記の「レンズ素材に食い込み可能な回転数」とは、前記加工圧力を前記第2加工圧力に設定して皿形砥石の回転数を変化させた場合に、加工時間の変化がほぼ無くなる最大回転数以下の回転数を意味している。すなわち、この最大回転数よりも高い回転数では、加工時間が短縮されなくなり、皿形砥石の球状砥石面とレンズ素材の被研削面の間に滑りが発生し、砥粒がレンズ素材の表面に食い込めない状況になる。
 ここで、前記初期研削工程は、前記レンズ素材の前記被研削面が前記球状砥石面に全体として接触した状態が形成されるまで行い、前記中期研削工程は、前記レンズ素材の中心肉厚が目標値よりも予め設定した寸法だけ厚い状態が形成されるまで行うようにすればよい。
 また、少なくとも前記中期研削工程においては、前記レンズ素材の前記被研削面が前記皿形砥石の前記球状砥石面を摺動する領域を定期的に変化させることが望ましい。
 本発明において、前記レンズ素材の硬さがヌープ硬度630の場合には、前記第2加工圧力を10kg/平方cm、前記第2回転数を1500rpmとし、前記第1加工圧力を2kg/平方cm、前記第1回転数を400~600rpmとし、前記第3加工圧力を1.5kg/平方cm、前記第3回転数を1000rpmに設定することができる。
 次に、本発明の球芯式レンズ研削加工装置は、
 前記レンズ素材を保持するレンズ保持具と、
 前記レンズ保持具に保持された前記レンズ素材の前記被研削面が押し付けられる球状砥石面を備えた皿形砥石と、
 前記球状砥石面に前記レンズ素材を押し付けるための加工圧力として、第1加工圧力、第2加工圧力および第3加工圧力を選択的に加えることのできる加圧機構と、
 前記皿形砥石を回転させる回転機構と、
 前記皿形砥石を揺動させる揺動機構と、
 前記加圧機構、前記回転機構および前記揺動機構の駆動を制御して、上記の研削加工方法を実行させるコントローラとを有していることを特徴としている。
 本発明によれば、レンズの精研削加工の技術のみで加工することで、加工技術の簡略化、設備の一元化、管理の一元化を図ることができ、これにより、レンズ球面の研削加工の精度、品質を向上させることができる。
本発明の方法によりレンズ球面の研削加工を行う球芯式レンズ研削加工装置の機構図である。 図1の装置の研削動作を示す概略フローチャートである。 レンズ研削加工における加工圧力と加工時間の関係を示すグラフである。 レンズ研削加工における研削工具の回転数と加工時間の関係を示すグラフである。
 以下に、図面を参照して本発明を適用したレンズ球面の研削加工方法の実施の形態を説明する。
(球芯式レンズ研削加工装置)
 図1は、本発明の方法により球面レンズの研削加工を行う球芯式レンズ研削加工装置の一例を示す機構図である。球芯式レンズ研削加工装置1は上ユニット2および下ユニット3を備えている。上ユニット2は下向き状態のレンズ保持具4を備えており、レンズ保持具4はレンズ加圧軸5の下端に取り付けられており、加圧シリンダ6によって下向きにユニット中心軸線2aの方向に加圧可能となっている。レンズ保持具4の下向きのレンズ保持面4aにはユニット中心軸線2aの回りに回転可能な状態で加工対象のレンズ素材7を保持可能である。また、上ユニット2は下ユニット3に対して接近および離れる方向に相対的に移動可能となっている。
 下ユニット3は上向き状態の皿形砥石8を備えており、この皿形砥石8はダイヤモンド砥粒を備えた凹状の球状砥石面8aを有しており、この球状砥石面8aに、上ユニット2の側に保持されるレンズ素材7の被研削面7aが押し付けられる。皿型砥石8は同軸状態にスピンドル軸9の上端に固定されており、スピンドル軸9はスピンドルモーター10によってその中心軸線9aの回りに回転駆動される。また、皿形砥石8およびその回転機構(スピンドル軸9、スピンドルモーター10)は揺動機構11によって支持されており、揺動機構11は、皿形砥石8を、その球状砥石面8aが中心軸線2a上に位置する揺動中心Oを中心として、設定した揺動角度θで、設定した加工半径Rで、設定した揺動方向に揺動させることが可能となっている。
 ここで、加圧シリンダ6による加圧力は、第1レギュレータ12、第2レギュレータ13および第3レギュレータ14によって三段階に切替可能となっている。これらの第1~第3レギュレータ12、13、14によって圧力が設定される作動流体は、それぞれ、オンオフ切替可能な第1~第3切替弁15、16、17を介して加圧シリンダ6に供給されるようになっている。この構成の加圧機構(レンズ加圧軸5、加圧シリンダ6、第1~第3レギュレータ12~14、第1~第3切替弁15~17)による加圧力の切替制御は、第1~第3切替弁15~17を切り替えることによって行うことができる。
 次に、コントローラ18は各部の駆動制御を行うものであり、加圧機構の第1~第3切替弁15~17の切替制御はコントローラ18によって行われる。また、コントローラ18は、測長器19による測定結果に基づき、レンズ素材7の研削加工量を監視しており、この研削加工量に応じて切替弁15~17の切替制御を行い、レンズ素材7の被研削面7aを皿形砥石8の球状砥石面8aに押し付けるための加工圧力を切り替える。さらに、コントローラ18はインバータ20を介してスピンドルモーター10を駆動制御して、皿形砥石8の回転数を制御する。さらには、コントローラ18はドライバ21を介して揺動機構11を駆動制御して、皿形砥石8の揺動方向、揺動角度θの切替制御、その揺動位置の変更などを行う。
(研削加工動作の例)
 図2は球芯式レンズ研削加工装置1による球面レンズの研削加工動作を示す概略フローチャートである。図1、図2を参照して説明すると、まず、レンズ素材7をレンズ保持具4のレンズ保持面4aに取り付け、レンズ素材7の被研削面7aを皿形砥石8の球状砥石面8aに押し当てた状態を形成する(レンズ素材供給工程ST1)。
 この状態で皿形砥石8の回転、揺動を開始して、レンズ素材7の被研削面7aの研削加工を開始する。研削加工の開始時点から所定時間が経過するまでの初期研削工程ST2では、第1レギュレータ12に設定された加工圧力でレンズ素材7を皿形砥石8に押し付けた状態で研削加工を行う。加工圧力は、レンズ素材7が皿形砥石8に接触している面積が小さいので、レンズ素材7がレンズ保持具4および皿形砥石8の間から脱落しない最小限のものに留めることが望ましく、次工程である中期研削工程における加工圧力よりも小さい。また、初期研削工程における皿形砥石8の回転数は低い回転数であることが望ましいが、加工時間との兼ね合いから、400~600rpmであることが望ましい。この回転数も、次工程の中期研削工程における回転数よりも小さい。
 初期研削工程ST2において、レンズ素材7の被研削面7aの研削が進み、当該被研削面7aがほぼ皿形砥石8の球状砥石面8aに接触した状態が形成されると、加工圧力を第2レギュレータ13に設定された加工圧力に切り替える。これにより、研削加工が中期研削工程S3に移行する。
 中期研削工程ST3における加工圧力は皿形砥石8の砥粒(ダイヤモンドバイト)がレンズ素材7に食い込み可能な圧力とする。加工圧力はレンズ素材7に食い込み可能な圧力の最小値あるいはその近傍の値に設定することが望ましい。球面レンズ研削において通常求められる表面粗さは4μm程度である。したがって、レンズ素材7に加える加工圧力は、当該レンズ素材7の硬さ、および、レンズ素材の被研削面7aと皿形砥石8の球状砥石面8aの接触面積から、皿形砥石8の食い込み量を求め、これに基づき、中期研削工程における加工圧力を算出することができる。
 また、中期研削工程における皿形砥石8の回転数は、皿形砥石8の砥粒(ダイヤモンドバイト)がレンズ素材7に食い込み可能な回転数に設定する。レンズ素材7に食い込み可能な回転数とは、上記のように設定した加工圧力において、皿形砥石の回転数を変化させた場合に、加工時間の変化がほぼ無くなる最大回転数以下の回転数を意味している。すなわち、この最大回転数よりも高い回転数では、加工時間が短縮されなくなり、皿形砥石の球状砥石面とレンズ素材の被研削面の間に滑りが発生し、砥粒がレンズ素材の表面に食い込めない状況になる。回転数は、レンズ素材7に食い込み可能な回転数の最大値あるいはその近傍の値に設定することが望ましい。
 中期研削工程における研削が進み、レンズ素材7の中心肉厚が目標肉厚の手前の値になった段階で、加工圧力を第3レギュレータ14に設定された加工圧力に切り替える。これにより研削加工が後期研削工程ST4に移行する。
 後期研削工程では、研削加工の進行速度を遅くして(皿形砥石8の回転数を小さくして)、レンズ素材7の中心肉厚にばらつきが生じない状態で、被研削面7aの表面粗さを目標とする表面粗さになるように研削する。後期研削工程では、その加工圧力が初期研削工程における加工圧力よりも更に低い圧力に設定され、その皿形砥石8の回転数が中期研削工程における回転数よりも低く、初期研削工程における回転数よりも高い値に設定される。
 ここで、皿形砥石を用いた球面研削は複数の刃先を持つダイヤモンドバイトによる切削加工である。したがって、研削加工条件としての加工圧力および皿形砥石の回転数はレンズ素材の硬さに応じて設定することができる。すなわち、加工圧力はレンズ素材の硬さに比例させ、回転速度はそれに反比例させるようにすればよい。レンズ素材の硬さデータは素材カタログ等で簡単に入手できるので、これに基づき、最適な加工圧力、回転数を求めることができる。
 次に、レンズ素材7の被研削面7aを研削する皿形砥石8の球状砥石面8aの部分が常に同一であると、砥石面に偏摩耗が生じ研削形状が変化してしまう。したがって、定期的に、レンズ素材7の被研削面7aが当たる球状砥石面8aの位置(球状砥石面8a上における被研削面7aの摺動領域)を変化させ、球状砥石面8aの偏摩耗を防止して、その全体が均一に摩耗するようにして、研削精度を一定に保持することが望ましい。少なくとも中期研削工程においては変化させることが望ましい。
 以上説明したように、本実施の形態においては、球面研削において、加工初期の加工圧力を低圧、回転数を低速とすることで、加工対象のレンズ素材のカケ、割れを防止することができる。加工中期においては、加工初期に比べて加工圧力を高圧、回転数を高速に切り替えることにより、加工時間を短縮できる。加工終期においては、加工初期に比べて加工圧力を低圧にし、回転数を加工初期よりも速く、加工中期よりも遅い中程度の速度となるようにすることにより、レンズ素材の中心肉厚の精度を確保できる。このように、研削の進行に合わせて研削条件を多段階に変化させることにより、皿形砥石のみを用いて、レンズ素材に高精度の精研削面を形成することができる。
(実験例)
 本発明者等は、本発明の研削方法を用いて次のように加工を行った。
 本実施例の加工データは次の通りである。
  レンズ素材の材質    TAFD25
  レンズ素材の摩耗度   90
  レンズ素材のヌープ硬さ 630
  加工球面半径R     108mm
  レンズ外径       37.5mm
  皿形砥石   ダイヤモンドペレット SP60B #800
 まず、加工圧力を決定するための試験を行った。試験条件は次の通りであり、試験結果を図3の表およびグラフに示してある。
  球芯式レンズ研削加工装置  NC研磨機 PM50型
                 (製造元:有限会社コジマエンジニアリング)
  皿形砥石の回転数      1000rpm
  皿形砥石のレンズ接触面積  4.52平方cm
  加工量           0.1mm
 この試験結果から、加工圧力が10kg/平方cm以上では、レンズ素材の摩耗量がほとんど変化しないことから、この圧力が研削加工効率の最大の点であることが分かる。
 次に、同一の球芯式レンズ研削加工装置を用いて、皿形砥石の回転数を決定するための試験を行い、加工圧力1(15kg/平方cm)および加工圧力2(10kg/平方cm)の場合において、回転数を変化させた場合の加工時間を調べた。試験条件は加工圧力以外は上記の場合と同一である。試験結果を図4のグラフに示してある。
 この試験結果から、回転数が1500rpm付近より摩耗量が殆ど変化しないことから、この点が加工効率最大の点であることが分かる。すなわち、加工圧力を一定とて、回転数を上げた場合に加工時間の変化が殆ど無くなる回転数が「食い込み可能な回転数」の最大値であり、これよりも回転数を上げると、レンズ素材と皿形砥石に滑りが発生し、皿形砥石の砥粒がレンズ素材の表面に食い込めない状況になる。この「食い込み可能な回転数」の最大値が加工効率最大の点である。この最大値は、レンズ素材の硬度、皿形砥石の砥粒の粒度、切削液の性能などによって変動するので、試験を行うことにより設定すればよい。
 これらの試験結果に基づけば、中期研削工程ST3における加工条件としては、加工圧力が10kg/平方cm、皿形砥石の回転数が1500rpmが最適であることが分かる。これを基準として、初期研削工程ST2および後期研削工程ST4における加工条件をそれぞれ設定する。
 本発明者等の実験では、初期研削工程においては、加工圧力を2kg/平方cm、回転数を500rpmとし、10秒間の研削加工を行った。次に、中期研削工程に移行して、加工圧力を10kg/平方cmとし、回転数を1500rpmとして、レンズ素材が目標厚さの0.1mm手前の厚さとなるまで研削加工を行った、次に、後期研削工程に移行し、加工圧力を1.5kg/平方cmとし、回転数を1000rpmとし、レンズ素材が目標厚さとなるまで研削加工を行った。
 この結果、厚さ精度が±0.005μm以内に収まることが確認された。また、研削加工面の曲率を測定したところ、150回加工すると、ΔHが-0.001μm変化した。揺動位置を10%シフトさせて更に150回加工すると、ΔHが基準値に戻ったので、揺動位置を元に戻した。これらの継続により、研削加工面の曲率がΔHで0~0.001μmの範囲内に収まることが確認できた。
1  球芯式レンズ研削加工装置
2  上ユニット
2a 中心軸線
3  下ユニット
4  レンズ保持具
4a レンズ保持面
5  レンズ加圧軸
6  加圧シリンダ
7  レンズ素材
7a 被研削面
8  皿形砥石
8a 球状砥石面
9  スピンドル軸
9a 中心軸線
10 スピンドルモーター
11 揺動機構
12、13、14 レギュレータ
15、16、17 切替弁
18 コントローラ
19 測長器
20 インバータ
21 ドライバ
O  揺動中心
θ  揺動角度
R  加工球面半径

Claims (6)

  1.  ダイヤモンド砥粒を備えた球状砥石面を備えた皿形砥石を、研削対象のレンズ素材の被研削面に所定の加工圧力で押しつけ、この状態で、前記皿形砥石を所定の回転数で回転させると共に揺動させながら前記被研削面を球面に研削する皿形砥石を用いたレンズ球面の研削加工方法であって、
     前記加工圧力が第1加工圧力、前記回転数が第1回転数で研削を行う初期研削工程と、
     前記加工圧力が第2加工圧力、前記回転数が第2回転数で研削を行う中期研削工程と、
     前記加工圧力が第3加工圧力、前記回転数が第3回転数で研削を行う後期研削工程とを有し、
     前記第2加工圧力は前記球状砥石面が前記レンズ素材に食い込み可能な圧力であり、前記レンズ素材の硬さ、および、前記レンズ素材の前記被研削面と前記皿形砥石の前記球状砥石面との接触面積から、前記皿形砥石の食い込み量を求め、当該食い込み量に基づき前記第2加工圧力を算出し、
     前記第2回転数を、前記皿形砥石の前記ダイヤモンド砥粒が前記レンズ素材に食い込み可能な回転数に設定し、
     前記第1加工圧力を前記第2加工圧力よりも低い値に設定し、前記第1回転数を前記第2回転数よりも低い値に設定し、
     前記第3加工圧力を前記第1加工圧力よりも低い値に設定し、前記第3回転数を前記第2回転数よりも低く前記第1回転数よりも高い値に設定することを特徴とする皿形砥石を用いたレンズ球面の研削加工方法。
  2.  請求項1において、
     前記第2加工圧力を、前記皿形砥石の前記ダイヤモンド砥粒が前記レンズ素材に食い込み可能な最小値に設定し、
     前記第2回転数を、前記皿形砥石の前記ダイヤモンド砥粒が前記レンズ素材に食い込み可能な最大値に設定することを特徴とする皿形砥石を用いたレンズ球面の研削加工方法。
  3.  請求項1または2において、
     前記初期研削工程は、前記レンズ素材の前記被研削面が前記球状砥石面に全体として接触した状態が形成されるまで行い、
     前記中期研削工程は、前記レンズ素材の中心肉厚が目標値よりも予め設定した寸法だけ厚い状態が形成されるまで行うことを特徴とする皿形砥石を用いたレンズ球面の研削加工方法。
  4.  請求項1ないし3のうちのいずれかの項において、
     少なくとも前記中期研削工程においては、前記レンズ素材の前記被研削面が前記皿形砥石の前記球状砥石面を摺動する領域を定期的に変化させることを特徴とする皿形砥石を用いたレンズ球面の研削加工方法。
  5.  請求項1ないし4のうちのいずれかの項において、
     前記レンズ素材の硬さがヌープ硬度630であり、
     前記第2加工圧力が10kg/平方cm、前記第2回転数が1500rpmであり、
     前記第1加工圧力が2kg/平方cm、前記第1回転数が400~600rpmであり、
     前記第3加工圧力が1.5kg/平方cm、前記第3回転数が1000rpmであることを特徴とする皿形砥石を用いたレンズ球面の研削加工方法。
  6.  前記レンズ素材を保持するレンズ保持具と、
     前記レンズ保持具に保持された前記レンズ素材の前記被研削面が押し付けられる球状砥石面を備えた皿形砥石と、
     前記球状砥石面に前記レンズ素材を押し付けるための加工圧力として、第1加工圧力、第2加工圧力および第3加工圧力を選択的に加えることのできる加圧機構と、
     前記皿形砥石を回転させる回転機構と、
     前記皿形砥石を揺動させる揺動機構と、
     前記加圧機構、前記回転機構および前記揺動機構の駆動を制御して、請求項1ないし5のうちのいずれかの項に記載の研削加工方法を実行させるコントローラとを有していることを特徴とする球芯式レンズ研削加工装置。
PCT/JP2010/000563 2010-01-29 2010-01-29 皿形砥石を用いたレンズ球面の研削加工方法 WO2011092748A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/575,711 US20120289127A1 (en) 2010-01-29 2010-01-29 Lens spherical surface grinding method using dish-shaped grindstone
KR1020127020725A KR101584265B1 (ko) 2010-01-29 2010-01-29 접시형 숫돌을 이용한 렌즈 구면의 연삭 가공 방법
PCT/JP2010/000563 WO2011092748A1 (ja) 2010-01-29 2010-01-29 皿形砥石を用いたレンズ球面の研削加工方法
EP10844519.8A EP2529886B1 (en) 2010-01-29 2010-01-29 Lens spherical surface grinding method using dish-shaped grindstone
JP2011551589A JP5453459B2 (ja) 2010-01-29 2010-01-29 皿形砥石を用いたレンズ球面の研削加工方法
CN201080062578.XA CN102725104B (zh) 2010-01-29 2010-01-29 使用碟形磨石的透镜球面的磨削加工方法
TW099105673A TWI415709B (zh) 2010-01-29 2010-02-26 A grinding method for the use of a spherical sphere of a bowl-shaped grinding wheel
HK13102050.8A HK1174871A1 (en) 2010-01-29 2013-02-18 Lens spherical surface grinding method using dish-shaped grindstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000563 WO2011092748A1 (ja) 2010-01-29 2010-01-29 皿形砥石を用いたレンズ球面の研削加工方法

Publications (1)

Publication Number Publication Date
WO2011092748A1 true WO2011092748A1 (ja) 2011-08-04

Family

ID=44318767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000563 WO2011092748A1 (ja) 2010-01-29 2010-01-29 皿形砥石を用いたレンズ球面の研削加工方法

Country Status (8)

Country Link
US (1) US20120289127A1 (ja)
EP (1) EP2529886B1 (ja)
JP (1) JP5453459B2 (ja)
KR (1) KR101584265B1 (ja)
CN (1) CN102725104B (ja)
HK (1) HK1174871A1 (ja)
TW (1) TWI415709B (ja)
WO (1) WO2011092748A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056399A (ja) * 2011-09-09 2013-03-28 Haruchika Seimitsu:Kk レンズ研磨方法およびレンズ研磨装置
WO2015162789A1 (ja) * 2014-04-25 2015-10-29 株式会社コジマエンジニアリング 球芯式加工機のレンズ芯出し方法およびレンズ加工方法並びに球芯式加工機
CN108422286A (zh) * 2018-03-30 2018-08-21 马鞍山市江南光学有限公司 一种斯米特屋脊棱镜的加工方法及其定位工装
US20180333822A1 (en) * 2013-07-22 2018-11-22 Canon Kabushiki Kaisha Component manufacturing method and polishing apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8751031B2 (en) * 2004-02-06 2014-06-10 Zircore, Llc System and method for mass custom manufacturing of dental crowns and crown components
DE112014000978T5 (de) * 2013-03-19 2016-01-07 XiaoYan Chen Poliervorrichtung für optische Elemente und entsprechendes Verfahren
KR101594795B1 (ko) * 2013-07-23 2016-02-17 카부시키가이샤하루치카세이미쯔 요동기구 및 구심요동연마기
WO2015068500A1 (ja) * 2013-11-11 2015-05-14 オリンパス株式会社 研磨工具、研磨方法および研磨装置
KR101558548B1 (ko) 2014-04-22 2015-10-13 한국지질자원연구원 자동 박편 연마 장치
CN106695494B (zh) * 2017-03-07 2019-07-23 徐工集团工程机械有限公司 球面配磨装置及方法
CN107214584A (zh) * 2017-07-06 2017-09-29 衡东县湘峰陶瓷有限公司 全自动稳定型匣钵外表面打磨装置
CN107322383A (zh) * 2017-07-06 2017-11-07 衡东县湘峰陶瓷有限公司 全自动匣钵外表面打磨装置
CN107443184A (zh) * 2017-07-06 2017-12-08 衡东县湘峰陶瓷有限公司 通用型匣钵外表面打磨装置
CN107443183A (zh) * 2017-07-06 2017-12-08 衡东县湘峰陶瓷有限公司 匣钵外表面打磨装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125558U (ja) * 1991-04-25 1992-11-16 キヤノン株式会社 球面研削加工装置
JPH08197425A (ja) * 1995-01-27 1996-08-06 Olympus Optical Co Ltd 研削方法とその装置
JP2004338028A (ja) * 2003-05-15 2004-12-02 Nikon Corp 研削用砥石及びこの研削用砥石を備える研削装置
JP2006297520A (ja) 2005-04-19 2006-11-02 Nakamura Tome Precision Ind Co Ltd 多軸球面研削装置及び研削方法
JP2008260091A (ja) * 2007-04-12 2008-10-30 Olympus Corp 研磨装置
JP2009066724A (ja) 2007-09-14 2009-04-02 Nakamura Tome Precision Ind Co Ltd レンズの球面研削方法及び装置
JP2009090414A (ja) 2007-10-09 2009-04-30 Nakamura Tome Precision Ind Co Ltd レンズの球面研削方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893264A (en) * 1973-11-23 1975-07-08 Textron Inc Lens surfacing apparatus and method
US4085549A (en) * 1976-11-26 1978-04-25 Hodges Lee R Lens polishing machine
US4662119A (en) * 1984-07-25 1987-05-05 Haruchika Precision Company, Ltd. Automatic lens grinding apparatus
JPH0659613B2 (ja) * 1988-10-20 1994-08-10 オリンパス光学工業株式会社 研削研磨装置及び研削研摩方法
US4947715A (en) * 1988-11-22 1990-08-14 Citycrown, Inc. Method and apparatus for cutting an aspheric surface on a workpiece
JPH04125558A (ja) * 1990-09-17 1992-04-27 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料の処理方法
EP0726831A1 (en) * 1992-07-17 1996-08-21 Minnesota Mining And Manufacturing Company Method of processing a lens and means for use in the method
US5577950A (en) * 1993-11-29 1996-11-26 Coburn Optical Industries, Inc. Conformal tool operating apparatus and process for an ophthalmic lens finer/polisher
JP3530562B2 (ja) * 1993-12-30 2004-05-24 オリンパス株式会社 レンズ研削方法
JP2600063B2 (ja) * 1994-06-24 1997-04-16 リズム時計工業株式会社 からくり時計の回転扉装置
US5498200A (en) * 1994-08-12 1996-03-12 Wernicke & Co. Gmbh Device for parallex-free centering of a blank for a glass lens for spectacles and for providing markings and/or attaching a holder before inserting the blank into a grinding machine for blanks for glass lenses
DE19616536C2 (de) * 1996-04-25 2000-01-27 Wernicke & Co Gmbh Verfahren und Brillenglasrandschleifmaschine zum Formschleifen des Umfangsrandes von Brillengläsern und ggf. zum anschließenden Facettenschleifen
JP3688449B2 (ja) * 1997-09-24 2005-08-31 株式会社ニデック 眼鏡レンズ研削装置及び眼鏡レンズ研削方法
DE19750428B4 (de) * 1997-11-14 2007-06-21 Optotech Optikmaschinen Gmbh Verfahren und Vorrichtung zum Bearbeiten von Linsen
US6080044A (en) * 1998-03-26 2000-06-27 Gerber Coburn Optical, Inc. Fining/polishing machine
US6123610A (en) * 1999-03-17 2000-09-26 Larsen; Eric A. Polisher for spherical and non-spherical surfaces
JP2001038595A (ja) * 1999-07-30 2001-02-13 Canon Inc 研削・研磨方法および研削・研磨装置
DE60038459T2 (de) * 1999-08-06 2009-04-23 Hoya Corp. Brillenglaslinsen bearbeitungsverfahren und vorrichtung
US6110017A (en) * 1999-09-08 2000-08-29 Savoie; Marc Y. Method and apparatus for polishing ophthalmic lenses
ATE302092T1 (de) * 2000-04-28 2005-09-15 3M Innovative Properties Co Schleifmittel und verfahren zum schleifen von glas
JP4346835B2 (ja) * 2001-05-11 2009-10-21 Hoya株式会社 走査光学系
US7303600B2 (en) * 2002-04-25 2007-12-04 Advanced Minerals Corporation Unexpanded perlite ore polishing composition and methods
US6733369B1 (en) * 2002-09-30 2004-05-11 Carl Zeiss Semiconductor Manufacturing Technologies, Ag Method and apparatus for polishing or lapping an aspherical surface of a work piece
JP2004261954A (ja) * 2003-02-14 2004-09-24 Seiko Epson Corp 研磨方法
DE10314625B3 (de) * 2003-04-01 2004-10-14 Optotech Optikmaschinen Gmbh Verfahren und Vorrichtung zum Nacharbeiten von Präzisionsoberflächen
US20040229553A1 (en) * 2003-05-16 2004-11-18 Bechtold Michael J. Method, apparatus, and tools for precision polishing of lenses and lens molds
JP4105622B2 (ja) * 2003-11-05 2008-06-25 株式会社永田製作所 研摩装置及び被研材の厚さ判定方法
DE102004047563A1 (de) * 2004-09-30 2006-04-06 Asphericon Gmbh Verfahren zum Polieren
EP1777035A3 (en) * 2004-11-09 2007-05-16 Seiko Epson Corporation Elastic polishing tool and lens polishing method using this tool
ATE535346T1 (de) * 2005-05-06 2011-12-15 Satisloh Gmbh Verfahren für die automatische kalibrierung der werkzeuge in einer drehmaschine benutzt für die herstellung von insbesondere brillenlinsen
JP2007253280A (ja) * 2006-03-23 2007-10-04 Haruchika Seimitsu:Kk 光学球面レンズの研削加工方法
US7662024B2 (en) * 2006-05-03 2010-02-16 V.I. Mfg. Inc. Method and apparatus for precision polishing of optical components
JP5241504B2 (ja) * 2006-10-31 2013-07-17 株式会社ニコン・エシロール 眼鏡レンズ及びその製造方法
JP5123677B2 (ja) * 2008-01-25 2013-01-23 有限会社コジマエンジニアリング レンズ加工装置
JP5080300B2 (ja) * 2008-02-01 2012-11-21 有限会社コジマエンジニアリング レンズ加工装置
JP4633815B2 (ja) * 2008-03-17 2011-02-16 ニシコ光機株式会社 球面研磨装置
US20120045975A1 (en) * 2009-06-11 2012-02-23 Kojima Engineering Co., Ltd. Lens-processing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125558U (ja) * 1991-04-25 1992-11-16 キヤノン株式会社 球面研削加工装置
JPH08197425A (ja) * 1995-01-27 1996-08-06 Olympus Optical Co Ltd 研削方法とその装置
JP2004338028A (ja) * 2003-05-15 2004-12-02 Nikon Corp 研削用砥石及びこの研削用砥石を備える研削装置
JP2006297520A (ja) 2005-04-19 2006-11-02 Nakamura Tome Precision Ind Co Ltd 多軸球面研削装置及び研削方法
JP2008260091A (ja) * 2007-04-12 2008-10-30 Olympus Corp 研磨装置
JP2009066724A (ja) 2007-09-14 2009-04-02 Nakamura Tome Precision Ind Co Ltd レンズの球面研削方法及び装置
JP2009090414A (ja) 2007-10-09 2009-04-30 Nakamura Tome Precision Ind Co Ltd レンズの球面研削方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2529886A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056399A (ja) * 2011-09-09 2013-03-28 Haruchika Seimitsu:Kk レンズ研磨方法およびレンズ研磨装置
US20180333822A1 (en) * 2013-07-22 2018-11-22 Canon Kabushiki Kaisha Component manufacturing method and polishing apparatus
US10252393B2 (en) * 2013-07-22 2019-04-09 Canon Kabushiki Kaisha Component manufacturing method and polishing apparatus
WO2015162789A1 (ja) * 2014-04-25 2015-10-29 株式会社コジマエンジニアリング 球芯式加工機のレンズ芯出し方法およびレンズ加工方法並びに球芯式加工機
US10124459B2 (en) 2014-04-25 2018-11-13 Kojima Engineering Co., Ltd. Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine
CN108422286A (zh) * 2018-03-30 2018-08-21 马鞍山市江南光学有限公司 一种斯米特屋脊棱镜的加工方法及其定位工装
CN108422286B (zh) * 2018-03-30 2023-11-03 马鞍山市江南光学有限公司 一种斯米特屋脊棱镜的加工方法及其定位工装

Also Published As

Publication number Publication date
TWI415709B (zh) 2013-11-21
CN102725104A (zh) 2012-10-10
JP5453459B2 (ja) 2014-03-26
KR20120123082A (ko) 2012-11-07
KR101584265B1 (ko) 2016-01-11
HK1174871A1 (en) 2013-06-21
US20120289127A1 (en) 2012-11-15
CN102725104B (zh) 2015-07-01
EP2529886B1 (en) 2016-04-20
JPWO2011092748A1 (ja) 2013-05-23
EP2529886A4 (en) 2015-08-05
EP2529886A1 (en) 2012-12-05
TW201125680A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
WO2011092748A1 (ja) 皿形砥石を用いたレンズ球面の研削加工方法
US11504873B2 (en) Dynamic regulation of contact pressures in a blade sharpening system
JP4252093B2 (ja) 円盤状基板の研削方法、研削装置
US11826881B2 (en) One or more conformal members used in the manufacture of a lapping plate, and related apparatuses and methods of making
JP3632500B2 (ja) 回転加工装置
JP2017124487A (ja) 仕上研削装置および仕上研削方法
WO2007077964A1 (ja) 砥石車のツルーイング装置及びツルーイング方法
JP2009078326A (ja) ウェーハ面取り装置、及びウェーハ面取り方法
JP5039957B2 (ja) 内面研削装置用砥石および内面研削方法
JP3630950B2 (ja) 球面レンズの製造方法
KR101101838B1 (ko) 공작기계의 스핀들 테이퍼 연삭장치
US4837979A (en) Polishing device
JP2003291069A (ja) 研削盤用の砥石及びこの砥石を使用する研削方法
JPH11320390A (ja) 面加工装置用定盤及びその使用方法
JP7104909B1 (ja) 半導体結晶ウェハの製造方法および製造装置
WO2023119703A1 (ja) 半導体結晶ウェハの製造方法および製造装置
JPH068140A (ja) 砥石の円弧形状成形方法
JP2010023221A (ja) 砥石のツルーイング方法およびツルーイング装置
JPH08323618A (ja) 複合研削砥石によるダイヤモンド砥石の高精度・高能率ツルーイング及びドレッシング法
JP6135288B2 (ja) 研削盤
JP2001009691A (ja) レンズの面取り加工方法
JP2006026751A (ja) 研削装置
JPH04787B2 (ja)
JP2003071707A (ja) 面加工装置
JPH11320355A (ja) 面加工装置及び面加工方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062578.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551589

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13575711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010844519

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127020725

Country of ref document: KR

Kind code of ref document: A