WO2011078112A1 - チタン酸リチウム、該チタン酸リチウムの製造方法、該製造方法に用いるスラリー、該チタン酸リチウムを含む電極活物質及び該電極活物質を用いたリチウム二次電池 - Google Patents

チタン酸リチウム、該チタン酸リチウムの製造方法、該製造方法に用いるスラリー、該チタン酸リチウムを含む電極活物質及び該電極活物質を用いたリチウム二次電池 Download PDF

Info

Publication number
WO2011078112A1
WO2011078112A1 PCT/JP2010/072876 JP2010072876W WO2011078112A1 WO 2011078112 A1 WO2011078112 A1 WO 2011078112A1 JP 2010072876 W JP2010072876 W JP 2010072876W WO 2011078112 A1 WO2011078112 A1 WO 2011078112A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
lithium
lithium titanate
surfactant
carbon
Prior art date
Application number
PCT/JP2010/072876
Other languages
English (en)
French (fr)
Inventor
昌利 本間
Original Assignee
石原産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原産業株式会社 filed Critical 石原産業株式会社
Priority to EP10839342.2A priority Critical patent/EP2518803A4/en
Priority to CA2785010A priority patent/CA2785010A1/en
Priority to JP2011547534A priority patent/JP5926959B2/ja
Priority to CN201080064397.0A priority patent/CN102770989B/zh
Priority to KR1020127016155A priority patent/KR101782184B1/ko
Priority to US13/517,217 priority patent/US20120261622A1/en
Publication of WO2011078112A1 publication Critical patent/WO2011078112A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to lithium titanate having excellent battery characteristics, particularly rate characteristics, a method for producing the lithium titanate, a slurry used in the production method and an electrode active material containing lithium titanate, and lithium using the electrode active material
  • the present invention relates to a secondary battery.
  • lithium secondary batteries have high energy density and excellent cycle characteristics, in recent years, they have rapidly spread to small batteries such as power supplies for portable devices. On the other hand, large batteries for the power industry and automobiles are used. Development is also desired. Electrode active materials for these large-sized lithium secondary batteries are required to have long-term reliability and high input / output characteristics. In particular, negative electrode active materials have excellent safety and life, and lithium titanate that has excellent rate characteristics. Is promising.
  • lithium titanate for example, lithium titanate is known in which spherical secondary particles are granulated to improve filling properties and battery characteristics are improved (Patent Documents 1 and 2).
  • the solution in which the lithium compound is dispersed is preheated to 50 ° C. or more, and the slurry is prepared by adding crystalline titanium oxide and a titanium compound to prepare titanium.
  • Patent Document 4 A method is also known in which the surface characteristics of lithium acid secondary particles are subjected to carbon vapor deposition by a CVD method to improve cycle characteristics
  • Patent Documents 1 to 4 require further improvement of rate characteristics.
  • the deposited carbon is mostly present on the surface of secondary particles of lithium titanate or in the vicinity of the surface inside the particles, and is not present in the core of the secondary particles. Even if a conductive material is contained inside, the conductive material is not uniformly dispersed, so that a desired rate characteristic cannot be obtained.
  • the present inventors have developed a lithium secondary battery containing lithium metal titanate containing carbon and having metallic lithium as a negative electrode.
  • a lithium titanate having a discharge capacity at a discharge rate of 30C of 75% or more with respect to a discharge capacity at a discharge rate of 0.25C was found.
  • the present inventors can obtain lithium titanate having excellent rate characteristics by drying a slurry containing at least a lithium compound, a titanium compound, a surfactant, and a carbon material and then firing the slurry in an inert atmosphere. I found out.
  • the present inventors have found that the above slurry containing a lithium compound, a titanium compound, a surfactant, and a carbon material has an L value of 80 or less as measured by SCE (without specular reflection light) using a spectrocolorimeter. If it becomes, it has been found that the dispersion state is good and suitable for the production of lithium titanate.
  • the present inventors have found that the electrode active material containing lithium titanate is an excellent battery material.
  • the present inventors have found that a lithium secondary battery using the electrode active material as a positive electrode or a negative electrode has excellent rate characteristics.
  • lithium titanate of the present invention As an electrode active material, a lithium secondary battery having excellent rate characteristics can be produced.
  • the lithium titanate of the present invention contains carbon and is useful as an electrode material for a lithium secondary battery.
  • the discharge capacity at a discharge rate of 30 C is a discharge rate of 0.25 C. It is 75% or more of the discharge capacity.
  • the discharge capacity at 30 C is preferably 80% or more of the discharge capacity at 0.25 C as in Examples 3 to 4 described later.
  • Each of these discharge capacities is obtained by setting an evaluation coin cell created in the same procedure as in Examples 4 to 6 described later, keeping the temperature of the measurement environment at 25 degrees, and setting the voltage range to 1 to 3 V, Can be measured.
  • the lithium titanate is preferably one in which primary particles are aggregated to form secondary particles, and preferably 90% or more are secondary particles.
  • An example of such lithium titanate is lithium titanate in which most of the primary particles, preferably 90% or more, are represented by the composition formula Li x Ti y O 4 .
  • the values of x and y in the general formula are preferably in the range of 0.5 to 2 in terms of x / y, and the composition formula Li 4/3 Ti 5/3 O 4 (Li 4 Ti 5 O 12 )
  • the spinel type represented by the formula is particularly preferred.
  • the secondary particles of lithium titanate are in a state in which the primary particles are firmly bonded to each other, and are not aggregated or mechanically consolidated by interaction between particles such as van der Waals force. Ordinary mechanical pulverization used in general does not disintegrate easily and remains as secondary particles.
  • the carbon contained in the lithium titanate is mainly present in the secondary particles. This carbon is not locally present in a part of the secondary particles, but is likely to be uniformly distributed inside the secondary particles, and of course the pores penetrating the surface of the secondary particles. It is also distributed in pores that do not penetrate the surface of the secondary particles. More specifically, it is considered that they are uniformly interposed between a large number of primary particles constituting the secondary particles.
  • the lithium titanate is obtained by the production method of the present invention described below.
  • the present invention is characterized in that a slurry containing at least a lithium compound, a titanium compound, a surfactant and a carbon material is dried and then fired in an inert atmosphere.
  • a starting material such as a titanium compound or a lithium compound, a surfactant, and a carbon material are added to a liquid medium, and a slurry containing them is prepared.
  • a slurry containing them is prepared.
  • the “lithium titanate precursor” referred to in the present application refers to a substance in a stage before lithium titanate is generated.
  • the slurry containing the titanium compound and the lithium compound is a lithium titanate precursor. The slurry.
  • the concentration of the titanium component in the slurry is industrially advantageous in the range of 50 to 300 g / L in terms of TiO 2 , and more preferably in the range of 80 to 250 g / L.
  • the concentration of the lithium component can be a concentration that provides lithium titanate having a desired composition formula based on the concentration of the titanium component.
  • the medium water, an organic solvent such as alcohol, or a mixture thereof can be used, and industrially, it is preferable to use water or an aqueous medium mainly composed of water.
  • the temperature of the liquid medium containing the lithium compound is preferably in the range of room temperature to 100 ° C., since the reaction between the titanium compound and the lithium compound proceeds in the slurry preparation stage, and lithium titanate is easily obtained during firing.
  • lithium compound it is preferable to use a water-soluble lithium compound such as lithium hydroxide, lithium carbonate, lithium nitrate, or lithium sulfate when the reaction is performed in water or an aqueous medium containing water as a main component.
  • a water-soluble lithium compound such as lithium hydroxide, lithium carbonate, lithium nitrate, or lithium sulfate when the reaction is performed in water or an aqueous medium containing water as a main component.
  • lithium hydroxide having high reactivity is preferable.
  • TiO (OH) 2 or TiO 2 ⁇ H metatitanic acid represented by 2 O, Ti (OH) 4 or titanate compounds such as ortho-titanate represented by TiO 2 ⁇ 2H 2 O, oxidation Titanium (rutile type, anatase type, brookite type, bronze type, etc.), preferably rutile type, anatase type or brookite type crystalline titanium oxide, or a mixture thereof can be used.
  • the crystalline titanium oxide has a plurality of X-ray diffraction patterns having a diffraction peak only from a single crystal structure, for example, an anatase type diffraction peak and a rutile type diffraction peak. It may have a diffraction peak from the crystal structure.
  • organic compounds such as titanium alkoxides may be used as the titanium compound.
  • the carbon material examples include carbon black, carbon nanotube, carbon nanohorn, amorphous carbon, carbon fiber, natural graphite, artificial graphite, activated carbon, and mesoporous carbon. These composite materials can also be used.
  • carbon black is preferable, and as the carbon black, ketjen black and acetylene black are more preferable, and acetylene black is particularly preferable.
  • acetylene black secondary aggregates (agglomerates) are formed long in a chain form, and therefore, it is considered that a conductive network is easily formed in the secondary particles of lithium titanate.
  • the high bulk capacity of the carbon material can be suppressed.
  • carbon-containing lithium titanate obtained by firing the precursor produced in this way is used as an electrode active material, the density of the electrode active material in the electrode can be increased. High capacity can be expected.
  • the dispersion of the carbon material is easier to proceed than the slurry not added with the surfactant, and the mechanical pulverization step using a bead mill can be omitted. preferable.
  • lithium titanate obtained by using a slurry in which a carbon material is dispersed using a surfactant is compared with lithium titanate obtained by using a slurry in which a carbon material is dispersed without using a surfactant.
  • the carbon material can be easily dispersed, and carbon is likely to intervene between a large number of primary particles constituting the secondary particles.
  • surfactant known (1) anionic surfactant, (2) cationic surfactant, (3) amphoteric surfactant, (4) nonionic (nonionic) surfactant, etc. are used. be able to.
  • (A) carboxylate salt for example, (a) higher carboxylate (RCOOM), (b) alkyl ether carboxylate ester salt (RO (EtO) n COOM), ( c) Salts of polycondensation products of higher carboxylic acids and amino acids (N-acyl-N-methylglycine, N-acyl-N-methyl- ⁇ -alanine, N-acylglutamic acid, etc.), etc.), (d) acrylic acid And maleic acid polymer salts (polyacrylate ([—CH 2 CH (COOM) —] n ), acrylate-acrylamide copolymer ([CH 2 CH (COOM)] n — [CH 2 CH (CONH) 2)] m), acrylic acid - maleic acid salt copolymer ([CH 2 CH (COOH) ] n - [CH 2 CH (COOM) CH (COOM)] m), ethylene - maleate copolymer ([Et]
  • (D) Phosphate ester salt For example, (a) alkyl phosphate (ROPO 3 M 2 , ( RO) 2 PO 2 M etc.), (b) alkyl ether phosphate ester salt (RO (EtO) n PO 3 M 2 , (RO (EtO) n ) 2 PO 2 M etc.), (c) allyl ether phosphate Salts (ArO (EtO) n PO 3 M 2 , (ArO (EtO) n ) 2 PO 2 M, etc.) and the like.
  • amine salt for example, alkylamine salt (RH 2 NX, RR′HNX, RR′R ′′ NX), etc.
  • B quaternary ammonium salt: for example, (A) Quaternary ammonium salt of alkylamine ([RN (CH 3 ) 3 ] + X ⁇ , [RR′N (CH 3 ) 2 ] + X ⁇ etc.), (b) Aromatic quaternary ammonium salt ([ R 3 N (CH 2 Ar)] + X ⁇ , [RR′N (CH 2 Ar) 2 ] + X ⁇ etc.), (c) heterocyclic quaternary ammonium salt (pyridinium salt, imidazolinium salt, polyvinyl imidazoline) Etc.).
  • amphoteric surfactants include (A) betaine type: (a) carboxylate type betaine ((RR′R ′′ N + ) R ′ ′′ COO ⁇ ), (b) sulfonate Type betaine ((RR′R ′′ N + ) R ′ ′′ SO 3 ⁇ ), (c) sulfate ester type betaine ((RR′R ′′ N + ) R ′ ′′ OSO 3 ⁇ ), etc.
  • C Alkylamine oxide: For example, RR′R ′′ N + O ⁇ ,
  • Nitrogen-containing heterocyclic type For example, imidazolium betaine, etc. Can be mentioned.
  • Nonionic surfactants include (A) ether type: for example, (a) polyoxyethylene alkyl ether (RO (CH 2 CH 2 O) n H), (b) polyoxyethylene allyl ether (ArO) (CH 2 CH 2 O) n H), (c) alkylallyl formaldehyde condensed polyoxyethylene ether (ArO [EtO] n — [CH 2 —ArO (EtO) n ] m —H), (d) polyoxyethylene Polyoxyethylene block copolymer (HO— [EtO] 1 — [CH (CH 3 ) CH 2 O] n — [EtO] m —H), (e) polyoxyethylene polyoxypropyl alkyl ether (RO— [CH ( CH 3) CH 2 O] m - [EtO] n -H) or the like, (B) an ether ester type: e.g., port glycerin ester Polyoxyethylene ether
  • R, R ′, R ′′, R ′ ′′ in the above chemical formula are the same or different alkyl groups
  • M is Na, K, Ca, H, triethanolamine, etc.
  • X is Cl, Br, I, etc. Represents.
  • HLB is a value representing the degree of affinity of the surfactant with water and oil.
  • the surfactant used in the present invention refers to a compound having a function of dispersing a carbon material in a liquid medium, and also includes what are commonly called dispersants and wetting agents.
  • Specific products include DISPERBYK-183, DISPERBYK-184, DISPERBYK-185, DISPERBYK-190, DISPERBYK-191, DISPERBYK-192, DISPERBYK-193, DISPERBYK-194, DISPERBYK-2010, DISPERBYK-2015, DISPERBYK-2015, DISPERBYK-2091, DISPERBYK-2096, etc. (above, Big Chemie Japan Co., Ltd.
  • Emulgen 104P Emulgen 105, Emulgen 106, Emulgen 108, Emulgen 109P, Emulgen 120, Emulgen 123P, Emulgen 147, Emulgen 150, Emulgen 210P, Emulgen 20, Emulgen 306P, Emulgen 320P, Emulgen 350, Emulgen 404, Emulgen 408, Emulgen 409PV, Emulgen 420, Emulgen 430, Emulgen 705, Emulgen 707, Emulgen 709, etc. (or, Kao Corporation) and the like.
  • the addition amount of the surfactant is preferably 0.25% by weight or more based on the solid content of the slurry.
  • the addition amount of the surfactant is less than 0.25% by weight based on the solid content of the slurry, the carbon material is likely to be insufficiently dispersed in the slurry.
  • the addition amount of the surfactant is insufficient, it becomes a marble slurry in which white and black are mixed, and can be visually confirmed. Judgment of stirring conditions and dispersion state is as follows.
  • the addition amount of the surfactant is preferably 0.25 wt% to 4.0 wt%, more preferably 0.50 wt% to 2.0 wt%, and 0.50 wt% to 1.0 wt%. Is more preferable.
  • the amount of the surfactant added is more than 4% by weight, the amount of the surfactant remaining in the precursor powder after dry granulation increases, and the carbon content in the powder after firing may not be adjusted. This is not preferable.
  • a method of adding the carbon material for example, a method of adding the powder as it is to the slurry of the lithium titanium precursor, or a slurry containing a carbon material and a surfactant in advance is created and added to the slurry of the lithium titanium precursor.
  • a method is mentioned.
  • a method of adding a powdered carbon material to the lithium titanium precursor slurry is industrially advantageous and preferable because the manufacturing process can be simplified.
  • the amount of carbon contained in the slurry of the lithium titanate precursor as the carbon material is preferably in the range of 0.05 to 30% by weight in terms of C with respect to the solid content of the slurry. If it is less than this range, the desired conductivity cannot be obtained, and if it is more, the inactive material component in the electrode increases, which is not preferable because the battery capacity decreases. A more preferable carbon amount is in the range of 0.1 to 15% by weight.
  • the amount of carbon can be analyzed by a CHN analysis method, a high frequency combustion method, or the like.
  • the dispersion state of the slurry is measured by a color difference (L, a, b) using a spectral colorimeter.
  • a color difference L, a, b
  • SD5000 manufactured by Nippon Denshoku Industries Co., Ltd. was used as the spectrocolorimeter, the light source C, the emissivity was 2 °, the reflected light, SCE (regular reflection light was excluded), the measurement diameter was 28 mm, and the slurry was a round cell (diameter). 28 mm, height 14 mm).
  • the slurry in which the lithium compound and the titanium compound are dispersed is white.
  • the slurry of the present invention containing a lithium compound, a titanium compound, a surfactant, and a carbon material is well-dispersed due to the presence of the surfactant in a black carbon material and is gray.
  • L value is low compared with the white slurry which does not add a carbon material, and L value will be 80 or less.
  • the L value is preferably 75 or less, more preferably 70 or less, and even more preferably 65 or less, in which the amount of carbon material added and its dispersion state are even better.
  • the L value is greater than 80, it indicates that the carbon material is not contained, the concentration thereof is low, or the carbon material is separated from the slurry, and the dispersion is insufficient.
  • the slurry is dried and then fired to obtain carbon-containing lithium titanate.
  • a drying method a known method can be used, and examples thereof include a method of spray-drying a slurry, a method of solid-liquid separation and drying of a solid content contained in the slurry, and the like.
  • dry granulation When drying, dry granulation is preferred.
  • dry granulation for example, (A) a slurry is spray-dried and granulated into secondary particles, (B) solid content contained in the slurry is solid-liquid separated, dried, pulverized, and then desired Examples thereof include a method of granulating into secondary particles having a size.
  • the method (A) is preferable because the particle diameter can be easily controlled, spherical secondary particles are easily obtained, and carbon is easily interposed between a large number of primary particles constituting the secondary particles.
  • the spray dryer used for spray drying can be appropriately selected according to the properties and processing capacity of the slurry, such as a disk type, a pressure nozzle type, a two-fluid nozzle type, and a four-fluid nozzle type.
  • the secondary particle size can be controlled by, for example, adjusting the solid content concentration in the slurry, or if the disk type is the above, the rotational speed of the disk is a pressure nozzle type, two-fluid nozzle type, four-fluid nozzle type, etc.
  • the size of droplets to be sprayed can be controlled by adjusting the spray pressure, nozzle diameter, flow rate of each fluid, and the like. Properties such as the concentration and viscosity of the slurry are appropriately set according to the ability of the spray dryer.
  • An organic binder may be used when the viscosity of the slurry is low and granulation is difficult, or for easier control of the particle size.
  • the organic binder used include (1) vinyl compounds (polyvinyl alcohol, polyvinyl pyrrolidone, etc.), (2) cellulose compounds (hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, etc.), and (3) protein compounds ( Gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, etc.), (4) acrylic acid compounds (sodium polyacrylate, ammonium polyacrylate, etc.), (5) natural polymer compounds (starch, dextrin, agar) , Sodium alginate, etc.), (6) synthetic polymer compounds (polyethylene glycol, etc.), etc., and at least one selected from these can be used. Especially, what does not contain inorganic components, such as soda, is more preferable because it is easily decomposed and volatilized by firing.
  • the firing temperature varies depending on the firing atmosphere, etc., it may be about 550 ° C. or higher in order to produce lithium titanate, and preferably 1000 ° C. or lower to prevent sintering between secondary particles.
  • a more preferable firing temperature is in the range of 550 to 850 ° C., and further preferably in the range of 650 to 850 ° C.
  • the firing atmosphere is preferably an inert atmosphere such as a nitrogen atmosphere. If the obtained lithium titanate secondary particles are sintered and agglomerated after firing, they may be pulverized using a flake crusher, a hammer mill, a pin mill, a bantam mill, a jet mill or the like, if necessary.
  • this invention is an electrode active material, Comprising: It contains the lithium titanate of this invention mentioned above, It is characterized by the above-mentioned.
  • the present invention is a lithium secondary battery using an electrode including the electrode active material.
  • the lithium secondary battery includes an electrode, a counter electrode, a separator, and an electrolytic solution, and the electrode is obtained by adding a conductive material and a binder to the electrode active material, and forming or applying the material appropriately.
  • the conductive material include conductive assistants such as carbon black, acetylene black, and ketjen black.
  • the binder examples include fluorine resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluorine rubber, and styrene butadiene rubber. Water-soluble resins such as carboxymethyl cellulose and polyacrylic acid.
  • the electrode active material can be used as a positive electrode, and a lithium-containing metal, lithium alloy, or a carbon-containing material such as graphite can be used as a counter electrode.
  • the electrode active material is used as a negative electrode, and a lithium / manganese composite oxide, a lithium / cobalt composite oxide, a lithium / nickel composite oxide, a lithium / cobalt / manganese / nickel composite oxide, or a lithium / vanadine composite oxide is used as the positive electrode.
  • Lithium / transition metal composite oxides such as olivine, and olivine compounds such as lithium / iron / composite phosphate compounds can be used.
  • a porous polypropylene film or the like is used, and for the electrolyte, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyl lactone, 1,2-dimethoxyethane, etc.
  • Conventional materials such as those obtained by dissolving lithium salts such as LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 in the above solvent can be used.
  • Example 1 Preparation of slurry of lithium titanate precursor
  • an aqueous dispersion of titanic acid compound (ortho titanic acid), 50 g in terms of TiO 2 was dispersed in the slurry maintained at a liquid temperature of 80 ° C. while stirring.
  • 650 ml of water was added to obtain slurry A containing crystalline titanium oxide, titanate compound and lithium compound (hereinafter referred to as lithium titanate precursor).
  • acetylene black powder Diska Black, manufactured by Denki Kagaku Kogyo
  • Example B contains lithium titanate represented by the composition formula Li 4 Ti 5 O 12 and 2% by weight of carbon in terms of C.
  • Comparative Example 1 While stirring the slurry A containing 98 g of lithium titanate precursor as lithium titanate, 2 g of acetylene black powder (Denka Black, manufactured by Denki Kagaku Kogyo) was gradually added, and then stirred for 1 to 2 hours. Next, the obtained mixture was further mixed using a bead mill to obtain slurry E in which acetylene black and a lithium titanate precursor were mixed.
  • acetylene black powder Denki Kagaku Kogyo
  • Example C a lithium titanate powder containing 2% by weight of acetylene black.
  • Sample C contained lithium titanate represented by the composition formula Li 4 Ti 5 O 12 and 2 wt% of carbon in terms of C.
  • Comparative Example 2 (Baking) The inlet temperature of the spray dryer (manufactured by Okawara Chemical Co., Ltd.) was adjusted to 190 ° C., the outlet temperature was adjusted to 90 ° C., and the slurry A was spray-dried. The granulated body obtained by spray drying was fired in a nitrogen atmosphere at 720 ° C. for 3 hours to obtain a lithium titanate powder (Sample D). By the same measurement method as in Example 1, it was confirmed that Sample D was lithium titanate represented by the composition formula Li 4 Ti 5 O 12 and did not contain carbon.
  • Each of the positive electrodes was vacuum-dried at 150 ° C. for 3 hours, and then incorporated into a sealable coin-type test cell in a glove box having a dew point of ⁇ 70 ° C. or less.
  • the cell for evaluation was made of stainless steel (SUS316) having an outer diameter of 20 mm and a height of 3.2 mm.
  • the above positive electrode is placed in the lower can of the evaluation cell, and a porous polypropylene film (Celguard # 2400, Hosen Co., Ltd.) is placed thereon as a separator.
  • a metal foil with a copper foil current collector and a 0.5 mm thick spacer for adjusting the thickness and a spring are placed on top of it at a concentration of 1 mol / l as a non-aqueous electrolyte.
  • a mixed solution of ethylene carbonate and dimethyl carbonate in which LiPF 6 is dissolved (mixed at a volume ratio of 1: 2) is dripped so that it overflows, and an upper can with a polypropylene gasket is covered and the outer peripheral edge is caulked and sealed, and evaluated.
  • Coin cells (samples E to F) were prepared.
  • Comparative Example 3 An evaluation coin cell (sample G) was prepared in the same manner as in Examples 3 to 4 except that sample C was used instead of samples A to B.
  • Example 3 Comparative Example 4 Example 3 except that Sample D was used instead of Samples A to B, and Sample D, acetylene black as a conductive additive, and polyvinylidene fluoride resin as a binder were kneaded at a weight ratio of 100: 3: 10. In the same manner as above, an evaluation coin cell (sample H) was prepared.
  • Table 1 shows the capacity retention rates of Samples E to H calculated under the above conditions.
  • the capacity retention rate of Samples E to F using the positive electrode obtained by using the surfactant does not use the surfactant. It is larger than the sample G using the positive electrode. Further, as the discharge current increases, the difference between the capacity maintenance rates of the samples E to F and the capacity maintenance rate of the sample G tends to increase.
  • sample G and sample H that do not use a surfactant In sample G and sample H that do not use a surfactant, sample G that contains carbon before firing has better rate characteristics than sample H that does not contain carbon before firing. However, it does not reach Samples E to F.
  • Example 5 Sample A obtained in Example 1, acetylene black as a conductive additive, and polyvinylidene fluoride resin as a binder were in a weight ratio of 102: 8: 10 (weight of lithium titanate: acetylene black: polyvinylidene fluoride resin). They were mixed and kneaded at a ratio of 100: 10: 10). The electrode material obtained by applying this mixture to the aluminum foil current collector was dried at 120 ° C. for 10 minutes. This electrode material was cut into a circle having a diameter of 12 mm and pressed at 17 MPa to obtain a negative electrode. The active material weight of the negative electrode cut out to a diameter of 12 mm was 3 mg.
  • lithium manganate M01Y01 manufactured by Mitsui Kinzoku Co., Ltd.
  • acetylene black Denki Kagaku Kogyo Co., Ltd.
  • the polyvinylidene fluoride resin was blended at a weight ratio of 100: 10: 10 and kneaded.
  • the electrode material obtained by applying this mixture to the aluminum foil current collector was dried at 120 ° C. for 10 minutes. This electrode material was cut into a circle having a diameter of 12 mm and pressed at 17 MPa to obtain a positive electrode.
  • the active material weight of this positive electrode was 6 mg.
  • the positive electrode and the negative electrode were vacuum-dried at 150 ° C. for 3 hours, and then incorporated into a sealable coin-type test cell in a glove box having a dew point of ⁇ 70 ° C. or lower.
  • the cell for evaluation was made of stainless steel (SUS316) having an outer diameter of 20 mm and a height of 3.2 mm.
  • the above positive electrode is placed in the lower can of the evaluation cell, and a porous polypropylene film (Celguard # 2400, Hosen Co., Ltd.) is placed thereon as a separator, and the negative electrode and 0.5 mm thickness for thickness adjustment are further provided thereon.
  • a spacer and a spring (both made of SUS316) are placed, and a mixed solution of ethylene carbonate and dimethyl carbonate in which LiPF 6 is dissolved at a concentration of 1 mol / L is mixed as a non-aqueous electrolyte (mixed in a volume ratio of 1: 2). It dripped so that it overflowed, and it covered the upper can with the polypropylene gasket, and sealed the outer periphery by caulking, and the coin cell for evaluation (sample I) was created.
  • Example 5 Similar to Example 5 except that sample D was used instead of sample A, sample D, acetylene black as a conductive additive, and polyvinylidene fluoride resin as a binder were kneaded at a weight ratio of 100: 10: 10. Then, an evaluation coin cell (sample J) was prepared.
  • Example 2 For the evaluation coin cells (samples I to J) obtained in Example 5 and Comparative Example 5, the charge capacity was measured at various current amounts, and the capacity retention rate (%) was calculated. The measurement was performed with the voltage range set to 1.5 to 2.8 V and the discharge current set to the range of 0.25 C.
  • the capacity retention rate is an expression of (X n / X 0.25 ) ⁇ 100, where X 0.25 is a measured value of charge capacity at 0.25 C, and X n is a measured value in a range of 0.5 C to 20 C.
  • 1C means a current value that can be completely discharged from full charge in one hour, and 0.48 mA corresponds to 1C in this evaluation.
  • Table 2 shows the capacity retention rates of the samples I to J calculated under the above conditions.
  • Example 6 (Preparation of precursor slurry) The slurry B used in Example 1 is referred to as Example 6.
  • Example 7 As in the case of slurry B, acetylene black was used except that 2.5 g of a block copolymer having affinity for pigment (DIPERBYK-190, main component 40%, manufactured by Big Chemie) was used as a surfactant (dispersant). A slurry F in which a titanium compound and a lithium compound were mixed was obtained. The surfactant added to the slurry F is 1% by weight with respect to the solid content of the slurry F. The slurry F was gray in which white and black were completely mixed.
  • a block copolymer having affinity for pigment DIPERBYK-190, main component 40%, manufactured by Big Chemie
  • Example 8 Acetylene black and titanium were the same as slurry B except that 2.5 g of a control polymerization acrylic copolymer (DIPERBYK-2010, main component 40%, manufactured by Big Chemie) was used as a surfactant (dispersant).
  • a slurry G in which the compound and the lithium compound were mixed was obtained.
  • the surfactant added to the slurry G is 1% by weight with respect to the solid content of the slurry G.
  • the slurry G was gray in which white and black were completely mixed.
  • Example 9 Acetylene black and titanium were the same as slurry B except that 2.5 g of a control polymerization acrylic copolymer (DIPERBYK-2015, main component 40%, manufactured by Big Chemie) was used as a surfactant (dispersant).
  • a slurry H in which the compound and the lithium compound were mixed was obtained.
  • the dispersant added to the slurry H is 1% by weight with respect to the solid content of the slurry H. This slurry H was gray in which white and black were completely mixed.
  • Example 10 The amount of slurry A was prepared so as to include 95 g of lithium titanate precursor as lithium titanate, and the amount of acetylene black powder (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) was changed to 5 g.
  • a slurry I containing acetylene black, a surfactant and a lithium titanate precursor was obtained.
  • the surfactant added to the slurry I is 1% by weight based on the solid content of the slurry I. This slurry I was gray in which white and black were completely mixed.
  • Example 11 The amount of slurry A was prepared so as to include 99 g of lithium titanate precursor as lithium titanate, and the amount of acetylene black powder (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) was changed to 1 g.
  • a slurry J containing acetylene black, a surfactant and a lithium titanate precursor was obtained.
  • the surfactant added to the slurry J is 1% by weight with respect to the solid content of the slurry J.
  • This slurry J was gray in which white and black were completely mixed.
  • Example 12 Acetylene black, similar to the slurry J, except that 2.5 g of a block copolymer DIPERBYK-190 having an affinity for pigment, 40% main component, manufactured by Big Chemie) was used as a surfactant (dispersant). A slurry K containing a surfactant and a lithium titanate precursor was obtained. The dispersant added to the slurry K is 1% by weight with respect to the solid content of the slurry K. The slurry K was gray in which white and black were completely mixed.
  • a surfactant dispersant
  • Example 13 As in the case of the slurry J, except that 2.5 g of a control polymerization acrylic copolymer (DIPERBYK-2010, main component 40%, manufactured by Big Chemie) was used as a surfactant (dispersant), acetylene black, interface A slurry L containing an activator and a lithium titanate precursor was obtained.
  • the dispersant added to the slurry L is 1% by weight with respect to the solid content of the slurry L.
  • the slurry L was gray in which white and black were completely mixed.
  • Example 14 As in the case of the slurry J, except that 2.5 g of a control polymerization acrylic copolymer (DIPERBYK-2015, main component 40%, manufactured by Big Chemie) was used as a surfactant (dispersant), acetylene black, interface A slurry M containing an activator and a lithium titanate precursor was obtained.
  • the dispersant added to the slurry M is 1% by weight with respect to the solid content of the slurry M.
  • the slurry M was gray in which white and black were completely mixed.
  • Comparative Example 6 The slurry E used in Comparative Example 1 is referred to as Comparative Example 6.
  • Comparative Example 7 The slurry A used in Example 1 is referred to as Comparative Example 7.
  • Comparative Example 8 The slurry C obtained in Example 2 is referred to as Comparative Example 8.
  • the color difference (L, a, b) was measured using a spectrocolorimeter (SD5000, manufactured by Nippon Denshoku Industries Co., Ltd.) as an indicator that the acetylene black powder was dispersed in the slurry.
  • the measurement conditions were light source C, emissivity 2 °, reflected light, SCE (excluding specularly reflected light), and measurement diameter 28 mm.
  • Each of the slurries obtained in Examples 6 to 9 and Comparative Examples 6 to 8 was attached to the apparatus. It measured after putting in a round cell (diameter 28mm, height 14mm), and leaving still for 5 minutes.
  • Table 3 shows the L value of each slurry measured under the above conditions.
  • the L value of slurry B and slurries F to M using a surfactant is 80 or less, and the L value of slurry E not using a surfactant is greater than 80.
  • the L value was 80 or less.
  • the titanium compound concentration of the slurry used in the examples in Table 3 was 87 to 113 g / L.
  • Emulgen 109P was used instead of the surfactant (dispersant) used in the slurries F to H and K to M, the L value was 65 or less although the other conditions were not changed. became. This means that dispersibility is more preferable when polyoxyethylene alkyl ether is used as a surfactant among nonionic compounds.
  • the lithium titanate obtained in the present invention is useful as an active material for a lithium secondary battery having excellent battery characteristics, particularly rate characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 金属リチウムを負極としたリチウム二次電池に正極活物質として用いた場合に、放電レート30Cにおける放電容量が、放電レート0.25Cでの放電容量に対して75%以上であるチタン酸リチウムを提供する。このチタン酸リチウムは、少なくともリチウム化合物、チタン化合物、界面活性剤及び炭素材料を含むスラリーを乾燥した後、不活性雰囲気下において焼成することによって得ることができ、電池特性、特にレート特性に優れたリチウム二次電池の活物質として有用である。

Description

チタン酸リチウム、該チタン酸リチウムの製造方法、該製造方法に用いるスラリー、該チタン酸リチウムを含む電極活物質及び該電極活物質を用いたリチウム二次電池
 本発明は、電池特性、特にレート特性に優れたチタン酸リチウム、このチタン酸リチウムの製造方法、この製造方法に用いるスラリー及びチタン酸リチウムを含む電極活物質、並びにこの電極活物質を用いたリチウム二次電池に関する。
 リチウム二次電池は、高エネルギー密度で、且つサイクル特性に優れていることから、近年、携帯機器電源等の小型電池に急速に普及しており、一方、電力産業用や自動車用等の大型電池にも展開が望まれている。これら大型リチウム二次電池の電極活物質には、長期信頼性や高入出力特性が求められており、特に負極活物質には、安全性と寿命に優れ、レート特性にも優れたチタン酸リチウムが有望視されている。
 上記チタン酸リチウムとしては、例えば、球状二次粒子に造粒して充填性を改良し、電池特性を向上させたチタン酸リチウムが知られている(特許文献1、2)。また、チタン酸リチウム二次粒子の放電容量を改良するために、リチウム化合物を分散させた溶液を50℃以上に予熱し、結晶性酸化チタンとチタン化合物を添加して前記スラリーを調製してチタン酸リチウムを製造する方法、及び該チタン酸リチウムとバインダーと導電材を混合して電極を作製する方法(特許文献3)や、チタン酸リチウムの二次粒子表面、あるいは内部に導電材を含むチタン酸リチウムの二次粒子表面に、CVD法により炭素蒸着処理を施し、サイクル特性を向上させる方法も知られている(特許文献4)。
特開2001-192208号公報 特開2002-211925号公報 特開2005-239460号公報 特開2005-158721号公報
 HEV自動車や電力貯蔵用のリチウム二次電池を考えた場合、短時間に大電流を取り出す必要があり、大電流放出時の放電容量も問題となる。このため、特許文献1~4などの技術については、さらなるレート特性の向上が求められている。たとえば、特許文献4の技術では、蒸着された炭素は、チタン酸リチウムの二次粒子の表面や粒子内部の表面近傍に存在するものが大半であり、二次粒子の芯部には存在せず、内部に導電材が含まれていても、導電材が均一に分散していないので、所望のレート特性が得られない。
 本発明者らは、活物質自体の改良によりレ-ト特性を向上させる方法について鋭意研究を重ねた結果、炭素を含有するチタン酸リチウムであって、金属リチウムを負極としたリチウム二次電池に正極活物質として用いた場合に、放電レート30Cにおける放電容量が、放電レート0.25Cでの放電容量に対して75%以上であるチタン酸リチウムを見出した。
 また、本発明者らは、少なくともリチウム化合物、チタン化合物、界面活性剤及び炭素材料を含むスラリーを乾燥した後、不活性雰囲気下において焼成することによって、レート特性に優れたチタン酸リチウムを得られることを見出した。
 また、本発明者らは、リチウム化合物、チタン化合物、界面活性剤及び炭素材料を含む上記のスラリーが、分光色彩計を用いたSCE(正反射光抜き)で測定されるL値が80以下となるものであれば、分散状態が良好であり、チタン酸リチウムの製造に好適であることを見出した。
 また、本発明者らは、上記チタン酸リチウムを含む電極活物質が、優れた電池材料であることを見出した。
 また、本発明者らは、上記電極活物質を正極又は負極に用いたリチウム二次電池が、優れたレート特性を有することを見出した。
 本発明のチタン酸リチウムを電極活物質として用いることにより、優れたレート特性を有するリチウム二次電池を製造することができる。
各放電レートにおける容量維持率を示す図である。
 本発明のチタン酸リチウムは、炭素を含有するものであり、リチウム二次電池の電極材料として有用である。具体的には、金属リチウムを負極としたリチウム二次電池に、本発明の炭素を含有するチタン酸リチウムを正極活物質として用いた場合に、放電レート30Cにおける放電容量が、放電レート0.25Cでの放電容量に対して75%以上となるものである。この30Cにおける放電容量は、後述する実施例3~4のように、0.25Cでの放電容量に対して80%以上となることが好ましい。これらの各放電容量は、後述する実施例4~6と同様の手順で作成された評価用コインセルを、測定環境の温度を25度に保ち、電圧範囲を1~3Vの範囲に設定して、測定することができる。
 上記チタン酸リチウムは、一次粒子が集合して二次粒子が構成されたものが好ましく、好ましくは90%以上が二次粒子である。このようなチタン酸リチウムの一例として、上記一次粒子の大半、好ましくは90%以上が、組成式LiTiで表されるチタン酸リチウムが挙げられる。前記一般式中のx、yの値は、x/yの値で表して0.5~2の範囲が好ましく、組成式Li4/3Ti5/3(LiTi12)で表されるスピネル型のものが特に好ましい。
 上記チタン酸リチウムの二次粒子は、一次粒子同士が強固に結合した状態にあり、ファンデルワールス力等の粒子間の相互作用で凝集したり、機械的に圧密化されたものではなく、工業的に用いられる通常の機械的粉砕では容易に崩壊せず、二次粒子として残るものである。一方、上記チタン酸リチウムに含有された炭素は、主として二次粒子の内部に存在している。この炭素は、二次粒子の一部に局所的に存在するのではなく、二次粒子の内部に均一に分布している可能性が高く、二次粒子表面に貫通している孔隙は勿論、二次粒子の表面に貫通していない孔隙にも分布している。より具体的には、二次粒子を構成する多数の一次粒子の間に均一に介在していると考えられる。このような炭素含有のチタン酸リチウムは、一次粒子間に良好な導電パスが形成されるため、同量の炭素を、チタン酸リチウムの二次粒子表面に処理する場合や、電極作成時に導電材として添加する場合に比べて、導電性が向上する。このように、導電性が向上することにより、後述する大電流下においても容量維持率の低下が軽減されると考えられる。
 前記チタン酸リチウムは、以下に説明する本発明の製造方法によって得られる。
 本発明は、少なくともリチウム化合物、チタン化合物、界面活性剤及び炭素材料を含むスラリーを乾燥した後、不活性雰囲気下において焼成することを特徴とする。
 具体的には、先ず、少なくともチタン化合物、リチウム化合物等の出発物質と、界面活性剤と、炭素材料とを媒液に添加し、これらを含むスラリーを調製する。媒液に、それぞれの出発物質を添加する順序に制限は無いが、予め媒液にリチウム化合物を添加し、チタン化合物を添加してチタン酸リチウム前駆体のスラリーを調製した後、次いで、界面活性剤と、炭素材料とを添加すると、スラリーの増粘やゲル化が生じ難いので好ましい。なお、本願で言う「チタン酸リチウム前駆体」とは、チタン酸リチウムが生成する前の段階の物質のことを指し、例えば、上記のチタン化合物及びリチウム化合物を含むスラリーは、チタン酸リチウム前駆体のスラリーである。
 スラリー中のチタン成分の濃度は、TiO換算で50~300g/Lの範囲であると工業的に有利で好ましく、80~250g/Lの範囲であれば更に好ましい。リチウム成分の濃度はチタン成分の濃度を基準として所望の組成式を有するチタン酸リチウムを提供する濃度とすることができる。
 媒液としては、水又はアルコール等の有機溶媒、あるいはそれらの混合物を用いることができ、工業的には水又は水を主成分とする水性媒液を用いるのが好ましい。リチウム化合物を含む媒液の温度は、室温~100℃の温度の範囲であると、スラリーの調製段階でチタン化合物とリチウム化合物の反応が進み、焼成時にチタン酸リチウムが得られ易いので好ましい。
 リチウム化合物としては、反応を水又は水を主成分とする水性媒液中で行なう場合は、水酸化リチウム、炭酸リチウム、硝酸リチウム、硫酸リチウム等の水溶性リチウム化合物を用いるのが好ましい。中でも、反応性の高い水酸化リチウムが好ましい。
 チタン化合物としては、TiO(OH)又はTiO・HOで表されるメタチタン酸、Ti(OH)またはTiO・2HOで表されるオルトチタン酸などのチタン酸化合物、酸化チタン(ルチル型、アナターゼ型、ブルッカイト型、ブロンズ型など)、好ましくは、ルチル型、アナターゼ型またはブルッカイト型の結晶性酸化チタン、あるいはそれらの混合物などを用いることができる。結晶性酸化チタンはX線回折パターンが、単一の結晶構造からの回折ピークのみを有する結晶性酸化チタンのほか、例えば、アナターゼ型の回折ピークとルチル型の回折ピークを有するもの等、複数の結晶構造からの回折ピークを有するものであってもよい。また、チタン化合物として、無機系のもの以外に、チタンアルコキシドのような有機系のものも用いても良い。
 炭素材料としては、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、活性炭、メソポーラス炭素等を挙げることができ、これらの複合材を用いることもできる。上記炭素材料としては、カーボンブラックが好ましく、カーボンブラックとしては、ケッチェンブラックやアセチレンブラックが更に好ましく、アセチレンブラックが特に好ましい。アセチレンブラックは、二次凝集体(アグロメレート)が鎖状に長く形成されるため、チタン酸リチウムの二次粒子内において、導電ネットワークを形成し易いと考えられる。
 チタン酸リチウム前駆体とともに炭素材料及び界面活性剤を含んだスラリーを乾燥することにより、炭素材料の持つ高い嵩容量を抑えることができる。このように製造された前駆体を焼成して得られる炭素含有のチタン酸リチウムを電極活物質として用いた場合は、電極中の電極活物質の密度を上げることができるため、リチウム二次電池の高容量化が期待できる。
 界面活性剤を添加したスラリーにおいては、界面活性剤を添加していないスラリーに比べて炭素材料の分散が進み易く、ビーズミル等を用いた機械的粉砕の工程を省略できる等、作業効率の点で好ましい。また、界面活性剤を用いて炭素材料を分散させたスラリーを用いて得られるチタン酸リチウムは、界面活性剤を用いずに炭素材料を分散させたスラリーを用いて得られるチタン酸リチウムに比べて、炭素材料を容易に分散させることができ、二次粒子を構成する多数の一次粒子間に炭素が介在し易い。
 界面活性剤としては、公知の(1)アニオン系界面活性剤、(2)カチオン系界面活性剤、(3)両性界面活性剤、(4)ノニオン系(非イオン系)界面活性剤等を用いることができる。
 (1)アニオン系界面活性剤としては、(A)カルボン酸塩:例えば、(a)高級カルボン酸塩(RCOOM)、(b)アルキルエーテルカルボン酸エステル塩(RO(EtO)COOM)、(c)高級カルボン酸とアミノ酸との縮重合物の塩(N-アシル-N-メチルグリシン、N-アシル-N-メチル-β-アラニン、N-アシルグルタミン酸等)等)、(d)アクリル酸系及びマレイン酸系ポリマーの塩(ポリアクリル酸塩([-CHCH(COOM)-])、アクリル酸塩-アクリルアミドコポリマー([CHCH(COOM)]-[CHCH(CONH)])、アクリル酸-マレイン酸塩コポリマー([CHCH(COOH)]-[CHCH(COOM)CH(COOM)])、エチレン-マレイン酸塩コポリマー([Et]-[CH(COOM)CH(COOM)])、オレフィン-マレイン酸塩コポリマー([CHCH(R)]-[CH(COOM)CH(COOM)])、スチレン-マレイン酸塩コポリマー([Et(C)]-[CH(COOM)CH(COOM)]等)等、(B)硫酸エステル塩:例えば、(a)アルキル硫酸塩(ROSOM)、(b)アルキルエーテル硫酸エステル塩(RO(EtO)SOM)、(c)アリルエーテル硫酸エステル塩(ArO(EtO)SOM)、(d)硫酸化油(ロート油、硫酸化オリーブ油等)、(e)硫酸化オレフィン(R(CH)CHOSOM)、(f)アルキルアミド硫酸塩(RCONH-R’-OSOM、RCONR’-R’’-OSOM等)等、(C)スルホン酸塩:例えば、(a)アルキルスルホン酸塩(RSOM))、(b)アリルスルホン酸塩(アルキルベンゼンスルホン酸塩(R(C)SOM)、アルキルナフタレンスルホン酸塩(R(C10)SOM)等)、(c)スルホカルボン酸エステル塩(ROOC-R’-SOM、ROOC-CH(CHCOOR’)-SOM等)、(d)α-オレフィンスルホン酸塩(R-C=C-R’-SOM、R-CHCHOH-R’-SOM等)、(e)アルキルアミドスルホン酸塩(RCONH-R’-SOM、RCONR’-R’’-SOM等)、(f)ポリスチレンスルホン酸塩([CHCH((C)SOM)])(g)ナフタレンスルホン酸塩-ホルマリン重縮合物([CH-(C10)])等、(D)リン酸エステル塩:例えば、(a)アルキルリン酸塩(ROPO、(RO)POM等)、(b)アルキルエーテルリン酸エステル塩(RO(EtO)PO、(RO(EtO)POM等)、(c)アリルエーテルリン酸塩(ArO(EtO)PO、(ArO(EtO)POM等)等が挙げられる。
 (2)カチオン系界面活性剤としては、(A)アミン塩:例えば、アルキルアミン塩(RHNX、RR’HNX、RR’R’’NX)等、(B)4級アンモニウム塩:例えば、(a)アルキルアミンの4級アンモニウム塩([RN(CH、[RR’N(CH等)、(b)芳香族4級アンモニウム塩([RN(CHAr)]、[RR’N(CHAr)等)、(c)複素環4級アンモニウム塩(ピリジニウム塩、イミダゾリニウム塩、ポリビニルイミダゾリン等)、が挙げられる。
 (3)両性界面活性剤としては、(A)ベタイン型:例えば、(a)カルボン酸塩型ベタイン((RR’R’’N)R’’’COO)、(b)スルホン酸塩型ベタイン((RR’R’’N)R’’’SO )、(c)硫酸エステル塩型ベタイン((RR’R’’N)R’’’OSO )等、(B)アミノ酸型:例えば、RNH-R’-COOH、(C)アルキルアミンオキシド:例えば、RR’R’’N、(D)含窒素複素環型:例えば、イミダゾリウムベタイン等、が挙げられる。
 (4)ノニオン系界面活性剤としては、(A)エーテル型:例えば、(a)ポリオキシエチレンアルキルエーテル(RO(CHCHO)H)、(b)ポリオキシエチレンアリルエーテル(ArO(CHCHO)H)、(c)アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル(ArO[EtO]-[CH-ArO(EtO)-H)、(d)ポリオキシエチレンポリオキシエチレンブロックコポリマー(HO-[EtO]-[CH(CH)CHO]-[EtO]-H)、(e)ポリオキシエチレンポリオキシプロピルアルキルエーテル(RO-[CH(CH)CHO]-[EtO]-H)等、(B)エーテルエステル型:例えば、グリセリンエステルのポリオキシエチレンエーテル([CHCOOR]-[CHO(EtO)H]-[CHO(EtO)H])、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル等、(C)エステル型:例えば、(a)ポリエチレングリコールカルボン酸エステル(RCOO(EtO)H)、(b)グリセリンエステル((CHCOOR)-(CHOH)-(CHOH))、(c)ポリグリセリンエステル(CH(OR)CH(OR)-O-[CHCH(OR)CH-O-(OR)CH(OR)CH)、(d)ソルビタンエステル、(e)プロピレングリコールエステル(RCOOCHCH(CH)OH)、(f)ショ糖エステル等、(D)含窒素型:例えば、(a)カルボン酸アルカノールアミド(RCONHR’OH、RCON(R’OH))、(b)ポリオキシエチレンカルボン酸アミド(RCON-(EtO)H-(EtO)H)、(e)ポリオキシエチレンアルキルアミン(RNH(EtO)R-(EtO)H-(EtO)H、(f)ポリアルキレンポリアミン([-R-N(R’)-])、(g)ポリアクリルアミド([-CHCH(CONH)-])等、が挙げられる。
 上記化学式中のR、R’、R’’、R’’’は同種または異種のアルキル基を、MはNa、K、Ca、H、トリエタノールアミン等を、XはCl、Br、I等を表す。界面活性剤としては、ノニオン系が好ましく、ノニオン系の中でも、ポリオキシエチレンアルキルフェニルエーテル等が、より好ましく、ポリオキシエチレンアルキルエーテル(n=10~15、HLB=13~14)が、特に好ましい。ここで、HLBとは界面活性剤の水と油への親和性の程度を表す値である。
 なお、本願発明で用いる界面活性剤とは、炭素材料を媒液に分散させる機能を有する化合物を指し、通称として分散剤や湿潤剤と呼ばれるものも含む。具体的な製品としては、DISPERBYK-183、DISPERBYK-184、DISPERBYK-185、DISPERBYK-190、DISPERBYK-191、DISPERBYK-192、DISPERBYK-193、DISPERBYK-194、DISPERBYK-2010、DISPERBYK-2015、DISPERBYK-2090、DISPERBYK-2091、DISPERBYK-2096等(以上、ビックケミー・ジャパン株式会社 DISPERBYKは登録商標)、エマルゲン104P、エマルゲン105、エマルゲン106、エマルゲン108、エマルゲン109P、エマルゲン120、エマルゲン123P、エマルゲン147、エマルゲン150、エマルゲン210P、エマルゲン220、エマルゲン306P、エマルゲン320P、エマルゲン350、エマルゲン404、エマルゲン408、エマルゲン409PV、エマルゲン420、エマルゲン430、エマルゲン705、エマルゲン707、エマルゲン709等(以上、花王株式会社)が挙げられる。
 界面活性剤の添加量は、スラリーの固形分に対して、0.25重量%以上であることが好ましい。界面活性剤の添加量が、スラリーの固形分に対して0.25重量%より少ない場合は、スラリー中に炭素材料の分散が不充分になり易い。界面活性剤の添加量が不充分である場合は、白と黒が混ざったマーブル状のスラリーとなるので、目視により確認できる。攪拌条件及び分散状態の判断は下記のとおりである。また、界面活性剤の添加量は、0.25重量%~4.0重量%が好ましく、0.50重量%~2.0重量%がより好ましく、0.50重量%~1.0重量%が更に好ましい。炭素材料の分散に必要な最小限度の量を添加するよりも、分散に充分な量(例えば、1.0重量%程度)を添加する方が、分散にかかる時間を短縮できる点や、焼成して得られるチタン酸リチウムのレート特性の点で、好ましい。また、界面活性剤の添加量が4重量%より多い場合は、乾燥造粒後の前駆体粉末に界面活性剤が残留する量が多くなり、焼成後の粉末における炭素含有量を調整できなくなるおそれがあるため、好ましくない。
(攪拌条件)
 スリーワンモーターBL600攪拌機(新東科学株式会社製)にテフロン(登録商標)製2枚羽(40mm)攪拌棒を装着し、スラリーを200rpmで5分間攪拌する。
(分散状態の判断)
 攪拌後、5分間放置したものにつき、分散が十分かどうか、判断する。
 界面活性剤の添加量が不十分である場合は、スラリーに馴染まない一部の炭素材料がスラリー表面に滞留し、白と黒の混ざったマーブル状のスラリーとなるので、目視により確認できる。
 炭素材料を添加する方法としては、例えば、粉末のままリチウムチタン前駆体のスラリーに添加する方法や、予め炭素材料と界面活性剤を含んだスラリーを作成し、リチウムチタン前駆体のスラリーに添加する方法が挙げられる。上記方法のうち、リチウムチタン前駆体スラリーに粉末の炭素材料を添加する方法が、製造工程を簡略化することができる等、工業的に有利で好ましい。
 炭素材料としてチタン酸リチウム前駆体のスラリーに含ませる炭素量は、スラリーの固形分に対してC換算で0.05~30重量%の範囲が好ましい。この範囲より少ないと所望の導電性が得られず、多いと電極内の非活物質成分が増えることで、電池容量が低下し好ましくない。より好ましい炭素量は、0.1~15重量%の範囲である。尚、炭素量は、CHN分析法、高周波燃焼法等により分析できる。
 スラリーの分散状態は、分光色彩計を用い、色差(L、a、b)により測定される。具体的には、分光色彩計として日本電色工業社製SD5000を用い、光源C、射度を2°、反射光、SCE(正反射光抜き)、測定径28mmとし、スラリーを丸セル(径28mm、高さ14mm)に入れ、測定する。
 リチウム化合物とチタン化合物が分散したスラリーは、白色である。これに対し、リチウム化合物、チタン化合物、界面活性剤、炭素材料を含む本発明のスラリーは、黒色である炭素材料が界面活性剤が存在することによって良好に分散しており、灰色である。このため、L値は、炭素材料を添加していない白色のスラリーと比べて低く、L値は80以下となる。L値は、炭素材料の添加量もその分散状態も一層良好である75以下であると好ましく、70以下であるとより好ましく、65以下であるとより一層好ましい。
 なお、リチウム化合物とチタン化合物が分散した白色のスラリーに、界面活性剤を用いずに炭素材料を添加し攪拌すると、スラリーは白と黒が混ざったマーブル状となる。このスラリーは、暫く静置すると上下に分離し、上部が黒色となり、下部が白色となる。このスラリーを上記分光彩色計の測定セルに入れた場合、セルの下部が白色となる。上記測定条件では、セル下部側から光が入射するため、白色部分のL値が測定される。このため、灰色の本発明のスラリーよりもL値が大きくなる。
 以上のとおり、L値が80より大きい場合は、炭素材料を含まないか、その濃度が低く、または、炭素材料がスラリーと分離しており、その分散が不十分であることを示す。
 前記スラリーを乾燥した後、焼成して炭素を含有するチタン酸リチウムを得る。乾燥の方法には公知の方法を用いることができ、例えば、スラリーを噴霧乾燥する方法、スラリー中に含まれる固形分を固液分離、乾燥する方法等が挙げられる。
 乾燥に際しては、乾燥造粒することが好ましい。乾燥造粒としては、例えば、(A)スラリーを噴霧乾燥し、二次粒子に造粒する方法、(B)スラリー中に含まれる固形分を固液分離、乾燥後、粉砕して、所望の大きさの二次粒子に造粒する方法等が挙げられる。特に、(A)の方法は、粒子径の制御が容易であり、球状二次粒子が得られ易く、また、二次粒子を構成する多数の一次粒子間に炭素を介在させ易いので好ましい。噴霧乾燥に用いる噴霧乾燥機は、ディスク式、圧力ノズル式、二流体ノズル式、四流体ノズル式等、スラリーの性状や処理能力に応じて、適宜選択することができる。二次粒子径の制御は、例えば、スラリー中の固形分濃度を調整したり、あるいは、上記のディスク式ならディスクの回転数を、圧力ノズル式、二流体ノズル式、四流体ノズル式等ならば、噴霧圧やノズル径、各流体の流量を調整する等して、噴霧される液滴の大きさを制御することにより行える。スラリーの濃度、粘度等の性状は、噴霧乾燥機の能力に応じて適宜設定する。
 スラリーの粘度が低く、造粒し難い場合や、粒子径の制御を更に容易にするために、有機系バインダーを用いても良い。用いる有機系バインダーとしては、例えば、(1)ビニル系化合物(ポリビニルアルコール、ポリビニルピロリドン等)、(2)セルロース系化合物(ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等)、(3)タンパク質系化合物(ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等)、(4)アクリル酸系化合物(ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等)、(5)天然高分子化合物(デンプン、デキストリン、寒天、アルギン酸ソーダ等)、(6)合成高分子化合物(ポリエチレングリコール等)等が挙げられ、これらから選ばれる少なくとも1種を用いることができる。中でも、ソーダ等の無機成分を含まないものは、焼成により分解、揮散し易いので更に好ましい。
 焼成温度としては、焼成雰囲気などにより異なるが、チタン酸リチウムを生成するためには、概ね550℃以上でよく、二次粒子間の焼結を防ぐため、1000℃以下とするのが好ましい。より好ましい焼成温度は、550~850℃の範囲であり、650~850℃の範囲であれば更に好ましい。焼成雰囲気としては、窒素雰囲気等の不活性雰囲気が好ましい。焼成後、得られたチタン酸リチウム二次粒子同士が焼結、凝集していれば、必要に応じてフレーククラッシャ、ハンマミル、ピンミル、バンタムミル、ジェットミルなどを用いて粉砕しても良い。
 次に、本発明は電極活物質であって、上述した本発明のチタン酸リチウムを含むことを特徴とする。また、本発明は、リチウム二次電池であって、前記の電極活物質を含む電極を用いたことを特徴とする。このリチウム二次電池は、電極、対極及びセパレータと電解液とからなり、電極は、前記電極活物質に導電材とバインダーを加え、適宜成形または塗布して得られる。導電材としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック等の導電助剤が、バインダーとしては、例えば、ポリ四フッ化エチレン、ポリフッ化ビニリデン、フッ素ゴム等のフッ素樹脂や、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリアクリル酸等の水溶性樹脂が挙げられる。リチウム電池の場合、前記電極活物質を正極に用い、対極として金属リチウム、リチウム合金など、または黒鉛等の炭素含有物質を用いることができる。あるいは、前記電極活物質を負極として用い、正極にリチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・コバルト・マンガン・ニッケル複合酸化物、リチウム・バナジン複合酸化物等のリチウム・遷移金属複合酸化物、リチウム・鉄・複合リン酸化合物等のオリビン型化合物等を用いることができる。セパレータには、いずれにも、多孔性ポリプロピレンフィルムなどが用いられ、電解液には、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチルラクトン、1,2-ジメトキシエタンなどの溶媒にLiPF、LiClO、LiCFSO、LiN(CFSO、LiBF等のリチウム塩を溶解させたものなど常用の材料を用いることができる。
 以下に本発明の実施例を示すが、これらは本発明を限定するものではない。
実施例1
(チタン酸リチウム前躯体のスラリー調製)
 4.5mol/lの水酸化リチウム水溶液340mlに、結晶性二酸化チタン粒子100gを添加し、分散させ、スラリーを得た。次に、チタン酸化合物(オルトチタン酸)の水分散体、TiO換算で50g分、を撹拝しながら液温を80℃に保った上記スラリーに分散させた。このスラリーに、水650mlを添加して、結晶性酸化チタン、チタン酸化合物及びリチウム化合物(以下、チタン酸リチウム前駆体という)を含むスラリーAを得た。
(アセチレンブラック混合スラリー調製)
 チタン酸リチウム前駆体をチタン酸リチウムとして98g含むスラリーAに、非イオン性(ノニオン性)界面活性剤ポリオキシエチレンラウリルエーテル(エマルゲン109P、花王社製、HLB=13.6)1gを添加した。このスラリーを攪拌しながら、アセチレンブラック粉末(デンカブラック、電気化学工業社製)2gを徐々に添加し、その後1~2時間攪拌した。これにより、アセチレンブラック、界面活性剤及びチタン酸リチウム前駆体を含むスラリーBを得た。スラリーBに添加された界面活性剤は、スラリーBの固形分に対し、1重量%である。このスラリーBは、白と黒が完全に混ざり合った灰色であった。
(焼成)
 スプレードライヤー(大川原化工機社製)の入口温度を190℃、出口温度を90℃に調整し、スラリーBを噴霧乾燥した。噴霧乾燥により得られた造粒体を、720℃窒素雰囲気下で3時間焼成し、粉末の試料Aを得た。試料Aを測定試料用ホルダーに載せ、それを株式会社リガク社製X線回折装置「RINT2200」にセットし、Cu/Kα線、スキャンスピード3.0°/分の条件で測定を行った。これにより、試料Aが、組成式LiTi12で表されるチタン酸リチウムと、炭素を含んでいることが確認された。また、試料AをCHN法で分析したところ、試料Aは、C換算で炭素を2重量%含んでいることが確認された。
実施例2
(アセチレンブラックスラリーの調製)
 非イオン性界面活性剤ポリオキシエチレンラウリルエーテル(エマルゲン109P、花王社製、ノニオン系、HLB=13.6)1gを添加した純水100mlに、アセチレンブラック(デンカブラック、電気化学工業社製)2gを加え、充分に攪拌し、スラリーCを得た。
(アセチレンブラック混合スラリーの調製)
 チタン酸リチウム前駆体をチタン酸リチウムとして98g含むスラリーAを攪拌しながら、界面活性剤を1gとアセチレンブラックを2g含むスラリーCを徐々に添加し、その後1~2時間攪拌した。これにより、アセチレンブラック、界面活性剤及びチタン酸リチウム前駆体を含むスラリーDを得た。スラリーDに添加された界面活性剤は、スラリーDの固形分に対し、1重量%である。このスラリーDは、白と黒が完全に混ざり合った灰色であった。
(焼成)
 スラリーBの代わりにスラリーDを用いた以外は実施例1と同様に噴霧乾燥後、焼成し、粉末(試料B)を得た。実施例1と同様の測定方法により、試料Bは、組成式LiTi12で表されるチタン酸リチウムと、C換算で炭素を2重量%含んでいることが確認された。
比較例1
 チタン酸リチウム前駆体をチタン酸リチウムとして98g含むスラリーAを攪拌しながら、アセチレンブラック粉末(デンカブラック、電気化学工業社製)2gを徐々に添加し、その後1~2時間攪拌した。次に、得られた混合物を、ビーズミルを用いて更に混合し、アセチレンブラックとチタン酸リチウム前駆体を混合したスラリーEを得た。
(焼成)
 スラリーBの代わりにスラリーEを用いた以外は実施例1と同様に噴霧乾燥後、焼成し、アセチレンブラック2重量%を含むチタン酸リチウム粉末(試料C)を得た。実施例1と同様の測定方法により、試料Cは、組成式LiTi12で表されるチタン酸リチウムと、C換算で炭素を2重量%含んでいることが確認された。
比較例2
(焼成)
 スプレードライヤー(大川原化工機社製)の入口温度を190℃、出口温度を90℃に調整し、スラリーAを噴霧乾燥した。噴霧乾燥により得られた造粒体を、720℃窒素雰囲気下で3時間焼成し、チタン酸リチウム粉末(試料D)を得た。実施例1と同様の測定方法により、試料Dは、組成式LiTi12で表されるチタン酸リチウムであり、炭素を含んでいないことが確認された。
実施例3~4
 実施例1~2で得られた試料A~Bと、導電助剤としてアセチレンブラック(デンカブラック、電気化学工業社製)と、結着剤としてポリフッ化ビニリデン樹脂を、重量比102:1:10(チタン酸リチウム:アセチレンブラック:ポリフッ化ビニリデン樹脂の重量比100:3:10(となる)で配合し混練した。この混合物をアルミニウム箔集電体へ塗布した電極材料を120℃で10分間乾燥した。この電極材料を直径12mmの円形に切り出し、17MPaでプレスして正極を得た。この正極の活物質重量は3mgであった。
 上記正極それぞれを150℃で3時間真空乾燥した後、露点-70℃以下のグローブボックス中で、密閉可能なコイン型の試験用セルに組み込んだ。評価用のセルには材質がステンレス製(SUS316)で外径20mm、高さ3.2mmのものを用いた。上記の正極を評価用セルの下部缶に置き、その上にセパレータとして多孔性ポリプロピレンフィルム(セルガード#2400、宝泉社)を置き、更にその上に負極として12mm径で打抜いた0.5mm厚の金属リチウム箔に銅箔集電体を圧着したもの、及び厚み調整用の0.5mm厚スペーサとスプリング(ともにSUS316製)をのせ、その上から非水電解液として1mol/lとなる濃度でLiPFを溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を溢れるほど滴下し、ポリプロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封し、評価用コインセル(試料E~F)を作成した。
比較例3
 試料A~Bの代わりに試料Cを用いた以外は、実施例3~4と同様に、評価用コインセル(試料G)を作成した。
比較例4
 試料A~Bの代わりに試料Dを用い、試料Dと、導電助剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデン樹脂を、重量比100:3:10で混練した以外は、実施例3~4と同様に、評価用コインセル(試料H)を作成した。
(レート特性の評価1)
 実施例3~4と比較例3~4で得られた評価用コインセル(試料E~H)について、種々の電流量で放電容量を測定して容量維持率(%)を算出した。測定は、測定環境の温度を25度に保ち、電圧範囲を1~3Vに、充電電流は0.25Cに、放電電流は0.25C~30Cの範囲に設定して行った。容量維持率は、0.25Cでの放電容量の測定値をX0.25、0.5C~30Cの範囲での測定値をXとし、(X/X0.25)×100の式で算出した。なお、1Cとは、1時間で満充電から完全放電できる電流値を言い、本評価では、0.48mAが1Cに相当する。
 上記条件で算出した試料E~Hの容量維持率を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図1に示すように、10C以上の大きな電流を放電する際に、界面活性剤を使用して得られた正極を用いた試料E~Fの容量維持率は、界面活性剤を使用していない正極を用いた試料Gよりも大きくなっている。また、放電電流が大きくなるにつれて、試料E~Fの容量維持率と、試料Gの容量維持率の差は、拡大する傾向にある。
 表1に示すように、界面活性剤を使用して得られた試料E~Fは、30Cにおける容量維持率の値が80%以上である。一方、界面活性剤を使用していない試料Gの30Cにおける容量維持率は75%に及ばない。これにより、界面活性剤を使用して得られた炭素含有のチタン酸リチウムを用いることで、大電流放電時の容量の低下が軽減されることが確認された。
 界面活性剤を使用していない試料Gと試料Hにおいて、焼成前に炭素を含ませた試料Gは、焼成前に炭素を含ませていない試料Hよりも、優れたレート特性を有しているが、試料E~Fには及ばない。
実施例5
 実施例1で得られた試料Aと、導電助剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデン樹脂を、重量比102:8:10(チタン酸リチウム:アセチレンブラック:ポリフッ化ビニリデン樹脂の重量比100:10:10)で配合し混練した。この混合物をアルミニウム箔集電体へ塗布した電極材料を、120℃で10分間乾燥を行った。この電極材料を直径12mmの円形に切り出し、17MPaでプレスして負極を得た。この直径12mmに切り出した負極の活物質重量は3mgであった。
 次に、マンガン酸リチウム(三井金属社製M01Y01)と、導電助剤としてアセチレンブラック(デンカブラック、電気化学工業社製)と、結着剤としてポリフッ化ビニリデン樹脂を、マンガン酸リチウム:アセチレンブラック:ポリフッ化ビニリデン樹脂の重量比100:10:10で配合し、混練した。この混合物をアルミニウム箔集電体へ塗布した電極材料を、120℃で10分間乾燥を行った。この電極材料を直径12mmの円形に切り出し、17MPaでプレスして正極を得た。この正極の活物質重量は6mgであった。
 上記正極および負極を、150℃で3時間真空乾燥した後、露点-70℃以下のグローブボックス中で、密閉可能なコイン型の試験用セルに組み込んだ。評価用のセルには材質がステンレス製(SUS316)で外径20mm、高さ3.2mmのものを用いた。上記の正極を評価用セルの下部缶に置き、その上にセパレータとして多孔性ポリプロピレンフィルム(セルガード#2400、宝泉社)を置き、更にその上に上記の負極、厚み調整用の0.5mm厚スペーサ、スプリング(ともにSUS316製)をのせ、その上から非水電解液として1mol/Lとなる濃度でLiPFを溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を溢れるほど滴下し、ポリプロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封し、評価用コインセル(試料I)を作成した。
比較例5
 試料Aの代わりに試料Dを用い、試料Dと、導電助剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデン樹脂を、重量比100:10:10で混練した以外は、実施例5と同様に、評価用コインセル(試料J)を作成した。
(レート特性の評価2)
 実施例5と比較例5で得られた評価用コインセル(試料I~J)について、種々の電流量で充電容量を測定して容量維持率(%)を算出した。測定は、電圧範囲を1.5~2.8Vに、放電電流は0.25Cの範囲に設定して行った。容量維持率は、0.25Cでの充電容量の測定値をX0.25、0.5C~20Cの範囲での測定値をXとし、(X/X0.25)×100の式で算出した。なお、1Cとは、1時間で満充電から完全放電できる電流値を言い、本評価では、0.48mAが1Cに相当する。
上記条件で算出した試料I~Jの容量維持率を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、界面活性剤を使用して焼成前に炭素を含ませた負極を用いた試料Iの容量維持率は、焼成前に炭素を含ませていない負極を用いた試料Gよりも大きくなっている。
(前駆体スラリーの調製)
実施例6
 実施例1で用いたスラリーBを、実施例6とする。
実施例7
 界面活性剤(分散剤)として、顔料に親和性のあるブロック共重合物(DIPERBYK-190、主成分40%、ビッグケミー社製)2.5gを用いた以外はスラリーBと同様にして、アセチレンブラックとチタン化合物とリチウム化合物を混合したスラリーFを得た。スラリーFに添加された界面活性剤は、スラリーFの固形分に対し、1重量%である。このスラリーFは、白と黒が完全に混ざり合った灰色であった。
実施例8
 界面活性剤(分散剤)として、コントロール重合のアクリル系共重合物(DIPERBYK-2010、主成分40%、ビッグケミー社製)2.5gを用いた以外はスラリーBと同様にして、アセチレンブラックとチタン化合物とリチウム化合物を混合したスラリーGを得た。スラリーGに添加された界面活性剤は、スラリーGの固形分に対し、1重量%である。このスラリーGは、白と黒が完全に混ざり合った灰色であった。
実施例9
 界面活性剤(分散剤)として、コントロール重合のアクリル系共重合物(DIPERBYK-2015、主成分40%、ビッグケミー社製)2.5gを用いた以外はスラリーBと同様にして、アセチレンブラックとチタン化合物とリチウム化合物を混合したスラリーHを得た。スラリーHに添加された分散剤は、スラリーHの固形分に対し、1重量%である。このスラリーHは、白と黒が完全に混ざり合った灰色であった。
実施例10
 スラリーAの分量をチタン酸リチウム前駆体をチタン酸リチウムとして95g含むように調製し、アセチレンブラック粉末(デンカブラック、電気化学工業社製)の分量を5gとした以外は、スラリーBと同様にして、アセチレンブラック、界面活性剤及びチタン酸リチウム前駆体を含むスラリーIを得た。スラリーIに添加された界面活性剤は、スラリーIの固形分に対し、1重量%である。このスラリーIは、白と黒が完全に混ざり合った灰色であった。
実施例11
 スラリーAの分量をチタン酸リチウム前駆体をチタン酸リチウムとして99g含むように調製し、アセチレンブラック粉末(デンカブラック、電気化学工業社製)の分量を1gとした以外は、スラリーBと同様にして、アセチレンブラック、界面活性剤及びチタン酸リチウム前駆体を含むスラリーJを得た。スラリーJに添加された界面活性剤は、スラリーJの固形分に対し、1重量%である。このスラリーJは、白と黒が完全に混ざり合った灰色であった。
実施例12
 界面活性剤(分散剤)として、顔料に親和性のあるブロック共重合物DIPERBYK-190、主成分40%、ビッグケミー社製)2.5gを用いた以外はスラリーJと同様にして、アセチレンブラック、界面活性剤及びチタン酸リチウム前駆体を含むスラリーKを得た。スラリーKに添加された分散剤は、スラリーKの固形分に対し、1重量%である。このスラリーKは、白と黒が完全に混ざり合った灰色であった。
実施例13
 界面活性剤(分散剤)として、コントロール重合のアクリル系共重合物(DIPERBYK-2010、主成分40%、ビッグケミー社製)2.5gを用いた以外はスラリーJと同様にして、アセチレンブラック、界面活性剤及びチタン酸リチウム前駆体を含むスラリーLを得た。スラリーLに添加された分散剤は、スラリーLの固形分に対し、1重量%である。このスラリーLは、白と黒が完全に混ざり合った灰色であった。
実施例14
 界面活性剤(分散剤)として、コントロール重合のアクリル系共重合物(DIPERBYK-2015、主成分40%、ビッグケミー社製)2.5gを用いた以外はスラリーJと同様にして、アセチレンブラック、界面活性剤及びチタン酸リチウム前駆体を含むスラリーMを得た。スラリーMに添加された分散剤は、スラリーMの固形分に対し、1重量%である。このスラリーMは、白と黒が完全に混ざり合った灰色であった。
比較例6
 比較例1で用いたスラリーEを、比較例6とする。
比較例7
 実施例1で用いたスラリーAを、比較例7とする。
比較例8
 実施例2で得られたスラリーCを、比較例8とする。
(L値の評価)
 アセチレンブラック粉末がスラリー中に分散していることの指標として、分光色彩計(SD5000、日本電色工業社製)を用いて色差(L、a、b)を測定した。測定条件は、光源C、射度2°、反射光、SCE(正反射光抜き)、測定径28mmとし、実施例6~9、比較例6~8で得た各スラリーを、それぞれ装置付属の丸セル(径28mm、高さ14mm)に入れ、5分間静置した後測定した。
 上記条件で測定した各スラリーのL値を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、界面活性剤を用いたスラリーBおよびスラリーF~MのL値は80以下であり、界面活性剤を用いないスラリーEのL値は80より大きい。界面活性剤(分散剤)として、BYK-190、BYK-2010、BYK-2015を用いたスラリー(F~H、K~M)では、L値は80以下となった。なお、表3中の実施例で用いたスラリーのチタン化合物濃度は87~113g/Lであった。
 スラリーF~H、K~Mで用いた界面活性剤(分散剤)の代わりに界面活性剤エマルゲン109Pを用いた場合、他の条件は変更していないにも関わらず、L値は65以下となった。これは、ノニオン系の中でも、ポリオキシエチレンアルキルエーテルを界面活性剤として用いた場合、分散性が更に好ましいことを意味する。
 本発明で得られたチタン酸リチウムは電池特性、特にレート特性に優れたリチウム二次電池の活物質として有用である。

Claims (15)

  1.  炭素を含有するチタン酸リチウムであって、
     金属リチウムを負極としたリチウム二次電池に正極活物質として用いた場合に、放電レート30Cにおける放電容量が、放電レート0.25Cでの放電容量に対して75%以上であるチタン酸リチウム。
  2.  チタン酸リチウムは二次粒子を含み、前記炭素は、二次粒子の内部に存在している請求項1に記載のチタン酸リチウム。
  3.  少なくともリチウム化合物、チタン化合物、界面活性剤及び炭素材料を含むスラリーを乾燥した後、不活性雰囲気下において焼成する、炭素を含有するチタン酸リチウムの製造方法。
  4.  少なくともリチウム化合物と、チタン化合物と、界面活性剤と、を含む媒液に、粉末の炭素材料を加えて前記スラリーを調製する請求項3に記載の製造方法。
  5.  前記界面活性剤の量は、スラリー中の固形分に対して、0.25重量%以上である請求項4に記載の製造方法。
  6.  前記乾燥が、乾燥造粒である請求項5に記載の製造方法。
  7.  前記乾燥造粒が、噴霧乾燥である請求項6に記載の製造方法。
  8.  前記界面活性剤として、ノニオン系界面活性剤を用いる請求項3に記載の製造方法。
  9.  前記ノニオン系界面活性剤として、ポリオキシエチレンアルキルエーテルを用いる請求項8に記載の製造方法。
  10.  少なくともリチウム化合物、チタン化合物、界面活性剤及び炭素材料を含むスラリー。
  11.  分光色彩計を用いSCE(正反射光抜き)で測定されるL値が80以下であることを特徴とする請求項10に記載のスラリー。
  12.  請求項10に記載のスラリーを乾燥して得られる、炭素材料を含むチタン酸リチウム前駆体。
  13.  請求項12に記載のチタン酸リチウム前駆体を焼成して得られる、炭素材料を含むチタン酸リチウム。
  14.  請求項1又は2に記載のチタン酸リチウムを含む電極活物質。
  15.  請求項14に記載の電極活物質を正極又は負極に用いたリチウム二次電池。
PCT/JP2010/072876 2009-12-22 2010-12-20 チタン酸リチウム、該チタン酸リチウムの製造方法、該製造方法に用いるスラリー、該チタン酸リチウムを含む電極活物質及び該電極活物質を用いたリチウム二次電池 WO2011078112A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10839342.2A EP2518803A4 (en) 2009-12-22 2010-12-20 LITHIUM TITANATE, PROCESS FOR MANUFACTURING SAME, SLUDGE USED IN SAID METHOD OF MANUFACTURE, ELECTRODE ACTIVE MATERIAL COMPRISING SAID LITHIUM TITANATE, AND LITHIUM SECONDARY BATTERY USING SAID ELECTRODE ACTIVE MATERIAL
CA2785010A CA2785010A1 (en) 2009-12-22 2010-12-20 Lithium titanate, manufacturing method therefor, slurry used in said manufacturing method, electrode active material containing said lithium titanate, and lithium secondary battery using said electrode active material
JP2011547534A JP5926959B2 (ja) 2009-12-22 2010-12-20 チタン酸リチウム、該チタン酸リチウムの製造方法、該製造方法に用いるスラリー、該チタン酸リチウムを含む電極活物質及び該電極活物質を用いたリチウム二次電池
CN201080064397.0A CN102770989B (zh) 2009-12-22 2010-12-20 钛酸锂、其制造方法、所述制造方法中所用的浆料、含有所述钛酸锂的电极活性材料和使用所述电极活性材料的锂二次电池
KR1020127016155A KR101782184B1 (ko) 2009-12-22 2010-12-20 티탄산 리튬, 이 티탄산 리튬의 제조 방법, 이 제조 방법에 사용되는 슬러리, 티탄산 리튬을 포함하는 전극 활물질, 및 이 전극 활물질을 사용하는 리튬 2 차 전지
US13/517,217 US20120261622A1 (en) 2009-12-22 2010-12-20 Lithium titanate, manufacturing method therefor, slurry used in said manufacturing method, electrode active material containing said lithium titanate, and lithium secondary battery using said electrode active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009291269 2009-12-22
JP2009-291269 2009-12-22

Publications (1)

Publication Number Publication Date
WO2011078112A1 true WO2011078112A1 (ja) 2011-06-30

Family

ID=44195638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072876 WO2011078112A1 (ja) 2009-12-22 2010-12-20 チタン酸リチウム、該チタン酸リチウムの製造方法、該製造方法に用いるスラリー、該チタン酸リチウムを含む電極活物質及び該電極活物質を用いたリチウム二次電池

Country Status (8)

Country Link
US (1) US20120261622A1 (ja)
EP (1) EP2518803A4 (ja)
JP (1) JP5926959B2 (ja)
KR (1) KR101782184B1 (ja)
CN (1) CN102770989B (ja)
CA (1) CA2785010A1 (ja)
TW (2) TWI629242B (ja)
WO (1) WO2011078112A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315436A (zh) * 2011-08-10 2012-01-11 东莞市迈科科技有限公司 一种尖晶石型钛酸锂的制备方法
WO2012026544A1 (ja) * 2010-08-26 2012-03-01 宇部興産株式会社 微細な炭素繊維と複合化されたリチウムチタン複合酸化物電極材料
JP2013172142A (ja) * 2012-02-23 2013-09-02 Nec Tokin Corp 導電性高分子懸濁溶液、導電性高分子材料、ならびに電解コンデンサおよびその製造方法
JP2014527267A (ja) * 2012-07-13 2014-10-09 エルジー・ケム・リミテッド バイモダルタイプの負極活物質及びこれを含むリチウム二次電池
JP2015160751A (ja) * 2014-02-26 2015-09-07 国立研究開発法人産業技術総合研究所 導電助剤複合アルカリ金属チタン酸化物の製造方法
EP2712009A4 (en) * 2012-07-13 2015-11-25 Lg Chemical Ltd ACTIVE BODY TYPE ANODE MATERIAL AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME
JP2016009578A (ja) * 2014-06-24 2016-01-18 株式会社トクヤマ 複合チタン酸リチウム粉末の製造方法
JP2016526008A (ja) * 2013-06-05 2016-09-01 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company リチウムチタンスピネルの調製方法及びその使用
KR101769589B1 (ko) 2016-05-11 2017-08-21 한국화학연구원 전기화학적 활성화가 우수한 복합 화합물 형태 코발트 금속산화물 합성 기술
JP2017152114A (ja) * 2016-02-23 2017-08-31 太平洋セメント株式会社 非水電解質二次電池用負極活物質の製造方法、及び非水電解質二次電池用負極活物質
JP2020129472A (ja) * 2019-02-08 2020-08-27 三洋電機株式会社 非水電解質二次電池の電極、非水電解質二次電池、及びそれらの製造方法
US10957900B2 (en) 2015-09-16 2021-03-23 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and vehicle
US11495789B2 (en) 2014-05-13 2022-11-08 Kabushiki Kaisha Toshiba Composite active material

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2538254C1 (ru) * 2013-07-17 2015-01-10 Хожбауди Хамзатович Альвиев Способ получения наноразмерных порошков композита на основе титаната лития
FR3009438A1 (fr) * 2013-08-01 2015-02-06 Renault Sa Procede de fabrication d'un materiau actif d'anode, materiau actif et anode obtenus par ce procede
KR101627412B1 (ko) * 2014-02-28 2016-06-03 숭실대학교산학협력단 양극활물질의 제조방법
JP6598476B2 (ja) 2014-03-13 2019-10-30 株式会社半導体エネルギー研究所 電極の作製方法
WO2015141231A1 (ja) * 2014-03-19 2015-09-24 凸版印刷株式会社 非水電解質二次電池用電極
CN103915613B (zh) * 2014-04-10 2017-09-29 山东润昇电源科技有限公司 水热耦合喷雾热解MnO2/石墨烯电极材料的制备方法
JP6633434B2 (ja) 2016-03-16 2020-01-22 株式会社東芝 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、電池パック及び車両
CN116565296A (zh) 2016-07-05 2023-08-08 株式会社半导体能源研究所 锂离子二次电池
CN106058226A (zh) * 2016-08-22 2016-10-26 北京小飞融创新能源科技有限公司 锂离子电池碳‑Li3VO4复合负极材料及其制备方法
KR20230101939A (ko) 2016-10-12 2023-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR101906511B1 (ko) * 2016-12-27 2018-12-06 한국철도기술연구원 탄소 코팅 음극 활물질 제조방법
CN111682188A (zh) 2017-05-12 2020-09-18 株式会社半导体能源研究所 正极活性物质粒子
KR102665139B1 (ko) 2017-05-19 2024-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
US20200176770A1 (en) 2017-06-26 2020-06-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
CN113053677B (zh) * 2019-12-26 2023-12-01 佳能株式会社 电源单元和包括电源单元的放射线摄像装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174810A (ja) * 1991-12-18 1993-07-13 Sanyo Electric Co Ltd 電池用電極及び電池
JP2000264614A (ja) * 1999-03-23 2000-09-26 Sharp Corp 炭素被覆黒鉛粒子の製造方法及び非水系二次電池
JP2003142097A (ja) * 2001-09-05 2003-05-16 Samsung Sdi Co Ltd 電池用活物質およびその製造方法
JP2003217583A (ja) * 2002-01-18 2003-07-31 Hitachi Maxell Ltd 複合電極およびそれを用いた電気化学素子
JP2004155631A (ja) * 2002-11-08 2004-06-03 Dainippon Toryo Co Ltd 非水リチウム二次電池用のリチウムマンガン系複酸化物粒子、その製造方法及び非水リチウム二次電池
JP2004288644A (ja) * 1995-03-17 2004-10-14 Canon Inc 正極活物質の製造方法、負極活物質の製造方法及びリチウムを利用する二次電池の製造方法
JP2006221881A (ja) * 2005-02-08 2006-08-24 Gs Yuasa Corporation:Kk 非水電解質電池用活物質及びその製造方法、並びに、非水電解質電池用電極及び非水電解質電池
WO2007100918A2 (en) * 2006-02-28 2007-09-07 Primet Precision Materials, Inc. Lithium-based compound nanoparticle compositions and methods of forming the same
JP2008270795A (ja) * 2007-03-28 2008-11-06 Nippon Chemicon Corp 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極並びにこの電極を用いた電気化学素子
WO2009071332A2 (de) * 2007-12-06 2009-06-11 Süd-Chemie AG Nanopartikuläre zusammensetzung und verfahren zu deren herstellung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540560A (en) * 1982-08-30 1985-09-10 Phillips Petroleum Company Carbon blacks
CA2270771A1 (fr) * 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
CA2327370A1 (fr) * 2000-12-05 2002-06-05 Hydro-Quebec Nouvelle methode de fabrication de li4ti5o12 pur a partir du compose ternaire tix-liy-carbone: effet du carbone sur la synthese et la conductivite de l'electrode
US7217406B2 (en) * 2002-02-21 2007-05-15 Tosoh Corporation Lithium-manganese composite oxide granular secondary particle, method for production thereof and use thereof
US6974777B2 (en) * 2002-06-07 2005-12-13 Cabot Microelectronics Corporation CMP compositions for low-k dielectric materials
US7615314B2 (en) * 2004-12-10 2009-11-10 Canon Kabushiki Kaisha Electrode structure for lithium secondary battery and secondary battery having such electrode structure
CN100411994C (zh) * 2006-07-07 2008-08-20 清华大学 一种掺碳球形Li4Ti2O12的制备方法
CA2569991A1 (en) * 2006-12-07 2008-06-07 Michel Gauthier C-treated nanoparticles and agglomerate and composite thereof as transition metal polyanion cathode materials and process for making
US8900490B2 (en) * 2007-08-30 2014-12-02 Ishihara Sangyo Kaisha, Ltd. Titanic acid compound, process for producing the titanic acid compound, electrode active material containing the titanic acid compound, and storage device using the electrode active material
CN101378119A (zh) * 2008-10-06 2009-03-04 天津巴莫科技股份有限公司 锂离子电池用碳包覆型钛酸锂的制备方法
CN101431154B (zh) * 2008-12-25 2010-10-13 成都中科来方能源科技有限公司 钛酸锂/c复合电极材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174810A (ja) * 1991-12-18 1993-07-13 Sanyo Electric Co Ltd 電池用電極及び電池
JP2004288644A (ja) * 1995-03-17 2004-10-14 Canon Inc 正極活物質の製造方法、負極活物質の製造方法及びリチウムを利用する二次電池の製造方法
JP2000264614A (ja) * 1999-03-23 2000-09-26 Sharp Corp 炭素被覆黒鉛粒子の製造方法及び非水系二次電池
JP2003142097A (ja) * 2001-09-05 2003-05-16 Samsung Sdi Co Ltd 電池用活物質およびその製造方法
JP2003217583A (ja) * 2002-01-18 2003-07-31 Hitachi Maxell Ltd 複合電極およびそれを用いた電気化学素子
JP2004155631A (ja) * 2002-11-08 2004-06-03 Dainippon Toryo Co Ltd 非水リチウム二次電池用のリチウムマンガン系複酸化物粒子、その製造方法及び非水リチウム二次電池
JP2006221881A (ja) * 2005-02-08 2006-08-24 Gs Yuasa Corporation:Kk 非水電解質電池用活物質及びその製造方法、並びに、非水電解質電池用電極及び非水電解質電池
WO2007100918A2 (en) * 2006-02-28 2007-09-07 Primet Precision Materials, Inc. Lithium-based compound nanoparticle compositions and methods of forming the same
JP2008270795A (ja) * 2007-03-28 2008-11-06 Nippon Chemicon Corp 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極並びにこの電極を用いた電気化学素子
WO2009071332A2 (de) * 2007-12-06 2009-06-11 Süd-Chemie AG Nanopartikuläre zusammensetzung und verfahren zu deren herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2518803A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026544A1 (ja) * 2010-08-26 2012-03-01 宇部興産株式会社 微細な炭素繊維と複合化されたリチウムチタン複合酸化物電極材料
US9190660B2 (en) 2010-08-26 2015-11-17 Ube Industries, Ltd. Lithium—titanium complex oxide electrode material conjugated with fine carbon fiber
CN102315436A (zh) * 2011-08-10 2012-01-11 东莞市迈科科技有限公司 一种尖晶石型钛酸锂的制备方法
JP2013172142A (ja) * 2012-02-23 2013-09-02 Nec Tokin Corp 導電性高分子懸濁溶液、導電性高分子材料、ならびに電解コンデンサおよびその製造方法
US9397335B2 (en) 2012-07-13 2016-07-19 Lg Chem, Ltd. Bimodal type anode active material and lithium secondary battery including the same
JP2014527267A (ja) * 2012-07-13 2014-10-09 エルジー・ケム・リミテッド バイモダルタイプの負極活物質及びこれを含むリチウム二次電池
EP2712009A4 (en) * 2012-07-13 2015-11-25 Lg Chemical Ltd ACTIVE BODY TYPE ANODE MATERIAL AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME
US10170758B2 (en) 2013-06-05 2019-01-01 Johnson Matthey Public Limited Company Process for the preparation of lithium titanium spinel and its use
JP2016526008A (ja) * 2013-06-05 2016-09-01 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company リチウムチタンスピネルの調製方法及びその使用
US10749173B2 (en) 2013-06-05 2020-08-18 Johnson Matthey Public Limited Company Process for the preparation of lithium titanium spinel and its use
JP2015160751A (ja) * 2014-02-26 2015-09-07 国立研究開発法人産業技術総合研究所 導電助剤複合アルカリ金属チタン酸化物の製造方法
US11495789B2 (en) 2014-05-13 2022-11-08 Kabushiki Kaisha Toshiba Composite active material
JP2016009578A (ja) * 2014-06-24 2016-01-18 株式会社トクヤマ 複合チタン酸リチウム粉末の製造方法
US10957900B2 (en) 2015-09-16 2021-03-23 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and vehicle
JP2017152114A (ja) * 2016-02-23 2017-08-31 太平洋セメント株式会社 非水電解質二次電池用負極活物質の製造方法、及び非水電解質二次電池用負極活物質
KR101769589B1 (ko) 2016-05-11 2017-08-21 한국화학연구원 전기화학적 활성화가 우수한 복합 화합물 형태 코발트 금속산화물 합성 기술
JP2020129472A (ja) * 2019-02-08 2020-08-27 三洋電機株式会社 非水電解質二次電池の電極、非水電解質二次電池、及びそれらの製造方法
JP7169217B2 (ja) 2019-02-08 2022-11-10 三洋電機株式会社 非水電解質二次電池の電極、非水電解質二次電池、及びそれらの製造方法

Also Published As

Publication number Publication date
KR101782184B1 (ko) 2017-09-26
EP2518803A4 (en) 2015-06-24
TWI505537B (zh) 2015-10-21
KR20120123035A (ko) 2012-11-07
CA2785010A1 (en) 2011-06-30
CN102770989A (zh) 2012-11-07
CN102770989B (zh) 2016-01-13
TWI629242B (zh) 2018-07-11
US20120261622A1 (en) 2012-10-18
TW201532966A (zh) 2015-09-01
JP5926959B2 (ja) 2016-05-25
TW201145655A (en) 2011-12-16
EP2518803A1 (en) 2012-10-31
JPWO2011078112A1 (ja) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5926959B2 (ja) チタン酸リチウム、該チタン酸リチウムの製造方法、該製造方法に用いるスラリー、該チタン酸リチウムを含む電極活物質及び該電極活物質を用いたリチウム二次電池
JP6665060B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5726074B2 (ja) チタン酸リチウム及びその製造方法並びにそれを用いた電極活物質及び蓄電デバイス
JP5610205B2 (ja) 非水電解質二次電池用正極活物質並びに非水電解質二次電池
JP5742935B2 (ja) 正極活物質粒子、並びにそれを用いた正極及び全固体電池
JP4299065B2 (ja) リチウム二次電池用正極材およびその製造方法
JP5180643B2 (ja) 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極並びにこの電極を用いた電気化学素子
JP5218782B2 (ja) 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR101278376B1 (ko) 비수 전해질 2 차 전지용 양극 활물질 및 그 제조 방법
WO2012165654A1 (ja) 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
JP3894778B2 (ja) チタン酸リチウム及びそれを用いてなるリチウム電池
JP2017535027A (ja) 改善されたレート性能を有するリチウム金属酸化物を含有する電池
JP2012169217A (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP5606654B2 (ja) リチウム金属複合酸化物
JP6544579B2 (ja) タングステン酸リチウムの製造方法、およびタングステン酸リチウムを用いた非水系電解質二次電池用正極活物質の製造方法
JP2013229339A (ja) 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
JP2017021942A (ja) 正極材料、および正極材料を用いた非水電解質二次電池
Lee et al. Synthesis of Li [Ni0. 2Li0. 2Mn0. 6] O2 nano-particles and their surface modification using a polydopamine layer
JP4668539B2 (ja) チタン酸リチウムの製造方法及びリチウム電池の製造方法
TWI431833B (zh) 蓄電裝置
JP4628704B2 (ja) リチウム二次電池用正極材およびその製造方法
JP2015195185A (ja) リチウム過剰系正極活物質複合体粒子の製造方法
JP6725022B1 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP2011051891A (ja) チタン酸リチウムの製造方法及び該チタン酸リチウムを用いてなるリチウム電池
RU2818523C2 (ru) Смешанный оксид лития и переходного металла, покрытый полученными пирогенным способом оксидами, содержащими цирконий

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064397.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839342

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547534

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010839342

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2785010

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13517217

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127016155

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE