WO2011071103A1 - 希土類超電導膜形成用溶液およびその製造方法 - Google Patents

希土類超電導膜形成用溶液およびその製造方法 Download PDF

Info

Publication number
WO2011071103A1
WO2011071103A1 PCT/JP2010/072104 JP2010072104W WO2011071103A1 WO 2011071103 A1 WO2011071103 A1 WO 2011071103A1 JP 2010072104 W JP2010072104 W JP 2010072104W WO 2011071103 A1 WO2011071103 A1 WO 2011071103A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
solution
rare earth
producing
metal
Prior art date
Application number
PCT/JP2010/072104
Other languages
English (en)
French (fr)
Inventor
高明 真部
巖 山口
俊弥 熊谷
貢 相馬
近藤 和吉
謙一 塚田
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2011545237A priority Critical patent/JP5445982B2/ja
Priority to US13/514,139 priority patent/US8865628B2/en
Priority to CN201080056222.5A priority patent/CN102652112B/zh
Priority to EP10836023.1A priority patent/EP2511235B1/en
Publication of WO2011071103A1 publication Critical patent/WO2011071103A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0324Processes for depositing or forming copper oxide superconductor layers from a solution

Definitions

  • the present invention relates to the manufacture of a superconducting composite metal oxide film aimed at application to superconducting microwave devices, current limiters, wires, and the like.
  • a solution containing an organic compound containing an atomic species that forms a superconducting film on various supports is used as a raw material, and this is applied on a substrate and subjected to heat treatment to thermally decompose the coating film.
  • a coating pyrolysis method for forming a superconducting film.
  • an organic compound containing an atomic species is dissolved as uniformly as possible in a solvent to prepare a homogeneous mixed solution, the solution is uniformly coated on a support, and heat treatment is performed to remove an organic substance or the like.
  • this manufacturing method Compared with other methods such as vacuum deposition, this manufacturing method has the advantage that it is a low-cost film forming method because it does not require a vacuum device, and the film formation on a long, large-area substrate is possible. It has the feature of being easy. Also, from the viewpoint of the characteristics of the superconducting film produced by this method, it was highly evaluated as being better than other production methods.
  • Non-Patent Documents 1 and 2 a superconductor can be formed by applying a trifluoroacetate solution on a support and heat-treating it in a steam atmosphere.
  • Non-patent Document 3 the Superconducting Engineering Laboratory announced that the process was improved and optimized to successfully produce a superconducting film having high critical current characteristics.
  • the present invention has been made in view of the above situation, and when a rare earth superconducting composite metal oxide film (hereinafter referred to as “rare earth superconducting film”) is produced by a coating pyrolysis method, a coating / firing process is performed. Without repeating, the object is to provide a coating solution that does not cause cracks in the heat treatment step for removing organic components even when the equivalent film thickness is 500 nm or more.
  • a metal ion of a metal species containing a rare earth element, barium and copper, pyridine and / or at least one tertiary amine at least one carboxylic acid group having 1 to 8 carbon atoms, If necessary, a metal complex coordinated with an acetylacetonato group is dissolved in a solvent obtained by adding a polyhydric alcohol to a monovalent linear alcohol having 1 to 8 carbon atoms and / or water.
  • a solution for producing a rare earth superconducting film characterized in that it is a homogeneous solution.
  • a method for producing a solution for producing a rare earth superconducting film further comprising adding a polyhydric alcohol to obtain a uniform solution.
  • the polyhydric alcohol is at least one selected from divalent alcohols and trivalent alcohols.
  • the present invention in forming a rare earth superconducting film having a film thickness of 500 nm or more, the number of steps of applying a raw material solution and a heat treatment step of removing organic components is reduced, so that all steps are shortened and resource saving is achieved. , Energy saving and cost reduction are realized.
  • the solution for producing the rare earth superconducting film of the present invention comprises pyridine and / or at least one tertiary amine and at least one carbon number of 1 with respect to metal ions of the metal species containing rare earth elements, barium and copper.
  • a metal complex in which a carboxylic acid group of ⁇ 8 and a acetylacetonato group are coordinated as necessary is obtained by adding a polyhydric alcohol to a monovalent linear alcohol having 1 to 8 carbon atoms and / or water. It is characterized in that it is dissolved in a solvent to make a uniform solution.
  • the homogeneous solution containing the metal complex of the present invention contains each metal component composed of rare earth metal, barium (Ba), and copper (Cu) as an essential component.
  • This solution is used to form an oxide superconducting film, and can be used to synthesize an inorganic compound containing these metal components by performing a heat treatment.
  • the essential rare earth metal elements include yttrium (Y) and lanthanoid elements, lanthanum (La), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), dysprosium (Dy). , Holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). These rare earth metals can also use a plurality of metals selected from these.
  • rare earth metal barium and copper essential metal components
  • other rare earth metals such as cerium (Ce) and praseodymium (Pr), calcium
  • strontium the electrical characteristics of the resulting superconducting film can be changed.
  • any metal species that can be used as a metal species that can be used when forming a superconducting film can be used as appropriate.
  • the ratio of rare earth metal, barium, and copper is a rare earth 123 system having a ratio of 1: 2: 3 (hereinafter, for example, when the rare earth metal is yttrium, A superconducting film having a ratio of 1: 2: 4 (hereinafter referred to as Y124 when the rare earth metal is yttrium, for example).
  • the mixing ratio of the element species in the raw material solution is preferably a molar ratio of 1: 2: 3 to 1: 2: 4, but a preferable result can be obtained even with, for example, a composition lacking barium. , This ratio is not something that can be tied.
  • monovalent metals such as silver, divalent metals such as calcium and strontium, trivalent metals such as rare earth metals other than the essential rare earth metals constituting the superconducting phase, and tetravalent metals such as zirconium and hafnium are added to the above solution.
  • a superconductor containing an additive element or a compound thereof superconductors containing additive elements such as calcium and strontium or their compounds have different electrical characteristics from superconductors that do not contain them, so by controlling the ratio of metals in the solution, It is possible to control various characteristics such as critical temperature and critical current density.
  • these metal ions contain pyridine and / or at least one tertiary amine, at least one carboxylic acid group having 1 to 8 carbon atoms, and, if necessary, an acetylacetonate group.
  • the coordinated metal complex is uniformly dissolved.
  • tertiary amine which is one of the ligands in the metal complex, for example, trimethylamine, triethylamine, tripropylamine, tributylamine and the like are used, and “carboxylic acid group having 1 to 8 carbon atoms” is used.
  • carboxylic acid examples include 2-ethylhexanoic acid, caprylic acid, butyric acid, propionic acid, acetic acid, oxalic acid, citric acid, lactic acid, benzoic acid, and salicylic acid.
  • a metal species containing a rare earth element, barium and copper, a metal carboxylate having 1 to 8 carbon atoms and / or a metal acetylacetonate powder mixture, pyridine and / or It is prepared by adding at least one tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms.
  • the metal complex is dissolved in a solvent obtained by adding a polyhydric alcohol to a monovalent linear alcohol having 1 to 8 carbon atoms and / or water, It is a homogeneous solution. That is, the solution for producing a rare earth superconducting film of the present invention is obtained by adding pyridine and / or at least one tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms to the powder mixture. After the excess solvent is volatilized, the product is dissolved in a monovalent linear alcohol having 1 to 8 carbon atoms and / or water, and a polyhydric alcohol is added to obtain a uniform solution. Manufactured.
  • Examples of the monovalent linear alcohol having 1 to 8 carbon atoms include methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol and the like, and a mixture thereof can also be used.
  • water can be used to dissolve the metal complex, and a mixture of one or more of the aforementioned monovalent linear alcohols having 1 to 8 carbon atoms and water can also be used.
  • the present invention by using a solvent in which a polyhydric alcohol is added to the linear alcohol having 1 to 8 carbon atoms and / or water, an effect that cracks do not occur in temporary firing can be obtained.
  • the polyhydric alcohol in the present invention include ethylene glycol, hexylene glycol, octylene glycol, glycerin, diethylene glycol, triethylene glycol, tetraethylene glycol, and propylene glycol.
  • the solution is applied onto a substrate to form a solution thin film of a metal-containing compound.
  • the solution coating method conventionally known methods, for example, various methods such as a dipping method, a spin coating method, a spray method, and a brush coating method can be used.
  • the substrate various materials and shapes can be used.
  • examples of materials include metals and alloys such as nickel, copper, gold, silver, stainless steel, and hastelloy, and metal oxides such as alumina, zirconia, titania, strontium titanate, lanthanum aluminate, neodymium gallate, and yttrium aluminate. Ceramics such as materials and silicon carbide are used, and the shape thereof is adopted regardless of the curved surface or flat surface. For example, any shape such as a plate shape, a linear shape, a coil shape, a fiber shape, a woven fabric shape, and a tubular shape can be used. Adopted.
  • the support may be porous.
  • a metal film or a metal oxide film such as zirconia or ceria is previously formed on the surface of the base material as an intermediate layer. Can be formed.
  • This step is a step of heating and baking the metal-containing compound film formed on the substrate as described above, and converting the film into a film made of barium carbonate, rare earth metal oxide and copper oxide. .
  • a temperature of 400 to 650 ° C., preferably 450 to 550 ° C. is adopted.
  • the equivalent film thickness is preferably 500 nm or more. Hold for 150-300 minutes and then cool down.
  • the firing atmosphere an atmosphere of air, oxygen, nitrogen, argon or the like is employed.
  • This step is a step of reacting barium carbonate, rare earth metal oxide, and copper oxide while baking the film formed in the preliminary baking step to remove carbon dioxide from the barium carbonate.
  • this firing step is performed under the condition that the oxygen partial pressure in the atmosphere is 0.01 to 100 Pa, preferably 1 to 20 Pa.
  • the condition where the oxygen partial pressure is 0.01 to 100 Pa can be formed by using an inert gas.
  • this firing step can be performed under a reduced pressure such that the oxygen partial pressure is 0.01 to 100 Pa, preferably 1 to 20 Pa.
  • the decomposition of barium carbonate can be carried out smoothly at a reduced temperature, so that the base material and / or the intermediate layer and Reaction between the composite metal oxides can be substantially avoided.
  • the general firing temperature in this step is 650 to 900 ° C. According to the firing conditions as described above in the present invention, it is possible to substantially prevent the reaction between the base material and / or the intermediate layer and the composite metal oxide as conventionally observed.
  • the composite metal oxide film formed in the main baking step is oxidized using molecular oxygen to form a composite metal oxide film having superconductivity.
  • the oxygen partial pressure in the atmosphere is maintained to be 0.01 to 100 Pa. Therefore, the superconducting properties of the obtained composite metal oxide film are unsatisfactory. It can be converted into an excellent composite metal oxide film.
  • the oxidation step for absorbing oxygen is preferably performed at an oxygen partial pressure of 0.2 to 1.2 atm.
  • the molecular oxygen pure oxygen or air is used.
  • the superconducting properties of the film are adversely affected by the carbon dioxide contained therein, so the carbon dioxide partial pressure in the air is reduced to 1 Pa or less, preferably 0.5 Pa or less by decarboxylation. It is good to adjust.
  • This oxidation step is performed at a medium to high temperature, and the reaction between the substrate and / or the intermediate layer and the composite metal oxide can be substantially avoided.
  • the temperature of this oxidation step is generally 400 to 900 ° C.
  • a superconducting composite metal oxide film having a film thickness of 500 nm or more can be formed on the substrate surface by performing each of the above steps once.
  • Example 1 Preparation of temporary fired film
  • a commercially available product manufactured by Nippon Kagaku Sangyo Co., Ltd.
  • acetylacetonate powder of yttrium, barium and copper is weighed so that the molar ratio of metal components is 1: 2: 3, and these are mixed to obtain a powder mixture. Obtained.
  • pyridine and propionic acid were added in amounts until the powder mixture was completely dissolved.
  • the concentration of the solution was set to an amount containing 0.2 to 0.3 mmol of rare earth metal species per 1 g of the solution.
  • 0.02 to 0.04 ml of ethylene glycol, hexylene glycol, octylene glycol, glycerin, diethylene glycol, triethylene glycol, tetraethylene glycol, or propylene glycol is added as an additive and uniformly added.
  • a coating solution was prepared. This solution was applied by spin coating on a sapphire substrate on which cerium oxide was previously deposited. This coating film was pre-baked to remove organic components by raising the temperature to 500 ° C. in an air stream containing water vapor with an oxygen partial pressure of 0.6 atm and a dew point of 24 ° C. Each additive used is shown in Table 1 below.
  • Comparative Example 1 Preparation of pre-baked film
  • a pre-fired film was prepared in the same manner as in Example 1 except that 0.02 ml of polyethylene glycol (400 manufactured by Wako Pure Chemical Industries, Ltd.) was added as an additive. There were thin cracks. The result confirmed with the optical microscope about the comparative example 1 is shown in FIG.
  • Example 2 Production of superconductor film
  • the substrate was a yttria-stabilized zirconia single crystal substrate on which cerium oxide was vapor-deposited in advance and the additive was any one of hexylene glycol, octylene glycol, and tetraethylene glycol.
  • a fired film was produced.
  • membrane after performing this baking process at 760 degreeC in the airflow of oxygen partial pressure 10Pa for 2 hours, oxygen was absorbed at atmospheric pressure and the Y123 superconductor film
  • the Y123 film thus prepared was examined with the naked eye and observed with an optical microscope at 40 to 1000 times, no cracks were generated. The results are shown in Table 3 below.
  • FIG. 3 shows the results of X-ray diffraction of a film prepared using hexylene glycol as an additive.
  • the criteria for determining the state of the film are the naked eye and the optical microscope VH7000 manufactured by Keyence, Inc., 40 to 100 times the entire surface of the film, and further 100 to 1000 times, several points of the film are observed, and cracks are observed. What was not done was defined as “no crack”.
  • Example 3 Production of superconductor film
  • a Y123 film having an equivalent film thickness of 550 nm was prepared in the same manner as in Example 2 except that the molar ratio of the metal components of yttrium, barium and copper was 1: 2: 3.7. It was found that no cracks were observed by observation with an optical microscope and that a c-axis oriented Y123 film was grown by X-ray diffraction.
  • Example 4 Production of superconductor film
  • a Y123 film having an equivalent film thickness of 550 nm was prepared in the same manner as in Example 2 except that the molar ratio of the metal components of yttrium, barium and copper was 1: 1.6: 3. It was found that no cracks were observed by observation with an optical microscope and that a c-axis oriented Y123 film was grown by X-ray diffraction.
  • Example 5 Production of superconductor film
  • a Y123 film having an equivalent film thickness of 550 nm was prepared in the same manner as in Example 2 except that the solvent for dissolving the dried complex was changed to a mixed solvent of n-pentanol and water. It was found that cracks were not observed by optical microscope observation, and that a c123-oriented Y123 film was grown by X-ray diffraction.
  • Example 6 Production of superconductor film
  • the equivalent film thickness is 550 nm in the same manner as in Example 2 except that the starting material is a commercial product (manufactured by Wako Pure Chemical Industries, Ltd.), yttrium, barium and copper acetate powder, and the solvent is trimethylamine and propionic acid.
  • the Y123 film was prepared, it was found that cracks were not observed with the naked eye and optical microscope observation at 40 to 1000 times, and that the c123-oriented Y123 film was grown by X-ray diffraction.
  • Example 7 Production of superconductor film
  • a Y123 superconductor film having a thickness of 680 nm was prepared in the same manner as in Example 2 except that the substrate was a strontium titanate single crystal substrate on which cerium oxide was vapor-deposited in advance.
  • the substrate was a strontium titanate single crystal substrate on which cerium oxide was vapor-deposited in advance.
  • the Y123 film thus prepared was examined with the naked eye and observed with an optical microscope at 40 to 1000 times, no cracks were generated. Further, it was found by X-ray diffraction using an X-ray diffractometer that a c-axis oriented film was grown. Further, when the critical current density of the obtained Y123 film was measured by an induction method at a liquid nitrogen temperature, it was 2.1 MA / cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

 塗布熱分解法で希土類超電導性複合金属酸化物膜を製造する際に、塗布・焼成工程を繰り返すことなく、1回に塗布する膜厚が、製造される希土類超電導膜として500nm以上であっても、有機成分を除去する熱処理工程でクラックが生じないような塗布用溶液を提供することを目的とするものであって、希土類元素、バリウム及び銅を含有する金属種の金属イオンに対して、ピリジン及び/又は少なくとも1種の三級アミンと、少なくとも1種の炭素数が1~8のカルボン酸基と、必要に応じてアセチルアセトナト基とが配位した金属錯体が、炭素数が1~8の1価の直鎖アルコール及び/または水に、多価アルコール類を添加してなる溶媒に溶解されて、均一溶液とされている希土類超電導膜製造用溶液。

Description

希土類超電導膜形成用溶液およびその製造方法
 本発明は、超電導マイクロ波デバイス、限流器、線材などへの応用を目指した超電導性複合金属酸化物膜の製造に関する。
 酸化物超電導膜を形成するために種々の方法が開発されている。
 この方法の中に、各種支持体上に超電導膜を形成する原子種を含む有機化合物を含有する溶液を原料とし、これを基板上に塗布し、熱処理を行うことで塗膜を熱分解させて超電導膜を形成する塗布熱分解法がある。この方法では、原子種を含む有機化合物を、溶媒中にできるだけ均一に溶解させて均一混合溶液を調製すること、この溶液を支持体上に均一に塗布すること、加熱処理を行い有機物質などの成分を熱分解処理して有機成分のみを除去すること、高温加熱処理を行い固相反応或いは液相反応を経由して超電導膜を均一に形成することが要求される。本発明者らはこの方法に積極的に関わって開発を進めてきた。そして、超電導膜の製法及び塗布溶液についての発明を行った(特許文献1、2)。
 又、高温加熱処理の際に低い酸素分圧をまたは減圧を用いる方法に関しては熊谷らの発明が知られている(特許文献3、4)。この製造方法は、他の方法、例えば真空蒸着法などと比較して、真空装置を必要としないため低コストな製膜方法であるという特長、また長尺・大面積基板上への製膜が容易であるという特長を有している。また、この手法で作製された超電導膜の特性の点からも、他の製法と比較して良好なものであるとして高く評価された。
 この塗布熱分解法による超電導膜の形成の成功に刺激され、これと類似した手法を用いた超電導膜作製に関する研究開発が世界各機関で進められ、以下の方法が発表された。
 米国IBMトーマスワトソン研究所、引き続いて、マサチューセッツ工科大学では、トリフルオロ酢酸塩溶液を支持体上に塗布して、これを水蒸気雰囲気中で熱処理することにより、超電導体を形成することができるとしている(非特許文献1、2)。その後、超電導工学研究所では、このプロセスの改良及び最適化を行い、高い臨界電流特性を有する超電導膜の作製に成功したことを発表している(非特許文献3)。これらフッ素を含む有機化合物を出発原料として用いた場合、高い臨界電流特性が得られるが、熱処理中に有毒で環境負荷の大きなフッ化水素が発生することが難点である。
 一方、フッ素を含まない金属有機酸塩およびアセチルアセトナトを原料として用いると、熱処理においてフッ化水素が生成しないという特長がある。しかしながら、この方法を超電導マイクロ波デバイスや線材など酸化物超電導体の厚膜を必要とする用途に応用する場合、金属有機化合物の溶液を基板に塗布して有機成分を除去する熱処理工程で、1回に塗布する膜厚が製造される酸化物超電導体膜として(以下、「相当膜厚」という。)500nm以上になると、有機成分を除去する熱処理工程でクラックが生じる。このクラックはその後の高温加熱処理によっても修復されないため、最終的に形成される超電導膜の特性が著しく低下してしまう。そこで有機成分を除去する熱処理工程でクラックが生じるのを回避するため、相当膜厚が100~300nm程度に小さくなるように塗布・焼成を繰り返さなければならず、そのための時間、労力、必要エネルギー等が増大するという問題があった。
 そこで、1回に塗布する膜厚を大きくするために、ポリビニルブチラール、ポリエチレングリコール、ポリビニルピロリドン等の高分子の添加剤を溶液に加えて粘度を増加させることが提案されている。しかしながら、最高で400nmまでしか得られていない(非特許文献4)のが現状である。
特公平4-76323号公報 特公平4-76324号公報 特公平7-10732号公報 特公平7-106905号公報
A.Guptaら、Appl.Phys.Lett.52(1988)2077 P.C.McIntyreら、J.Mater.Res.5(1990)2771 荒木ら、低温工学 35(2000)516 W.T.Wangら、Physica C 468(2008)1563
 本発明は、こうした現状を鑑みてなされたものであって、塗布熱分解法で希土類超電導性複合金属酸化物膜(以下、「希土類超電導膜」という)を製造する際に、塗布・焼成工程を繰り返すことなく、相当膜厚が500nm以上であっても、有機成分を除去する熱処理工程でクラックが生じないような塗布用溶液を提供することを目的とするものである。
 希土類超電導膜の製造において、相当膜厚が500nm以上になるとクラックが生じる原因としては、金属含有化合物の薄膜を200~650℃で仮焼成して含有する有機成分を除去して仮焼成膜を形成する工程の際に、大きな体積の収縮が起こり膜内の応力が不均一となるためと考えられる。
 そこで、本発明者らは、上記目的を達成すべく鋭意研究を重ね、塗布溶液に対する添加物を種々検討した結果、多価アルコール類を添加することにより、相当膜厚が500nm以上であっても、有機成分を除去する熱処理工程でクラックが生じないような塗布溶液を調製することが可能となるという知見を得た。
 本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]希土類元素、バリウム及び銅を含有する金属種の金属イオンに対して、ピリジン及び/又は少なくとも1種の三級アミンと、少なくとも1種の炭素数が1~8のカルボン酸基と、必要に応じてアセチルアセトナト基とが配位した金属錯体が、炭素数が1~8の1価の直鎖アルコール及び/または水に、多価アルコール類を添加してなる溶媒に溶解されて、均一溶液とされていることを特徴とする希土類超電導膜製造用溶液。
[2]前記多価アルコールが、2価のアルコール及び3価のアルコールから選ばれる少なくとも1種であることを特徴とする上記[1]の希土類超電導膜製造用溶液。
[3]希土類元素、バリウム及び銅を含有する金属種の、炭素数1~8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1~8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1~8の1価の直鎖アルコール及び/または水に溶解し、さらに多価アルコール類を添加して、均一な溶液とすることを特徴とする希土類超電導膜製造用溶液の製造方法。
[4]前記多価アルコールが、2価のアルコール及び3価のアルコールから選ばれる少なくとも1種であることを特徴とする上記[3]の希土類超電導膜製造用溶液の製造方法。
 本発明によれば、膜厚が500nm以上の希土類超電導膜の形成において、原料溶液を塗布する工程、及び有機成分を除去する熱処理工程の回数が低減されるため、全工程が短縮され、省資源、省エネルギー、低コスト化が実現される。
添加剤をトリエチレングリコールとした場合のクラックの有無を光学顕微鏡により確認した結果を示す図 添加剤をポリエチレングリコールとした場合のクラックの有無を光学顕微鏡により確認した結果を示す図 添加剤をヘキシレングリコールとして作製した希土類超電導膜のX線回折の結果を示す図
 本発明の希土類超電導膜製造用の溶液は、希土類元素、バリウム及び銅を含有する金属種の金属イオンに対して、ピリジン及び/又は少なくとも1種の三級アミンと、少なくとも1種の炭素数1~8のカルボン酸基と、必要に応じてアセチルアセトナト基とが配位した金属錯体が、炭素数1~8の1価の直鎖アルコール及び/または水に、多価アルコール類を添加してなる溶媒に溶解されて、均一溶液とされていることを特徴とするものである。
 本発明の金属錯体を含有する均一溶液には、希土類金属、バリウム(Ba)、及び銅(Cu)からなる各金属成分を必須成分として含有する。この溶液は、酸化物超電導膜形成のために用いられるものであり、又、加熱処理を行って、これらの金属成分を含有する無機化合物を合成するために用いることができる。
 前記必須成分である希土類金属元素には、イットリウム(Y)及びランタノイド元素である、ランタン(La)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)を含有する。これらの希土類金属はこれらの中から選ばれる複数の金属を用いることもできる。
 超電導膜を製造することを目的とする場合には、上記の希土類金属、バリウム及び銅の必須金属成分の他に、上記以外の希土類金属として例えばセリウム(Ce)やプラセオジム(Pr)等、カルシウム、又はストロンチウム等の他の成分を少量含ませることにより、得られる超電導膜の電気的特性を変化させることができる。
 また、この他にも超電導膜を形成する際に用いることができる金属種として用いることができるものであれば、適宜用いることができる。
 希土類金属、バリウム、銅からなる超電導膜を形成しようとする場合には、希土類金属、バリウム及び銅の比率として、1:2:3の割合の希土類123系(以下たとえば希土類金属がイットリウムの場合、Y123という)超電導膜、1:2:4の割合の希土類124系(以下たとえば希土類金属がイットリウムの場合、Y124という)超電導膜などが存在する。したがって、原料溶液における前記元素種の混合割合は、モル比で、1:2:3~1:2:4のものが好ましいが、たとえばバリウムが欠損した組成などでも好ましい結果を得ることができるため、この割合にしばられるものではない。
 又、上記溶液に銀などの1価金属、カルシウムやストロンチウムなどの2価金属、超電導相を構成する必須希土類金属以外の希土類金属などの3価金属、ジルコニウム、ハフニウムなどの4価金属を添加することにより、添加元素又はその化合物が含有された超電導体を形成することが可能である。カルシウムやストロンチウム等の添加元素又はその化合物が含有された超電導体は、それらが含有されない超電導体とは異なる電気的特性を有するため、溶液中の金属の比率を制御することで、超電導体の電気的特性、例えば臨界温度や臨界電流密度などの諸特性を制御することが可能となる。
 本発明の溶液は、これらの金属イオンに、ピリジン及び/又は少なくとも1種の三級アミンと、少なくとも1種の炭素数1~8のカルボン酸基と、必要に応じてアセチルアセトナト基とが配位した金属錯体が、均一に溶解しているものである。
 該金属錯体における配位子の1つである「三級アミン」としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等が用いられ、また、「炭素数1~8のカルボン酸基」のカルボン酸としては、例えば、2-エチルヘキサン酸、カプリル酸、酪酸、プロピオン酸、酢酸、シュウ酸、クエン酸、乳酸、安息香酸、サリチル酸等が挙げられる。
 本発明の前記金属錯体を製造するには、希土類元素、バリウム及び銅を含有する金属種の、炭素数1~8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1~8のカルボン酸を添加することにより製造される。
 本発明の希土類超電導膜製造用溶液は、前記の金属錯体が、炭素数1~8の1価の直鎖アルコール及び/または水に、多価アルコール類を添加してなる溶媒に溶解されて、均一溶液とされている。
 すなわち、本発明の希土類超電導膜製造用溶液は、前記の粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1~8のカルボン酸を添加して金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1~8の1価の直鎖アルコール及び/または水に溶解し、さらに多価アルコール類を添加して、均一な溶液とすることにより製造される。
 前記の炭素数1~8の1価の直鎖アルコールとしては、メタノール、エタノール、n-プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール等が上げられ、これらの混合物を用いることもできる。
 また、金属錯体を溶解するのに、水を用いることもでき、また、1種類以上の前記の炭素数1~8の1価の直鎖アルコールと水の混合物を用いることもできる。
 本発明においては、前記炭素数1~8の直鎖アルコール及び/または水に、多価アルコール類を添加した溶媒を用いることにより、仮焼成において、クラックが発生しないという効果が得られるものである。
 本発明における多価アルコール類としては、エチレングリコール、ヘキシレングリコール、オクチレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール等が挙げられる。
 次に、本発明の希土類超電導膜製造用溶液を用いた、希土類超電導性膜の製造方法について説明する。
 〔原料溶液の塗布工程〕
 この工程は、前記の溶液を、基材上に塗布して、金属含有化合物の溶液薄膜を形成する工程である。この場合、その溶液塗布法としては、従来公知の方法、例えば、浸漬法、スピンコート法、スプレー法、ハケ塗り法等の各種の方法を用いることができる。
 基材としては、各種の材料及び形状のものを用いることができる。この場合、材料としては、例えば、ニッケル、銅、金、銀、ステンレス、ハステロイ等の金属や合金、アルミナ、ジルコニア、チタニア、チタン酸ストロンチウム、ランタンアルミネート、ネオジムガレート、イットリウムアルミネート等の金属酸化物、炭化ケイ素等のセラミックスが用いられ、またその形状としては、曲面及び平面を問わず採用され、例えば、板状、線状、コイル状、繊維状、編織布状、管状等任意の形状が採用される。支持体は、多孔質のものであってもよい。さらに複合金属酸化物と基材との反応を防止するため及び/または両者の格子ミスマッチを緩和するため、基材の表面に金属膜や、ジルコニア、セリア等の金属酸化物膜を中間層としてあらかじめ形成することができる。
 〔乾燥工程〕
 前記のようにして基材上に形成された溶液塗布膜を、室温又は加温下で常圧又は減圧下で乾燥させる。この乾燥工程後に続く仮焼成工程の初期において乾燥を完結することができるため、この乾燥工程においては塗布膜を完全に乾燥させなくとも良い。また、後続の仮焼成工程を乾燥工程として兼用させ得ることから、この乾燥工程は省略することもできる。
 〔仮焼成工程〕
 この工程は、前記のようにして基材上に形成された金属含有化合物の膜を加熱焼成し、その膜を、炭酸バリウム、希土類金属酸化物及び銅酸化物からなる膜に変換させる工程である。最高焼成温度としては、400~650℃、好ましくは450~550℃の温度が採用され、この温度まで徐々に昇温してこの温度に20~600分間、相当膜厚が500nm以上の場合好ましくは150~300分間保持したのち降温する。焼成雰囲気としては、空気、酸素、窒素、アルゴン等の雰囲気が採用される。相当膜厚が500nm以上の場合、酸素分圧が0.2~0.8atmであり、露点が20℃以上の水蒸気を含む雰囲気が好ましい。
 〔本焼成工程〕
 この工程は、前記仮焼成工程で形成された膜を焼成して炭酸バリウムから炭酸ガスを除去しつつ、炭酸バリウムと希土類金属酸化物と銅酸化物を反応させる工程である。本発明においては、この焼成工程は、雰囲気中の酸素分圧が0.01~100Pa、好ましくは1~20Paの条件下で行う。酸素分圧が0.01~100Paの条件は、不活性ガスを用いることによって形成することができる。また、この焼成工程は、酸素分圧が0.01~100Pa、好ましくは1~20Paとなるような減圧下において実施することもできる。このような焼成条件の採用により、前記仮焼成工程で形成された膜中の炭酸バリウムの分解が促進されるとともに、複合金属酸化物膜が形成される。また、この焼成工程では、前記のように低酸素分圧の条件を採用することから、炭酸バリウムの分解は低められた温度で円滑に実施することができるため、基材及び/又は中間層と複合金属酸化物との間の反応を実質的に回避させることができる。この工程における一般的な焼成温度は650~900℃である。本発明における前記のような焼成条件により、従来見られたような基材及び/又は中間層と複合金属酸化物との間の反応を実質的に防止することができる。
 〔酸化工程〕
 この工程は、前記本焼成工程で形成された複合金属酸化物膜を分子状酸素を用いて酸化処理し、超電導性を有する複合金属酸化物膜とする工程である。前記本焼成工程では、雰囲気中の酸素分圧が0.01~100Paとなるように保持したため、得られる複合金属酸化物膜の超電導特性は不満足のものであるが、この酸化工程により超電導特性にすぐれた複合金属酸化物膜に変換することができる。この酸素を吸収させる酸化工程は、酸素分圧0.2~1.2atmで行わせることが好ましい。分子状酸素としては、純酸素又は空気が用いられる。酸化剤として空気を用いる場合、その中に含まれる炭酸ガスによって膜の超電導特性が悪影響を受けることから、空気中の炭酸ガス分圧は、脱炭酸により、1Pa以下、好ましくは0.5Pa以下に調整するのがよい。この酸化工程は、中高温で行われ、基材及び/又は中間層と複合金属酸化物との間の反応を実質的に回避させることができる。この酸化工程の温度は、一般には、400~900℃である。本発明の方法を実施する場合、前記仮焼成工程、本焼成工程及び酸化工程は、同一装置内で連続的に実施することができる。
 本発明の溶液を用いることにより、上記の各工程を1回行うことにより、基材表面上に、膜厚が、500nm以上の超電導性複合金属酸化物膜を形成させることができる。
 以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
 (実施例1:仮焼成膜の作製)
 市販品(日本化学産業株式会社製)のイットリウム、バリウム及び銅のアセチルアセトナト粉末を、金属成分のモル比で1:2:3となるように秤量し、これらを混合して粉体混合物を得た。この混合物に、ピリジン及びプロピオン酸を、粉体混合物がすべて溶解するまでの量を添加した。これを加熱処理して過剰な前記溶媒成分であるピリジン及びプロピオン酸を除去し、非晶質乾固物のアセチルアセトナト基-プロピオン酸基-ピリジン配位金属錯体を得た。
 この錯体乾固物は、水、アルコールなどの溶媒に沈殿を残存させることなく溶解し、均一溶液が生成できることを確認した。
 次に、これをn-ブタノールと水の混合溶媒に溶解させて、金属元素の割合がY:Ba:Cu=1:2:3の液体状の金属錯体(配位子としてアセチルアセトナト基、ピリジン、プロピオン酸基の3種類を含む)からなる塗布溶液を得ることができた。溶液の濃度は、溶液1gあたり希土類金属種が0.2~0.3ミリモル含まれる量とした。
 この溶液にさらに添加剤として、エチレングリコール、ヘキシレングリコール、オクチレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコールのいずれかを溶液1gあたり0.02~0.04ml加えて均一な塗布溶液を調製した。この溶液を、あらかじめ酸化セリウムを表面に蒸着させたサファイア基板の上にスピンコート法で塗布した。この塗布膜を酸素分圧が0.6atm、露点24℃の水蒸気を含んだ気流中で500℃まで昇温して有機成分を除去する仮焼成を行った。
 用いた各添加剤を、下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 出典:溶剤ハンドブック(松田種光他編著、産業図書発行、昭和38年発行)
 このようにして相当膜厚が510~580nmとなるような仮焼成膜を作製したところ下記の表2に示すとおり、いずれの添加剤についても表面にクラックは見られなかった。
 なお、表において、膜の状態の判定基準は、肉眼およびキーエンス社製光学顕微鏡VH7000を用いて40~100倍で膜全面、さらに100~1000倍で膜数ヶ所以上を観察して、クラックが観察されなかったものを「クラックなし」とした。
 また、1例として、添加剤をトリエチレングリコールとした場合のクラックの有無を光学顕微鏡により確認した結果を、図1に示す。
 (比較例1:仮焼成膜の作製)
 添加剤としてポリエチレングリコール(和光純薬工業株式会社製 400)を溶液1gあたり0.02ml加えた他は実施例1と同様にして仮焼成膜を作製したところ、下記の表2に示すとおり、表面には細いクラックが生じていた。
 比較例1について、光学顕微鏡により確認した結果を、図2に示す。
 (比較例2:仮焼成膜の作製)
 添加剤を加えない他は実施例1と同様にして仮焼成膜を作製したところ、下記の表2に示すとおり、表面には太いクラックが生じていた。
Figure JPOXMLDOC01-appb-T000002
 (実施例2:超電導体膜の作製)
 基板をあらかじめ酸化セリウムを表面に蒸着させたイットリア安定化ジルコニア単結晶基板とし、添加剤を、ヘキシレングリコール、オクチレングリコール、テトラエチレングリコールのいずれかとした他は、実施例1と同様にして仮焼成膜を作製した。
 この仮焼成膜について、本焼成工程を760℃にて2時間酸素分圧10Paの気流中で行った後、大気圧で酸素を吸収させて膜厚550nmのY123超電導体膜を作製した。
 このようにして作製したY123膜を肉眼および40-1000倍の光学顕微鏡観察によって調べたところ、いずれもクラックは生じていなかった。結果を、下記の表3に示す。
 また、マックサイエンス社製X線回折装置MXP3を用いたX線回折により、いずれもc軸配向した膜が成長していることがわかった。一例として、添加剤をヘキシレングリコールとして作製した膜のX線回折の結果を、図3に示す。
Figure JPOXMLDOC01-appb-T000003
 上記表において、膜の状態の判定基準は、肉眼およびキーエンス社製光学顕微鏡VH7000を用いて40~100倍で膜全面、さらに100~1000倍で膜の数ヶ所以上を観察して、クラックが観察されなかったものを「クラックなし」とした。
 (比較例3:超電導体膜の作製)
 添加剤を加えない他は実施例2と同様にして膜厚550nmのY123超電導体膜を作製したところ、上記の表3に示すとおり、大きなクラックが発生した。
 (実施例3:超電導体膜の作製)
 イットリウム、バリウム及び銅の金属成分のモル比を1:2:3.7とした他は、実施例2と同様にして相当膜厚が550nmのY123膜を作製したところ、肉眼および40~1000倍の光学顕微鏡観察によってクラックが観察されず、かつ、X線回折によってc軸配向したY123膜が成長していることがわかった。
 (実施例4:超電導体膜の作製)
 イットリウム、バリウム及び銅の金属成分のモル比を1:1.6:3とした他は、実施例2と同様にして相当膜厚が550nmのY123膜を作製したところ、肉眼および40~1000倍の光学顕微鏡観察によってクラックが観察されず、かつ、X線回折によってc軸配向したY123膜が成長していることがわかった。
 (実施例5:超電導体膜の作製)
 錯体乾固物を溶解させる溶媒をn-ペンタノールと水の混合溶媒とした他は、実施例2と同様にして相当膜厚が550nmのY123膜を作製したところ、肉眼および40~1000倍の光学顕微鏡観察によってクラックが観察されず、かつ、X線回折によってc軸配向したY123膜が成長していることがわかった。
 (実施例6:超電導体膜の作製)
 出発原料を市販品(和光純薬工業株会社製)のイットリウム、バリウム及び銅の酢酸塩粉末とし、溶媒をトリメチルアミンとプロピオン酸とした他は、実施例2と同様にして相当膜厚が550nmのY123膜を作製したところ、肉眼および40~1000倍の光学顕微鏡観察によってクラックが観察されず、かつ、X線回折によってc軸配向したY123膜が成長していることがわかった。
 (実施例7:超電導体膜の作製)
 基板をあらかじめ酸化セリウムを表面に蒸着させたチタン酸ストロンチウム単結晶基板とした他は実施例2と同様にして膜厚680nmのY123超電導体膜を作製した。
 このようにして作製したY123膜を肉眼および40~1000倍の光学顕微鏡観察によって調べたところ、クラックは生じていなかった。また、X線回折装置を用いたX線回折により、c軸配向した膜が成長していることがわかった。
 また、得られたY123膜について、液体窒素温度で誘導法により臨界電流密度を測定したところ、2.1MA/cmであった。

Claims (4)

  1.  希土類元素、バリウム及び銅を含有する金属種の金属イオンに対して、ピリジン及び/又は少なくとも1種の三級アミンと、少なくとも1種の炭素数が1~8のカルボン酸基と、必要に応じてアセチルアセトナト基とが配位した金属錯体が、炭素数が1~8の1価の直鎖アルコール及び/または水に、多価アルコール類を添加してなる溶媒に溶解されて、均一溶液とされていることを特徴とする希土類超電導膜製造用溶液。
  2.  前記多価アルコールが、2価のアルコール及び3価のアルコールから選ばれる少なくとも1種であることを特徴とする請求項1に記載の希土類超電導膜製造用溶液。
  3.  希土類元素、バリウム及び銅を含有する金属種の、炭素数1~8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1~8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1~8の1価の直鎖アルコール及び/または水に溶解し、さらに多価アルコール類を添加して、均一な溶液とすることを特徴とする希土類超電導膜製造用溶液の製造方法。
  4.  前記多価アルコールが、2価のアルコール及び3価のアルコールから選ばれる少なくとも1種であることを特徴とする請求項3に記載の希土類超電導膜製造用溶液の製造方法。
PCT/JP2010/072104 2009-12-09 2010-12-09 希土類超電導膜形成用溶液およびその製造方法 WO2011071103A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011545237A JP5445982B2 (ja) 2009-12-09 2010-12-09 希土類超電導膜形成用溶液およびその製造方法
US13/514,139 US8865628B2 (en) 2009-12-09 2010-12-09 Solution for forming rare-earth superconductive film and production method thereof
CN201080056222.5A CN102652112B (zh) 2009-12-09 2010-12-09 稀土类超导膜形成用溶液及其制造方法
EP10836023.1A EP2511235B1 (en) 2009-12-09 2010-12-09 Solution for forming rare-earth superconductive film, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-279655 2009-12-09
JP2009279655 2009-12-09

Publications (1)

Publication Number Publication Date
WO2011071103A1 true WO2011071103A1 (ja) 2011-06-16

Family

ID=44145648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072104 WO2011071103A1 (ja) 2009-12-09 2010-12-09 希土類超電導膜形成用溶液およびその製造方法

Country Status (5)

Country Link
US (1) US8865628B2 (ja)
EP (1) EP2511235B1 (ja)
JP (1) JP5445982B2 (ja)
CN (1) CN102652112B (ja)
WO (1) WO2011071103A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012247A (ja) * 2010-06-30 2012-01-19 National Institute Of Advanced Industrial Science & Technology 酸化物超電導薄膜製造用の原料溶液及びその製造方法
CN102807372A (zh) * 2012-08-28 2012-12-05 西北有色金属研究院 一种钆钡铜氧致密膜的制备方法
JP2014047100A (ja) * 2012-08-31 2014-03-17 Toshiba Corp 酸化物超電導体の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795180B (zh) * 2015-04-07 2017-08-11 上海大学 极低氟mod法快速制备rebco超导膜的方法
US11527277B1 (en) 2021-06-04 2022-12-13 Kepler Computing Inc. High-density low voltage ferroelectric memory bit-cell
US11737283B1 (en) 2021-11-01 2023-08-22 Kepler Computing Inc. Method of forming a stack of non-planar capacitors including capacitors with non-linear polar material and linear dielectric for common mode compensation in a memory bit-cell
US11482270B1 (en) * 2021-11-17 2022-10-25 Kepler Computing Inc. Pulsing scheme for a ferroelectric memory bit-cell to minimize read or write disturb effect and refresh logic
US11997853B1 (en) 2022-03-07 2024-05-28 Kepler Computing Inc. 1TnC memory bit-cell having stacked and folded planar capacitors with lateral offset
US11741428B1 (en) 2022-12-23 2023-08-29 Kepler Computing Inc. Iterative monetization of process development of non-linear polar material and devices
US11765908B1 (en) 2023-02-10 2023-09-19 Kepler Computing Inc. Memory device fabrication through wafer bonding

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465007A (en) * 1987-01-30 1989-03-10 Agency Ind Science Techn Starting material solution for superconductive material
JPS6469516A (en) * 1987-09-08 1989-03-15 Nippon Telegraph & Telephone Production of oxide powder
JPH01234305A (ja) * 1988-03-11 1989-09-19 I M C:Kk 超伝導性材料及びその製造法
JPH0476323A (ja) 1990-07-16 1992-03-11 Matsushita Seiko Co Ltd 空気調和機の露受皿
JPH0476324A (ja) 1990-07-17 1992-03-11 Matsushita Electric Ind Co Ltd 空気調和装置
JPH05147941A (ja) * 1989-12-27 1993-06-15 Agency Of Ind Science & Technol 超電導体の製造方法及び超電導体
JPH0710732A (ja) 1993-06-28 1995-01-13 Kobe Steel Ltd 過酸化物生成防止剤及び紫外線障害防止外用剤
JPH07106905A (ja) 1993-10-06 1995-04-21 Matsushita Electric Ind Co Ltd 発振子
JP2002284526A (ja) * 2001-03-27 2002-10-03 National Institute Of Advanced Industrial & Technology 特定の金属種に特定の配位子を配位させた金属錯体を含む溶液組成物、希土類超電導膜製造用溶液組成物、特定金属錯体の非結晶固形物、特定の金属種に特定の配位子を配位させた金属錯体を含む溶液の製造方法、希土類超電導膜製造用溶液の製造方法、及び超電導薄膜の製造方法。
JP2006096577A (ja) * 2004-09-28 2006-04-13 Tokyo Institute Of Technology 金属酸化物膜、金属酸化物膜の製造方法および成形品
JP2008198396A (ja) * 2007-02-08 2008-08-28 National Institute Of Advanced Industrial & Technology 超電導酸化物材料の製造方法
WO2008115249A2 (en) * 2006-07-17 2008-09-25 Massachusetts Institute Of Technology Making high jc superconducting films using polymer-nitrate solutions

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465003A (en) 1987-01-30 1989-03-10 Agency Ind Science Techn Superconductive material and production thereof
DE3853594T2 (de) 1987-01-30 1995-08-31 Agency Ind Science Techn Verfahren zur Herstellung eines supraleitenden Materials.
JPH01219004A (ja) * 1988-02-29 1989-09-01 Nisshin Steel Co Ltd 酸化物系超電導体薄膜の作成方法
JPH0710732B2 (ja) 1991-06-28 1995-02-08 工業技術院長 超電導体の製造方法
KR20020025957A (ko) * 1999-07-23 2002-04-04 아메리칸 수퍼컨덕터 코포레이션 개선된 고온 피복 초전도체
US6562761B1 (en) 2000-02-09 2003-05-13 American Superconductor Corporation Coated conductor thick film precursor
JP4103025B2 (ja) * 1999-08-12 2008-06-18 独立行政法人産業技術総合研究所 高周波フィルタおよびその製造方法
JP3556586B2 (ja) * 2000-09-05 2004-08-18 株式会社東芝 酸化物超電導体の製造方法、酸化物超電導体用原料、および酸化物超電導体用原料の製造方法
JP3548801B2 (ja) * 2001-03-27 2004-07-28 独立行政法人産業技術総合研究所 特定の金属種に特定の配位子を配位させた金属錯体を含む溶液組成物、希土類超電導膜製造用溶液組成物、特定金属錯体の非結晶固形物、特定の金属種に特定の配位子を配位させた金属錯体を含む溶液の製造方法、希土類超電導膜製造用溶液の製造方法、及び超電導薄膜の形成方法。
CN1190526C (zh) 2003-03-27 2005-02-23 上海交通大学 具有过热性质种膜作籽晶液相外延生长超导厚膜材料
JP5415696B2 (ja) * 2004-10-01 2014-02-12 アメリカン・スーパーコンダクター・コーポレーション 機能が向上された厚膜超伝導フィルム
AU2005333196B2 (en) 2004-10-01 2009-10-01 American Superconductor Corp. Thick superconductor films with improved performance
JP4997621B2 (ja) 2005-09-05 2012-08-08 パナソニック株式会社 半導体発光素子およびそれを用いた照明装置
US20100015340A1 (en) * 2008-07-17 2010-01-21 Zenergy Power Inc. COMPOSITIONS AND METHODS FOR THE MANUFACTURE OF RARE EARTH METAL-Ba2Cu3O7-delta THIN FILMS

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465007A (en) * 1987-01-30 1989-03-10 Agency Ind Science Techn Starting material solution for superconductive material
JPS6469516A (en) * 1987-09-08 1989-03-15 Nippon Telegraph & Telephone Production of oxide powder
JPH01234305A (ja) * 1988-03-11 1989-09-19 I M C:Kk 超伝導性材料及びその製造法
JPH05147941A (ja) * 1989-12-27 1993-06-15 Agency Of Ind Science & Technol 超電導体の製造方法及び超電導体
JPH0476323A (ja) 1990-07-16 1992-03-11 Matsushita Seiko Co Ltd 空気調和機の露受皿
JPH0476324A (ja) 1990-07-17 1992-03-11 Matsushita Electric Ind Co Ltd 空気調和装置
JPH0710732A (ja) 1993-06-28 1995-01-13 Kobe Steel Ltd 過酸化物生成防止剤及び紫外線障害防止外用剤
JPH07106905A (ja) 1993-10-06 1995-04-21 Matsushita Electric Ind Co Ltd 発振子
JP2002284526A (ja) * 2001-03-27 2002-10-03 National Institute Of Advanced Industrial & Technology 特定の金属種に特定の配位子を配位させた金属錯体を含む溶液組成物、希土類超電導膜製造用溶液組成物、特定金属錯体の非結晶固形物、特定の金属種に特定の配位子を配位させた金属錯体を含む溶液の製造方法、希土類超電導膜製造用溶液の製造方法、及び超電導薄膜の製造方法。
JP2006096577A (ja) * 2004-09-28 2006-04-13 Tokyo Institute Of Technology 金属酸化物膜、金属酸化物膜の製造方法および成形品
WO2008115249A2 (en) * 2006-07-17 2008-09-25 Massachusetts Institute Of Technology Making high jc superconducting films using polymer-nitrate solutions
JP2008198396A (ja) * 2007-02-08 2008-08-28 National Institute Of Advanced Industrial & Technology 超電導酸化物材料の製造方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Source: Solvent Handbook", 1963, SANGYO TOSHO
A. GUPTA, APPL. PHYS. LETT., vol. 52, 1988, pages 2077
ARAKI ET AL., CRYOGENIC ENGINEERING, vol. 35, 2000, pages 516
ICHIRO MATSUBARA ET AL.: "Preparation of epitaxial YbBa2CU307-6 on SrTi03 single crystal substrates using a solution process", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 38, no. 7A, 1 July 1999 (1999-07-01), pages 727 - 730, XP008157145 *
JOANNA MCKITTRICK ET AL.: "Chemical synthesis of spun-on thick films of oxide superconductors", THIN SOLID FILMS, vol. 206, 1991, pages 146 - 150, XP008157138 *
P. C. MCLNTYRE ET AL., J. MATER. RES., vol. 5, 1990, pages 2771
See also references of EP2511235A4
W. T. WANG ET AL., PHYSICA C, vol. 468, 2008, pages 1563

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012247A (ja) * 2010-06-30 2012-01-19 National Institute Of Advanced Industrial Science & Technology 酸化物超電導薄膜製造用の原料溶液及びその製造方法
CN102807372A (zh) * 2012-08-28 2012-12-05 西北有色金属研究院 一种钆钡铜氧致密膜的制备方法
JP2014047100A (ja) * 2012-08-31 2014-03-17 Toshiba Corp 酸化物超電導体の製造方法
KR101476551B1 (ko) * 2012-08-31 2014-12-24 가부시끼가이샤 도시바 산화물 초전도체의 제조 방법 및 산화물 초전도체

Also Published As

Publication number Publication date
US20120270738A1 (en) 2012-10-25
EP2511235B1 (en) 2019-07-10
CN102652112B (zh) 2014-09-03
EP2511235A4 (en) 2015-05-27
JPWO2011071103A1 (ja) 2013-04-22
US8865628B2 (en) 2014-10-21
JP5445982B2 (ja) 2014-03-19
EP2511235A1 (en) 2012-10-17
CN102652112A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5445982B2 (ja) 希土類超電導膜形成用溶液およびその製造方法
JP3548801B2 (ja) 特定の金属種に特定の配位子を配位させた金属錯体を含む溶液組成物、希土類超電導膜製造用溶液組成物、特定金属錯体の非結晶固形物、特定の金属種に特定の配位子を配位させた金属錯体を含む溶液の製造方法、希土類超電導膜製造用溶液の製造方法、及び超電導薄膜の形成方法。
JP2009544143A (ja) 高Jc超伝導膜の製造方法およびそのために使用されるポリマー‐硝酸塩溶液
JP3851948B2 (ja) 超電導体の製造方法
JP5421561B2 (ja) 酸化物超電導薄膜の製造方法
JP2008198396A (ja) 超電導酸化物材料の製造方法
JP5273561B2 (ja) 超電導膜の製造方法
JP2013235766A (ja) 酸化物超電導薄膜とその形成方法
JP5729592B2 (ja) 超電導膜の製造方法並びに該方法により得られる仮焼成膜及び超電導膜
JP5605750B2 (ja) 酸化物超電導薄膜製造用の原料溶液
JP4154475B2 (ja) 基板の表面に形成されたエピタキシャル薄膜及びその製造方法
JP3548802B2 (ja) 特定の金属種に特定の配位子を配位させた金属錯体を含む溶液組成物、希土類超電導膜製造用溶液組成物、特定金属錯体の非結晶固形物、特定の金属種に特定の配位子を配位させた金属錯体を含む溶液の製造方法、希土類超電導膜製造用溶液の製造方法、及び超電導薄膜の製造方法。
JPH07106905B2 (ja) 超電導体の製造方法及び超電導体
JP2011195435A (ja) 超電導膜の製造方法並びに該方法により得られる仮焼成膜及び本焼成膜
JP3507887B2 (ja) 単結晶基板の表面にエピタキシャル薄膜を形成する方法
JP2011253766A (ja) 酸化物超電導薄膜の製造方法
JP2013235765A (ja) 酸化物超電導線材とその製造方法
JP3612556B2 (ja) アルミナ単結晶基板の表面に形成された超伝導薄膜からなる超伝導体、及びアルミナ単結晶基板の表面に超伝導薄膜を形成する方法
KR100998310B1 (ko) 유기금속증착용 전구용액 형성방법 및 이를 사용하는초전도 후막 형성방법
JP2010135134A (ja) Re123超電導薄膜線材の製造方法およびre123超電導薄膜線材
JP5453627B2 (ja) 内部応力を緩和した酸化物超電導体膜の製造方法
JP2012064394A (ja) 酸化物超電導薄膜の製造方法
JP2012003962A (ja) 酸化物超電導薄膜の製造方法
JP4861290B2 (ja) 超伝導体及びその製造方法
JP4741787B2 (ja) 高温超電導膜の作製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056222.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545237

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010836023

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13514139

Country of ref document: US