JP2009090414A - レンズの球面研削方法 - Google Patents

レンズの球面研削方法 Download PDF

Info

Publication number
JP2009090414A
JP2009090414A JP2007263466A JP2007263466A JP2009090414A JP 2009090414 A JP2009090414 A JP 2009090414A JP 2007263466 A JP2007263466 A JP 2007263466A JP 2007263466 A JP2007263466 A JP 2007263466A JP 2009090414 A JP2009090414 A JP 2009090414A
Authority
JP
Japan
Prior art keywords
lens
grinding
grindstone
axis
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007263466A
Other languages
English (en)
Other versions
JP5154884B2 (ja
Inventor
Tomoaki Obata
智昭 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2007263466A priority Critical patent/JP5154884B2/ja
Publication of JP2009090414A publication Critical patent/JP2009090414A/ja
Application granted granted Critical
Publication of JP5154884B2 publication Critical patent/JP5154884B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

【課題】粗研削と精研削とでレンズ球面の研削を行う方法における精研削方法に関し、従来ペレット皿を用いて行われていたレンズの精研削をカップ砥石で行うことができるようにする。
【解決手段】ワーク軸1の先端に保持された粗研削済レンズ4を、ワーク軸1の軸心を通る揺動中心P回りに揺動する揺動台23に、砥石軸25の軸直角方向に移動するX移動台22を介して軸支された砥石軸25の下端に装着した回転砥石3で精研削する。回転砥石として、加工しようとするレンズの表面と円接触する砥石であって、番手が1500〜2500番のカップ状の砥石3bを用い、研削するレンズ球面の曲率に対応する角度に砥石軸を傾斜させ、砥石3bとレンズ球面との接触円がレンズの中心を通る位置にX移動台22の位置を設定した状態でワーク軸1の回転と砥石軸25bの回転とにより、粗研削済レンズ4の精研削を行う。
【選択図】図2

Description

この発明は、レンズ球面の研削方法に関し、特に粗研削と精研削とでレンズ球面の研削を行う方法における精研削方法に特徴がある上記方法に関するものである。
レンズ球面の研削加工は、従来、カップ砥石による粗研削とペレット皿による1工程又は2工程の精研削の順で行われ、その後、磨き皿による研磨(ポリシング)が行われている。
粗研削は、一般にCG加工(球面創成加工)と呼ばれる加工方法で行われている。すなわち、鉛直方向のワーク軸の上端に設けたレンズホルダにレンズ素材を装着し、下端にレンズ素材の表面と円接触(正確にはレンズ周縁からはみ出す円で接触)する下向きカップ状の砥石を装着した砥石軸を研削しようとするレンズ表面の曲率に合わせて傾斜させ、カップ砥石とレンズ表面との接触円が丁度レンズの軸中心を通る位置に砥石軸を位置決めする。そしてワーク軸と砥石軸を回転し、サーボモータでワーク軸に上方向へ切削送りをかけて、レンズ表面に対するカップ砥石の公転と自転との合成運動により、レンズ球面を創成加工するというものである。粗研削用のカップ砥石としては、番手が100〜350番程度の粒度の砥石が用いられている。
従来の精研削は、ペレット皿の球面をレンズに転写する加工で、揺動台に軸支した砥石軸の下端に加工するレンズ球面の曲率に応じたペレット皿を装着し、ワーク軸の上端のレンズホルダに粗研削済のレンズ素材を装着する。そして、揺動台の揺動中心とレンズ球面の曲率中心とを一致させた状態で、エアシリンダなどでレンズ表面ををペレット皿に一定圧で押付けて、ワーク軸1の回転と砥石軸25の回転及び往復揺動との合成運動により、レンズの表面を研削するというものである。
レンズの粗研削と精研削は、従来個別の機械で行われていたが、本願出願人は、同一機台上に粗研削用の砥石軸と精研削用の砥石軸とを設けて、ワークを持替えることなく粗研削と精研削とを連続して行うことができるレンズの球面研削装置を提案している(特許文献1)。図5は、特許文献1で提案したレンズの球面研削装置を示した側面図である。
図5において、1はワーク軸、11はワーク軸1駆動用の電動機、12はワーク軸1の先端(上端)に設けられたレンズホルダ、13はワーク軸1を軸支している昇降台(Z方向移動台)である。23は揺動中心P回りに揺動する揺動台、21は揺動台23上に設けたガイド、22はガイド21に沿って移動するX移動台(X方向移動台)である。X移動台22には、2本の砥石軸25a、25bが互いに平行に軸支されている。ガイド21は、この2本の砥石軸25a、25bと直交する方向に設けられている。
砥石軸25a、25bの下端(ワークホルダに向く軸端)には、工具ホルダ29a、29bが設けられ、その一方29aに粗研削用のカップ砥石3aが装着され、他方29bには、精研削用のペレット皿3cが装着されている。各砥石軸25a、25bには、砥石軸駆動用の電動機26a、26bが接続されている。
ワーク軸1は、フレーム2に昇降自在に案内された昇降台13に軸支されており、この昇降台と一体のブラケット14がZ軸サーボモータ17で駆動されるZ軸送りねじ18に螺合している。揺動台23は、B軸サーボモータ37で揺動駆動されている。X移動台22は、揺動台23に搭載したX軸サーボモータ27で回転駆動される送りねじ28に螺合している。5はこれらのサーボモータを制御するNC装置であり、51、52及び53は、サーボアンプ、19はZ軸サーボモータ17の電流制御器である。
次に、上記装置でレンズの粗研削と精研削を行う手順を説明する。まず、カップ砥石3aを装着した砥石軸25aが揺動台23の揺動中心Pを通る位置をX移動台22の移動原点に設定し、研削するレンズ球面の曲率に対応する角度θに揺動台23を傾斜させ、カップ砥石3aとレンズ球面との接触円がレンズの光軸を通る位置にX移動台22の位置を設定し、削り代に応じたワーク軸1の研削完了位置をZ軸の原点に設定する。そして、ワーク軸1の回転によるカップ砥石3aの公転と、砥石軸25aの回転によるカップ砥石3aの自転とにより、レンズホルダ12で保持されたにレンズ素材4の球面創成を行う。
次にペレット皿3cを取付けた砥石軸25bが揺動台23の揺動中心Pを通る位置をX移動台22の移動原点に設定する。そして、揺動台23を揺動中心P回りに所定角度で往復揺動させ、その揺動角θに対応して、x=dtanθ、z=d/cosθ‐dの関係が成立するように、X移動台22及び昇降台13を往復移動させる。ここで、dは揺動台23の揺動中心Pから研削するレンズの曲率中心Oまでの距離である。
そして、Z軸サーボモータ17に所定の付圧力に相当するトルク制限をかけ、NC装置5から所定の削り代の位置(揺動台の角度θによって時々刻々と変化する。)への上昇指令を与える。粗研削済のレンズ素材4は、上記付圧力でペレット皿3cに押し付けられ、ワーク軸1の回転によるペレット皿3cの公転と、砥石軸25bの回転によるペレット皿3cの自転と、ペレット皿3cのレンズ曲率中心を中心とする揺動とにより、レンズ素材4の精研削が行われる。
特開2006−297520号公報
上述したように、従来のレンズ研削では、粗研削を番手が100〜350番のカップ砥石で行い、精研削をペレット皿で行っていた。しかし、ペレット皿は加工しようとするレンズ球面の曲率に合せた曲面(凸レンズを加工するときは凹曲面)とした基板に多数の小さな砥石板を貼り付けた構造であるため、加工するレンズ表面の曲率が変わる毎にその曲率に合ったペレット皿に交換しなければならず、加工するレンズの種類毎に専用のペレット皿を準備しなければならないという問題があった。
これに対してカップ砥石によるCG加工(球面創成加工)では、レンズの光軸に対するカップ砥石の回転中心軸の角度θを変えることによって、加工しようとするレンズ表面の曲率に対応することができるため、1種類のカップ砥石で曲率の異なる多種類のレンズ表面の加工を行うことができる。
この発明は、従来ペレット皿を用いて行われていたレンズの精研削をカップ砥石で行うことができるようにすることを課題としている。
この発明は、粗研削、精研削及び研磨の3工程で行われているレンズ球面加工の精研削工程を番手が1500〜2500番のカップ砥石、すなわち加工しようとするレンズ素材の表面と砥石の回転中心軸を中心とする円弧で接触する砥石で行っている。研磨工程で行われるレンズ表面の取り代(加工によって削り取られるレンズ表面の光軸方向の厚さ)は、3〜10ミクロンである。精研削の表面粗さやレンズの曲率誤差が研磨時の取り代の範囲からはみ出すと、加工されたレンズは不良品となる。そのため、精研削ではサブミクロン台の表面粗さの加工を行う必要があり、そのためには1500〜2500番程度の番手の砥石を用いる必要がある。
一方、このような番手の高い(粒度の細かい)砥石は、番手の低い粗研削用の砥石(100〜350番程度)に比べて非常に磨耗しやすい。砥石やレンズの材質によっても異なるが、レンズ1個の加工で0.5ミクロンというオーダの磨耗量である。カップ砥石によるCG加工では、砥石が磨耗すると、加工されるレンズ表面の曲率半径が大きくなる。従って砥石の磨耗により加工されるレンズの曲率半径が許容される精度内となるように、頻繁に砥石とレンズ素材の相対位置関係を補正しなければならない。
従来の粗研削においては、カップ砥石の磨耗に基づく誤差の補正を次のように行っている。すなわち、定期的に、あるいは所定個数のレンズ加工毎に加工されたレンズを抜き取り、図6に示すように、測定縁の径Lが既知のリング状の台61と接触子62で粗研削済レンズ4を挟んで、厚さh(光軸方向の高さ。図には表面と裏面の高さが示されている。)をマイクロメータで測定し、その測定値とマスタ(基準レンズ)の値との偏差Δhを研削装置の制御器に入力する。制御器は、予め登録された所定の演算式によって補正量を演算し、砥石の磨耗による曲率半径Rの誤差を打ち消すように、ワーク軸に対する砥石軸の角度θを補正する。
ところがこの補正方法を精研削用のカップ砥石の磨耗に適応すると、次のような問題が生じた。第1は、精研削用の砥石の磨耗が粗研削用の砥石の磨耗に比べて遥かに大きいため、その補正をするために頻繁にレンズの抜取り検査を行わなければならず、オペレータの作業負担が非常に大きくなる。
第2に、砥石の磨耗量が大きいときは、レンズの中心厚さの誤差についても補正をしなければならないが、上記従来の補正は、ワークの曲率半径のみの補正となり、ワーク中心圧に関して別の補正を行う必要がある。
第3に、ワーク軸に対する砥石軸の角度θの補正では、砥石の磨耗形状が加工終了時のレンズ表面の曲面形状と一致しないため、従来のように砥石軸の角度θを調整して補正すると、レンズ表面と砥石の接触点がずれて(砥石とレンズ表面との接触線が砥石の回転中心を中心とする円弧からずれる)加工されたレンズ表面が球面にならないなどの問題が発生した。これらの問題は、精研削用のカップ砥石の磨耗量が粗研削用のそれに比べて遥かに大きいことに起因して生じたものである。
本願発明の発明者等の試行錯誤の結果、上記の問題は、次のようにして解決することができた。すなわち、砥石及び加工するレンズの種類に応じて、その加工量(加工個数又は加工時間)と砥石磨耗量との関係を試験加工により予め計測し、両者の関係式又は両者の関係を示すテーブルを予め制御器5に登録しておく。そして、所定個数又は所定時間のレンズ加工毎に当該演算式ないしテーブルを参照して予測される砥石の磨耗量(砥石軸方向の磨耗寸法)Δtを予測する。そして、この予測した磨耗量Δtに対してX移動台22を
Δx=Δt×tanθ
昇降台の移動量Δzを
Δz=Δt×1/cosθ
で演算されるΔx、Δzだけ補正移動させる。補正方向は、図1に示すように、磨耗後の砥石とレンズ球面との接触円が磨耗した砥石で研削されているレンズの中心Wを通るようになる方向である。
上記手段を採用することにより、磨耗が大きい精研削用のカップ砥石の磨耗による補正をオペレータの手を煩わすことなく頻繁に自動補正することが可能になり、また補正操作によって加工される球面の形状が不安定になるという現象も回避することができた。更に上記補正によれば、砥石磨耗によるレンズ表面の曲率の誤差と、中心部におけるレンズ厚さの誤差の両方を同時に補正することができ、高い加工精度が要求される精研削を磨耗の大きいカップ砥石を用いて行うことが可能になる。
この出願の請求項1の発明に係るレンズの精研削方法は、粗研削、精研削及び研磨の3工程で行われているレンズ球面加工における精研削方法であって、昇降位置をNC制御されるワーク軸1の先端に保持された粗研削済レンズ4を、当該ワーク軸の軸心を通る揺動中心P回りの揺動角をNC制御される揺動台23に、砥石軸25の軸直角方向の移動位置をNC制御されるX移動台22を介して、軸支された砥石軸25の前記ワーク軸先端との対向端に装着した回転砥石3で精研削する、上記精研削方法において、上記回転砥石として、加工しようとするレンズの表面と円接触する砥石であって、番手が1500〜2500番のカップ状の砥石3bを用い、研削するレンズ球面の曲率に対応する角度に前記砥石軸を傾斜させ、砥石3bとレンズ球面との接触円がレンズの中心を通る位置にX移動台22の位置を設定した状態でワーク軸1の回転と砥石軸25bの回転とにより、粗研削済レンズ4の精研削を行うことを特徴とするレンズの精研削方法である。
また、この出願の請求項2の発明に係るレンズの精研削方法は、上記のレンズの精研削方法において、NC制御装置に、レンズの加工量と砥石の磨耗量との関係を表す演算式又はその関係を示すテーブルを登録し、レンズの連続加工時において、所定の加工量毎に当該演算式又はテーブルを参照して、当該時点における砥石の磨耗量Δtを求め、求めた磨耗量Δtに対してX移動台22とワーク軸の高さとをそれぞれ、Δx=Δt×tanθ、Δz=Δt×1/cosθで演算されるΔx、Δzだけ補正移動させたあと、次のレンズの加工を行うことを特徴とするものである。
この出願の発明により、番手の高い(粒度の細かい)カップ砥石を用いたレンズ球面の精研削が実用可能となる。従って、この発明により、従来ペレット皿を用いて行われていたレンズ球面の精研削をカップ砥石を用いて行うことができるようになる。カップ砥石によるレンズ球面の研削は、ワーク軸に対する砥石軸の角度を変化させることによって、種々の曲率のレンズの加工に対応することができるので、加工するレンズ毎にその曲率に応じた形状のペレット皿を準備しなければならないという従来の精研削加工における問題を解決することができる。
次に図面を参照して、この発明の実施形態を説明する。図2は、この発明の方法で精研削を行う球面加工装置の側面図である。図5の装置と異なる点は、砥石軸25bの下端の砥石ホルダ29bに砥石粒度の番手が2000番のカップ砥石3bが装着されていること、及び精研削時の装置の動作態様が従来のペレット皿を用いた精研削時の動作態様と異なること、及び制御器5に、所定の加工個数毎のカップ砥石3の砥石軸方向の磨耗量Δtを示すテーブル54と、当該Δtを用いたX移動台22と昇降台13の補正量の計算式
Δx=Δt×tanθ
Δz=Δt×1/cosθ
が登録されていることである。その他の点は、図5のものと異なるところがないので、図5の各部材に図2と同じ符号を付してその説明を省略する。
磨耗量Δtを示すテーブル54は、図3に示すように、新たな精研削用のカップ砥石3bを装着してからのレンズの加工数5、10、15・・・に応じて、その直前の5個を加工する間に生じた砥石の砥石軸方向の磨耗量Δtを例えば3(単位ミクロン)、2.7、2.5・・・のように計測して得たものである。
次に、図2の装置でレンズの研削加工を行う手順を説明する。まず、砥石ホルダ29aに番手100〜350番程度の粗研削用カップ砥石3aを装着し、砥石ホルダ29bに番手1500〜2500番の精研削用カップ砥石3bを装着する。レンズ素材4をレンズホルダ12に装填し、前述した従来方法と同じ方法でレンズ素材4の粗研削を行う。
次に、砥石軸25bが揺動台23の揺動中心Pを通る位置をX移動台22の移動原点に設定し、研削するレンズ球面の曲率に対応する角度θに揺動台23を傾斜させ、カップ砥石3bとレンズ球面との接触円がレンズの光軸を通る位置(図1のQ1)にX移動台22の位置を設定し、削り代に応じたワーク軸1の研削完了位置をZ軸の原点に設定する。そして、ワーク軸1の回転によるカップ砥石3bの公転と、砥石軸25bの回転によるカップ砥石3bの自転とにより、レンズホルダ12で保持されたに粗研削済レンズ4の精研削を行う。
レンズの研削により、カップ砥石3bが磨耗量Δtだけ磨耗すると、カップ砥石3bとレンズ球面との接触円はレンズの光軸を通る位置からずれてくる(図1のQ2)そこで、精研削用のカップ砥石3bを新たな砥石に交換したときに、補正タイミングをカウントするカウンタをリセットし、上記方法によるレンズの加工数が5、10、15・・・に達する毎に、登録されたテーブルを参照してΔtを読み込み、上述した式に基づいて演算したΔx及びΔzだけ、精研削時のX移動台22及び昇降台13を移動させる。
この補正動作により、図1に示すように、カップ砥石のΔtの磨耗により生じたレンズ4とカップ砥石3bとの接触円のX方向のずれΔxと、Z方向のずれΔzとが補正されて、磨耗後のカップ砥石3bとレンズ球面との接触円がレンズの光軸を通る位置に復帰し(図1のQ3)、磨耗によるレンズ表面の曲率の誤差とレンズの厚さの誤差とが共に補正される。
なお、この発明の方法による精研削の前工程の粗研削として、以下の加工方法を用いることにより、従来のCG加工による粗研削に比べて粗研削の加工時間を短縮することができることが、この出願の発明の発明者等によって見出されている。すなわち、カップ砥石3aに軸方向の研削送りをかけてレンズ素材4を粗研削する従来手段に代えて、所定の研削代eだけ送り込んだカップ砥石3aをレンズ素材4の周縁側から中心へと研削後のレンズ表面43の曲率中心O回りに円弧移動させることにより、砥石軸25aの一揺動動作で研削を完了させるという方法で粗研削をおこなうのである。
球面研削装置では、通常、カップ砥石3aの揺動中心Pと研削するレンズの曲率中心Oとが一致していない。そこで、図4に示すように、砥石中心軸Gとレンズ中心軸Wとが成す角度θに対応して、レンズ4とカップ砥石3aとの相対位置関係を、レンズ4の軸方向移動とカップ砥石3aの軸直角方向移動とによって変更して、レンズ素材に対しては、レンズ中心Oを揺動中心としてカップ砥石3aが揺動するようにする。
図4中、4はレンズ素材、3aは粗研削用のカップ砥石、Wはレンズ素材4の回転中心軸(ワーク軸1の軸心)、Gはカップ砥石3aの回転中心軸(砥石軸25aの軸心)、Oは研削後のレンズ表面43の曲率中心、Rは研削後のレンズ表面43の曲率半径、eは粗研削におけるレンズの研削代(取り代)である。
図4を参照して、粗研削用のカップ砥石3aを取付けた砥石軸25aの軸心Gが揺動台23の揺動中心Pを通る位置をX移動台22の移動原点に設定し、揺動台23の揺動中心Pから研削後のレンズ表面43の曲率中心Oまでの距離をdとし、研削後のレンズ表面43の頂点(中心軸Wが通る位置)を昇降台13の原点に設定して、揺動台23の揺動角(砥石軸の傾斜角)がθのときのX移動台22の位置x及び昇降台13の位置zに、
x=dtanθ
z=d/cosθ‐d
の関係が成立するように、NC装置5からのX移動台22の位置指令及びワーク軸1の位置指令を変化させる。これにより、カップ砥石3aは、レンズ球面の曲率中心Oを中心として揺動する。
NC装置による上記制御の下で、レンズホルダ12に把持されたレンズ素材の研削後の表面43とカップ砥石3aとの接触円が研削前のレンズ素材周縁の外側となる位置3a(a)にカップ砥石3aを移動させ、次に研削後のレンズ表面43の曲率中心0から当該表面の曲率半径Rに相当する距離を隔てた位置にカップ砥石3aが位置するようにレンズ素材4を前進させ、この状態から前記のx、z、θの関係を保持して粗研削後のレンズ表面43と粗研削用のカップ砥石3aの接触円がレンズ素材表面の中心を通る位置3a(c)まで曲率中心Oを中心としてカップ砥石3aを円弧移動させることにより、レンズ素材4の球面研削を行う。その後、精研削用の砥石軸25bが揺動台の揺動中心Pを通る位置をX移動台の原点に設定し、前述した手順により、精研削用のカップ砥石3bを用いてこの発明の方法による精研削を行う。
この発明の精研削方法の原理を説明した説明図 この発明の方法で精研削を行う球面研削装置の一例を示す側面図 研削個数と砥石磨耗量の関係を示すテーブルの例を示す図 従来方法とは異なる粗削方法を示した説明図 粗研削と従来方法による精研削とを行う装置の一例を示す側面図 レンズ球面の計測方法の一例を示す模式的な側面図
符号の説明
1 ワーク軸
3a 粗研削用のカップ砥石
3b 精研削用のカップ砥石
4 レンズ素材
12 レンズホルダ
13 昇降台(Z方向移動台)
22 X移動台(X方向移動台)
23 揺動台
25a 粗研削用の砥石軸
25b 精研削用の砥石軸
Δt カップ砥石の磨耗量
Δx X移動台の補正量
Δz 昇降台の補正量
θ レンズの軸心と砥石軸の成す角度

Claims (2)

  1. 粗研削、精研削及び研磨の3工程で行われているレンズ球面加工における精研削方法であって、昇降位置をNC制御されるワーク軸(1)の先端に保持された粗研削済レンズ(4)を、当該ワーク軸の軸心を通る揺動中心(P)回りの揺動角をNC制御される揺動台(23)に、砥石軸(25)の軸直角方向の移動位置をNC制御されるX移動台(22)を介して、軸支された砥石軸(25)の前記ワーク軸先端との対向端に装着した回転砥石(3)で精研削する、上記精研削方法において、
    上記回転砥石として、加工しようとするレンズの表面と円接触する砥石であって、番手が1500〜2500番のカップ状の砥石(3b)を用い、研削するレンズ球面の曲率に対応する角度に前記砥石軸を傾斜させ、砥石(3b)とレンズ球面との接触円がレンズの中心を通る位置にX移動台(22)の位置を設定した状態でワーク軸(1)の回転と砥石軸(25b)の回転とにより、粗研削済レンズ(4)の精研削を行うことを特徴とする、レンズの精研削方法。
  2. NC制御装置に、レンズの加工量と砥石の磨耗量との関係を表す演算式又はその関係を示すテーブルを登録し、レンズの連続加工時において、所定の加工量毎に当該演算式又はテーブルを参照して、当該時点における砥石の磨耗量(Δt)を求め、求めた磨耗量(Δt)に対してX移動台(22)とワーク軸の高さとをそれぞれ、Δx=Δt×tanθ、Δz=Δt×1/cosθで演算される(Δx)、(Δz)だけ補正移動させたあと、次のレンズの加工を行うことを特徴とする、請求項1記載のレンズの精研削方法。
JP2007263466A 2007-10-09 2007-10-09 レンズの連続加工方法 Active JP5154884B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007263466A JP5154884B2 (ja) 2007-10-09 2007-10-09 レンズの連続加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007263466A JP5154884B2 (ja) 2007-10-09 2007-10-09 レンズの連続加工方法

Publications (2)

Publication Number Publication Date
JP2009090414A true JP2009090414A (ja) 2009-04-30
JP5154884B2 JP5154884B2 (ja) 2013-02-27

Family

ID=40662917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263466A Active JP5154884B2 (ja) 2007-10-09 2007-10-09 レンズの連続加工方法

Country Status (1)

Country Link
JP (1) JP5154884B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092748A1 (ja) 2010-01-29 2011-08-04 有限会社コジマエンジニアリング 皿形砥石を用いたレンズ球面の研削加工方法
CN106002552A (zh) * 2016-07-19 2016-10-12 苏州誉衡昌精密机械有限公司 一种摩擦驱动装置
CN109048555A (zh) * 2018-10-08 2018-12-21 莆田市晟熠光电科技有限公司 一种用于自聚焦透镜加工的球面研磨设备及其研磨方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301048A (ja) * 1988-05-25 1989-12-05 Matsushita Electric Ind Co Ltd 球面研削加工装置と形状精度維持方法
JPH05192856A (ja) * 1992-01-17 1993-08-03 Olympus Optical Co Ltd 球面研削装置
JPH06344254A (ja) * 1993-06-07 1994-12-20 Olympus Optical Co Ltd 研削方法および装置
JPH08132340A (ja) * 1994-11-08 1996-05-28 Olympus Optical Co Ltd レンズ研削・研磨方法
JP2003127060A (ja) * 2001-10-19 2003-05-08 Ikegai Corp ワークの曲面加工機,曲面加工方法及び曲面加工砥石
JP2006297520A (ja) * 2005-04-19 2006-11-02 Nakamura Tome Precision Ind Co Ltd 多軸球面研削装置及び研削方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301048A (ja) * 1988-05-25 1989-12-05 Matsushita Electric Ind Co Ltd 球面研削加工装置と形状精度維持方法
JPH05192856A (ja) * 1992-01-17 1993-08-03 Olympus Optical Co Ltd 球面研削装置
JPH06344254A (ja) * 1993-06-07 1994-12-20 Olympus Optical Co Ltd 研削方法および装置
JPH08132340A (ja) * 1994-11-08 1996-05-28 Olympus Optical Co Ltd レンズ研削・研磨方法
JP2003127060A (ja) * 2001-10-19 2003-05-08 Ikegai Corp ワークの曲面加工機,曲面加工方法及び曲面加工砥石
JP2006297520A (ja) * 2005-04-19 2006-11-02 Nakamura Tome Precision Ind Co Ltd 多軸球面研削装置及び研削方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092748A1 (ja) 2010-01-29 2011-08-04 有限会社コジマエンジニアリング 皿形砥石を用いたレンズ球面の研削加工方法
KR20120123082A (ko) 2010-01-29 2012-11-07 유겐가이샤 코지마 엔지니어링 접시형 숫돌을 이용한 렌즈 구면의 연삭 가공 방법
CN106002552A (zh) * 2016-07-19 2016-10-12 苏州誉衡昌精密机械有限公司 一种摩擦驱动装置
CN109048555A (zh) * 2018-10-08 2018-12-21 莆田市晟熠光电科技有限公司 一种用于自聚焦透镜加工的球面研磨设备及其研磨方法

Also Published As

Publication number Publication date
JP5154884B2 (ja) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4456520B2 (ja) 多軸球面研削装置及び研削方法
JP2010184340A (ja) レンズの加工方法及び研削装置
JP2008509012A (ja) 眼科用レンズのラスタ切削技術
JP2007320020A (ja) プロファイル研削盤
CN101486167A (zh) 通过转动的修整工具修整加工轮的装置和方法以及具有这种装置的加工工具
JP2006142446A (ja) 玉軸受の製造設備及び超仕上加工装置
JP2013006267A (ja) 被加工物の加工方法
JP6617454B2 (ja) 切削装置及び切削方法
JP5154884B2 (ja) レンズの連続加工方法
JP2012240177A (ja) 研削加工装置及び方法
JP2006289566A (ja) マイクロレンズアレイの成形型の研削加工方法及び研削加工装置
JP2006218554A (ja) 工具砥石の形状創成方法
JP4662018B2 (ja) 曲面加工装置、及びパラレルリンク機構のキャリブレーション方法
JP6766922B2 (ja) 切削装置及び切削方法
JP2006320970A (ja) 加工装置
JP2006297512A (ja) レンズの球面加工装置
JP5296509B2 (ja) 研削方法および研削装置
JP2006297511A (ja) レンズの球面研削方法
JP2019063962A (ja) 工作機械
JP2009066724A (ja) レンズの球面研削方法及び装置
JP2010221338A (ja) 加工皿の作製装置及び修正方法
JP5103506B2 (ja) 研削加工方法
JP2012240176A (ja) 研削加工装置及び研削加工方法
JP6561596B2 (ja) 切削装置及び切削方法
JPH08229792A (ja) 研削加工装置および研削加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250